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Introduction

In the beginning of the 1980s the mathematician Manin [Man80, Introduction]
and the physicist Feynman [Fey82] suggested, among others, that quantum mech-
anical systems could be used to do computations. This suggestion was based on
the observation that the (classical) simulation of a quantum mechanical system
requires an extraordinary amount of computations. Perhaps, then, one could use
such systems themselves to do computations.1

A well-known example is Shor’s algorithm [Sho94], which provides a polyno-
mial time method for factoring integers. This has a potentially big impact on the
security of most encryption schemes in use today, which rely on factoring be-
ing hard. An arguably more important application is suggested by the remarks of
Manin and Feynman mentioned above: quantum computers can be used to sim-
ulate quantum mechanical systems, for instance the quantum mechanical beha-
viour of a molecule, which is very difficult (if not downright impossible for reason-
ably complex molecules) with today’s technology. Understanding this behaviour
is essential in the development of new drugs. A full-fledged quantum computer
would therefore likely to greatly benefit medicine research.

Despite this (potential) power of quantum computation, at the moment no
such quantum computer is available. One of the main reasons for this is that the
quantum systems necessary to build a quantum computer are very sensitive to in-
teractions with the environment. Such interactions lead to decoherence of quan-
tum superpositions and hence to potential errors in the calculations. Even with
the advent of quantum error correction protocols, the required accuracies are out
of reach of current technology.

In recent years, however, a new approach to quantum computing has emerged.
This approach is thought to be able to address this stability problem. Independ-
ently, Freedman [Fre98] and Kitaev [Kit03] suggested that topological features of
quantum systems can be used to overcome this difficulty. Because of their topo-

1It should be noted that quantum mechanics does play a role in modern computers: it played an
important part in the development of transistors, the fundamental building blocks of a computer.
The computations themselves, however, are classical: they work on finite bitstrings, without the
possibility of superposition. In addition, in some types of modern flash storage devices, quantum
mechanical effects are employed as well.
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Introduction

logical nature, these systems are inherently protected from influences from the
environment. This can be seen as a kind of hardware error protection. Kitaev’s
proposal is based on quantum spin systems, whereas Freedman uses topological
quantum field theory. Nevertheless, both approaches are intimately related: they
both revolve around the possibility of non-abelian anyons.2

Non-abelian anyons are a generalisation of both fermions and bosons. Recall
that a fermion is a particle obeying Fermi-Dirac statistics (this implies for example
that two identical fermions cannot be in the same state). Bosons satisfy Bose-
Einstein statistics. The (quantum mechanical) state of a system is symmetric un-
der interchange of two identical bosons, and anti-symmetric under interchange
of identical fermions. For long it was thought that these3 are in fact the only pos-
sibilities, but in the seventies it was realised that in low dimensions of space-time
more general behaviour is possible [LD71, LM77]. An introduction to anyons and
reprints of classic papers on this subject can be found in [Wil90].

In essence, anyons can be seen as excitations (or quasiparticles4) that behave
non-trivially under interchange. This behaviour is called the statistics of a particle.
Intuitively speaking, it means that interchanging two identical anyons twice is not
the same as leaving them in place. This is quite unlike the usual Fermi or Bose
statistics, where interchanging two particles twice has the same effect as doing
nothing at all. It turns out that this property can be exploited to perform quantum
computations.

It is perhaps instructive to outline how a system with anyons could be used to
do quantum computations. A more in-depth treatment can be found in Chapter 4.
The basic ingredients of quantum computation are as follows: one uses (a subset
of) the states of a quantum mechanical system to represent the different “inputs”
to a computation, analogously to the bits in a classical computer. A computation
is performed by acting on the input state by means of unitary transformations (ef-
fected, e.g., by turning on a magnetic field). Finally, a measurement is performed
to get an answer. It should be noted that, according to the laws of quantum mech-
anics, the outcome of this measurement is probabilistic. Hence one might have to
repeat the same steps a number of times.

So how does this work in a system with anyons? First of all, one once again
initialises the system in a known state. This is done by creating pairs of an anyon
and its antiparticle from the vacuum. We suppose that we have some mechanism
to move the anyons around each other, i.e. “braid” them. Moving them around
will change the state of the system, just like when we interchange two fermions.
Mathematically this is described by acting with a unitary on the state of the system.

2Alternative names include nonabelions and plektons.
3And parastatistics, which are also related to representations of the symmetric group.
4A quasiparticle is an emergent phenomenon, where complex microscopic can effectively be

described by fictitious particles. A well-known example is a Cooper pair in a superconductor. In this
case two electrons pair up in such a way that the pair essentially behaves like a boson.
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Figure 1: The worldlines traced out by six anyons. The top plane is at t = 0 and the bottom plane at
some later time t .

The key point then is that with non-abelian anyons, it is possible to perform a
non-trivial operation on the state in this way, unlike the Bose/Fermi case where
one can obtain an overall sign at most. Under suitable conditions on the system
all quantum circuits can be approximated by braiding anyons. States of anyons
carry a representation of the braid group, whereas states of bosons and fermions
carry representations of the symmetric group. Accordingly, one speaks of braided
and symmetric statistics.

It is clear that braiding anyons is of a topological nature. Consider anyons
in a two dimensional plane. For convenience, we can think of them as pointlike
for the moment. As we start moving them around, they trace out a world line in
space-time (see Figure 1). This leads to a braid. As mentioned above, moving
anyons around changes the state of the system. Now the point is that the final
state depends only on the isotopy class of the braid the anyons trace out. This has
clear advantages: the precise path of the anyons is not important, as long as the
braid they generate stays the same. If an anyon gets “nudged” a bit by interactions
of the environment, this will not affect the calculation. This can be interpreted as
some kind of “hardware” error correction. All that is needed is some mechanism
to move anyons around (which is still a difficult task). This provides part of the
motivation for the study of systems with anyons.

Our goal is not to study topological quantum computing per se. Rather, we
focus on certain models describing quantum mechanical systems relevant for to-
pological quantum computing. Besides these applications, they are interesting
from a theoretical viewpoint as well. In essence, our goal is to extract the proper-
ties of charges of excitations from a description of a model in terms of observables.
There are two classes of models for which we will study this:
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Introduction

• Quantum field theory in d = 2 + 1, treated in the operator algebraic ap-
proach.

• Quantum spin models on an infinite lattice and Kitaev’s model based on the
quantum double of the group algebra of a finite group in particular.

Both will be studied in the framework of local quantum physics (LQP), understood
here in a broad sense [Haa96]. That is, we view (C∗-)algebras of local observables
(perhaps taken in some “privileged” representation) as fundamental. All relevant
properties of the “charges” or “excitations” of the system can then be obtained as
certain linear maps of the observables.

Local quantum physics

The roots of local quantum physics trace back to early attempts of Jordan, von
Neumann and Wigner, of finding a purely algebraic description of quantum the-
ory, as opposed to the common Hilbert space approach to quantum mechanics
(also due to von Neumann). The latter describes a framework in terms of a given
Hilbert space whose unit vectors describe the physical (pure) states. Observables
are modelled by bounded or unbounded linear operators acting on this Hilbert
space. This approach is usually vindicated by the Stone-von Neumann unique-
ness theorem, which asserts that for Euclidean systems with finitely many degrees
of freedom there is essentially one representation of the position and momentum
operators (satisfying certain natural conditions). If, on the other hand, one con-
siders theories with infinitely many degrees of freedom, such as quantum field
theory, a problem arises: the uniqueness theorem of Stone and von Neumann
does not hold anymore. That is, there is no unique representation of the posi-
tion and momentum operators. Which representation (or, which Hilbert space)
should one use in that case?

We skip a few steps in history at this point, and just say that one of the schemes
that emerged as a proposed solution is that of local quantum physics. An account
of the results in this framework can be found in the monograph by Haag [Haa96],
one of the founders of the field. The essence of this theory is that local nets of
observables are taken to be fundamental. Since these local algebras will play an
import role in this thesis, let us expand on the main ideas briefly. A local net (of
observables) assigns to certain bounded regions Λ an algebra A(Λ) of all observ-
ables that describe physical properties localised in this region.5 An inclusion of
regions induces an inclusion of algebras, and together these algebras generate an
algebra A of all observables that can be approximated arbitrarily well by measure-
ments in bounded regions. The physical intuition behind this approach is that an

5In the field theory setting these regions are usually taken to be the intersection of a forward
and a backward light cone. In the quantum spin setting, the regions consist of a finite number of
sites on which the spin degrees of freedom live.

xii



Main results

experimenter can only perform measurements in bounded regions, say in his/her
laboratory. The adjective local signifies that measurements in spacelike separated
(or disjoint, in the case of spin systems) regions commute with each other. In re-
lativistic theories this property is called Einstein causality: no signal can go faster
than light.

In this formalism, charges can be described by certain endomorphisms of A.
In particular, one considers localised endomorphisms ρ, for which ρ(A) = A for all
observables A ∈ A that are localised in the (spacelike) complement of the local-
isation region. Moreover, they should be transportable: for any other localisation
region, there is a unitary U ∈A such that ρ′(A) :=Uρ(A)U∗ is localised in the new
region. Often additional requirements are imposed, such as Poincaré covariance.
The equivalence classes of such (irreducible) endomorphisms label the different
“charges” or superselection sectors of the system. The physical interpretation is
that if such an endomorphism is composed with the ground state, one obtains a
“charged state”, with a charge sitting in the localisation region of ρ. These endo-
morphisms can be endowed with a “product” operation, corresponding to adding
different charges. One of the highlights of the so-called Doplicher-Haag-Roberts
program is that within this framework, it is possible to derive the statistics (i.e.,
behaviour of the charges under interchange) from first principles. Mathematically,
this can be described by saying that the category of endomorphisms (or “category
of charges”) as above is a braided tensor category.

In local quantum physics one usually deals with relativistic quantum theor-
ies. In the last part of the thesis we will take ideas from LQP and apply them to
quantum spin systems. In this thesis we will use the term LQP both in the relativ-
istic and in the quantum spin setting. Regarding the latter, we will be concerned
with systems in the mathematical idealisation of infinite size [BR97]. At each site
of the model there is a quantum spin degree of freedom. Local observables, then,
are those observables that act only on a finite number of sites. In this setting one
can again try to describe localised excitations of the ground state of the system
by certain linear maps of the observables and try to derive the properties of such
excitations. This is what we will pursue in the third part of this thesis.

Main results

After these introductory remarks, we are in a position to state the main results in
this thesis. Note that this section is intended as a brief summary only: for the
precise hypotheses under which these results hold, the reader is referred to the
bulk of the thesis.
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Quantum field theory in d = 2+1

In d = 2+1 dimensional Minkowski space one can consider two natural types of
localisation: compact localisation in double cones, or “stringlike” localisation in
spacelike cones. One can think of the latter as fattening strings that get bigger and
bigger towards spacelike infinity. It is well known that in this dimension compactly
localised sectors have permutation statistics, while the stringlike localised sectors
might have braided statistics. The existence of sectors with permutation statist-
ics form an obstruction for modularity of the corresponding category of localised
endomorphisms.

In part II we follow an idea first suggested by Rehren [Reh91] to remove this ob-
struction. The first step is to obtain a gauge group G together with a field net asso-
ciated to the compactly localised sectors. This can be obtained by the Doplicher-
Roberts construction [DR90]. In this way we obtain a new local6 net O 7→ F(O )
with A(O ) ⊂ F(O ). This new net can be interpreted as an algebraic quantum field
theory in its own right, which, moreover, does not have any non-trivial compactly
localised sectors.

It is clear that this construction removes the obstruction for modularity. The
question then arises how this new theory relates to the old one, in particular con-
cerning the stringlike localised sectors. It turns out that each localised and trans-
portable representation can be extended uniquely to such a representation of the
field net that commutes with the action of G . Conversely, each such representa-
tion of the field net comes from such an extension.

Theorem ([Naa11a]). Each stringlike localised and transportable representation η

of A can be extended to a representation η̂ of F sharing these properties. Moreover,
η̂ commutes with the action αg of G, in that αg ◦ η̂= η̂◦αg for all g ∈G. Conversely,
each such representation η̂ if F is the extension of some localised and transportable
representation of A.

This extension procedure is in fact functorial: intertwiners between represent-
ations of the observable net lift to intertwiners of the extensions of those repres-
entations. There is a strong relation with a purely categorical construction: one
can construct a “crossed product” of the category of stringlike localised sectors of
A by the category of DHR sectors of A. The extension functor factors through this
category. It is possible to give necessary and sufficient conditions under which
the crossed product category is equivalent to the category of stringlike localised
sectors of F. Since these conditions are rather technical, we suffice to say for the
moment that this is the case, for example, when G is a finite group. The full state-
ment can be found in Propositions 8.2.1 and 8.2.6. Under these conditions one
has a complete understanding of all sectors of F, given the sectors of A.

6For locality we have to assume that the original theory A(O ) only has bosonic compactly local-
ised sectors.
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Main results

The toric code model

Concerning quantum spin systems, our primary focus in this thesis is on Kitaev’s
toric code model. Contrary to much of the existing literature on this model, we
consider the model on an infinite plane (with an infinite number of sites). In the fi-
nite version of this model excitations can be created by acting with certain “string”
operators on a ground state vector. Such excitations are always created in pairs, at
least when the model is defined on a surface of genus zero. By moving one of these
excitations “far away”, it is possible to study a single excitation.

In the infinite version (approximately) of the model, this is easily accomplished
by moving one of the excitations to infinity. In this way one obtains automorph-
isms that are localised in a cone-like (or stringlike) region (that contains the path
along which the excitation was moved to infinity). When such an automorphism
is composed with the ground state, this leads to a charged state, which does not
depend on the specific path. In the spirit of the DHR programme, the proper-
ties of these single excitations can then be studied by investigating these localised
automorphisms. Such automorphisms can again be endowed with the structure
of a braided tensor category ∆. One finds four types of excitations (including the
vacuum), which moreover exhibit the statistics of abelian anyons. As expected
from the model, this category is the same as the category of representations of the
quantum double of Z2:

Theorem ([Naa11c]). The category ∆ of stringlike localised automorphisms is equi-
valent (as a braided ribbon ∗-category) to the category Rep f D(Z2) of representa-
tions of the quantum double of the group algebra of Z2.

In the Doplicher-Haag-Roberts analysis of algebraic quantum field theory, the
property of Haag duality plays an important (technical) role. Roughly speaking, it
says that local algebras cannot be enlarged without violating locality. This prop-
erty is essential in passing from certain representations of the observable algebra
to transportable, localised endomorphisms. Although in the analysis for the toric
code, outlined above, the same results can be obtained without invoking Haag du-
ality, it is still an interesting question whether this holds or not for the toric code.
It turns out that for cones (which are the appropriate region for this model) this
indeed is the case.

Theorem ([Naa11b]). Let π0 be the ground state representation of the toric code
model and suppose that Λ is a cone. Then π0(A(Λ))′′ = π0(A(Λc ))′, where Λc is the
complement of Λ in the set of sites.

There is more to say about the von Neumann algebras generated by the ob-
servables located in a cone Λ. For example, one can show that they are infinite
factors, which are not of Type I (i.e., they are not isomorphic to the algebra of
bounded operators on some Hilbert space). This implies that the regions Λ and
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Λc are not independent, in that not every state ω of π0(A)′′ is (quasi-)equivalent7

to a product state ωΛ⊗ωΛc on A(Λ)⊗A(Λc ), where ωΛ is the restriction of ω to
π0(A(Λ))′′.

There is, however, a slightly weaker property of local algebras, called the distal
split property. If we have a cone Λ1 we can consider a larger cone Λ2 containing
this cone. If the edges of these cones are separated far enough, then the region Λ1

and the complement of Λ2 are independent in the sense above. More precisely:

Theorem ([Naa11b, Naa11c]). Let Λ be a cone. Then π0(A(Λ))′′ is a factor of Type
I I∞ or Type I I I . Moreover, if Λ1 ⊂Λ2 are two cones whose edges are well separated,
then there is a Type I factor N such that π0(A(Λ1))′′ ⊂N ⊂π0(A(Λ2))′′.

Finally, we present some work on the extension of these results to Kitaev’s
model for non-abelian groups. In particular, we show that the model has a unique
ground state, when considered on an infinite lattice on the plane.

Organisation of the thesis

This thesis consists of three parts. In the first part, we discuss the necessary back-
ground needed for the rest of the thesis and provide motivation for the research.
Most of this material is fairly standard and can be found in a number of textbooks,
such as [BR87,BR97,Haa96,ML98,Wan10]. The author hopes that by including this
standard material, readers with different (mathematical) backgrounds can get up
to speed quickly before studying the main results. Chapter 4 is partly based on the
expository article [Naa10] (in Dutch).

Parts II and III contain the main results of this thesis. These parts can be
read independently from each other. In part II relativistic quantum field theory
in d = 2+1 is studied in the setting of algebraic quantum field theory. The general
structure of stringlike localised sectors as a braided tensor category is outlined and
the main results mentioned in the previous section are proved. The results in part
II are largely contained in [Naa11a].

The final part contains a study of Kitaev’s quantum spin models. After the
model has been introduced, various aspects of the simplest case (the toric code)
are studied. In particular, this includes the categorical structure of the superselec-
tion sectors, as well as some operator algebraic results on the algebra of observ-
ables. This part is based on [Naa11c, Naa11b]. Finally, we present some investiga-
tions on generalisations to non-abelian groups G . In an appendix, the source code
for the GAP computer algebra system to compute fusion rules in Kitaev’s model is
presented.

7Two states are called quasi-equivalent if their corresponding GNS representations are quasi-
equivalent. These notions are explained in §1.1.
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Preliminaries
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This part of the thesis gives a brief overview of the necessary mathematical
(and physical!) background for the main results of this thesis. Naturally, this is not
the place for a thorough introduction into any of these subjects. In particular, an
emphasis is put on those results that will be of later use within this thesis, omit-
ting or only mentioning briefly other important results and developments in the
theory. Most proofs are only sketched or even omitted entirely.

However, in each chapter references to textbooks and monographs containing
details and thorough introductions are given. The interested reader can refer to
these works. It is the hope of the author that this part of the thesis gives a concise
introduction and motivation for readers with a variety of backgrounds. Of course,
the reader already familiar with the topics discussed here can safely skip those
chapters, and consult them only when referred to from another part of the thesis.

In Chapter 2 we introduce tensor categories. We will mainly be interested in
so-called modular tensor categories, which describe the essential features of topo-
logical quantum computers. In the next chapter the necessary results of the theory
of operator algebras are collected, in particular those that are of importance in the
description of infinite quantum systems. In Chapter 3 these notions are used to
describe the C∗-algebraic approach to quantum physics and quantum field the-
ory. Chapter 4 is the main motivation behind our investigations: it describes the
intimate connection between modular tensor categories on the one hand, and the
topological approach to quantum computation on the other. Finally, in Chapter 5
we work out an explicit example of a modular tensor category, namely the category
of representations of Drinfel’d’s quantum double D(G) of a finite group G . This is
the algebraic structure underlying Kitaev’s model, which is described in Part III.
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Chapter 1

Operator algebras

In describing quantum mechanical systems the theory of operator algebras enters
naturally. Indeed, this is already apparent from the work of von Neumann, a pion-
eer in both fields [Neu32, Neu61]. A more recent example is the theory of KMS
states. One the one hand they are important for describing equilibrium states
in quantum statistical mechanics [HHW67], and on the other hand they play an
important role in the Tomita-Takesaki modular theory ( [BR97], also see the in-
teresting account by Takesaki on these interactions between mathematicians and
mathematical physicists in the development of operator theory [Tak94]).

In this chapter, we review the basic definitions and constructions in so far as
necessary for our purposes, in particular, aspects of the theory of C∗-algebras and
von Neumann algebras. A working knowledge of classical and functional analysis
is assumed. To that effect, the book by Pedersen [Ped89] is highly recommended.
Alternatively, one can consult the book by Conway [Con85].

By now there is a great number of textbooks on operator algebras; we name a
few here. It depends on the reader’s background and interests which references are
preferred. They all contain a great deal more than what is required in this thesis.
First of all, there are the three volumes by Takesaki [Tak02, Tak03a, Tak03b], where
the focus is more on the theory of von Neumann algebras than on C∗-algebras.
Readers interested in applications to (mathematical) physics might want to con-
sult the two books by Bratteli and Robinson [BR87, BR97]. Of particular interest
for the topic of this thesis are the results on quantum spin systems, developed
in great generality in [BR97]. The topics of the two textbooks by Kadison and
Ringrose range from the basics of topological vector spaces to more advanced
topics in operator algebras, such as modular theory, but no applications to phys-
ics [KR97, KR83]. Finally, the book by Blackadar [Bla06] contains most basic res-
ults, but with many of the proofs omitted or only sketched. It is, therefore, more
suitable as a reference work.

Since all of the material in this chapter (except for the last section) is standard
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1. Operator algebras

material, we refrain from giving specific references in the text.

1.1 Basic theory

Suppose that A is an associative algebra (not necessarily unital) over C. Suppose
moreover that the algebra has an anti-linear involution ∗, so that (AB)∗ = B∗A∗

and A∗∗ = A, and a norm ∥ · ∥. Then A is called a C∗-algebra if the following con-
ditions are satisfied:

i. A is complete with respect to the norm,
ii. ∥AB∥ ≤ ∥A∥∥B∥,

iii. ∥A∗A∥ = ∥A∥2,
for every A,B ∈ A. A C∗-algebra is in particular a Banach ∗-algebra. Virtually all
C∗-algebras in this thesis will have a unit.

The definition of a C∗-algebra may appear a bit daunting at first sight, but
in fact most mathematicians have encountered one of the main examples: the
bounded operators on a Hilbert space. The algebra Mn(C) of n ×n matrices with
coefficients in C is a specific case if this example.

Example 1.1.1. Consider a Hilbert space H . The algebra of bounded linear maps
from H to itself is denoted by B(H ). This set can be endowed with a norm, defined
by ∥T ∥ := supψ∈H ,∥ψ∥=1∥Tψ∥, where the norm on the right hand side of the equa-
tion is the norm induced by the inner product of H . Taking the adjoint (or Her-
mitian conjugate) T ∗ of a linear map T defines an involution. This is a C∗-algebra.

If A ⊂ B(H ) is a ∗-subalgebra, which is closed with respect to the norm of
B(H ), then A is a C∗-algebra. It turns out that in a sense this is the only example:
every C∗-algebra can be realised as a norm-closed subalgebra of B(H ), for some
Hilbert space H . This is the content of the (second) Gel’fand-Naimark theorem,
stated below. In practice, however, it is often more convenient to talk about ab-
stract C∗-algebras without mentioning any Hilbert space.

Just as important as the C∗-algebras themselves, or perhaps even more im-
portant, are maps between C∗-algebras. In particular, it makes sense to consider
(algebra) homomorphisms ρ : A → B between two C∗-algebras. We will always
consider ∗-homomorphisms: those homomorphisms that commute with the ∗-
operation of the two algebras. It is well known that a ∗-homomorphism from a C∗-
algebra into a C∗-algebra is automatically continuous (with respect to the norm
topologies). If A and B have units, we usually demand that the homomorphisms
preserve the unit, without stating so explicitly every time.

States and representations

An important type of a ∗-homomorphism from a C∗-algebra A is a ∗-homomor-
phism π :A→B(H ), for some Hilbert space H . Such a homomorphism is called

6



1.1. Basic theory

a representation of A. We write this as (π,H ). We will always assume that a repres-
entation is non degenerate, in that the set π(A)H is dense in H . It is clear that a
representation that preserves the unit of a C∗-algebra is non degenerate. A related
but stronger condition is cyclicity.

Definition 1.1.2. Let (π,H ) be a representation of a C∗-algebra. The representation
is called cyclic if there is a vector Ω ∈H such that the set π(A)Ω is dense in H .

A vector Ω as in the definition is called cyclic as well. One can always write a
(non degenerate) representation as a direct sum of cyclic representations. Dually,
a vector Ω is called separating if π(A)Ω=π(B)Ω implies that π(A) =π(B).

A representation is called irreducible if π(A) leaves no non-trivial closed sub-
space of H invariant. In fact, for irreducible representations of C∗-algebras one
can drop the adjective “closed”: if there are no closed non-trival subspaces, then
there are no no-trivial invariant subspaces altogether. Irreducibility of a represent-
ation π is equivalent to the assertion that the only operators in B(H ) that com-
mute with π(A) are multiples of the unit operator (Schur’s Lemma). If a represent-
ation is not irreducible, then there must be some non-trivial subspace K ⊂H left
invariant by π. Hence we can restrict π to this subspace to obtain a new represent-
ation. Such a representation is called a subrepresentation of π.

There are a number of equivalence relations on the set of representations.
We say that two representations (π1,H1) and (π2,H2) are unitarily equivalent, or
simply equivalent, if there is a unitary operator U : H1 → H2 such that π2(A) =
Uπ1(A)U∗ for each A ∈ A. This is denoted by π1

∼= π2. A weaker notion is quasi-
equivalence. Two representations are quasi-equivalent, notation π1 ∼ π2, if every
subrepresentation of π1 contains a subrepresentation that is unitarily equivalent to
a subrepresentation of π2, and vice versa. If no (non-zero) subrepresentation π1 is
equivalent to a subrepresentation of π2 the representations are said to be disjoint.

To describe an important way of obtaining representations of a C∗-algebra, we
first have to introduce the notion of a state. As the name suggests, this is a gener-
alisation of the notion of a state in quantum mechanics to the abstract setting of
C∗-algebras.

Definition 1.1.3. A state ω on a C∗-algebraA is a positive linear functional of norm
1. A linear functional is positive if ω(A∗A) ≥ 0 for all A ∈A.

It follows from positivity that the Cauchy-Schwarz inequality holds, in that
|ω(B∗A)|2 ≤ω(A∗A)ω(B∗B).

A state is called pure if it cannot be written as a convex combination of distinct
states. In other words, ω is pure if the existence of states ω1,ω2 such that

ω(A) =λω1(A)+ (1−λ)ω2(A)), 0 <λ< 1,
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1. Operator algebras

for all A ∈ A implies that ω1 = ω2. In other words, pure states are the extreme
points of the set of all states of a C∗-algebra A. Using the Hahn-Banach theorem
to extend linear functions defined on a subspace of A, it follows that there exist
states, and the Krein-Milman theorem subsequently implies the existence of pure
states.

It is easy to come up with examples. The simplest is that of a vector state.
Suppose that (π,H ) is a representation of a C∗-algebra and Ω ∈ H a unit vector.
Then the map A 7→ 〈Ω,π(A)Ω〉 is a state. Conversely, from a state one can obtain a
representation. This is the main content of the GNS construction (after Gel’fand-
Naimark-Segal), an important tool in operator algebras. This construction allows
us to obtain a cyclic representation from a state on a C∗-algebra.

Theorem 1.1.4 (GNS construction). Let A be a C∗-algebra and suppose that ω is a
state on A. Then there is a triple (πω,Hω,Ω), where πω :A→B(Hω) is a represent-
ation of A into the bounded operators of a Hilbert space Hω, and Ω is a cyclic unit
vector for this representation such that1

ω(A) = 〈Ω,πω(A)Ω〉 for all A ∈A.

This triple is unique in the following sense: suppose (π,H ,Φ) is another such triple.
Then there is a unitary operator U : Hω → H such that UΩ = Φ and Uπω(A) =
π(A)U for all A ∈A.

Proof. (Sketch) We sketch the construction in the simplest case, where A is unital.
Consider the set

Nω = {A ∈A : ω(A∗A) = 0}.

By the Cauchy-Schwarz inequality for states it easily follows that Nω is a left ideal
ofA. Consider the vector space Hω, defined by taking the quotient ofAbyNω. For
an element A ∈A, write [A] for the corresponding equivalence class. The quotient
Hω can be endowed with an inner product, by 〈[A], [B ]〉 := ω(A∗B). This is well
defined because Nω is a left ideal. By taking the completion with respect to the
induced norm, we obtain a Hilbert space which we again denote by Hω.

Next we have to define a representation. Suppose that A,B ∈ A. Then define
πω(A)[B ] := [AB ]. This map is well defined. One can show that

∥πω(A)[B ]∥2 =ω(B∗A∗AB) ≤ ∥A∗ A∥ω(B∗B) = ∥A∗A∥∥[B ]∥2,

hence π(A) is bounded, and can be extended to Hω. One easily checks that this
is indeed a representation. If we define Ω= [I ], then it is clear that Ω is cyclic and
that ω(A) = 〈Ω,πω(A)Ω〉.

1The brackets 〈−,−〉 denote the inner product. I take the inner product to be anti-linear in
the first variable, and hence linear in the second. In fact: “A mathematical physicist is a mathem-
atician who believes that a sesquilinear form is conjugate linear in the first variable and linear in the
second” [Ped89, p. 80].
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1.1. Basic theory

Finally, to demonstrate the last claim, suppose that (π,H ,Φ) is another triple
of the same kind. Define a linear map U on a dense subset of Hω by Uπω(A)Ω=
π(A)Φ. Note that U has dense range by assumption. It is also an isometry, since
∥Uπω(A)Ω∥2 =ω(A∗A) = ∥π(A)Φ∥2, hence U extends to a unitary map U : Hω →
H . From the definitions it is easy to check that Uπω(A) = π(A)U for all A ∈A, so
that the representations in question are unitarily equivalent.

One can prove that πω is irreducible if and only if ω is a pure state.
An important consequence of the uniqueness result is that if a state ω is in-

variant under the action of some group G , then the action of G is unitarily imple-
mented in the GNS representation. To be a bit more precise (we ignore continuity
properties), suppose there is a group G acting on a C∗-algebra A. In other words,
consider a group homomorphism αg : G → Aut(A), where Aut(A) is the group of ∗-
automorphisms of A. Suppose that ω is a state invariant under this group action,
so that ω(αg (A)) =ω(A) for all g ∈G and A ∈A. Then the theorem implies that for
each g ∈ G there is a unitary U (g ) such that πω(αg (A)) = U (g )πω(A)U (g )∗. One
can check that g 7→U (g ) is in fact a representation of G , so that U (g h) =U (g )U (h).

With help of the GNS representation it is possible to show that each C∗-algebra
can be realized as an algebra of bounded operators acting on some Hilbert space.

Theorem 1.1.5 (Gel’fand-Naimark). Suppose that A is a C∗-algebra. Then A is iso-
metrically isomorphic to a norm-closed self-adjoint subalgebra of B(H ) for some
Hilbert space H .

Proof. (Sketch) The theorem amounts to constructing an isometric representation
(π,H ) of A. This can be achieved using GNS representations. First, one shows
using the Hahn-Banach theorem that for every non-zero A ∈ A, there is a pure
state ωA of A such that ωA(A∗A) = ∥A∥2. It follows that the operator πωA (A) has
norm ∥A∥. Then one can consider the direct sum of all these representations,

π= ⊕
A∈A

πωA .

A general fact about representations of C∗-algebras is that a ∗-representation π is
norm-decreasing, that is, ∥π(A)∥ ≤ ∥A∥ for any A ∈A. Since ∥πωA (A)∥ = ∥A∥, it is
clear that ∥π(A)∥ ≥ ∥A∥, hence π is an isometric representation.

This representation of A, however, is far from unique, in that a C∗-algebra
generally has many inequivalent faithful representations. In practice this result
is therefore of limited use, and it is more convenient to use a “natural” faithful
representation, for example a vacuum representation in applications to quantum
field theory.
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1. Operator algebras

1.2 von Neumann algebras

A special class of C∗-algebras is formed bis formed by the von Neumann algebras.
A von Neumann algebraM is a∗-subalgebra ofB(H ) satisfying certain additional
conditions. The reason to consider von Neumann algebras is that they behave
much more nicely, in some respects, than an arbitrary C∗-algebra. To illustrate
this, let us briefly comment on their relevance to (quantum) physics before diving
into the technical details.

In quantum mechanics one is interested in the spectrum of an observable. In
short, the spectrum can be regarded as the set of possible outcomes of a meas-
urement of this observable. In the case of matrix algebras it is a basic result that
every self-adjoint matrix can be written as a sum

∑
λλPλ, where λ runs over the ei-

genvalues of the matrix and Pλ is the projection on the corresponding eigenspace.
The Pλ are called the spectral projections of the given matrix.

For self-adjoint bounded operators acting on a Hilbert space there is an ana-
logous result. Briefly, if A is such a self-adjoint operator, the spectrum σ(A) of A
is defined as σ(A) = {λ ∈ C : A −λI is not invertible}. Then the spectral theorem
asserts that there is a projection valued measure, i.e. an assignment of a projection
E(µ) to each measurable subset µ of σ(A), such that A = ∫

σ(A)λdE(λ). The integral
can be understood as the norm limit of Riemann sums. If µ is such a measurable
subset, the projection E(µ) is called a spectral projection if A. A nice property of
von Neumann algebras is that the spectral projections of A ∈M are automatically
elements of the von Neumann algebra M itself.

In quantum mechanics one also encounters unbounded operators, say the
momentum operator P of a particle on a line. It is clear that P cannot be con-
tained in a von Neumann algebra. However, there is a spectral measure as above,
in such a way that for each bounded subset I of the spectrum, E(I ) is a projection.
If, then, an unbounded operator A is affiliated – a technical term which we will not
define here – with a von Neumann algebra, then the spectral projections E([0, N ])
of A are contained in this von Neumann algebra. One can already argue from this
that von Neumann algebras can be used to model observables of a quantum sys-
tem: a device measuring an observable will always have a finite upper bound on
the quantity that can be measured. In other words, it makes sense to model such
a device (or observable, operation) using a bounded operator.

After this intermezzo, we give the definition of a von Neumann algebra.

Definition 1.2.1. Let M be a ∗-algebra of bounded operators acting non-degener-
ately on a Hilbert space H . Then M is called a von Neumann algebra if

M= (M′)′ =:M′′.

where the prime denotes the commutant of M in B(H ). That is, M′ = {B ∈B(H ) :
AB = B A for all A ∈M}.
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1.2. von Neumann algebras

If a subset S ⊂B(H ) is closed under taking adjoints, it is easy to check that
the commutant S′ is a von Neumann algebra. The commutant of a von Neu-
mann algebra is again a von Neumann algebra, and hence S′′ is a von Neumann
algebra. It is the smallest von Neumann algebra containing S. If S1,S2 are two ∗-
subalgebras ofB(H ), thenS1∨S1 := (S1∪S2)′′ is the von Neumann algebra gen-
erated byS1 andS2. Similarly, one definesS1∧S2 := (S1∩S2)′′. This defines the
structure of a lattice on the set of all von Neumann algebras contained in B(H ).

Because von Neumann algebras act on a Hilbert space H , there are other nat-
ural topologies to consider besides the norm topology. In particular, there are the
strong and weak operator topologies. Let Aλ be a net of bounded operators acting
on H and suppose that A ∈B(H ). Then Aλ converges to A in the strong operator
topology if and only if Aλξ converges to Aξ for every ξ ∈ H . Likewise, it con-
verges in the weak operator topology if for every pair ξ,η ∈ H , (η, Aλξ) converges
to (η, Aξ). Note that convergence in norm implies convergence in the strong op-
erator topology, and convergence in the latter implies convergence in the weak
operator topology.

The above definition of a von Neumann algebra is algebraic in nature. How-
ever, the next theorem, first proved by von Neumann, states that equivalently one
could demand that M be closed in the strong (or weak) operator topology. In par-
ticular, it implies that a von Neumann algebra is closed in the operator-norm to-
pology, and hence is a C∗-algebra.

Theorem 1.2.2 (von Neumann’s bicommutant theorem). LetM be a∗-algebra act-
ing non-degenerately on a Hilbert space H . Then the following statements are equi-
valent:

i. M=M′′

ii. M is closed in the weak operator topology
iii. M is closed in the strong operator topology

We will frequently use this theorem to obtain von Neumann algebras starting
with a C∗ algebra. For example, let A be a C∗-algebra. Suppose it acts on some
Hilbert space by means of a representation π of A. Then π(A)′′ is a von Neumann
algebra. In fact, it is the smallest von Neumann algebra containing the C∗-algebra
π(A). This is a special case of the construction above, with S=π(A).

Classification of factors

If M is a von Neumann algebra, its centre is M∩M′. The algebra M is called a
factor if its centre is trivial, that is, equal to CI . In a way, factors are the building
blocks of von Neumann algebras: every von Neumann algebra can be written as a
direct sum (or direct integral) of factors.

From the spectral theorem, discussed briefly above, it is apparent that projec-
tions play an important role in the theory of von Neumann algebras. In fact, it
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1. Operator algebras

can be shown that a von Neumann algebra is generated by its projections. It is
therefore not surprising that there is a classification of factors in terms of the pro-
jections it contains. Suppose that M is a von Neumann algebra (not necessarily a
factor). Then two projections P,Q ∈M are called Murray-von Neumann equival-
ent if there is some V ∈M such that P = V ∗V and Q = V V ∗; we write P ∼ Q. It
follows that V is a partial isometry from the range of P onto the range of Q. Note
that ∼ is indeed an equivalence relation. Is is important to remark that this equi-
valence relation depends on the algebra M: if P ∼Q in M it is not necessarily true
that P ∼Q in a subalgebra N⊂M containing both P and Q (but, of course, P ∼Q
for any N⊂M).

A projection P is a subprojection of Q, written P ≤ Q, if the range of P is con-
tained in the range of Q. We then have the following classification of projections.

Definition 1.2.3. Let P be a projection in a von Neumann algebra M. Then P is
called finite if Q ≤ P and P ∼ Q implies P = Q. Otherwise it is called infinite. A
projection P is called properly infinite if there is no finite projection Q in M such
that Q ≤ P. A projection P is called abelian if PMP is abelian.

A von Neumann algebra is called finite (respectively infinite, properly infinite)
if the identity I is finite (infinite, properly infinite).

Example 1.2.4. Let H be a Hilbert space and consider M = B(H ). Then M is
infinite if and only if H has infinite dimension. Suppose that ψ ∈ H and let P
be the projection on the linear span of ψ. It is easy to check that P is an abelian
projection. In fact, PAP = (ψ, Aψ)P for every A ∈B(H ). Two projections P,Q ∈M
are equivalent if and only if the dimensions of their ranges are equal.

Definition 1.2.5. A von Neumann algebra M is said to be of Type I if each non-zero
central projection majorizes a non-zero abelian projection. If M has no non-zero
abelian projections and every central projection majorizes a finite projection, M is
said to be of Type II. If M does not have any finite projection, it is called Type III. In
the Type II case there are two possibilities: if M is finite, we say it is Type II1, and if
there are no non-zero finite central projections it is of Type II∞.

Type I factors are the easiest: if M is a factor of Type I, then there is a Hilbert
space H such that M is isomorphic to B(H ).

This is indeed a useful classification: for every von Neumann algebra M can
be uniquely written in the form

M= zIMzI ⊕ zI I1MzI I1 ⊕ zI I∞MzI I∞ ⊕ zI I IMzI I I ,

where the zi are central projections that add up to the identity and zIMzI is of
Type I, and similarly for the other parts. If zI I I = 0, then M is called semi-finite.
In other words, a semi-finite von Neumann algebra is a von Neumann algebra
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1.2. von Neumann algebras

without a Type III part. This decomposition leads to a immediate corollary on
the types of a factor.

Corollary 1.2.6. Suppose that M is a factor. Then M is precisely one of Type I, Type
II1, Type II∞ or Type III.

The Type III case can in fact be further classified by a parameter λ ∈ [0,1]. Each
Type III factor is of Type IIIλ for some λ ∈ [0,1] and conversely, for each λ there is
such a factor. Different values for λ lead to non-isomorphic factors (but note that
there are non-isomorphic factors for the same value ofλ). These are deep results in
the theory of operator algebras, which fall outside the scope of this thesis [Con73].

There is one further remark to make. One can prove that a factor M admits a
normal tracial state τ, that is, a state such that τ(AB) = τ(B A) for all A,B , if and
only if M is finite.

Induced and reduced von Neumann algebras

Suppose that a von Neumann algebra M acts on some Hilbert space H . It might
be thatM leaves some subspace K invariant. It then follows that P , the projection
on K commutes with M and therefore P ∈ M′. Conversely, every projection in
M′ gives rise to such a subspace. The map A 7→ AK , where AK is the restriction
of A ∈M to K , is a ∗-homomorphism of A to B(K ).

One could ask the question if, or when, this homomorphism is in fact an iso-
morphism onto its image. This is the case if and only if the projection P has central
support I . The central support C A of an operator A in a von Neumann algebra is
defined as the intersection of all central projections Q such that Q A = A. Note that
C A is also in the centre. Hence if M′ is a factor, any non-zero projection P has
central support I and the map M→MP is an isomorphism. In the general case
one only has an isomorphism ACP → AP from MCP onto MP . See [KR83, Prop.
5.5.5] for a proof. Using this result one can show that the reduction of M to the
subspace K is in fact a von Neumman algebra.

Proposition 1.2.7. Let M be a von Neumann algebra with centre Z acting on a
Hilbert space H . Suppose that P is a projection in M′. Then MP is a von Neumann
algebra acting on PH with centre ZP and commutant PM′P.

Note that every operator in PM′P maps PH into itself, and hence can be re-
stricted to an operator in B(PH ). One can do the same thing with a projection
P ∈M, which leads to the following corollary:

Corollary 1.2.8. If M is a von Neumann algebra acting on a Hilbert space H and
P ∈M is a projection, then PMP is a von Neumann algebra acting on PH , with
commutant M′P.
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1. Operator algebras

If K is the range of P ∈ M, then PMP is called the reduced von Neumann
algebra on K , sometimes denoted by MP . Likewise, M′P is the induced von Neu-
mann algebra on K , notation M′

P .

1.3 Inductive limits

In quantum physics the principle of locality is fundamental. For example, meas-
urements at spacelike separated points in space-time should not disturb each
other. It is natural to consider C∗-algebras A(O ) of observables that can be meas-
ured in some bounded region O of space (or space-time). Observables that can
be measured in O should also be measurable in a bigger region Ô containing O .
Hence there is an inclusion A(O ) ,→ A(Ô ) of the associated algebras of observ-
ables. This is an example of an inductive system.

Definition 1.3.1. Let Λ be a directed set. That is, Λ has a preorder ≤ such that
for each λ1,λ2 ∈ Λ there is a λ ∈ Λ with λi ≤ λ, i = 1,2. An inductive system of
C∗-algebras is a collection {(Aλ1 , iλ1λ2 ) : λ1,λ2 ∈ Λ,λ1 ≤ λ2} where each iλ1λ2 is a
∗-homomorphism from the C∗-algebra Aλ1 to Aλ2 , such that iλ2λ3 ◦ iλ1λ2 = iλ1λ3 for
all λ1 ≤λ2 ≤λ3.

Having an inductive system, we can take the inductive limit in the category
of C∗-algebras. In essence, once considers a subalgebra A of

∏
λAλ consisting

of elements (aλ), aλ ∈ Aλ subject to the condition that there is a λ0 such that
iλ1λ2 (aλ1 ) = aλ2 for all λ2 ≥λ1 ≥λ0. This algebra can be endowed with a seminorm
satisfying the C∗-property. After dividing out the kernel of the seminorm, and tak-
ing the completion, we obtain a C∗-algebra A. This algebra is the inductive limit.
Details can be found for instance in [RBEF99, Ch. 2.6] or in the original work by
Takeda [Tak55].

In applications to quantum field theory we will consider algebrasA(O ) of boun-
ded operators, all acting on the same Hilbert space H . Here O are bounded re-
gions of space(time)2, ordered by inclusion. If O1 ⊂ O2, the inclusion A(O1) ,→
A(O2) is just the identity map. In this case we can construct the inductive limit by
taking the union of these algebras, which clearly is a ∗-algebra, and complete it in
the norm topology to obtain a C∗-algebra. In other words,

A=∪
O

A(O )
∥·∥

. (1.3.1)

The bar denotes closure with respect to the operator norm. We will call the assign-
ment O 7→A(O ) a net of C∗-algebras.

2The precise structure of O depends on the context. In the setting of relativistic quantum theory,
we will mainly be interested in the case where the O are double cones (i.e., the intersection of a
forward and a backward lightcone), whereas in applications to quantum spins systems O will be a
finite subset of Zd .
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1.3. Inductive limits

Uniformly hyperfinite algebras

A particular class of C∗-algebras is given by the approximately finite (AF) algebras.
These are the algebras that can be approximated by finite dimensional algebras.
More precisely, an approximately finite algebra is an algebra that can be obtained
as the direct limit of a sequence of finite-dimensional C∗-algebras.

A special type of AF algebras is the class of uniformly hyperfinite algebras, or
UHF algebras for short. A C∗-algebra is called UHF if it is the norm limit of an in-
creasing sequence A1 ⊂ A2 ⊂ ·· · of C∗-algebras having a common unit and such
that each Ak is a factor of Type Ink for some integer nk . Such algebras were ex-
tensively studied by Glimm [Gli60]. One of the results he proved is that UHF al-
gebras are determined uniquely (up to ∗-isomorphism) by sequences of integers
{pi } where pi divides pi+1.

It is not so difficult to see that the matrix algebras Mn(C) are simple in that
they have no non-trivial closed two-sided ideals. One important property of UHF
algebras is that they are simple as well. In particular, this implies that (non dege-
nerate) representations of UHF algebras are automatically faithful. UHF algebras
played an important role in the construction of factors of Type III. For example,
Powers demonstrated that there are uncountably many non-isomorphic Type III
algebras by considering representations of UHF algebras [Pow67]. Such repres-
entations lead to von Neumann algebras by taking the weak closure of the image
of the representation.

The following example is fundamental when dealing with quantum spin sys-
tems. Let L be some countably infinite set. In the context of quantum spin sys-
tems, this set indexes the different “sites” of the system. The notation P f (L) will
be used for the set of all finite subsets of L. Let n > 0 be a fixed integer and set
H =Cn . If Λ ∈P f (L), define the Hilbert space HΛ =⊗

x∈ΛH . This Hilbert space
describes the state of the system at the sites of Λ. The corresponding algebra of
operators is defined as A(Λ) = ⊗

x∈Λ Mn(C). If Λ1 ⊂ Λ2 for Λi ∈ P f (L), there is
an evident decomposition HΛ2

∼= HΛ1 ⊗HΛ2\Λ1 . This induces an inclusion ho-
momorphism iΛ1,Λ2 of the corresponding algebras by A 7→ A ⊗ IΛ2\Λ1 , that is, we
tensor A with the unit operator on HΛ2\Λ1 .

The assignment Λ 7→ A(Λ) is an example of a local net: if Λ1,Λ2 ∈ P f (L) and
their intersection is empty, it is clear that the corresponding algebras A(Λ1) and
A(Λ2) commute (seen as subalgebras of A(Λ) for some Λ⊃Λ1 ∪Λ2). The induct-
ive limit A is called the algebra of quasi-local observables or simply quasi-local
algebra. It consists of all operators that can be approximated up to arbitrary pre-
cision (in norm) by local operators.

We now state some results that are relevant for our purposes (in particular,
for Part III). Considering our applications, they are formulated in terms of local
algebras instead of general UHF algebras. Before the results can be stated, we
introduce some new terminology: a stateω of a C∗-algebraA is called a factor state

15



1. Operator algebras

if the corresponding GNS representation is factorial, i.e. πω(A)′′ ∩πω(A)′ = CI .
Similarly, two states ω1,ω2 are called quasi-equivalent (disjoint) if and only if their
GNS representations are quasi-equivalent (disjoint).

Theorem 1.3.2. Let Λ 7→ A(Λ), Λ ∈ P f (L), be a local net such that A(Λ) is finite-
dimensional. Write A for the corresponding inductive limit and suppose that ω1,ω2

are states of A. Then the following statements hold:
i. If ω1,ω2 are pure states, then there is a ∗-automorphism α of A such that

ω1 =ω2 ◦α.
ii. The state ω1 is a factor state if and only if for each Λ ∈ P f (L) and ε> 0 there

is a Λ′ ∈P f (L) such that

|ω1(AB)−ω1(A)ω1(B)| ≤ ε∥A∥∥B∥

for all A ∈A(Λ) and B ∈A(Λ̂) for all Λ̂ ∈P f (L) disjoint from Λ′.
iii. Suppose that ω1,ω2 are factor states. Then they are quasi-equivalent if and

only if for all ε> 0 there is a Λ ∈P f (L) such that

|ω1(A)−ω2(A)| < ε∥A∥

for all A ∈A(Λ̂) with Λ̂ ∈P f (L) and disjoint from Λ.

Proofs can be found in Section 2.6 of [BR87] (in an even more general setting)
and in Chapter 12 of [KR97].

1.4 Hilbert spaces in von Neumann algebras

In the context of quantum field theory, we want to discuss multiplets of field op-
erators transforming according to representations of a compact group G . For this
it is convenient to identify certain subspaces of a von Neumann algebra M as Hil-
bert spaces [DR89a, Rob76a].

Definition 1.4.1. Let M be a von Neumann algebra. A Hilbert space in M is a
closed linear (over C) subspace H of M such that V ∗V ∈CI for each V ∈ H.

The name suggests that H is a Hilbert space. This is indeed the case. First of
all, an inner product 〈V ,〉H can be defined by

〈V ,W 〉H I :=V ∗W,

for V ,W ∈ H . First note that 〈V ,W 〉H is indeed a scalar: this follows from the po-
larization identity 4〈V ,W 〉H I = ∑3

k=0 i k〈V − i kW,V − i kW 〉H I and the fact that H
is a linear space.

16



1.4. Hilbert spaces in von Neumann algebras

Consider an orthonormal basis {Vi }i∈I of a Hilbert space H in a von Neumann
algebra M. Then

IH := ∑
i∈I

Vi V ∗
i

is a projection. The convergence is in the σ-strong operator topology.3 This pro-
jection is called the support projection of H . It is independent of the choice of
basis, and 1H is the smallest projection in M such that 1H V =V for all V ∈ H . We
will only encounter Hilbert spaces with support projection 1H = I , where I is the
identity of M.

Remark 1.4.2. In Ref. [Rob76a], part of the definition of a Hilbert space in a C∗

algebra is the condition that if AV = 0 for some A ∈ A and all V ∈ H , then A =
0. This condition is equivalent to saying that the support projection of H is the
identity of A.

Remark 1.4.3. Suppose H is a Hilbert space of dimension n and support I in a
von Neumann algebra M. Choose an orthonormal basis Vi , i = 1, · · · ,n of H . It
follows that each Vi is an isometry, and that V ∗

i V j = δi j I . Then one can consider
the C∗-algebra generated by these isometries. Such C∗-algebras were studied by
Cuntz [Cun77], and are commonly denoted by On . These algebras do not depend
on the choice of H or Vi , up to isomorphism.

Once we have Hilbert spaces, we can have a look at (bounded) linear oper-
ators between these Hilbert spaces. Indeed, these can be identified with certain
operators X ∈M. In particular, if H1 and H2 are two Hilbert spaces in M, write

L(H1, H2) = {X ∈M : V ∗
2 X V1 ∈CI ,V1 ∈ H1,V2 ∈ H2}.

These operators are in 1-1 correspondence with operators inB(H1, H2), as is dem-
onstrated in Lemma 2.3 of [Rob76a]. For X ∈L(H1, H2), write L(X ) for the corres-
ponding linear operator in B(H1, H2). It follows that 〈V1,L(X )V2〉H1 I =V ∗

1 X V2.

3This is the point where it is used that M is a von Neumann algebra. If the index set I is finite, it
is sufficient that M is a unital C∗-algebra.
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Chapter 2

Tensor categories

First of all: why category theory? It turns out that the mathematical structure un-
derlying topological quantum computers, which is one of the main motivations
for our research, is that of modular tensor categories (MTC). In essence, when one
has a physical system suitable for topological quantum computing, the associ-
ated modular tensor category describes which types of (quasi)particles the system
admits and how they behave when we interchange (“braid”) or fuse them. It is
by now well recognised in the physics community that the concept of a modular
tensor category (or, closely related, topological quantum field theory) is a useful
one, see for example [Kit06, BFN09].

More generally, tensor categories also entered the stage early in the develop-
ment of the theory of superselection sectors in algebraic quantum field theory
(AQFT). The superselection sectors of an AQFT can be described by certain irre-
ducible representations of the observable algebra. It was realised that, at least in a
space-time of dimension four, these representations can be seen as the objects of a
symmetric tensor category [DHR71]. In fact, these categories have the same prop-
erties as the category of unitary representations of a compact group G . Doplicher
and Roberts later showed that to such a theory of superselection sectors one can
always associate a compact group G such that the categories of unitary represent-
ations of G and the category of superselection sectors are equivalent [DR90]. Their
result can be seen as a generalisation of the Tannaka-Krein duality theory of com-
pact groups. It is probably fair to say that a key insight in the development of the
“Doplicher-Roberts duality theory” is the realisation that the category of superse-
lection sectors and the category of unitary representations of compact groups are
alike.

In many ways, a modular tensor category resembles the category of repres-
entations of a compact group G , except that the braiding of the latter is always
symmetric. In lower dimensions of space-time, however, the category of superse-
lection sectors is no longer symmetric, and hence it cannot be the category of rep-
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2. Tensor categories

resentations of a compact group. Rather, it is more like a modular tensor category.
In some cases it actually is a MTC. Thus we observe that modular tensor categor-
ies play an important role in both topological quantum computing and the algeb-
raic approach to quantum field theory. In fact, the latter can be adapted to other
“local” quantum theories, and this is the central theme in this thesis: to study
if and how modular tensor categories arise from such theories. This opens up the
possibility to study topological quantum computing from the point of view of local
quantum physics.

In this chapter we will introduce the main definitions pertaining to modu-
lar tensor categories. A standard reference for MTCs is the book by Bakalov and
Kirillov [BK01]. For applications geared towards quantum computing, one may
consult the book by Wang [Wan10]. The lecture notes by Müger provide a com-
prehensive overview of all results known about tensor categories [Müg10]. The
definitions and results in this chapter will be illustrated in Chapter 5, where the
example of the representation category of Drinfel’d’s quantum double of a finite
group G is worked out in detail. This is the algebraic structure underlying Kitaev’s
quantum double model described in Part III.

2.1 Category theory

In category theory one tries to capture the essential structure of particular math-
ematical concepts. In particular, a category describes a class1 of objects with ap-
propriate morphisms between these objects. In this thesis we will usually denote
objects with Greek letters ρ,σ,τ · · · and morphisms with capital letters S,T, · · · .
This convention is in line with the conventions in local quantum physics, but note
that it is non-standard in the tensor category community.

Definition 2.1.1. A category C consists of a class objects and, for each pair ρ,σ of
objects, a set of morphisms Hom(ρ,σ). Moreover, for each triple ρ,σ,τ of objects
there is a composition operation

◦ : Hom(ρ,σ)×Hom(σ,τ) → Hom(ρ,τ), S ×T 7→ T ◦S.

This composition satisfies the following axioms:
• Composition is associative.
• For each object ρ there is a morphism idρ such that T ◦ idρ = T = idσ ◦T for

any morphism T ∈ Hom(ρ,σ).

The notation ρ ∈C is shorthand for “ρ is an object of the category C”. Similarly,
T : ρ → σ means that T ∈ Hom(ρ,σ). Sometimes we will use the notation HomC
to indicate that we consider Hom-sets of the category C. We will often omit the
composition sign and simply write T S for T ◦S.

1In this thesis we will not be concerned with size issues. See e.g. [ML98] for more details

20



2.1. Category theory

Example 2.1.2. The canonical example of a category is Set, with the class of sets
as objects and functions between sets as morphisms. An example that we will need

later is Vect f i n
k , where k is a field, whose objects are finite dimensional vector spaces

over k, with k-linear maps as morphisms.

There is a natural notion of a subcategory.

Definition 2.1.3. Let D be a category. We say that a category C is a subcategory
of D, or C ⊂ D, if the objects of C are a subclass of the objects of D and for each
pair ρ,σ ∈ C we have HomC(ρ,σ) ⊂ HomD(ρ,σ). A subcategory is called full if the
inclusion of Hom-sets is an equality.

To learn more about certain mathematical structures it is often helpful to con-
sider maps between instances of such structures. The appropriate kind of map
between two categories is a functor, i.e., a map that preserves all the relevant prop-
erties of categories.

Definition 2.1.4. A functor F : C 7→ D between categories C and D assigns an ob-
ject F (ρ) ∈ D to each ρ ∈ C and a morphism F (T ) ∈ HomD(F (ρ),F (σ)) to every
morphism T : ρ → σ in C. This assignment should satisfy F (idρ) = idF (ρ) and
F (T ◦S) = F (T )◦F (S) for any morphisms S,T such that T ◦S is defined.

There is also the notion of a contraviarant functor that reverses the morph-
isms. A contravariant functor F : C 7→ D between categories C and D assigns
an object F (ρ) ∈ D to each ρ ∈ C and a morphism F (T ) ∈ HomD(F (σ),F (ρ)) to
every morphism T : ρ→σ in C. This assignment should satisfy F (idρ) = idF (ρ) and
F (T ◦S) = F (S)◦F (T ) for any morphisms S,T such that T ◦S is defined.2 As an ex-
ample, consider the category of finite dimensional vector spaces with linear maps
as morphisms. If S is a linear map, write S∗ for its adjoint. Then the functor (−)∗

that acts as the identity on vector spaces, and sends linear maps to their adjoints,
is contravariant.

Suppose that F : C → D is a functor. For each pair ρ,σ ∈ C the functor F in-
duces a map Fρ,σ : HomC(ρ,σ) → HomD(F (ρ),F (σ)),T 7→ F (T ). If Fρ,σ is injective
for each pair of objects, F is said to be faithful. If it is surjective, one says that F
is full. Note that if C is a subcategory of D, there is a natural inclusion functor
F : C → D. This functor is always faithful. It is full if and only if C is a full subcat-
egory.

If one thinks of two paths in a topological space, it is often not so interest-
ing to ask if they are equal, but rather the weaker property of being homotopic is
relevant. The homotopy equivalence relates the two paths. Similarly, it might be
possible to relate two functors F,G : C→D.

2Equivalently, a contravariant functor is a functor F : Cop− > D, where Cop is the opposite
category. This category has the same objects as C, but the source and target of the morphisms are
reversed.
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2. Tensor categories

Definition 2.1.5. Let F,G : C → D be two functors. A natural transformation ν

from F to G (notation: ν : F ⇒ G) associates with every object ρ ∈ C a morphism
νρ : F (ρ) → G(ρ) such that νσ ◦ F (T ) = G(T ) ◦νρ for every T ∈ HomC(ρ,σ). The
morphism νρ is called the component of ν at ρ. A natural transformation is called
a natural isomorphism if each such component is an isomorphism.

A morphism T ∈ Hom(ρ,σ) is called an isomorphism if there is another morph-
ism S ∈ Hom(σ,ρ) such that T ◦ S = idσ and S ◦T = idρ . An isomorphism in the
category of sets is a bijection, in the category of groups it is an isomorphism of
groups, and in the category of Hilbert spaces it is an invertible operator.

It might appear natural to say that two categories C and D are isomorphic if
there are functors F : C → D and G : D → C such that F ◦G = 1D and G ◦F = 1C,
where 1C : C→C is the identity functor. This condition turns out to be too strong
for this to be useful. The following weaker condition is more appropriate.

Definition 2.1.6. Let F : C → D be a functor. Then F is called an equivalence of
categories if there are a functor G : D → C and natural isomorphisms F ◦G ⇒ 1D
and G ◦F ⇒ 1C. If this is the case, the categories are said to be equivalent.

In practice it can be difficult to find such a functor G . Fortunately, the following
equivalent conditions are usually much easier to check.

Theorem 2.1.7 (p.90 of [ML98]). A functor F : C→D is an equivalence of categories
if and only if F is full, faithful and essentially surjective.

Here we say that the functor F is essentially surjective if for every object ρ ∈D,
there is a σ ∈C such that there is an isomorphism F (σ) → ρ in D.

2.2 Tensor categories

The notion of a tensor product is defined in many different mathematical settings.
A monoidal or tensor category abstracts this notion. We will use the words mon-
oidal and tensor interchangeably. Suppose C is a category. A tensor product is
then given by a bifunctor⊗ : C×C→C satisfying the following properties.3

Definition 2.2.1. Let C be a category with a bifunctor ⊗ : C×C → C and an object
ι ∈C such that:

i. ⊗ is associative: ρ⊗(σ⊗τ) = (ρ⊗σ)⊗τ for all objects ρ,σ,τ of C and S⊗(T ⊗V )
for all morphisms S,T,V .

ii. The unit object satisfies ρ⊗ ι= ι⊗ρ = ρ for all ρ ∈ C and T ⊗ idι = idι⊗T = T
for all morphisms T .

3If C,D are categories there is a natural notion of the product category C×D, whose objects
are pairs (ρ,σ) with ρ ∈ C,σ ∈ D. A bifunctor is a functor from such a product category to another
category.
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2.2. Tensor categories

iii. The equality (S ⊗ T ) ◦ (V ⊗W ) = (S ◦V ) ⊗ (T ◦W ) holds for all morphisms
S,T,V ,W for which the compositions on the right-hand side are defined.

Then (C,⊗, ι) is called a (strict) tensor category.

The last property already follows from the condition that ⊗ be a bifunctor. The
object ι is called the tensor unit. A tensor subcategory is a subcategory that con-
tains the unit ι and is such that the tensor product ⊗ restricted to this subcategory
gives it the structure of a tensor category. For example, the tensor product ρ⊗σ of
two objects in the subcategory should be in the subcategory as well. If it is clear
from the context what the tensor structure and tensor unit are, we simply write C
instead of the triple (C,⊗, ι).

Remark 2.2.2. What we have defined here is a strict tensor category, where for
example associativity is satisfied on the nose. In general, requiring equality of
ρ⊗ (σ⊗τ) with (ρ⊗σ)⊗τ is too restrictive. For example, in the category of vector
spaces (V ⊗W )⊗ Z is only isomorphic to V ⊗ (W ⊗ Z ). In addition to the triple
(C,⊗, I ), we have to supply families of isomorphisms αρ,σ,τ : ρ⊗(σ⊗τ) → (ρ⊗σ)⊗τ,
λρ : I ⊗ρ → ρ and µρ : ρ⊗ I → ρ. These isomorphisms should be natural in all
variables.

In a tensor product of four objects, there are five different ways to group the
tensor factors into pairs of two objects using parentheses. With the help of the
isomorphism α we can move the parentheses around. Since there are different
ways to do this, the isomorphisms α have to satisfy a certain cocycle condition for
this to be consistent.This condition is given by the so-called pentagon diagram.
Similarly, there are coherence axioms for the morphisms λ and µ. Mac Lane’s co-
herence theorem [ML98] then states that these conditions imply that all diagrams
that can be formed with the help of α,λ and µ commute. That is, if we have a
tensor product of any number of objects, we can move parentheses around in a
consistent manner. With the help of the coherence theorem, one can in fact show
that any tensor category is equivalent to a strict tensor category. It should be noted
that this requires the introduction of non-strict tensor functors (see below for the
definition). In fact, even between strict tensor categories one might have to use
non-strict tensor functors.

If all isomorphisms α,λ and µ are equal to identities, we recover the definition
of a strict tensor category.

Two examples of tensor categories are the category Vect f i n
k of finite-dimen-

sional vector spaces over a field k, and the category Rep f G of finite-dimensional
unitary representations of a compact group. Note, however, that these are not
strict, essentially because the tensor product of vector spaces is only defined up
to isomorphism. In practice, however, it is often convenient to suppress the asso-
ciativity morphisms. Another example, which is closely related to the categories
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2. Tensor categories

we will study in Parts II and III, is the category of endomorphisms of a C∗-algebra.
This is a strict tensor category.

Example 2.2.3. Let A be a unital C∗-algebra (see Chapter 1 for the definition).
We construct a category End(A) in the following way. The objects ρ ∈ End(A) are
unital ∗-endomorphisms of A. The morphisms are intertwiners: T ∈ Hom(ρ,σ) if
and only if T ∈A and Tρ(A) = σ(A)T for all A ∈A. Composition of morphisms is
defined by the usual composition of operators, and the unit of the C∗-algebra is the
identity of End(ρ).

The tensor product on objects is just composition of morphisms: ρ⊗σ := ρ ◦σ.
Suppose Ti ∈ Hom(ρi ,σi ) for i = 1,2. Then T1 ⊗T2 := T1ρ1(T2) (which is equal to
σ1(T2)T1) is an intertwiner in Hom(ρ1 ⊗ρ2,σ1 ⊗σ2). The tensor unit is the identity
endomorphism ι of A. With these definitions, End(A) is a tensor category.

If (C,⊗, ι) and (D,⊠, ι′) are tensor categories, a strict tensor functor is a functor
F : C⊗D such that F (ι) = ι′ and F (ρ⊗σ) = F (ρ)⊠F (σ), and similarly for morphisms.
Similarly, if ν : F ⇒ G is a natural transformation from F to G such that νρ⊗σ =
νρ⊠νσ for all ρ,σ ∈C, is called (strict) monoidal.

These definitions have to be modified when dealing with functors between
tensor categories that are not strict. But even in the case of functors between
strict tensor categories, one sometimes has to deal with tensor functors that are
not strict. For this reason we briefly discuss non-strict tensor functors.

Definition 2.2.4. Let (C,⊗, ι) and (D,⊠, ι′) be strict tensor categories. A strong tensor
functor from C → D is given by (F,eF ,d F

ρ,σ) where F is a functor, eF : F (ι) → ι′ is an

isomorphism and d F
ρ,σ is a family of natural isomorphisms

d F
ρ,σ : F (ρ)⊠F (σ) → F (ρ⊗σ)

indexed by the objects ρ,σ of C. In addition, the following diagram must commute
for all objects, ρ,σ,τ in C:

F (ρ)⊠F (σ)⊠F (τ) F (ρ⊗σ)⊠F (τ)

F (ρ)⊠F (σ⊗τ) F (ρ⊗σ⊗τ)

//
d F
ρ,σ⊠id

��
� �
� �
��
� �

id⊠d F
σ,τ

��
� �
� �
� �
� �

d F
ρ⊗σ,τ

//
d F
ρ,σ⊗τ

as well as the following diagrams:

F (ρ)⊠F (ι) F (ρ)⊠ ι′ F (ι)⊠F (ρ) ι′⊠F (ρ)

F (ρ⊗ ι) F (ρ) F (ι⊗ρ) F (ρ)
��

d F
ρ,ι

//id⊠eF

��

d F
ι,ρ

//eF⊠id
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2.3. Symmetry and braiding

Tensor functors where eF and d F
ρ,σ are not required to be isomorphisms are

sometimes called lax. The definition of a strict monoidal natural transformation
can be adapted for strong monoidal functions in a straightforward way.

If C and D are tensor categories, we say they are monoidally equivalent if there
are tensor functors F : C→D and G : D→C such that there are monoidal natural
isomorphisms F ◦G ⇒ 1D and G ◦F ⇒ 1C. This is equivalent to the existence of a
full, faithful and essentially surjective tensor functor F : C→D [SR72].

2.3 Symmetry and braiding

In this section (C,⊗, ι) is a strict tensor category. In the category of vector spaces
we have the following property: if V ,W are vector spaces, then V ⊗W and W ⊗V
are isomorphic. In a general tensor category there need not be such a relation.
Take for example the category of endomorphisms of a C∗-algebra A, described
in Example 2.2.3. For two endomorphism ρ,σ of A, there is no reason why there
should be a non-trivial element T ∈A such that

T (ρ⊗σ)(A) = T (ρ(σ(A)) =σ(ρ(A))T =σ⊗ρ(A)T

for all A ∈ A. Roughly speaking, a tensor category is braided, if one can impose
some additional structure that allows us to relate ρ⊗σ with σ⊗ρ.

From the point of physics it is interesting to study how identical particles be-
have under interchange. This is described by the so-called statistics of a particle.
In the framework of local quantum physics, which we will use in this thesis, it turns
out that in fact these statistics translate into properties of tensor categories.

To find the right axiomatisation, it is instructive to consider the example of
the category of vectors spaces. To relate V ⊗W with W ⊗V , one can take the
flip map ΣV ,W : V ⊗W → W ⊗V with ΣV ,W (v ⊗ w) = w ⊗ v . This map behaves
nicely with respect to the structure of the category: suppose S ∈ Hom(V ,V ′) and
T ∈ Hom(W,W ′), then ΣV ′,W ′◦(S⊗T ) = (T ⊗S)◦ΣV ,W . This says that ΣV ,W is natural
in the first and in the second variable. Moreover, ΣV ,W ⊗Z = (ι⊗ΣW,Z )◦ (ΣV ,W ⊗ ι).
This says that we can go from V ⊗W ⊗Z to W ⊗Z ⊗V directly, or first exchange V
and W and then V and Z . Abstracting these properties, one arrives at the following
definition. Again, we stress that this is the appropriate definition for strict tensor
categories, and a non-strict generalisation can be obtained straightforwardly.

Definition 2.3.1. A braiding for (C,⊗, I ) gives an isomorphism ερ,σ : ρ⊗σ→σ⊗ρ

for every pair of objects ρ,σ ∈C. This braiding must satisfy the following properties:

i. (Naturality). For every S : ρ → ρ′ and T : σ→σ′ the following diagram com-
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2. Tensor categories

mutes:
ρ⊗σ σ⊗ρ

ρ′⊗σ′ σ′⊗ρ′

//
ερ,σ

��
� �
��
� �
� �
��

S⊗T

��
� �
� �
��
� �
� �

T⊗S

//
ερ′ ,σ′

ii. (Braid equations). For every triple ρ,σ,τ ∈ C the following diagrams com-
mute:

ρ⊗σ⊗τ σ⊗ρ⊗τ ρ⊗σ⊗τ ρ⊗τ⊗σ

σ⊗τ⊗ρ τ⊗ρ⊗σ

//
ερ,σ⊗idτ

$$J
JJJ

JJJ
JJJ

JJJ

ερ,σ⊗τ
��

idτ⊗ερ,τ

//
idρ⊗εσ,τ

$$J
JJJ

JJJ
JJJ

JJJ

ερ⊗σ,τ

��

ερ,τ⊗idσ

A tensor category C together with a given braiding is called a braided tensor cat-
egory. If in addition εσ,ρ ◦ερ,σ = idρ⊗σ for every ρ,σ, we say that ερ,σ is a symmetry
and that (C,ε) is a symmetric tensor category.

A strict braided functor between strict braided tensor categories (C,ε) and
(D,ε′) is a tensor functor F such that F (ερ,σ) = ε′F (ρ),F (σ). Two braided tensor cat-
egories are equivalent if and only if there are braided monoidal functors F : C→D
and G : D → C such that there are natural tensor isomorphisms F ◦G ⇒ 1D and
G ◦F ⇒ 1C. Again, it is enough to show the existence of a full, faithful and essen-
tially surjective braided tensor functor F : C→D [SR72].

Just as for non-strict tensor categories there are coherence theorems for non-
strict braided categories. In particular, every braided tensor category is braided
monoidally equivalent to a strict braided tensor category.

From the discussion above it should be clear that the category of vector spaces
is a symmetric tensor category. The same is true for the category of finite-dimen-
sional representations of a compact group G , where the braiding is again given by
the canonical flip. Later we will encounter examples of braided categories that are
not symmetric.

The next piece of structure is the twist, which is related to the “triviality” of the
braiding. In particular, if the braiding is a symmetry, one can choose the twist to
be the identity. In braided categories (that are not symmetric) this is not possible.

Definition 2.3.2. Let C be a strict braided monoidal category. A twist is a natural
family of isomorphisms (i.e., a natural isomorphism from the identity functor to
itself) Θρ : ρ→ ρ such that ΘI = idI and

Θρ⊗σ = εσ,ρερ,σ(Θρ⊗Θσ) (2.3.1)

for all objects ρ and σ.
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2.4. Linear structure and fusion

The name “twist” can be explained by the fact that in certain categories the
twist corresponds to twisting a ribbon. Note that by naturality of the braiding, the
condition stated above is equivalent to Θρ⊗σ = (Θρ ⊗Θσ)εσ,ρερ,σ. When we intro-
duce additional structure on our tensor categories later, we will impose additional
compatibility conditions on the twist.

Note that Θρ ∈ End(ρ). Later we will look at C-linear categories. In the cat-
egories we will consider, the irreducible objects ρ are those where End(ρ) ∼= C. So
in this case, Θρ =ωρ idρ for some scalar ωρ . We say that ρ is bosonic if ωρ = 1, and
fermionic if ωρ =−1.

Another measure of non-triviality of the braiding is given by the subcategory
of degenerate objects.

Definition 2.3.3 ( [Müg00]). Suppose that (C,⊗, ι,ε) is a braided tensor category.
The centre4 Z2(C) of C is the full subcategory of C with objects{

ρ ∈C : ερ,σ ◦εσ,ρ = idσ⊗ρ for all σ ∈C
}

.

Objects in the centre are said to be degenerate (with respect to the braiding) or trans-
parent.

It follows that a braided category C is symmetric if and only if Z2(C) =C. The
centre can be interpreted as measuring how far C deviates from being a symmetric
category.

2.4 Linear structure and fusion

In our prototypical examples of the category of representations of a group and the
category of finite-dimensional vector spaces, the Hom-sets have additional struc-
ture. Indeed, they are vector spaces over some ground field k. Here we will be
concerned almost entirely with the case k =C, but much of the theory can be de-
veloped for arbitrary fields k. From now on we will work over the field C unless
stated otherwise. A category is linear over C if the Hom-sets are vector spaces over
C and the composition operation ◦ is bilinear. In the language of category theory,
this can be summarised by saying that the category is enriched over VectC. Natur-
ally, additional structure such as a tensor product should also respect this linearity.
For example, a tensor product ⊗ should be bilinear acting on morphisms.

Definition 2.4.1. A ∗-category is a C-linear category together with an involutive
contravariant functor ∗. The functor should be anti-linear, and such that X ∗ = X
for all objects X . It is called positive if T ∗ ◦T = 0 implies T = 0, for any morphism

4The reader should be aware that there is another notion of the centre of a tensor category, due
to Drinfel’d. See for example [Kas95, §XIII.4].
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2. Tensor categories

T . If the category is monoidal, it should satisfy (S ⊗T )∗ = S∗⊗T ∗. If the category
is braided, one usually requires the braidings to satisfy ε∗ρ,σ ◦ εσ,ρ = idρ⊗σ. If the
category has a twist Θρ , we require that Θ∗

ρ ◦Θρ = idρ .

Categories with a positive ∗-operation are called Hermitean or unitary. Note
that since ερ,σ and Θρ are isomorphisms, it follows that εσ,ρε

∗
ρ,σ = id and ΘρΘ

∗
ρ =

idρ as well. In other words, they are unitaries.

Definition 2.4.2. Suppose that C is a C-linear category, and that ρ1,ρ2 are two
objects in C. Then ρ is a direct sum of ρ1 and ρ2 if there are morphisms Vi ∈
Hom(ρi ,ρ) and Wi ∈ Hom(ρ,ρi ), i = 1,2, such that V1W1 +V2W2 = idρ and Wi Vi =
idρi . The object ρ is unique (up to isomorphism), and it is called the direct sum of
ρ1 and ρ2. We write ρ ∼= ρi ⊕ρ2. If C is a ∗-category we demand that in addition
Wi =V ∗

i .

Remark 2.4.3. A category as in the above definition is almost an additive category,
except that we do not assume the existence of a zero object. That is, there might
be no unit object (i.e., a zero object) with respect to taking direct sums. In the
categories we will study in Parts II and III, it is more natural to not include a zero
object in the category, and this is what we will do.

An element V such that V ∗V = I in a C∗-algebra is called an isometry. In a
∗-category C, the direct sum gives two elements Vi such that V ∗

i Vi = idρi . It is
therefore natural to call such maps isometries as well. On the other hand, consider
Pi = Vi V ∗

i . Note that Pi ∈ End(ρ). Moreover, from the properties of Vi it easily
follows that P∗

i = Pi and Pi ◦Pi = Pi . Such an element Pi is called a projection.
Thus with a direct sum decomposition one automatically obtains projections in a
∗-category. Sometimes it is possible to go the other way round.

Definition 2.4.4. Let C be a ∗-category. We say that C has subobjects if for every
object ρ and each projection P ∈ End(ρ), there is an object σ in C and an isometry
V ∈ Hom(σ,ρ) such that V V ∗ = P. The object σ is called a suboject of ρ, or σ ≺ ρ

for short. Note that σ is unique up to isomorphism.

The categories of interest in this thesis all have finite-dimensional Hom-sets,
hence for each ρ ∈C, End(ρ) is a finite-dimensional ∗-algebra over C. But this im-
plies that End(ρ) is isomorphic to a direct sum of matrix algebras over C. Suppose
that C has subojects. One would like to think of irreducible objects as those ob-
jects that cannot be further decomposed as a direct sum. These are precisely the
objects ρ of C such that End(ρ) ∼= C, since otherwise there would be a non-trivial
projection in End(ρ). The existence of subobjects then implies that ρ can be de-
composed as a direct sum. Hence for C-linear categories we will say that an object
ρ is irreducible if End(ρ) ∼= C. This definition can be generalised to more general
categories.
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2.4. Linear structure and fusion

Definition 2.4.5. Let C be a category with direct sums and subobjects. Then C is
called semisimple if every object can be written as a direct sum of irreducible ob-
jects.

An example is the category of finite-dimensional representations (over a field
k) of a finite group G . If the characteristic of k does not divide the order of G ,
then each representation can be decomposed as a direct sum of irreducibles, by
Maschke’s theorem. Consequently, the category is semisimple.

The following notion will be convenient for semisimple tensor categories. La-
bel the equivalence classes of irreducible objects by some set I . For each equi-
valence class i ∈ I , choose a representative ρi . For convenience, one often uses
0 ∈ I for the equivalence class of the tensor unit. Suppose that i , j ∈ I . Now, by
semicimplicity, there are integers N k

i j such that

ρi ⊗ρ j
∼=

⊕
k∈I

N k
i jρk , (2.4.1)

where Nρk denotes the direct sum of N copies of ρk . The numbers N k
i j are called

fusion coefficients. Equation (2.4.1) is called a fusion rule. This name comes from
physics, in particular conformal field theory, where such rules describe how two
excitations can “fuse” [Ver88].

Example 2.4.6 (Representations of compact groups). Let G be a compact group.
Define a category Rep f G of finite-dimensional unitary representations (over C) of
G. The morphisms are linear maps intertwining the action of G, i.e., T ∈ Hom(π1,π2)
if and only if Tπ1(g ) = π2(g )T for all g ∈ G. Clearly the Hom-spaces are vector
spaces over C. One can also define a ∗-operation by taking the usual adjoint of a
linear map. Note that the category is semisimple, since every finite-dimensional
unitary representation of a compact group can be written as a direct sum of irredu-
cible representations. By the Schur lemma, the irreducible objects are precisely the
irreducible representations of G.

The category also admits a natural tensor product: the tensor product of repres-
entations. The trivial representation ι acts as a tensor unit. The category is in fact
braided: if πi (i = 1,2) are representations acting on vector spaces Vi , define cπ1,π2 to
be the canonical flip V1 ⊗V2 → V2 ⊗V1. One easily checks that this definition turns
Rep f G into a symmetric tensor category.

Definition 2.4.7. Let C be a C-linear ∗-category. Suppose that for each pair of
objects ρ,σ there is a norm ∥ · ∥ρ,σ defined on Hom(ρ,σ) such that Hom(ρ,σ) is
a Banach space with respect to this norm. Suppose moreover that for any pair of
morphisms S : ρ→σ and T : σ→ τ we have that

∥T ◦S∥ρ,τ ≤ ∥S∥ρ,σ∥T ∥σ,τ, ∥S∗ ◦S∥ρ,ρ = ∥S∥2
ρ,ρ .

Then C is called a C∗-category.
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2. Tensor categories

Note in particular that the definition implies that End(ρ) is a C∗-algebra. There
is an analogous notion where the End-sets are von Neumann algebras, namely the
W ∗-categories [GLR85].

2.5 Duals and dimension

In the category of groups, it is possible to define the dual of a representation. This
is an example of a more general phenomenon, namely the notion of a rigid cat-
egory. For this we first need to introduce the notion of duals in a monoidal cat-
egory. Let C be a strict monoidal tensor category. A left duality5 assigns to each
object ρ ∈C an object ∨ρ, together with two morphisms

dρ : ι→ ρ⊗∨ρ, eρ : ∨ρ⊗ρ→ ι,

such that the following identities hold:

(idρ⊗eρ)(dρ⊗ idρ) = idρ

(eρ⊗ id∨ρ)(id∨ρ⊗dρ) = id∨ρ .
(2.5.1)

In a similar way one can define a right duality (ρ∨,e ′ρ ,d ′
ρ) with e ′ρ : ρ⊗ρ∨ → ι and

d ′
ρ : ι→ ρ∨⊗ρ. The definition can be adapted to non-strict tensor categories.

Left (and right) duals are unique up to isomorphism (but a left dual need not
be isomorphic to a right dual!). Moreover, ∨σ⊗∨ρ is a left dual for ρ⊗σ. Left duality
can be extended to a contravariant functor ∨(−). Indeed, if T : ρ → σ, define its
transpose ∨T by

∨T = (eσ⊗ id∨ρ)(id∨σ⊗T ⊗ id∨ρ)(id∨σ⊗dρ).

Note that ∨T : ∨σ→ ∨ρ. This is a generalisation of the transpose of a linear map. In
a similar way one can define the transpose T ∨ with respect to a right duality.

Definition 2.5.1. A tensor category with left and right duals is called rigid or au-
tonomous.

In an arbitrary tensor category, the existence of a left dual of an object does not
imply the existence of a right dual (and vice versa). Even if both exist (i.e., we have
a rigid category) there is no guarantee that they coincide or are isomorphic. If an
object ρ has left and right duals that are isomorphic, the dual is denoted by ρ. In
this case ρ is also called a conjugate. We will come back to this notion below in the
special case of ∗-categories.

In this thesis, all categories have conjugates. In fact, in many cases we have
additional structure that guarantees the existence of a conjugate, provided that

5The conventions we use here are not followed uniformly in the literature. For example, what
we call a left duality is called a right duality in [BK01] (and vice versa). We will use conventions as
in [Müg10] and [Kas95], although the latter uses different notation.
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2.5. Duals and dimension

a left (or right) dual exists. This is for example the case when a braided tensor
category has a compatible twist, in the following sense: for each object ρ, we have
∨Θρ =Θ∨ρ .

Definition 2.5.2. A rigid braided tensor category with a compatible twist as in the
previous paragraph is called a ribbon category.

For the origin of the name “ribbon”, see for example [Tur94, Ch. I.2].
It follows that a ribbon tensor category has two-sided duals: suppose that C is

a braided category with a left duality and a compatible twist Θρ . If (∨ρ,dρ ,eρ) is a
left dual, then ρ∨ = ∨ρ is a right dual if we define morphisms

d ′
ρ = (id∨ρ⊗Θρ)ερ,∨ρdρ , e ′ρ = eρερ,∨ρ(Θρ⊗ id∨ρ). (2.5.2)

A verification that this defines a right duality can be found in [Kas95, Ch. XIV.3].
In other words, in ribbon categories we have conjugates. Conversely, in a braided
category with isomorphic left and right duals, a compatible twist can be recovered.

The importance of ribbon categories is that it is possible to define a trace. If
T ∈ End(ρ) for some object ρ, define the trace by6

trρ(T ) = eρ ◦ερ,∨ρ ◦ ((Θρ ◦T )⊗ id∨ρ)◦dρ . (2.5.3)

Equivalently, in a ribbon category, by equation (2.5.2) we have

trρ(T ) = e ′ρ(T ⊗ id∨ρ)dρ

. If the category is not ribbon, but has isomorphic left and right duals, this is no
longer true. However, one can still define a left trace and a right trace, but they will
not coincide in general.

Note that trρ(T ) ∈ End(ι). We will assume that the tensor unit is irreducible,
i.e., End(ι) ∼= C. In general, End(ι) is only a monoid, but for our purposes (that is,
the description of quantum-mechanical systems) k =C is a natural choice. We will
drop the subscript ρ in the notation, if this will not lead to confusion. The trace
has the properties one would expect from a trace, viz.

tr(ST ) = tr(T S), tr(S ⊗T ) = tr(S) · tr(T ).

Using the trace there is a natural way to define the dimension of an object ρ: set
d(ρ) = tr(idρ). By the properties of the trace it is clear that d(ρ⊗σ) = d(ρ)d(σ) and
d(ι) = 1. One can also show that d(ρ) = d(ρ).

6The formula looks rather obscure. There is a graphical representation of morphisms in tensor
categories, which is often easier to digest. However, since we do not need such results in detail, we
will not introduce this notation here.
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Example 2.5.3. In the category of finite-dimensional vectors spaces over C and the
category Rep f G for a compact group G, the trace coincides with the usual trace of
linear operators on a vector space. The (categorical) dimension is the dimension of
vector spaces (resp. the dimension of the representation).

We will mainly be interested in a special class of categories that combine all
structures discussed so far.

Definition 2.5.4. A tensor C∗-category (TC∗-category) is a tensor ∗-category with
subobjects, direct sums and conjugates. Moreover, for each pair of objects ρ,σ, the
Hom-set Hom(ρ,σ) is a finite-dimensional vector space over C. Finally, the tensor
unit ι must be irreducible, End(ι) ∼=C.

As the name suggests, these conditions indeed imply that a TC∗-category is a
C∗-category, that is, that there is an appropriate norm on the Hom-sets [Müg00,
Prop 2.1]. Moreover, a TC∗-category is automatically semisimple. This can be ar-
gued as follows: for any object ρ, End(ρ) is a ∗-algebra with a positive ∗-operation.
Hence, it is isomorphic to a direct sum of matrix algebras. This implies that the
unit idρ can be written as a sum of minimal projections Pi ∈ End(ρ), where min-
imal means that Pi ◦End(ρ)◦Pi

∼=C. For each Pi there is a corresponding subobject
ρi ≺ ρ by the existence of subobjects. Minimality of Pi implies that ρi is irredu-
cible. It follows that ρ can be written as a direct sum of irreducible objects.

Conjugates in C∗-categories

Braided tensor C∗-categories will be of central importance in this thesis. There-
fore, we make some remarks on this special case [LR97]. Let (C,⊗, ι) be a strict
tensor C∗-category. The presence of the ∗-operation makes it possible to state the
definition of a conjugate in a more symmetric way. Suppose that (∨ρ,dρ ,eρ) is a
left dual. Then (ρ∨,e∗ρ ,d∗

ρ ) is a right dual. Therefore, if an object in a ∗-category
has a dual, it has a conjugate. This leads to the definition of a conjugate in a C∗-
category. A conjugate for an object ρ is a triple (ρ,R,R), with R ∈ Hom(ι,ρ⊗ρ) and
R ∈ Hom(ι,ρ⊗ρ) such that

R
∗⊗ idρ ◦ idρ⊗R = idρ , R∗⊗ idρ ◦ idρ⊗R = idρ .

The symmetry of these conditions implies that ρ has a conjugate as well (namely
ρ). Moreover, left and right duals can be recovered as (ρ,R,R∗) and (ρ,R,R

∗
), re-

spectively.
It is convenient to normalise a conjugate in an appropriate sense. To this end,

call a conjugate standard if

R∗ ◦ idρ⊗T ◦R = R
∗ ◦T ⊗ idρ ◦R (2.5.4)
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for all T ∈ End(ρ). Note that if ρ is irreducible (and hence End(ρ) is isomorphic to
C), this condition reduces to R∗ ◦R = R

∗ ◦R. If a conjugate exists, it is clear that
equation (2.5.4) can be satisfied by rescaling R and R.

With the help of a standard conjugate we can define the trace of a morphism
without the help of either the braiding or a twist. If ρ has a standard conjugate
(ρ,R,R) and S ∈ End(ρ), define the trace by

trρ(S) = R∗ ◦ idρ⊗S ◦R. (2.5.5)

Note that trρ(S) ∈ End(ι) ∼= C. By using the property (2.5.4) and also left and right
duals obtained from ρ as above, this reduces to the formula in the paragraph fol-
lowing equation (2.5.3). Alternatively, a twist can be defined by

Θρ = R∗⊗ idρ ◦ idρ⊗ερ,ρ ◦R ⊗ idρ ,

and equation (2.5.3) can be verified directly to coincide with equation 2.5.5.
Now recall the tensor categories of endomorphisms of a C∗-algebra A (cf. Ex-

ample 2.2.3). This is a ∗-category: for the morphisms in this category are elements
of A and the ∗-operation can be taken to be the involution on A. The norm on the
Hom-sets inherited from the norm on A turns End(A) in a C∗-category. Although
End(A) is a tensor category, it need not be a TC∗-category.

Now suppose that we have some full tensor subcategory C of End(A) that has
direct sums and subobjects.7 Then C still need not be a TC∗, for it might have
infinite-dimensional Hom-sets. This can be achieved by considering the subclass
of finite objects. Recall that if an object ρ has a conjugate, we can define its di-
mension d(ρ). In a ∗-category, the dimension is greater than or equal to 1. If an
object ρ does not have a conjugate, then we formally set d(ρ) =∞. Now let C f be
the full subcategory of finite objects, i.e., objects ρ for which d(ρ) <∞.8 This cat-
egory is closed under direct sums, subojects, tensor products and – by definition
– under taking conjugates. Such categories are automatically TC∗: their Hom-sets
are finite-dimensional (see e.g. [Müg, Prop. 346] for a concise proof).

In essence, the type of categories that we will encounter in the sequel are full
subcategories of End(A) that are TC∗-categories. In fact, it will be possible to
define a braiding on these categories, rendering them braided tensor C∗-categories.

Finally, there is an interesting connection between the dimension d(ρ) in C∗-
categories and Jones’ theory of inclusions of subfactors [JS97]. For simplicity we
will only discuss the situation in algebraic quantum field theory, first discovered
by Longo [Lon89]. This framework will be discussed in depth later on, but suffice
it to say for now that we consider an irreducible endomorphism ρ of A(O ), where

7The category End(A) might have direct sums and subobjects already. This is the case, for ex-
ample, if A is a Type III factor.

8In applications to algebraic quantum field theory this corresponds to excluding certain “patho-
logical” cases. We will comment on this later.
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A(O ) is a factor describing the observables in some region O of spacetime. Sup-
pose, moreover, that ρ has a conjugate ρ as defined in this section. Then one can
show that d(ρ)2 = Ind[ρ(A(O ) : A(O )], where Ind is the Jones index of the inclu-
sion ρ(A(O )) ⊂ A(O ) (generalised to inclusions of arbitrary factors, not just Type
II [Kos86]). One interesting consequence of this is that the value of d(ρ) is quant-
ised for values below two, since it is well known that the Jones index takes values in
{4cos2π/n,n = 3,4, · · · }∪ [4,∞). For results on abstract C∗-categories see [LR97].

2.6 Modular tensor categories

A fusion category is a rigid tensor category which is semisimple and linear over
some field k, such that there are only finitely many isomorphism classes of irredu-
cible objects and the Hom-spaces are finite-dimensional. Moreover,9 we require
that the tensor unit is irreducible, End(ι) ∼= k. Fusion categories have been studied
extensively in, e.g., [ENO05].

A special class of fusion categories are the modular tensor categories. Suppose
that (C,⊗, ι,ε) is a fusion category. Choose a representative ρi from each class of
irreducible objects. We will use the convention that ρ0 is the tensor unit. Using
the trace, we can define a matrix Si , j by [Ver88]

Si , j = tr(ερ j ,ρi ◦ερi ,ρ j ).

This matrix consists of elements of the ground field k. One can show that this
matrix is independent of the choice of representatives ρi .

Definition 2.6.1. A ribbon fusion category is said to be a modular tensor category
(MTC) if the matrix S defined above is invertible.

The adjective modular can be explained as follows: starting with a MTC there
is a canonical way to obtain matrices s (this is just a rescaling of S) and t such that
(st )3 = s2, s4 = 1. These matrices define a projective representation of the modular
group SL2(Z) [Ver88] (or [Tur94, §II.3.9]).

There is in fact a characterisation of modular tensor categories in terms of the
centre as defined in Definition 2.3.3. It is stated here for ∗-categories, but it also
holds for categories without a ∗-operation [BB01]. Before we state the theorem,
we need one further definition.

Definition 2.6.2. The dimension of a fusion category C is defined by

dimC=∑
i

d(ρi )2,

where the sum runs over all equivalence classes of simple objects.

9If this last condition is dropped, one speaks of a “multi-fusion category”.

34



2.6. Modular tensor categories

If C is in fact a ∗-category, one can show that the categorical dimensions d(ρi )
are real numbers. In fact, one can prove that d(ρ) ≥ 1. It follows that dimC≥ 1 for
fusion categories with positive ∗-operation.

If the dimension is non-zero, modularity of the category is equivalent to trivi-
ality of the centre:

Theorem 2.6.3. Let C be a braided fusion ∗-category. Then C is modular if and
only if Z2(C) is trivial.

We will outline some key points of the proof, since this result is not readily
available in the standard textbooks. The proof itself was first found in a different
context, by Rehren [Reh90]. Here we consider a version adapted to the case of
tensor ∗-categories [Müg03].

Recall that for irreducible objects ρi the twist defines a scalar ωi :=ωρi . Since
C is a ∗-category, the twist is a unitary. It follows that ωi is a phase. Note that we
have the following identities:

d(ρi )d(ρ j ) =∑
k

N k
i j d(ρk ), Si , j =

∑
k

N k
i j

ωk

ωiω j
d(ρk ). (2.6.1)

The first identity follows easily from the decomposition of ρi ⊗ρ j . The second can
be obtained roughly as follows: first use equation (2.3.1) to write Si , j as a trace
of twists. Note that Θρi ⊗Θρ j = ωiω j . One can then decompose idρi⊗ρ j as a sum
of projections Vl V ∗

l according to the decomposition of ρi ⊗ρ j into irreducibles.
Using naturality of Θρi⊗ρ j , the second formula can be obtained.

With the help of the identities (2.6.1) we can now prove the following lemma.

Lemma 2.6.4. The irreducible object ρi is in the centre Z2(C) if and only if we have
Si , j = d(ρi )d(ρ j ) for all j .

Proof. The “only if” direction follows directly from the definitions and d(ρi ⊗ρ j ) =
d(ρi )d(ρ j ). For the “if” direction, note that the assumption Si , j = d(ρi )d(ρ j ) and
equations (2.6.1) imply

∑
k

′N k
i j

(
1− ωk

ωiω j

)
d(ρk ) = 0,

where the prime denotes that we sum only over all k such that N k
i j ̸= 0. Since

N k
i j d(ρk ) > 0 in that case, and the ωi are phases, this can only be true if ωk

ωiω j
= 1

for all k (consider the real part of the equation to see this).
Now consider S : ρk → ρi ⊗ρ j and T : ρi ⊗ρ j → ρk . By equation (2.3.1) and

naturality, it follows that

ερ j ,ρi ερi ,ρ j S ◦T = ωk

ωiω j
S ◦T = S ◦T.
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Since End(ρi ⊗ ρ j ) is spanned by morphisms of the form S ◦ T and is unital, it
follows that ερ j ,ρi ερi ,ρ j = idρi⊗ρ j .

Note that there is a natural involution on the labels denoting the choice of
representatives from the equivalence classes: with i we will mean the label corres-
ponding to the equivalence class of the dual of ρi . That is, ρi

∼= ρi . One can then
define a matrix by Ci , j = δi , j . Since duals are unique (up to isomorphism), C is a
permutation matrix and hence invertible.

For the proof of the next lemma we need two additional properties of the fu-

sion coefficients. First of all, N k
i j = N i

k j
. Secondly, d(ρi )−1Si , j Si ,k = ∑

m N m
j k Si ,m .

We omit the proofs of these properties here.

Lemma 2.6.5. Suppose that the tensor unit ι is the only irreducible object in Z2(C).
Then the equation ∑

k
d(ρk )Si ,k = δi ,0 dimC

holds for all irreducible objects ρi .

Proof. The case i = 0 is easy to verify, so suppose that i ̸= 0. By multiplying with
d(ρ j ) and summing over j , we obtain from the formula stated above:

Si ,k

d(ρi )

∑
j

d(ρ j )Si , j =
∑
j ,m

d(ρ j )N m
j k Si ,m .

Now note that∑
j

d(ρ j )N m
j k =

∑
j

d(ρ j )N j
mk

=
∑

j
d(ρ j )N j

mk
= d(ρm)d(ρk ) = d(ρm)d(ρk ).

Gathering these results, we see that(∑
j

d(ρ j )Si , j

)
(Si ,k −d(ρi )d(ρk )) = 0

for all k. By Lemma 2.6.4 and the assumptions there is some k such that Si ,k ̸=
d(ρi )d(ρk ), the summation between the brackets must be zero. This proves the
result.

With the help of these lemmas the main theorem of this section can be proved.

Proof of Theorem 2.6.3. (⇒) Suppose that Z2(C) is not trivial. Then there is an i ∈
I , i ̸= 0 such that ρi ∈Z2(C). For j ∈ I , it then follows that

Si , j = tr(ερ j ,ρi ερi ,ρ j ) = tr(idρi⊗ρ j ) = d(ρi )d(ρ j )
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2.7. The Doplicher-Roberts reconstruction theorem

. But this means that the i -th row in S is a multiple if the 0-th row, hence S has zero
determinant and cannot be invertible.

(⇐) We claim that S2 = (dimC)C , from which the statement follows. By using
again the formula mentioned before Lemma 2.6.5 and the lemma itself, it follows
by multiplying with d(ρi ) and summing over i that∑

i
Si , j Si ,k = ∑

i ,m
d(ρi )N m

j k Si ,m = (dimC)N 0
j k .

Because ρ j and ρk are irreducible, it follows that N 0
j k = δ j k . That is, ρ j ⊗ρk con-

tains a copy of the tensor unit if and only if ρk is dual to ρ j . Since S is symmetric
it follows that S2 = (dimC)C , which proves the theorem.

2.7 The Doplicher-Roberts reconstruction theorem

A long-standing problem in algebraic quantum field theory (see Chapter 3 for an
introduction) was the question if one can obtain the field net from the net of ob-
servables. Eventually this question was answered affirmatively by Doplicher and
Roberts [DR90]. In fact, their investigations led to a new duality theory for com-
pact groups [DR89b].

If G is a compact group one can consider Rep f G , the category with as ob-
jects finite-dimensional unitary representations of G (Example 2.4.6). On the other
hand, it is known from the work of Doplicher, Haag and Roberts that the superse-
lection structure of algebraic quantum field theory (in space-time of dimension
four or higher) can be described by a category with the same properties. To be
more precise, the superselection structure is described by certain localised and
transportable endomorphisms of an observable algebra A. These endomorph-
isms can be endowed with the structure of a symmetric tensor C∗-category. One
might then wonder whether such a category is equivalent to the representation
category of some compact group. If so, this group G would be a natural candidate
for the symmetry group of the field net. This indeed turns out to be the case.

Using the terminology developed in this chapter, this result can be stated in a
concise way. For our purposes it is enough to restrict to even symmetric tensor cat-
egories, that is, to symmetric tensor categories with twist Θρ equal to the identity
for all ρ. Equivalently, the phases ωρ for irreducible ρ are all equal to one.

The theorem as stated here can in fact be generalised slightly by dropping the
assumption that C is even, at the expense of having to deal with supergroups. For
the purpose of this discussion, a supergroup simply is a pair (G ,k) where G is a
group and k ∈G is a central element such that k2 = e. In addition, one has to con-
sider super Hilbert spaces and representations, that is, a Z2 grading. Physically,
this is related to the appearance of fermionic excitations. Since we have no need
for this level of generality, we prefer to state the simpler version.
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2. Tensor categories

Theorem 2.7.1 (Doplicher-Roberts). Let C be an even symmetric tensor C∗-category.
Then there is a compact group G, unique up to isomorphism, and an equivalence
of symmetric ∗-categories F : C→Rep f G.

The proof is is quite difficult and long [DR89b]. A streamlined, self-contained,
treatment can be found in an Appendix by Müger [Müg]. We will review some of
the essential points here to prepare for the construction of the field net.

Suppose we have a category C as in the Theorem. The essential point is the

existence of a fibre functor E : C→Vect f i n
C

from C to the category of finite-dimen-
sional vector spaces over C.10 A fibre functor for a symmetric tensor C∗-category

C is a faithul, symmetric, C-linear ∗-functor from C to Vect f i n
C

. If E respects the
symmetry of C, that is, maps the braiding of C to the canonical flip on tensor
products in VectC, it is called a symmetric fibre funtor. A fibre functor is unique
up to natural monoidal equivalence.

The functor F we are looking for should send an object of C to a representa-
tion of a compact group G . Note that for ρ ∈ C the fibre functor gives us a finite-
dimensional vector space E(ρ). This is a natural candidate for the vector space on
which G acts. We want to find a compact group G acting on these vector spaces.
The elements of the group G will be the unitary natural monoidal transformations
from E to itself.

Let g be such a natural transformation. Then, for ρ ∈ C, gρ is a unitary oper-
ator acting on the finite-dimensional Hilbert space E(ρ). Thus g can be identified
with an element in

∏
C∈CU (E(ρ)). If g ,h are two such natural transformations,

the composition g ◦h is also a natural transformation from E to itself. Clearly, the
identity transformation should be the unit of the group. Since the components
gρ of a unitary natural transformation are unitary operators, they are invertible
and this defines a monoidal natural transformation g−1. One can show that G ,
the group of all monoidal natural transformations from E to itself, is a closed sub-
set of

∏
ρ∈CU (E(ρ)) in the product topology. Since the latter space is compact by

Tychonov’s theorem, the group G is compact because it is a closed subspace.
With this consideration, it is clear how the functor F should be defined. If

ρ ∈ C, define πρ : G →B(E(ρ)) by πρ(g ) = gρ . Using the observations above, it is
straightforward to check that this defines a unitary representation of G on E(ρ).
Therefore, F should send ρ to the object (πρ ,E(ρ)) of Rep f G . For a morphism T
in Hom(ρ1,ρ2), set F (T ) = E(T ). Because the g ∈ G are natural transformations,
it follows that F (T ) intertwines the action representations πρ1 and πρ2 , so F (T )
is indeed a morphism in Rep f G . For the proof of the equivalence as symmetric
tensor ∗-categories, we refer to [Müg].

10If one tries to generalise the construction to braided (but not symmetric) tensor categories, this
is where the proof breaks down. In general, a braided tensor ∗-category does not admit a fibre func-
tor [MT08]. The cases where a fibre functor can still be constructed unfortunately do not include all
cases relevant for physics.
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Chapter 3

Local quantum physics

In the traditional approach to quantum mechanics one considers observables act-
ing on some Hilbert space H [Neu32]. Already in the early history of quantum
mechanics there have been attempts to generalise this formalism to a more algeb-
raic setting, replace this formulation with a purely algebraic one. Important con-
tributions were later made by, among others, Segal [Seg47] and Haag and collab-
orators [HK64]. This algebraic setting provides a mathematically rigorous frame-
work to study various aspects of quantum mechanical systems, including quan-
tum field theory. The fundamental objects in this approach are operator algebras
of observables (be it C∗- or von Neumann) and states on these algebras.

One can give a number of reasons to use this algebraic approach, which builds
on the theory of operator algebras. For example, from a mathematical point of
view, classical and quantum systems are described similarly. The algebraic ap-
proach is therefore ideal to discuss quantisation of classical systems, and the in-
verse direction of the classical limit of a quantum system [Lan98]. The example of
the infinite volume limit of quantum spin systems is more relevant for us in this
thesis. In particular, when one tries to go from a quantum spin system with a fi-
nite number of sites to the infinite volume limit, one runs into trouble. It turns out
that such questions are much more easily answered in the algebraic approach,
where the states are seen abstractly as linear functionals on the observable al-
gebra. Finally, in the algebraic approach to quantum field theory, one considers
nets O 7→A(O ) of observables, as explained below. Even though these observables
can often be realised as bounded operators on some Hilbert space, it is still often
useful to view such a net as an abstract net of C∗- or von Neumann algebras.

In this algebraic approach one can try to find an axiomatic description of (re-
lativistic) quantum field theory. It was realised by Haag that a crucial ingredient
is the principle of locality. From the theory of special relativity we know that
events taking place at spacelike separated points in space-time cannot disturb
each other. Now consider some bounded subset O ⊂Md of d-dimensional Min-
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3. Local quantum physics

kowski space. One can then envision some algebra of operators A(O ) representing
observables that can be measured in the region O . Clearly, if O ⊂ Ô one should
have A(O ) ⊂ A(Ô ) (isotony). If Oi , i = 1,2 are two such bounded and spacelike
separated regions, from causality one expects that [A(O1),A(O2)] = {0} (as seen as
subalgebras of some larger algebra A(Ô ), where Ô contains both O1 and O2). The
assignment O 7→A(O ) with isotony as well as this commutativity property is called
a local net. We will come back to this in a moment.

Besides quantum field theory, there is another class of systems which we want
to discuss: quantum spin systems on infinite (2D) lattices. In this setting one can
speak of “local” observables as well: these are precisely the observables that act
nontrivially on a finite number of sites only. Since we wish to consider both types
of systems in this thesis, it will be understood that the term local quantum physics
(LQP) will apply to both the relativistic and the quantum spin setting. That is, we
will take LQP to be the viewpoint that a quantum theory (be it relativistic quantum
field theory, a quantum spin system, or something else) should be completely de-
termined by the algebra of local observables. It should be noted that in the QFT
setting, locality is relativistic locality, i.e. locality in space-time. In the quantum
spin setting, on the other hand, we consider only locality in space. Before going
into the technical details of this approach, we first briefly recall finite quantum
systems.

3.1 Finite quantum systems

The simplest examples of quantum mechanical systems can be described by finite-
dimensional Hilbert spaces. We will call such systems finite.1 The prototypical ex-
ample is that of a number of n spin-1/2 particles at fixed positions (so that we do
not consider their position and momentum to be variables). In this case the sys-
tem is described by the Hilbert space H =⊗n

i=1C
2, the tensor product of n copies

of the state space of a single spin-1/2 degree of freedom (which is C2).
The state of a quantum system determines the expectation values of the ob-

servables. There are pure states and mixed states. A mixed state can be thought of
as a statistical ensemble of pure states (a pure state cannot be decomposed). Pure
states of our finite system are described by unit vectors in H , up to a phase. That
is, two vectors that differ by a phase describe the same physical state. Alternat-
ively, the pure states are in one-to-one correspondence with projections on H of
rank one, or rays, in H . To make contact with the theory of C∗-algebras, note that
a unit vector Ω ∈ H leads to a state ω on B(H ) by ω : A 7→ (Ω, AΩ). Conversely,
any (normal) pure state on the C∗-algebra B(H ) is of this form.

1This has nothing to do with the number of particles. For example, a single quantum-
mechanical particle moving on the real line is described by the infinite-dimensional Hilbert space
L2(R).
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3.1. Finite quantum systems

To extract information from the system one has to perform measurements.
The quantities that can be measured are called observables. In the example of
a system with n copies of a spin-1/2 degree of freedom, one can, for example,
measure the spin in the z-direction at site i . In the mathematical formulation of
the theory, observables are represented by self-adjoint (or Hermitian) operators
acting on H . Recall that the spectrum of an operator A is defined by

Sp(A) := {λ ∈C : A−λI is not invertible}.

For matrices the spectrum clearly is the set of eigenvalues. If A is self-adjoint, the
spectrum is real. The elements of the spectrum are interpreted as the possible
outcomes of a measurement corresponding to A.

Now suppose that the system is in a state given by a unit vector ψ ∈H , and we
want to perform a measurement of A. Since A is self-adjoint, by elementary linear
algebra we can write A = ∑

i λi Pi , where λi are (distinct) eigenvalues and Pi are
projections on the corresponding eigenspaces. The famous Born rule then states
that this measurement has possible outcome λi with probability pi = (ψ,Piψ).
Note that

∑
i pi = 1, since the eigenvectors of a self-adjoint matrix form a basis for

H , i.e.
∑

i Pi = I . If λi is found in the experiment, the new state of the system (after
the measurement) will be the “collapsed” vector ψ′ = Piψ/∥Piψ∥.

In quantum mechanics one always has a dynamics. To describe a quantum
mechanical system one therefore needs to define a Hamiltonian, which is a self-
adjoint operator H describing the total energy of the system. Since H is self-
adjoint and we are working in the finite-dimensional setting, it has a decomposi-
tion H =∑

λ EλPλ corresponding to the eigenvalues Eλ and the projections Pλ on
the eigenspaces with eigenvalue Eλ. These eigenvalues are the energy levels of the
system. A ground state is a state in the eigenspace corresponding to the lowest ei-
genvalue of H . Of course, determining what exactly the correct Hamiltonian is for
a given physical system is usually a very difficult issue.

The Hamiltonian describes the time evolution of states. If the system is in a
state ψ ∈ H at time t = 0, then at time t it has evolved to the state ψ′ := e−i t Hψ.2

Alternatively (and equivalently), one can consider the state vectors as fixed an look
at the time evolution of observables. It is easy to check that Ut := exp(i t H) is a
unitary operator and that t 7→ Ut is a unitary representation of R on H . This in-
duces a one-parameter group of automorphisms on A=B(H ) by αt (A) =Ut AU∗

t
for A ∈A.

The time evolution ψ′ of a state ψ can be obtained as ψ′ =U∗
t ψ. If we want to

know the expectation value 〈A〉t of an observable A ∈B(H ) after time t , we have

〈A〉t = (ψ′, Aψ′) = (U∗
t ψ, AU∗

t ψ) = (ψ,αt (A)ψ),

2This can actually be obtained by solving the Schrödinger equation for time-independent
Hamiltonians. Note that we use units where ħ= 1.
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3. Local quantum physics

indicating that both approaches are indeed equivalent.

We can generalise this discussion a bit by considering a finite number of iden-
tical finite systems, indexed by some set Λ. The state space is given by the Hilbert
space H (Λ) =⊗

x∈ΛH0, where H0 is the state space of a single system. If H0 =C2

we recover the example given at the beginning of this section. The corresponding
algebra of operators acting on this state space is given by A(Λ) =B(H (Λ)), which
again is a tensor product of the single system algebras. This concludes our discus-
sion of finite systems.

3.2 Algebraic quantum field theory

Quantum field theory (QFT) is arguably one of the most successful theories of the
last century. Not withstanding the huge success of the “traditional” (mainly per-
turbative) methods used by physicists working in quantum field theory, these are
unsatisfactory from a mathematical viewpoint, because many concepts are math-
ematically ill-defined. Some aspects can be made rigorous (the reader can consult,
for example, the book by Glimm and Jaffe [GJ87]), but there are still many prob-
lems. In order to study QFT in a rigorous mathematical framework, it is desirable
to have an axiomatic basis for QFT as a starting point.

One such axiomatisation is given by the Wightman axioms which, in a nut-
shell, postulate that quantum fields are given by operator valued distributions.3

The classic PCT, Spin and Statistics, and All That by Streater and Wightman re-
mains a good introduction to this framework [SW00]. Although this approach is a
natural one coming from “ordinary” quantum field theory,4 it also has some draw-
backs. From a mathematical point of view, one has to deal with unbounded oper-
ators. At a more conceptual level there is the criticism that the quantum fields,
which in general are not observables, are like coordinates, which should not be
taken as the starting point of a theory.

An alternative is provided by what is called algebraic quantum field theory
(AQFT), based on the Haag-Kastler axioms. This is the framework that we will use.
In essence, the fundamental objects are nets of C∗-algebras of observables that can
be measured in some finite region of space-time. At first sight it is perhaps surpris-
ing that in this approach one considers only bounded observables, since it is well
known that the position and momentum operators for a single particle are un-
bounded. One should keep in mind, however, that in the physical world there are
always limitations on the measuring equipment, and one can always only meas-
ure a bounded set of (eigen)values.

3This can be understood by recalling that quantum fields cannot be localised at a point. Rather,
one has to “smear” the field over test functions.

4With “ordinary” we mean the approach of path integrals.
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3.2. Algebraic quantum field theory

The two approaches are in fact not as unrelated as they might appear at first
sight. Under certain conditions one can move from one framework to the other
(and back). See, for instance [BY92], and references therein. While the Wightman
axioms are closer to common practice in quantum field theory, the Haag-Kastler
approach is easier to work with mathematically, since one does not have to deal
with unbounded operator-valued distributions.

One of the earliest works on AQFT is by Haag and Kastler [HK64]. By now
there is a large body of work. The monograph by Haag [Haa96] and the book
by Araki [Ara09] are particularly recommended for a review of the physical and
mathematical principles underlying this (operator) algebraic approach to quan-
tum field theory. A review can also be found in [BH00]. The second edition of
Streater and Wightman [SW00] also contains a short overview.5

As argued in the introduction, there are two basic principles underlying the
AQFT approach. First of all, it is the algebraic structure of the observables that is
important. The second principle is locality: in relativistic QFT it makes sense to
speak about observables that describe the physical properties localised in some
region of space-time (for example T ×S, with T a time interval and S a bounded
region of space, say a laboratory). Moreover, by Einstein causality one can argue
that observables in spacelike separated regions are compatible in that they com-
mute. As the basic regions we consider double cones O , defined as the intersection
of (the interior of) a forward and backward light-cone. Note that a double cone
is causally complete: O = O ′′, where a prime ′ denotes taking the causal comple-
ment. To each double cone O we associate a unital C∗-algebraA(O ) of observables
localised in the region O .6 Finally, note that the Poincaré group P

↑
+ (generated by

translations and Lorentz transformations) acts on double cones. We write g ·O for
the image of a double cone under a transformation g .

The starting point of AQFT, then, is a map O 7→A(O ). There are a few natural
properties the map O 7→A(O ) should have if it is to describe (observables in) quan-
tum field theory. For example, anything that can be localised in O can be localised
in a bigger region as well. This leads to the following list of axioms, now known as
the Haag-Kastler axioms.

i. Isotony: if O1 ⊂ O2 then there is an inclusion i : A(O1) ,→A(O2). We assume
the inclusions are injective unital ∗-homomorphisms. Often the algebras
are realised on the same Hilbert space, and we have A(O1) ⊂A(O2).

5In June 2009 the 50 year anniversary of the birth of the theory was celebrated with a conference
in Göttingen, where Haag, one of the founders of the subject, recollected some of the successes and
problems of algebraic quantum field theory [Haa10a]. The reader might also be interested in Haag’s
personal recollection of this period [Haa10b].

6In quantum mechanics the term observable is usually only used for self-adjoint operators. One
can then consider the C∗-algebra generated by these self-adjoint operators. We will use the termin-
ology “observable” for all elements of this C∗-algebra.
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ii. Locality: if O1 is spacelike separated from O2, then the associated local ob-
servable algebras A(O1) and A(O2) commute.

iii. Poincaré covariance: there is a strongly continuous action x 7→ βx of the
Poincaré group P

↑
+ on the algebra of observables, such that

βg (A(O )) =A(g ·O ).

We will always assume that the algebras A(O ) are non-trivial.7

Remark 3.2.1. Instead of Poincaré covariance one sometimes requires the weaker
condition of translation covariance. Later we want to make use of results by Buch-
holz and Fredenhagen [BF82a], who only require this weaker condition.

Note that O 7→A(O ) is a net of C∗-algebras, in the terminology of Section 1.3.
By the construction outlined there, one can form the inductive limit A. If the local
algebras are all realised on the same Hilbert space, this amounts to taking A =∪

O A(O ), where the bar denotes closure with respect to the operator norm. The
algebra A is called the algebra of quasi-local observables. We will usually assume
that the local algebras act as bounded operators on some Hilbert space. In that
case, for an arbitrary (possibly unbounded) subset S of Minkowski space, we set

A(S ) :=∪
O⊂S A(O )

∥·∥
, where the union is over all double cones contained in S .

It should be noted that in this axiomatic approach some of the constructions
of “conventional” quantum field theory can be discussed. For example, field op-
erators, particle aspects and scattering theory can be defined in this setting. This
approach is particularly suited to study structural properties of quantum field the-
ory. Some of these aspects will be touched upon below.

Vacuum representation

The vacuum plays a special role in quantum field theory. Intuitively, it describes
empty space. Alternatively, it has minimal energy. To define the notion of a vacuum
state rigorously, one first defines energy decreasing operators. The precise details
are not important for us (see e.g. [Ara09, §4.2]). In essence one considers operators
of the form Q = ∫

f (x)βx (A)d 4x for some observable A and smooth function f
whose Fourier transform has support disjoint from the forward light-cone V +. The
βx are the translation automorphisms as in the Haag-Kastler axioms. A vacuum
state then essentially is a state ω0 on A such that ω0(Q∗Q) = 0 for any such Q.

One can prove that a vacuum state is translation invariant. The correspond-
ing vacuum representation, which will be denoted by π0, is then translation cov-
ariant. That is, there is a unitary representation x 7→ U (x) such that π0(αx (A)) =

7In fact, in practice one usually realises the net as a net of von Neumann algebras acting on
some Hilbert space. Under physically reasonable assumptions the algebrasA(O ) are Type III factors.
See [Yng05] for a discussion of the physical significance of this.
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U (x)π0(A)U (x)∗ defined by U (x)π0(A)Ω0 = π0(αx (A))Ω0 for any x in Minkowski
space and A ∈ A. These translations are generated by unbounded operators Pµ,
which have the natural interpretations of energy (P0) and momentum (Pi , with
i = 1 · · · ,d −1). These operators mutually commute, hence one can consider their
joint spectrum. This spectrum is in fact contained in the forward light-cone, as
follows from the assumptions above on ω0(Q∗Q) = 0 (for suitable Q). This is inter-
preted as “positivity of the energy”. Finally, if π0 is irreducible, then the vacuum
vector Ω0 is the unique (up to a scalar) translation invariant vector. In fact, any
factorial vacuum representation is automatically irreducible. Henceforth we will
always assume that π0 is irreducible: factor representations are precisely those
representations that do not contain any non-trivial global observables, and are
the building blocks of general representations (by means of a direct integral of
representations).

Alternatively, a vacuum representation can be characterised as a translation
covariant representation such that the spectrum of the generators of these trans-
lations is contained in the forward light-cone V +. Moreover, 0 is in the point spec-
trum, since the vacuum vector is invariant. A special case is a massive vacuum
representation. This is a vacuum representation where 0 is an isolated point in
the spectrum and there is some m > 0 such that the spectrum is contained in
{0}∪ {p : p2 ≥ m2, p0 > 0}. That is, there is a mass gap.

Superselection sectors

In our discussion of finite quantum systems, the pure states of the system were
modelled by unit vectors in a finite dimensional Hilbert space. If one adds two
vectors (and normalises properly), a new pure state is obtained. This is the su-
perposition principle of quantum mechanics. It was, however, realised by Wick,
Wightman and Wigner that this superposition principle does not hold without re-
striction [WWW52]. Consider, for example, a state ψ1 describing a spin-0 particle
and a state ψ1 describing a spin-1/2 particle. One can then consider the super-
position of these two states,

ψ= 1p
2

(
ψ1 +ψ2

)
.

If one performs a rotation of 360◦, the vector ψ1 is unaffected. On the other hand,
ψ2 acquires a minus sign, hence the transformed state is ψ′ = 2−1/2(ψ1−ψ2). Phys-
ically, however, such a rotation has no effect on the system. More generally, the
family of states ψθ = 2−1/2(ψ1+e iθψ2) are physically indistinguishable. A superse-
lection rule is a rule that selects within which subspaces one has the unrestricted
superposition principle. Vectors ψ1 and ψ2 as above are said to lie in different
superselection sectors.
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Mathematically, the existence of superselection rules is related to the existence
of inequivalent irreducible representations of A. Suppose that A acts on some
Hilbert space H of states. For the sake of argument, suppose that there are two
subspaces for which the superposition principle holds. Then H decomposes as
H =H1 ⊕H2, with respect to the action of the observables. To see this, consider
the family of vectors ψθ = 2−1/2(ψ1 + e iθψ2) as above, which for each θ describe
the same physical state. In other words, A 7→ (ψθ, Aψθ) is independent of θ. It
follows that (ψ1, Aψ2) = 0, for each pair ψ1,ψ2 in the distinct subspaces specified
by the superselection rule. This implies that the action of A on H can be decom-
posed into two disjoint representations and H = H1 ⊕H2. An equivalence class
of irreducible representations of the observable algebraA is called a superselection
sector. Later we will discuss (unobservable) field operators which can interpolate
between the different sectors.

A C∗-algebra generally has a plethora of inequivalent representations. Most of
them, however, have no physical significance: they might describe particles with
negative energy, for example. Therefore, one can impose a selection criterion sing-
ling out the relevant representations. One such criterion was introduced by Dop-
licher, Haag and Roberts. It selects those representations π that for each double
cone O are unitarily equivalent to the vacuum representation when restricted to
observables localised spacelike to O :

π0 ↾A(O ′) ∼=π ↾A(O ′). (3.2.1)

A representation satisfying this criterion will be called a DHR representation. A
unitary equivalence class of irreducible DHR representations is called a DHR sec-
tor.

DHR sectors correspond to those superselection sectors (or charges) that can-
not be distinguished from the vacuum outside of some bounded region, in the fol-
lowing sense. Write ω0 for the vacuum state of A and ω for a state in the folium8 of
a representation π satisfying the DHR criterion. Choose a sequence O1 ⊂ O2 ⊂ ·· ·
of double cones such that each bounded subset of space-time is eventually con-
tained in some On . Then it follows that

lim
n→∞∥(ω−ω0) ↾A(O ′

n)∥ = 0. (3.2.2)

That is, when restricted to measurements in the spacelike complement of some
sufficiently large double cone On the state looks like the vacuum. Under a mild
additional assumption (Property B, which we will discuss later) the converse of
this statement is also true: suppose that equation (3.2.2) holds. Then the cor-
responding GNS representations π0 and πω are quasi-equivalent (when restricted
to observables in a sufficiently large double cone) [DHR71]. If the local algebras

8The folium of a representation π consists of all normal states on π(A)′′.

46



3.2. Algebraic quantum field theory

are Type III factors, Property B is automatically satisfied and in that case quasi-
equivalence is equivalent to unitary equivalence.

It should be noted that certainly not all physically relevant representations sat-
isfy the DHR selection criterion. Perhaps the easiest counterexample is provided
by electric charges. Suppose that there is some electric charge in a bounded re-
gion. Then by Gauss’ law one can measure a non-zero flux through the surface
of any ball containing this bounded region, no matter how large. That is, the
state does not look like the vacuum state when restricted to measurements out-
side some bounded region. In Part II we will consider a more general selection
criterion that in principle allows “topological” charges. Such charges look like the
vacuum outside some infinite (cone) region, but do not depend on the specific
direction of this cone.

DHR theory

Doplicher, Haag and Roberts started a systematic analysis of the representations
satisfying the selection criterion (3.2.1). An important technical point in this ana-
lysis is that instead of representations of A, one can consider endomorphisms.
That is, each representation satisfying the DHR criterion is equivalent to a rep-
resentation π0 ◦ρ, with ρ an endomorphism of A. The advantage is that it is much
easier to work with endomorphisms rather than representations. In particular,
one can compose two endomorphisms, and in this way a tensor product can be
defined to obtain a tensor category (as in Example 2.2.3). The surprising fact is
that there is a canonical way to define a braiding on the category. It was already
shown by Doplicher, Haag and Roberts that (in d ≥ 3) the category of DHR rep-
resentations is a symmetric monoidal category [DHR71, DHR74]. For a modern
treatment using the terminology of Chapter 2, see [Hal06]. In this section we out-
line the main points of this construction.

To show how to obtain such endomorphisms, there is one additional assump-
tion that we will make. Note that by locality, for each double cone O one has
π0(A(O ))′′ ⊂ π0(A(O ′)′.9 Haag duality strengthens this by requiring that these al-
gebras are in fact equal. That is, for each double cone O we have that

π0(A(O ))′′ =π0(A(O ′))′.

This implies that we cannot add elements to the local algebras π0(A(O ))′′ without
violating locality. If there are spontaneously broken gauge symmetries, this rela-
tion cannot hold [Rob74].

Now suppose O is a double cone and write Hπ for the Hilbert space on which
the representation π acts. By the DHR selection criterion (3.2.1) there is a unitary

9Note the two different uses of the prime: O ′ is the causal complement of O , whereas the other
prime denotes the commutant in B(H0).
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V : Hπ →H0 setting up the equivalence π ↾A(O ′) ∼=π0 ↾A(O ′). Define

ρ(A) =V π(A)V ∗, A ∈A.

Then ρ is a representation on H0 that is unitarily equivalent to π. Moreover, if
A ∈A(O ′), by equation (3.2.1) we find ρ(A) =V π(A)V ∗ =π0(A)V V ∗ =π0(A).

Moreover, suppose that Ô ⊃O is another double cone. Note that Ô ′ ⊂O ′. Now
suppose that A ∈A(Ô ) and B ∈A(Ô ′). Then

ρ(AB) = ρ(A)π0(B) = ρ(B A) =π0(B)ρ(A),

since A and B commute by locality. From Haag duality it follows that ρ(A) ∈
π0(A(Ô ))′′.

At this point it is convenient to identify π0(A) with A and regard the local al-
gebras A(O ) as von Neumann algebras acting on the vacuum Hilbert space H .
This can always be achieved by directly considering the net O 7→π0(A(O ))′′. By the
considerations above, it follows that ρ(A(Ô )) ⊂A(Ô ). Since the local algebras are
dense in A (and ρ is norm-continuous since it is a representation of a C∗-algebra),
it follows that ρ :A→A is an endomorphism.

Definition 3.2.2. Let ρ be an endomorphism of A. We say that ρ is localised in a
double cone O if ρ(A) = A for all A ∈ A(O ′). A localised endomorphism is called
transportable whenever for each double cone Ô there is an endomorphism ρ̂ local-
ised in Ô such that ρ is unitarily equivalent to ρ̂. If ρ is localised and transportable,
we say that ρ is a DHR endomorphism.

If ρ is localised in a double cone, we will also say that it is compactly localised.
Suppose that ρ is localised in Oρ and σ in Oσ. Let O be any double cone containing
Oρ∪Oσ and suppose that T is an intertwiner from ρ to σ. Then, for A ∈A(O ′),

T A = Tρ(A) =σ(A)T = AT.

Hence T ∈A(O ) by Haag duality.

Definition 3.2.3. The ∆DHR has as objects localised and transportable endomorph-
isms, and intertwiners between those endomorphisms as arrows.

Note that ι, the identity endomorphism of A, is trivially localised and trans-
portable. The above remark on intertwiners implies that ∆DHR can be endowed
with the structure of a tensor category as in Example 2.2.3. It is clear that the
Hom-sets are C-linear vector spaces. Moreover, the Hom-sets inherit an involu-
tion ∗ and a norm ∥ · ∥ from A. This turns ∆DHR into a C∗-category. We shall use
the terminology as introduced in Chapter 2. For example, ρ ∈∆DHR is irreducible
if End(ρ) = CI . Note that this implies that π0 ◦ρ is an irreducible representation,
since π0 is irreducible.
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A remarkable fact is that there is a canonical way to define a braiding on this
category. This braiding is tightly related to the statistics (or exchange symmetry) of
the charges. For the sake of exposition we now restrict to space-time of dimension
d ≥ 3. In this case, the braiding of DHR endomorphisms is in fact symmetric. In
Part II we will come back to the issue of braid statistics.

Definition 3.2.4. Let ρ,σ ∈ ∆DHR be localised in Oρ (resp. Oσ). Choose spacelike
separated double cones Oρ̂ and Oσ̂. Since ρ and σ are transportable, there are equi-
valent endomorphism ρ̂ (σ̂) localised in Oρ̂ (Oρ̂). Write Uρ and Uσ for the corres-
ponding unitary intertwiners. We define a braiding by ερ,σ := (Uσ⊗Uρ)∗◦(Uρ⊗Uσ).

Of course, one has to check that this indeed defines a braiding and that this
definition is independent of the different choices one has to make. We outline the
main points in a sketch of the proof of the following proposition.

Proposition 3.2.5. With ερ,σ defined as in Definition 3.2.4, ∆DHR is a symmetric
tensor category.

Proof (sketch). As a first step, one shows that if ρ̂ and σ̂ have spacelike separated
supports, then ρ̂⊗σ̂= σ̂⊗ρ̂. Taking this for granted, it follows from Definition 3.2.4
that ερ,σ ∈ Hom(ρ⊗σ,σ⊗ρ). It follows from unitarity of Uρ ,Uσ that ερ,σ is unitary.
Note that one can choose σ̂ = σ and Uσ = I . It is then straightforward to check
naturality and the braid relations (Definition 2.3.1).

It remains to be shown that the definition is independent of the choices made.
To this end the following result is helpful. Consider for the moment the case that
ρ,σhave spacelike separated localisation regions, and that the same holds for ρ̂, σ̂.
Suppose that T1 : ρ → ρ̂ and T2 : σ→ σ̂. Note that by the remarks above one has
ρ⊗σ = σ⊗ρ and similarly for ρ̂⊗ σ̂. In space-time of dimension d ≥ 3 we in fact
have T1 ⊗T2 = T2 ⊗T1. This is easily verified if ρ and ρ̂ are localised in the same
region Oρ (and the same holds for σ, σ̂). We can then, for example, slightly move
the localisation region Oρ̂ of ρ̂ such that there is a double cone O ⊃ Oρ ∪Oρ̂ and
O spacelike separated from Oσ. This amounts to replacing T1 with WρT1 for some
unitary Wρ . By Haag duality Wρ ∈A(O ). One calculates WρT1 ⊗T2 =WρT1ρ(T2) =
Wρ(T1⊗T2) and T2⊗WρT1 = T2σ(WρT1) = σ̂(WρT1)T2 =Wρσ̂(T1)T2 =Wρ(T1⊗T2),
hence the tensor products are still equal. By a sequence of such moves (moving in
each step either ρ̂ or σ̂) one can always go from one choice of localisation regions
to another.

Now we come back to the definition of ερ,σ. Suppose that we had made an-
other choice for ρ̂, σ̂. This amounts to replacing Uρ with WρUρ for some unit-
ary Wρ , and similarly for Uσ. Then by the observation above we have Wρ ⊗Wσ =
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Wσ⊗Wρ , and hence:

ε′ρ.σ := (WσUσ⊗WρUρ)∗ ◦ (WρUρ⊗WσUσ)

= (Uσ⊗Uρ)∗(Wσ⊗Wρ)∗(Wρ⊗Wσ)(Uρ⊗Uσ)

= ερ,σ.

This shows that ερ,σ is independent of the choices made.
To show that ερ,σ is in fact a symmetry, note that for the definition of εσ,ρ we

can use the same Uρ and Uσ as for the definition of ερ,σ. It follows that ερ,σ = ε∗σ,ρ ,
which proves the claim.

In d = 1+1 it is no longer true that ερ,σ is a symmetry, but one can still show
that it defines a braiding. The reason is, essentially, that in this case O ′ has two
connected components for any double cone O . This makes it possible to say that
Oρ is localised “to the left” of Oσ, or to the right. Both choices lead to (a priori)
different definitions of ερ,σ, so one has to fix a convention. Note that it is not
possible to (continuously) move Oρ from the “left” part of O ′

σ to the “right” part,
keeping it spacelike separated from Oσ at the same time. One cannot show that
ερ,σ is a symmetry any more, because if we interchange Uρ and Uσ the relative
localisation “left” and “right” changes.

The next piece of structure concerns the existence of direct sums and subob-
jects. There is one additional technical assumption that is necessary to show this.

Property 3.2.6 (Borchers’ Property B). Suppose that O is a double cone and let
E ∈ A(O ′)′ be a non-zero projection. Then, for any double cone Ô ⊃ O , where the
bar denotes closure in Minkowski space, there is an isometry W ∈A(Ô ′)′ such that
W W ∗ = E.

This property is satisfied, for example, when A(O ) is a Type III von Neumann
algebra. It can also be derived from certain physically reasonable assumptions,
see [Bor67], or [D’A90] for a more recent exposition.

With the help of this property one can show that ∆DHR has direct sums and
subobjects. To illustrate this, consider ρ,σ ∈ ∆DHR, localised in some O . Choose
any non-trivial projection P in A(O ). Suppose that Ô ⊃ O is a double cone. Then
there are isometries V1,V2 ∈ A(Ô ) such that V1V ∗

1 = P and V2V ∗
2 = I −P , and ρ⊕

σ(A) :=V1ρ1(A)V ∗
1 +V2ρ2(A)V ∗

2 is an endomorphism localised in Ô . One can also
show that ρ⊕σ is transportable, hence ρ⊕σ ∈∆DHR. Note that this definition is a
special case of Definition 2.4.2. In a similar manner one can construct subobjects.

Finally there is the question of conjugates in this setting. These can be defined
precisely as in Section 2.5. The assumptions we have made so far do not guaran-
tee that conjugates actually exist. Therefore we will restrict the objects of ∆DHR

to those endomorphisms that do admit a conjugate. This new category will again

50



3.3. Field net

be denoted by ∆DHR. It should be noted that there are physically reasonable as-
sumptions that guarantee the existence of conjugates, which have the physical
interpretation of “anti-particles”. We will comment on this later in Part II. For the
construction of conjugates one can refer, for example, to [DHR71] or [Ara09, Ch.
6]. The basic idea behind the construction is to first consider how a charge can be
obtained by moving it in from infinity. The inverse procedure should correspond
to “removing” a charge. Under suitable conditions this inverse procedure defines
a conjugate.

Combining everything we obtain the following theorem.

Theorem 3.2.7. The category ∆DHR is a tensor C∗-category. In space-time of di-
mensions d ≥ 3 it is in fact a symmetric tensor C∗-category. In lower dimensions it
is braided instead of symmetric.

As mentioned before, every DHR representation can equivalently be described
by an endomorphism of the observable algebras. In fact there is an equivalence of
categories between ∆DHR and the category of DHR representations. With the help
of this equivalence the tensor product and the braiding on∆DHR can be transferred
to the category of DHR representations.

3.3 Field net

In the traditional approach to quantum field theory one considers not only ob-
servables, but also unobservable (or “charged”) local fields. One example is the
Dirac field to describe fermions. This field anti-commutes at spacelike separa-
tion, hence it cannot be an observable since it violates locality.

The setup is as follows. There is a (separable) Hilbert space H and an algebra
F of fields acting on this Hilbert space. The existence of superselection rules im-
plies that the action of observables on H decomposes as a direct sum of irredu-
cible representations. In the end one wants to have a theory describing all relev-
ant superselection sectors, for example those determined by the DHR criterion.
This means that each (equivalence class of) DHR representation should appear at
least once in this direct sum composition. Moreover, there is a symmetry group
(or global gauge group) G acting on H by means of a unitary representation. The
observables are those operators in the field algebra F that are invariant under the
action of the gauge group. Hence the field operators which are not invariant in-
terpolate between the different superselection sectors. The question then arises if
the field algebra F and gauge group G may be somehow obtained from the local
net O 7→A(O ) of observables.

The answer is yes, at least in the case where all sectors have permutation (sym-
metric) statistics [DR90]. In this section we consider the field net of the observable
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algebras with respect to the DHR sectors. In other words, the field operators by con-
struction only generate the DHR sectors. This is possible since the DHR sectors
have permutation statistics in 2+1 dimensions, which is the case of interest for us.
At the end of this section we discuss a more abstract construction (compared to
the work of Doplicher and Roberts) of the field net. This construction turns out to
be helpful for the applications we have in mind.

If one summarises the properties this field algebra should have, in the end one
arrives at the notion of a field net [DR90]. We specialise to the case of interest to
us, i.e., that of a complete, normal field net without fermionic sectors. The adject-
ive complete signifies that the field net describes all sectors of the observable net.
Normal means that (in absence of fermionic fields), the field operators commute
if they are localised in spacelike separated regions.

Definition 3.3.1. Let (π0,H0) be a vacuum representation of the net O 7→A(O ). A
complete normal field net (π,G ,F) is a representation (π,H ) of A and a net O 7→
F(O ) of von Neumann algebras acting on H , such that

i. H0 ⊂H ;
ii. π0 is a subrepresentation of π;

iii. there is a (strongly) compact group G of unitaries on H leaving H0 pointwise
fixed, inducing a action αg = Ad g ;

iv. for each g ∈G, αg is an automorphism of F(O ) such that π(A(O )) is its fixed-
point algebra;

v. the inductive limit F of the local C∗-algebras F(O ) is irreducible;
vi. the Hilbert space H0 is cyclic for F(O ) for all double cones O ;

vii. if O1 and O2 are spacelike separated double cones, F(O1) and F(O2) commute;
viii. every irreducible DHR representation with finite statistics is included as a

subrepresentation of π.

In the presence of fermionic sectors, item (vii) has to be modified to graded
commutativity. It should be noted that the field net construction also works for
stringlike localised representations (on which we will expound later), provided
that d ≥ 3+1. This latter condition implies that each sector has permutation stat-
istics. However, in the case of stringlike localised representations, the field net is
not indexed by double cones O any more, but rather by spacelike cones.

Construction of the field net

Given a field net O 7→ F(O ), one can recover the observable algebras A(O ) as the
fixed points of F(O ) with respect to the group action. The converse question, how
one obtains a field net from a net of observables, on the other hand is much less
clear. This was a long-standing problem in algebraic quantum field theory that
was finally solved by Doplicher and Roberts near the end of the 1980’s [DR90] (for
theories with permutation statistics in d ≥ 3). In this section we will outline the
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construction of the field net for bosonic DHR sectors, which is what we will need
later. The essential ingredient is the Doplicher-Roberts theorem discussed in §2.7.
In Section 7.1 we will study additional properties of the field net.

Roughly speaking, Doplicher and Roberts construct the field net as a crossed
product of the observable algebras by a semigroup of endomorphisms. This con-
struction is intimately related to the theory of representations of compact groups.
It is therefore not surprising that an alternative construction, based on results on
the category of representations of compact groups, exists. Indeed, based on an un-
published manuscript of Roberts and on Deligne’s embedding theorem [Del90],
Halvorson and Müger describe such a construction [Hal06, Müg], which is of a
more algebraic nature compared to the original analytic approach. Since the al-
gebraic formulation is easier to work with considering our intended applications,
the rest of this section will be used to outline the main features of this approach
and to fix the notation.

Theorem 3.2.7, and the remark following it, state that the DHR representa-
tions form a symmetric tensor (C∗)-category. By Deligne’s embedding theorem,
this gives rise to a faithful symmetric tensor ∗-functor E : ∆DHR → S H f , the cat-
egory of finite-dimensional (super) Hilbert spaces. The embedding theorem also
gives a compact supergroup (G ,k) of natural monoidal transformations of E , and
an equivalence of categories such that ∆A

DHR is equivalent to Rep f (G ,k). All mon-
oidal categories and functors are assumed to be strict, unless noted otherwise. The
“super” structure gives a Z2-grading on the Hilbert spaces, corresponding to the
action of a central element k ∈G such that k2 = e. Since we assumed that all DHR
sectors are bosonic, we can forget about the super structure. The group G from
the embedding theorem will be the symmetry group.

The embedding functor E associates to each DHR endomorphism ρ a Hilbert
space E(ρ). Using this embedding functor E , we first construct a field algebra F0.
We cite the definition:

Definition 3.3.2. The field algebra F0 consists of triples (A,ρ,ψ), where A ∈A, ρ ∈
∆DHR, and ψ ∈ E(ρ), modulo the equivalence relation

(AT,ρ,ψ) ≡ (A,ρ′,E(T )ψ),

where T is an intertwiner from ρ to ρ′. For λ ∈C, we have E(λ idρ) =λ idE(ρ), hence
(λA,ρ,ψ) = (A,ρ,λψ).

In particular, it follows that any element with ψ = 0, is the zero element of
the algebra. One then proceeds by defining a complex-linear structure on this
algebra, a multiplication, as well as an involutive ∗-operation. This multiplication
is defined by (A1,ρ1,ψ1)(A2,ρ2,ψ2) = (A1ρ1(A2),ρ1 ⊗ρ2,ψ1 ⊗ψ2).

The definition of the ∗-operation is a bit more involved. First, if H and H ′ are
two Hilbert spaces and S : H ⊗H ′ →C is a bounded linear map, one can define an
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anti-linear map J S : H → H ′. This map is defined by setting

〈(J S)ψ,ψ′〉 = S(ψ⊗ψ′)

for all ψ ∈ H ,ψ′ ∈ H ′, where the brackets denote the inner product on H ′. If ρ
is a DHR endomorphism, choose a conjugate (ρ,R,R). The ∗-operation is then
defined by (A,ρ,ψ)∗ = (R∗ρ(A)∗,ρ,J E(R

∗
)ψ). For a verification that this is well

defined and indeed defines a ∗-algebra, see [Hal06].
Note that this construction is purely algebraic, for instance, there is no norm

defined onF0. The algebraA can be identified with the subalgebra {(A, ι,1) : A ∈A}
of F0, and E(ρ) can be identified with the subspace {(I ,ρ,ψ) : ψ ∈ E(ρ)}.10

The compact group G associated with the embedding functor E gives rise to an
action on F0. Recall that the elements of G are monoidal natural transformations
of the functor E . If g ∈G , write gρ for the component at ρ. The action of G on F0 is
then defined by

αg (A,ρ,ψ) = (A,ρ, gρψ), A ∈A, ψ ∈ E(ρ).

This is in fact a group isomorphism g 7→ αg into AutA(F0), the group of auto-
morphisms of F0 that leave A pointwise fixed. Finally, for a double cone O , it
is possible to define the local ∗-subalgebra F0(O ) of F0, consisting of elements
(A,ρ,ψ), with A ∈A(O ), ψ ∈ E(ρ), and ρ localized in O .

To construct the field net, a faithful, G-invariant positive linear projection (in
fact, a conditional expectation) m : F0 → A is defined. If ω0 is the vacuum state
of A, the GNS construction on the state ω0 ◦m is used to create a representation
(π,H ) of F0. The local algebras are then defined by F(O ) = π(F0(O ))′′. As usual,
the algebra F is defined to be the norm closure of the union of all local algebras.
Since m is G-invariant, the action of αg is implemented on H by unitaries U (g ).
In other words, π(αg (F )) = U (g )π(F )U (g )∗ for g ∈ G and F ∈ F0. This action can
be extended to F in an obvious way. With these definitions, (π,G ,F) is a complete
normal field net for (A,ω0) with local commutation relations. In fact, any com-
plete normal field net for A is equivalent to the field net constructed here.

3.4 Quantum lattice systems

In this section we consider quantum spin systems on a lattice. Such systems con-
sist of a number of fixed sites, at each of which there is some spin degree of free-
dom (cf. §3.1). We will assume that the degrees of freedom are the same at each
site, for example a spin-1/2 degree of freedom. For our applications we will always
assume that the sites are indexed by a infinite, countable set L and that all sites
lie in the plane. Generalisations to other (e.g., higher dimensional) configurations

10These Hilbert spaces E(ρ) play the same role as the Hilbert spaces Hρ in [DR90].
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are straightforward. Instead of lattices, one could also consider the nodes or edges
of a graph, for example.

Let us first indicate why we believe that this limit of infinite system size (“ther-
modynamic limit”) is worth studying. Namely, in this limit it is possible to distin-
guish between local and global behaviour. This will be key to our investigations,
since they involve moving excitations “to infinity”. To give further motivation for
studying the thermodynamic limit, recall that it is fundamental in quantum stat-
istical mechanics. This is not surprising, since even small quantities of, for in-
stance, a metal contain a large (∼ 1023) number of atoms. Considering the ideal-
isation of infinite volume is therefore natural, if only to exclude irrelevant bound-
ary effects. In fact, this is even necessary to rigorously discuss certain effects that
occur in nature, for example phase transitions.

There are many deep results on quantum spin systems on lattices, see for ex-
ample the two volumes of Bratteli and Robinson [BR87,BR97] or Chapter IV of the
book by Barry Simon [Sim93]. Here we will only outline some of the main features
of the models that are of interest to us. Proofs of all the results mentioned can be
found (usually in much more general settings) in the above-mentioned volumes
of Bratteli and Robinson.

Algebra of observables

Let L be some countable set indexing the sites of a quantum spin system. Suppose
that for each x ∈ L the degrees of freedom at that site are described by a finite
dimensional Hilbert space H{x} =Cd .11 The observables at the site x are evidently
given by A({x}) := Md (C). For a finite number of sites Λ ∈ P f (L) the observables
are given by A(Λ) :=⊗

x∈Λ Md (C) =B(H (Λ)), where H (Λ) =⊗
x∈ΛH{x}.

One might guess that the corresponding infinite system is described by an
infinite tensor product of operator algebras. It is indeed possible to define this,
but there are some rather delicate issues. A natural attempt to define this, is to
first define the infinite tensor product of Hilbert spaces, and consider the algbra
of bounded operators on this Hilbert space. To this end, choose a unit vector
Ωx ∈Hx =Cd for each x ∈ L. Consider sequences (ξx )x∈L and (ηx )x∈L, with ξx ,ηx ∈
Hx ,such that ξx ̸= Ωx for only finitely many x ∈ L, and similarly for ηx . Then
(ξ,η) := ∏

x∈L(ξx ,ηx )x is well defined. This is an inner product on the pre-Hilbert
space spanned by such elements. The completion of this space is a Hilbert space
H , the infinite tensor product of the spaces Hx . One can then define the von Neu-
mann algebra generated by the weak closure of linear combinations of elements
of the form

⊗
x∈L Ax , where Ax ̸= I only for finitely many x ∈ L. This algebra clearly

11More generally one can consider an arbitrary von Neumann algebra acting on some Hilbert
space H at each site. This generality will not be necessary for us.
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acts on H . The problem, however, is that this von Neumann algebra strongly de-
pends on the chosen sequence Ωx .12

From the point of view of physics, a better approach is to consider observables
that can be approximated (in norm) by observables that act on a finite number of
sites. This leads to the example described in Section 1.3. As discussed there, this
naturally leads to a local net of observables Λ 7→A(Λ) and an algebra of quasi-local
observables A (i.e. the inductive limit of the A(Λ)). We recall the main properties:

i. If Λ1 ⊂Λ2 for Λi ∈P f (L) then A(Λ1) ⊂A(Λ2).

ii. If Λ1 ∩Λ2 =; for Λi ∈P f (L) then [A(Λ1),A(Λ2)] = {0}.

iii. The algebra of local observables Aloc =∪
Λ∈P f (L)A(Λ) is dense in A (w.r.t the

norm topology).

Observables in Aloc are called local. The algebra A shall be fixed for the remainder
of this chapter. Note that we can view A(Λ), for Λ ∈ P f (L), as a unital subalgebra
of A, and we will do so frequently. If Λ⊂ L is an infinite set, we set

A(Λ) = ∪
Λ f ⊂Λ

A(Λ)
∥·∥

,

where the union is over all finite subsets of Λ. Again, the algebra A(Λ) is inter-
preted as all the observables that describe physical properties localised within Λ.

In many situations the set L carries a natural group action. For example, if
L = Z2 there is a natural action of Z2 by translation. This induces a map on the
local algebras in the obvious way. Suppose that A ∈ Md (C) and x ∈ L. Write A(x)

for the operator that acts as A on the site x and is the identity elsewhere. If y ∈Z2,
define τy (A(x)) = A(x+y). The action of τy can be straightforwardly extended to
local observables. One finds that for x ∈ Z2 and Λ ∈ P f (L), we have τx (A(Λ)) =
A(Λ+ x). The map τx acts isometrically on the local algebras and hence extends
to a ∗-automorphism τx of A. Since we will only consider systems where such
translations can be defined, we add it to our list of properties:

iv. There is an action by translations x 7→ τx ∈ Aut(A) such that τx (A) ∈A(Λ+x)
for A ∈A(Λ) and Λ ∈P f (L).

Thus we arrive at a setup that is very similar to the Haag-Kastler axioms discussed
above, where spacetime has been replaced by a lattice in space, and finite subsets
of the lattice play the role of double cones.

Dynamics and time evolution

The algebra of observables in itself is not that interesting. Rather, the states on this
algebra corresponding to a certain system are of interest, for example the ground

12In fact, Powers has constructed an uncountable family of non-isomorphic Type III factors in
this way [Pow67].
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state. Ground states are always defined with respect to some dynamics. The dy-
namics govern the time evolution of observables in A and specifies the physical
system one wants to describe.

Recall that in quantum mechanics the dynamics are described by a Hamilto-
nian H , a self-adjoint operator defining the total energy of the system. The time
evolution of an observable (in the Heisenberg picture) is then given by αt (A) =
e i t H Ae−i t H . In the thermodynamic limit we are interested in, dynamics is de-
scribed by a one-parameter group t 7→ αt of automorphisms of A. The general
idea is to first define local Hamiltonians HΛ ∈A(Λ) describing the interactions for
a finite set of sites Λ. These induce automorphisms αΛ

t of A(Λ) by

αΛ
t (A) = e i t HΛ Ae−i t HΛ . (3.4.1)

To obtain dynamics of A, one can consider a sequence Λ1 ⊂ Λ2 ⊂ ·· · increasing
to L and hope that the corresponding automorphisms α

Λn
t converge to an auto-

morphism αt of A.
This is indeed the general strategy. Naturally, there are certain conditions on

HΛ that guarantee that this procedure indeed works. It is often convenient to de-
scribe the local Hamiltonians in terms of so-called interactions. An interaction
Φ is a map Φ : P f (L) → A such that Φ(Λ) ∈ A(Λ) and Φ(Λ) is self-adjoint for all
Λ ∈ P f (L). Here Φ(Λ) is interpreted as describing the energy due to interactions
between the particles at the sites of Λ. The local Hamiltonians can then be defined
as (free boundary conditions)

HΛ = ∑
Λ̂⊂Λ

Φ(Λ̂). (3.4.2)

Note that if Λ is an infinite set, the local Hamiltonian HΛ defined above is in gen-
eral not defined. Hence one cannot just take the sum over all subsets of L and
declare this to be the Hamiltonian of the lattice system.

In case L is a two-dimensional lattice, which is the case of relevance to us,
there is a natural notion of a distance d between sites. One can take, for ex-
ample, the euclidean distance. The diameter of Λ⊂ L is then defined as diam(Λ) =
maxx,y∈L d(x, y). An interaction Φ is called of finite range if there is some dΦ > 0
such that Φ(Λ) = 0 whenever diam(Λ) > dΦ. Finite-range interactions have no
interaction between distant sites. Nearest-neighbour models are examples of sys-
tems with finite range interactions.

The question is if (and how) these local Hamiltonians give rise to a time evolu-
tion on the algebra of observablesA. This can be discussed in terms of derivations,
which can be seen as the generators of one-parameter groups of automorphisms.

Definition 3.4.1. A (symmetric) derivation of A is a linear map from a∗-subalgebra
D(δ) of A into A such that

i. δ(A∗) = δ(A)∗ for A ∈ D(δ),
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3. Local quantum physics

ii. δ(AB) = δ(A)B + Aδ(B) for A,B ∈ D(δ).

The algebra D(δ) is called the domain of the derivation. It should be noted
that in applications δ is in general unbounded, in which case D(δ) is a proper sub-
algebra of A.

Derivations can be obtained from one-parameter groups of automorphisms
t 7→αt . Let αt be such a group. Then define δ(A) by

δ(A) = lim
t→0

αt (A)− A

t
= d

d t
αt (A)

∣∣∣∣
t=0

,

whenever this limit exists.13 The first condition on a symmetric derivation then
follows from the property αt (A∗) =αt (A)∗, whilst the second follows from the ho-
momorphism property αt (AB) =αt (A)αt (B).

Example 3.4.2. Suppose that we are given local Hamiltonians HΛ as in (3.4.2), the
interaction Φ is of short range. Let Λ1 ⊂Λ2 ⊂ ·· · be an increasing sequence of finite
subsets of L such that for every finite set Λ there is some n with Λ⊂Λn . We define a
derivation δ with domain D(δ) =Aloc by

δ(A) = i lim
n→∞[HΛn , A], A ∈Aloc . (3.4.3)

The finite range condition ensures that this limit exists for local observables. It is
easy to check that δ defines a derivation (use that H∗

Λn
= HΛn ).

This is essentially the only example for UHF algebras like A: one can show that
any derivation with D(δ) =Aloc can be written as in equation (3.4.3), where HΛn is
self-adjoint and HΛn+1 −HΛn commutes with A(Λn) [BR87, Example 3.2.25].

Consider a finite system with bounded Hamiltonian H . Define a symmetric
derivation δ by δ(A) = i [H , A]. Then e tδA converges for all A and t , and is equal
to e i t H Ae−i t H . The reader can convince him/herself of this by considering the
expansion

e tδA = A+ i tδ(A)+ t 2

2
δ2(A)+·· · = A+ i t [H , A]− t 2

2
[H , [H , A]]+·· ·

and expanding e i t H Ae−i t H up to the same order in t .
The idea is therefore that (under favourable conditions) derivations can be in-

terpreted as infinitesimal generators of one-parameter groups of automorphisms.
Based on the observation above, for each t one can try to define an automorphism
αt by

αt (A) = e tδA =
∞∑

n=0

t n

n!
δn(A).

13Usually one considers converge in norm for actions on C∗-algebras and weak convergence in
the case of von Neumann algebras. The norm limit exists for all A ∈ A only if t 7→ αt is uniformly
continuous. In this case δ, is a bounded linear map.

58



3.4. Quantum lattice systems

There are a few issues with this formula, however. First of all, δ(A) might not be in
D(δ) for all A ∈ D(δ), hence expressions such as δn(A) might not make sense. Even
if they do, the expression might not converge, since δ is not necessarily bounded.
Elements A ∈ D(δ) for which δn(A) ∈ D(δ) for each n ≥ 1 and for which the sum
in the expression above converges (in norm) are called analytic. If, for example,
there is a norm-dense ∗-subalgebra of A of analytic elements of δ, one can define
the automorphisms αt on any A ∈A. In this case, we say that δ is a generator for
the automorphism group t 7→αt .

The main task is therefore to find suitable conditions on δ for this to work and
to study continuity properties of t 7→αt . In applications to quantum spin systems,
one usually proceeds as follows. First, one defines a symmetric derivation on Aloc

as in Example 3.4.2. Then one shows that δ is norm-closable. It is the closure δ that
will be the generator of time translations. Finally, one shows that Aloc is a dense
∗-subalgebra of the analytic elements of δ. This is enough to define the auto-
morphisms αt as explained above. The following theorem collects these results in
the case relevant to us.

Theorem 3.4.3. Let Φ be a bounded translation-invariant interaction. Define a
derivation δ by D(δ) =Aloc and δ(A) = i

∑
Λ̂∩Λ̸=;[Φ(Λ̂), A] for A ∈A(Λ). Then δ is

norm closable and δ is the generator of a strongly continuous one-parameter group
t 7→αt of automorphisms.

Moreover, suppose that Λ1 ⊂ Λ2 ⊂ ·· · with Λi ∈ P f (L) and L = ∪
n Λn . Define

α
Λn
t (A) := e i t HΛn Ae−i t HΛn with HΛn defined as in equation (3.4.2). Then for A ∈A,

lim
n→∞

∥∥∥αt (A)−α
Λn
t (A)

∥∥∥= 0,

where the convergence is uniform for t in compacta.

A one-parameter group t 7→αt is called strongly continuous if t 7→αt (A) is con-
tinuous for all A ∈A. Similar theorems can be proved for more general interactions
that are not necessarily bounded (but decay quickly enough, for instance). Such
results can be found in Chapter 6.2 of [BR87].

Ground states

In finite-dimensional quantum mechanics, ground states are simply those states
with minimum energy. These are given by the (normalised) eigenvectors of the
Hamiltonian with minimal eigenvalues. In the algebraic setting of states on C∗-
algebras, it is a priori less clear what the correct notion of a ground state is, given
a strongly continuous one-parameter group of automorphisms αt describing the
dynamics.

Ground states should be the equilibrium states at zero temperature. There
are many different equivalent characterisations of ground states. For example,

59



3. Local quantum physics

ground states should, in an appropriate sense, be the states that minimise the en-
ergy. Since we deal with systems with infinitely many sites, one immediately runs
into trouble if one tries to describe this in the naive way (e.g. by looking at ω(HΛ)
for an increasing sequence of finite sets Λ). It turns out that the next definition
gives an appropriate characterisation of ground states in this C∗-algebraic setting.
We first give the definition, and then provide justification for this definition.

Definition 3.4.4. LetA be a C∗-algebra andαt a strongly continuous one-parameter
group of automorphisms with generator δ. An α−ground state is a state ω of A such
that

−iω(A∗δ(A)) ≥ 0

for all A ∈ D(δ).

Indeed, if one considers thermal equilibrium states at inverse temperature β

first, and then let β go to infinity, one obtains this definition. Mathematically,
thermal equilibrium states are those states that satisfy the KMS condition for cer-
tain inverse temperature β [HHW67].

This condition implies that ω is α-invariant. Consider, for a ground state ω, the
corresponding GNS representation (πω,Hω,Ωω). Uniqueness of the GNS repres-
entation implies that there is a strongly continuous group of unitaries t 7→Ut act-
ing on Hω such that Utπω(A)U∗

t = πω(αt (A)). By Stone’s theorem there is an (un-
bounded) self-adjoint operator Hω such that Ut = e i t Hω . This operator Hω plays
the role of the “physical” Hamiltonian.

It follows from Definition 3.4.4 that one can choose Hω to be positive and such
that it annihilates the ground state vector Ωω. The main properties of ground
states and their corresponding GNS representations are summarised in the fol-
lowing theorem, which forms our a fortiori justification of Definition 3.4.4:

Theorem 3.4.5. Let ω be an α-ground state with a symmetric derivation δ as gen-
erator. Then ω is invariant under αt and there exists a self-adjoint operator Hω

acting on the GNS Hilbert space Hω such that e i t Hωπω(A)Ωω = πω(αt (A))Ωω. We
then have the following properties:

i. πω(D(δ))Ωω is a core for Hω.

ii. Hω ≥ 0 and HωΩω = 0.

iii. πω(αt (A)) = e i t Hωπω(A)e−i t Hω for all A ∈A and t ∈R.

iv. πω(δ(A))ψ= i [Hω, A]ψ for all ψ ∈πω(D(δ))Ωω.

The operator Hω can be interpreted as some kind of “effective” Hamiltonian
corresponding to the ground state representation ω. The property HωΩω0 means
that Hω has been renormalised by subtracting the (typically infinite) ground state
energy.
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3.4. Quantum lattice systems

As one expects, ground states indeed minimise the energy of the system. We
mentioned above that the total energy of an infinite system is often ill-defined. In-
deed, it makes more sense to consider the mean energy per unit of volume. Again,
we only discuss the simple case of translation invariant interactions of finite range.
More general characterisations of ground states in terms of minimising energies
can be found in [BR97, §6.2.7].

Definition 3.4.6. Let Φ be a translation invariant interaction of finite range. Define
its mean energy functional on the set of translation invariant states by

HΦ(ω) = ∑
L⊃Λ∋0

ω(Φ(Λ))

|Λ| ,

where |Λ| is the number of sites in Λ. Note that the finite range assumption ensures
that the sum converges.

The function HΦ is an affine functional on the convex set of translation invari-
ant states of A. This functional makes it possible to characterise the ground states
(with respect to the interaction Φ) as those states that minimise this functional, as
one would expect from a ground state.

Theorem 3.4.7. Suppose that Φ is a translation invariant interaction of finite range
with corresponding time translation group αΦ

t . Then the following conditions are
equivalent for a translation invariant state ω of A:

i. The state ω is a αΦ
t -ground state.

ii. The state ω minimizes HΦ.

Lieb-Robinson bounds

A topic that has received considerable attention recently is that of Lieb-Robinson
bounds. In relativistic theories, there is a natural propagation speed: the velocity
of light. In non-relativistic theories (such as quantum spin systems on lattices
discussed here), however, there is no such thing. Nevertheless, in many cases one
can find an effective propagation speed vΦ for an interaction Φ. More precisely,
under suitable conditions one can find (under suitable conditions) bounds of the
form

∥[αΛ
t (A),B ]∥ ≤ 2|Λ2|∥A∥∥B∥Ce−µ(d(Λ1,Λ2)−vΦ|t |),

where C is some constant, A ∈A(Λ1), B ∈A(Λ2), and µ describes the decay prop-
erties of Φ. The automorphism αΛ

t is defined as above, by αΛ
t (A) = e i t HΛ Ae−i t HΛ .

One application of these bounds is to obtain existence of global dynamics αt ,
i.e. convergence of the local dynamics αΛ

t to some one-parameter group αt of
A. Other applications and a review of Lieb-Robinson bounds can be found in, for
instance, [Nac10, NS10].
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There is one application that we want to discuss briefly. Using Lieb-Robinson
bounds one can show that, in systems with gapped Hamiltonians, there is an ex-
ponential decay of ground state correlations. Before we state the result, we first
define the notion of a gapped Hamiltonian.

Definition 3.4.8. Let ω be a ground state for some dynamics αt . Suppose that
these dynamics are implemented by a Hamiltonian Hω (as in Theorem 3.4.5) in the
ground state representation πω. We say that Hω is gapped if there is some M > 0
such that Sp(Hω)∩ (0, M) =;.

Note that the notion of a gapped Hamiltonian not only depends on the local
Hamiltonians HΛ, but also on the choice of ground state ω (which together de-
termine Hω). If the ground state is non degenerate (that is, Ωω is in the one-
dimensional eigenspace of 0 for Hω), one can show that the spectral gap condition
is equivalent to the inequality

−iω(A∗δ(A)) ≥ M(ω(A∗A)−|ω(A)|2)

for all A ∈ D(δ). A proof of this can be found in the proof of Proposition 10.1.1.
In gapped systems one has exponential decay of correlations. More precisely,

the following theorem was proven by Nachtergaele and Sims [NS06].14

Theorem 3.4.9. Consider a quantum spin system on a lattice L with interaction
Φ such that Lieb-Robinson bounds hold. Assume, moreover, that there is a non-
degenerate ground state Ω and that dynamics is implemented by a gapped Hamil-
tonian Hω (with HωΩ= 0). We then have exponential clustering: there exist c(A,B)
and ξ> 0 such that

|ω(AB)−ω(A)ω(B)| ≤ c(A,B)∥A∥∥B∥exp(−d(Λ1,Λ2)/ξ),

for all Λ1,Λ2 ∈P f (L) and A ∈A(Λ1),B ∈A(Λ2). Here d(Λ1,Λ2) is a distance on L.

The constant ξ is the correlation length. One can give bounds on ξ and c in
terms of the size of the gap, the rate of decay of the interaction Φ, and the size of
the supports of A and B .

14The theorem as stated here is a simplified version for specific cases.
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Chapter 4

Topological quantum computers

As already mentioned in the introduction, quantum computing has great poten-
tial. This stems from the fact that quantum computing is fundamentally different
from classical computing. A quantum computer can do things that are simply im-
possible on a classical computer. We will illustrate this with an example in the next
section.

However, despite promising applications, as of yet no full-fledged quantum
computer is available. One of the main reasons is that one faces severe technical
challenges in building such a computer. These challenges are essentially related
to occurrence of errors, just like in virtually any computation. There are a number
of different sources for these errors. For example, to control the computation we
might have to apply a magnetic field to the system for a specific amount of time.
Turning on this field a little bit longer will cause an error in the computation. Per-
haps a more severe issue for quantum systems is decoherence. Our quantum sys-
tem necessarily has to be coupled to the environment, if only to measure the result
of a computation with some macroscopic measurement device. Such a coupling
to the environment will lead to “noise” in the system. The effect is that a pure
state (of the quantum system coupled to the environment) can be transformed in
a mixed state of the system as a whole. This decoherence corresponds to a loss of
(quantum) information.

In classical computing there are efficient methods to deal with errors.1 Applic-
ations range from communications with satellites at the edge of our solar systems,
to the CD players that can be found in almost every home. Fortunately, there are
quantum error correction protocols as well. There are essentially two aspects that
have to be controlled. Firstly, one can use quantum codes to protect stored (quan-
tum) information from noise. Secondly, the operations performed on this memory
have to be under control. That is, the actual operation should not differ too much

1Perhaps the simplest (and not very efficient) example is to store all data in triples. If one of the
copies differs from the other two, it is likely due to an error in this single copy.
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from the operation we intended to perform. The first aspect requires that the noise
is below some threshold value. That is, if the noise is not too strong, errors can be
corrected. The second is stated in terms of a probability that single gates (the ele-
mentary building blocks of a quantum computer) can be executed without error.

The problem is that although techniques for fault tolerant quantum comput-
ing exist, the bounds mentioned above are out of reach of current technology, at
least when considering all but the simplest systems. For example, noise can be
suppressed by cooling the system to near-zero, but this is difficult to do, especially
when considering larger systems. The idea of topological quantum computing
then, is to circumvent these issues by considering topological features of quan-
tum systems, which – by their very nature – are protected from influences of the
environment.

This idea can be traced back to Freedman [Fre98] and Kitaev [Kit03]. In this
chapter we explain the basics behind quantum computation and indicate how
topological properties of systems might be employed to implement these ideas.
We will also give an example of a toy model known as the Fibonacci model. This
chapter is loosely based on the expository article [Naa10] (in Dutch).

4.1 Quantum computing

First we review the “ordinary” setup of quantum computing. The standard refer-
ence on this material is the book by Nielsen and Chuang [NC00]. In particular,
what we will describe here is known as the quantum circuit model of computation.
In essence a quantum computation proceeds similarly to a classical computation.
That is, we have a “memory” or “register” containing, say, a number. Then we ma-
nipulate this number according to some algorithm. Finally, after the algorithm has
been completed, we record the outcome.

For a quantum mechanical version of computation we will work in the set-
ting of finite dimensional quantum systems as in Section 3.1. Roughly speaking, a
quantum computation consists of the same steps as its classical counterpart. First
we initialise a quantum system to some known state. Then we evolve the system
according to some algorithm (which depends on what kind of calculation we want
to do), by engineering the Hamiltonian of the system. Finally, a measurement is
performed on the system to obtain an answer.

A classical algorithm can be viewed as a function f : 2n → 2m , where 2n de-
notes the set of strings of n bits.2 The first step towards quantum computing is
to replace bits by their quantum analogues, called qubits. A qubit is described by
the state space of a two-level3 quantum system, that is, by the Hilbert space C2.
As an example, one can think of the spin in the z-direction of a spin-1/2 particle.

2This is a somewhat simplistic view of computation, but for our purposes it is sufficient.
3What follows can easily be generalised n-level systems, usually called qudits.
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Figure 4.1: Pure states on a single qubit can be parametrised by the Bloch sphere. (Source: wikime-
dia.org)

We will denote a basis of this state space by |0〉, |1〉. Here one can already see the
fundamental differences between classical and quantum computing. Whereas a
classical bit is either 0 or 1, in a qubit one can have superpositions of the basis vec-
tors,

∣∣ψ⟩=α |0〉+β |1〉 with |α|2+|β|2 = 1. In fact, the pure states on a qubit can be
parametrised by the Bloch sphere (Figure 4.1).

The power of quantum computing stems from the fact that this superposition
is possible, something that is clearly not true for classical bits. It is perhaps illus-
trative to consider an example. Suppose we have some function f : 2n → 2m and
wish to study the graph of this function. For example, we might be interested to
know if the function is periodic, and if so, what its period is. Classically, the only
thing one can do is calculate the values f (x) one by one and study the result. With
a quantum computer, however, one can do more.

Let us for simplicity assume that f : 2n → 2n is a bijection. Consider a system
of n qubits, with state space H =⊗n

i=1C
2. Suppose that x = (x1, · · · , xn) ∈ 2n . Then

there is a corresponding state vector |x〉 = |x1〉⊗· · ·⊗|xn〉. Define a unitary operator
U f on H by the condition U f |x〉 =

∣∣ f (x)
⟩

.4 Now suppose that the system is pre-
pared in the initial state

∣∣ψinitial
⟩= |0〉⊗· · ·⊗ |0〉. We can then apply the Hadamard

gate H to each qubit. This unitary operator (see below for the full definition) sends
|0〉 to 1p

2
(|0〉+ |1〉). Afterwards we can apply U f . This leads to

∣∣ψfinal
⟩=U f H⊗n

∣∣ψinitial
⟩= U fp

2n

∑
x∈2n

|x1〉⊗ · · · |xn〉 = 1p
2n

∑
x∈2n

∣∣ f (x)
⟩

.

That is, information on all values f (x) is obtained simultaneously.
If one wants to build a quantum computer, one should in principle have a

method to perform arbitrary unitary transformations on the qubits. This is un-

4Such a unitary operator exists precisely because f is invertible. If f is not invertible, one has to
introduce some auxiliary qubits to extend f to an invertible function. See e.g. [Man00].
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tenable in practice. Fortunately, it is enough if we can approximate the unitary
transformation up to arbitrary precision (with respect to the operator norm). That
is, it is enough to have a dense subset of the pertinent unitary transformations at
our disposal.

Definition 4.1.1. Let U ⊂ SU (d). Then U is called universal if it generates a dense
subset of SU (d).

We are interested in the case that U is finite. In analogy with logical gates
(e.g., AND, OR, NAND, XOR, . . . ) in classical computing, elements of U are called
quantum gates. It should be noted that a universal gate set need not be big at all.
For example, it is enough that unitary operations on a single qubit can be applied,
together with a CNOT operation acting on two qubits. Single qubit operations can
be approximated, for example, by the following set of gates [NC00, §4.2]:

H = 1p
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T = exp(−iπ/8)

(
exp(−iπ/8) 0

0 exp(iπ/8)

)
.

These are the Hadamard, phase, and π/8 gates, respectively. The conclusion is
that in principle there is only a small number of gates that we must be able to
implement in a quantum computer.

With a universal set of gates one can in principle approximate any quantum
algorithm arbitrarily well. But the question remains: how to do that? An answer
is provided by the Solovay-Kitaev theorem, which not only gives a bound on the
required number of gates, but also yields an algorithm to find the approximating
quantum circuit.

Theorem 4.1.2 (Solovay-Kitaev). Let ε> 0 be given. Suppose that U is a universal
set of quantum gates and let U ∈ SU (d). Then there exists a quantum circuit V =
U1 · · ·Un of size n =O(logc (1/ε)), where Ui ∈U , such that ∥U−V ∥ < ε. The constant
c can be estimated as c ≤ 3.97.

The result can be proven by giving an explicit algorithm that finds the quan-
tum circuit, see [DN06] for a pedagogical introduction. The algorithm can easily
be programmed on a (classical) computer. In fact, the computing time needed is
approximately O(log2(1/ε)). The constant c can be improved as well, but it de-
pends on the algorithm used to find the approximation.

The general plan of attack is hence to identify a universal gate set that can
be implemented in an experimental setup of interest. To run a certain quantum
algorithm, one first has to find the unitary operation U corresponding to this al-
gorithm. The Solovay-Kitaev algorithm can then be programmed on a (classical)
computer to find the corresponding quantum circuit that approximates U . This
step is sometimes called quantum compilation, since it is analogous to compiling
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a computer program to machine code. This quantum circuit can then be imple-
mented on a suitable physical system.

To summarise, a quantum computation consists of the following steps:

i. Find an implementation of the algorithm by a quantum circuit.

ii. Initialise the system to a known initial state.

iii. Perform a unitary transformation of the initial state operation by imple-
menting the quantum circuit.

iv. Measure the outcome.

As was explained in §3.1, the measurement process in quantum mechanics has a
probabilistic nature. That is, one cannot recover the final state by a single meas-
urement. Instead, one can perform the calculation a number of times to improve
the chances of finding the correct answer. Despite the need to repeat experiments
to increase certainty levels, some quantum computation algorithms are still more
efficient than their classical counterparts.

4.2 Topological quantum computing

One of the main challenges in quantum computation is the construction of a fault-
tolerant quantum computer. One of the most promising approaches that have
emerged is that of topological quantum computing. What is essential in this pro-
posal is the existence of (non-abelian) anyons. Braiding such anyons can be used
to implement unitary gates. Because of their topological nature, such systems are
inherently protected from local perturbations due to interactions with the envir-
onment. It should be noted that anyons indeed have been observed in nature,
for example in the ν = 5/2 state in the fractional quantum Hall effect. See, for
example, the “Note added in proof” of [NSS+08] for references.

A recent review on topological quantum computing can be found in [NSS+08],
where also possible candidates for systems suitable for quantum computing are
discussed. A popular account can be found in, e.g., [SFN06]. The mathematic-
ally inclined reader might prefer the exposition by Wang [Wan10], which focusses
on the mathematical structure of modular tensor categories behind topological
quantum computing, or the short article in the Bulletin of the AMS [FKLW03].

In the introduction to this thesis we already outlined how (non-abelian) any-
ons can be used for quantum computation. Here we will elaborate on this. The
focus will be on the implementation of quantum gates by braiding. For other im-
portant issues such as protection of quantum information from local perturba-
tions, we refer to the review [NSS+08] mentioned above (and references therein).

Our goal is to give a heuristic description of a topological quantum computer.
We consider a quantum system that has finitely many distinct types of anyonic
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4. Topological quantum computers

excitations, including the trivial particle.5 The different types of anyons can be
labelled by some set {ρi }, where at present ρi is just a formal notation.

To do topological quantum computation we should have some control over
the system, and to this end assume that the following operations are possible [Pre]:

• Create pairs of anyons and identify them. We should have some mechanism
to obtain anyons. In fact, it is sufficient to be able to pull a pair of an anyon
and its conjugate charge from the vacuum. Moreover, we should have some
way to measure the type ρi of the pair. We assume that we can in principle
obtain anyons of each type ρi , if necessary by repeating the procedure and
discarding unwanted anyon types.

• Pair annihilation (fusion). We should be able to bring two anyons close to-
gether and let them fuse. For example, if we create a pair of an anyon and
its dual from the ground state, and fuse them again, we should obtain the
ground state again (this is nothing but conservation of charge). In general,
we should be able to detect if any charge is left, or if we are left with no ex-
citation at all.

• Braiding. To do actual calculations we have to be able to swap or braid pairs
of anyons along specified trajectories (up to isotopy). These trajectories will
depend on the algorithm we want to run.

Using these operations we can in principle devise a method to determine the type
(or charge) of a single (unknown) anyon, see for example [Pre]. The procedure
essentially works as follows. By the first assumption, we can create pairs of an
anyon and its conjugate of known type. By the third assumption, we can then
circle one anyon of the pair around the unknown anyon. Finally, we can try to fuse
the pair of test anyons back in the vacuum and observe if there is any charge left.
Doing this a number of times reveals information on the unknown charge.

In concrete applications measurements, can be performed by interferometry
experiments, for example. The braiding operation can be implemented by phys-
ically moving the excitations around, one way or another. It is not hard to imagine
that this can be very difficult to realise experimentally. It turns out, however, that
the braiding operations can be implemented in an alternative way, by measure-
ments only [BFN09]. That is, one can obtain the same effect without having to
move the anyons around, but only measure the type of anyons in a certain region.

The fusion process requires some explanation as well, and it is here where the
key to encoding a qubit lies. Suppose that we have well separated anyons ρi and
ρ j . Then we can bring them closely together and fuse them. The result is a new
excitation. The fusion rules govern the possible outcomes of this process. More
precisely, they are given by non-negative integers N k

i j , where the labels i , j ,k cor-

respond to the labelling of the distinct types of anyons. The integer N k
i j denotes

5We can regard such excitations as quasi-particles. That is, an anyon in general is a collective
excitation (as opposed to a elementary particle) of the system. This excitation as a whole can be
regarded as a particle with anyonic statistics.
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4.2. Topological quantum computing

Figure 4.2: Six anyons are braided by moving them around. The picture shows the wordlines of the
anyons. This braiding operation induces a unitary operation on the fusion space of the six anyons.

that by fusion of a ρi - and a ρ j -charge, the result can be a ρk charge in N k
i j distinct

ways. In other words, the state space of anyons ρi and ρ j that fuse to ρk has di-
mension N k

i j . Using these fusion rules, it is then straightforward to calculate the
dimension of the state space of, say, k identical anyons ρ fusing to some anyon of
type σ.

The state spaces as in the previous paragraph are called fusion spaces. Such fu-
sion spaces will be used to encode qubits. For simplicity, consider the fusion space
of n identical anyons of type ρ, fusing to some type σ. In order to encode anything
non-trivial, this fusion space has to have dimension bigger than one. This can
only be the case if in fusing them one-by-one, there is a point where we fuse any-
ons ρi ,ρ j such that

∑
k N k

i j > 1. In general, the dimension of the fusion space of n
non-abelian anyons even grows exponentially as a function of n.

Consider a non-trivial fusion space of k anyons as above, fusing to σ. That is, if
we fuse them one after another, in the end we end up with a σ anyon. But there is
more than one way to do this, since the dimension of the space is bigger than one.
A “fusion path” or “fusion tree” labels these different ways, by recording the result
of the fusion of the first two anyons, and so on. This leads to a basis of the fusion
space, and it is precisely these basis that can be used to encode a qubit. That is, a
basis of a single qubit can be given by two distinct fusion paths. An example will
be provided in the final section of this chapter.

To do calculations we can braid the anyons. An example can be found in Fig-
ure 4.2. The braiding induces a unitary operation on the state space, hence this
can in principle be used to implement quantum algorithms. Braiding is an inher-
ently topological operation. In fact, the unitary operation on the state space only
depends on the topology of the corresponding braid (as in Fig. 4.2), not on the ex-
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4. Topological quantum computers

act path. This makes the implementation much more robust against influences
from the environment. A little nudge to one of the anyons will not change the
topology, and hence it will neither affect the operation on the state space.

Implementing gates by braiding has clear advantages. An important question
then is, what operations can be implemented by braiding? This, of course, heavily
depends on the specific model under consideration. Kitaev’s model is an example
for which this has been studied: under certain conditions on the group G in the
definition of the model, it turns out that a universal gate set can be implemen-
ted [Moc03, Moc04]. For results on a related approach using topological quantum
field theory, see [FLW02].

In the end, we can perform a readout by performing a measurement in the
fusion space. That is, we fuse a number of anyons and measure the result. Since
the state space consists of different “fusion paths”, this allows us to distinguish the
different states. It should be noted that these measurements form a probabilistic
process according to the usual rules of quantum mechanics.

It should be noted that this is the simplest example of topological quantum
computing. One could, for example, use non-topological gates in addition to to-
pological gates induced by braiding anyons. This can be beneficial, for example,
when braiding alone does not yield a universal gate set.

Remark 4.2.1. The description above explains how to do quantum computations
on a topological quantum computer. An interesting question is whether a topolo-
gical quantum computer is perhaps more powerful than the usual model of quan-
tum computation. This turns out not to be the case: Freedman, Kitaev and Wang
have shown that a universal quantum computer can efficiently simulate a system
with anyons [FKW02]. Hence, “ordinary” and topological quantum computers can
effectively simulate each other and thus they are equally powerful from a compu-
tational point of view.

Modular tensor categories

We have already mentioned that modular tensor categories are relevant to topo-
logical quantum computing. We will now explain how the properties of anyonic
systems (as described above) are related to MTCs. More elaborate expositions can
be found in [PP11, Wan10].

Modular tensor categories enter the scene when looking at the algebraic prop-
erties of anyonic systems. In essence, there is a dictionary that translates each
aspect of a modular tensor category into a feature of a physical system. In this sec-
tion we discuss the main (but not all!) correspondences. In parts II and III of this
thesis we will see how physically relevant representations are related to (modular)
tensor categories.
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4.2. Topological quantum computing

Suppose that we have an anyonic system with n different types of anyons, la-
belled ρ1, · · · ,ρn . We can always assume that the list contains a “trivial” particle (or
the ground state) ι, and choose ρ1 = ι. In the categorical setting, these anyon types
correspond to equivalence classes of irreducible objects. Different representatives
correspond, for example, to the same type of anyons, which however are localised
in a different part of the system.

Suppose that we have some anyon ρi in our system. Then we can see what
happens if we add a new anyon ρ j to the system. This composition of charges
corresponds to the tensor product of the MTC. If we bring these two charges close
to each other, we can “fuse” them, as discussed above. The fusion rules of the MTC
tell us what the possible outcomes are. That is, suppose that ρi ⊗ρ j = ⊕

k N k
i jρk ,

where the sum is the direct sum in the category (as in Eq. (2.4.1)). Then fusing ρi

andρ j can result in an anyon of typeρk in N k
i j different ways. Such fusion rules are

well-known in conformal field theory. Perhaps more familiar is the composition
of two spin-1/2 particles, which can be analysed essentially by the representation
theory of SU (2): one finds a decomposition in a spin-0 and a spin-1 part.

Duals (in the categorical sense) correspond to anti- or opposite charges. Note
that the definition of a conjugate implies that the decomposition of ρi ⊗ρi con-
tains the tensor unit ι exactly once. This corresponds with the situation where an
anyon and its anti-particle annihilate to the ground state. Similarly, there is the
dual process of creating a pair ρi and ρi from the ground state.

Morphisms in an MTC correspond to physical processes or operations. Braid-
ing, for example, is just that: it comes down to moving anyons around each other.
As an example: Fig. 4.2 can be thought of as representing an isomorphism of
an object ρ⊗6 in the category (up to isotopy of the strands). An intuitive way
to think of morphisms is therefore to see them as world lines of anyons. A map
ρ1 ⊗·· ·⊗ρm →σ1 ⊗·· ·⊗σn , with ρi ,σi ∈C, corresponds to a plane with m points
at t = 0 and a plane with m points at some later time, say t = 1, together with the
trajectories the particles have followed. Note that m need not be equal to n: for
example, a particle can fuse with its antiparticle, which can graphically be rep-
resented by a “cup” ∪ connecting two points in the plane at t = 0 (in this case
m = 2,n = 0). A description of this graphical language can be found in, among
others, [BFN09].

We have already remarked that computations are done by braiding anyons. It
is therefore of interest to study the braiding isomorphisms ερ,σ in more detail. To
this end, suppose that we have a unitary braided tensor category C. Recall that
Bn , the braid group on n strands, is generated by elements b1, · · ·bn−1 satisfying
the Artin relations:

bi b j = b j bi if |i − j | ≥ 2,

bi bi+1bi = bi+1bi bi+1.
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4. Topological quantum computers

A unitary braided tensor category leads to unitary representations of the braid
group in a natural way, as follows. Suppose that ρ ∈ C. Then End(ρn) is a finite
dimensional complex vector space. For k = 1, · · · ,n −1, define

Ti := id⊗(k−1)
ρ ⊗ερ,ρ⊗ idn−k−1

ρ ∈ End(ρ⊗n),

where ερ,ρ is the braiding in the category C and id⊗k
ρ is the k-fold tensor product

of the identity morphism with itself. For simplicity, we assume that Hom(ι,ρn) is
non-zero, for example when ρ is self-dual and n is even. We can then define an
action of bi ∈ Bn on Hom(ι,ρ⊗n) by π(bi ) ◦T := Ti ◦T for T ∈ Hom(ι,ρ⊗n), which
defines a unitary representationπ of Bn . This can be checked by using the braid re-
lations, the ∗-operation on C, and the fact that Hom(ι,ρ⊗n) has the natural struc-
ture of a (finite-dimensional) Hilbert space.6

Remark 4.2.2. Instead of the tensor product of n copies of the same type of anyon,
we could also consider the tensor product of different species. Then one can fol-
low a similar procedure, obtaining a representation of the coloured (or pure) braid
group. Recall that we can visualise Bn as braiding n strands. The pure braid group
corresponds to the subgroup of Bn that leaves the endpoints of the strands fixed.
Physically, this means that the position of the different species of anyons is the
same after the braiding as it was before.

By the procedure above, for any object ρ ∈ C and n ∈N, there is an associated
unitary representation π

ρ
n of Bn . Since the idea is to use these braiding operations

for quantum computation, a natural question is to study the image of the braid
group under this representation. A particular interesting case arises when U :=
{π(bi ) : i = 1, · · ·n−1} is a universal gate set, in the sense of Definition 4.1.1, that is,
if this image is dense in SU (End(ρ⊗n)). For this implies that a universal quantum
computer can in principle be built from braiding operations alone. If the image
is finite (but non-abelian), one can still do certain calculations, but it is no longer
the case taht any possible quantum circuit can be implemented. See [Row09] for
a list of examples.

These considerations at least make plausible, or so we hope, that there is a
strong connection between modular tensor categories and systems with anyons
(and hence with topological quantum computation). On the other hand, MTCs
turn up in various other parts of (mathematical) physics as well. For example, to
every MTC there is an associated topological quantum field theory [Tur94]. The
converse is also conjectured to be true. Another example is rational conformal
field theory [KLM01].

6In fact, one can use End(ρ⊗n ) instead of Hom(ι,ρn ) instead. This can be given the structure of
a Hilbert space as well (cf. [Kir96]).
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4.3. Fibonacci anyons

Figure 4.3: Two pairs of three τ-anyons. The lines represent the wordlines: some of the anyons are
braided. The anyons are grouped into two logical qubits. The small ovals denote that in a measure-
ment of a qubit, these anyons are fused first.

4.3 Fibonacci anyons

As an example we consider the model of Fibonacci anyons [Pre]. We will define
the model by specifying the types of anyons (i.e., the irreducible objects in the
corresponding modular tensor category), the fusion rules, and the braiding. In
this simple model there are two types of anyons: the vacuum ι and a single species
τ. The only non-trivial fusion rule is given by τ⊗τ= ι⊕τ. As a consistency check,
note that this implies that τ is self-dual, i.e. τ = τ, since the tensor product τ⊗τ

contains the vacuum precisely once.
We will now explain how to encode a single qubit in this model. Suppose that

we fuse three τ-anyons. By the fusion rules, this leads to

(τ⊗τ)⊗τ∼= (ι⊕τ)⊗τ∼= τ⊕τ⊕ ι.

As above, this can be interpreted in the following way. Suppose we have a config-
uration of three anyons, and bring them close to fuse. If we measure the charge
that is left, it can be either a τ-anyon (in two different ways), or the vacuum. This
leads to a three dimensional state space. In general, for n anyons the dimension
of the state space is Fib(n +1), the (n +1)-th Fibonacci number. This explains the
name “Fibonacci model”.

By the fusion rules above, and by using the fact that ι and τ are irreducible, it
follows that

Hom((τ⊗τ)⊗τ,τ) ∼=C2, Hom((τ⊗τ)⊗τ,1, ) ∼=C

as vector spaces. These vector spaces are called fusion spaces, since they describe
the fusion of anyons. The fusion space of (τ⊗τ)⊗τ is the direct sum of these fusion
spaces and hence is isomorphic to C2⊕C. Note that this just gives a decomposition
of End((τ⊗τ)⊗τ). The key idea is to use this decomposition to describe a single
qubit. We will require three anyons to encode a single qubit (see Fig. 4.3).

In this vector space we choose a basis. With |((•,•)τ,•)τ〉 we denote the config-
uration where the bottom two anyons fuse to τ, and when this is fused with the re-
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maining anyon, again τ is found. Using this notation, we define |0〉 = |((•,•)ι,•)τ〉,
|1〉 = |((•,•)τ,•)τ〉 and |NC 〉 = |((•,•)τ,•)ι〉. The vectors |0〉 and |1〉 will form the (lo-
gical) qubit, and “NC” stands for non-computational. We should make sure that
any operation we wish to perform in a computation will map the computational
subspace into itself. A measurement in the computational basis can be done by
fusing the bottom two anyons (in Fig. 4.3): if τ is obtained, the state is |1〉, other-
wise it will be |0〉.

On the mathematical side, we would like to obtain a tensor category. Unlike
most categories in this thesis, the category at hand is not strict. For example,
(τ⊗ τ) ⊗ τ is merely isomorphic to τ⊗ (τ⊗ τ) rather than equal. To completely
determine the tensor category, we have to define the associativity and braiding
isomorphisms. In this specific model, there is an (essentially) unique solution
that is compatible with the fusion rules given above, see for example [PP11]. To
give some idea how to show this, note that by the conditions on a tensor category,
there is a unitary transformation from Hom((τ⊗τ)⊗τ) to Hom(τ⊗ (τ⊗τ)). Such
conditions lead to a system of polynomial equations, which in this specific case
have a unique solution.

Regarding the braiding operation, a similar procedure can be followed. Again,
compatibility conditions (e.g., the hexagon diagrams) lead to a set of polynomial
equations with a unique solution. Note that we can braid two τ-anyons as in the
right figure in Fig. 4.3. This amounts to acting with idτ⊗ετ,τ on End((τ⊗τ)⊗τ). In
the basis given above, this operation is given by the unitary matrix [BHZS05] −ηe−iπ/5 −i

p
ηe−iπ/10 0

−i
p
ηe−iπ/10 −η 0

0 0 −e−i 2π/5

 ,

where η= (
p

5−1)/2, the inverse of the golden ratio. Note that the braiding indeed
maps the computational subspace into itself.

The idea is that each unitary operation on this subspace can be approxim-
ated by such braiding operations. This is indeed the case, as has been shown by
Bonesteel, Hormozi, Zikos and Simon [BHZS05]. The authors use a brute force
search to approximate (up to an accuracy of ε < 2.3 × 10−3) a set of gates that
is known to be universal for single qubit gates. Alternatively, one could use the
Solovay-Kitaev theorem to achieve higher accuracies. Besides one-qubit gates,
Bonesteel et al. also construct two-qubit gates (acting on six anyons). An example
can be found in Fig. 4.4 on the next page. Together these gates are universal.
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Figure 4.4: Approximation (with accuracy ε= 2.3×10−3) by braiding operations of a controlled braid
gate in the Fibonacci model. Suppose that the first qubit is in either the |0〉 or the |1〉 state. Then
the braiding of the two anyons is performed if and only if the first qubit is in the |1〉 state. Figure
from [BHZS05].
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Chapter 5

The quantum double of a finite
group

In this chapter we will illustrate the general theory of modular tensor categories of
Chapter 2 with an important example. In particular, we consider the category of
representations of the quantum double D(G) of a finite group G . The group G is
finite (but otherwise arbitrary) and will be fixed in this chapter. Besides providing
an example of a modular tensor category, the representations of quantum doubles
play a central role in Kitaev’s model, discussed in Part III. The aim of this chapter
is not generality: in fact, many of the constructions are examples of a more general
procedure.1

The results we discuss here are fairly standard, although our emphasis is a bit
different. Most of the results can be found in, e.g., [BK01, KRT97, Kas95]. The C∗-
structure can be found in [SV93]. Modularity is proven in [BK01], but here we give
an alternative proof using Rehren’s Theorem 2.6.3.

We will also demonstrate the well-known fact that irreducible representations
of D(G) are labelled by pairs (C ,π), where C is a conjugacy class of G and π an
irreducible representation of the centraliser ZG (g ) of g in the group G , and g ∈
C . These irreducible representations of D(G) are of interest because they have a
physical interpretation in the models we will consider in Part III of this thesis. In
this section we will work over a field k whose characteristic does not divide |G| (for
reasons to become clear later). Only in the last section we will specialise to k =C,
which is appropriate for the applications we have in mind.

1The quantum double procedure, due to Drinfel’d [Dri87], works for any finite dimensional
Hopf algebra A. It assigns a quasi-triangular Hopf algebra D(A) (see below for the definition) to
A.
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5.1 Quantum doubles of finite groups

In this section we define a quasi-triangular Hopf algebra associated to a finite
group G . The result will be an example of Drinfel’d’s quantum double construc-
tion [Dri87] applied to the group algebra k[G] of G , where k is a field.

Let us first recall the definition of a bialgebra.

Definition 5.1.1. Let H be an algebra over a field k. Then H is called a bialgebra if
there are algebra morphisms ∆ : H → H ⊗H and ε : H → k such that the following
conditions hold:

i. Coassociativity: (∆⊗ idH )◦∆= (idH ⊗∆)◦∆,
ii. Counitality: (ε⊗ idH )◦∆= (idH ⊗ε)◦∆= idH .

These maps are called the compultiplication and the counit.

This definition can be obtained, for example, by considering the categorical
definition of a unital associative algebra, and reversing the direction of the arrows
of the multiplication and unit map.

If x ∈ H for some bialgebra H , then ∆(x) ∈ H ⊗ H . Hence there are x ′
i , x ′′

i ∈ H
such that ∆(x) =∑

i x ′
i ⊗ x ′′

i . It is convenient to introduce the Sweedler notation for
this, and write

∆(x) =∑
(x)

x(1) ⊗x(2).

With the help of this notation we can introduce an antipode S on a bialgebra H ,
that is, a k-linear map such that

m ◦ (id⊗S)◦∆= η◦ε= m ◦ (S ⊗ id)◦∆,

Here m is the multiplication map of the algebra and η : k → H the unit. In Sweedler
notation, this becomes∑

(x)
x(1)S(x(2)) = ε(x)1 =∑

(x)
S(x(1))x(2).

A Hopf algebra is a bialgebra with an antipode.
Let us come back to the group algebra k[G]. Recall that this algebra is spanned

by elements g ∈G and that multiplication is defined in the obvious way. It can be
made into a Hopf algebra by defining a comultiplication ∆(g ) := g ⊗ g , a counit
ε(g ) = 1 (where 1 is the unit of k), and an antipode S(g ) = g−1.

Write k(G) for the functions on G with values in k. A basis of this space is given
by the functions δg defined by δg (h) = δg ,h . It has the structure of a commutaive
Hopf algebra. It is obviously a k-vector space. It becomes an algebra by pointwise
multiplication. The unit η : k → k(G) is defined by η(λ)(g ) = λ, g ∈ G , and λ ∈ k.
One can define a coproduct, counit and antipode by

(∆ f )(g ,h) = f (g h), ε( f ) = f (e), (S f )(g ) = f (g−1).
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This turns k(G) into a commutative Hopf algebra.
We can now define the quantum double of the group G , denoted by D(G). As a

vector space it is equal to k(G)⊗k k[G]. The operations can be described explicitly
by the following formulas, where x, y, g ,h ∈ G . This defines the operations on a
basis, and one can then extend linearly:

(δg ⊗ x)(δh ⊗ y) = δg x,xh(δg ⊗x y),

1 = ∑
g∈G

δg ⊗e,

∆(δg ⊗x) =
∑

g1g2=g
(δg1 ⊗x)⊗ (δg2 ⊗ x)

ε(δg ⊗x) = δg ,e

S(δg ⊗ x) = δx−1g−1x ⊗x−1.

It is straightforward to check that this defines a Hopf algebra. Alternatively, one
can also view D(G) as a semidirect product k(G)⋊k[G], where k[G] acts on k(G)
by

xδg x−1 = δxg x−1 , g , x ∈G ,

and extend k-linearly.
The Hopf algebra D(G) is called quasi-triangular. That is, there is an invertible

element R ∈D(G)⊗D(G), satisfying certain conditions, which allows us to define
a braiding on the category of representations of D(G), as will be discussed below.
This element R, called a universal R-matrix, is given by

R =
∑

g∈G
(δg ⊗e)⊗ (1⊗ g ). (5.1.1)

A bialgebra that has such a universal R-matrix is sometimes called a braided bial-
gebra. We will not list the conditions on a universal R-matrix here (see [KRT97]),
but suffice it to say that a universal R-matrix is a solution to the Yang-Baxter equa-
tion. That is, it satisfies

(R ⊗ id)(id⊗R)(R ⊗ id) = (id⊗R)(R ⊗ id)(id⊗R).

This should be regarded as an equation for automorphisms acting on the tensor
product D(G)⊗D(G)⊗D(G), where R acts by left multiplication on D(G)⊗D(G).
For us, the most important property will be that R allows us to define a braiding
on the category of representations of D(G).

5.2 Representation theory

The representation category of a Hopf algebra has a rich structure, see for ex-
ample [Maj90] for a nice introduction to the tensor structure. In many ways, it
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behaves like the representation category of a group. As an example, we consider
the representations of the quantum double of a finite group. Consider the cat-
egory Rep f D(G) of representations of D(G). Here a representation of D(G) is a
representation of D(G) as a k-algebra, that is, a D(G) module. The representa-
tion category of a quantum double of a finite group is in fact a modular tensor
category [BK01], provided the characteristic of the field does not divide |G|.

As an example of a representation, consider the ground field k. Using the
counit k is a D(G)-module, namely by x ·λ := ε(x)λ, with λ ∈ k and x ∈ D(G).
This defines the trivial representation of D(G).

Definition 5.2.1. The category of finite-dimensional D(G) modules is denoted by
Rep f D(G). The Hom-sets are D(G)-homomorphisms, i.e. D(G)-linear maps
φ : V1 →V2 such that φ(x · v) = x ·φ(v) for all x ∈D(G) and v ∈V1.

Note that the conventions in this Chapter are a bit different from those in
Chapter 2: the objects in the category are now denoted by capitols V ,W, · · · , where-
as morphisms are denoted by Greek letters φ, · · · . This definition is essentially the
same as the definition of the category of finite dimensional representations of fi-
nite groups. This is easily seen if one regards group representations as left k[G]-
modules.

The category Rep f D(G) is a braided monoidal tensor category. If V ,W are two
D(G)-modules, consider the tensor product V ⊗W as a vector space. This vector
space carries a left action of D(G): if x ∈ D(G) then ∆(x) acts on V ⊗W . That is,
x · (v ⊗ w) := ∆(x)(v ⊗ w). Hence we obtain a tensor product of representations.
This leads to a tensor category. We will write k for the trivial D(G)-module.

Lemma 5.2.2. The category Rep f D(G) is a braided monoidal category. The tensor
product is the tensor product of D(G)-modules and the monoidal unit is given by
the trivial D(G)-module. If V ,W are two D(G)-modules, we can define a map εV ,W :
V ⊗W →W ⊗V by

εV ,W (v ⊗w) = τV ,W (R(v ⊗w)),

for v ∈V , w ∈W and τV ,W is the canonical flip. Then εV ,W defines a braiding on the
category.

Proof. The associativity isomorphisms follow from coassociativity of ∆, which al-
lows to show that the canonical isomorphism of D(G) modules U ⊗ (V ⊗W ) ∼=
(U ⊗V )⊗W is D(G)-linear, hence an isomorphism of D(G)-modules. The trivial
D(G)-module is the tensor unit, by counitality: if x ∈D(G), then for v ∈V ,

x · (1⊗ v) =
∑
(x)

x(1) ·1⊗x(2) · v =
∑
(x)

ε(x(1))x(2) · v = x · v,

where we identified k ⊗V with V .
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It is in general not possible to define a symmetry, since the canonical flip iso-
morphism is not D(G)-linear, unless D(G) is cocommutative. However, using
the R-matrix we can define a braiding. If V ,W are two D(G)-modules, define
εV ,W : V ⊗W → W ⊗V by εV ,W (v ⊗ w) = τV ,W (R(v ⊗ w)). One can check this in-
deed defines a braiding in the category [KRT97]. This requires showing that εV ,W

is indeed an isomorphism in the category (i.e. it is D(G)-linear with ditto inverse)
and that it satisfies the braid equations. We omit the details.

The question, then, is to obtain irreducible objects in this category and see if
every representation can be decomposed into irreducible representations. This is
related to integrals, in the following sense.

Definition 5.2.3. Let H be a finite dimensional Hopf algebra. Then x ∈ H is called
an integral, notation x ∈ ∫

H , if hx = ε(h)x for every h ∈ H.

There is a slightly more general definition for arbitrary Hopf algebras, which
involves the dual H∗. In the case of finite-dimensional Hopf algebras H∗∗ is also
a Hopf algebra, which allows to simplify the definition [Swe69].

The following proof can be found e.g. in [Swe69, Theorem 5.1.8]. It can be seen
as an adaptation of Maschke’s theorem in the theory of group representations to
the case of Hopf algebras.

Theorem 5.2.4. A finite dimensional Hopf algebra H is semisimple (as an algebra)
if and only if ε(

∫
H ) ̸= {0}.

Proof. First note that H is semisimple if and only if every finite dimensional left
H-module is semisimple. Since D(G) is a D(G) module itself, one implication is
clear. The other one follows from the fact that every H-module is a quotient of a
free module.

Suppose V is a left H-module, and W a submodule. Write E for a k-linear map
E : V →W that is a projection and acts as the identity on W . Using the coproduct
of H it is possible to define a morphism P : V → W of H-modules. Let t ∈ ∫

H
satisfy ε(t ) = 1. Using the coproduct we write ∆(t ) = ∑

(t ) t(1) ⊗ t(2). Define a map
P : V → W by P (v) = ∑

(t ) t(1) ·E(S(t(2))v). Note that because W is a submodule, P
indeed maps V to W . For w ∈W we have E(xw) = xw for all x ∈ H , hence

P (w) =∑
(t )

t(1)S(t(2))w = ε(t )w = w,
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5. The quantum double of a finite group

so that P is a projection (of vector spaces!). It is also a map of H-modules. If h ∈ H
and v ∈V , then

h ·P (v) =
∑
(t )

ht(1)E(S(t(2))v)

= ∑
(t ),(h)

h(1)t(1)E(S(t(2)ε(h(2)))v)

= ∑
(t ),(h)

h(1)t(1)E(S(t(2))S(h(2))h(3)v)

=
∑

(t ),(h)
h(1)t(1)E(S(h(2)t(2))h(3)v).

In the second line we used the fact that ε is a counit, i.e. h = (idH ⊗ε)◦∆(h), and in
the next line we used the equality ε(x)1 =∑

(x) S(x(1))x(2).
Now note the following calculation:

∑
(t ),(h)

h(1)t(1) ⊗S(h(2)t(2))⊗h(3) = (id⊗S ⊗ id)

(∑
(h)

∆(h(1)t )⊗h(2)

)

= (id⊗S ⊗ id)

(∑
(h)

∆(ε(h(1))t )⊗h(2)

)
= (id⊗S ⊗ id)(∆(t )⊗h)

=∑
(t )

t(1) ⊗S(t(2))⊗h,

where in the second line we used the fact that t is an integral, and in the third line
we used the fact that ε is a counit. Using this formula, as well as the multiplication
H ⊗H → H of the algebra, we see that

h ·P (v) =∑
(t )

t(1) ·E(S(t(2)) ·h · v) = P (h · v).

Hence P is a H-linear projection. Note that V =W ⊕kerP as vector spaces. Since
P is H-linear, it follows that this is in fact a decomposition of H-modules, as was
to be shown.

Conversely, suppose D(G) is semisimple. Then H can be decomposed as

H = I ⊕kerε,

where I is a left H-module, hence a left ideal in H . It follows that for x ∈ kerε and
y ∈ I , we have x y ∈ kerε∩ I . But this means that x y = 0 = ε(x)y . Now let h ∈ H be
arbitrary. We can write h = (h−ε(h)1)+ε(h)1. But (h−ε(h)1) ∈ kerε, so hy = ε(h)y .
But this means that I ⊂ ∫

H . One can show that
∫

H is at most one-dimensional.
Note that I is non-zero, hence I = ∫

H . But ε(I ) ̸= 0 because H = I ⊕kerε.
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Corollary 5.2.5 (Maschke). The category Rep f D(G) is semisimple if and only if the
characteristic of k does not divide |G|.

Proof. Consider x =∑
g∈G δe ⊗ g . It’s easy to check that this is an integral. Indeed,

if y = δg ⊗h, then

y x =
∑

k∈G
(δg ⊗h)(δe ⊗k) = δg h,h

∑
k∈G

(δg ⊗hk) = δg ,e x = ε(y)x.

Now note that ε(x) = ∑
g∈G δe,g = |G|. One can prove that the space of integrals is

one-dimensional (or zero). Hence any integral is a multiple of x. Using this fact,
the corollary follows by the previous theorem (and the remark in the first para-
graph of the proof).

Next, we try to find a complete list of irreducible D(G) modules. Recall that
k(G) embeds into D(G) by δg 7→ δg ⊗ e. To simplify notation, we will write δg for
the image under this map as well, and similarly for the embedding of k[G] into
D(G). We will first discuss how we can obtain irreducible D(G)-modules. This is
loosely based on [Gou93] (c.f. [Wit96] for a different approach).

Suppose V is a finite-dimensional D(G)-module. Choose any non-zero v ∈V .
Let g ∈ G and write ZG (g ) for the centraliser of g in G . Then we can consider the
vector space Vπ := k[ZG (g )]δg v . Since ZG (g ) is a subgroup of G , it is easy to check
that Vπ is in fact a left k[ZG (g )]-module. Without loss of generality, we can assume
that this is an irreducible module (corresponding to an irreducible representation
π of ZG (g )): if Vπ is not irreducible, consider an irreducible submodule.2 This
amounts to replacing v with P v for some projection P , and we could have chosen
P v instead of v from the start.

We can now define a vector space Vg ,π by

Vg ,π := ⊕
xg x−1∈g

xVπ.

The notation g is used for the conjugacy class of g (in G).

Lemma 5.2.6. With notation as above, Vg ,π is an irreducible D(G)-module.

Proof. For each gi ∈ g choose a xi such that xi g x−1
i = gi . A general element of

xi Vπ can be written as k-linear combinations of the form (1⊗ xi )(1⊗ z)(δg ⊗ e)v .
We calculate that this is equal to

(1⊗ xi )(δzg z−1 ⊗ z)v = (1⊗xi )(δg ⊗ z)v = (δxi g x−1
i
⊗xi z)v.

2This is the point where the condition on the characteristic of k plays a role, since one needs
Maschke’s theorem for group representations here.
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If (δ f ⊗h) ∈D(G), then

(δ f ⊗h)(δxi g x−1
i
⊗xz)v = δ f h,hxi g x−1

i
(δ f ⊗hxi z)v

= δ f ,hxi g x−1
i h−1 (δhxi g x−1

i h−1 ⊗hxi z)v.
(5.2.1)

By definition there is a x j such that x j g x−1
j = hxi g x−1

i h−1. It follows that

z ′ := x−1
j hx j is in ZG (g ). Substituting this we see that equation (5.2.1) is equal to

δ f ,hxi g x−1
i h−1 (δx j g x−1

j
⊗x j z ′z)v.

This shows that Vg ,π is indeed a D(G)-module.
We have to show that the action of D(G) is irreducible. By the calculation

above it follows that the action of D(G) on Vg ,π is given by

(δ f ⊗h)(xv) = δ f ,hxg h−1x−1 hxv.

Define Pg = ∑
k∈g δk . Then it is easy to check that Pg acts as the identity on Vg ,π.

Now suppose that w ∈Vg ,π. It is sufficient to show that Vg ,π ⊂D(G)w .
Since Pg w = w , there is some k ∈ g such that δk w ̸= 0. Hence δk w is a non-

zero vector in kVπ. Since Vπ is irreducible for the action of k[ZG (g )], it follows
that in fact kVπ ⊂D(G)w . By multiplication on the left with elements of the form
(1⊗δh), with h ∈G , it follows that xi Vπ ⊂D(G)w for any xi as in the beginning of
the proof. The result follows.

The procedure above leads to irreducible D(G)-representations that depend
on a conjugacy class of g and on the isomorphism class of the irreducible repres-
entation π of ZG (g ). Moreover, every representation of D(G) is a direct sum of
representations as in the Lemma, as the next theorem shows.

Theorem 5.2.7. Every finite-dimensional representation of D(G) is completely re-
ducible. Moreover, a complete list of irreducible representations is given by Vg ,π,
where g is a conjugacy class of G and π is an irreducible representation of ZG (g )
(i.e. the centraliser of g ).

Proof. Complete reducibility follows from Maschke’s theorem, but using the con-
struction above this can be proven more explicitly. In particular, note that Vg ,π as
in Lemma 5.2.6 is a submodule of D(G)v , for v ∈ V as above. Since V is finite-
dimensional, one sees by induction that V can be decomposed as a sum of irre-
ducible submodules, each labelled by some conjugacy class g and an irreducible
representation of ZG (g ).

Conversely, if π is an irreducible Z (g )-module, one can induce it to a repres-
entation of D(G), which contains a submodule of the form Vg ,π. This can actually
be done in a similar way as above. See [DPR91, Gou93] for an explicit construc-
tion.
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5.3. Duals and ribbon structure

5.3 Duals and ribbon structure

We now show that the category of representations of D(G) is ribbon, in the sense
of Definition 2.5.2. We have already defined a braiding on Rep f D(G), hence we
will have to show that there exist (left) duals and a compatible twist. In the case of
finite-dimensional vector spaces, one can define a duality by taking the dual of a
vector space, together with the evaluation and coevaluation map. Something sim-
ilar works for finite-dimensional H-modules for a Hopf algebra H , see e.g. [Kas95].
Let V be a H-module, and set ∨V = Hom(V ,k) (as a vector space). This can be
turned into a H-module. Suppose h ∈ H and f ∈ ∨V . Then h · f is determined by

〈h f , v〉 = 〈 f ,S(h)v〉, v ∈V ,

where the brackets denote the evaluation of linear functionals. Since S is an anti-
homomorphism of H , this defines an action of H on ∨V .

To complete the definition of the duality, we have to define the maps dV and
eV . To this end, choose a basis vi of V and write v i for the dual basis (determined
by 〈v i , v j 〉 = δi j ). Define

dV : k →V ⊗∨V , λ 7→λ
∑

i
vi ⊗ v i ,

eV : ∨V ⊗V → k, f ⊗ v 7→ f (v).

The maps eV and iV are the standard evaluation and coevalution maps. Let vi be
a basis of V , and write v i for the dual basis in ∨V . By standard arguments one can
show that the definitions are independent of the choice of basis. Identifying k ⊗V
with V , it is straightforward to verify equations (2.5.1).

It remains to be shown that these maps are indeed morphisms in the category
Rep f D(G), i.e., that they are D(G)-linear. As an example we show that this is true
for the coevaluation map dV . For x ∈D(G), we have

x ·∑
i

vi ⊗ v i =∑
i

∑
(x)

x(1)vi ⊗x(2)v i

=
∑

i

∑
(x)

x(1)vi ⊗ v i (S(x(2))−)

=∑
i

vi ⊗ v i (ε(x)−)

= ε(x) ·dV (1).

One can show that eV is a D(G)-module morphism as well. We have thus proved
the following result.

Lemma 5.3.1. The category Rep f D(G) has left duals.

85



5. The quantum double of a finite group

If H is a braided Hopf algebra, under some circumstances it is possible to
define a twist in Rep f H , see [Kas95, XIV.6] for details. Such Hopf algebras are
called ribbon algebras. Instead of giving the most general construction, we spe-
cialise to the case of H =D(G). To this end, define an element θ ∈D(G) by

θ = ∑
h∈G

δh ⊗h−1.

It is easily verified that θ is in the centre of D(G). One can also show that it is
invertible. Suppose that V is a D(G)-module. Write ΘV for the map V →V defined
by ΘV (v) = θ−1 · v for v ∈ V . Because θ is central and invertible, it is clear that ΘV

is an automorphism of V .
Moreover, the following identities hold:

∆(θ) = (R21R)−1(θ⊗θ), ε(θ) = 1, S(θ) = θ.

Here R21 is R with the tensor factors flipped. Note that since θ is central, we have
∆(θ) = (θ⊗θ)(R21R)−1. A braided Hopf algebra with such an element θ is called
a ribbon algebra, since such an element exists if and only if the representation
category is a ribbon category.

We claim that ΘV as defined above defines a twist. To this end, we first check
condition (2.3.1). Suppose V ,W are two D(G)-modules and let v ∈V , w ∈W . Then

ΘV ⊗W (v ⊗w) = θ−1 · (v ⊗w) =∆(θ−1)(v ⊗w)

= (θ−1 ⊗θ−1)(R21R)(v ⊗w)

= εW,V εV ,W (ΘV ⊗ΘW )(v ⊗w).

The condition for ΘV ∨ can either be explicitly computed with the formula for Θ∨
V ,

or by general arguments as in Kassel’s book. Hence the category has a compatible
twist, and we can conclude:

Proposition 5.3.2. Rep f D(G) is a ribbon category.

5.4 Rep f D(G) is modular

From now on we take k =C, since we want to make use of Theorem 2.6.3. A quick
overview of the representation theory of D(G) in this case can be found in [SV93].
The results hold for more general fields, by a similar result [BB01].

Definition 5.4.1. A Hopf ∗-algebra is a Hopf algebra together with an anti-linear
involution ∗, that is compatible with the Hopf structure, in that it commutes with
∆,ε and S.

Lemma 5.4.2. Define (δg ⊗h)∗ = δh−1g h ⊗h−1 and extend anti-linearly to D(G).
Then D(G) is a Hopf ∗-algebra.
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Proof. Straightforward.

Since we now have a ∗-algebra, it makes sense to look at ∗-representations of
D(G). That is, if V is a D(G)-module, we want to find an inner product 〈−,−〉V on
V such that

〈x · v, w〉V = 〈v, x∗ ·w〉V ,

for all x ∈ D(G) and v, w ∈ V . Finding such an inner product is non-trivial, and
may even be impossible for certain modules over some Hopf algebra H . For D(G),
however, one can always find one.

First, we will define an inner product on the irreducible modules Vg ,π. First,
define a linear map µ : D(G) → C by µ(δg ⊗ h) = δh,e . Write V = Vg ,π. If G =
{g1, . . . , gn}, a basis of V is given by

vi = (δgi g g−1
i
⊗ gi )v, i = 1, . . . ,n,

where v is any non-zero element of V . To define an inner product, consider the
sesquilinear form defined by 〈x·v, y ·v〉V :=µ(x∗y). This is indeed an inner product
on V , as the next Lemma demonstrates.

Lemma 5.4.3. The sesquilinear form 〈−,−〉V defines an inner product on V . In ad-
dition, the representation of D(G) on V is unitary with respect to this inner product.

Proof. Since µ is a linear map and ∗ is anti-linear, it easily follows that we have a
sesquilinear form. Moreover, 〈v1, v2〉V = 〈v2, v1〉V . Consider the basis vi as above.
Then

〈vi , v j 〉V =µ((δgi g g−1
i
⊗ gi )∗(δg j g g−1

j
⊗ g j )) = δg g−1

i ,g−1
i g j g g−1

j
δg−1

i g j ,e = δi , j ,

showing that the inner product is non-degenerate and that {vi } forms an orthonor-
mal basis. Finally, to show that representation is unitary, we compute

〈x · (a · v),b · v〉V = 〈(xa) · v,b · v〉V =µ((xa)∗b) =µ(a∗x∗b) = 〈a · v, x∗b · v〉V ,

for all x, a,b ∈D(G).

Before, we saw that every finite D(G)-module is a direct sum of modules of
the form Vg ,π. It is clear how to extend the inner product to direct sums of such
D(G)-modules. Just as in the case of bounded linear maps between vector spaces,
this extension allows us to define T ∗ : W →V if T : V →W is a morphism of D(G)-
modules: let T ∗ be the unique map such that

〈T (v), w〉W = 〈v,T ∗(w)〉V , v ∈V , w ∈W.

Define a functor, which we will also denote by ∗, on Rep f D(G) by V ∗ = V for
objects, and T ∗ as above for morphisms.
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Proposition 5.4.4. With this definition of ∗, Rep f (D(G)) is a ∗-category.

Proof. First we check that if T ∈ Hom(V ,W ), then T ∗ ∈ Hom(W,V ). To see this, let
x ∈D(G), v ∈V and w ∈W . Then

〈v, xT ∗(w)〉V = 〈x∗v,T ∗(w)〉V = 〈T (x∗v), w〉W =
〈x∗T (v), w〉W = 〈v,T ∗(aw)〉W ,

hence x ·T ∗(w) = T ∗(x ·w), as was to be shown. Similarly, one sees that we have
(T1 ◦T2)∗ = T ∗

2 ◦T ∗
1 , hence ∗ is a contravariant functor. Using the standard argu-

ments one sees that it is involutive and positive.
For two D(G)-modules V ,W , the tensor product module can be endowed with

an inner product (just as in the case of tensor products of Hilbert spaces). Because
D(G) is a ∗-algebra, it follows that the tensor product representation is again unit-
ary for this inner product. It is not hard to show that ∗ is monoidal, i.e. (T1⊗T2)∗ =
T ∗

1 ⊗T ∗
2 . Finally, one can check that R∗R = 1⊗ 1. From this, it follows that the

braiding is unitary, ε∗V ,W ◦ εV ,W = idV ⊗W . The compatibility of the twist with the
∗-operation follows from θ∗θ = 1, which is an easy calculation.

Thus we now have shown that Rep f D(G) is a semisimple braided ∗-category
with duals and a twist. Next we calculate the centre with respect to the braiding.

Lemma 5.4.5. The centre Z2(Rep f D(G)) is trivial.

Proof. Recall that the braiding is defined by εV ,W (v ⊗ w) = τV ,W (R(v ⊗ w) with
v ∈ V , w ∈ W , where R is defined in (5.1.1). Suppose that V ∈ Z2(Rep f D(G)) and
choose W arbitrary. Then, by definition, εW,V ◦εV ,W = idV ⊗W . For v ∈ V , w ∈ W it
is easy to calculate

εV ,W (v ⊗w) = ∑
g∈G

(1⊗ g )w ⊗ (δg ⊗e)v.

A few more calculations show that

εW,V ◦εV ,W (v ⊗w) =
∑

g ,h∈G
(δhg h−1 ⊗h)v ⊗ (δh ⊗ g )w.

On the other hand, since V is in the centre, εW,V ◦εV ,W (v ⊗w) = v ⊗w . This holds
for arbitrary D(G)-modules W , in particular for D(G) itself (considered as a D(G)-
module). This can only be true if (δhg h−1 ⊗ h)v = δg ,e v = ε(δhg h−1 ⊗ h)v for all
g ,h ∈ G . Since we can write δk ⊗h = δh(h−1kh)h−1 ⊗h, it follows that V is a (direct
sum of) trivial D(G)-module(s).

Combining the previous results with Theorem 2.6.3, we obtain the following
corollary.

Corollary 5.4.6. The category Rep f D(G) is a modular tensor category.
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Stringlike localised sectors in
d = 2+1
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Chapter 6

Stringlike localised sectors

In this part of the thesis we consider stringlike localised sectors in the algebraic ap-
proach to quantum field theory as discussed in Chapter 3. Here we are interested
in a special class of models, namely those in a space-time of dimension d = 2+1.
This class is interesting since this is precisely the dimension where stringlike loc-
alised sectors can have anyonic statistics, whereas compactly localised (DHR) sec-
tors always have permutation group statistics. This part of the thesis is based
on [Naa11a].

In this chapter we discuss general aspects of such models, using the termino-
logy of local quantum physics and tensor categories. In particular, we will describe
the category of stringlike localised sectors. Most of the results in this chapter are
well-known to the experts, although not all aspects can be found readily in the
literature. In the next chapter we will discuss the field net, introduced in §3.3 in
more detail. In particular, we will show that the stringlike sectors of the observ-
able algebra can be extended to the field net. The reverse problem will also be
addressed: stringlike sectors of the field net F that are invariant under the action
of the symmetry group can be restricted to A. In Chapter 8, it is investigated how
these results are related to the purely mathematical theory of crossed products
of braided tensor categories by symmetric subcategories. This gives a better un-
derstanding of the sectors of the new theory in terms of those of the old theory.
In particular, conditions are given under which all sectors of F are related to the
sectors of A.

6.1 Introduction

Recall that in the algebraic approach to quantum field theory, superselection sec-
tors manifest themselves as (equivalence classes of) disjoint representations of a
local net O 7→A(O ) of observables. A selection criterion, such as the one in equa-
tion (3.2.1), singles out the physically relevant representations. In the case of this
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DHR criterion, these representations have the structure of a braided category.
It is well known that for the compactly localised representations the braiding is

in fact symmetric in space-times of dimension three or higher [FRS89]. However,
if one considers the weaker condition of localisation in some “fattening string” ex-
tending to spacelike infinity, the braiding is non-symmetric for space-times of di-
mension 3 or less [FG90]. Buchholz and Fredenhagen have shown that for massive
particle states, this localisation condition holds [BF82a]. It is therefore interesting
to consider this weaker localisation property, especially considering the applica-
tions of anyons (i.e., charges with braided statistics).

The category of such stringlike localised representations in three dimensions
automatically can be defined in essentially the same way as the category ∆DHR,
introduced in §3.2. In particular, it satisfies most of the axioms of a modular
tensor category [BK01,Tur94]. In Chapter 4 we argued the relevance of MTCs. This
provides motivation to investigate if we can obtain modular tensor categories from
algebraic quantum field theory. The results in this part of the thesis are also partly
motivated by related constructions and results in e.g. [KLM01, Müg05, Reh91]. In
these reference the extension of compactly localised representations in d = 1+1 is
discussed.

We will first state our assumptions. Starting point is again a net O 7→ A(O ) of
observables. Here O is a double cone in Minkowski space M3. This net should
satisfy the Haag-Kastler axioms, except that we weaken the condition of Poincaré
covariance to (space-time) translation covariance. To avoid the trivial case we as-
sume in addition that for each double cone O the algebra A(O ) contains an ele-
ment that is not a multiple of the identity. The algebra of quasi-local observables
is denoted by A again.

By means of a specific faithful irreducible representation π0 :A→B(H0), typ-
ically the vacuum representation as in §3.2, A is represented as a net of bounded
operators on a Hilbert space H0. It is then natural to consider π0(A(O ))′′ for each
O , where the prime denotes the commutant. This leads to net of von Neumann
algebras, which we will again denote by A(O ). This net turns out to be more con-
venient to work with, and thus we will from now on assume that A(O ) is a von
Neumann algebra for each O . The algebra A again will be the norm closure of the
union of these local (von Neumann) algebras. Note that A is not a von Neumann
algebra in general.

Recall that the vacuum representation should satisfy the spectrum condition,
in that the spectrum of the generators of translations is contained in the closure
of the forward light cone. Buchholz and Fredenhagen provide a construction that,
given a massive single particle representation, produces a corresponding vacuum
representation π0 satisfying these criteria [BF82a]. In fact, one obtains a massive
vacuum representation in that case, where 0 is an isolated point in the joint spec-
trum.

To single out the relevant superselection sectors we impose a selection cri-
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terion on the irreducible representations of A. We are interested in the criterion
proposed by Buchholz and Fredenhagen, selecting so-called stringlike localised
sectors [BF82a]. The category of these representations, denoted by ∆A

BF, has a very
rich structure. An essential ingredient in the analysis of this structure is the axiom
of Haag duality, which strengthens locality. If S is some unbounded region of
space-time, the C∗-algebra A(S ) is defined by

A(S ) = ∪
O⊂S

A(O )
∥·∥

,

where the closure in norm is taken and the union is taken over all double cones
contained in S . Suppose S is any connected causally complete region, that is,
S = (S ′)′, where the prime denotes taking the causal complement. Haag duality
then is the condition that

π0(A(S ′))′ =π0(A(S ))′′. (6.1.1)

Here the prime in S ′ denotes taking the causal complement, whereas the other
primes stand for the commutant. We will only need this duality relation in the
case where S is either a double cone or a spacelike cone. Haag duality has been
proven for free fields [Ara64], but to the knowledge of the author no result is known
(in d = 2+1) for interacting fields.

Every representation in ∆A
BF can be described as an endomorphism of some

algebra ASa containing A as a subalgebra, analogously to the analysis of DHR
representations. The category ∆A

BF then can be equipped with a tensor product
defined by composition of these endomorphisms. As mentioned before, a par-
ticularly interesting feature is that it is in fact a braided tensor category. In three
dimensions, the DHR sectors, which are localised in bounded regions, form a de-
generate tensor subcategory of ∆A

BF with respect to the braiding: the braiding with
objects from this subcategory reduces to a symmetry. By a result of Rehren (repro-
duced as Theorem. 2.6.3 in this thesis), this implies that the category ∆A

BF cannot
be modular [Reh90, Reh91]. The basic idea now is to pass to the field net F, as
constructed by Doplicher and Roberts [DR90].

The field net is a net of algebras that generate the different superselection sec-
tors by acting on the vacuum, and was discussed in §3.3, where we also discussed
its construction. It is important to note, however, that these constructions only
work if all sectors have permutation statistics. In the braided case, instead of a
group one expects an object with a (quasi-)Hopf algebra-like structure, see for ex-
ample [Reh92, SV93], or even a more general notion of symmetry [Kow09].

In the special case where A has no fermionic DHR sectors, we can interpret
O 7→ F(O ) as a new AQFT. Conti, Doplicher and Roberts have shown that the field
net does not have any non-trivial representations satisfying the DHR criterion any
more [CDR01]. The theory F is an extension of A, in the sense that any string-
like localised representation of A can be extended to a representation of F with
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6. Stringlike localised sectors

the same localisation properties. This extension factors through the categorical
crossed product ∆A

BF ⋊∆A
DHR of [Müg00]. Under certain conditions, this crossed

product is in fact equivalent, in the categorical sense, to the category ∆F
BF. This

makes it possible to understand the latter completely in terms of the original the-
ory O 7→A(O ). To summarise, the obstruction for modularity is removed by passing
from a theory A to a new theory F that extends A in a systematic way.

Although some constructions in this thesis are motivated by results in d = 1+1,
there are also some notable differences with the case d = 2+1 considered in the
present work. In d = 2+1, passing from a net F to the fixpoint theory A=FG with
respect to the action of some group G introduces DHR sectors, which are automat-
ically degenerate in d = 2+1. In d = 1+1, DHR sectors also appear when passing
to the fixpoint net. In this case, however, they are never degenerate, at least not if
the symmetry group G is finite and the theory is “completely rational” [KLM01]. In
that situation there appear automatically “twisted” sectors which prevent degen-
eracy of the new DHR sectors in the fixpoint theory [Müg05].

6.2 Stringlike localised sectors

As a first step we introduce the class of representations we are interested in. Usu-
ally one selects those representations π that cannot be distinguished from the va-
cuum representation π0 in the spacelike complement of some causally complete
region. Recall that the selection criterion used by Doplicher, Haag and Roberts
(DHR) requires that the relevant representations π satisfy, for each double cone O ,

π ↾A(O ′) ∼=π0 ↾A(O ′). (6.2.1)

That is, π is unitarily equivalent to the vacuum representation when restricted to
observables in the causal complement of an arbitrary double cone. As was dis-
cussed in §3.2, a DHR representation is of the form π ∼= π0 ◦ρ, where ρ is an en-
domorphism of A that acts trivially on A(O ′) for some O (that is, it is localised).
Moreover, it is transportable.

However, the criterion (6.2.1) is too narrow for many physical applications. For
example, consider the case of an electrically charged particle. Then, by Gauss’
theorem, it is possible to measure the electric flux through a surface at arbitrary
large distance. This implies that the presence of an electric charge can be detected
at arbitrarily large distances, i.e., there is no double cone O such that the state
cannot be distinguished from the vacuum in the spacelike complement of this O .
See [Buc82] for a discussion of states in QED. This is one reason why Buchholz and
Fredenhagen consider a more general selection criterion [BF82a], namely

π ↾A(C ′) ∼=π0 ↾A(C ′), (6.2.2)

for each spacelike cone C in the following sense:
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6.2. Stringlike localised sectors

Definition 6.2.1. A spacelike cone is a set C = x +∪
λ>0λ ·O , for some double cone

O not containing the origin, and x ∈Md . Moreover, we demand that C is causally
complete1, i.e., C =C ′′.

Such a spacelike cone can be visualised as a semi-infinite string that becomes
thicker and thicker when moving towards spacelike infinity. Since again this cri-
terion means that such representations cannot be distinguished from the vacuum
in the spacelike complement of a spacelike cone, such representations are called
localisable in cones or stringlike localisable. We will call the equivalence class of
such a representation a BF sector, and call a representative a BF representation.

Buchholz and Fredenhagen show that in a relativistic quantum field theory
massive single-particle representations always have such localisation properties.
Roughly speaking, a massive representation is a representation that is covariant
under translation (covariance under the full Poincaré group is not required). In
addition, the joint spectrum of the generators of the translations is bounded away
from zero and contains an isolated mass shell, separated by a gap from the rest of
the spectrum.

There are several methods to study the superselection structure of charges loc-
alised in spacelike cones (also called “topological charges”). Recall that we iden-
tified π0(A) with A. Contrary to the case of DHR sectors, BF sectors cannot be
described in terms of endomorphisms of the quasi-local algebra A. Instead, the
representations map cone algebras A(C ) to weak closures of the algebra, that is,
η(A(C )) ⊂ A(C )′′ if η is localised in a spacelike cone Ĉ ⊂ C . For double cones O

there is the inclusion A(O )′′ ⊂ A (recall that the local algebras are assumed to be
von Neumann algebras), but for spacelike cones in general the weak closureA(C )′′

is not contained in A. This implies that BF representations do not map A into A,
as is the case in the DHR situation, but into some larger algebra. This situation
is rather inconvenient, but fortunately this problem can be solved by introducing
an auxiliary algebra [BF82a]. The BF representations can be extended to proper
endomorphisms of this auxiliary algebra. At the end of this section we comment
on some other approaches.

To motivate the introduction of the auxiliary algebra, consider a BF represent-
ation π and spacelike cone C . By the selection criterion (6.2.2) there is a unitary V
such that π0(A) =V π(A)V ∗ for all A ∈A(C ′). Consider the equivalent representa-
tion

η(A) =V π(A)V ∗, A ∈A.

It follows that η(A) = A for all A ∈ A(C ′), where we identified π0(A) with A. By
localisation and locality it follows that η(AB) = η(A)B = Bη(A) for all A ∈ A(Ĉ )

1Buchholz and Fredenhagen do not demand that C is causally complete [BF82a]. However, in
view of our definition of Haag duality, it is more natural to consider only causally complete spacelike
cones. See the Appendix to [DR90] for an alternative, but equivalent, definition.
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6. Stringlike localised sectors

and B ∈ A(Ĉ ′) where Ĉ ⊃ C is a spacelike cone. Therefore, invoking Haag dual-
ity (6.1.1) for spacelike cones we have η(A(Ĉ )) ⊂A(Ĉ )′′.

Definition 6.2.2. A representation η of A is a BF representation localised in C if it
satisfies the selection criterion (6.2.2) and η(A) = A for all A ∈A(C ′). This is denoted
by η ∈∆A

BF(C ).

From now on, fix a spacelike cone C . We will consider the category ∆A
BF(C )

of BF representations localised in C and intertwiners as morphisms. Note that
the objects of the category are still transportable, i.e., if η ∈ ∆A

BF(C ) and if Ĉ is an
arbitrary spacelike cone, there is a unitary equivalent representation (that might
not be an object of ∆A

BF(C )) that is localised in Ĉ . This restriction to a fixed space-
like cone is for technical reasons only. As will be demonstrated below, for two
spacelike cones C1 and C2, the corresponding categories ∆A

BF(Ci ) are equivalent
as braided tensor categories. In the remainder of this section, the structure of this
category is described. The reader unfamiliar with these constructions is advised
to keep in mind the category of finite-dimensional unitary representations of a
compact group, which shares many of its features with the category of BF repres-
entations. There is, however, one notable difference: the representation category
of a compact group is always symmetric, whereas the category of BF representa-
tions in d = 2+1 is interesting precisely because it is braided, but in general not
symmetric.

We now come to the construction of the auxiliary algebra. One starts by choos-
ing an auxiliary spacelike cone Sa . This can be interpreted as a “forbidden” dir-
ection. From now on this auxiliary cone will be fixed. It should be noted that the
results will not depend on the specific choice of Sa . After fixing Sa we can con-
sider the family of algebras A((Sa + x)′)′′, for x ∈M3. This set is partially ordered
by x ≤ y ⇔Sa +x ⊃Sa + y and is directed, i.e., each pair of elements in this poset
has an upper bound. Hence it is possible to consider the C∗-inductive limit (here
the norm closure of the union of algebras)

ASa = ∪
x∈M3

A((Sa +x)′)′′
∥·∥ ⊂B(H0).

Clearly for every x ∈M3, we have ASa =ASa+x . The point is then that BF repres-
entations can be extended to endomorphisms of the auxiliary algebra.

After the introduction of this auxiliary algebra, the structure of the superse-
lection sectors can be studied with essentially the same methods as in the case of
compactly localised (DHR) sectors, see e.g. [Haa96, Hal06]. For the convenience
of the reader and to establish our notation, the main features and constructions
are outlined below. The results are phrased in terms of tensor C∗-categories, dis-
cussed in Chapter 2.
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6.2. Stringlike localised sectors

Lemma 6.2.3. Let η be a BF representation. Then η has a unique extension ηSa to
ASa that agrees with η on A and is weakly continuous on A((Sa +x)′)′′ for each x ∈
M3. If η is localised in C ⊂ (Sa +x)′ for some x ∈M3, then ηSa is an endomorphism
of ASa . In the latter case we have ηSa

1 ◦ηSa
2 = η

Sa
2 ◦ηSa

1 if the localisation regions of
η1 and η2 are spacelike separated.

Proof. We give a sketch of the proof; for the full proof see Lemma 4.1 and Propos-
ition 4.3 of [BF82a]. By the superselection criterion it is possible to find a unitary
V in B(H0) such that η(A) = V AV ∗ for A ∈A((Sa + x)′). This representation can
be extended uniquely to the weak closure A((Sa +x)′)′′. Obviously, this extension
is weakly continuous. This leads to an extension ηSa of η. By Haag duality the
localisation of η implies, in particular, that the unitaries V can be chosen in the
auxiliary algebra, so that ηSa is an endomorphism of this auxiliary algebra.

The final statement of the lemma can be checked for A ∈ A. We then invoke
weak continuity to arrive at the desired conclusion.

With this result, the analysis of the structure of the BF representations pro-
ceeds analogously to the DHR case: one just extends the representations to ASa

as appropriate. In particular, it is possible to compose endomorphisms, which can
be interpreted as composition of charges.

Definition 6.2.4. Let ηi ∈∆A
BF(C ) (i = 1,2), with C spacelike to Sa + x for some x.

Define a tensor product on ∆A
BF(C )) by

η1 ⊗η2 = η
Sa
1 ◦η2,

and if Ti ∈ HomA(ηi ,σi ) for i = 1,2, by

T1 ⊗T2 = T1η
Sa
1 (T2) =σ

Sa
1 (T2)T1.

It can be shown that η1 ⊗η2 ∈ ∆A
BF(C ) and that η1 ⊗η2 is independent of the

specific choice of auxiliary cone. Moreover if ηi
∼= η̂i , then η1 ⊗η2

∼= η̂1 ⊗ η̂2. See
Section 4 of [BF82a] for proofs.

To proceed, an additional property is necessary, namely Borchers’ Property B
for spacelike cones.

Property 6.2.5. Let E ∈ A(C ′)′ be a non-zero projection. Then, for any spacelike
cone Ĉ ⊃ C , where the bar denotes closure in M3, there is an isometry W ∈A(Ĉ ′)′

such that W W ∗ = E.

In fact, this property follows from the spectrum condition and locality [Bor67],
or [D’A90] for a more recent exposition. Note that the assumption of weak additiv-
ity is not necessary, since this is automatically satisfied for algebras of observables
localised in spacelike cones. Moreover, if the A(C )′′ are Type III factors Property B
is satisfied automatically and one can even choose W ∈A(C )′′.
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6. Stringlike localised sectors

Theorem 6.2.6. The category ∆A
BF(C ) has subobjects (notation: η1 ≺ η2), direct

sums η1 ⊕η2, and can be endowed with a tensor product η1 ⊗η2.

Proof. The first two properties can be derived using Property B. First, consider
η ∈ ∆A

BF(C ) and a projection P ∈ EndA(η). Consider a spacelike cone Ĉ ⊃ C . By

Property B there exists an isometry W ∈A(Ĉ )′′ such that P =W W ∗. Define σ(−) =
W ∗η(−)W . Note that W ∈ HomA(σ,η). By duality and the localisation of η, it fol-
lows that σ is localised in Ĉ . Moreover, since η is localisable in cones it is easy to
exhibit unitary charge transporters of σ, hence σ ∈ ∆A

BF(C ). By transportability it
is possible to find a unitarily equivalent σ̂ localised in C . It follows that σ̂≺ η.

For the existence of direct sums, consider η1,η2 ∈∆A
BF. Using again Property B

it is possible to find isometries V1,V2 ∈A(Ĉ )′′ such that V1V ∗
1 +V2V ∗

2 = I (consider
projections P ̸= 0, I and I −P ). Define η(−) = V1η1(−)V ∗

1 +V2η2(−)V ∗
2 . Then η is

localised in Ĉ and localisable in cones. Using the same argument as above, an
equivalent η̂ localised in C can be found. This is the direct sum η= η1⊕η2, unique
up to isomorphism. To see this, suppose η′(−) =W1η1(−)W ∗

1 +W2η2(−)W ∗
2 . Then

U :=V1W ∗
1 +V2W ∗

2 is a unitary intertwiner from η to η′. Similarly, it is not hard to
see that if η∼= η′, then η′ is a direct sum of η1 and η2 as well.

The tensor product was already defined in Definition 6.2.4. With these defini-
tions it is straightforward to verify that ⊗ defines a bifunctor on the category, and
turns ∆A

BF(C ) into a strict monoidal category, with monoidal unit ι, given by the
identity endomorphism of A.

Now that a tensor product has been defined on the category ∆A
BF(C ), the next

step is to look for a braiding. The braiding is intimately related to the statist-
ics of a sector. It gives rise to representations of the braid group, or of the sym-
metric group if the braiding is symmetric, describing the interchange of identical
particles. These notions were first studied in the context of algebraic quantum
field theory by Doplicher, Haag and Roberts [DHR71,DHR74]. Braid statistics have
been studied, for example, in [FRS89]. The constructions below are essentially the
same as in these original papers, which were reviewed in §3.2, and have merely
been adapted to the case at hand.

A convenient technical tool when dealing with BF representations is that of an
interpolating sequence of spacelike cones. This can be used, e.g., to show that a
certain construction is independent of the specific choice of spacelike cones, or to
choose charge transporters in the auxiliary algebra.

Definition 6.2.7. Let C1 and C2 be spacelike cones in S ′
a . An interpolating se-

quence between C1 and C2, is a set of spacelike cones Ĉ1, . . .Ĉn , each contained in
(Sa + xi )′ for some xi ∈ M3, such that Ĉ1 = C1, Ĉn = C2, and for each i we have
either Ci ⊂Ci+1 or Ci+1 ⊂Ci .

98



6.2. Stringlike localised sectors

With this definition it is possible to prove the following result:

Lemma 6.2.8. Let η ∈∆A
BF(C1). For any spacelike cone C2 ⊂S ′

a there is an equival-
ent representation η̂ ∼= η localised in C2, such that a unitary intertwiner V in ASa

can be found.

Proof. Choose an interpolating sequence Ĉi between C1 and C2. Set η̂1 = η. We
then define a sequence of unitarily equivalent representations η̂i+1

∼= η̂i , such that
Vi η̂i+1 = η̂i Vi . Since either Ci+1 ⊂ Ci or Ci ⊂ Ci+1, it follows by Haag duality that
either Vi ∈A(Ci )′′ or Vi ∈A(Ci+1)′′, hence Vi ∈ASa . But then Vn−1 · · ·V1 is a unitary
intertwiner between η̂ ≡ η̂n , and because ASa is an algebra, it follows that V ≡
Vn−1 · · ·V1 ∈ASa .

Recall that a braiding on the category relates the objects η1⊗η2 and η2⊗η1 by
means of a unitary intertwiner εη1,η2 . A particular example is the statistics operator
εη,η that describes the statistics of a sector. To define the braiding εη1,η2 between
η1 ⊗η2 and η2 ⊗η1, with ηi ∈∆A

BF(C ), first choose two spacelike cones Ĉ1 and Ĉ2.
Both spacelike cones should lie in the causal complement of Sa + x for some x
and should lie spacelike with respect to each other, i.e. Ĉ1 ⊂ Ĉ ′

2. By transport-
ability there are BF-representations η̂i

∼= ηi localised in Ĉi . These morphisms are
called spectator morphisms. Moreover, by Lemma 6.2.8 the corresponding unitary
intertwiners V1 ∈ HomA(η1, η̂1) and V2 can be chosen to be in ASa . After these
choices have been made, one can define the braiding by

εη1,η2 = (V2 ⊗V1)∗ ◦ (V1 ⊗V2).

It follows that εη1,η2 is a unitary in HomA(η1 ⊗η2,η2 ⊗η1).
A standard argument using interpolating sequences of spacelike cones shows

that the definition of εη1,η2 is independent of the specific choice of intertwiners
and localisation regions, up to the relative position of C1 and C2, in the following
sense.

Definition 6.2.9. Suppose we have a spacelike cone C in the causal complement of
Sa . If we rotate the spatial coordinates counter-clockwise, at some point it will fail
to be spacelike to Sa . Now suppose we have two spacelike separated cones C1 and
C2. We define an orientation C1 < C2 if and only if we can move C1 by translation
and rotating counter-clockwise to Sa while remaining in the spacelike complement
of C2. Note that for any two spacelike separated cones, there is always precisely one
cone for which this is possible.

We will always choose Ĉ2 < Ĉ1 to define the braiding εη1,η2 . One can then show
that εη1,η2 is natural, in the categorical sense, in both the first and second variable.
Moreover, εη1,η2 satisfies the braid relations. The verification becomes straightfor-
ward if one chooses the spacelike cones Ĉi in the definition in a convenient way,
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so as to be able to make use of the localisation properties of the endomorphisms.
See [Hal06] for the way this works in the DHR case.

Theorem 6.2.10. The category ∆A
BF(C ) is a strict braided tensor category, where the

braiding is given by εη1,η2 .

The appearance of braid (but not symmetric) statistics is due to the fact that
in 2+1 dimensions the manifold of spacelike directions is not simply connected,
unlike the situation in higher dimensions. See Section 2 of [Mun09b] for a clarific-
ation of this point.

The notion of a conjugate of a BF representation can be defined as in §2.5.
Recall that this induces a dimension function d(ρ) on the objects of our category,
as well as a phase ωρ . The dimension d(η) takes values in [1,∞]. We will restrict to
those objects with conjugates (i.e., d(η) <∞) again, that is, we will consider only
categories where all objects have finite dimension. This means we leave out any
sectors with infinite statistics the observable net may admit. Objects with finite
dimension are precisely those for which there is a conjugate (or “anti-particle”).
To avoid cumbersome notation, the category of all BF representations with finite
statistical dimension will also be denoted by ∆A

BF(C ).
Under weak additional assumptions, Guido and Longo showed that the DHR

sectors with finite statistics are Poincaré covariant with positive energy [GL92],
in particular they are covariant under translations as well. Hence under their as-
sumptions, the set of finite DHR sectors coincides with the set of Poincaré covari-
ant finite sectors with positive energy. Moreover, Buchholz and Fredenhagen show
that massive irreducible single particle representations automatically have finite
statistics [BF82a]. They also show that all representations of interest for particle
physics are indeed described by (direct sums of) representations with finite stat-
istics. One may therefore argue that restricting to sectors of finite dimension is
not too restrictive from the point of view of physics. Finally, we would like to men-
tion that Mund recently proved a version of the spin-statistics theorem for massive
particles obeying braid group statistics [Mun09b].

The restriction to sectors with finite statistics implies that the category ∆A
BF(C )

is semi-simple, i.e. that every representation can be decomposed into a direct sum
of irreducibles. Indeed, let η ∈∆A

BF(C ). If η is not irreducible there is a non-trivial
projection E ∈ EndA(η). By the existence of subobjects, one has η = η1 ⊕ η2 for
some η1,η2 ∈∆A

BF(C ). Semi-simplicity now follows, since d(η) = d(η1)+d(η2) and
the dimension function d takes values in [1,∞), since we restricted to objects of
finite dimension.

The results so far can be summarised by the following theorem.

Theorem 6.2.11. The category ∆A
BF(C ) is a braided tensor C∗-category. That is

it has duals (or conjugates), direct sums, subobjects, a braiding and a positive ∗-
operation. The Hom-sets are Banach spaces, such that ∥T ◦S∥ ≤ ∥S∥∥T ∥ and also
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∥S∗ ◦ S∥ = ∥S∥2 for all morphisms S,T (whenever the composition is defined). In
addition, the tensor unit ι is irreducible.

It then follows automatically that the Hom-sets are finite-dimensional vector
spaces [LR97]. In the case of interest here, the ∗-operation and norm are inherited
from the observable algebra.

One question that remains to be answered is to which extent the category
∆A

BF(C ) depends on the choice of C . It turns out that in fact for any two choices
C1,C2 the resulting categories are equivalent as tensor categories, c.f. [DR90, The-
orem 4.11].

Proposition 6.2.12. Let C1 and C2 be two spacelike cones. Then the categories
∆A

BF(C1) and ∆A
BF(C2) are equivalent as braided tensor categories.

Proof. We give a sketch of the proof; the details are left to the reader. One first
proves the result in the case C1 ⊂C2. This gives rise to a full and faithful inclusion
of categories ∆A

BF(C1) ⊂ ∆A
BF(C2). Clearly this inclusion is braided. In addition,

the inclusion is essentially surjective, since for each representation localised in
C2 one can find a unitary equivalent representation localised in C1. Hence, the
inclusion is in fact an equivalence of categories, hence an equivalence of braided
tensor categories [SR72].

To prove the full result, one uses an argument with interpolating sequences of
spacelike cones.

Thus the BF representations form a braided tensor category. However, if there
are DHR localised sectors, the braiding has a “trivial” part. Indeed, the DHR sec-
tors form a symmetric subcategory of∆A

BF(C ). But more importantly, the DHR sec-
tors are degenerate objects with respect to the braiding. That is, they are contained
in the centre of ∆A

BF(C ). This is an obstruction to modularity of the category by the
result of Rehren, Theorem 2.6.3. To make this situation more precise, we study the
properties of the DHR sectors within ∆A

BF(C ).

Definition 6.2.13. Let S be either a double cone or a spacelike cone. We write
∆A

DHR(S ) for the category of DHR localised sectors whose localisation region lies in
S .

Note that ρ ∈ ∆DHR(C ) in particular is also an element of ∆BF(C ), so the con-
structions in the first part of this section go through without change. For example,
the tensor product of ρ1 and ρ2 in ∆DHR(C ) is again in ∆DHR(C ). Since objects
from ∆DHR(C ) can be localised in bounded regions of spacetime, one can say even
more about them:

101



6. Stringlike localised sectors

Figure 6.1: This figure shows why the braiding is degenerate for compactly localised endomorph-
isms. The compactly localised (dashed lines) endomorphism can move from one side of the space-
like cone to the other, keeping it in the causal complement of the auxiliary cone (shaded region) and
spacelike cone C (solid lines) at all times.

Lemma 6.2.14. Let η ∈ ∆A
BF(C ) and ρ ∈ ∆A

DHR(O ) for some double cone O ⊂ S ′
a .

Then the DHR sectors are degenerate with respect to the braiding, i.e.,

ερ,η ◦εη,ρ = Iη⊗ρ .

Proof. The basic idea is depicted in Figure 6.1. Because ρ is localised in a bounded
region, there is more freedom in the choice of localisation cones of the spectator
morphisms. In particular, it is possible to “flip” the cones, that is, if ρ̂ is localised
in some spacelike cone Ĉ , it is possible to find a spacelike cone C̃ pointing in the
opposite direction, such that ρ̂ is localised in C̃ . Using this, it is not difficult to see
that the braiding ερ,η does not depend on the orientation of the spacelike cones of
the spectator morphisms. It follows that ερ,η = ε−1

η,ρ , which proves the result.

To conclude this section we briefly comment on other methods to describe the
superselection structure of charges localised in spacelike cones. Doplicher and
Roberts take a different approach in [DR90], which does not need the auxiliary
algebra. This method, however, works only in spacetimes of dimension at least 4
and would need adaptation to the d = 2+1 case we are interested in.

In the approach of both Buchholz & Fredenhagen and of Doplicher & Roberts,
only representations localised in a fixed spacelike cone C can be considered. A
related approach by Fröhlich and Gabbiani [FG90], which also uses the auxiliary
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6.2. Stringlike localised sectors

algebra, does not require one to fix a spacelike cone. Instead, they consider two
coordinate patches, and show that it is possible to pass from one to the other in a
“smooth” way.

Finally, it is possible to use the so-called universal algebra, introduced by Fre-
denhagen [Fre90], see also [Mun09a]. This has the advantage that we do not have
to choose an auxiliary cone. On the other hand, there are drawbacks, for example
the universal algebra is not simple and the vacuum representation is not faith-
ful [FRS92]. In the end, each method gives the same result, so the choice of method
only matters for the technical details.
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Chapter 7

Extension and restriction

In this chapter we consider the field net of the observable algebras with respect
to the DHR sectors. In other words, the field operators by construction only gen-
erate the DHR sectors. This is possible since the DHR sectors have permutation
statistics in 2+1 dimensions. The field net was discussed in §3.3. In particular, the
abstract construction of the field net outlined there will be convenient for us.

The point of studying the field net is that it can be regarded, in the case of ab-
sence of fermionic DHR sectors, as a new algebraic quantum field theory. That
is, the field net will again satisfy the Haag-Kastler axioms. The proof of this will
be discussed below. After this we will discuss how BF representations of the ob-
servables can be extended to ditto representations of the field net, and vice versa.
Before going into the details, we will need some additional results on the field net.

7.1 The field net

Recall that the definition of a field net involves a compact symmetry group G . In
this section we discuss some preparatory results on harmonic analysis of the field
net.

Definition 7.1.1. Let ξ be a finite-dimensional continuous unitary representation
of a group G as in Definition 3.3.1. A set of operators X1, . . . Xd , where d = dimξ, is
said to be a multiplet transforming according to ξ if

αg (Xi ) =
d∑

j=1
uξ

j i (g )X j ,

where uξ
j i (g ) are the matrix coefficients of ξ. An operator X is said to transform

irreducibly according to ξ, or to be an irreducible tensor, if it is part of a multiplet
transforming according to an irreducible representation ξ.
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7. Extension and restriction

Irreducible tensors can be obtained by averaging over the symmetry group G ,
and their span is weakly dense in the field algebra, see e.g. [DR72, Section 2].

Recall that for each irreducible DHR endomorphism ρ there is a Hilbert space
Hρ in the field net transforming according to some irrep ξ of G . That is, Hρ is a
closed linear subspace of F such that ψ∗

1ψ2 ∈ CI for all ψ1,ψ2 ∈ Hρ . The space
Hρ is precisely the set of operators ψ in F such that ψA = ρ(A)ψ for all A ∈ A,
and α ↾Hρ

= ξ. Moreover, there is a basis of Hρ that is a multiplet transforming
according to ξ. Irreducible tensors may then be decomposed into a G-invariant
part and an operator in Hρ , in the following sense:

Lemma 7.1.2. Let B⊂ B(H ) be a ∗-algebra, such that F(O ) ⊂B for some double
cone O . Suppose that X transforms irreducibly under the action of G, that is, is
contained in a finite dimensional Hilbert space transforming according to an irrep
of G. Then there is a B ∈B∩G ′ and a ψ ∈ Hρ ⊂F(O ) such that

X = Bψ,

where ψ transforms according to the same irreducible representation as X .

This decomposition is not unique, but depends on the specific choice of Hρ .

Proof. Complete X to a multiplet X1, . . . Xd . Without loss of generality, assume
X = X1. Let ξ denote the representation according to which X transforms. Since
the field net has full spectrum, there is a Hilbert space Hρ in F(O ), such that Hρ

transforms according to ξ. Note that the equivalence class of ρ corresponds to
the class of the representation ξ. If uξ

j i are the matrix coefficients describing the
transformation of the multiplet, it is possible to choose an orthonormal basis ψi

of Hρ such that αg (ψi ) =∑d
j=1 uξ

j i (g )ψ j . Now define

B =
d∑

i=1
Xiψ

∗
i .

Since ξ is a unitary representation, it follows that αg (B) = B , i.e. B ∈ B∩G ′.
Moreover, taking ψ=ψ1, it follows that Bψ= X1 = X .

Now that we have the field net F at hand, it is possible to construct an auxiliary
algebra with respect to F, analogous to the one defined in terms of the algebra of
observables A. Hence we define

FSa = ∪
x∈M3

(F((Sa + x)′))′′
∥·∥

,

where the closure in norm is taken.
Since the observable net embeds into the field net, one expects the auxiliary

algebra of the observable net to embed into the auxiliary algebra of the field net.
The next lemma demonstrates that this is indeed the case.
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7.1. The field net

Lemma 7.1.3. Let (π,G ,F) be a complete normal field net for (A,ω0). Then the
representation (π,H ) of A can be uniquely extended to a faithful representation
πSa :ASa →B(H ) that is weakly continuous on A((Sa +x)′)′′.

Proof. Write Ĝ for the set of equivalence classes of irreducible representations of
the group G . The representation (π,H ), viewed as a representation ofA, is a direct
sum⊕ξ∈Ĝ dξπξ, where eachπξ is a DHR representation [DR90]. We will extend each

πξ to a representation π
Sa

ξ
of ASa , and set πSa = ⊕ξ∈Ĝ dξπ

Sa

ξ
. So consider such a

representation πξ. By Lemma 6.2.3, πξ has a unique weakly continuous extension.

In fact, since πξ is localised in a bounded region, it follows in particular that πSa

ξ
is

an endomorphism of ASa , viewed as a subalgebra of B(H ).
To see that πSa is faithful, construct a left inverse φ of πSa , as in [BF82a].

This result makes it possible to identify ASa with the subalgebra πSa (ASa ) of
B(H ). When there is no risk of confusion, we will sometimes identify A ∈ ASa

with its image πSa (A).
It is fruitful to investigate the relationship between the auxiliary algebra and

the action of the symmetry group. Just as the observable net consists of precisely
those operators that are fixed by the G-action on the field net, the same is true for
the auxiliary algebras.

Lemma 7.1.4. Let (π,H ,F,G) be a normal field net. Then:
i. For each spacelike cone, F(C )′∩G ′ =π(A(C ′))′′.

ii. The fixpoint algebra is given by
(
FSa

)G =πSa (ASa ).

Proof. (i) First of all, since π(A)′′ =G ′ and A(C ′) is a subalgebra of A, it is obvious
that π(A(C ′))′′ ⊆ G ′. From relative locality, π(A(C ′)) ⊆ F(C )′. By taking double
commutants, π(A(C ′))′′ ⊆F(C )′.

Note that for each double cone O , H0 is cyclic for F(O ), hence also for F(C ).
This implies that an element T ∈ F(C )′∩G ′ is uniquely determined by its restric-
tion to H0. Furthermore, H0 is an invariant subspace for T , since T ∈G ′. We have
F(C )′∩G ′ ⊆π(A(C ))′, so if E0 denotes the projection onto H0 ⊂H , it follows that

T |H0 ∈π(A(C ))′E0 =π0(A(C ))′ =π0(A(C ′))′′.

The last step follows by Haag duality for spacelike cones in the vacuum represent-
ation.

(ii) Note that αg extends to B(H ), where H is the Hilbert space on which
F acts irreducibly. Using the Haar measure of G , one can define a conditional
expectation E :F→A by

E (A) =
∫

G
αg (A)d g .
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7. Extension and restriction

It then follows that

E
(
FSa

)
= E

( ∪
x∈M3

F(Sa + x)′
)∥·∥

= ∪
x∈M3

E (F(Sa + x)′)
∥·∥

.

where we used that E is weak- and norm-continuous [DHR69]. Now by part (i)
it follows that E (F(Sa + x)′) = πSa (A(Sa + x)′)′′, see also [DHR69, Lemma 3.2].
Therefore,

E (FSa ) =∪
x
πSa (A(Sa +x)′)′′

∥·∥ =πSa (ASa ),

which proves the claim.

With the aid of these lemmas it is possible to prove the main result of this sec-
tion: without fermionic sectors, the field net can be interpreted as an AQFT in its
own right, but one without non-trivial DHR sectors.

Theorem 7.1.5. Assume that O 7→A(O ) satisfies the following conditions:
i. there are at most countably many DHR sectors;

ii. there are no fermionic DHR sectors;
iii. each DHR sector with finite statistics is covariant under translations satisfy-

ing the spectrum condition.
Then the field net O 7→F(O ) satisfies the axioms of an algebraic QFT, i.e. it is a local,
translation covariant net satisfying Haag duality and the spectrum condition, hence
it also has Property B for spacelike cones. The complete normal field net admits only
the trivial DHR representation.

Proof. Isotony follows, since the field net is, in particular, a net. Since we assumed
the absence of fermionic sectors, twisted duality for the field net reduces to Haag
duality for double cones. Thus only the questions of translation covariance and
duality for spacelike cones remain. The covariance properties follow from the res-
ults in Section 6 of [DR90], and the assumption that we only have translation co-
variant sectors. In fact, one can show in this case that the representation π of F
is translation covariant. The generators of translations again satisfy the spectrum
condition and the vacuum vector Ω is invariant under the action of the translation
group [DR90, Section 6]. By the same reasoning as before, Property B follows.

To prove duality for spacelike cones, consider such a cone C . First, note that
by locality F(C ′)′′ ⊂F(C )′. Let F ∈F(C )′ transform irreducibly under the action of
G . But then by Lemma 7.1.2, F = Bψ, where B ∈ F(C )′∩G ′ and ψ ∈ Hρ . Applying
Lemma 7.1.4 gives B ∈ π(A(C ′))′′ and, since Hρ ⊂ F(C ′), one obtains F ∈ F(C ′)′′.
The irreducible tensors form a dense subset, which allows us to conclude F(C ′)′′ =
F(C )′. Taking commutants then proves Haag duality.

For the last assertion, note that the observable net is embedded in the field net.
More precisely, we have an inclusion of subsystems A ⊂ F. By [CDR01, Theorem
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4.7], every DHR representation of the field netFwith finite statistics is a direct sum
of representations with finite statistics. Moreover, these sectors are labelled by the
equivalence classes of irreducible representations of a compact group L, such that
F(A)L =B (see also [CDR01, Theorem 4.1]). But in this case, B=F(A) =F, hence
L is the trivial group and the only irreducible DHR sector is the vacuum sector.

Let us briefly comment on the assumptions of Theorem 7.1.5. The first condi-
tion is a technical one, needed for the results in [CDR01] and Corollary 7.3.3 be-
low. By construction of the field net, DHR sectors are in 1-1 correspondence with
irreps of G , hence Ĝ , the set of irreps of G , is also countable. The second condition
implies that the field net satisfies ordinary locality, as opposed to twisted locality.
The final condition is needed to lift the translation covariance of A to the field net.
As mentioned before, by weak additional assumptions on A, it follows automatic-
ally that every DHR sector with finite statistics is translation covariant. Therefore,
the conditions appear not to be unreasonably restrictive. From now on, we will
assume that A satisfies all assumptions in the theorem.

From now on we will work with the construction of the field net as outlined in
§3.3, and will use the same notation as introduced there.

The final technical lemma concerns field operators. In the field net there are
field operators, which can be interpreted as operators creating the DHR charges
from the vacuum state. That is, for a DHR endomorphism ρ there are Ψ ∈ F such
that ρ(A)Ψ = ΨA, with A ∈ A. It is convenient in calculations to know how this
works on the auxiliary algebras.

Lemma 7.1.6. Let ρ be an endomorphism of A localised in a double cone O , and
take ψ ∈ E(ρ). Then

πSa (ρSa (A))π(I ,ρ,ψ) =π(I ,ρ,ψ)πSa (A), (7.1.1)

for all A ∈ASa .

Proof. Note that for A ∈A, the equality holds basically by construction of the field
net. Now suppose A ∈A((Sa + x)′)′′. Then there is a net (in the sense of topology)
Aλ → A inA((Sa+x)′) that converges weakly to A. Equation (7.1.1) holds for Aλ by
the previous remark. The result now follows by weak continuity of the extensions
and of separate weak continuity of multiplication.

7.2 Extension to the field net

Our next goal is to understand the BF-superselection structure of F, including the
way it is related to that of A. Now that we have established how the auxiliary al-
gebra is included in the field net, a natural question is how BF representations
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of A can be extended to BF representations of F. This section is devoted to this
problem. At the end of the section we comment on alternative approaches.

If η̂ ∈∆F
BF(C ) is an extension of η ∈∆A

BF(C ), it follows that

αg ◦ η̂(A) =αg ◦η(A) = η(A) = η̂◦αg (A)

for all A ∈ A. The next theorem gives a characterisation of extensions such that
αg ◦ η̂(F ) = η̂◦αg (F ) for all F ∈ π(F0). Such extensions are in 1-1 correspondence
with certain families of unitaries Wρ(η) inASa . A proof of this result for extensions
of automorphisms was given in [DR89a, Thm. 8.2]. Later, the result of Doplicher
and Roberts was adapted to endomorphisms [Müg99]. The explicit description of
the field net allows us to verify this construction, without invoking e.g. universality
properties as in the original proof.

The first step is to show that we can define an extension on the subalgebra
π(F0) of F. We will then extend this to the algebra F.

Proposition 7.2.1. Let η be a representation of A. Then representations η̂ of π(F0)
that extend η and commute with αg are in one-to-one correspondence with map-
pings (ρ,η) 7→Wρ(η) from ∆A

DHR ×∆A
BF(C ) to unitaries in ASa satisfying

Wρ(η) ∈ HomA(ρ⊗η,η⊗ρ), ; (7.2.1)

Wρ′(η)(T ⊗ Iη) = (Iη⊗T )Wρ(η), T ∈ HomA(ρ,ρ′), ; (7.2.2)

Wρ⊗ρ′(η) = (Wρ(η)⊗ Iρ′)(Iρ⊗Wρ′(η)), ; (7.2.3)

Wρ(η⊗η′) = (Iη⊗Wρ(η′))(Wρ(η)⊗ Iη′). (7.2.4)

The extension is determined by

η̂(π(A,ρ,ψ)) =πSa (ηSa (A)Wρ(η))π(I ,ρ,ψ). (7.2.5)

Moreover, if S ∈ HomA(η,η′) satisfies SWρ(η) = Wρ(η′)ρSa (S) for all ρ ∈∆A
DHR (that

is, Wρ(η) is natural in η), then πSa (S) ∈ HomF0 (η̂, η̂′).

Proof. To avoid cumbersome notation, πSa (ASa ) will be identified withASa in the
proof. First, assume η̂ is a representation of F that commutes with the G-action.
Lemma 7.1.4 implies that η̂ restricts to a representation of ASa , which we will de-
note by η. For ρ ∈ ∆A

DHR, write Ψi = π(I ,ρ,ψi ), where ψi is an orthonormal basis
of E(ρ). Define

Wρ(η) =
d∑

i=1
η̂(Ψi )Ψ∗

i .

This definition is independent of the chosen basis of E(ρ). The Ψi generate a Hil-
bert space with support I , [Hal06, Proposition 270], from which it follows that
Wρ(η) is unitary. The Hilbert space E(ρ) transforms according to some irredu-
cible representation. Since η̂ commutes with the G-action, it is easy to verify that
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αg (Wρ(η)) = Wρ(η). By Lemma 7.1.4(ii), Wρ(η) is a unitary in ASa . Note that
Wι(η) = I , since η is unital. Note that Wρ(η)π(I ,ρ,ψ) = η̂(π(I ,ρ,ψ)) for ψ ∈ E(ρ).
Because (7.2.5) is in particular a ∗-endomorphism (see below for a verification)
and F0 is generated by elements of this form, we see that η̂ can indeed be defined
as in (7.2.5).

It remains to verify properties (7.2.1)–(7.2.4). The verification of these prop-
erties is quite straightforward. We give a proof of (7.2.2) and leave the rest to the
reader. So, let T ∈ HomA(ρ,ρ′). Note that T ∈A by Haag duality for double cones.
Then ∑

i
η̂(π(T,ρ,ψi ))π(I ,ρ,ψi )∗ =∑

i
η̂(π(I ,ρ′,E(T )ψi ))π(I ,ρ,ψi )∗

=∑
i
πSa (Wρ′(η))π(I ,ρ′,E(T )ψi )π(I ,ρ,ψi )∗

=πSa (Wρ′(η))π(T, ι,1).

This is equation (7.2.2). In the second line equation (7.2.5) has been used.
As for the converse, we have to show that equation (7.2.5) indeed defines a ∗-

representation of π(F0) that extends η. For (A,ρ,ψ) ∈F0, define η̂(π(A,ρ,ψ)) as in
equation (7.2.5). Note that (7.2.3) together with the unitarity of Wι(η) imply that
Wι(η) = I . Considering the embedding of A into F0 (by A 7→ (A, ι,1)), it follows that
η̂(π(A, ι,1)) =πSa (η(A)). This shows that we can view η̂ as an extension of η.

To check that η̂ is well-defined, suppose (AT,ρ,ψ) = (A,ρ′,E(T )ψ), with T in-
tertwining ρ and ρ′. A simple computation, using πSa (T ) =π(T ), and the fact that
π is well-defined, shows that well-definedness of η̂ boils down to the identity

η(A)Wρ′(η)T = η(AT )Wρ(η),

which in turn is easily verified using the properties of Wρ(η).
In order to show that η̂ is multiplicative, consider elements F = (A,ρ,ψ) and

F ′ = (A′,ρ′,ψ′) of F0. Then:

η̂(π(F )π(F ′)) = η̂(π(Aρ(A′),ρ⊗ρ′,ψ⊗ψ′))

=πSa (η(Aρ(A′))Wρ⊗ρ′(η)π(I ,ρ⊗ρ′,ψ⊗ψ′).
(7.2.6)

On the other hand,

η̂(π(F ))η̂(π(F ′)) =πSa (η(A)Wρ(η))π(I ,ρ,ψ)πSa (η(A′)Wρ′(η))π(I ,ρ′,ψ′).

An application of Lemma 7.1.6 reduces the right hand side to

πSa (η(A)Wρ(η)ρSa (η(A′)Wρ′(η)))π(I ,ρ⊗ρ′,ψ⊗ψ′).

Then one should note that Wρ(η) intertwines ρSa ◦η and ηSa ◦ρ, and use the fact
that ρ is an endomorphism of A, so that ηSa (ρ(A′)) = η(ρ(A′)). By using (7.2.3),
one then obtains equation (7.2.6), so η̂ preserves multiplication.
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To check that η̂ is a ∗-homomorphism, we have to show η̂(π(F )∗) = η̂(π(F ))∗.
Since η̂ preserves multiplication, it is enough to show this for (A, ι,1) and (I ,ρ,ψ) ∈
F0. The first case is easy:

η̂(π(A, ι,1)∗) = η̂(π(A∗, ι,1)) =πSa (η(A∗))π(I , ι,1) =πSa (η(A))∗,

since η and πSa are ∗-homomorphisms. To check the remaining case, let (ρ,R,R)
be a conjugate. Then, R∗ ∈ HomA(ρ⊗ρ, ι), so we have

η(R∗)Wρ(η) =Wι(η)R∗Wρ⊗ρ(η)∗Wρ(η) = R∗(Wρ(η)∗Wρ⊗ρ(η))∗

= R∗ρSa (Wρ(η)∗),
(7.2.7)

where the properties of Wρ(η) have been used in each step. Recall the anti-linear
map J used in the definition of the ∗-operation on F0. Then, by definition of η̂,

η̂(π(I ,ρ,ψ)∗) = η̂(π(R∗,ρ, (J E(R
∗

))ψ))

=πSa (η(R∗)Wρ(η))π(I ,ρ, (J E(R
∗

))ψ).

Substitute equation (7.2.7) and apply Lemma 7.1.6. Together with the fact that πSa

agrees with π on A, this gives

η̂(π(I ,ρ,ψ)∗) =πSa (R∗ρS(Wρ(η)∗)π(I ,ρ, (J E(R
∗

))ψ)

=π(R∗, ι,1)π(I ,ρ, (J E(R
∗

))ψ)πSa (Wρ(η)∗)

=π(I ,ρ,ψ)∗πSa (Wρ(η))∗

= η̂(π(1,ρ,ψ))∗,

which concludes the proof that η̂ is a representation.
To prove that η̂ commutes with the G-action, consider (A,ρ,ψ) ∈ F0, and let

g ∈G . Then

η̂(αgπ(A,ρ,ψ)) = η̂(π(A,ρ, gρψ)) =πSa (η(A)Wρ(η)π(I ,ρ, gρψ).

On the other hand, αg is implemented by U (g ), so we have

αg ◦ η̂(π(A,ρ, gρ)) =U (g )πSa (η(A)Wρ(η))π(I ,ρ,ψ)U (g )∗

=U (g )πSa (η(A)Wρ(η))U (g )∗π(I ,ρ, gρψ).

From this it follows that if πSa (η(A)Wρ(η)) is G-invariant, then η̂ commutes with
the action of G . Since η(A)Wρ(η) ∈ASa this is nothing but Lemma 7.1.4(ii).

Finally, let S ∈ HomA(η,η′) be an intertwiner, and F = (A,ρ,ψ) ∈F0. Then

πSa (S)η̂(π(F )) =πSa (Sη(A)Wρ(η))π(1,ρψ)

=πSa (η′(A)SWρ(η))π(I ,ρ,ψ)

=πSa (η′(A)Wρ(η′)ρSa (S))π(I ,ρ,ψ)

= η̂′(π(F ))πSa (S),
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where in the last line Lemma 7.1.6 has been used. Hence we see that πSa (S) ∈
HomF0 (η̂, η̂′), completing the proof.

It should be noted that conditions (7.2.1)–(7.2.4) are very similar to the condi-
tions on a braiding, in particular the braiding ερ,η satisfies these conditions. The
only difference is that Wρ(η) need only be defined for ρ a DHR endomorphism
and η a BF endomorphism.

The construction above gives an extension of representations of A to F. To
verify if these extensions are BF representations one should look at the localisation
properties of the extension. The next lemma gives a necessary and sufficient con-
dition for the extension of a localised representation to be cone localised again.

Lemma 7.2.2. Consider the notation and assumptions of Proposition 7.2.1. If η is
localised in C , its extension η̂ is localised in C if and only if Wρ(η) = I for each
ρ ∈ ∆A

DHR localised spacelike to C . Here, η̂ is called localised in C if it acts trivially
on all F ∈π(F0(O )) for O ⊂C ′.

Proof. The localisation properties follow from the localisation of η. If F ∈ F0(O )
for some double cone O ⊂ C ′, it is of the form F = (A,ρ,ψ), with A ∈ A(O ) and ρ

localised in O . But η acts trivially on such A, and Wρ(η) = I . Hence η̂(π(A,ρ,ψ)) =
π(A,ρ,ψ).

For the converse, suppose that ρ ∈∆A
DHR is localised spacelike to C . Choose an

orthonormal basis ψi of E(ρ). Then π(I ,ρ,ψi ) ∈π(F0(O )) for O ⊂C ′. Hence

η̂(π(I ,ρ,ψi )) =πSa (Wρ(η))π(I ,ρ,ψi ) =π(I ,ρ,ψi ).

We multiply on the right by π(I ,ρ,ψi )∗ and sum over i . Since E(ρ) has support I ,
it follows that πSa (Wρ(η)) is the identity.

As a consequence of these results, we can canonically extend BF representa-
tions of A to BF representations of F. This way of extending representations was
first pointed out by Rehren [Reh91], where the author sketches a proof in the case
of compactly localised sectors.

Theorem 7.2.3. Every BF representation η of A can be extended to a BF representa-
tion of F that commutes with the G-action. This extension is unique.

Proof. One readily verifies that Wρ(η) = ερ,η has the properties required in Pro-
position 7.2.1. Moreover, Wρ(η) = I if ρ is localised spacelike to η. Hence there is a
∗-representation η̂ of π(F0) extending η. If η is localised in C , Lemma 7.2.2 shows
that η̂ is localised in the same region. If C̃ is another spacelike cone, by transport-
ability of η there is a unitarily equivalent η′ localised in C̃ . By Proposition 7.2.1,
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this lifts to a unitary equivalence of η̂ and η̂′, since the condition stated on S is
nothing but naturality of ερ,η in η. This shows transportability of the extension.

We now have a representation defined on the algebra π(F0). To extend this
representation to F, we first show that it can be extended to the local algebras
F(O ) = π(F0(O ))′′. Consider a double cone O . If O is spacelike to C , localisa-
tion implies η̂(π(F )) = π(F ) for all π(F ) ∈ π(F0(O )). In this case it is clear that
this extends to the weak closure F(O ). Now suppose O is not spacelike to C .
Then by the argument above, there is a unitary V such that η̃(π(F )) =V ∗η̂(π(F ))V
which is localised spacelike to O . In other words, η̂(π(F )) = V π(F )V ∗, by local-
isation of η̃. The right hand side is weakly continuous, hence we can extend η̂ to
F(O ) for every O . But the argument also shows that η̂ is in fact an isometry, since
∥V π(F )V ∗∥ = ∥π(F )∥. The union of the local algebras is norm dense in F, hence
by continuity η̂ extends uniquely to a representation of F.

Finally, we show that the extension is unique. Suppose that we have another
localised extension that commutes with the action of G . Proposition 7.2.1 then as-
serts the existence of a family Wρ(η). We show Wρ(η) = ερ,η. First of all, suppose
ρ ∈ ∆A

DHR is localised spacelike to the localisation of η. Then, by Lemma 7.2.2,
Wρ(η) = I . But this is equal to ερ,η, since ρ is degenerate. Now consider an arbit-
rary ρ ∈ ∆A

DHR. Choose a unitary equivalent ρ′ localised spacelike to the localisa-
tion of η, with corresponding unitary T . Then,

(T ⊗ Iη) = (Iη⊗T )Wρ(η), (T ⊗ Iη) = (Iη⊗T )ερ,η,

where the first equation follows from (7.2.2), and the second follows from natur-
ality with respect to ρ of the braiding. Since T is a unitary, it follows that Wρ(η) =
ερ,η.

Remark 7.2.4. (i) Localisation properties are used to show that η̂ can be extended
to a representation of F. By applying the results of [DR89a], as in [Müg99], it can
be proved that in fact every extension (whether it is cone localised or not) as in
Proposition 7.2.1 can be defined on the whole of F.

(ii) Denote the canonical extension by Φ(η) or η̂. It turns out that Φ : η 7→ η̂ is
in fact a faithful, but not full, tensor functor. These and other categorical aspects
are discussed in Section 8.1.

Let us briefly comment on other approaches to the problem of extending rep-
resentations. Firstly one could use techniques from the theory of subfactors. For
this to work A(C )′′ ⊂ F(C )′′ needs to be an inclusion of factors. Moreover, the
Jones index of this inclusion should be finite. In this case the machinery of α-
induction and σ-restriction can be applied [BE98]. In the present situation, how-
ever, it is not clear if these requirements are satisfied.

Another approach that can be used in the DHR setting is Roberts’ theory of
localised cocycles [Rob76b, Rob90], see also [CDR01]. It is not immediately clear,
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7.3. Non-abelian cohomology and restriction to the observable algebra

however, if this can be modified to apply to case of BF sectors. For one, the set of
all double cones is directed, unlike the set of all spacelike cones.

7.3 Non-abelian cohomology and restriction to the
observable algebra

In the previous section, extension of BF representations of the observable algebra
to the field algebra was discussed. Here we investigate the other direction: does
every BF representation of the field algebra that commutes with the group action
come from such an extension? This is a first step in understanding the category
∆F

BF(C ). In answering this question, one encounters problems of a cohomological
nature in a natural way.

For convenience of the reader we recall the notion of an α-1-cocycle and an
α-2-cocycle in a von Neumann algebra M; for the complete definition see [Sut80].
A Borel map v : G →U (M) is an α-1-cocycle if it satisfies the identity

v(g h) =αg (v(h))v(g );

a map w : G ×G →U (M) is an α-2-cocycle if

w(g h,k)w(g ,h) = w(g ,hk)αg (w(h,k)).

It is possible to define a coboundary map ∂. For example, a 1-cocycle v(g ) is a
coboundary if there is a unitary w ∈ M such that v(g ) = αg (w)w∗. A 2-cocycle
w(g ,h) is a coboundary if there is a Borel map ψ : G → U (M) such that w(g ,h) =
αg (ψ(h))ψ(g )ψ(g h)∗.

It turns out that each cocycle taking values in F(C ) is in fact a coboundary
in a bigger algebra F(C̃ )′′ ⊃ F(C )′′. This is essentially due to the field net having
full G-spectrum, which allows to use the construction of Sutherland to construct
a coboundary [Sut80]. In the proof of this result we will make use of the notion of
Hilbert spaces in von Neumann algebras, introduced in §1.4.

Theorem 7.3.1. Assume G is second countable. Let v(g1, . . . , gn) be a unitary α-n-
cocycle in F(C )′′. Then there is a spacelike cone C̃ ⊃C such that v is a coboundary
in F(C̃ )′′.

Proof. Pick a double cone O ⊂ C ′, such that there is a spacelike cone C̃ ⊃ C ∪O .
Note that this is always possible. Since the field net has full spectrum, for each
irreducible representation ξ of G , there is a Hilbert space in F(O ), transforming
according to this representation. That is, there are isometries ψi , i = 1, . . . ,d span-
ning a Hilbert space Hξ in F(O ), such that

αg (ψi ) =
d∑

j=1
uξ

j i (g )ψ j ,
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7. Extension and restriction

where uξ
j i (g ) are the matrix coefficients of ξ.

The left regular action λ(g ) on L2(G) decomposes as a direct sum of irreducible
representations. By the Peter-Weyl theorem the Hilbert space L2(G) decomposes
as [HR70]

L2(G) = ⊕
ξ∈Ĝ

dξHξ, (7.3.1)

where dξ is the dimension of the representation ξ. For each irreducible represent-
ation ξ, the algebra F(O ) contains a Hilbert space Hξ (as in Definition 1.4.1), trans-
forming according to the corresponding representation. The group G is second
countable, hence the number of irreducible representations is at most countable
(see e.g. [HR70]). Since A(O ) is a properly infinite von Neumann algebra acting
on a separable Hilbert space, it is possible to find a countable family of isometries
Vi such that V ∗

i V j = δi , j I and
∑

i Vi V ∗
i = I . Moreover, they are invariant under the

action of G . These isometries enable us to construct an image of the direct sum de-
composition (7.3.1) of L2(G) in F(O ) as follows. First choose an enumeration ξi of
Ĝ , counted with multiplicities. For each i choose an orthonormal basis ψ j of Hξi

where j = 1, . . . ,dξi . Then ei j = Viψ j V ∗
i forms an orthonormal basis of a Hilbert

space in F(O ). This Hilbert space will be denoted by L2
F(G). If T : L2

F(G) → L2(G)
denotes the corresponding isomorphism of Hilbert spaces, the above remarks im-
ply that T (αg (ψ)) =λ(g )T (ψ) for all ψ ∈ L2

F(G).

Note that the action αg induces an action on B(L2
F(G)). To see what effect this

has on the corresponding operators in B(L2(G)), consider the following calcula-
tion, where 〈−,−〉 is the inner product of L2(G), x ∈B(L2

F(G)), and g ∈G :

〈T (ψ1),L(x)T (ψ2)〉I =ψ∗
1 xψ2

=αg (ψ∗
1 )αg (x)αg (ψ2)

= (αg (ψ1),L(αg (x))αg (ψ2))I

= 〈λ(g )T (ψ1),L(αg (x))λ(g )T (ψ2)〉I

= 〈T (ψ1),λ(g )∗L(αg (x))λ(g )T (ψ2)〉I .

In other words, L(αg (x)) =λ(g )L(x)λ(g )∗ = Adλ(g )L(x), since the left regular rep-
resentation is unitary.

The situation can be summarised as follows: there is a copy of L2(G) in F(O ),
as well as a copy of B(L2(G)). Moreover, the action αg of G acts as Adλ(g ) on these
operators. We are now in a position to apply Proposition 2.5.1 from [Sut80].

Define an injective representation π :F(C )′′⊗B(L2(G)) →F(C̃ )′′ by π(x ⊗ y) =
xF−1(y). Note that this is indeed a representation, since F(C )′′ commutes with
F(O ). Endow the algebra F(C )′′ ⊗B(L2(G)) with the action βg of G defined by
βg =αg ⊗Adλ(g ). It follows that for each g ∈G , π(βg (x⊗y)) =αg (π(x⊗y)). By Pro-
position 2.1.5 of [Sut80] v(g1, . . . gn)⊗ I is a β-coboundary. But since v(g1, . . . gn) =
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7.3. Non-abelian cohomology and restriction to the observable algebra

π(v(g1, . . . gn)⊗I ) and αg ◦π=π◦βg , it follows that v(g1, . . . gn) is an α-coboundary
in F(C̃ )′′.

Remark 7.3.2. The DHR sectors of A are in one-to-one correspondence with ir-
reducible representations of the group G . Hence under the assumption already
made in Theorem 7.1.5, it follows that G is indeed second countable.

With this theorem we are able to prove the main result of this section, namely
that every BF representation of F that commutes with the G-action comes from
the extension of a representation of A.

Corollary 7.3.3. Let η ∈ ∆F
BF(C ), such that αg ◦ η = η ◦αg for all g ∈ G. Then η

restricts to a BF sector η ↾ASa of the observable net. Moreover, áη ↾ASa = η.

Proof. By Lemma 7.1.4(ii), the representation η restricts to an endomorphism of
ASa , since it commutes with the action of G . It is clear that this restriction is local-
ised in C as well. To prove transportability, proceed in a similar way as in [Müg05,
Proposition 3.5]. Suppose Ĉ is another spacelike cone. For simplicity we assume
it is spacelike to Sa . In the general case, one has to apply an argument as in the
proof of Proposition 6.2.12. Pick a spacelike cone C̃ ⊂ Ĉ such that there is a double
cone Ĉ ⊃ O ⊂ C̃ ′. By Lemma 6.2.8 and transportability, there is a unitary V ∈ FSa

such that η̃= AdV ◦η is localised in C̃ .
Now consider g η̃ = αg ◦ η̃ ◦αg−1 . Since η is G-invariant, αg (V ) ∈ HomF(η, g η̃).

Becauseαg leavesF(C̃ ′) globally invariant, g η̃ is also localised in C̃ . Define anα-1-
cocycle v(g ) = αg (V )V ∗ ∈ HomF(η̃, g η̃). By Haag duality, v(g ) ∈ F(C̃ )′′. Moreover
g 7→ v(g ) is strongly continuous. By Theorem 7.3.1 there is a unitary W ∈ F(Ĉ )′′

such that v(g ) =αg (W )W ∗. Define η̂= AdW ∗◦η̃. It is easy to see that η̂ is localised
in Ĉ and that W ∗V ∈ HomF(η, η̂). Moreover, by definition αg (V )V ∗ = αg (W )W ∗,
from which it follows that αg (W ∗V ) = W ∗V for all g ∈ G . Hence W ∗V is in ASa ,
and is the desired intertwiner from η ↾ASa to η̂ ↾ASa .

Since extensions commuting with G are unique by Theorem 7.2.3, the last
statement is obvious.
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Chapter 8

Categorical aspects

8.1 Categorical crossed products

The results in the previous chapter give a complete understanding of all G-invari-
ant BF representations of ∆F

BF(C ). Indeed, these are all of the form Φ(η) for some
BF representation η of A. Recall that this extension functor is defined by Φ(η) =
η̂, and by Φ(S) = πSa (S) for intertwiners S (see Proposition 7.2.1). In fact, this
extension preserves all relevant properties of the category ∆A

BF(C ).

Proposition 8.1.1. The functor Φ : ∆A
BF(C ) → ∆F

BF(C ) is a strict braided monoidal
functor. It also preserves direct sums: Φ(η1 ⊕η2) ∼=Φ(η1)⊕Φ(η2). Finally, d(Φ(η)) =
d(η).

Proof. Functoriality of Φ is immediate. Note that Φ(ι) is just the identity endo-
morphism of F, hence it preserves the tensor unit. We verify Φ(η1 ⊗η2) =Φ(η1)⊗
Φ(η2) on a dense subalgebra. Consider F = (A,ρ,ψ) ∈ F0. Then the extension of
the tensor product is given by

àη1 ⊗η2(π(F )) =πSa (ηSa
1 η2(A)ερ,η1⊗η2 )π(1,ρ,ψ). (8.1.1)

Note that by definition, η̂1(π(A, ι,1)) = πSa (η1(A)) for all A ∈ A. Passing to the
unique weakly continuous extension, and taking weak limits, it follows that

η̂
Sa
1 (πSa (A)) =πSa (ηSa

1 (A))

for all A ∈ASa . We then calculate

(η̂1 ⊗ η̂2)(π(F )) = η̂1
Sa (πSa (η2(A)ερ,η2 )π(I ,ρ,ψ))

= η̂1
Sa (πSa (η2(A)ερ,η2 ))πSa (ερ,η1 )π(I ,ρ,ψ)

=πSa (ηSa
1 (η2(A)ερ,η2 )ερ,η1 )π(I ,ρ,ψ).
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By the braid equations (cf. conditions (7.2.2)–(7.2.4)), the last line is equal to equa-
tion (8.1.1). For η1,η2 ∈∆A

BF(C ), note that Φ(εη1,η2 ) = εΦ(η1),Φ(η2). This follows from

uniqueness of the braiding of ∆F
BF(C ), and by noticing that the funtor Φ sends

spectator morphisms used in the definition of εη1,η2 to spectator morphisms for
Φ(η1) and Φ(η2).

To prove that Φ preserves direct sums, assume η1 ⊕η2 = AdV1 ◦η1 +AdV2 ◦η2.
It is then not hard to show that for F ∈F0,

Φ(η1 ⊕η2)(π(F )) =Φ(V1)Φ(η1)(π(F ))Φ(V ∗
1 )+Φ(V2)Φ(η1)(π(F ))Φ(V ∗

2 ).

The right hand side is just the direct sum Φ(η1)⊕Φ(η2).
Finally, for the last statement one can show that if (η,R,R) is a standard con-

jugate for η, then (Φ(η),Φ(R),Φ(R)) is a standard conjugate for Φ(η), and this de-
termines the dimension. Details can be found in [Müg, Proposition 344].

Using some harmonic analysis, the intertwiners between two extensions can
be described explicitly.

Proposition 8.1.2. For γ ∈ ∆A
DHR, write Hγ for the Hilbert space in F generated by

π(I ,γ,ψ),ψ ∈ E(γ). Then for η1,η2 ∈∆A
BF(C ),

HomF(Φ(η1),Φ(η2)) = spani∈Ĝ πSa (HomA(γi ⊗η1,η2))Hγi , (8.1.2)

where γi ∈ ∆A
DHR corresponds to the irrep i . Moreover, we can choose each γi to be

localised in a double cone Oi ⊂C .

Proof. Consider T ∈ HomA(γ⊗η1,η2) andΨ=π(I ,γ,ψ) ∈ Hγ. By Proposition 7.2.1,
T lifts to an intertwiner πSa (T ) from �γ⊗η1 to η̂2, hence

η̂2(π(A,ρ,ψ′))πSa (T )Ψ=πSa (T ) �γ⊗η1(π(A,ρ,ψ′))Ψ.

Since the DHR morphisms form a symmetric category and E is a symmetric ∗-
tensor functor, that is, it maps εγ,ρ to the canonical symmetry ΣE(γ),E(ρ), it fol-
lows that π(I ,ρ,ψ′)π(I ,γ,ψ) = π(εγ,ρ ,γ,ψ)π(I ,ρ,ψ′). Using the braid equations,
we then have

πSa (γSaη1(A)ερ,γ⊗η1 )π(I ,ρ,ψ′)Ψ=πSa (γSaη1(A)ερ,γ⊗η1εγ,ρ)Ψπ(I ,ρ,ψ′)

=πSa (γSa (η1(A)ερ,η1 ))Ψπ(I ,ρ,ψ′).

An application of Lemma 7.1.6 then shows that πSa (T )Ψ ∈ HomF(Φ(η1),Φ(η2)).
For the other direction, note that since Φ(η1) and Φ(η2) are G-invariant exten-

sions, it follows that HomF(Φ(η1),Φ(η2)) is stable under the action of G . Since the
Hom-sets are finite-dimensional vector spaces, it is clear that in this case they are
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generated linearly by irreducible tensors under G . So let T1, . . .Tn be some mul-
tiplet in HomF(Φ(η1),Φ(η2)) transforming according to the representation ξ. By
the proof of Lemma 7.1.2 there is a G-invariant X such that Ti = XΨi , where the
Ψi ∈ Hγ form an orthonormal basis for E(γ). Moreover, γ is localised in some
O ⊂C and transforms according to ξ.

Since Ti ∈ HomF(Φ(η1),Φ(η2)), we have, with F = (A, ι,1) ∈F0,

XΨi η̂1(π(F )) = η̂2(π(F ))XΨi = XπSa (γSa (η1(A)))Ψi ,

where the last identity follows by applying Lemma 7.1.6 to the first term in the
equation. Now, multiply on the right by Ψ∗

i , and sum over i . Since
∑d

i=1ΨiΨ
∗
i = I

by [Hal06, Proposition 270], this leads to

XπSa (γSaη1(A)) =πSa (η2(A))X . (8.1.3)

By Lemma 7.1.4(ii) there is a T ∈ASa such thatπSa (T ) = X , and by equation (8.1.3)
and faithfulness of πSa , we have T ∈ HomA(γ⊗η1,η2).

Corollary 8.1.3. The tensor functor Φ is an embedding (i.e. faithful and injective
on objects), but not full.

Proof. It follows from Corollary 7.3.3 that Φ is injective on objects. Since πSa

is a faithful representation, Proposition 7.2.1 implies Φ is faithful. The preced-
ing proposition implies that it is not full. Indeed, the image of HomA(η1,η2) un-
der the functor Φ is πSa (HomA(η1,η2)), which in general is a proper subset of
HomF(Φ(η1),Φ(η2)) as given by equation (8.1.2).

Inspired by the results of Doplicher and Roberts, Müger formulated a categor-
ical version of the field net construction [Müg00]. In a different context, a similar
construction is due to Brugières [Bru00]. In both approaches, modular categories
are obtained by getting rid of a non-trivial centre. Here we investigate this in the
present situation, c.f. [Müg05]. We follow the approach of [Müg00], since it also
works when the symmetric subcategory has infinitely many isomorphism classes
of objects.

Let us recall the basic ideas in this construction. Suppose C is a braided tensor
C∗-category and S is a full symmetric subcategory. By the Doplicher-Roberts the-
orem [DR89b], there is a unique compact group G and an equivalence of categor-
ies E : S → Rep f (G). In the case at hand, C is the category ∆A

BF(C ) and S is the

symmetric subcategory ∆A
DHR(C ).1 The group G will be the symmetry group, and

E is the functor used in Section 7.1.

1Note that in the construction of the field net, the subcategory ∆A
DHR was used, without the

localisation in C . Using transportability, however, it is easy to see that one might as well choose
∆A

DHR(C ), since this category is equivalent to ∆A
DHR.

121



8. Categorical aspects

First a category C ⋊0 S is defined. For each k ∈ Ĝ , choose a corresponding
γk ∈ S such that Hk = E(γk ) transforms according to k. The category C ⋊0 S is
the category with the same objects as C , but with Hom-sets

HomC⋊0S (ρ,σ) =⊕k∈Ĝ HomC (γk ⊗ρ,σ)⊗Hk ,

where the usual tensor product of vector spaces over C is used. One can then
define a composition of arrows, a ∗-operation, conjugates, direct sums and in the
case at hand, where the objects of S are degenerate, a braiding. Since the details
are quite involved, we refer to the original paper [Müg00].

The category C ⋊0 S already has most of the desired structure. One property,
however, is missing: in general it is not closed under subobjects. To remedy this, a
closure construction is defined. This closure is denoted by C ⋊S . It is called the
crossed product of C by S . The basic idea is to add a corresponding (sub)object
for each projection in HomC⋊0S (η,η). To make this precise: the category C ⋊S

has pairs (η,P ) as objects where η ∈ C and P = P 2 = P∗ ∈ HomC⋊0S (η,η). The
morphisms are given by

HomC⋊S ((η1,P1), (η2,P2)) = {T ∈ HomC⋊0S (η1,η2) |T = T ◦P1 = P2 ◦T },

which is just P2 ◦HomC⋊0S (η1,η2) ◦P1. Composition is as in C ⋊0 S . Because
P is a projection, id(η,P ) = P . The tensor product can be defined by as (η1,P1)⊗
(η2,P2) = (η1 ⊗η2,P1 ⊗P2), and the same as in C ⋊0 S on morphisms. One can
then show that C⋊S is a braided tensor C∗-category with conjugates, direct sums
and subobjects. The category C is embedded into the crossed product C ⋊S by
a tensor functor ι : C → C ⋊S , defined by η 7→ (η, idη) and HomC (η1,η2) ∋ T 7→
T ⊗Ω. Here Ω is a unit vector in the Hilbert space transforming according to the
trivial representation of G . Like the functor Φ, ι is a embedding functor that is not
full.

The following proposition clarifies the relation between the crossed product
∆A

BF(C )⋊∆A
DHR(C ) and the BF representations of the field net F.

Proposition 8.1.4. The extension functor Φ : ∆A
BF(C ) →∆F

BF(C ) factors through the
canonical inclusion functor ι : ∆A

BF(C ) → ∆A
BF(C )⋊∆A

DHR(C ). That is, there is a

braided tensor functor H : ∆A
BF(C )⋊∆A

DHR(C ) →∆F
BF(C ) such that the diagram

∆A
BF(C ) ∆A

BF(C )⋊∆A
DHR(C )

∆F
BF(C )

//ι

$$J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

Φ

��

H

commutes. Moreover, H is full and faithful.
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Proof. First define H on the category ∆A
BF(C )⋊0∆

A
DHR(C ). Clearly, for objects η we

must set H(η) =Φ(η). In view of Proposition 8.1.2, it is natural to set for the morph-
isms H(T ⊗ψk ) = πSa (T )π(I ,γk ,ψk ), where T ∈ HomA(γk ⊗ρ,σ), ψk ∈ E(γk ), and
k ∈ Ĝ , and extend by linearity. It is not very difficult, although quite tedious, to
verify that H defines a strict braided monoidal functor from ∆A

BF(C )⋊0 ∆
A
DHR(C )

to ∆F
BF(C ). It is clear that H is faithful, and by Proposition 8.1.2 it is full.
To define H on the closure∆A

BF(C )⋊∆A
DHR(C ), consider one of its objects (η,P ).

By definition, P 2 = P = P∗ ∈ Hom∆A
BF(C )⋊0∆

A
DHR(C )(η,η). It follows that H(P ) as de-

fined above is a projection in HomF(Φ(η),Φ(η)). By localisation of H(η) and Haag
duality it follows that H(P ) ∈F(C )′′. Consider a spacelike cone Ĉ such that C ⊂ Ĉ .
Then by Property B there is an isometry W ∈ F(Ĉ ′)′ such that W W ∗ = H(P ). Now
define H(η,P )(·) =W ∗η̂(·)W . This defines a ∗-representation of F that is localised
in Ĉ , due to localisation properties of E . Using transportability, an equivalent rep-
resentation localised in C can be obtained, in a similar way as done in Section 6.2.
Again it can be verified that H is a braided monoidal functor. It is clearly faithful,
and by Proposition 8.1.2 and the definition of the Hom-sets in the crossed product,
it is also full. Note that H is not a strict tensor functor, but only a strong one. This
is due to the arbitrary choices one has to make in finding the isometry W , which
is merely unique up to unitary equivalence.

Finally, ∆A
BF(C ) is embedded in ∆A

BF(C )⋊∆A
DHR(C ) by η 7→ (η, I ). Hence H ◦

ι(η) = H((η, I )) = η̂, thus H ◦ ι=Φ.

8.2 Essential surjectivity of H

One of our goals is to understand the category ∆F
BF(C ) in terms of the original

AQFT O 7→A(O ). The functor Φ is not full, so it cannot provide a complete answer
to this question. The functor H , however, is full and faithful. Moreover, we have
an explicit description of the crossed product in terms of our original net of ob-
servables A(O ). Since a tensor functor is an equivalence of tensor categories if and
only if it is an equivalence of categories [SR72], it is enough to show that H is an
equivalence of categories. By the previous section H is full and faithful, hence only
essential surjectivity has to be shown. In this section this question is investigated.
The first observation is that this is related to a property of the extension functor Φ.

Proposition 8.2.1. The functor H is essentially surjective if and only if Φ is domin-
ant. That is, for each irreducible η ∈∆F

BF(C ), η≺Φ(η̃) for some η̃ ∈∆A
BF(C ).

Proof. Suppose first that H is essentially surjective. Then for an irreducible object
η ∈ ∆F

BF(C ), there is some (η′,P ) such that η ∼= H(η′,P ). But by construction of H ,
evidently H(η′,P ) is a subobject of Φ(η′). Since η∼= H(η′,P ), also η≺Φ(η′).

Conversely, suppose Φ is dominant. Let η ∈ ∆F
BF(C ) be irreducible, and sup-

pose η′ is such that η ≺ Φ(η′). Then there is (by definition) a corresponding iso-

123



8. Categorical aspects

metry W ∈ HomF(η,Φ(η′)). Hence W W ∗ is a projection in EndF(Φ(η′),Φ(η′)). Pro-
position 8.1.2 shows that this projection comes from a corresponding projection
P̂ in Hom∆A

BF(C )⋊0∆
A
DHR(C )(η

′,η′), and we see that η ∼= H(η′, P̂ ). The result follows

because ∆F
BF(C ) is semi-simple.

In the remainder of this section, we comment on the question of finding con-
ditions such that Φ is dominant. In the case of finite G this problem has been
solved in [Müg99]. Given an irreducible sector of the field net, one can use the
full G-spectrum of the field net to construct a direct sum that is G-invariant and
contains η. This construction works in the present case of BF sectors as well. By
Corollary 7.3.3 it follows that this direct sum comes from extending a representa-
tion of the observable net.

A straightforward attempt to generalise this to arbitrary compact groups would
be to replace the (finite) direct sum by a countable direct sum or even a direct
integral. However, apart from convergence problems one might encounter, there
is another issue: since the dimension d(η) is strictly positive, and is additive under
taking direct sums, this leads to a sector with infinite dimension. Hence it is not
an element of our category ∆F

BF(C ).
Let us first recall how the group G acts on the sectors, or more precisely, on

equivalence classes of localised representations.

Lemma 8.2.2. Let η ∈ ∆F
BF(C ). Then G acts on equivalence classes [η] by g [η] =

[gη] = [αg ◦η◦αg−1 ].

Proof. This obviously defines an action. This action is well-defined: suppose that
η1(−) =V η2(−)V ∗ for some unitary V . Then

gη2(−) =αg ◦η2 ◦αg−1 (−) =αg (V η1 ◦αg−1 (−)V ∗)

=αg (V )αg ◦η1αg−1 (−)αg (V ∗),

hence gη1
∼= gη2.

The previous observations suggest that if there is any hope to construct a G-
invariant direct sum of a sector of the field net, the action of G on this sector should
not be too “wild”, in the sense that there should only be a finite number of mutually
inequivalent sectors under the action of G . This is indeed a necessary condition,
as will be shown below. This behaviour is described by the stabiliser subgroup.

Definition 8.2.3. Suppose η ∈ ∆F
BF(C ). The stabiliser subgroup Gη is defined by

Gη = {g ∈G | gη∼= η}.

By Lemma 8.2.2 this is well-defined. Moreover, the index [G : Gη] is finite if and
only if there are only finitely many equivalence classes under the action of G . Note
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8.2. Essential surjectivity of H

that Gη is a closed subgroup of G , hence compact. The condition that the index be
finite is necessary for finding a G-invariant dominating representation.

Lemma 8.2.4. Suppose η≺ η̂ for η ∈∆F
BF(C ), where η̂ commutes with the action of

G. Then [G : Gη] <∞.

Proof. Assume for simplicity that η is irreducible; the general case readily follows.
Decompose η̂=⊕i∈Iηi where I is some finite set. Then there is an i ∈ I such that
ηi

∼= η, since η≺ η̂. Because g η̂= η̂ for all g ∈G , it follows that for every g ∈G there
is some j ∈ I such that gηi

∼= η j . As g runs over G , [gηi ] runs over all equivalence
classes g [η]. It follows that there are at most |I | such equivalence classes, or by the
remark above: [G : Gη] ≤ |I |.

Our next goal is to construct a BF representation η̂ that commutes with the
action of G , such that η≺ η̂. In other words: η is a direct summand of η̂. Observe
that it is enough to consider only summands ηi

∼= gi η for some gi ∈ G . Now as-
sume that [G : Gη] is finite. Then there is a finite dimensional representation of G ,
permuting a basis of the space spanned by the left cosets G/Gη. Write [g ] for the
coset of g ∈ G . Pick a representative gi of each coset. Since the field net has full
G-spectrum, it is possible to find isometries V[gi ] such that αg (V[gi ]) = V[g gi ] and
the following relations hold:

V ∗
[gi ]V[g j ] = δi , j I ,

∑
[gi ]∈G/Gη

V[gi ]V
∗

[gi ] = I .

Now if g ∈G , there is a g j and a h j ∈Gη such that g gi = g j h j . Moreover, multiplic-
ation on the left induces a permutation on the cosets, hence also of the represent-
atives gi . Let η̃ be such that η≺ η̃. Consider η̂(−) =∑

[gi ]∈G/Gη
V[gi ]

gi η̃(−)V ∗
[gi ]. Then

for g ∈G ,

g η̂(−) = ∑
[gi ]∈G/Gη

αg (V[gi ])
g gi η̃(−)αg (V[gi ])

∗ = ∑
[gi ]∈G/Gη

V[gi ]
gi (hi η̃(−))V ∗

[gi ],

where hi is as above. So for η̂ to commute with the G-action, it is sufficient that
h η̃= η̃ for all h ∈Gη. The existence of such a η̃ is also necessary.

To find such an η̃, by semi-simplicity of ∆F
BF(C ) it is enough to consider an

irreducible η. We will do this in the rest of this section. By definition, for each
g ∈ Gη there is a unitary v(g ) such that gη(−) = v(g )η(−)v(g )∗. By considering
g hη= g (hη) and using that η is irreducible, it follows that

v(g h) = c(g ,h)αg (v(h))v(g ), g ,h ∈Gη,

where c(g ,h) is a complex number of modulus one. In fact, it is not difficult to
show that c(g ,h) is a 2-cocycle, with equivalence class [c] ∈ H 2(Gη,T). The co-
homology class does not depend on the specific choice of unitaries v(g ) and is
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the same for each η′ ∼= η. Hence (Gη, [c]) can be seen as an invariant of the sector.
If [c] is the trivial cohomology class, v(g ) is in fact an α-one-cocycle and we can
construct an η′ ∼= η that commutes with the action of Gη, just as in the proof of
Corollary 7.3.3.

The following observation, which amounts to the fact that the direct sum is
independent of the chosen basis, turns out to be convenient.

Lemma 8.2.5. Let η ∈∆F
BF(C ) be irreducible. Consider two direct sums of copies of

η, η̂=∑n
i=1 Viη(−)V ∗

i and η̂′ =∑n
i=1 Wiη(−)W ∗

i . Then η̂= η̂′ if and only if there is a
unitary n ×n matrix λ such that Wi =∑n

i=1λ j i V j .

Proof. (⇒) Define λi j = V ∗
i W j , then λi j ∈ EndF(η) ∼= C, by irreducibility of η. By

a straightforward calculation one easily verifies that λ is indeed a unitary matrix,
and Wi =∑n

i=n λ j i V j .
(⇐) Easy calculation.

Now suppose we have a direct sum η̂(A) =∑n
i=1 Viη(A)V ∗

i . An easy calculation
then shows that for g ∈Gη:

g η̂(−) =
n∑

i=1
αg (Vi )v(g )η(−)v(g )∗αg (V ∗

i ),

where the v(g ) are unitaries as above. Because v(g ) is unitary, it follows that
αg (Vi )v(g ) is a basis of HomF(η, g η̂). This space has a Hilbert space structure, de-
fining an inner product by 〈V ,W 〉I =W ∗V for V ,W ∈ Hom(η, g η̂). Combining this
with the previous observations, we find the following necessary and sufficient cri-
terion.

Proposition 8.2.6. There is a G-equivariant (i.e., commuting with the action of G)
dominating sector η̂≻ η if and only if the following conditions hold:

i. the stabiliser group Gη has finite index in G, i.e. [G : Gη] <∞,
ii. there is a finite-dimensional non-trivial Hilbert space H in F such that for

all V ∈H and g ∈Gη we have αg (V )v(g ) ∈H .

We end this section with a few remarks. First of all, the author unfortunately
does not know of any physical interpretation of the conditions in the proposi-
tion. Furthermore it seems to be difficult to verify these conditions. However,
the proposition generalises the situation where G is finite. In this case, the condi-
tions are trivially satisfied. If one can show that the cocycle c(g ,h) is trivial (as a
cocycle in H 2(Gη,T)), it follows by Theorem 7.3.1 that there is a unitary w such that
v(g ) = αg (w)w∗. Condition (ii) is then satisfied by taking the one-dimensional
Hilbert space spanned by w . Using Theorem 7.3.1 one can show that c(g ,h) is
trivial as a cocycle in the field net, which, however, is not sufficient here.
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As a final remark, suppose that condition (ii) is satisfied. It follows that there
is Hilbert space in F carrying a projective unitary representation. Indeed, choose
an orthonormal basis Vi of H . Then for g ∈ Gη, αg (Vi )v(g ) is a new basis for H .
Write λ(g ) for the unitary transformation that implements the basis change. It
follows that λ(g h) = c(g ,h)λ(g )λ(h).

8.3 Conclusions and open problems

To conclude this part of the thesis, we now briefly summarise the main points, and
point out some open questions.

It would be desirable to arrive at a modular category starting from an AQFT in
three dimensions, for example because of their relevance to topological quantum
computing. In this thesis some steps in this direction are taken. In particular, the
category of stringlike localised or BF representations has many of the properties
of a modular category. The existence of DHR sectors, which cannot be ruled out
a priori, is shown to be an obstruction for modularity. To remove this obstruc-
tion, the original theory A is extended to the field net F, which can be seen as a
new AQFT without DHR sectors. The relation between those theories is partially
made clear, in particular by the crossed product construction of Section 8.1. There
is, however, one point that is not fully understood, namely the question whether
the sectors in the new theory F can be completely described by the sectors of the
theory A. This is the case if for example G is finite, or the conditions of Proposi-
tion 8.2.6 hold for each BF sector of F. In this case, the sectors of F are completely
determined by the crossed product ∆A

BF ⋊∆A
DHR(C ).

Although one major obstruction for modularity has now been removed, this is
not enough to conclude that ∆F

BF(C ) is modular. In particular, there may be de-
generate BF (but not DHR) sectors of F. The other condition is that there should
be only finitely many equivalence classes of BF representations of F. In case the
functor H of Section 8.2 is indeed an equivalence, both properties are determ-
ined by the crossed product, and hence ultimately by ∆A

BF(C ). In particular, in

this situation, absence of degenerate sectors in ∆F
BF(C ) is equivalent to the ab-

sence of degenerate objects in ∆A
BF(C )⋊∆A

DHR(C ). This is essentially because H is
a braided functor, which makes it possible to transfer the degeneracy condition of
the braiding from one category to the other. The absence of degenerate objects of
∆A

BF(C )⋊∆A
DHR(C ) is equivalent to the absence of degenerate BF sectors (that are

not DHR) of A, since by [Müg00] the crossed product has trivial centre if and only
if ∆A

DHR(C ) is equal to the centre of ∆A
BF(C ). The finiteness condition would follow

by counting arguments from finiteness of ∆A
BF(C ).

We give a list of some open problems and questions.

i. In view of the remarks above, it would be interesting to understand the set
of BF (that are not DHR) sectors of A. In particular, are there conditions that
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imply that this set is finite, or does not contain any degenerate sectors? As
for the latter: in the DHR case a condition for this was given in [Müg99]. Per-
haps this condition might be adapted to the case of BF sectors. It should be
noted that both conditions (i.e. non-degeneracy and finiteness) are com-
pletely understood in the case of conformal field theory on the circle, in
terms of an index of certain subfactors [KLM01]. That method, however,
cannot obviously be adapted to the case we are interested in, among other
reasons because we have no condition for factoriality of the relevant algeb-
ras of observables. However, it would be interesting to know if there is an
analogue of the condition of “complete rationality” that ensures modularity.

ii. It would be desirable to have a physical interpretation for the conditions
given in Section 8.2. This might give some hints on how to prove these con-
ditions in concrete theories.

iii. One of our assumptions was the absence of fermionic DHR sectors of A.
It would be interesting to see what can still be done if this assumption is
dropped. In this case, the field net does not satisfy locality, but only twisted
locality. Thus one would lose the interpretation of F as an AQFT in the sense
that it should only consist of observables commuting at spacelike distances.

iv. Can the techniques be useful in describing quantum spin systems? Such
systems are more appropriate for topological quantum computing than re-
lativistic quantum field theories, see e.g. [Kit03]. As we shall see in the next
part of this thesis, it is possible to develop a BF-like theory in the case of
Kitaev’s toric code model.
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Kitaev’s model
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Chapter 9

Kitaev’s quantum double model

In this part of the thesis we introduce Kitaev’s quantum double model [Kit03] and
analyse some aspects of it. The model is defined in terms of a finite group G and a
pair (V ,E) of vertices V and directed edges E between these vertices. In most treat-
ments one considers a finite set of vertices and edges, embedded in some (orient-
able) compact surface, say a sphere or a torus. For reasons sketched in Chapter 3,
however, we are interested in the idealisation of infinite size. This makes the local
quantum physics framework a natural choice, so this is what we will use.

Kitaev’s model is interesting because it has anyonic excitations. If G is non-
abelian, then there are non-abelian anyons as well. It was already realised by Kit-
aev himself that such excitations can be used for quantum computation [Kit03].
Subsequently, this has been worked out in detail by Mochon [Moc03,Moc04], who
gives conditions on G that are sufficient for universal quantum computation.

In this chapter the model and the basic concepts will be introduced. In Chap-
ters 10 and 11 we analyse the simplest case: G =Z2, which is often called the toric
code.

This part of the thesis is partly based on [Naa11c, Naa11b]. The description of
the quantum double model can be found in [BSW11, BMD08, Kit03].

9.1 Basic definitions

Let G be a finite group, which will be fixed for the remainder of this chapter. Con-
sider V =Z2, the vertices of a Z2 lattice. Between these vertices we consider bonds
(or edges) B. For each bond we choose an orientation; for convenience we choose
them as in Figure 9.1. On each bond there is a “G-spin” variable, that is, a quantum
system described by a Hilbert space Hv := C[G], i.e. the group algebra of G . We
identify g ∈G with an element in the group algebra, which we denote by

∣∣g⟩
. This

forms a basis of Hv , which may then be turned into a Hilbert space by requiring
this basis to be orthonormal. Reversing the direction of an edge corresponds to
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b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

τ ′

τ

f

v

Figure 9.1: The vertices (black dots) of the model are indexed by Z2. At each of the bonds (edges),
there is a G-spin variable, described by the Hilbert space C[G]. For convenience, we choose the
orientation as indicated in the picture. One specific site s = (v, f ) has been indicated by a dotted line.
The shaded triangles represent a direct triangle τ and a dual triangle τ’, together with an orientation
(white arrow).

sending
∣∣g⟩ → ∣∣g−1

⟩
. As noted by Kitaev, the construction can be generalised to

finite-dimensional Hopf ∗-algebras H . The model described here corresponds to
the choice H =C[G].

In our discussion we will use the notation and terminology of [BMD08]. Define
a site as a pair (v, f ) consisting of a vertex and an adjacent plaquette (face, or vertex
of the dual lattice), see Fig. 9.1. Two sites sharing either a vertex or a plaquette
define a triangle. A direct triangle τ = (v1, v2, f ) consists of two sites sharing the
same face f , whereas a dual triangle τ′ = (v, f1, f2) consists of two sites sharing the
same vertex. Two examples are shown in Figure 9.1. Each triangle can be given an
orientation in two different ways. In the figure this is indicated by the white arrow
on the triangle.

Note that a triangle either has a bond as one of its sides, or one of its sides
(corresponding to a bond on the dual lattice) crosses a bond. This gives a triangle
an intrinsic orientation (other than the white arrows in the Figure). For a direct
triangle, it corresponds with the orientation of the bond which forms the side of
the triangle. In the dual triangle case, we can assign the side that crosses the bond
an orientation in such a way that the arrow on this side points from the “right” of
the bond to the “left”. An example is shown in Figure 9.1.

One may associate operators to triangles (and to elements g ∈ G), which act
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on the bonds corresponding to the triangles. For a direct triangle, this is the bond
that is one of the sides of the triangle, whereas for dual triangles it is the bond that
is crossed by one of the sites. Consider a triangle τ and a dual triangle τ′. Suppose
that the orientation coincides with the intrinsic orientation defined above. Then
we define operators (acting on the corresponding bonds) by1 (with g ,h ∈G):

T h
τ

∣∣g⟩= δh,g
∣∣g⟩

, Lh
τ′

∣∣g⟩= ∣∣hg
⟩

.

In case the orientations are opposite, the operators are defined by

T h
τ

∣∣g⟩= δh−1,g

∣∣g⟩
, Lh

τ′
∣∣g⟩= ∣∣g h−1⟩ .

Note that the T h
τ are projections. It is straightforward to work out the commuta-

tion relations between these operators.
Let τ,τ′ (both associated to the same bond b ∈ B) be a direct (resp. dual) tri-

angle. Assume that the orientation coincides with the intrinsic orientation, and

define eg ,h = Lg h−1

τ′ T h
τ for g ,h ∈ G . Then eg ,h is a set of matrix units for M|G|(C).

It is therefore reasonable to define the algebra A({b}) of observables acting on a
bond b as M|G|(C) acting on the Hilbert space H{b} = C[G]. The algebras of local
observables A(L), with Λ ∈ P f (B) can then be defined by tensoring the algebras
acting at each site, as in §3.4. The net Λ 7→A(Λ) and the quasi-local algebra A are
defined as in that section.

There are two types of fundamental operators: star and plaquette (or face) op-
erators, associated to sites of the lattice and to group elements g ∈ G , respect-
ively. These can be introduced in terms of the operators T h

τ and Lh
τ′ defined above

(c.f. [Kit03]), but it is more convenient to define how they act on a basis of the local
Hilbert space. We first specify on which bonds the operators act. If s = (v, f ) is a
site, star(s) is the set of bonds that start (or end) in the vertex v . A plaquette plaq(s)
is an ordered list of the bonds that form the boundary of the face f . The ordering is
determined by starting in the vertex v , and listing the bonds in counter-clockwise
order.

Suppose that g ∈G . The operator Ag (s) is then defined as acting on the bonds
of star(s), in the following way. At each bond, consider a basis vector |hi 〉. Then
Ag (s) acts on this basis vector by left multiplication by g if the bond points away
from v , and by right multiplication with g−1 if the bond points towards v . The
plaquette operator B h(s) = B h(v, f ), h ∈ G , is defined on a basis as follows. Con-
sider group elements g1, · · · , gn corresponding to basis elements in the local Hil-
bert spaces of the bonds of plaq(s), ordered as defined above. The operator B h(s)
acts on the tensor product of these basis elements as the δh,σ(g1)···σ(gn ) times the
identity. Here σ(g ) = g if the corresponding bond has the same orientation as the
counter clockwise path, and σ(g ) = g−1 if the orientation is opposite the path.

1These operators correspond to the operators T±,L± defined by Kitaev [Kit03].

133



9. Kitaev’s quantum double model

These definitions are perhaps not so easy to grasp at first sight. It is conveni-
ent to have a diagrammatic representation of a basis

∣∣g1
⟩

, · · · ∣∣gk
⟩

of the bonds in
a star (resp. plaquette). In this diagrammatic representation a graph of vertices
and oriented bonds, labelled by group elements g1, · · ·gn coincides with the tensor
product

∣∣g1
⟩⊗·· ·⊗ ∣∣gn

⟩
of the corresponding basis vectors. In the case of interest

to us, the action of Ag
s can then be described graphically by

Ag (s) b

g4

g2

g1 g3 = b

g g4

g2g−1

g1g−1 g g3

The labels gi denote the corresponding basis vectors
∣∣gi

⟩
at the bonds. On inward

pointing bonds Ag (s) acts as multiplication by g−1 on the right, and on outward
pointing vertices, Ag (s) acts as multiplication by g on the left, as explained above.
Similarly, one can visualise B h

(v, f ) as

B h(v, f )

b b

bb

g1

g2

g3

g4
= δh,g1g2g−1

3 g−1
4

b b

bb

g1

g2

g3

g4

where the vertex v is the lower-left vertex. We will often write these operators as
Ag

s and B h
s , but the reader should be warned that in the next two chapters, the

same notation is used for slightly different (but related) operators: it turns out that
in that specific case it is more convenient to add a multiple of the unit operator to
these operators.

Let s be a site. Using the definition above, it is not so difficult to work out the
commutation relations for operators Ag

s ,B h
s acting on the site s. One finds

Ag
s Ag ′

s = Ag g ′
s , B h

s B h′
s = δh,h′B h

s , Ag
s B h

s = B g hg−1

s Ag
s . (9.1.1)

For distinct sites s and s′, the corresponding star and plaquette operators com-

mute. The adjoints of these operators can be computed to be (Ag
s )∗ = Ag−1

s and
(B h

s )∗ = B h
s , respectively. Note that g 7→ Ag

s gives a unitary representation of G .
These star and plaquette operators at a site s give rise to a faithful represent-

ation of the quantum double D(G), acting on the site s. This representation is
defined by 1⊗ g 7→ Ag

s and δh ⊗e 7→ B h
s . This already suggests that the representa-

tion theory of the quantum double plays an important role in this model.

9.2 Dynamics

We work in the standard framework for quantum spin systems, as described in
§3.4. The local algebras are tensor products of M|G|(C), with one copy acting on
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each bond. In this section we will specify the dynamics of the model, and discuss
ground states.

Recall that dynamics can be specified by local Hamiltonians, satisfying certain
conditions that ensure that they lead to a time evolution on the entire quasi-local
algebra of observables A. These local Hamiltonians can be defined in terms of the
operators Ag

s and B h
s introduced above. For any site s = (v, f ), define A(s) = A(v) =

1
|G|

∑
g∈G Ag

s and B(s) = B( f ) = B e
s . Note that since e is in the centre of G , B e

s only
depends on the face f , not on the vertex v , and also that A(s) and B(s) are both
projections. Moreover, they mutually commute, even if they both act on the same
site.

The local Hamiltonians are sums of the operators A(s) and B(s). Concretely,
let Λ ∈P f (B). Then the corresponding local Hamiltonian is defined by

HΛ =− ∑
star(s)⊂Λ

A(s)− ∑
plaq(s)⊂Λ

B(s).

The summation is over all stars and all plaquettes whose bonds are completely
contained in Λ.

Each term in the local Hamiltonians only acts on the bonds of a star or of a
plaquette. Moreover, in the present situation of a square lattice, there is an obvious
action of the groupZ2 by translations. It follows that the local Hamiltonians HΛ are
defined by a bounded, translation invariant interaction Φ. By Theorem 3.4.3 there
is a corresponding one-parameter group αt of automorphisms of A describing
the time evolution. The next lemma is useful when discussing ground states with
respect to these dynamics.

Lemma 9.2.1 ([AFH07]). Let ω be a state on a unital C∗-algebra A, and suppose
X ∈A satisfies X = X ∗, X ≤ I , and ω(X ) = 1. Then ω(X Y ) =ω(Y X ) =ω(Y ) for any
Y ∈A.

Proof. Note that I − X is a positive operator and that ω(I − X ) = 0. It follows that
ω((I − X )2) = 0, as a consequence of the Cauchy-Schwarz inequality. By the same
inequality we have

|ω(Y (I −X ))|2 ≤ω(Y Y ∗)ω((I −X )2) = 0,

hence ω(Y X ) =ω(Y ). The proof of ω(X Y ) =ω(Y ) is similar.

The following characterisation of ground states for the quantum double model
is inspired by results obtained in [AFH07].

Proposition 9.2.2. There exists a ground state ω0 for the dynamics of the quantum
double model, which has the property that ω0(A(s)) = ω0(B(s)) = 1 for each site s.
Moreover, every translation invariant ground state has this property.
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Proof. Consider the (abelian) subalgebraAab generated by operators A(s),B(s) for
each site s. Define a state ω onAab by ω(A(s)) =ω(B(p)) = 1. The existence of such
a state can be seen by mapping A(s) and B(s) to two copies of the Ising model.
Using the Lemma it is clear that this completely fixes the state on Aab . Consider
an extension of ω to a state ω0 of A. Such an extension always exists by the Hahn-
Banach theorem. The claim is that ω0 is a ground state.

Recall that the time translations are generated by a derivation δ. If X ∈ Aloc

is a local operator, the derivation δ acts on X by δ(X ) = i [HΛ, X ], for Λ ∈ P f (B)
sufficiently large. Because X is local we can write

−iω0(X ∗δ(X )) =∑
v
ω0(X ∗[−A(v), X ])+∑

f
ω0(X ∗[−B( f ), X ])

=∑
v

[
ω0(X ∗X A(v))−ω0(X ∗A(v)X )

]+∑
f

[
ω0(X ∗X B( f ))−ω0(X ∗B( f )X )

]
.

The sums are over all vertices (or faces) of the model. Note that by locality of X
there are only finitely many non-zero terms in the summations. Note that

ω0(X ∗X A(v)) =ω0(X ∗X B( f )) =ω0(X ∗X ),

by an application of Lemma 9.2.1. The Cauchy-Schwarz inequality then shows
that −iω0(X ∗δ(X )) ≥ 0 for local observables X . By a density argument it follows
that this holds for all X ∈ D(δ), and hence ω0 is a ground state.

Now let ω0 be an arbitrary translation-invariant ground state for αt . Since
A(s) and B(s) are projections, it follows that 0 ≤ ω0(A(s)),ω(B(s)) ≤ 1. Recall that
ground states minimise the mean energy HΦ(ω) by Theorem 3.4.7. A close look at
the local Hamiltonians shows that this is the case if and only if ω0(A(s)) =ω0(B(s))
are both equal to 1.

Remark 9.2.3. The condition on the ground states remains valid if the assump-
tion of translation invariance is dropped, but this requires a more careful analysis.
In particular, one has to consider the so-called “surface energy”, describing the
energy at the “surface” of bounded subsets Λ of the bonds. See §6.2 of [BR97], in
particular Theorem 6.2.52, for more details.

9.3 Ribbon operators

Now that the model has been defined, it is interesting to study excitations of the
ground state. To this end we introduce ribbon operators. A ribbon is essentially
a path between two sites of the lattice, see Fig. 9.3. The corresponding ribbon
operators can be thought of as creating a pair of excitations, one at each end of the
ribbon. This already suggests the importance of these ribbon operators.
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b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

b b b b b b b

Figure 9.2: A ribbon between two sites. Note that a ribbon is a collection of non-intersecting tri-
angles and dual triangles, such that their orientations (white arrows) align.

Note that a triangle and its orientation can be specified by τ= (v1, v2, f ), with
v1, v2 vertices and f a dual vertex. The orientation points from the side (v1, f ) to
the side (v2, f ) of the triangle. Similarly, a dual triangle with orientation is fixed by
specifying a vertex and two faces τ′ = (v, f1, f2). Write ∂0τ= (v1, f ) and ∂1τ= (v2, f )
for the sites of a triangle τ, and similarly ∂0τ= (v, f1), ∂1τ= (v, f2) for a dual triangle
τ. With this notation we can introduce ribbons.

Definition 9.3.1. Let s1 and s2 be two distinct sites. A ribbon ξ between s1 and
s2 is a collection τ1, · · · ,τn of non-overlapping triangles (dual or direct) such that
∂0τ1 = s1 and ∂1τn = s2. Moreover, for each i = 1, · · ·n −1 we have ∂1τi = ∂0τi+1.2

Later we will also consider ribbons extending to infinity, which are defined as
above (with the obvious modification that the site s1 is dropped). The definition
ensures that the orientations of the triangles all line up, as in Figure 9.3.

Two (non-overlapping) ribbons ξ1 and ξ2 can be “glued” to form a new ribbon,
ξ = ξ1ξ2, provided the site s1 in which ξ1 ends coincides with the site in which ξ2

starts. Conversely, a ribbon ξ can be cut into two pieces ξ1,ξ2 such that ξ = ξ1ξ2.
With a trivial ribbon ε we just mean the empty set. Clearly, ξε = εξ = ξ for any
ribbon ξ.

With these preparations it is possible to define ribbon operators inductively,
by breaking up ribbons into smaller pieces [BMD08]. Alternatively, they can be
introduced using the diagrammatic language used above [Kit03, BSW11].

2With non-overlapping we mean that the interiors of each pair of triangles have empty intersec-
tion.
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9. Kitaev’s quantum double model

Definition 9.3.2. Let g ,h ∈ G. If ξ is a trivial ribbon (that is, the empty set), set

F h,g
ξ

= δe,g . If ξ is a triangle τ or a dual triangle τ′, we set

F h,g
τ = δe,g Lh

τ , F h,g
τ′ = T g

τ′ .

For general ribbons ξ the operator can be defined inductively, by first decomposing
ξ= ξ1ξ2 and then defining

F h,g
ξ

= ∑
k∈G

F h,k
ξ1

F k−1hk,k−1g
ξ2

. (9.3.1)

The operators F h,g
ξ

are called ribbon operators.

To check that F h,g
ξ

is well defined, it is sufficient to show that F h,g
εξ

= F h,g
ξε

= F h,g
ξ

and that it does not matter how we break up ξ. The latter amounts to showing that

F h,g
ξ1(ξ2ξ3) = F h,g

(ξ1ξ2)ξ3
. These properties can be verified using equation (9.3.1).

For a fixed ribbon ξ one can consider the algebra Fξ generated by the associ-
ated ribbon operators. These ribbon operators have the following algebraic prop-
erties

F h1,g1

ξ
F h2,g2

ξ
= δg1,g2 F h1h2,g1

ξ
, (F h,g

ξ
)∗ = F h−1,g ,

∑
g∈G

F e,g = I .

These properties can be verified using the properties of the triangle operators and
Definition 9.3.2.

We claimed that the ribbon operators create excitations at the endpoints. To
give some indication of why this is true, it is helpful to consider the commutation
relations of ribbon operators with the operators Ag

s and B h
s . Consider a ribbon ξ

such that the starting site s0 and the ending site s1 have distinct vertices and faces.

Then one can show that for any g ,h,k ∈ G we have [Ak
s ,F h,g

ξ
] = [B k

s ,F h,g
ξ

] = 0 if
s ̸= s0 and s ̸= s1. However, if s = s0, then

Ak
s0

F h,g
ξ

= F khk−1,kg
ξ

Ak
s0

, B k
s0

F h,g
ξ

= F h,g
ξ

B kh
s0

.

Similarly, if s = s1 we have

Ak
s1

F h,g
ξ

= F h,g k−1

ξ
Ak

s1
, B k

s1
F h,g
ξ

= F h,g
ξ

B g−1h−1g k
s1

.

We omit the tedious verification of these identities. Now, the characterisation of
ground states in Proposition 9.2.2 implies that a ground state vector Ω (e.g. the
GNS vector in the GNS representation of a ground state) is invariant under the

action of A(s) and B(s). Now consider a vector of the form F g ,h
ξ

Ω. Then all terms

in the local Hamiltonians HΛ commute with F g ,h
ξ

, except possibly those at the sites

s0 and s1: the vector F h,g
ξ

has two excited spots. We will give examples of this in
the next chapter.
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Chapter 10

The toric code

The simplest example of Kitaev’s model is the toric code, corresponding to the
quantum double of the group Z2. Although this model is not powerful enough
for applications to topological quantum computing, it shows interesting features
nevertheless. Many of these features are shared by more complicated models (cor-
responding to non-abelian groups G), which makes the Z2 model an interesting
case study to get a feeling for the model.

In this chapter and the next one we study this model in detail.1 In particu-
lar, we develop a Doplicher-Haag-Roberts type of theory: different charges in the
model are described by localised automorphisms. These localised (and transport-
able) automorphisms can be endowed with the structure of a (modular) tensor
category, the category of representations of D(Z2) [Naa11c]. Because of the sim-
plicity of the model, it is possible to construct everything explicitly. This is the
main aim of this chapter. In the next chapter we address some questions of an
operator algebraic nature for this model, such as Haag duality.

Before going into the details, we point out some related work. There are for
example the papers [NS97, SV93], in which the authors consider G-spin (or, more
generally, Hopf-C∗) chains. There, excitations localised in bounded regions (sat-
isfying the so-called DHR criterion) are considered. Since every injective endo-
morphism of a finite dimensional algebra is in fact an automorphism, the authors
consider amplimorphisms to obtain non-abelian charges. Here, we take a different
approach, and look instead at endomorphisms localised in certain infinite “cone”
regions. In our model the irreducible endomorphisms are all automorphisms, but
since we consider excitations localised in infinite regions, finite dimensionality of
the algebras is not an obstruction any more. The idea of construction charged sec-
tors localised in infinite regions is not new: it is used, for example, in the work of
Fredenhagen and Marcu [FM83].

1I would like to thank professors D. Buchholz and K. Fredenhagen for giving useful references
at the 27th LQP workshop in Leipzig, where the results in this chapter were first presented.
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10. The toric code

Discrete gauge theories in d = 2+1 show similar algebraic features (i.e., fusion
and braiding) of anyons [BDWP92]. Similar models have been studied in the con-
structive approach to quantum fields in lattice gauge theory, in particular for the
gauge group Z2 in [FM83,BF87]. These results have been generalized to the group
ZN in [BN95,BN98]. Although the setting considered here is different, some of the
methods used are similar. A field theoretic interpretation of the model discussed
here can be found in Section 4 of [Kit03].

10.1 The model

Kitaev’s quantum double model has been introduced in the previous chapter. Here
we study the toric code, corresponding to the choice G =Z2. This simplifies some
of the aspects. In particular, we can forget about the orientation of the edges.
Moreover, there is no need to discuss ribbons: it is enough to consider paths on
the lattice and paths on the dual lattice. It is convenient to redefine the star- and
plaquette operators as well. In essence this amounts to adding an overall constant
to the Hamiltonian. To keep the discussion self-contained, we re-introduce these
aspects in this chapter.

As in the previous chapter, we consider the set B of bonds, where we do not
care about the orientation of the bonds. Because G =Z2, the local Hilbert space at
a site is C2. In other words, at each site there is a spin-1/2 degree of freedom. The
corresponding algebra of operators at a site is M2(C), and we will use the standard
Pauli matrices σx ,σy ,σz and the unit I as a basis for this algebra. A subscript will
be used to indicate at which site the matrices act.

The local algebras A(Λ) and the quasi-local algebra A are defined as in § 3.4.
We will say that an operator A is said to have support in Λ, or to be localised in Λ,
if A ∈A(Λ). The set supp(A) ⊂ B is the smallest subset in which A is localised.

The Hamiltonian of Kitaev’s model is defined as before, in terms of plaquette
and star operators. The situation is visualised in Fig. 10.1). Recall that we redefine
the star and plaquette operators. They are given by

As =
⊗

j∈star(s)
σx

j , Bp = ⊗
j∈plaq(p)

σz
j .

They are related to the operators defined in the previous chapter by A(s) = 1
2 (As +

I ) and B(p) = 1
2 (Bp + I ). The local Hamiltonians are then defined by (with Λ f ∈

P f (B)),
HΛ f =− ∑

star(s)⊂Λ f

As −
∑

plaq(p)⊂Λ f

Bp .

There is a natural action of Z2 on the quasi-local algebra, acting by translations.
Denote this action by τx for x ∈ Z2. Note that the interactions are of finite range,
and moreover, they are translation invariant. Hence we are in a position to apply
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10.1. The model

Figure 10.1: The Z2 lattice. The grey bonds each carry a spin-1/2 particle. A star (dashed lines) and
plaquette (thick lines) are shown.

the theory of §3.4. In particular, the one-parameter group αt of time-translations
is generated by the (closure of the) derivation

δ(A) = i [HΛ, A], A ∈A(Λ).

Recall that ground states for these dynamics are states ω of A such that for all
X ∈Aloc , −iω(X ∗δ(X )) ≥ 0.

In [AFH07] it is shown that the model admits a unique ground state2, which
can be computed explicitly. Since we will need the argument later, for the con-
venience of the reader we summarize the results. Crucial in the computation of
the ground state is Lemma 9.2.1.

Consider the abelian algebra AX Z generated by the star and plaquette operat-
ors. This algebra is in fact maximal abelian: A′

X Z ∩A = AX Z [AFH07]. Let ω be
the state on AX Z such that ω(As) =ω(Bp ) = 1 for all plaquette and star operators.3

With help of the lemma, this completely determines the state on AX Z . Moreover,
it minimizes the local Hamiltonians, hence any ground state of the system must
be equal to ω if restricted to AX Z . The goal is then to show that this state has a
unique extension to A.

Let ω0 be an extension of ω to the algebra A.4 Using Lemma 9.2.1 one can

2I thank M. Fannes for a discussion on this construction.
3That such a state exists can be seen by mapping the model to an Ising spin model.
4By the Hahn-Banach theorem an extension ω0 of ω to A always exists.
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10. The toric code

show that for X ,Y ∈Aloc ,

−iω0(X ∗δ(Y )) =∑
s

(ω0(X ∗Y )−ω0(X ∗AsY ))

+∑
p

(ω0(X ∗Y )−ω0(X ∗Bp Y )),
(10.1.1)

where the variable s runs over all stars in the lattice, and p over all plaquettes. If
one takes X = Y , an application of the Cauchy-Schwartz inequality shows that the
right hand side is positive, hence ω0 is a ground state.

As mentioned before, in the model at hand this extension is actually unique.
In fact, let X be a monomial in the Pauli matrices, say X = ∏

i∈Λσ
ki

i where Λ ⊂ B
is finite and ki = x, y or z. Then ω0(X ) is non-zero if and only if X is a product of
star and plaquette operators, in which case it is 1. This completely determines the
state ω0, since the value of ω0(X ) can be computed by a repeated application of
Lemma 9.2.1. For example, to make plausible why ω0 is zero if X is not a product
of star and plaquette operators, consider an operator of the form A =σx

j for some
bond j . Then there is a plaquette p such that j ∈ plaq(p). But then

ω0(A) =ω0(Bpσ
x
j Bp ) =−ω0(A).

In particular, for a local observable A that is a monomial in the Pauli matrices, the
set of bonds where A has a σx component should have the property that the inter-
section with each plaquette plaq(p) has an even number of elements. Continuing
in this manner, one can show that indeed only products of star and plaquette op-
erators lead to non-zero expectation values [AFH07].

Proposition 10.1.1. There is a unique (hence pure) ground state ω0. This state
is translation invariant. The self-adjoint H0 generating the dynamics in the GNS
representation (π0,H0,Ω), when normalized such that H0Ω= 0, satisfies Sp(H0) ⊂
{0}∪ [4,∞).

Proof. 5 We have already discussed existence and uniqueness of ω0. Translations
map star operators into star operators, and plaquette operators into plaquette op-
erators, hence the ground state is translation invariant.

Since ω0 is a ground state, it is invariant under the dynamics and the time
evolution can be implemented by a strongly continuous group t 7→Ut of unitaries.
We can choose Ut such that UtΩ=Ω. It follows that there is an (unbounded) self-
adjoint H0 such that Ut = e i t H0 and H0Ω= 0 (by Theorem 3.4.5).

We claim that Sp H0 ⊂ {0}∪ [M ,∞) is equivalent to

− iω0(X ∗δ(X )) ≥ M
(
ω0(X ∗X )−|ω0(X )|2) , (10.1.2)

5I am grateful to an anonymous referee, who pointed out a gap (and a suggestion on how to fix
this gap) in an earlier version of this proof.
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10.1. The model

for all X ∈Aloc , because the ground state is non-degenerate. Indeed, since H0Ω=
0 with Ω the GNS vector, the inequality is equivalent to 〈XΩ, H0XΩ〉 ≥ M(∥XΩ∥2−
|〈Ω, XΩ〉|2) because 〈XΩ, H0XΩ〉 = ω0(X ∗δ(X )). Here we have identified X with
its image π0(X ), which is possible since π0 is a representation of a UHF (hence
simple) algebra. On the other hand, the spectrum condition is equivalent to H0 +
MPΩ ≥ M I , where PΩ is the projection on the subspace spanned by Ω (by non-
degeneracy, this is the spectral projection corresponding to {0}). This is equivalent
to the condition

〈Ψ, (H0 +MPΩ)Ψ〉 = 〈Ψ, H0Ψ〉+M |〈Ω,Ψ〉|2 ≥ M∥Ψ∥2

for all Ψ in the domain D(H0) of H0. But π(Aloc )Ω is a core for H0 (compare with
the proof of [BR97, Prop. 5.3.19]), hence it is enough to check the inequality for
Ψ = XΩ with X ∈ Aloc . This shows that inequality (10.1.2) is equivalent to the
assertion on the spectrum of H0.

We now show that inequality (10.1.2) indeed holds for M = 4. As a first step, we
claim that if either X or Y is a local operator in AX Z ,

− iω0(X ∗δ(Y )) = 4
(
ω0(X ∗Y )−ω0(X )ω0(Y )

)
= 0. (10.1.3)

Under these assumptions, the left-hand side can be seen to vanish by eqn. (10.1.1)
and Lemma 9.2.1. As for the right hand side, consider the case where X ∈ AX Z

(the other case is proved similarly). In this case, X = ∑
i λi Xi where each Xi is a

product of star and plaquette operators. Using Lemma 9.2.1 again, it follows that
ω0(X ∗Y ) =∑

i λiω0(Y ) =ω0(X )ω0(Y ), proving the claim.
Now consider the general case, with a local operator X = XX Z +∑

i∈I λi Xi ,
where XX Z ∈ AX Z and each Xi (with i in some finite set I ) is a monomial in the
Pauli matrices such that Xi ∉ AX Z . Since Xi ∉ AX Z , there is some As or Bp that
does not commute with Xi . Suppose this is As . Since Xi is a monomial in the
Pauli matrices, this actually implies that {As , Xi } = 0, in other words, they anti-
commute. Note that this implies that ω0(Xi ) is zero for each i ̸= 0, since by the
same trick as used before it follows that ω0(Xi ) =−ω0(Xi ). By the remarks above,
equation (10.1.2) reduces to

− i
∑

i , j∈I
ω0(X ∗

i δ(X j )) ≥ 4
∑

i , j∈I
ω0(X ∗

i X j ). (10.1.4)

Note that for each Xi , there is a finite number ni of plaquette and star operators
that anti-commute with Xi . In fact, ni ≥ 2, since if there is for example one star
operator that does not commute with Xi , there must necessarily be another one
with this property.6 Note that if ni ̸= n j , there is a star or a plaquette operator

6This amounts to saying that excitations always exist in pairs in finite regions in Kitaev’s
model [Kit03].
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10. The toric code

Figure 10.2: A path on the lattice (left black line) and a ribbon. The dots on the ribbon indicate a
combined site, i.e. a plaquette with one of its vertices.

that commutes with Xi and anti-commutes with X j (or vice versa). Consequently,
ω0(X ∗

i X j ) = 0.
Now define for each integer k the finite set Ik = {i ∈ I : ni = k} and the oper-

ators X̃k = ∑
i∈Ik

Xi , with the understanding that X̃k = 0 if Ik is the empty set. By
the considerations above, it then follows that

∑
i , j∈I ω0(X ∗

i X j ) = ∑
k≥2ω0(X̃ ∗

k X̃k ),
since ni ≥ 2 for each i ∈ I . On the other hand, from equation (10.1.1) it follows
that −iω0(X ∗

i δ(X j )) = 2niω(X ∗
i X j ). It then follows that the left hand side of the

inequality (10.1.4) is equal to 2
∑

k≥2 kω0(X̃ ∗
k X̃k ). From this it easily follows that

inequality (10.1.4) holds.

The spectrum condition has important consequences for the correlation func-
tions; for example, it implies exponential clustering. I.e., ground state correlations
decay exponentially [NS06].

10.2 String operators

In this section we introduce string operators associated to paths (and dual paths)
on the lattice. Such string operators create excitations at the endpoints. They are
in fact related to the ribbon operators introduced in the previous section. How-
ever, since Z2 is abelian, the definition simplifies considerably.

In this chapter, by a site, we mean either a point on the lattice, a plaquette, or
a pair of a plaquette with one of its vertices (i.e., a combined site). Sites can be
seen as the places where excitations can be introduced. Between two sites of the
same type, we can consider paths. A path between two points on the lattice is just

144



10.2. String operators

a path consisting of bonds of the lattice. A path between plaquettes can be viewed
as a path on the dual lattice. A path between combined sites is called a ribbon (see
Figure 10.2), as defined in the previous chapter. In the present setting, one can
think of a ribbon as being composed by a path on the lattice and one on the dual
lattice.

Definition 10.2.1. Let γ be a finite path between two sites. If γ is a path on the
lattice, define the corresponding string operator as F Z

γ = ⊗
i∈γσz

i . If it is a path on

the dual lattice, the string operator is defined as F X
γ = ⊗

i∈γσx
i . Here i ∈ γ means

that i is a bond that intersects the path on the dual lattice. Finally, a string op-
erator corresponding to a ribbon is a combination of these constructions. That is,
F Y
γ = F X

γ1
F Z
γ2

, where γ1 is the path on the lattice and γ2 the path on the dual lattice,
corresponding to the ribbon.

It should be clear from the context whether we consider paths on the lattice,
paths on the dual lattice, or ribbons. We say that a path or the corresponding string
operator is of type X,Y or Z, corresponding to the subscripts used in the definition.
Often the exact type of the string operator is not important, and we will just write
Fγ or even F1,F2, · · · . Since string operators are tensor products of Pauli matrices,
it follows immediately that they are self-adjoint. Moreover, if F1,F2 are two string
operators, then they either commute or anti-commute.

We now make some observations that will be used later. Consider a plaquette
p. The corresponding plaquette operator Bp is just the string operator F Z

γ , where
γ is the closed path consisting of the edges of the plaquette. If p ′ is, for example, a
plaquette adjacent to p, Bp Bp ′ is the string operator corresponding to the closed
path on the outer edges of the two plaquettes. Continuing this way, it follows that
the string operator corresponding to a closed path on the lattice is the product
of plaquette operators corresponding to the plaquettes enclosed by the path. The
reader will have no trouble checking that similarly a string operator corresponding
to a closed path on the dual lattice is the product of all star operators correspond-
ing to the stars enclosed by the path.

Write (π0,H0,Ω) for the GNS representation obtained from the ground state
ω0. An easy calculation shows that ω0((As − I )∗(As − I )) = 0 for any star s. A similar
result holds for the plaquette operators Bp , hence

π0(As)Ω=Ω, π(Bp )Ω=Ω. (10.2.1)

This relation will be useful later. This property can be interpreted as the ground
state vector minimizing the value of each local Hamiltonian [Kit03].

Now suppose that γ is a path that does not intersect itself. Then one sees that
Fγ commutes with all star operators As , except for those corresponding to the star
based at the endpoints of γ. Clearly Fγ commutes with all plaquette operators.
Considering the definition of the local Hamiltonians, π0(Fγ)Ω can be interpreted
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10. The toric code

as a state vector describing a pair of excitations at the endpoints ofγ [Kit03]. A sim-
ilar argument holds for paths on the dual lattice, where the excitations are located
at plaquettes, and we have anti-commutation with the corresponding plaquette
operators.

As noted above, γ is a closed path, the corresponding operator Fγ can be writ-
ten as a product of plaquette operators, hence ω0(Fγ) = 1 by Lemma 9.2.1. Simil-
arly, if γ is a closed dual path, Fγ is a product of star operators. From this it follows
that π0(Fγ)Ω=Ω for closed paths γ. As an easy consequence, consider two paths
γ and γ′ with the same endpoints. Then we have ω0((Fγ−Fγ′)∗(Fγ−Fγ′)) = 0, be-
cause the cross-term FγFγ′ is precisely the string operator corresponding to the
loop formed by γ and γ′. Hence π0(Fγ)Ω=π0(Fγ′)Ω. In physical terms this means
that the excitations created do not depend on the pathγ, but only on its endpoints.

10.3 Localized endomorphisms

In this section we describe localised excitations of the system. Recall that string
operators corresponding to paths (or dual paths) on the lattice create excitations
at the endpoints of the paths [Kit03]. The idea is to consider a single excitation
by moving one of the excitations to infinity.7 This technique is also used in, for
instance, lattice gauge theory [BN98, FM83]. We show that in Kitaev’s model such
excitations can be described by localised automorphisms of A.

First recall the definition of a localised endomorphism. In the present model,
it can be stated as follows:

Definition 10.3.1. Let ρ be a ∗-endomorphism of A. Let Λ ⊂ B be arbitrary. Then
ρ is said to be localised in Λ if ρ(A) = A for all A ∈ A(Λc ). Here Λc denotes the
complement of any subset Λ of B.

We will primarily be interested in cone regions, although in fact the specific
shape of the regions is not important (see also Remark 10.3.8 below).

Definition 10.3.2. Consider a point on the latticeZ2, with two rays emanating from
it, such that the angle between those rays is positive but smaller than π. These two
rays bound a convex subset of R2. A cone Λ ⊂ B consists of all bonds that intersect
the interior of this convex area.

Remark that for x ∈Z2 there is a translated cone Λ+x. Furthermore,
∪

x∈Z2 (Λ+
x) is the set of all bonds. Finally, τx (A(Λ)) =A(Λ+ x) for any Λ⊂ B. These proper-
ties hold in fact for any subset Λ of the bonds containing at least a horizontal and
a vertical bond.

As we will see later, it will be necessary to investigate excitations that appear
near the edges of a cone Λ.

7I first learned of this idea from a presentation by P. Fendley.
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10.3. Localized endomorphisms

Figure 10.3: Example of a cone (bold bonds). The shaded region is the area bounded by two lines
emanating from a point.

Definition 10.3.3. A vertex v lies on the boundary boundary!of a cone of Λ if and
only if either v lies on one of the two rays or v lies outside the convex area bounded
by the two rays and is one of the endpoints of a bond b ∈Λ. A plaquette p is at the
boundary of Λ if and only if some, but not all, bonds that enclose the plaquette are
contained in Λ. The boundary of the complement Λc of a cone is defined to be equal
to the boundary of Λ.

The string operators induce localised endomorphisms (in fact, automorph-
isms) of A. If γ is a path starting at a site x and extending to infinity, write γn

(n ∈N) for the finite path consisting of the first n bonds of the path γ.

Proposition 10.3.4. Let Λ be a cone and let k = X ,Y , Z . Choose a path γk of type
k in Λ extending to infinity. Consider the corresponding string operators F k

γn
for

n ∈N. For any A in A, define

ρk (A) = lim
n→∞AdF k

γn
(A), (10.3.1)

where the limit is taken in norm. Then for each k, ρk defines an outer automorph-
ism of the quasi-local algebra A. These automorphisms are localised in Λ.

Proof. In the proof we will omit the symbol γ and write F k
n . Suppose A is an ob-

servable localised in a finite region Λ0. Then one can find n0 such that (γn \ γn0 )∩
Λ0 =; for all n > n0. In other words, new parts of the path all lie outside Λ0. But
then it follows that AdF k

n (A) = AdF k
n0

(A) for all n > n0, hence the limit in equa-
tion (10.3.1) converges in norm for any local operator A.
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To define ρk on A, extend by continuity. Indeed, since each F k
n is a unitary op-

erator, ∥ρk (A)∥ = ∥A∥ for each local observable. The local observables are norm-
dense in A, so that ρk extends uniquely to A. By continuity of the ∗-operation and
joint continuity of multiplication (in the norm topology), ρk is a∗-endomorphism.
The localization property immediately follows from locality: if B ∈ A(Λc ), then it
commutes with F k

n for each n.
The endomorphism ρk is in fact an automorphism. Indeed, because Pauli

matrices square to the identity, ρk ◦ρk is the identity. To see that the automorph-
isms are outer, it is enough to notice that the sequence F k

n is not a Cauchy se-
quence in A, hence it does not converge to an element in A. By Theorem 6.3
of [EK98], it follows that the automorphisms are outer.8

Note that the automorphismρk depends on the choice of pathγk . If necessary,
this path dependence will be emphasized by using the notation ρk

γ.
The automorphisms defined in Proposition 10.3.4 induce states by composing

with the ground state.

Definition 10.3.5. Let x be a site and γ a path of type k = X ,Y , Z starting at x and
extending to infinity. Define a state ωx

k of A by ωx
k (A) =ω0(ρk

γ(A)).

At first sight, this state appears to depend on the specific choice of path. How-
ever, this is not the case.

Lemma 10.3.6. For each k = X ,Y , Z and each site x of the same type, the state ωx
k

only depends on x, but not on the path γ.

Proof. First consider the case k = Z , so that x is a point on the lattice. To prove
independence of the path, consider another point y and let γ1 and γ2 be two paths
from x to y . Denote the corresponding string operators by F Z

1 and F Z
2 . This allows

to define two (a priori distinct) states

ω
x,y
i (A) =ω0(F Z

i AF Z
i ), i = 1,2.

Note that the string operators commute with plaquette operators, hence clearly
ω

x,y
i (Bp ) = 1 for each plaquette p. As for the star operators, note that each star

has an even number (0,2 or 4) of edges in common with the paths γi , except at
the endpoints x and y , where there are an odd number of edges in common. Let
s be the star based at x. Suppose for the sake of example that it has one edge
in common with the path γ1. Then, using the commutation relations for Pauli
matrices,

ω
x,y
1 (As) =ω0(F Z

1 AsF Z
1 ) = i 2ω0(As) =−1.

8Alternatively, this follows because the GNS representation of ω0 ◦ρk is disjoint from the GNS
representation of ω0, see Theorem 10.3.7.
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A similar calculation holds in the case of 3 common edges, or for a star s containing
the endpoint y . Summarizing, we find that ωx,y

1 and ω
x,y
2 coincide on the abelian

algebra AX Z , taking the value 1 on all plaquette operators. On the star operators
they take the value −1 if the star is based at either x or y , and 1 otherwise. A similar
argument as given for the ground state now allows us to compute the value of the
states on arbitrary elements of the local algebras, and it follows that both states
coincide.

There is in fact another way to see this. Let for example γ be a finite path of
type Z . Let p be a plaquette such that p ∩γ is non-empty. Then it is easy to see
that F Z

γ Bp = F Z
γ′ , where the path γ′ is obtained from γ by deleting the bonds of

γ∩p and adding the bonds p \γ to the path γ. Hence once can use the plaquette
operators to deform one path into another, provided the endpoints are the same.
Since

ω0(F Z
γ AF Z

γ ) =ω0(Bp F Z
γ AF Z

γ Bp ) =ω0(F Z
γ′ AF Z

γ′ )

it follows that the states coincide. A similar argument can be given for paths of
type X .

Now consider the case where γ1 and γ2 are two paths starting at x and extend-
ing to infinity. Let A be a local observable, localised in some finite set Λ⊂ B. Then
there is an n0 such that the paths γ1

n and γ2
n do not return to Λ for n ≥ n0. Consider

a path γ′ ⊂Λc from γ1
n0

to γ2
n0

. By locality and the result above, we then have

ω0(ρZ
γ1 (A)) =ω0(F Z

γ1
n0

AF Z
γ1

n0
) =ω0(F Z

γ′ F Z
γ1

n0
AF Z

γ1
n0

F Z
γ′ )

=ω0(F Z
γ2

n0
AF Z

γ2
n0

) =ω0(ρZ
γ2 (A)).

By continuity this result extends to observables A ∈A, hence the state ωx
Z is inde-

pendent of the path.
The argument for the states ωx

X and ωx
Y is essentially the same. The difference

is that one has to consider points x, y in the dual lattices, i.e. plaquettes of the
lattice, together with paths on the dual lattice. E.g., for k = X one finds

ω
x,y
X (As) = 1, ω

x,y
X (Bp ) =

{
−1 x, y ∈ p

1 otherwise.

The argument is now the same as for ωx
Z .

The state ωx
k describes a single excitation. By the GNS construction, this leads

to a corresponding representation πωx
k

of A. The GNS triple coming from the
ground state ω0 will be denoted by (π0,H0,Ω). The remarkable feature is that
representations corresponding to single excitations cannot be distinguished from
the ground state representation when restricted to the complement of a cone.
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10. The toric code

Figure 10.4: Consider the state induced by thick path on the lattice. A path γ on the dual lattice
(dashed) defines a string operator F X

γ . The state has value −1 on this operator.

Theorem 10.3.7. Let Λ⊂ B be any cone. Then

π0 ↾A(Λc ) ∼=πωx
k
↾A(Λc ), (10.3.2)

for k = X ,Y , Z and any site x. In addition, πωx
k

∼=πω
y
l

if and only if k = l . This holds

for k = 0, X ,Y , Z , where ωx
0 :=ω0.

Proof. Let x be a site. Choose a path γ (of type k) in Λ, starting at x and going to
infinity. Consider ρk := ρk

γ as above. Then π0◦ρk is localised in Λ, in the sense that

π0 ◦ρk (A) = π0(A) for all A ∈ A(Λc ). Moreover, it is a GNS representation for the
state ωx

k , essentially by definition of ωx
k (the Hilbert space is H0 and Ω the cyclic

vector).9 Hence by uniqueness of the GNS representation, π0 ◦ρk ∼=πωx
k
. Together

with localization this yields equation (10.3.2).
Let y be another site. Consider a path γ′ from x to y , with corresponding string

operator F k
γ′ . Note that AdF k

γ′ ◦ρk is precisely the automorphism induced by the

path from y to infinity, obtained by concatenating γ′ with γ. From unitarity of F k
γ′

it is easy to see that πωx
k

∼= πω
y
k
, proving that the GNS representations of type k are

equivalent, independent of the starting site.
To complete the proof, we show that the representations are globally inequi-

valent. Note that ω0 is a pure state, hence the GNS representation is irreducible.
The GNS representations of the states ωk can be obtained by composing π0 with
an automorphism of A, hence they are also irreducible. But this implies that ω0

9Note that ω0 and ωk
x are automorphic states in the terminology of [KR97, Ch. 12]. The state-

ment is then an example of Proposition 12.3.3 of the same reference.
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10.3. Localized endomorphisms

and ωk are factor states. Moreover, since the representations are irreducible, unit-
ary equivalence is equivalent to quasi-equivalence of the states [KR97, Prop. 10.3.7].
Recall that in the situation at hand, two factor statesω1 andω2 are quasi-equivalent
if and only if for each ε > 0, there is a finite set of bonds Λ̂ such that for all finite
sets Λ̃⊂ Λ̂c and B ∈A(Λ̃), |ω1(B)−ω2(B)| < ε∥B∥, by Corollary 2.6.11 of [BR87]. We
show that this inequality cannot hold.

Consider for the sake of example the case ω0 and ωx
Z , for some point x on the

lattice. Set ε= 1. Without loss of generality, we can assume that Λ̂ contains the star
based at x. Since Λ̂ is finite, it is possible to choose a closed non-self-intersecting
path γ in the dual lattice, such that the set Λ̂ is contained in the region bounded by
the path (see Figure 10.4). Consider the string operator F X

γ corresponding to this
path. Then clearly this operator is localised in a finite region in the complement
of Λ̂. Recall that F X

γ is the product of star operators enclosed by the path γ, in par-

ticular the star based at x. That is, F X
γ = Astar(x) As1 · · · Asn for certain stars s1, . . . sn .

But this implies

|ω0(F X
γ )−ωx

Z (F X
γ )| = |1−ωx

Z (Astar(x))| = 2 > ∥F X
γ ∥.

The other cases are similar, if necessary using plaquettes instead of stars.

Remark 10.3.8. The fact that Λ is a cone is not essential at this point. What is
important is that it should be possible to choose a path extending to infinity con-
tained in Λ. In particular, the proof implies that it is not possible to sharpen the
result to unitary equivalence when restricted to the complement of a finite set.
At one point in the analysis however, notably in the proof of Theorem 11.1.2, it
is essential to be able to translate the support of any local observable to a region
completely inside Λ. If Λ is a cone, this is always possible.

Note that in the language of algebraic quantum field theory, the representa-
tions πωk are said to satisfy a selection criterion. Usually one imposes such a selec-
tion criterion to select physically relevant representations (c.f. equations (3.2.1)
and (6.2.2)). Here however, we start with physically reasonable constructions and
arrive at the criterion. The criterion here can be interpreted as a lattice analogue of
localization in spacelike cones, as considered in [BF82a]. An example of a model
admitting such representations, albeit a model mainly of mathematical interest,
is constructed in [BF82b]. The interpretation is that the excitations cannot be dis-
tinguished from the ground state outside a cone region. It would be interesting to
know if there are other irreducible representations of A, not unitarily equivalent
to the representations in Theorem 10.3.7, satisfying this criterion. One probably
has to impose additional criteria to select physically relevant representations (cf.
the condition on the existence of a mass gap in [BF82a]).

For the automorphisms considered here a similar property can be derived. In
particular, the automorphisms are covariant with respect to the time evolution.
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10. The toric code

Moreover the generator has positive spectrum bounded away from zero. Note that
the algebra A (being UHF) is simple, hence π0 is a faithful representation. To sim-
plify notation, from now on we identify π0(A) with A and often drop the symbol
π0, as already done in the proof of Proposition 10.1.1.

Proposition 10.3.9. Let γ be a path to infinity of type k. Then ργ is covariant for
the action of αt . In fact, suppose γ is of type Z . Then, for all t ∈R and A ∈A,

ργ(αt (A)) = e i t (H0+2As )ργ(A)e−i t (H0+2As )

with Sp(H0 +2As) ⊂ [2,∞). Here s is the starting point of γ. For the case k = X one
has to replace As by Bp , where p is the plaquette where the path starts. The case
k = Y has generator H0 +2Bp +2As , with spectrum contained in [4,∞).

Proof. We prove the result for paths of type X . The other cases are proved by mak-
ing the obvious modifications. First note that for A ∈Aloc ,

αt (A) = lim
Λ→Z2

e i HΛt Ae−i HΛt ,

with convergence in norm.
By the same reasoning as in the proof of Lemma 9.2.1, one sees that ργ(As) =

−As . Hence if Λ⊃ star(s), we have ργ(HΛ) = HΛ+2As . By expanding the exponen-
tial into a power series, it is then clear that

ργ(e i t HΛ Ae−i t HΛ) = e i t (HΛ+2As )ργ(A)e−i t (HΛ+2As ).

One then sees (remark in particular that As commutes with all local Hamiltonians)
that for all A ∈ A we have ργ(αt (A)) = Utργ(A)U∗

t , where Ut is the unitary Ut =
exp(i t (H0 +2As)).

It remains to show the spectrum condition. This can be done by similar meth-
ods as used in the proof of Proposition 10.1.1. The spectrum condition is equival-
ent to the inequality

−iω(X ∗δ(X ))+2ω(X ∗As X )−2ω(X ∗X ) ≥ 0

for all X ∈ Aloc . We then proceed as before: write X = XX Z +∑
i Xi where XX Z ∈

AX Z and Xi ∉ AX Z monomials in the Pauli matrices. After substituting this into
the inequality, all terms containing XX Z vanish. By the same reasoning as in the
proof of Proposition 10.1.1 one then sees that this inequality is indeed satisfied for
all X ∈Aloc .

The following corollary is immediate.

Corollary 10.3.10. The states ωk
γ are invariant with respect to αt .
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10.4 Fusion, statistics and braiding

The localised endomorphisms considered in the previous section can be endowed
with a tensor product. In fact, it is possible to define a braiding in a canonical way.
This braiding is related to the statistics of particles. In the DHR analysis, a crucial
role in the construction is played by Haag duality in the vacuum sector. For dealing
with cone localised endomorphisms, the appropriate formulation is the condition
that for each cone Λ the following equality holds:

π0(A(Λ))′′ =π0(A(Λc ))′.

Note that by locality, one always has π0(A(Λ))′′ ⊂ π0(A(Λc ))′. In the next chapter
we will give a proof of Haag duality in this case.

It turns out, however, that in the present situation we can do without Haag du-
ality. This requires a bit more work, but has the benefit that all the constructions
can be carried out explicitly. In this way we can prove properties that normally
require Haag duality, for example to control the algebras in which intertwiners are
contained. To clarify this, first note that Theorem 10.3.7 implies in particular that
the localised automorphisms defined by paths extending to infinity are transport-
able.

Definition 10.4.1. Let Λ be a cone and suppose that ρ is an endomorphism of A
localised in Λ. Then ρ is called transportable, if for any cone Λ̂ there is a unitary
equivalent10 endomorphism ρ̂ localised in Λ̂.

One of the applications of Haag duality is to get more control over the unit-
ary setting up the equivalence. Specifically, one can show that the intertwiners
are elements of the (weak closure) of cone algebras. Recall that an intertwiner V
from an endomorphism ρ1 to ρ2 is an operator such that V ρ1(A) = ρ2(A)V for all
A ∈ A. A unitary intertwiner is also called a charge transportation operator (or
simply charge transporter). In our model we will be able to prove, without invok-
ing Haag duality, that the charge transporters are elements of the weak closure of
cone algebras. We again identify π0(A) with A in the proof.

Lemma 10.4.2. Let γ1 (resp. γ2) be a path of type k starting at a site x (resp. y) and
extending to infinity. Then there is a unitary intertwiner V from ρk

γ1
to ρk

γ2
such that

F k
γ̂

V Ω=Ω (where Ω is the GNS vector for ω0) for any path γ̂ from x to y.
Moreover, if for each n a path γ̃n from the n-th site of γ1 to the n-th site of γ2 is

chosen such that limn→∞ dist(γ̃n , x) =∞, then for Vn = F n
1 F k

γ̃n
F n

2 , where F n
i is the

string operator corresponding to the path γi
n , we have

V = w-lim
n→∞ Vn . (10.4.1)

10We do not require that this unitary lives in A. More precisely, we demand that π0 ◦ρ ∼=π0 ◦ ρ̂.
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In other words, Vn is a sequence of operators converging weakly to V .

Proof. First note that a unitary V as in the statement is necessarily unique because
any unitary intertwiner from ρk

γ1
to ρk

γ2
is a scalar multiple of V , by Schur’s lemma

and irreducibility of π0. To show existence, first consider (for simplicity) the case
where γ1 and γ2 start at the same site x. As remarked earlier in the proof of The-
orem 10.3.7, Ω is a cyclic vector for ρk

1 and for ρk
2 (we will write ρk

1 instead of ρk
γ1 in

the proof). Moreover, the corresponding vector state is ωx
k . By uniqueness of the

GNS construction, there is a unitary V such that V ρk
1 (A) = ρk

2 (A)V for all A ∈ A,
and V Ω=Ω.

Choose paths γ̃n as in the statement of the lemma. The path obtained by con-
catenating γ̃n with the paths γ1

n and γ2
n can be seen as a loop based at x that gets

larger and larger as n gets bigger. Now consider a sequence Vn of unitaries defined
by Vn = F n

1 F n
2 F k

γ̃n
where F n

i is defined in the statement of the Lemma. Note that
Vn is a product of star and plaquette operators, since it is the path operator of a
closed loop. Hence, VnΩ = Ω by equation (10.2.1). Suppose B ∈ Aloc . Let N be
such that γ̃n ∩ supp(B) =; for all n ≥ N . Then from locality, one can easily verify
that Vnρ

k
1 (B) = ρk

2 (B)Vn for all n ≥ N , in other words,

lim
n→∞〈ρk

1 (A)Ω,Vnρ
k
1 (B)Ω〉 = lim

n→∞〈ρk
1 (A)Ω,ρk

2 (B)VnΩ〉 = 〈Ω,ρk
1 (A)∗ρk

2 (B)Ω〉,

for all A,B ∈Aloc . On the other hand, for each A,B ∈Aloc ,

〈ρk
1 (A)Ω,V ρk

1 (B)Ω〉 = 〈Ω,ρk
1 (A)∗ρk

2 (B)Ω〉,

since V Ω =Ω. The sequence Vn is uniformly bounded and because ρk
1 (Al oc )Ω is

dense in H0, since ρk
1 is an automorphism, it follows that Vn → V weakly. Seeing

that any path γ̂ from x to x is a loop, it is clear that F k
γ̂

V Ω=Ω.

As for the general case, suppose γ1 starts at the site x and γ2 starts at the site
y . Choose a path γ̃ from x to y . Then ρ̂ := AdF k

γ̃
◦ρk

1 is defined by a path starting

at y . By the argument above, there is a unitary V̂ intertwining ρ̂ and ρk
2 such that

V̂ Ω=Ω. Set V = F k
γ̃

V̂ . It follows that V is an intertwiner from ρk
1 to ρk

2 that satisfies

F k
γ

V Ω=Ω for all paths γ from x to y , because F k
γ̃

F k
γ

is the path operator of a loop.

The claim on the converging net follows from the construction.

A pleasant consequence of the above proof is that a specific sequence conver-
ging to the intertwiners is given, which makes it possible to do explicit calcula-
tions. A direct consequence of the Lemma is that we have some control over the
algebras containing the unitary intertwiners, a point where usually Haag duality is
used.
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Theorem 10.4.3. Suppose Λ1 and Λ2 are two cones such that there is another cone
Λ ⊃Λ1 ∪Λ2. For k = X ,Y , Z , consider ρk

i
∼= πωk localised in Λi for i = 1,2, defined

by paths γi extending to infinity. Let W be a unitary such that W ρk
1 (A) = ρk

2 (A)W
for all A ∈A. Then W ∈A(Λ)′′.

Proof. By Schur’s lemma, W is a multiple of the intertwiner V in the previous
lemma. The geometric situation makes it clear that a net Vn as in the lemma can
be chosen to be a net in A(Λ). This net converges weakly to V , by the previous
Lemma.

Remark 10.4.4. Again it is not essential that Λ as in the theorem is a cone. It is
enough to be able to chose paths γ̃n in as in Lemma 10.4.2 that lie inside Λ. But
note that the smaller Λ is, the more control one has over the algebra where the
intertwiners live in.

Proposition 10.4.5. The representations ρk are covariant with respect to the ac-
tion τx of translations. That is, for each x ∈ Z2 there is a unitary W (x) such that
ρk (τx (A)) = W (x)ρk (A)W (x)∗ for all A ∈A and the map x 7→ W (x) is a group ho-
momorphism.

Proof. Let γ denote the string (starting at the site x0) defining ρk . For x ∈Z2, con-
sider the translated string γ̂ = γ− x. This defines an automorphism ρ̂k . In fact,
ρ̂k = τ−x ◦ρk ◦τx . Then by Lemma 10.4.2 there is a unitary intertwiner Vx from ρk

to ρ̂k . We choose Vx such that the condition in Lemma 10.4.2 is satisfied.
Write U (x) for the unitaries that implement the translations in the GNS rep-

resentation of ω0. Define W (x) = U (x)Vx . It then follows that for all A ∈ Aloc we
have ρk (τx (A)) = W (x)ρk (A)W (x)∗, and hence by continuity for all A ∈ A. It re-
mains to show that W (x) is a representation of Z2. By irreducibility of ρk it follows
that W (x+ y) =λ(x, y)W (x)W (y) with λ a 2-cocycle of Z2 taking values in the unit
circle. The claim is that λ is in fact trivial.

This would follow from the equation U (y)∗VxU (y) = Vx+yV ∗
y for all x, y ∈ Z2.

Note that the operator on the right hand side is an intertwiner fromρk
γ−y toρk

γ−(x+y)
satisfying the condition in Lemma 10.4.2. This equation can be verified by noting
that Vx+y and Vy commute with path operators (this should be clear from the con-
struction of a converging net) and by the following observation: a path operator Fγ̂

(where γ̂ is a path from x0−y to x0−(x+y)) can be written as Fγ1 F∗
γ2

with γ1 a path
from x0 to x0 − (x + y) and γ2 a path from x0 to x0 − y . Let V n

x be a sequence as in
Lemma 10.4.2 converging weakly to Vx . Then for the translated sequence τ−y (V n

x )

w-lim
n→∞ τ−y (V n

x ) =Vx+yV ∗
y ,

by the same Lemma. The result follows since the map A 7→ τ−y (A) =U (y)∗AU (y)
is weakly continuous, hence the left hand side is equal to U (y)∗VxU (y).
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The next goal is to explicate a tensor product structure on these localised en-
domorphisms. The situation is very similar as in the DHR analysis outlined in
§3.2. That is, we can define the tensor product of two endomorphism ρ1 and ρ2

by ρ1 ⊗ρ2(A) := ρ1 ◦ρ2(A). If Ti : ρi → σi are intertwiners, then we might define
T1 ⊗T2 by T1ρ1(T2). The tensor unit is again given by the trivial endomorphism ι.

There is, however, one problem with this definition: the intertwiners are ele-
ments of the algebra A(Λ)′′ rather than of A(Λ) (recall that we identified π0(A)
with A). There is no reason why they should be contained in the quasi-local al-
gebra A, because this algebra is not weakly closed in general. Since the localised
endomorphisms are (a priori) only defined on A, the above definition therefore
does not make sense.

A possible solution is to introduce an auxiliary algebra that contains the inter-
twiners [BF82a]. Choose an arbitrary cone Λa , which will be fixed from now on.
The cone can be interpreted as a “forbidden” direction, not unlike the technique
of puncturing the circle. Introduce a partial ordering on Z2 by defining

x ≤ y ⇔ (Λa + y) ⊂ (Λa +x) ⇔ (Λa +x)c ⊂ (Λa + y)c .

Now (Z2,≤) is a directed set (each pair of points has an upper bound with respect
to ≤), hence it is possible to take the (C∗)-inductive limit

AΛa = ∪
x∈Z2

A((Λa + x)c )′′
∥·∥

. (10.4.2)

Note that AΛa+x = AΛa for all x ∈ Z2. Clearly, A ⊂ AΛa . Moreover, if Λ is a cone
such that Λ⊂ (Λa +x)c for some x, then A(Λ)′′ ⊂AΛa . An important point11 is that
the automorphisms we consider can be extended to AΛa .

Proposition 10.4.6. Let ρ be an automorphism defined by a path extending to in-
finity. Then ρ has a unique extension ρΛa to AΛa that is weakly continuous on
A((Λa + x)c )′′ for any x ∈ Z2. Moreover, ρΛa (AΛa ) ⊂ AΛa ; in other words, it is an
endomorphism of the auxiliary algebra.

Proof. The proof is essentially the same as that of Lemma 4.1 of [BF82a], except at
points where duality is used. First, let A ∈A((Λa +x)c ). Since ρ is localizable, there
is a unitary V such that ρ(A) =V AV ∗ (choose a unitary equivalent endomorphism
localised in Λa + x). This implies that ρ is weakly continuous on A((Λa + x)c ) and
the unique weakly continuous extension can be given by ρΛa (B) = V BV ∗ for B ∈
A((Λa +x)c )′′. This procedure determines ρΛa on all of AΛa .

11In the case of algebraic quantum field theory, the main point is to obtain endomorphisms of
the auxiliary algebra from representations of the quasi-local algebra. In the present model, however,
we already have automorphisms of A.

156



10.4. Fusion, statistics and braiding

To show that ρΛa maps AΛa into itself, first note that ρ(A(Λ)) ⊂A(Λ) for every
finite set Λ⊂ B. Hence, by weak continuity,

ρΛa (A((Λa +x)c )′′) = ρ(A((Λa +x)c ))′′ ⊂A((Λa +x)c )′′,

which proves the claim.

Remark 10.4.7. In the proof of Buchholz and Fredenhagen, Haag duality is used
to show that the extensions map the auxiliary algebra into itself (see also Foot-
note 11). The point is that using Haag duality it is possible to show that for repres-
entations localised in a cone Λ one has ρ(A(Λ)) ⊂A(Λ)′′. Since we have an explicit
description of the representations, we can directly prove the stronger statement
ρ(A(Λ)) ⊂ A(Λ) for the automorphisms considered in our model. However, the
intertwiners are typically not elements of A(Λ).

We now redefine the tensor product as ρ1 ⊗ρ2 = ρ
Λa
1 ◦ρ2. For the automorph-

isms that we have considered so far, this definition reduces to the old one. How-
ever, to define the tensor product of intertwiners, this definition is necessary. If
S is an intertwiner from ρ1 to ρ′

1 and T an intertwiner from ρ2 to ρ′
2 such that

T ∈A(Λ)′′ for some cone Λ asymptotically disjoint from Λa , then S⊗T := SρΛa
1 (T )

is a well-defined intertwiner from ρ1 ⊗ρ2 to ρ′
1 ⊗ρ′

2.
The tensor product gives rise to fusion rules. A fusion rule gives a decompos-

ition of the tensor product of two irreducible representations into a direct sum of
irreducible representations. In Kitaev’s model the rules are particularly simple. As
remarked before, for each k = X ,Y , Z , ρk⊗ρk = ι, where ι is the trivial endomorph-
ism of A. Furthermore, essentially by definition, ρX ⊗ρZ ∼= ρY . This determines
the fusion rules for unitarily equivalent representations as well: unitaries setting
up the equivalence can be defined using the tensor product.

Using the tensor product, in this case a braiding can then be defined, similarly
as in the DHR analysis [DHR71] (or §3.2). This is a unitary operator ερ1,ρ2 inter-
twining ρ1 ⊗ρ2 and ρ2 ⊗ρ1. First, consider two disjoint cones Λ1 and Λ2 that are
both contained in (Λa + x)c for some x. We say that Λ1 < Λ2 if we can rotate Λ1

counter-clockwise around the apex of the cone until it has non-empty intersec-
tion with Λa + x, such that at any intermediate angle it is disjoint from Λ2. Note
that for two disjoint cones either Λ1 <Λ2 or Λ2 <Λ1.

Now let ρ1,ρ2 be two localised automorphisms, as considered above, such that
ρ1 is localised in a cone Λ1 and ρ2 in Λ2. Moreover, we demand that there is a
cone Λ ⊃ Λ1 ∪Λ2. Note that ρ1 ⊗ ρ2 is localised in Λ. Choose a cone Λ̂2 such
that Λ̂2 < Λ1. Then there is a unitary V such that V ρ2(−)V ∗ is localised in Λ̂2.
This unitary can be chosen in AΛa (cf. Lemma 6.2.8). It then follows that ερ1,ρ2 :=
(V ⊗ Iρ1 )∗(Iρ1 ⊗V ) =V ∗ρΛa

1 (V ) is an intertwiner from ρ1 ⊗ρ2 to ρ2 ⊗ρ1.
With this definition, one can prove the following result by adapting the proof

in the DHR analysis (see e.g. [Hal06]) in a suitable way.
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γ
n

ρ2ρ̂2 ρ1

Figure 10.5: The path γn (dashed line) crosses the defining path of ρ1 from the right. The dotted
lines represent the defining paths of ρ2 and ρ̂2.

Lemma 10.4.8. The braiding ερ,σ only depends on the condition Λ̂2 < Λ1, not on
the specific choices made. Moreover, it satisfies the braid equations

ερ,σ⊗τ = (Iσ⊗ερ,τ)(ερ,σ⊗ Iτ)

ερ⊗σ,τ = (ερ,τ⊗ Iσ)(Iρ⊗εσ,τ).
(10.4.3)

Furthermore, ερ,σ is natural in ρ and σ: if T is an intertwiner from ρ to ρ′, then
ερ′,σ(T ⊗ I ) = (I ⊗T )ερ,σ, and similarly for σ.

In Lemma 10.4.2, a net converging to the charge transporters was explicitly
constructed. This makes it possible to calculate the braiding operators exactly. In
the subscript of the braiding, we will sometimes write X ,Y or Z instead of ρX ,ρY

and ρZ .

Theorem 10.4.9. Let ρ1,ρ2 be automorphisms defined by strings extending to in-
finity in some cone Λ. Suppose that each automorphism is of type X or type Z. The
braid operators in each of the possible cases are then given by εX ,X = εZ ,Z = I and
εX ,Z =±I . If εX ,Z = I , then εZ ,X =−I and vice versa.

Proof. Consider a cone Λ̂ disjoint from Λ, such that Λ̂ < Λ and such that there
is a cone Λ̃ ⊃ Λ∪ Λ̂. There is a path γ̂2 in Λ̃ such that the corresponding auto-
morphism ρ̂2 is unitarily equivalent to ρ2 and localised in Λ̂. The corresponding
unitary charge transporter V is then contained in A(Λ̂)′′. By definition we then
have ερ1,ρ2 =V ∗ρΛa

1 (V ).

This can be calculated using weak continuity of ρΛa
1 and the explicit construc-

tion of Lemma 10.4.2 of a net converging to V . Indeed, let Vn →V be this net. Note
that each Vn is a string operator of the same type as ρ2. In particular, if ρ1 is of the
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same type as ρ2, then ρ1(Vn) = Vn for all n and hence ρ
Λa
1 (V ) = V . It follows that

εX ,X = εZ ,Z = I .
The situation where ρ1 is of type X and ρ2 is of type Z (or vice versa) is a bit

more complicated. Recall that for the definition of the net Vn , for each n a path γn

is chosen, such that the distance to the starting points of the paths γ1 and γ2 goes
to infinity. The operator Vn is then the string operator corresponding to the string
formed by the first n bonds of γ2 and γ̂2, together with γn . Note that, if n is big
enough, this string crosses γ1 either an even number of times, or an odd number,
independent of n. This property depends on whether the first crossing is from the
“left” or from the “right” (see Figure 10.5), or if there is no crossing at all.

By anti-commutation of the Pauli matrices, it follows that if the number of
crossings is even, ρ1(V ) = V , whereas if it is odd then ρ1(V ) = −V . Hence, εX ,Z =
±I . If the role of ρ1 and ρ2 is reversed, an odd number of crossings becomes an
even number. This observation proves the last claim.

Since ρY = ρX ⊗ρZ , the braid equations allow to compute the braiding with
excitations of type Y . The braiding with the trivial automorphism is always trivial.
This completely determines the braiding for all irreducible representations we
consider.

We note that the sign of, for example, εX ,Z depends on the relative localization
of both strings. Indeed, suppose we have two automorphisms ρ1 and ρ2, defined
by strings γ1 of type X and γ2 of type Z , extending to infinity and localised in Λ1

resp. Λ2. Suppose moreover that Λ2 < Λ1. It then follows that ερ1,ρ2 = I , since
the paths in the proof, going from γ2 to γ̂2, do not cross γ1. On the other hand, if
Λ1 < Λ2 it follows that ερ1,ρ2 = −I . Note that this coincides with the situation in
algebraic quantum field theory in low dimensions [FRS92, Sect. 2.2].

The final piece of structure is that of conjugation. Note that ρk ⊗ρk = ι for
k = X ,Y , Z . It follows that in our model the automorphisms we consider have
conjugates. These are particularly simple: ρk = ρk and one can choose the unit
operators for the intertwiners R and R. This is trivially a standard conjugate.

With the help of the braiding and conjugates one can define a twist, as dis-
cussed in Chapter 2. Let ρ be a cone localised endomorphism and (ρ,R,R) be a
standard conjugate. Recall that the twist Θρ ∈ End(ρ) is then defined by

Θρ = (R
∗⊗ idρ)◦ (idρ⊗ερ,ρ)◦ (R ⊗ idρ).

Note that ifρ is irreducible, Θρ =ωρ I for some phase factor. The (equivalence class
of) ρ is called bosonic if ωρ = 1 and fermionic if ωρ = −1. Since the conjugates of
ρk , k = X ,Y , Z are particularly simple, the following corollary immediately follows
from Theorem 10.4.9.

Corollary 10.4.10. The excitations X and Z are bosonic and Y is fermionic.
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10.5 Equivalence with Rep f D(Z2)

If G is a finite group, one can form the quantum double D(G) of the group, as
discussed in Chapter 5. Recall that Rep f D(G), the category of finite dimensional
D(G)-modules, is a modular tensor category [BK01] (or see Corollary. 5.4.6 of this
thesis). In this section we will introduce the category ∆(Λ) of stringlike localised
representations and show that it is equivalent to Rep f D(Z2) (as braided tensor
C∗-categories). This implies that for all practical purposes, the excitations are de-
scribed by the representation theory of D(Z2).

Lemma 10.5.1. Let ρ1,ρ2 be two transportable endomorphisms of A, localised in a
cone Λ. Then one can define a localised and transportable direct sum ρ1 ⊕ρ2.

Proof. Let V1,V2 ∈ RΛ be isometries as in Corollary 11.1.3, proved in the next
chapter. Define ρ(A) := V1ρ1(A)V ∗

1 +V2ρ2(A)V ∗
2 , for all A ∈ A. It follows that ρ

is a ∗-representation12 of A. Since Vi ∈RΛ and RΛc ⊂R′
Λ, it follows that ρ(A) = A

for A ∈ A(Λc ), hence ρ is localised in Λ. To show transportability, let Λ̂ be an-
other cone. Pick isometries W1,W2 ∈ RΛ̂ as in Corollary 11.1.3. Since ρ1 and ρ2

are transportable, there are unitary operators Ui such that Uiρi (−)U∗
i is localised

in Λ̂. Define W = W1U1V ∗
1 +W2U2V ∗

2 . Then W W ∗ = W ∗W = I and W ρ(−)W ∗

is localised in Λ̂, hence ρ is transportable. This ρ, which is unique up to unitary
equivalence, will be denoted by ρ1 ⊕ρ2.

We will now introduce the category ∆(Λ). For technical reasons it is conveni-
ent to consider only representations localised in a fixed cone Λ, since in that case
clearly all intertwiners are in the algebra AΛa . Proceeding in this way, there is no
problem in defining the tensor product. It should be noted that the resulting cat-
egory does not depend on the specific choice of cone Λ (see Prop. 6.2.12 for a proof
and for alternative approaches).

The irreducible objects of the category ∆(Λ) are precisely the automorphisms
localised in the cone Λ that are given by paths extending to infinity. The morph-
isms are intertwiners from one endomorphism to another. By the Lemma above,
finite direct sums can be constructed, turning ∆(Λ) into a category with direct
sums. In fact, by construction, each object can be decomposed into irreducibles. It
is clear from the construction that the direct sums can be extended to endomorph-
isms of the auxiliary algebra. Hence the tensor product defined in Section 10.4 can
be defined for all objects. Similarly, a braiding for direct sums can be constructed
from Theorem 10.4.9. Conjugates for direct sums can be constructed from conjug-
ates for the irreducible components. Summarizing, freely using terminology from
Chapter 2, we have the following result:

12Note that ρ is not necessarily an endomorphism of A any more, but rather of AΛa . This is
however only a minor technicality and is not essential for what follows.
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Theorem 10.5.2. The category ∆(Λ) is a braided tensor C∗-category.

The category obtained in this way is actually equivalent (as a braided tensor
C∗-category) to the representation category of D(Z2) over the field k = C (see
Chapter 5). A highbrow way of seeing this is to appeal to the classification res-
ults of modular tensor categories [RSW09]. It is however possible to give an ex-
plicit construction of the equivalence. Note that equivalence as braided categor-
ies is in general stronger than equivalence as tensor categories. Indeed, there are
non-isomorphic groups whose representation categories are equivalent as tensor
categories but not as braided tensor categories [EG01]. On the other hand, every
symmetric tensor category (satisfying certain additional properties) is the repres-
entation category of a compact group (determined up to isomorphism) [DR89b].

Theorem 10.5.3. There is a braided equivalence of tensor C∗-categories ∆(Λ) →
Rep f D(Z2).

Proof. Since Z2 is abelian, the irreducible representations of D(Z2) are labelled
by the elements e, f of Z2 and χe ,χσ of the dual group Ẑ2 by the classification of
finite dimensional representations in Chapter 5. Here χe and χσ denote the trivial
and the sign character of Z2 respectively. Write Vg ,χ for the irreducible D(Z2)-
module induced by an element g and character χ. We obtain the following list of
all irreducible modules of D(Z2):

Π0 =Ve,χe , ΠX =V f ,χe , ΠY =V f ,χσ
, ΠZ =Ve,χσ

.

Recall that using the coproduct of D(Z2) the tensor product Πi ⊗Π j can be made
into a left D(Z2)-module. The tensor product has the same fusion rules as ∆(Λ),
e.g. ΠX ⊗ΠY

∼=ΠZ and Πk ⊗Π0
∼=Π0 ⊗Πk

∼=Πk .
On the side of ∆(Λ), choose paths of type X , Z such that the corresponding

automorphisms ρX ,ρZ satisfy εX ,Z = −I . Define ρY = ρX ⊗ρZ , and ρ0 = ι, the
trivial endomorphism. Note that each irreducible representation in ∆(Λ) is unitar-
ily equivalent to one of the ρk . This suggests to define a functor F : Rep f D(Z2) →
∆(Λ) as follows: for irreducible modules, the most natural choice is to set F (Πk ) =
ρk for k = 0, X ,Y , Z . The irreducible modules have dimension one, hence the
D(Z2)-linear maps between the irreducible modules are just the scalars. In or-
der for F to be a linear functor, there is essentially only one choice of F (T ) for a
morphism T . Note that F is full and faithful on the Hom-sets of irreducible ob-
jects. By construction every irreducible object of ∆(Λ) is isomorphic to an object
in the image of F .

In fact, F is a braided monoidal functor. By our particular choice of ρX , ρY and
ρZ , one can choose the natural transformations F (V ⊗W ) → F (V )⊗F (W ), needed
for the definition of a monoidal functor, to be identities. To see that F is indeed a
braided functor, recall that for π1,π2 ∈Rep f D(Z2), the braiding cπ1,π2 is the linear
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10. The toric code

map intertwining π1 ⊗π2 and π2 ⊗π1 defined by cπ1,π2 = σ ◦ (π1 ⊗π2)(R). Here σ

is the canonical flip and R is a universal R-matrix for D(Z2). It is then straight-
forward to verify that for irreducible modules, F sends the braiding of Rep f D(Z2)
to that of ∆(Λ). For example, cΠX ,ΠZ =−1 (where we omit the isomorphism of the
underlying vector spaces).

The extension of the functor to direct sums is left to the reader, as is the verific-
ation that F preserves all the relevant structures of a braided tensor C∗-category.
Since the irreducible objects of both categories are in 1-1 correspondence, and
the functor F preserves direct sums and braidings, F sets up an equivalence of
braided tensor C∗-categories. Note, for example, that F is full, faithful and essen-
tially surjective. Indeed, it is tedious but relatively straightforward to define an
inverse functor setting up the equivalence.

162



Chapter 11

Toric code: analytic aspects

One of the attractive features of the toric code model is that it is relatively simple.
This makes it possible to study operator algebraic aspects of the model by concrete
constructions. Of particular interest are the von Neumann algebras RΛ, whereΛ is
a cone. This is the von Neumann algebra generated by all quasi-local observables
localised in Λ.

In particular, it turns out that these algebras are infinite factors of Type II∞ or
Type III, as we will show in the next section. Moreover, the explicit description of
A(Λ) makes it possible to prove Haag duality for cones, RΛ = R′

Λc . Even though
for two cones Λ1∪Λ2 the associated factors RΛ1 and RΛ2 are not of Type I, there is
a Type I factor such that RΛ1 ⊂N ⊂RΛ2 . This is called the distal split property. We
give two different proofs in Section 11.3: one short proof relying on certain results
in the theory of operator algebras, and one proof where the factor N is construc-
ted explicitly. We also comment on the physical relevance of this property.

The results in this chapter are based on [Naa11c, Naa11b].

11.1 Cone algebras

Let Λ be a cone. In this section we consider the von Neumann algebras associated
to the observables localized in this cone. More precisely, define RΛ := π0(A(Λ))′′

and RΛc := π0(A(Λc ))′′. The main result in this section is that RΛ is an infinite
factor.

Lemma 11.1.1. With the notation above, RΛ∨RΛc =B(H0).

Proof. Note that for each set Λ ⊂ B one has RΛ = ∨
b∈Λπ0(A({b})). It follows that

B(H0) =π0(A)′′ =RΛ∨RΛc .

More can be said about the cone algebras. In fact, they are infinite factors. In
other words, RΛ is a factor of Type I∞, Type II∞ or Type III. The basic idea of the

163
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proof, which is adapted from [KMSW06, Proposition 5.3], is to assume that RΛ

admits a tracial state. It then follows that ω0 is tracial, which is a contradiction. In
fact, Type I∞ can be ruled out as well.

Theorem 11.1.2. RΛ is a factor of Type I I∞ or Type III.

Proof. To show that RΛ is a factor, we argue as in [KMSW06]. The centre is given
by Z (RΛ) = RΛ ∩R′

Λ. By taking commutants, Z (RΛ)′ = RΛ ∨R′
Λ. Note that

RΛc ⊂ R′
Λ, hence by Lemma 11.1.1, Z (RΛ)′ =B(H0) and it follows that RΛ is a

factor.
Assume that RΛ is a finite factor. Then there exists a unique tracial state ψ on

RΛ. This induces a tracial state ψ̃=ψ◦π0 on A(Λ). By Propositions 10.3.12(i) and
10.3.14 of [KR97], it follows that the state ψ̃ is factorial and quasi-equivalent to the
restriction of ω0 to A(Λ).

Let ε> 0. By Corollary 2.6.11 of [BR87] (or Theorem 1.3.2.ii of this thesis), there
is a finite set Λ̂ ⊂ Λ such that |ω0(A)− ψ̃(A)| < ε∥A∥ for all A ∈ A(Λ \ Λ̂). Now,
let k > 0 be an integer. Consider local observables A,B with localization region
contained in B(0,k) (that is, all bonds that can be connected to the origin of Z2

with a path of length at most k) and norm 1. Since Λ is a cone and Λ̂ is finite, there
is an x ∈Z2, such that τx (AB) is localized in Λ\ Λ̂. By translation invariance,

|ω0(AB)− ψ̃(τx (AB))| = |ω0(τx (AB))− ψ̃(τx (AB))| < ε,

and similarly for B A. Hence since ψ̃ is a trace,

|ω0(AB)−ω0(B A)| = |ω0(AB)− ψ̃(τx (AB))−ω0(B A)+ ψ̃(τx (B A))| < 2ε.

Because k and ε were arbitrary, ω0(AB) = ω0(B A) for all A,B ∈Aloc , which is ab-
surd.

To see that the Type I case can be ruled out, note that RΛ is of Type I if and only
if ω0 is quasi-equivalent to ω0,Λ⊗ω0,Λc . This can be seen by adapting the proof
of [Mat01, Prop. 2.2]. Let Λ̂⊂ B be any finite set. Then one can always find a star s
in Λ̂c such that the intersection with both Λ and Λc is not empty. But for this star s,
one has ω0(As) = 1. On the other hand, (ω0,Λ⊗ω0,Λc )(As) = 0, essentially because
Λ∩ s is not a star any more. This implies that the states ω0 and ω0,Λ⊗ω0,Λc are not
equal at infinity. It follows that ω0 cannot be quasi-equivalent to ω0,Λ⊗ω0,Λc .

A corollary of this is that the isometries we needed to construct direct sums in
Section 10.5 actually exist.

Corollary 11.1.3. Let Λ be a cone. Then RΛ contains isometries V1,V2 such that
V ∗

i V j = δi , j I and V1V ∗
1 +V2V ∗

2 = I .
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Proof. By [Tak02, Prop. V.1.36], there is a projection P such that P ∼ (I −P ) ∼ I ,
where ∼ denotes Murray-von Neumann equivalence with respect to RΛ. Hence,
there are isometries V1,V2 such that V1V ∗

1 = P and V2V ∗
2 = (I−P ). These isometries

suffice.

11.2 Haag duality for cones

Up to now, Haag duality for cones was not needed. It is, however, an interesting
property. In this section we present a proof that Haag duality for cones indeed
holds in the toric code model [Naa11b]. Using this property some of the proofs
in the previous Chapter can be streamlined, at the expense of losing the explicit
constructions. An advantage is that there is no need any more to restrict to rep-
resentations that are precisely of the form π0 ◦ργ for some semi-infinite path γ.

Suppose that Λ is a cone. We will use the notation introduced above, and the
von Neumann algebra generated by the observables localized in this cone, RΛ =
π0(A(Λ))′′, and similarly the algebra RΛc := π0(A(Λc ))′′ generated by observables
localized in the complement of Λ. From locality it follows that RΛ ⊂ R′

Λc . To
recall: Haag duality is the statement that the reverse inclusion is also true, i.e.

π0(A(Λ))′′ =π0(A(Λc ))′. (11.2.1)

Our main result is that this is the case for the toric code model.

Theorem 11.2.1. Let Λ be a cone. Then in the ground state representation we have
Haag duality, π0(A(Λ))′′ =π0(A(Λc ))′.

As far as the author is aware, currently no general conditions implying Haag
duality are known. However, there are proofs in specific cases, for example for
certain quantum spin chain models [KMSW06,Mat10] or in the setting of algebraic
quantum field theory [BW76, BMT90]. The proofs in the quantum spin chain case
make use of the split property, a stronger condition than the distal split property
we consider in this thesis. In the context of quantum spin systems on a lattice, the
split property can be formulated as the condition that the ground state ω0 is quasi-
equivalent to the stateω0,Λ⊗ω0,Λc for a coneΛ, whereω0,Λ is the stateω0 restricted
to the C∗-algebra A(Λ) of observables localized in the cone Λ. This, however, does
not hold, as was discussed in the previous section.

In studying commutation problems of von Neumann algebras, a natural tool is
Tomita–Takesaki modular theory. In algebraic quantum field theory this theory is
relevant because of the Reeh-Schlieder Theorem, according to which the vacuum
vector is cyclic and separating for the observables localized in a double cone, i.e.,
the intersection of a forward and backward light cone. Indeed, this has been used
to prove duality results, e.g. in [BW76, BMT90]. In contrast, in the model we are
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considering, the ground state vector Ω is not cyclic for the algebra of observables
localized in a cone, hence we cannot directly apply these techniques. Our strategy,
therefore, is to restrict the algebras to a subspace HΛ of the representation space
H0, such that Ω is cyclic for (the restriction of) RΛ. This Hilbert subspace can
be interpreted as the space of states with excitations localized in Λ. One can also
restrict RΛc to this subspace, and using a theorem of Rieffel and van Daele [RD75]
one can prove that these restrictions generate each other’s commutant as subal-
gebras of B(HΛ). The final step is to extend this to the algebras acting on H0.

We will again identify π0(A) with A, for A ∈ A, as we have done before. As a
first step, we will define HΛ and study some of its properties.

Definition 11.2.2. Let Λ be a cone. If ξ is a path on the lattice, we say that it is
contained in Λ if ξ⊂Λ. A path ξ on the dual lattice is contained in Λ if each bond
that intersects the dual path is in Λ. With this convention, we define

FΛ = {Fξ : ξ is a path (or dual path) in Λ},

and similarly for FΛc .

The operators in FΛ create excitations inΛ. SinceΛ∪Λc = B, one would expect
that the operators in FΛ and FΛc generate H by acting on the ground state vector
Ω. This is indeed the case:

Lemma 11.2.3. The closure of span{F1 · · ·Fm F̂1 · · · F̂nΩ : Fi ∈FΛ, F̂ j ∈FΛc } is equal
to H0.

Proof. Let b ∈ B and consider the path ξ = {b} and the dual path ξ̂ of length one
crossing this bond. Then I ,Fξ,Fξ̂ and FξFξ̂ span the algebra M2(C) acting on this
bond. By considering more bonds, one sees that all local operators can be ob-
tained in this way, from which the statement follows since the local operators are
dense in A, and Ω is cyclic for π0(A) by the GNS construction.

Next we consider the Hilbert space of all excitations localized in Λ.

Definition 11.2.4. Consider the closure of span{F1 · · ·FkΩ : Fi ∈ FΛ} and let PΛ be
the projection onto this subspace of H0. We write HΛ for the Hilbert space HΛ =
PΛH0.

Lemma 11.2.5. We have A(Λ)HΛ ⊂ HΛ. In fact, A ∈A(Λ)′′ is completely determ-
ined by its restriction to HΛ.

Proof. The algebra A(Λ)loc is generated by operators Fξ for paths (and dual paths)
ξ contained in Λ. Such operators clearly map the linear subspace spanned by vec-
tors of the form F1 · · ·FkΩ (Fi ∈ FΛ) into itself. Since this space is dense in HΛ,
and A(Λ)loc is dense in A(Λ), the first claim follows.
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The second claim follows from the fact that if AB = 0 for A ∈ R with R a
factor, and B ∈ R′, then either A or B is zero [KR83, Thm. 5.5.4]. Since A(Λ)′′ is
a factor [Naa11c] and PΛ ∈A(Λ)′ by the previous part, the result follows. There is
also an easy direct proof. We give it here since we will use a similar argument later
on. Let A1, A2 ∈A(Λ) and suppose that A1ξ= A2ξ for every ξ ∈HΛ. Now consider
η= F̂1 · · · F̂mF1 · · ·FnΩ ∈H , where again Fi ∈FΛ and F̂ j ∈FΛc . Then we have

A1η= F̂1 · · · F̂m A1F1 · · ·FnΩ= F̂1 · · · F̂m A2F1 · · ·FnΩ= A2η.

Since vectors of this form form a dense subset of H0, the claim follows. If A ∈
A(Λ)′′, the statement follows in precisely the same way, since by locality we have
A(Λ)′′ ⊂A(Λc )′.

Consider now the algebra A(Λc ) of observables localized in the complement
of Λ. We want to show Haag duality, i.e. equation (11.2.1), so A(Λc )′ should map
HΛ into itself. This is indeed the case, as the following lemma demonstrates.

Lemma 11.2.6. We have that A(Λc )′HΛ ⊂HΛ.

Proof. Let B ′ ∈A(Λc )′. Suppose ζ= F1 · · ·FnΩ with Fi ∈FΛ and let η= F̂1 · · · F̂k FΩ,
where F̂i ∈FΛc and F is a product of operators in FΛ. We will show that (η,B ′ζ) = 0
if η ∈H ⊥

Λ . Since the span of such vectors ζ (resp. η) is dense in HΛ (resp. H ), the
claim will follow. Now suppose that there is star s such that s ⊂Λc and such that
As anti-commutes with F̂1 · · · F̂k . Then, by locality and equation (10.2.1),

(η,B ′ζ) = (η,B ′Asζ) = (Asη,B ′ζ) =−(η,B ′ζ),

hence η is orthogonal to B ′ζ. A similar argument works for plaquette operators
Bp ∈A(Λc ).

The case remains where no such plaquette or star operator exists. We claim
that in this case, in fact η ∈ HΛ. First of all, note that any loops formed by the
paths ξ̂i (corresponding to F̂i ) can be eliminated. Indeed, if ξ1, . . .ξk forms a loop,
then F̂1 · · · F̂k is a product of either star or plaquette operators (see the end of
Section 10.1). By commuting them with the other operators, and using equa-
tion (10.2.1), these can be eliminated, possibly at the expense of an overall minus
sign. Similarly, if some of the paths ξ̂i can be combined to a bigger path, we might
as well replace the string operators with the string operator of the bigger path.

Arguing like this, without loss of generality we can assume that the F̂i all cor-
respond to different paths with mutually disjoint endpoints. It follows that the star
and plaquette operators based at these endpoints anti-commute with F̂1 · · · F̂k . By
the assumption on η, this implies that all endpoints must lie on the boundary of
Λ. So suppose that ξ̂i is a path with endpoints on the boundary of Λ. Then there is
a path ξ′i inside Λ with the same endpoints. If Fi ′ is the corresponding string oper-
ator, then F̂iΩ = Fi ′Ω. Continuing in this manner, it follows that η = F Fk ′ · · ·F1′Ω.
Hence η ∈HΛ, completing the proof.
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Since the lemma implies that PΛ ∈A(Λc )′′, we obtain the following corollary.

Corollary 11.2.7. The projection PΛ is contained in RΛc .

We now consider ∗-algebras AΛ and BΛ acting on HΛ. Any operator A ∈
A(Λ)′′ restricts to an operator on HΛ by Lemma 11.2.5. Define an algebra AΛ by
restricting the operators of A(Λ)′′ to HΛ. This is in fact a von Neumann algebra,
that is, AΛ = A ′′

Λ (as subalgebras of B(HΛ)). This can be argued, for example, as
in the proof of Prop. II.3.10 of Ref. [Tak02].

The algebra BΛ is defined in a similar way: the operators in PΛRΛc PΛ leave
HΛ invariant, hence we can restrict PΛRΛc PΛ to a ∗-algebra acting on HΛ. This
algebra will be denoted by BΛ and is a von Neumann algebra by the proposition
cited above. Note that both AΛ and BΛ act non-degenerately on HΛ and that Ω
is cyclic for AΛ.1 The self-adjoint part of AΛ (resp. BΛ) is denoted by AΛ,s (resp.
BΛ,s). The following Lemma is the crucial step in the proof of Haag duality.

Lemma 11.2.8. The set AΛ,sΩ+ iBΛ,sΩ is dense in HΛ.

Proof. First we observe that since As and Bs are real vector spaces, it is sufficient
to show that vectors of the form FΩ and i FΩ, where F is a product of operators
in FΛ, are contained in AΛ,sΩ+ iBΛ,sΩ. So suppose that F = F1 · · ·Fn with Fi ∈
FΛ. Note that F∗

i = Fi , and that Fi ,F j either commute or anti-commute. But this
means that F∗ =±F . If F∗ = F , clearly F ∈AΛ,s . In the other case i F is self-adjoint,
hence i F ∈AΛ,s .

Now suppose that there is either a star operator As ∈ AΛ or a plaquette oper-
ator Bp ∈ AΛ that anti-commutes with F . In the case that F = F∗, it follows that
i AsF (or i Bp F ) is self-adjoint. But i AsFΩ = −i F AsΩ = −i FΩ, so that we can ob-
tain real linear combinations of i FΩ. In the case that F∗ =−F , one can use the fact
that AsF is self-adjoint to obtain real multiples of FΩ. Combining these results, we
obtain vectors of the form λFΩ, with λ ∈C.

One issue remains: operators As or Bp (contained in AΛ) that anti-commute
with F need not exist. But if this is the case, then FΩ can only have excitations
at the boundary of Λ, by the same reasoning as in the proof of Lemma 11.2.6. By
the same proof, note that there is F̂ ∈ BΛ such that F̂Ω = FΩ. One also sees that
if F = F∗, then also F̂ = F̂∗, arguing as follows. Let F1,F2 be the string operators
corresponding to paths ξ1,ξ2 in Λ, with endpoints at the boundary of Λ. Now
choose corresponding paths ξ′1 and ξ′2 in Λc with path operators F1′ and F2′ . If the
paths ξ1,ξ2 are of the same type, F1 and F2 commute, and so will F1′ and F2′ . If
they are of different type, they commute if and only if ξ1 and ξ2 intersect an even
number of times. Otherwise they will anti-commute. Note that ξ1 ∪ ξ′1 is a loop,
and similarly for ξ2 ∪ ξ′2. But a loop on the lattice and a loop on the dual lattice

1In fact, one can show that Ω is separating for BΛ, but we will not need this fact.
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11.3. Distal split property

always intersect an even number of times. From this it follows that if ξ1 and ξ2

intersect an even (odd) number of times, the same is true for ξ′1 and ξ′2. It follows
that F1 and F2 (anti-)commute if and only if F1′ and F2′ do so. In other words, if
F1F2 (resp. i F1F2) is self-adjoint, then so is F1′F2′ (resp. i F1′F2′). Continuing in
this way, it is clear that complex multiples of FΩ are contained in AΛ,sΩ+iBΛ,sΩ,
which finishes the proof.

We are now in a position to prove the main theorem.

Proof of Theorem 11.2.1. As was mentioned before, using locality one obtains the
inclusion π0(A(Λ))′′ ⊂π0(A(Λc ))′. To prove the reverse inclusion, we first note that
AΛ and B′

Λ generate each other’s commutant (in B(HΛ)), by Lemma 11.2.8 and a
result of Rieffel and van Daele [RD75, Thm. 2], which says in fact that the claim on
the commutants is equivalent to the statement in Lemma 11.2.8. In other words,
AΛ =B′

Λ as von Neumann algebras acting on HΛ.

In order to prove π0(A(Λc ))′ ⊂π0(A(Λ))′′, first note that BΛ is the reduced von
Neumann algebra (RΛc )PΛ

, obtained by restricting PΛRΛc PΛ to HΛ. Consider an
element B ′ ∈R′

Λc . By [Tak02, Prop. II.3.10], the commutant of BΛ is equal to R′
Λc

restricted to HΛ. Write B ′
Λ for the restriction of B ′ to HΛ. Then B ′

Λ ∈ B′
Λ = A ′′

Λ =
AΛ. By Lemma 11.2.5 and the remarks following Corollary 11.2.7, there is a unique
Â ∈ RΛ such that Â|HΛ

= B ′
Λ. Let ξ = F̂ FΩ ∈ H , where F̂ (resp. F ) is a product of

operators in FΛc (resp. FΛ). Then

B ′ξ= F̂ B ′FΩ= F̂ B ′
ΛFΩ= F̂ ÂFΩ= ÂF̂ FΩ= Âξ,

so that Â = B ′ and hence B ′ ∈π0(A(Λ))′′ =RΛ.

11.3 Distal split property

If Λ is a cone, the von Neumann algebra RΛ is a factor of Type II∞ or Type III, by
the results in §11.1. If we have two cones Λ1 ⊂ Λ2, then clearly RΛ1 ⊂ RΛ2 . The
distal split property then says that if the boundaries of the cones Λ1 and Λ2 are
well separated, then there is in fact a Type I factor N sitting between these two
algebras, RΛ1 ⊂ N ⊂ RΛ2 . To make this precise, we recall the following defini-
tion [Naa11c]:

Definition 11.3.1. For two cones Λ1 ⊂Λ2, write Λ1 ≪Λ2 if any star or plaquette in
Λ1 ∪Λc

2 is either contained in Λ1 or in Λc
2. We say that ω0 satisfies the distal split

property for cones if for any pair of cones Λ1 ≪Λ2 there is a Type I factor N such
that RΛ1 ⊂N ⊂RΛ2 .
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11. Toric code: analytic aspects

The split property has been studied in a general operator algebraic frame-
work [DL84] and has important consequences in the context of algebraic quantum
field theory (see e.g. [BDL86]).

The distal split property can be interpreted as a strong statistical independ-
ence of the regions Λ1 and Λc

2. For if it holds, and if normal states φ1 (resp. φ2)
of RΛ1 (resp. R′

Λ2
) are given, then there is a normal state φ of RΛ1 ∨R′

Λ2
such

that φ(AB) =φ1(A)φ2(B). In other words, one can prepare a state in the region Λ1

independently of the state in Λc
2. In this note we present a new proof of the distal

split property by explicitly constructing an appropriate Type I factor N .
In this section we give two different proofs of this result. A short proof rely-

ing on certain operator algebraic results, and a longer but far more explicit proof,
using similar methods as developed in the section on Haag duality. This explicit
construction is rather nice when compared to results on the split property in al-
gebraic quantum field theory. In the latter case, abstract arguments are employed
to show the existence of an interpolating Type I factor.

Short proof

The short proof of the distal split property relies on a result by Takesaki on normal
states on the tensor product of factors and on Haag duality, Theorem 11.2.1.

Theorem 11.3.2. The ground state ω0 of the toric code model has the distal split
property for cones.

Proof. Let Λ1 ≪Λ2 be two cones. Note that it is enough to prove that RΛ1 ∨R′
Λ2

≃
RΛ1⊗R′

Λ2
, where ≃ denotes that the natural map A⊗B ′ 7→ AB ′ (A ∈RΛ1 ,B ′ ∈R′

Λ2
)

extends to a normal isomorphism. Indeed, if this is the case, the result follows
from Theorem 1 and Corollary 1 of [DL83], since RΛ1 and RΛ2 are factors.

Note that ω0(AB) = ω0(A)ω0(B) if A ∈ A(Λ1),B ∈ A(Λc
2). Since ω is normal,

this result is also valid for A ∈ RΛ1 and B ∈ RΛc
2
. A result of Takesaki [Tak58] then

implies that RΛ1∪Λc
2
=RΛ1∨RΛc

2
≃RΛ1⊗RΛc

2
. By Haag duality, RΛc

2
=R′

Λ2
, which

concludes the proof.

Note that without Haag duality only the existence of a Type I factor RΛ1 ⊂N ⊂
π0(A(Λc

2))′ can be concluded. The condition that Λ1 ≪ Λ2 is needed precisely to
avoid the situation at the end of the proof of Theorem 11.1.2.

Explicit proof

We now give another, more direct proof of the distal split property. For the re-
mainder of this section, fix two cones Λ1 ≪Λ2. The idea is to use a unitary oper-
ator U to write H as a tensor product of three Hilbert spaces, in such a way that
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11.3. Distal split property

URΛ1U∗ acts on the first tensor factor. Similarly, URΛc
2
U∗ acts on the second

tensor factor, and from this one can find an interpolating Type I factor.
There is some redundancy in the description of the Hilbert space H0 as the

linear span of vectors obtained by acting with path operators on the ground state
vector Ω. For example, as mentioned before, Fξ1Ω = Fξ2Ω if ξ1 and ξ2 are paths
with the same endpoints. This is rather inconvenient when defining operators
acting on H0, and therefore we will find a more economical description.

To achieve this, we will have to choose certain paths in Λ0 := B \ (Λ1 ∪Λc
2).

Note that this set is non-empty, since Λ1 ≪ Λ2. Choose a point in the lattice on
the boundary of Λ1, one on the boundary of Λ2, and a path ξb

1 ⊂Λ0 between these
points. Similarly, choose plaquettes on the boundary of Λ1, respectively Λ2, and
a dual path ξb

2 ⊂ Λ0 between these plaquettes. Label the vertices and plaquettes
in the interior of Λ0 (i.e. those vertices and plaquettes not on the boundary of Λ1

or Λc
2) by a set I . If I is non-empty, fix a vertex v and a plaquette p in I . Let ξv

and ξp be paths in Λ0 from v (resp. p) to the boundary of Λ1. For each i ∈ I \{v, p},
choose a path inside Λ0 from i to either v or p. Thus we have obtained a collection
Γ := {ξb

1 ,ξb
2 }∪ {ξi : i ∈ I } of paths. For each ξ ∈ Γ there is the corresponding path

operator F̂ξ.

Definition 11.3.3. Let {F̂ξ}ξ∈Γ be as above and set F0 = {Fξ1 · · ·Fξk : ξi ∈ Γ}. The
Hilbert space K is defined as the closure of spanF0Ω.

The dimension of K depends on the number of stars and plaquettes there are
in the region Λ2 ∩Λc

1. In general this means that K is infinite dimensional. How-
ever, one can consider, for example, a cone Λ2 based in the origin and bounded by
the lines y = x and y =−x (any of the four possibilities will do). If one chooses Λ1

to be the cone with parallel edges such that the distance between the two apexes
is one, then Λ1 ≪ Λ2 and Λ2 ∩Λc

1 contains no stars or plaquettes. In this case,
K is finite-dimensional: F0 consists of I and the operators corresponding to the
chosen path and dual path (and their product). Hence K has dimension four.

The construction of K is perhaps somewhat involved, but it suggests a con-
venient description of H0. Analogously to F0, we define the set FΛ1 by FΛ1 =
{F1 · · ·Fn : Fi ∈FΛ1 } and in the same way FΛc

2
.

Lemma 11.3.4. The set spanFΛ1F0FΛc
2
Ω is dense in H0.

Proof. By Lemma 11.2.3, vectors of the form Fξ1 · · ·FξnΩ span a dense subset of
H0. Note that we can permute the order of the operators Fξi , possibly at the ex-
pense of an overall sign. But this implies that it is enough to show that for a path
ξ, FξΩ is of the desired form. Suppose for the sake of argument that ξ is a path on
the lattice. If both endpoints of the path — call them v1 and v2 — are in either Λ1

or Λc
2, the claim is clear. If v1 is in Λ0 and v2 in Λ1 or Λc

2, consider the path ξv1 ∪ξv

from v1 to the boundary of Λ1. If v2 is in Λ1, choose a path ξ̃ from this boundary
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11. Toric code: analytic aspects

point to v2. Then we have FξΩ = F̂ξv1
F̂ξv Fξ̃Ω, which is of the desired form. If v2

is in Λc
2 then one can form the following path: first go from v1 to the boundary of

Λ1 as above. Then choose a path in Λ1 from the endpoint of ξv to the endpoint
of either ξb

1 or ξb
2 and use this path to go to Λc

2. From there one can choose a path
from the boundary to v2 and we are done. The remaining cases can be handled in
a similar way.

The proof actually implies that every vector of the form Fξ1 · · ·FξnΩ can be writ-
ten (up to an overall sign) as F1F̂ F2Ω. We say that a vector is in canonical form if it
is represented in this way. The point is that some of the redundancy in the descrip-
tion is removed: if F1F̂ F2Ω=±F ′

1F̂ ′F ′
2Ω for F1,F ′

1 ∈ FΛ1 ,F2,F ′
2 ∈ FΛc

2
and F̂ , F̂ ′ ∈ F0

then in fact F̂ =±F̂ ′.

Lemma 11.3.5. Suppose that Λ1 ≪ Λ2 are two cones. If F1F̂ F2Ω is in canonical
form, define

U F1F̂ F2Ω= F1Ω⊗F2Ω⊗ F̂Ω. (11.3.1)

Then U extends to a unitary operator H →HΛ1 ⊗HΛc
2
⊗K , where HΛ1 ,HΛc

2
, and

K are the Hilbert spaces defined above.

Proof. We first prove that U defines an isometry, from which it is clear that U is
well-defined. Suppose that η1 = F1F̂ F2Ω and η2 = F ′

1F̂ ′F ′
2Ω are in canonical form.

It is enough to show that (η1,η2) = (Uη1,Uη2). First suppose that F̂ ̸= ±F̂ ′. Then
there is some star or plaquette operator that commutes with F̂ , but anti-commutes
with F̂ ′ (or vice-versa), hence ω(F̂∗F̂ ) = 0, and therefore (Uη1,Uη2) = 0. We claim
that in this case (η1,η2) = 0. If there is a vertex or plaquette in the interior of Λ0

where F̂ creates an excitation but F̂ doesn’t (or vice versa), this equality is clear
since then there is a star (or plaquette) operator that commutes with RΛ1 and RΛc

2
,

but anti-commutes with either F̂ or F̂ ′. So suppose that this is not the case. Then
Fξb

1
or Fξb

2
is necessarily a factor in either F̂ or F̂ ′, say F̂ . But then F1F̂ F2Ω has an

odd number of excitations localized in Λ1 or at its boundary. The same holds for
Λc

2. On the other hand, F ′
1F̂ ′F ′

2Ω has an even number of excitations it both these
regions. So there must be at least one place where one vector has an excitation
and the other one does not. But this implies that (η1,η2) = 0 as before.

Hence without loss of generality we can assume that F̂ = F̂ ′ and the problem
reduces to showing that ω(F∗

1 F ′
1F∗

2 F ′
2) = ω(F∗

1 F ′
1)ω(F∗

2 F ′
2). This equality can be

obtained as follows: if there is a star or plaquette operator that anti-commutes
with any of the operator Fi ,F ′

i and commutes with the others, both sides are zero
by the same reasoning as used before. If this is not the case, this implies that F∗

1 F2

and F̂∗
1 F̂2 correspond to products of path operators of closed loops, and it follows

that both sides are equal to plus or minus one. The sign has to be equal at both
sides, since F1,F ′

1 and F2,F ′
2 commute. The range of U is clearly dense in HΛ1 ⊗

HΛc
2
⊗K , hence U extends to a unitary operator.
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This unitary gives the desired decomposition of H0 as a tensor product of Hil-
bert spaces. The proof of the main theorem of this section now amounts to show-
ing that RΛ1 and RΛ2 act on this tensor product in the desired way.

Theorem 11.3.6. Suppose that Λ1 ≪Λ2 and let U be the unitary defined as above.
If N =U∗ (

B(HΛ1 )⊗ I ⊗ I
)
U , then N is a Type I factor such that RΛ1 ⊂N ⊂RΛ2 .

Proof. It is clear that N is a Type I factor, hence it remains to show the inclusions.
We will show that URΛ1U∗ =RΛ1 PΛ1⊗I⊗I and similarly UR′

Λ2
U∗ = I⊗R′

Λ2
PΛc

2
⊗

I , where RΛ1 PΛ1 is the von Neumann algebra RΛ1 restricted to HΛ1 . It follows that
RΛ1 ⊂N . For the second inclusion, note that

UR′′
Λ2

U∗ = (I ⊗R′
Λ2

PΛc
2
⊗ I )′ =B(HΛ1 )⊗PΛc

2
R′′

Λ2
PΛc

2
⊗B(K ),

and hence N ⊂R′′
Λ2

=RΛ2 .

Note that if η ∈ HΛ1 and F ∈ FΛc
2
, F̂ ∈ F0 then F̂ Fη ∈ H and by definition

U F̂ Fη= η⊗FΩ⊗ F̂Ω and similarly for η ∈HΛc
2
. To finish the proof, first recall that

by Lemma 11.2.5, RΛ1HΛ1 ⊂ HΛ1 . In a similar way one shows that R′
Λ2

= RΛc
2

maps HΛc
2

into itself. Now, suppose that A ∈RΛ1 and η := F1Ω⊗F2Ω⊗F̂Ω ∈HΛ1 ⊗
HΛc

2
⊗H0. By locality A commutes with F2 and F̂ . One then finds

U AU∗η=U AF1F̂ F2Ω=U F̂ F2 AF1Ω=U F̂ F2PΛ1 APΛ1 F1Ω

= A|Λ1 F1Ω⊗F2Ω⊗ F̂Ω= (
A|Λ1 ⊗ I ⊗ I

)
η.

Since vectors of the form η span a dense set, the claim for URΛ1U∗ follows. A
similar argument then shows the corresponding claim for R′

Λ2
, which concludes

the proof.

One can in fact set N1 :=N and N2 :=U∗(B(HΛ1 )⊗I⊗B(K ))U and it follows
that RΛ1 ⊂ N1 ⊂ N2 ⊂ RΛ2 . This inclusion of two Type I factors is also found in
the case of the free neutral massive scalar field in algebraic quantum field theory,
discussed by Buchholz [Buc74, Corr. 2.4].

Note that in the case that RΛ1 and RΛ2 are semi-finite, the construction here
is an explicit example of the construction in the proof of [DL83, Cor. 1(iv)]. Indeed,
consider RΛ1 ⊗R′

Λ2
. Then there is an amplification RΛ1 ⊗R′

Λ2
⊗ I acting on the

Hilbert space H0 ⊗H0 ⊗H0. Let PK be the projection onto K . If one reduces the
amplification by the projection PΛ1⊗PΛc

2
⊗PK ∈R′

Λ1
⊗RΛ2⊗B(H0) and conjugates

with the unitary U , one obtains a normal faithful representation of RΛ1⊗R′
Λ2

onto
RΛ1 ∨R′

Λ2
.
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Chapter 12

The non-abelian case

The question whether the results obtained for the toric code (i.e. G = Z2) gener-
alise to Kitaev’s model for non-abelian G comes up naturally. In particular, is it
possible to describe single charges in such models by linear maps of the observ-
ables? It would be interesting to obtain a braided tensor category from such maps.
One expects that once again this category will be equivalent to Rep f D(G).

In this chapter we take some steps towards this goal. One can imagine that
things get considerably more complicated, especially for non-abelian groups G .
For example, non-abelian anyons are likely not to be described by automorph-
isms: in the algebraic QFT setting one can prove that a sector is abelian if and only
if it is described by localised and transportable automorphisms. Indeed, some of
the constructions for the toric code model do not carry over to the non-abelian
case. In this chapter we point out some of the difficulties and, in some cases, sug-
gest a solution.

The reader should be warned that the results in this chapter are still “work
in progress”. At best, it shows how the non-abelian case could be tackled, but a
complete theory as for the toric code model is as of yet unavailable.

12.1 The ground state

In the toric code the ground state was completely fixed by the condition ω0(As) =
ω0(Bp ) = 1. In the case of an arbitrary finite group G , so far we only have the char-
acterisation of ground states in Proposition 9.2.2. In this section we will prove that
once again the ground state is completely determined by the fact that its value on
the projections A(s) and B( f ) equals one.

The idea is essentially to use Lemma 9.2.1 again, just as it was used in the proof
of the uniqueness of the ground state of the toric code model. The combinatorics,
however, is much more involved. To give some idea of the kind of manipulations
that will be useful, let s be a site and suppose that g ∈G . Then it is easy to check,
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using equation 9.1.1, that Ag
s A(s) = A(s) = A(s)Ag

s . Suppose that ω0 is a ground
state. Then Proposition 9.2.2 and Lemma 9.2.1 imply that for each X ∈A we have

ω0(X ) =ω0(A(s)X ) =ω0(A(s)Ag
s X ) =ω0(Ag

s X ) =ω0(X Ag
s ),

and ω0(B(s)X ) = ω0(X B(s)) = ω0(X ). That is, when calculation the value of some
operator X in a ground state ω0, we can add factors of Ag

s or B(s) at will.
In the subsequent discussion it is useful to borrow some terminology from dis-

crete gauge theory [Oec05], slightly adapted to the setting we consider here.

Definition 12.1.1. Let F be a finite collection of faces and let Λ ⊂ B be the set of
bonds bounding any face f ∈ F . A G-connection c is a map c : Λ→G. A connection
is called flat if the monodromy around each face is trivial. That is, let f ∈ F and list
the edges j1, . . . jn of f in counter-clockwise order. Then the monodromy is trivial if
σ(c( j1))σ(c( j2)) · · ·σ(c( jn)) = e, where σ is as before: σ(c( j )) = c( j ) if the direction
of j coincides with the direction of the path around f , and c( j )−1 otherwise. The set
of all G-connections on Λ will be denoted by CG (Λ), whose subset of flat connections

is called C f
G (Λ).

The constant map defined by c0( j ) = e is trivially a flat G-connection.
To each c ∈CG (Λ) we can associate a projection Pc ∈A(Λ) by setting

Pc =
∏
j∈Λ

T c( j )
τ( j ) ,

where τ( j ) is the direct triangle with side j such that the orientation of the triangle
matches the orientation of j . Note that all terms commute with each other, hence
the product is well-defined.

Lemma 12.1.2. Let c ∈ CG (Λ) and suppose that ω0 is a ground state for the quan-

tum double model. Then ω0(Pc ) = 1/|C f
G (Λ)| if c is flat, and zero otherwise. Here

|C f
G (Λ)| is the number of flat G-connections.

Proof. First note that if f is any face, then B( f ) commutes with T g
τ for any tri-

angle τ, and hence B( f ) commutes with Pc . Suppose that c is not flat. Then
there is a face f with edges j1, . . . , jn (starting in the lower left corner) such that

c( j1)c( j2)c( j3)−1c( j4)−1 ̸= e. But then B( f )P c( j1)
τ( j1)P c( j2)

τ( j2)P c( j3)
τ( j3)P c( j4)

τ( j4) = 0, and hence
B( f )Pc = 0 and ω0(Pc ) =ω0(Pc B( f )) = 0.

Now consider the case that c is flat and let F be the set of faces of which Λ form
the boundaries. Then it is not difficult to see that∏

f ∈F
B( f ) =

∑
c ′∈C f

G (Λ)

Pc ′ .
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Figure 12.1: Left: a diagrammatic representation of a G-connection. Right: the connection obtained
after applying star operators at the vertices v1, v2 and v3 to the trivial connection. By a series of such
moves we can obtain the left connection.

Since ω0 takes the value one on the left hand side, by Lemma 9.2.1, the claim fol-
lows if we can show that ω0(Pc1 ) = ω0(Pc2 ) for two flat G-connections. Note that
Ag

v Pc = Pc ′ Ag
v , where c ′ is related to c as follows: c ′( j ) = c( j ) if j ∩ star(v) is empty.

If j ∈ star(v) and points away from v , then c ′( j ) = g c( j ). In the remaining case,
where j ∈ star(v) points towards v , we have c ′( j ) = c( j )g−1. This can be verified
using, for example, the diagrammatic description on page 134. The G-connection
c ′ obtained is this way is automatically flat, since c is flat.

The claim is that by a sequence of such moves we can go from a given flat con-
nection c1 to any other flat connection c2. It is enough to show this if c1 is the trivial
connection, c1( j ) = e for all j . We will use a diagrammatic language to specify a
G-connection. Concretely, suppose that c2 is as in the left diagram in Figure 12.1.

This can be obtained from the trivial connection as follows. First, multiply by A
h−1

1
v1

,

then A
h−1

2 h−1
1

v2
and finally by A

h−1
4

v3
. This transforms the trivial connection to the con-

nection given in the right diagram of Figure 12.1. Or, more precisely,

A
h−1

4
v3

A
h−1

2 h−1
1

v2
A

h−1
1

v1
Pc0 = Pc ′ A

h−1
4

v3
A

h−1
2 h−1

1
v2

A
h−1

1
v1

,

where c0 is the trivial connection, and c ′ the connection in the right diagram in
Figure 12.1. Since c is a flat connection, it follows that in fact h−1

4 h1h2 = h3.
The connection c ′ obtained in this way now agrees with c on the edges of the

face at the bottom left. Continuing in this way, we can make the other edges agree

as well. For example, we can proceed by multiplying with A
h−1

5 h−1
1

v4
. The fact that

c is a flat connection guarantees that the remaining edge (for example, the edge
between v2 and v3 above) has the right value.

This Lemma, and the methods employed in the proof, can be used to show
that the quantum double model has a unique ground state. This might have been
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Figure 12.2: Labelling of edges j1, j2, . . . of Λ, as well as faces f1, f2, f3 and a vertex v . The black
edges are elements of Λ, the others are not.

expected, considering that in the finite case the ground states are in 1-to-1 corres-
pondence with flat G-connections (up to conjugacy and super-positions) [Kit03].

Theorem 12.1.3. Kitaev’s quantum double model has a unique ground state ω0,
completely determined by ω0(A(s)) =ω0(B( f )) = 1.

Proof. Proposition 9.2.2 (and the remark following it) imply that a ground state
ω0 assuming the value one on star and plaquette operators exists, and that every
ground state has this property. We are done if we can show that for local X ∈Aloc ,
the value of ω0(X ) can be computed from these data.

Our strategy is to reduce the calculation of ω0(X ) to something of the form
ω0(Pc ) for a G-connection c. Without loss of generality, we may assume that we
have X ∈A(Λ), where Λ are the edges of a finite number of faces. We furthermore
assume that the faces together form a rectangle. In other words, Λ looks like Fig-
ure 12.2. Label the edges by j1, . . . , jn . It is enough to consider operators X of the
form

X =
n∏

i=1
Lgi

τ′(i )T
hi

τ(i ),

where τ(i ) is the direct triangle with ji as its edge, such that their orientations
match. Similarly, τ′(i ) is the dual triangle corresponding to the edge ji such that
their orientations are opposite.1 This is sufficient, since each operator in A(Λ) can
be written as a sum of such operators.

Note that X is of the form X = X0Pc for some G-connection c ∈ CG (Λ). If c is
not flat, then there is some face f such that Pc B e ( f ) = 0, as we have seen in the
proof of the previous Lemma. Hence, in that case, ω0(X ) = 0. Therefore, without

1That is, on a vector |h〉, L
gi
τ′(i )

acts as multiplication by g−1
i on the right.
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12.1. The ground state

any loss of generality, from now on we will assume that c is flat. The idea is again
to use multiplication with star and plaquette operators to reduce the calculation
step by step. To show how this works, label the edges and faces as in Figure 12.2.
At each black edge an operator Lgi

τ′(i )T
hi

τ(i ) acts.
Now consider the face f2, and the corresponding operator B e ( f2). Note that

B e ( f2)Lg1

τ′(1)T
h1
τ(1)B

e ( f1) is zero, unless g2 = e, in which case it is equal to T h1
τ(1)B

e ( f2).
This can be verified using the diagrammatic representation of B e ( f2). Essentially,
what happens is that B e ( f2) projects onto the subspace of vectors with trivial mo-
nodromy around f2. But Lg1

τ′(1) changes one of the edges, so that the monodromy
is no longer trivial. Hence ω0(X ) = 0 unless g1 = e. A similar trick can be played
with the face f1, to conclude that g4 = e or ω0(X ) = 0.

Now assume that g1 = g4 = e. Next we calculate B e ( f3)X B e ( f3), or more pre-
cisely, compute how it acts on the edges j1, . . . j4. It is enough to check this for
the vector |h1〉⊗ · · · |h4〉, since on any other basis vector it is zero (because of the
projection T h1

τ(1) · · ·T h4
τ(4)). We find

B e ( f3)Lg2

τ′(2)L
g3

τ′(3)

b b

bb

h1

h2

h3

h4
= B e ( f3)

b b

bb

h1

h2g−1
2

h3g−1
3

h4

= δe,h1h2g−1
2 g3h−1

3 h−1
4

b b

bb

h1

h2g−1
2

h3g−1
3

h4
.

Since c is a flat connection, it follows that this is zero unless g2 = g3.
The crucial step is to multiply the expression with a star operator at v to get rid

of the terms Lg2

τ′(2) and Lg3

τ′(3). Indeed, ω0(X ) =ω0(A
g−1

2
v X ). But A

g−1
2

v X is related to X

as follows: it amounts to replacing Lg2

τ′(2) and Lg2

τ′(3) by the identity operator, since
the effect of the star operator is to multiply with g2 on the right on the correspond-
ing edges, cancelling the effect of Lg2

τ′(2) and Lg2

τ′(3). It remains to study the effect on
the edges j11 and j8, since the star operator acts trivially on the other edges.

This amounts to calculating L
g−1

2

τ′(11)
Lg11

τ′(11)
L

g−1
2

τ′(8)
Lg8

τ′(8)
T h11
τ(11)T

h8
τ(8), where τ′(i ) is the

triangle τ′(i ) with the direction reversed. We find

L
g−1

2

τ′(11)
Lg11

τ′(11)
T h11
τ(11) = Lg11

τ′(11)
L

g−1
2

τ′(11)
T h11
τ(11) =

Lg11

τ′(11)

∑
g∈G

L
g−1g−1

2 g
τ′(11) T g

τ(11)T
h11
τ(11) = L

g11h−1
11 g−1

2 h11

τ′(11) T h11
τ(11),

and similarly for the other edge. Since all operators acting on distinct edges com-
mute, it follows that Ag−1

2 X = X ′, where X ′ is obtained by dropping the factors Lg2

τ′(2)

and Lg3

τ′(3) from X , and replacing g11 by g11h−1
11 g−1

2 h11 (and similarly for g8).
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12. The non-abelian case

The point is now that along the edges of the face f3, only projection operators
T h
τ act. By continuing in the same way as outlined above, we can “clean up” all

faces, and end up with ω0(Pc ) (or zero). Note that it might happen that by mul-
tiplying with a star operator at some vertex v , we act on an edge that is not an
element of Λ. If this is necessary to clean up an edge in Λ, it follows by the same
trick as before (multiplying with B e ( f ) for a suitable face f ) that in fact ω0(X ) = 0.
This completes the proof.

12.2 Excitations

As in the toric code case, we are particularly interesting in describing single excit-
ations. In the discussion of the model in Chapter 9 the ribbon operators F h,g were
introduced, and it was observed that they create excitations at the endpoints of
the ribbon. In principle, we can try the same trick of moving one of the endpoints
to infinity. There are some subtleties, however.

First of all, suppose that A ∈ Aloc and let ξ be a ribbon extending to infinity.
The naive way to generalise the toric code model is to set

ρ(A) = lim
n→∞F h,g

ξn
A

(
F h,g
ξn

)∗ = lim
n→∞F h,g

ξn
AF h−1,g

ξn
,

but this does not converge in norm. This can be seen by decomposing a suffi-
ciently large ribbon ξn , the first n triangles of the ribbon ξ, in two ribbons ξ1,ξ2. If

n is big enough, this can be done in such a way that the support of F h,g
ξ2

is disjoint
from the support of A. Using the expansion (9.3.1), the terms in the limit can be
worked out and it is easy to see that the result does not converge as the ribbon ξ2

goes to infinity. It turns out that we have to take linear combinations of the ribbon
operators. We will elaborate on this below.

The second difficulty is that we cannot expect to obtain automorphisms again,
or even irreducible endomorphisms. First of all, the whole point of looking at non-
abelian groups is that we expect to find non-abelian anyons. However, it already
follows from the work of Doplicher, Haag and Roberts that an (excitation described
by an) endomorphism ρ has abelian statistics if and only if ρ is an automorph-
ism [DHR71].2

As for the claim that endomorphisms are not sufficient either: recall that A is
a UHF algebra, and let π0 be an irreducible ground representation of A. Suppose
that ρ is an irreducible endomorphism. Then π0 ◦ρ is an irreducible representa-
tion. But in that case, by Theorem 12.3.4 of [KR97] there is some automorphism α

of A such that π0◦ρ is unitarily equivalent to π0◦α. This brings us back to the situ-
ation before: automorphisms describe abelian statistics. Consequently, we cannot
restrict to pure states alone.

2For abelian excitations in the non-abelian model, we can still obtain automorphisms.
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12.2. Excitations

Positive maps

By the results in Chapter 5, irreducible representations of D(G) are labelled by
pairs (C ,ρ), where C is a conjugacy class of G , and ρ is an irreducible represent-
ation of the centraliser of some representative of C . We will construct positive
maps of A into itself associated to these irreducible representations. For one-
dimensional representations we will thereby obtain automorphisms again, but in
the general case these maps need not even be endomorphisms. In order to im-
prove readability of the equations, in this section we will write g for the inverse
g−1 of a group element.

Let us first indicate why we are interested in positive maps. First of all, we
already argued that irreducible endomorphisms will probably not suffice in for
non-abelian groups G . Moreover, since positive maps have to satisfy fewer condi-
tions than endomorphisms, they are in general easier to obtain than proper endo-
morphisms.

Further motivation is provided by work of Fredenhagen in algebraic quan-
tum field theory [Fre92]. Recall that in the DHR theory there is a natural (tensor)
product operation on the DHR endomorphisms. Fredenhagen’s aim was to define
such a product operation directly in terms of the states of a system. In particular,
he defines a product operation on the set of those states ω whose GNS represent-
ations πω satisfy the DHR selection criterion. This product is related to the usual
DHR product. The product is defined using positive maps in an essential way, and
it is these positive maps that are very similar to the ones we consider here.

Before we define these positive maps, we introduce some notation (compare
[BMD08]). First of all, let C be a conjugacy class of G . Choose a representative
r ∈ C , and let ZG (r ) be the centraliser of r in G . We label the elements of C by
c1, . . . ,cn , where n = |C |. Then there are qi such that ci = qi r q i . The set {qi } is
denoted by QC . Also note that each g ∈ G can be uniquely written as g = qi n for
some qi ∈QC

Note that if ξ is a ribbon, the operators F h,g
ξ

form a basis of the algebra they
generate. It turns out to be convenient to find another basis of this space. Let C be
a conjugacy class of G , and let r,ci and qi be as above. Suppose that ρ is a unitary
representation of ZG (r ). We regard each ρ(g ) as a unitary matrix. Let i , i ′ = 1, . . .n
and j , j ′ = 1, . . .dim(ρ). We then define

F Cρ;i ,i ′, j , j ′

ξ
= ∑

g∈ZG (r )
ρ j j ′(g )F

c i ,qi g q i ′
ξ

.

As C runs over all conjugacy classes of G , and ρ runs over the corresponding ir-
reducible representations of the centralisers, these operators form a basis of the

space spanned by F h,g
ξ

. We refer to [BMD08] for a proof. In essence, the point is
that the space of operators is decomposed into subspaces transforming according
to some irreducible representation of D(G).
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12. The non-abelian case

First, we define positive maps corresponding to finite ribbons.

Definition 12.2.1. Let C be a conjugacy class and choose r , ci and qi as above. Let ρ
be a irreducible representation of ZG (r ) and suppose that ξ is a (finite) ribbon. Then
we define

χ
Cρ

ξ
(A) = ∑

i , j=1...|C |,n,m∈ZG (r )
trρ(mn)F

c i ,qi nq j

ξ
A

(
F

c i ,qi mq j

ξ

)∗
,

where A ∈A.

The map trρ(g ) is the trace of ρ(g ).

Remark 12.2.2. Note that the map is obtained by conjugating A with elements
of the form F Cρ;i ,i ′ j , j ′ , and then summing over the indices. The trace appears by
using the fact that ρ is a representation, and noting that in this summation we
essentially obtain terms that amount to matrix multiplication. It turns out that
this definition gives the right fusion coefficients, at least in a few cases checked
by a computer calculation; see below for an explanation. It would be interesting
to find a deeper reason why this is the case. In addition, the definition here has
the advantage that in the limit where one end of the ribbon is sent to infinity, it
is actually enough to consider a finite (but large enough) ribbon to calculate the
value of the positive map on local observables. This is similar to the toric code
case.

Composing this positive map with the ground state ω0 can be thought of as
creating an excitation of type (C ,ρ) at the endpoint of ξ, together with a conjugate
charge at the other endpoint. The idea is to subsequently move one of the excita-
tions to infinity, to obtain a state with a single charge. The next lemma shows that
this “moving to infinity” can be made rigorous.

Lemma 12.2.3. Let ξ be a ribbon extending to infinity, and write ξn for the ribbon
consisting of the first n triangles of ξ. Suppose that (C ,ρ) are as described above.
Then for each A ∈A, the limit

χ(A) := lim
n→∞χ

Cρ

ξn
(A) (12.2.1)

exists in the norm topology and this defines a positive map χ :A→A. This map has
the following properties:

(i) χ(I ) = |C |dim(ρ)I ;
(ii) χ(A)∗ =χ(A∗);

(iii) χ(ABC ) = Aχ(B)C for A,B ,C ∈A with supp(A),supp(C ) disjoint from ξ;
(iv) If A ∈Aloc , χ(A) =χ

Cρ

ξ̂
(A) for any ribbon ξ̂⊂ ξ such that supp(A)∩ξ⊂ ξ̂.
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12.2. Excitations

Proof. First consider A ∈ Aloc . Let N be such that supp(A)∩ (ξn \ ξN ) = ; for all
n ≥ N . The idea is to decompose the ribbon ξn as ξn = ξN ξ̂, where ξ̂= ξn \ξN . Us-

ing equation (9.3.1), the corresponding ribbon operators F h,g
ξn

can then be decom-
posed. Note that by the assumption on the support of A and locality, the operators

F h,g

ξ̂
commute with A. Using this observation, we calculate

χ
Cρ

ξn
(A) =

|C |∑
i , j=1

∑
n,m∈ZG (r )

∑
k,l∈G

trρ(mn)F c i ,k
ξN

F
kc i k,kqi mq j

ξ̂
AF ci ,l

ξN
F

lci l ,l qi nq j

ξ̂

=
|C |∑

i , j=1

∑
n,m∈ZG (r )

∑
k,l∈G

trρ(mn)F c i ,k
ξN

AF ci ,l
ξN

F
kci klci l ,kqi mq j

ξ̂
δkqi mq j ,l qi nq j

.

We first want to calculate the sum over l . This gives a non-zero contribution if and
only if l = kqi mn q i . If we substitute this in the expression kc i lci l , this reduces by
an elementary computation to e. Thus we obtain

χ
Cρ

ξn
(A) =

|C |∑
i , j=1

∑
n,m∈ZG (r )

∑
k∈G

trρ(mn)F c i ,k
ξN

AF
ci ,qi nmq i k
ξN

F
e,kqi mq j

ξ̂

=
|C |∑

i , j=1

∑
n,m∈ZG (r )

∑
k∈G

trρ(mn)F
c i ,qi mq j k

ξN
AF

ci ,qi nq j k

ξN
F e,k

ξ̂
,

where in the last line the substitution k 7→ qi mq j k is made. To proceed, note that
there is a unique zi ,k ∈ ZG (r ) and q i ,k such that q j k = z j ,k q j ,k . Moreover, if k is
fixed and j runs over the integers 1, . . . |C |, then q i ,k runs over the set q j ′ , where
j ′ = 1, . . . |C |. Hence

χ
Cρ

ξn
(A) =

∑
k∈G

|C |∑
i , j=1

∑
n,m∈ZG (r )

trρ(mn)F
c i ,qi mz j ,k q j ,k

ξN
AF

ci ,qi nz j ,k q j ,k

ξN
F e,k

ξ̂

= ∑
k∈G

|C |∑
i , j=1

∑
n,m∈ZG (r )

trρ(z j ,k mnz j ,k )F
c i ,qi mq j ,k

ξN
AF

ci ,qi nq j ,k

ξN
F e,k

ξ̂

= ∑
k∈G

|C |∑
i , j ′=1

∑
n,m∈ZG (r )

trρ(mn)F
c i ,qi mq j ′
ξN

AF
ci ,qi nq j ′
ξN

F e,k

ξ̂

=χ
Cρ

ξN
(A).

From this it is clear that the limit in equation (12.2.1) converges for operators A ∈
Aloc .

Next we show that χ is a bounded linear map, and hence it can be extended to
a map of A to itself, since Aloc is dense in A. First note that for g ,h ∈ G and ξ an
arbitrary ribbon, we have

∥F h,g
ξ

∥2 = ∥
(
F h,g
ξ

)∗
F h,g
ξ

∥ = ∥F e,g
ξ

∥ = 1,
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12. The non-abelian case

since F e,g
ξ

is a projection. Combining this with its definition, it follows that χ is
bounded so that it can be extended from Aloc to A. We still denote this extension
by χ. It is clear from the construction that χ is a positive map.

It remains to be shown that the stated properties hold. Property (i) can be
verified by a direct calculation (we omit the subscript denoting the ribbon):

χ(I ) = ∑
i , j=1,...|C |;n,m∈ZG (r )

trρ(mn)F ci ,qi nq j F ci ,qi nq j

= ∑
i , j=1,...|C |;n,m∈ZG (r )

trρ(mn)F e,qi nq j δqi nq j ,qi mq j

= |C | ∑
i=1,...|C |;n∈ZG (r )

trρ(e)F e,qi n

= |C |dim(ρ)I .

In the third line we used that for fixed j , G = {qi nq j : i = 1, . . . |C |, n ∈ ZG (r )}. Prop-
erties (ii) and (iii) are clear from the definitions (and from the continuity of the
∗-operation with respect to the norm topology).

As to the last property, the first part of the proof implies that we only need to
check what happens if we cut of part of the first part of the ribbon. Let A ∈ Aloc

and let ξ̂ be as stated. Set ξ2 = ξ̂ and let ξ1 be the ribbon contained in ξ consisting
of the part from the starting point of ξ to the starting point of ξ2. Then the first part
of the proof implies that χ(A) =χ

ρC
ξ1ξ2

. Using equation (9.3.1) as before, we obtain

χ(A) =
∑

k∈G

|C |∑
i , j=1

∑
m,n∈ZG (r )

trρ(mn)F e,k
ξ1

F
k c i k,kqi mq j

ξ2
AF

kci k,kqi nq j

ξ2
.

Note that if k is fixed, kci k = ci ,k for some ci ,k ∈C and that kqi = qi ,k zi ,k for some
zi ,k ∈ ZG (r ). By making the appropriate substitutions, just like in the first part of
the proof, we obtain

χ(A) = ∑
k∈G

|C |∑
i , j=1

∑
m,n∈ZG (r )

trρ(mn)F e,k
ξ1

F
c i ,qi mq j

ξ2
AF

ci ,qi nq j

ξ2
=χ

ρC

ξ̂
(A).

This completes the proof of the lemma.

The author surmises that these are the right maps to study and that it should
be possible to again recover all relevant properties from these maps. An example
is fusion. Since any two positive linear maps of A can be composed, preserving
positivity, we can again define a “product” operation by composition. Note that
if (C1,ρ1) and (C2,ρ2) define maps χ1 and χ2 as in the Lemma, then χ1 ◦χ2(I ) =
|C1||C2|dim(ρ1)dim(ρ2). But this is precisely the dimension of the tensor product
of the corresponding D(G)-representations.
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12.2. Excitations

Part of this idea is motivated by the results of Fredenhagen [Fre92] mentioned
earlier. In fact, the positive maps have largely the same properties as the maps he
studies, with the obvious difference that in the present case the maps are not loc-
alised in bounded regions of space, but rather in specific unbounded regions. In
particular, they act trivially (up to a constant scale factor) on observables localised
outside any cone containing the ribbon ξ.

In the case of one-dimensional representations of D(G), the above construc-
tion reduces to the case familiar of the toric code model: in that case the positive
maps defined above are actually automorphisms.

Proposition 12.2.4. Let ξ be a ribbon extending to infinity. If χ is a positive map
constructed from a pair (C ,ρ) as above, write χ̂ for the normalized map χ̂(A) =
χ(A)/χ(I ). If (C ,ρ) gives rise to a one-dimensional representation of D(G), then
ξ̂ is an endomorphism. It is even an automorphism, whose inverse corresponds to
the conjugate representation of the representation induced by (C ,ρ).

Proof. Note that the D(G)-representation is one-dimensional if and only if |C | = 1
and ρ is a one-dimensional representation. This follows from the construction of
such representations, c.f. Theorem 5.2.7. By Lemma 12.2.3(i), χ(I ) = I . Suppose
C = {c}. Since ρ is a one-dimensional representation, we can identify trρ(g ) with
ρ(g ). Note that ZG (c) =G . Let A,B ∈Aloc and suppose that ξ̂ is a finite part of the
ribbon ξ that is big enough, as in Lemma 12.2.3(iv). Then we have (all summations
are over G)

χ(A)χ(B) =
∑

g ,h,k,l
ρ(g h)ρ(kl )F c,g

ξ̂
AF c,h

ξ̂
F c,k

ξ̂
BF c,l

ξ̂

= ∑
g ,h,l

ρ(g h)ρ(hl )F c,g

ξ̂
AF e,h

ξ̂
BF c,l

ξ̂

=
∑

g ,h,l
ρ(g l )F c ,g

ξ̂
AF e,h

ξ̂
BF c,l

ξ̂

=χ(AB),

from which by continuity of χ and of multiplication in the norm topology it follows
that χ is an endomorphism.

If C = {c}, it follows that C := {c} is also a conjugacy class of G . Note that ρ(g ) :=
ρ(g ) defines a one-dimensional irreducible representation of G . Write χ for the
map corresponding to the pair (C ,ρ). This is an endomorphism by the results
before. Now let A ∈Aloc and suppose ξ̂⊂ ξ is a finite sufficiently big ribbon. Then
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12. The non-abelian case

we calculate

χ◦χ(A) = ∑
g ,h,k,l∈G

ρ(g h)ρ(kl )F c,g

ξ̂
F c,k

ξ̂
AF c,l

ξ̂
F c,k

ξ̂

= ∑
g ,h∈G

ρ(g h)ρ(hg )F e,g

ξ̂
AF e,h

ξ̂

= A,

hence by continuity it follows that χ is an automorphism.

This observation suggests that, at least for abelian G , the analysis for the toric
code will go trough without essential changes. In the non-abelian case things are
likely to be more difficult. For example, it is not yet clear (at least not to the author)
what the right morphisms in the category of positive maps as above are. We will
comment on some of the issues that need to be resolved in §12.3.

Remark 12.2.5. Based on the DHR theory, according to which a charge is abelian if
and only if it is described by an automorphism, one would expect that if a map χCρ

is an automorphism, then (C ,ρ) must define a one-dimensional representation.
Moreover, it would be interesting to find out if the map χ in the Proposition can
still be an endomorphism if the representation is not one-dimensional. Based on
some preliminary calculations, the author conjectures that this is not the case.

Fusion tables

Suppose that ξ is a ribbon extending to infinity. In the previous section we asso-
ciated to such ribbons, together with irreducible representations of D(G), positive
linear maps of A into itself. Based on the results for the toric code and the DHR
programme in algebraic quantum field theory, one expects that fusion can again
be described by composing two maps. If there is any hope for a category of the
positive maps we consider here to be equivalent to Rep f D(G), then this compos-
ition of maps should be related to the decomposition of the tensor product of two
irreducible D(G)-modules into irreducibles. In particular (c.f. [Fre92]), let χi and
χ j be positive maps corresponding to irreducible D(G)-modules Vi and V j . Then
we conjecture that

χi ⊗χ j :=χi ◦χ j =
∑
k

N k
i jχk ,

where N k
i j are the fusion coefficients of Rep f D(G).

At the moment we have no proof of this conjecture, but we do have some evid-
ence from computer algebra calculations. For example, for G = S3, we indeed find
that the composition of the positive maps corresponding to two irreps of D(G)
can be written as a sum of such positive maps, where the coefficients precisely
correspond to the coefficients N k

i j . These coefficients can be found in Table 12.1
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on page 188. We refer to the Appendix for an explanation and for the source code
of the program that we used to calculate the coefficients.

To find the fusion coefficients for G = S3, we first have to find the irreducible
representations of D(G). There are three conjugacy classes of S3, namely A = {e},
B = {(1,2), (1,3), (2,3)} and C = {(1,2,3), (1,3,2)}. We then have to pick a represent-
ative ci from each conjugacy class, and consider its centraliser. For the conjugacy
class A, this centraliser has three irreducible representations. These correspond to
irreducible D(G)-modules A1, A2 and A3, and similarly to positive maps χAi acting
along some semi-infinite ribbon. Similarly, we have B1,B2 and C1,C2 and C3. Once
all these representations are known, the fusion coefficients can be calculated; they
are listed in the table. Note that this table has been computed using the compos-
ition of the positive maps, not by computing the fusion of D(G)-modules.3 The
tables do however coincide for this case (see e.g. [BSW11]).

We have also verified that in the case of the alternating group A4 and the di-
hedral group D8, once again the fusion coefficients of the corresponding category
Rep f (A4) (resp. Rep f (D8)) are recovered. The author believes that this holds for
arbitrary finite groups G . It might be possible to prove this using the techniques
in [Kit03].

12.3 Open problems

The previous sections give some indication on how to set up a theory for the non-
abelian quantum double model, but it is far from complete. In particular, we have
not fully recovered the structure of a braided tensor category. One problem that
needs to be addressed is that it is not immediately clear what the appropriate
Hom-sets are. Moreover, we have to define duals and a braiding. Since the pos-
itive maps are defined in terms of representations of D(G), it is natural to expect
that the duals and braiding are related to the duals and braidings of Rep f D(G).
As for duals, this is indeed supported by Proposition 12.2.4 for abelian charges.
See also [Kit03], where fusion and braiding in the finite model are discussed. The
techniques developed there can perhaps be adapted to the present case. This is-
sue is the most important open problem in generalising the toric code results to
non-abelian G . The study of GNS representations corresponding to states ω0 ◦χ
can perhaps be a first step in this direction.

Besides this, it would be interesting to answer the questions raised above in Re-
mark 12.2.2: why (if?) the positive maps defined here are the “right” ones. A better
understanding of these maps would be welcome. In particular, can they perhaps
be used to obtain endomorphism in the non-abelian case? See also Remark 12.2.5.

3The fusion of D(G)-modules can indeed be obtained by more efficient methods than by using
the code in the appendix.
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12.3. Open problems

Finally, we could try to obtain more insights into the states ω0◦χ. In particular,
they should be “topological”, in the sense that they should not depend on the spe-
cific ribbon used in the definition of χ. It should be possible to prove this using the
methods in [BMD08], in particular by adapting the tools developed in Appendix C
of that paper. Moreover, do they correspond to “pure phases”, in the terminology
of [EKV68]. In other words, are they factor states? Finally, do the operator algeb-
raic results obtained in Chapter 11 generalise to the non-abelian case? This would
require a good understanding of the ribbon operators, as well as the way they act
on the ground state vector in the GNS representation.
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Appendix A

Computing fusion rules

In this appendix we provide source code for the open source GAP computer algebra
system [GAP08] to compute fusion rules in Kitaev’s model, together with a short
description on its usage. No attempts at optimising the code have been made.
The package makes use of the REPSN routines to compute irreducible matrix rep-
resentations of finite groups [Dab08].

Let us first briefly outline how to use this file. The precise algorithms are de-
tailed below. The code contains one global parameter that can be altered: the
group G . In the code below it is set to the permutation group on three elements.
Adjust this if necessary. Once GAP is running, load the file by

gap> Load("maps.g");

The function getConjugacyClasses calculates all conjugacy classes of G , picks
a representative, calculates the centraliser of this representative, and finds the ir-
reducible representations of these centralisers. Use the command as follows (add
an extra ; to suppress output):

gap> ccdata := getConjugacgyClasses(G);

The next command, in essence, builds the linear maps corresponding to irredu-
cible representations of D(G) introduced in §12.2.

gap> irreps := getAllArrays(ccdata);

Finally, the fusion table can be calculated and displayed by issuing the command

gap> fusionMatrix(irreps);

The meaning of the symbols in the output is explained below.
The first thing the program does, is to load the REPSN package, to find irredu-

cible matrix representations, and define some constants such as the group G .
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A. Computing fusion rules

5 LoadPackage ( "repsn" ) ;
6
7 # some global d e f i n i t i o n s , s ince we need them often . Presumably more

e f f i c i e n t than c a l l i n g the appropriate methods every time
8 G:= SymmetricGroup ( 3 ) ;
9 sz := Size (G) ;

10 e l t s := Elements (G) ;

In order to build to positive maps, we need irreducible matrix representations
of finite groups. These are obtained by first calculating a list of irreducible char-
acters of the group. Then the REPSN package is used to find irreducible matrix
representations for each character. The function returns an array with the repres-
entations.

14 g e t A l l I r r e p s := function ( grp )
15 local ct , c , i r r e p s ;
16
17 i r r e p s := [ ] ;
18 # f i r s t get the character table
19 ct := I r r ( grp ) ;
20 for c in ct do
21 Add( irreps , IrreducibleAffordingRepresentation ( c ) ) ;
22 od ;
23
24 return i r r e p s ;
25 end ;

The next function is used to find the conjugacy classes of G . The data is stored
in the GAP record data types. Each record r contains a field r.cc, storing a con-
jugacy class. For each conjugacy class, a representative is picked and stored in
r.rpn. The centraliser of this representative is stored in r.cent, together with its
irreducible representations in r.irreps. Finally, r.qi and r.ci are arrays con-
taining elements qi and ci as in §12.2.

31 getConjugacyClasses := function ( grp )
32 local r , qi , cc , ccl , data ;
33
34 data := [ ] ;
35 c cl := ConjugacyClasses ( grp ) ;
36
37 for cc in cc l do
38 r := rec ( cc := cc , rpn := Representative ( cc ) ) ;
39 r . cent := Central izer ( grp , r . rpn ) ;
40 r . i r r e p s := g e t A l l I r r e p s ( r . cent ) ;
41 r . qi := L i s t ( Elements ( RightTransversal ( grp , r . cent ) ) , Inverse ) ;
42 r . c i := [ ] ;
43 for qi in r . qi do
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44 r . c i [ Position ( r . qi , qi ) ] := qi * r . rpn* Inverse ( qi ) ;
45 od ;
46 Add( data , r ) ;
47 od ;
48
49 return data ;
50 end ;

Recall that the positive maps are essentially of the form

χ(−) = ∑
g ,h,k,l

c(g ,h,k, l )F g ,h(−)F k,l ,

for scalars c(g ,h,k, l ). In the code the positive maps are represented by four-
dimensional arrays, indexed by the group elements, representing these scalars.
The next routine creates such a 4D array, corresponding to the zero map.

53 zeroMap := function ( )
54 local tbl , g , p , q ;
55
56 t b l := [ ] ;
57 for g in e l t s do
58 Add( tbl , [ ] ) ;
59 od ;
60
61 # don ’ t need the group elements indexing here
62 for p in [1 . . sz ] do
63 for q in [1 . . sz ] do
64 t b l [p ] [ q ] := NullMat ( sz , sz ) ;
65 od ;
66 od ;
67
68 return t b l ;
69 end ;

To consistently map group elements g ∈G to elements in an array, the follow-
ing helper function is useful.

72 ind := function ( g )
73 return Position ( e l t s , g ) ;
74 end ;

If we have two positive maps χ1,χ2, it is not so difficult to calculate the coeffi-
cients c(g ,h,k, l ) corresponding to the map ξ1 ◦χ2. The following function calcu-
lates these coefficients in terms of the coefficients stored in an array a and b.

77 fusionMap := function ( a , b)
78 local tbl , p , q , g , h , k , l ;
79
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A. Computing fusion rules

80 # i n i t
81 t b l := zeroMap ( ) ;
82
83 for g in e l t s do
84 for h in e l t s do
85 for p in e l t s do
86 for q in e l t s do
87 for k in e l t s do
88 for l in e l t s do
89 t b l [ ind ( g*k ) ] [ ind ( l *h) ] [ ind (p) ] [ ind (q) ] := t b l [ ind ( g*k )

] [ ind ( l *h) ] [ ind (p) ] [ ind (q) ] +
90 a [ ind ( g ) ] [ ind (h) ] [ ind (p) ] [ ind (q) ] * b[ ind ( k ) ] [ ind ( l ) ] [

ind (p) ] [ ind (q) ] ;
91 od ;
92 od ;
93 od ;
94 od ;
95 od ;
96 od ;
97
98 return t b l ;
99 end ;

To each conjugacy class and irreducible representation of the centraliser of a
representative, we associated a positive map in Definition 12.2.1. The next func-
tion translates this into a 4D array of coefficients. The argument cc is a record as
obtained from the function getConjugacyClasses(grp). The second argument
is the index of the irreducible representation in the array cc.irreps.

104 getMapArray := function ( cc , i r )
105 local tbl , n , m, qi , qj , ci , dim , rep , i , j ;
106
107 t b l := zeroMap ( ) ;
108
109 # get dimension of representation
110 rep := cc . i r r e p s [ i r ] ;
111 dim := Size (ImageElm( rep , Elements ( cc . cent ) [ 1 ] ) ) ;
112
113 # add everything together
114 for i in [1 . . dim] do
115 for j in [1 . . dim] do
116 for qj in cc . qi do
117 for qi in cc . qi do
118 c i := qi * cc . rpn* Inverse ( qi ) ;
119 for n in cc . cent do
120 for m in cc . cent do
121 t b l [ ind ( Inverse ( c i ) ) ] [ ind ( c i ) ] [ ind ( qi *n* Inverse ( qj ) ) ] [
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ind ( qi *m* Inverse ( qj ) ) ] :=
122 t b l [ ind ( Inverse ( c i ) ) ] [ ind ( c i ) ] [ ind ( qi *n* Inverse ( qj ) )

] [ ind ( qi *m* Inverse ( qj ) ) ]
123 + ComplexConjugate (ImageElm( rep , n) [ i ] [ j ] ) *ImageElm(

rep ,m) [ i ] [ j ] ;
124 od ;
125 od ;
126 od ;
127 od ;
128 od ;
129 od ;
130
131 return t b l ;
132 end ;

The goal is to see if the composition of two positive maps as defined above is
a sum of such maps. To answer this question, we regard the 4D arrays as a vector
space over C of dimension |G|4. The next function calculates the inner product
between two vectors in this space.

135 innerProduct := function ( a , b)
136 local ip , g , h , p , q ;
137
138 ip := 0 ;
139
140 for g in [1 . . sz ] do
141 for h in [1 . . sz ] do
142 for p in [1 . . sz ] do
143 for q in [1 . . sz ] do
144 ip := ip + ComplexConjugate ( a [ g ] [ h ] [ p ] [ q ] ) *b[ g ] [ h ] [ p ] [ q ] ;
145 od ;
146 od ;
147 od ;
148 od ;
149
150 return ip ;
151 end ;

To print a human readable result, we label the conjugacy classes by A,B ,C , · · · .
For each conjugacy class, the irreducible representations are labelled by integers
1,2, · · · . Hence, a positive map as above can be referred to as A2, for example. The
function getAllArrrays, which expects as a parameter a list of records as above,
calculates the corresponding 4D arrays, and names them according to the rules
specified here. Their norm-squared, with respect to the inner product discussed
before, is also calculated.

155 getAl lArrays := function ( ccdata )
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156 local cc , irrep , maps, r ;
157
158 maps := [ ] ;
159 for cc in [1 . . Size ( ccdata ) ] do
160 for i r r e p in [1 . . Size ( ccdata [ cc ] . i r r e p s ) ] do
161 r := rec ( name := Concatenation ( [CHAR_INT(64+ cc ) ] , Str ing ( i r r e p

) ) ,
162 map := getMapArray ( ccdata [ cc ] , i r r e p ) ) ;
163 r . s i z e := innerProduct ( r .map, r .map) ;
164 Add(maps, r ) ;
165 od ;
166 od ;

To print a list of all names (and the corresponding norm-squared), the next
function can be used.

172 p r i n t I r r e p s := function ( reps )
173 local i ;
174
175 for i in reps do
176 Print ( i .name, " \ t " , i . size , " \n" ) ;
177 od ;
178 end ;

If we have two maps χi and χ j , we can calculate coefficients N k
i j such that χi ◦

χ j =∑
k N k

i jχk , where χk runs over all positive maps corresponding to irreducible
representations of D(G). This is done in the next function, which also prints the
result in a human readable form.

181 printFusion := function ( reps , i , j )
182 local fused , nijk , k ;
183
184 fused := fusionMap ( reps [ i ] . map, reps [ j ] .map) ;
185 Print ( reps [ i ] . name, "␣x␣" , reps [ j ] . name, "␣=␣" ) ;
186 for k in [1 . . Size ( reps ) ] do
187 n i j k := innerProduct ( reps [ k ] . map, fused ) ;
188 i f n i j k <> 0 then
189 Print ( Str ing ( n i j k / reps [ k ] . s i z e ) , " * " , reps [ k ] . name, " \ t " ) ;
190 f i ;
191 od ;

Similarly, the whole fusion table can be obtained in the following way.

197 fusionMatrix := function ( reps )
198 local sz , i , j , k , tbl , nijk , ni j , fused ;
199
200 sz := Size ( reps ) ;
201 t b l := [ ] ;
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202
203 # i n i t table
204 for i in [1 . . sz ] do
205 Add( tbl , [ ] ) ;
206 od ;
207
208 for i in [1 . . sz ] do
209 for j in [ i . . sz ] do
210 fused := fusionMap ( reps [ i ] . map, reps [ j ] .map) ;
211 n i j := [ ] ;
212 for k in [1 . . sz ] do
213 n i j k := innerProduct ( reps [ k ] . map, fused ) / reps [ k ] . s i z e ;
214 i f n i j k = 1 then
215 Add( ni j , reps [ k ] . name) ;
216 e l i f n i j k <> 0 then
217 Add( ni j , Concatenation ( Str ing ( n i j k ) , " * " , reps [ k ] . name) ) ;
218 f i ;
219 od ;
220 t b l [ i ] [ j ] := JoinStringsWithSeparator ( ni j , "+" ) ;
221 Print ( t b l [ i ] [ j ] , " \n" ) ;
222 # symmetry
223 i f j > i then
224 t b l [ j ] [ i ] := t b l [ i ] [ j ] ;
225 f i ;
226 od ;
227 od ;
228 return t b l ;
229 end ;

Finally, the values of the positive maps on the unit of the algebra can be found
by using the unitValue function. The function returns a 2D array ĉ(g ,h), corres-
ponding to the expansion

∑
g ,h ĉ(g ,h)F h,g of χ(I ).

232 unitValue := function ( rep )
233 local val , h1 , h2 , g1 , unitVal ;
234
235 val := 0 ;
236 unitVal := NullMat ( sz , sz ) ;
237
238 for h1 in e l t s do
239 for h2 in e l t s do
240 for g1 in e l t s do
241 unitVal [ ind ( h1*h2 ) ] [ ind ( g1 ) ] := unitVal [ ind ( h1*h2 ) ] [ ind ( g1 ) ]

+ rep .map[ ind ( h1 ) ] [ ind ( h2 ) ] [ ind ( g1 ) ] [ ind ( g1 ) ] ;
242 od ;
243 od ;
244 od ;
245
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246 return unitVal ;
247 end ;
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Samenvatting in het Nederlands

De Nederlandse vertaling van de titel van dit proefschrift luidt “Anyonen in on-
eindige kwantumsystemen”. Veel verduidelijking ten opzichte van de Engelstalige
titel levert dit niet op. Want wat is nu een anyon? En wat wordt er precies bedoeld
met een oneindig kwantumsysteem? Ik hoop dat de lezer door het lezen van deze
samenvatting in ieder geval enig idee krijgt van het antwoord op deze vragen. Na
deze introductie zal ik wat dieper op de in dit proefschrift behaalde resultaten in-
gaan.

Al meer dan 85 jaar blijkt dat de kwantummechanica een uiterst succesvolle
theorie is die de natuur op microscopisch niveau beschrijft. Eén van de bewerin-
gen die vaak gedaan wordt in de kwantummechanica is dat elementaire deeltjes in
twee klassen kunnen worden opgedeeld: de fermionen of bosonen. Deeltjes wor-
den ingedeeld op basis van hun gedrag onder verwisseling.

Het blijkt echter dat in complexe kwantumsystemen er meer mogelijkheden
zijn. In dat geval is het mogelijk dat collectieve excitaties1 van het systeem zich
gezamenlijk gedragen als een deeltje. Zulke collectieve excitaties worden ook wel
quasideeltjes genoemd. In een twee-dimensionaal systeem kunnen zulke quasi-
deeltjes anyonen zijn. In tegenstelling tot de bosonen en fermionen, hierboven
genoemd, is het verwisselen van twee identieke anyonen een niet-triviale opera-
tie.

Het is wellicht goed voor het begrip om een analogie te geven. Stel voor dat we
een aantal identieke knikkers hebben, die niet van elkaar te onderscheiden zijn.
Deze knikkers stellen de anyonen voor. Verder veronderstellen we dat de knikkers
op een rijtje liggen op een tafelblad. Daarna gaat één persoon buiten de kamer
staan, zodat deze de knikkers niet meer kan zien. Een andere persoon blijft bij de
knikkers, en heeft de keus om deze te verwisselen, of juist niet. Als de persoon die
buiten de kamer is gaan staan weer terug komt, krijgt hij de vraag of de knikkers
zijn verwisseld of niet.

1Een excitatie van het systeem kunnen we hier zien als een gebied waar de energie hoger is dan
de energie van de grondtoestand. Een voorbeeld is een veer: als de veer niet is uitgerekt, bevindt
deze zich in de grondtoestand. Als de veer nu een beetje wordt uitgerekt, wordt er energie in de veer
opgeslagen. De veer is dan in een geëxciteerde toestand.
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Figuur 1: Een diagram dat de positie afgelegd door zes anyonen weergeeft, van het begintijdstip
t = 0 (bovenaan) tot het eindtijdstip onderaan.

In deze situatie is dat niet mogelijk: de knikkers zijn immers niet van elkaar te
onderscheiden. Voor bosonen en fermionen geldt hetzelfde: bij het verwisselen
van twee identieke deeltjes verandert er niks (op een eventueel minteken na). Bij
anyonen is de situatie anders. Bekijk weer de knikkers. Nu maken we echter een
eind van een touw vast aan de knikker. De andere kant maken we vast aan de
bovenkant van een kubus, op de beginpositie van de knikker. Als de proefpersoon
uit de kamer is, brengen we de knikkers stap voor stap een stukje lager. Tijdens
deze stappen mogen we de knikkers verwisselen. Op het eind zijn alle knikkers bij
de onderkant van de kubus aanbeland, waar het touw weer vast wordt gemaakt.
Het zijaanzicht ziet er dan uit als in Figuur 1. Op dat moment mogen de touwtjes
verplaatst worden, zo lang de eindpunten maar vast blijven en de touwtjes niet
breken.

De persoon die buiten de kamer heeft gestaan, komt dan weer terug. De vraag
is opnieuw: zijn de knikkers verwisseld? In dit geval kan de proefpersoon in som-
mige gevallen wel zien of de knikkers verwisseld zijn. Bekijk bijvoorbeeld de twee
meest rechtse knikkers in de figuur: de touwtjes kunnen niet recht getrokken wor-
den, zonder ze te breken.

Voor anyonen geldt een soortgelijke situatie, alleen in plaats van touwtjes gaat
het hier om de wereldlijnen van de anyonen. De anyonen bewegen zich in het vlak,
dus in twee dimensies. De tijd vormt de derde dimensie: we kunnen op elk tijdstip
een foto maken van de positie van die anyonen. Als we al die foto’s dan onder
elkaar zetten, krijgen we een beeld van hoe de anyonen zich bewogen hebben. Dit
worden wereldlijnen genoemd. De wereldlijnen van deeltjes die zich in het vlak
bewegen zien er weer uit als in Figuur 1. Voor anyonen geldt dan iets soortgelijks
als voor de knikkers met de touwtjes aangehecht.
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Waarom anyonen?

Anyonen zijn om verschillende redenen interessant. Op een aantal toepassin-
gen komen we later kort terug. Het doel van het onderzoek in dit proefschrift is
niet om deze toepassingen te onderzoeken, maar veeleer om een wiskundige be-
schrijving te geven van anyonen in verschillende modellen. In het bijzonder heb
ik gekeken naar oneindige kwantumsystemen. Met kwantumsysteem wordt niets
anders bedoeld dan dat deze systemen zich volgens de wetten van de kwantum-
mechanica gedragen (in tegenstelling tot klassieke systemen, die met de wetten
van Newton beschreven kunnen worden). Met oneindig worden soms verschil-
lende dingen bedoeld in deze context. Hier betekent het simpelweg dat we naar
modellen kijken die zich in het (ruimtelijke) oneindige uitstrekken.

Een voor de hand liggende vraag is of zulke oneindige modellen wel realistisch
zijn, aangezien het uiteindelijke doel is om experimenten te beschrijven die in,
bijvoorbeeld, een laboratorium worden uitgevoerd. Het blijkt dat dit wel het geval
is.

Beschouw, om wat concreter te kunnen zijn, bijvoorbeeld een oneindig twee-
dimensionaal rooster. Hierbij kan men denken aan ruitjespapier dat zich in het
oneindige uitstrekt. Op elk van de lijnstukken tussen twee roosterpunten hoek-
punten kan dan een atoom gedacht worden, met een spin-1/2 vrijheidsgraad.2

Deze situatie is in Figuur 10.1 afgebeeld (de grijze lijnstukken). De limiet waarin
het aantal deeltjes oneindig wordt, wordt ook wel de thermodynamische limiet ge-
noemd. Deze limiet is minder vreemd dan misschien op het eerste gezicht lijkt.
Een gram van een metaal bestaat bijvoorbeeld al uit een gigantisch aantal ato-
men, in de orde van 6×1023. Dat is een 6 met 23 nullen er achter. In het verleden
is deze thermodynamische limiet dan ook erg succesvol gebleken. Deze idealisatie
is zelfs noodzakelijk om, bijvoorbeeld, faseovergangen op een wiskundige manier
te beschrijven. Een voorbeeld van een faseovergang is water dat in ijs verandert.

Waarom anyonen?

Waarom de interesse in anyonen? Gedeeltelijk kan dit verklaard worden doordat
anyonen vanuit theoretisch oogpunt interessant zijn. Aan de andere kant staan ze
in nauw verband met wiskundige concepten als modulaire tensorcategorieën.

De belangrijkste motivatie om anyonen te bestuderen komt echter van een in-
teressante toepassing die iets meer dan tien jaar geleden is voorgesteld. Het blijkt
namelijk dat anyonen wellicht relevant zijn voor kwantumcomputers. Een kwan-
tumcomputer is een computer die op een fundamentele manier gebruik maakt
van de kwantummechanica, om operaties te doen die op een gewone, “klassieke”
computer niet gedaan kunnen worden. Hierdoor kunnen, in ieder geval in theorie,
problemen als het factoriseren van priemgetallen veel sneller opgelost worden.

2Wat dat precies inhoudt is hier nu niet van belang.
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Om te begrijpen hoe anyonen hier een rol in kunnen spelen, is het noodzake-
lijk om een ruw beeld te hebben van een berekening op een kwantumcomputer. In
essentie bestaat zo’n berekening uit drie stappen: (1) initialisatie, (2) berekening
en (3) uitlezen. In feite zijn dit precies dezelfde stappen als bij een conventionele
(“klassieke”) computer. De initialisatie gebeurt door het systeem in een bepaalde
(bekende) kwantumtoestand te brengen. De kwantumtoestand kan hier worden
gezien als het “geheugen” of register van de kwantumcomputer. In stap (3) wordt
een meting gedaan van de toestand van het systeem.3 In de belangrijkste stap,
het doen van de berekening, komen anyonen tevoorschijn. Het uitvoeren van een
berekening (of algoritme) is in feite niets anders dan het uitvoeren van een aantal
vooraf vastgestelde operaties, die de toestand (of het geheugen in een klassieke
computer) veranderen.

Het idee is nu dat we een systeem bekijken met een aantal anyonen daarin.
De situatie wordt volledig beschreven door de (kwantum)toestand van het sys-
teem, zoals hierboven al kort genoemd. Door het verwisselen van anyonen kan
deze toestand echter veranderd worden. Kitaev en Freedman realiseerden zich,
onafhankelijk van elkaar, dat door het op een gecontroleerde manier verwisselen
van deze anyonen, de toestand van het systeem veranderd kan worden. In feite
wordt stap (2), het uitvoeren van een berekening, geïmplementeerd door het ver-
wisselen van anyonen. Men kan aantonen dat voor bepaalde types anyonen op
deze manier elke mogelijke kwantumberekening kan worden uitgevoerd.

Het belangrijkste voordeel van het gebruik van anyonen (ten opzichte van an-
dere methodes) is dat anyonen stabieler zijn met betrekking tot invloeden van bui-
tenaf. Deze invloeden hebben een potentieel verwoestende invloed op de bereke-
ning, en het onder controle houden van deze verstoringen is dan ook een van de
belangrijkste technische uitdagingen bij het bouwen van een kwantumcomputer.
Zoals hierboven kort is uitgelegd, wordt de verandering van de toestand bepaald
door de paden die de individuele anyonen afleggen (zie ook Figuur 1). Maar het
precieze pad is hier niet van belang, het gaat om de topologie. In feite hebben we
dit al eerder gezien, bij de discussie over identieke deeltjes. Het makkelijkste om
dit uit te leggen, is om te doen alsof de paden in de figuur touwtjes zijn, waarvan de
eindpunten vast liggen. Een pad ietsjes veranderen komt overeen met het touwtje
iets anders neerleggen. Dit levert dezelfde toestand op als het onveranderde pad.
Alle paden die zo in elkaar omgevormd kunnen worden leveren dezelfde toestand
op. Het is weer niet toegestaan om de touwtjes door te knippen. Een touwtje ‘door’
een ander touwtje heen bewegen zou betekenen dat de corresponderende anyo-
nen op een zeker moment botsen, wat niet is toegestaan. Het grote voordeel van
anyonen wordt nu duidelijk: er is maar een beperkte mate van precisie nodig bij
het rondbewegen van de anyonen.

3Het doen van een meting is een delicaat onderwerp in de kwantummechanica. In deze samen-
vatting gaan we hier echter verder niet op in.
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Kwantumcomputers die gebruik maken van anyonen worden ook wel topo-
logische kwantumcomputers genoemd. Het blijkt dat, wiskundig gezien, een to-
pologische kwantumcomputer in essentie beschreven wordt door een zogeheten
modulaire tensorcategorie. Dit maakt dat zulke systemen niet alleen vanuit fysisch
oogpunt interessant zijn: ook vanuit wiskundig oogpunt zitten er vele interessante
facetten aan.

In de rest van deze samenvatting ga ik dieper in op de resultaten behaald in dit
proefschrift. Dit deel is technischer van aard.

Kwantumveldentheorie in d = 2+1

Het doel van dit proefschrift is om verschillende systemen met anyonen op een
rigoreuze, wiskundige manier te beschrijven. In het bijzonder worden er twee ver-
schillende klassen van modellen bekeken: relativistische kwantumveldentheorie
en kwantumspinsystemen. In deze sectie gaan we kort in op die eerste klasse van
modellen.

Om een wiskundige beschrijving van kwantumveldentheorie te gebruiken, is
een axiomatische basis nodig. In dit proefschrift worden hiervoor de Haag-Kastler
axioma’s (ook wel algebraïsche kwantumveldentheorie of AQFT) gebruikt. Start-
punt is een (C∗)-algebra A van alle observabelen die willekeurig precies benaderd
kunnen worden door lokale observabelen. Een lokale observabele is een obser-
vabele die in een begrensd gebied van de ruimte-tijd (bijvoorbeeld, in een spe-
cifiek laboratorium, tussen 11.00 en 12.00 uur op een vrijdagmiddag) fysische ei-
genschappen beschrijft. Het uitgangspunt van AQFT is dat deze observabelen (en
de manier waarop ze met elkaar interageren) de volledige theorie beschrijven. Im-
mers, uiteindelijk zijn het de observabelen die in in een experiment gemeten wor-
den, niet (bijvoorbeeld) onobserveerbare kwantumvelden.

Een eerste vraag is wat voor excitaties (of ladingen, superselectie sectoren) er
in de theorie voorkomen. Zonder op de fysische grondslag hiervan in te gaan,
melden we dat de verschillende soorten ladingen die in de theorie voor kunnen
komen, overeen komen met inequivalente representaties van A. Zo’n representa-
tie beschrijft hoe observabelen veranderen in de aanwezigheid van een lading. In
het algemeen zijn er verschrikkelijk veel inequivalente representaties van een C∗-
algebra, die lang niet allemaal fysisch relevant zijn. Daarom is het noodzakelijk
om extra criteria op te leggen om de fysisch relevante representaties te selecte-
ren. Zo’n criterium wordt ook wel een superselectie criterium genoemd. De meest
gebruikte superselectie criteria selecteren op basis van lokalisatie-eigenschappen
van de overeenkomende excitaties of ladingen.

In d = 2+ 1 zijn er twee verschillende soorten excitaties (of “ladingen”) mo-
gelijk, die in deze dimensie fundamenteel verschillen. Deze twee types ladingen
verschillen in hun lokalisatiegebied. Een lading is gelokaliseerd in een gebied (een
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deel van de ruimte-tijd) als deze lading niet te onderscheiden is van het vacuum
door metingen in het ruimte-achtige complement van het lokalisatiegebied. In
d = 2 + 1 kan een lading lokaliseerbaar zijn in een dubbelkegel (het inwendige
van de doorsnijding tussen een voorwaartse en terugwaartse lichtkegel) of in een
ruimte-achtige kegel. Een ruimte-achtige kegel kan gezien worden als een koord
dat zich in een bepaalde richting tot het (ruimte-achtige) oneindige uitstrekt, en
dat dikker en dikker wordt naarmate het koord verder van het beginpunt verwij-
derd is. Lokalisatie in ruimte-achtige kegels is uitvoerig bestudeerd door, onder
anderen, Buchholz en Fredenhagen. Zij lieten onder andere zien dat deeltjes met
massa lokaliseerbaar zin in zulke kegels.

Sinds het werk van Doplicher, Haag en Roberts in de jaren ’70 is bekend dat de
algebraïsche eigenschappen van excitaties wiskundig beschreven kunnen worden
door een zogeheten gevlochten tensorcategorie. Deze categorie beschrijft bijvoor-
beeld wat de “elementaire” ladingen zijn in de theorie, wat er gebeurt als we twee
ladingen bij elkaar brengen (“fusie”), et cetera. Bovendien is er een kanonieke ma-
nier om de statistiek van een lading (ofwel het gedrag onder verwisseling) te be-
schrijven. Een belangrijk technisch hulpmiddel om deze categorie te definiëren is
om representaties van A te vervangen door endomorfismes van A.

In de situatie hierboven beschreven werkt dit ook. Men kan laten zien dat in
d = 2+1 de ladingen die in dubbelkegels gelokaliseerd kunnen worden altijd aan
Bose/Fermi (para)statistiek voldoen. In de wiskundige beschrijving als tensorca-
tegorie betekent dit dat de deelcategorie van zulke ladingen altijd symmetrisch is
(in plaats van slechts gevlochten). Aan de andere kant is het voor ladingen gelo-
kaliseerd in ruimte-achtige kegels wel mogelijk dat het anyonen zijn. Het bestaan
van een niet-triviale symmetrische deelcategorie betekent echter dat de categorie
die die excitaties beschrijft niet modulair kan zijn. Vanuit het oogpunt van toepas-
singen op topologische kwantumcomputers is dat ongewenst.

In dit proefschrift beschrijf ik een manier, gebaseerd op eerder werk van Rehren
en Müger, om de originele theorie A uit te breiden tot een nieuwe theorie F. Deze
nieuwe theorie heeft geen (niet-triviale) ladingen meer die in dubbelkegels kun-
nen worden gelokaliseerd, waarmee dus in ieder geval één obstakel voor modula-
riteit van de categorie van ladingen verwijderd is. De vraag blijft echter hoe deze
nieuwe theorie in verband staat met de oude theorie. In dit proefschrift laat ik zien
dat de ladingen die in ruimte-achtige kegels gelokaliseerd zijn uitgebreid kunnen
worden naar ladingen van de nieuwe theorie F. Onder geschikte omstandigheden
kan worden aangetoond dat elke lading van F op deze manier verkregen kan wor-
den. In dat geval kunnen de ladingen in de nieuwe theorie volledig beschreven
worden door de categorie van ladingen van de theorie A.
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Kitaev’s toric code

Een heel ander soort model is de toric code, geïntroduceerd door Kitaev. De naam
kan verklaard worden doordat het model meestal op een torus wordt gedefinieerd:
het model wordt gegeven door een verzameling punten, met verbindingen tussen
naastgelegen punten. Op elk van deze verbindingen bevindt zich een spin-1/2
vrijheidsgraad. De punten met hun onderlinge verbindingen vormen een graaf,
die (in het model bekeken door Kitaev) op een torus getekend kan worden. De be-
schrijving van het model is compleet door het specificeren van een Hamiltoniaan
die de dynamica beschrijft. Het blijkt dat in het geval van de torus de grondtoe-
stand(en) van het systeem als een kwantumcode kunnen worden gezien. Met een
kwantumcode is het mogelijk om fouten die ontstaan bij het opslaan van kwan-
tuminformatie te repareren. In dit proefschrift wordt een variant van dit model
bekeken, waarbij de torus is vervangen door een oneindig vlak, waarbij er onein-
dig veel verbindingen zijn waarop zich een spin-1/2 vrijheidsgraad bevindt. Het
blijkt dat veel interessante eigenschappen van het model, in het bijzonder het be-
staan van anyonen, ook in dit aangepaste model aanwezig zijn.

Een van de doelstellingen van het onderzoek was om te onderzoeken of tech-
nieken uit de algebraïsche kwantumveldentheorie gebruikt kunnen worden om
deze “oneindige” variant van de toric code te kunnen beschrijven. Het is bekend
dat de observabelen in oneindige kwantumspinmodellen kunnen worden beschre-
ven door een C∗-algebra A, voortgebracht door lokale algebras A(Λ), waar Λ een
eindige deelverzameling is van de verbindingen waarop een spin-1/2 vrijheids-
graad aanwezig is. De dynamica gedefiniëerd voor het eindige model op de torus
kan eenvoudig worden gegeneraliseerd naar dit oneindig model. Het blijkt dat er
in dit geval een unieke grondtoestand ω is voor de ze dynamica, waarbij ω een
toestand op A is.

Er zijn vier types elementaire excitaties in dit systeem, waarbij de afwezigheid
van een excitatie (de grondtoestand) ook meegeteld is. Elk van deze excitaties kan
door een automorfisme van A beschreven worden. Deze automorfismes lijken in
veel opzichten op de endomorfismes in de algebraïsche kwantumveldentheorie
die ladingen in ruimteachtige kegels beschrijven. In het bijzonder werken ze tri-
viaal op observabelen gelokaliseerd buiten Λ, waar Λ de vorm heeft van een kegel
(die zich in het oneindige uitstrekt). Bovendien geldt een variant het superselectie
criterium geïntroduceerd door Buchholz en Fredenhagen: als π0 de representatie
corresponderend met de grondtoestand is, en ρ een automorfisme als hierboven,
dan is π0 beperkt tot A(Λc ) unitair equivalent aan π0 ◦ρ beperkt to A(Λc ). Hier
is Λ een willekeurig kegelgebied, en A(Λc ) de algebra van observabelen die gelo-
kaliseerd zijn buiten dit gebied. Een gevolg is dat de de anyonen getransporteerd
kunnen worden.

Deze automorfismes kunnen dan op een zelfde manier geanalyseerd worden
als in de algebraïsche kwantumveldentheorie. In het bijzonder blijkt dat deze au-
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tomorfismes opnieuw de structuur hebben van een gevlochten tensorcategorie.
Deze categorie is equivalent aan de categorie van eindig dimensionale represen-
taties van de kwantumdubbel van de groep Z2. De statistiek van de excitaties kan
op een kanonieke manier bestudeerd worden, en het blijkt dat deze excitaties in-
derdaad anyonen zijn. De eigenschappen komen overeen met wat men zou ver-
wachten van de resultaten voor het model op de torus. In dit proefschrift worden
ook een aantal vragen betreffende operator algebras beantwoord voor dit model.
In het bijzonder wordt aangetoond dat Haag dualiteit, een eigenschap die wat zegt
over de commutante van algebras van observabelen, geldt voor kegelgebieden.

Het toric code model is het eenvoudigste voorbeeld van een hele klasse van
modellen. Stel dat G een eindige groep is. Dan kan er een bijbehorende Hopf-
algebra, de kwantumdubbel D(G), gedefinieerd worden. Voor elke zulke kwan-
tumdubbel heeft Kitaev een bijbehorend kwantum spinmodel gedefinieerd. In het
geval dat G = Z2 komt dit model overeen met de toric code. Ook deze modellen
kunnen weer in de thermodynamische limiet bekeken worden. Een natuurlijke
vraag is dan of er in dit algemene geval een vergelijkbare theorie als voor de toric
code kan worden opgezet. In dit proefschrift worden enkele stappen in die rich-
ting gezet. Een van de resultaten is dat ook in dit geval het (oneindige) systeem een
unieke grondtoestand heeft, net als bij de toric code. Verder is een eerste aanzet
gemaakt om een enkel anyon te beschrijven door een positieve afbeelding (in het
algemeen geen endomorfisme) van de observabelen.
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