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Abstract

Classical elementary particles are identi�ed with modi�ed coadjoint orbits of
the pertinent symmetry group G. Quantum elementary particles are identi�ed
with irreducible projective unitary representations of G. We discuss the math-
ematical context of classifying both classical and quantum elementary particles.
The common theme is that of universal covers and central extensions. These
allow us to classify the modi�ed coadjoint orbits and projective unitary repres-
entations of G in terms of ordinary coadjoint orbits and (non-projective) unitary
representations, respectively, of a certain extension of G. These extensions are,
generally speaking, both topological and algebraic in nature.

We apply the formalism to spacetime symmetry groups. It turns out that
these symmetry groups account for the mass and spin of elementary particles.
(Properties like electric charge arise from other symmetry groups.) In particular,
we take G to be the connected component of the Galilei group or the Poincaré
group. The classi�cation of irreducible projective unitary representations of
the Poincaré group is well known due to Wigner [43]. We state the results of
this classi�cation, and do not concern ourselves with the derivation. That of
the Galilei group was later given by Bargmann [4] and Lévy-Leblond [24], the
results of which we similarly state without calculation.

The coadjoint orbits of the Poincaré group were �rst calculated by Souriau
[36]. Those of the Galilei group are given in Guillemin & Sternberg [13]. Next
to the results of this classi�cation, we also give explicit calculations due to the
relative novelty and obscurity of this formalism.

In the last section we give a summary of the results and a physical interpreta-
tion thereof. We conclude that elementary particles are labelled by two numbers:
a real number m called the mass, and for m > 0 a non-negative number s called
spin, and for m = 0 a (possibly negative) number h called helicity. In quantum
mechanics s and h are half-integer valued, while in classical mechanics they are
real-valued.

∗n.schaaf@student.ru.nl.
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1 Introduction
Over the course of history, the idea has developed that all matter is composed of
indivisible, elementary particles. Larger objects, like the ones we see in day-to-day
life, are tremendous hodgepodges of di�erent types of elementary particles. The idea
is at least old enough to date back to the ancient Greeks, to whom we owe the term
`atom' (probably deriving from the word atomos, meaning �indivisible�).

However, these so-called indivisible particles do not always live up to their name.
In the early 1800's, chemist, meteorologist and physicist John Dalton (1766�1844)
came up with the idea that each chemical element is comprised of atoms. At the time,
atoms were thought of as being truly indivisible. At the turn of the century, however,
Nobel laureate in physics, Sir Joseph J. Thomson (1856�1940) experimentally showed
the existence of electrons, and that they were a part of atoms. This meant that
atoms were in fact not truly atomos. In the early 1900's, Ernest Rutherford (1871�
1937) (et al.) experimentally showed that the atom was further comprised of a dense
core, called the atomic nucleus, about which the electrons `orbit'. Around 1918, he
also discovered that the atomic nucleus of the hydrogen atom was a positively charged
particle. He called this the proton. Around 1940 it was shown that the atomic nucleus
was compromised of particles we now call nucleons, namely neutrons and protons. In
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the 1960's the idea of quarks was developed by Murray Gell-Mann (1929�) and other
physicists. These quarks compose the so called hadrons, which include the nucleons.
These are particles composed of either two or three quarks, where, for instance, the
proton is comprised of two so-called up-quarks, and one down-quark. Today, these
quarks are what we call elementary particles.

But history has shown that it is often unwise to call a particle truly indivisible.
And indeed, nowadays we view these terms through a more pragmatic lens. That
being said, the Standard Model, our current theory describing all known elementary
particles, is often considered to be most accurate scienti�c theory known to mankind.

In this thesis we discuss the problem of the mathematical classi�cation of element-
ary particles. Our mathematical bread-and-butter is the concept of a group action.

De�nition 1.1. Let G be a group with identity element e ∈ G, and let X be a set
with arbitrary element x ∈ X. A group action of G on X is a map ϕ : G×X → X
that satis�es ϕ(e, x) = x, and ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all g, h ∈ G. Writing
g · x := ϕ(g, x), these laws have the form

e · x = x, (gh) · x = g · (h · x).

We will come to see that elementary particles are really di�erent incarnations of
group actions. The mathematical context of the physical framework will determine
further properties that the group action must have. This means that, in particular,
the group actions will take di�erent forms depending on whether we are discussing
classical mechanics or quantum mechanics. One example of such a property, which is
shared by both the classical- and quantum framework, is that the group action should
be continuous in some form. (Continuity arises in most physical theories from very
elemental considerations on the nature of measurement [11, Sec.II].) It is moreover
clear that the group G will play a big part in the form of these group actions, and
hence in the types of elementary particles we will discover.

In Part I we describe the mathematical prerequisites for the classi�cation. Starting
with introductory remarks on symmetry in physics, we outline the structure of the
spacetime symmetry groups: the (identity components of the) Galilei and Poincaré
groups. Closing Section 2, we provide a motivation for the de�nition of quantum
elementary particles as irreducible projective unitary representations. In Section 3
we discuss in detail the structure of the spacetime symmetry groups. Part II is
dedicated to the study of classifying the quantum elementary particles. The �rst
two of its sections, Sections 4 and 5, discuss the concept of central extensions and
the application thereof to the spacetime symmetry groups, respectively. In Section 6
we discuss how central extensions and universal covering groups are used to classify
quantum elementary particles. We close by stating the (partly well-known) result of
this classi�cation. In Part III we concern ourselves with the classi�cation of classical
elementary particles. A short overview of the classical formalism of mechanics in
terms of symplectic geometry is discussed in Section 7. Due to the technical level of
the material in this part we will state a lot of results without proof. In Section 8
we de�ne (twisted) coadjoint orbits, and provide more details as to why classical
elementary particles are identi�ed with these entities. Borrowing from results in
Part II, we calculate the (twisted) coadjoint orbits of the spacetime symmetry groups
in Section 9. Closing the thesis, in Section 10 we summarise the relevant results and
provide a physical interpretation.

Major references for this work have been [6, 13�15, 21, 22, 24, 25, 33, 36, 38]. Refer-
ences to speci�c parts of these texts (and others) are noted throughout the thesis.
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Part I

Symmetry in physics

2 Symmetries and elementary particles
Symmetries can be observed everywhere in daily life. One obvious manifestation is
rotation. Rotate a perfect sphere about its origin by any angle in any direction, and
it will look exactly the same. Rotate a cube about its primary axes by 90◦, and it
will look the same. Closely related examples are re�ection symmetries. For instance,
a triangle with (at least) two equal sides has (at least) one re�ective symmetry axis,
that is, an axis showing the mirror image of the other on each side. But symmetries
also occur in nature; many �ora and fauna show symmetry. (I shall leave it to the
reader to imagine them.) The left and right portions of a human body look the
same, classically demonstrated by Leonardo da Vinci's (1452�1519) `Vitruvian Man'
(see Figure 1). This drawing is named after the Roman architect Marcus Vitruvius
Pollio, who lived in the �rst century BCE. And indeed, symmetry occurs markedly in
architecture as well. From ancient temples to modern skyscrapers, its occurrence is
unmistakable. There, and most everywhere else, symmetry is seen as a sign of beauty.

But what exactly is symmetry? The notion of symmetry in some of the examples
above is somewhat vague, and we feel necessity for a more rigorous de�nition. For
lack of such a rigorous de�nition, we quote the famous physicist and mathematician
Hermann K. H. Weyl (1885�1955) [41]:

�[Symmetry is] invariance of a con�guration of elements under a group of
automorphic transformations.�

Figure 1: The proportions of the human body according to Vitruvius, as drawn by Leonardo da
Vinci around 1490. It is supposed to illustrate the `ideal' proportions of the human body, according
to Marcus Vitruvius Pollio. (Original photograph taken from the public domain [44].)
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Figure 2: A square with vertices 1, 2, 3 and 4, and symmetry lines α, β, γ and δ.

As a purely mathematical notion we may state: a symmetry of a mathematical entity
X is an invertible transformation X → X that preserves some property or structure
of said entity. For example, then, rotations of 90◦, 180◦ or 270◦ about the origin
of a square are symmetries, since when performing these rotations the square re-
turns exactly to the position it was before (especially when seen as a subset of the
two-dimensional plane). Similar symmetries occur often in geometry, and are called
rotational symmetries. But the square has additional symmetries. It can be re�ected
about four di�erent axes; namely the two axes connecting the opposing corners (axes
α and γ in Figure 2), and the two axes connecting the middles of the opposing ribs
(axes β and δ). These are called re�ection symmetries. In total this makes for eight
transformations of the square under which it is invariant.

More abstractly, a symmetry may be a transformation that preserves, e.g., the
number of elements (bijections of sets), distances (isometries on metric spaces), lin-
ear structure (linear isomorphisms), angles (orthogonal transformations), multiplic-
ative structure (isomorphisms of groups), topological structure (homeomorphisms),
smooth structure (di�eomorphisms), etc. In more concise terms: a symmetry is an
automorphism, i.e., an isomorphism from a mathematical entity to itself.

Mathematically speaking, the concept of symmetry is captured by group theory.
This can be seen by considering the natural properties of symmetries:

(G1) Given two symmetries, applying one after the other should again de�ne a sym-
metry transformation (closure);

(G2) Given three symmetry transformations, the composition of the three should
result in one well-de�ned transformation (associativity);

(G3) Doing nothing counts as a symmetry transformation (identity);

(G4) Lastly, any symmetry transformation can be undone by its inverse transforma-
tion (inverses).

Indeed, these properties de�ne a group. Of a given mathematical entity X, we denote
its group of all symmetries (i.e., automorphisms) by Aut(X), where the operation is
that of composition. What the exact form of the elements of Aut(X) are will depend
on the nature of X.

Symmetries, usually implemented via group theory, play a very important rôle in
the natural sciences. For example, certain molecules may have rotational symmetries.
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These may then be used to calculate certain chemical properties of the molecule. In
solid state physics, similar techniques are used to calculate properties of crystals. But
more importantly for the present thesis is the notion of symmetry in particle physics.
For instance, one of the most fundamental symmetries of the universe is charge-parity-
time reversal symmetry (abbreviated: CPT) in relativistic quantum �eld theory. The
CPT transformation is comprised of three distinct discrete transformations. The �rst
is charge conjugation. This transforms the charge of some given elementary particle
to its negative. For instance, a particle with charge q becomes a particle with charge
−q. Hence it transforms an electron into a positron, which is its antiparticle. The
second is parity transformation, which transforms a system into its mirror image.
This is achieved by sending every coordinate to its negation. The third and last is
time reversal, which reverses the direction of time. This causes the momentum of
each particle to be reversed. Performing these three transformations simultaneously
comprises the full CPT transformation, which is believed to be a fundamental sym-
metry of the universe. (In any case, it is a symmetry of relativistic quantum �eld
theory.) Note that, surprisingly, the charge, parity and time transformations in and
of themselves do not de�ne symmetries!

CPT is an example of a discrete symmetry. The transformations that represent the
symmetry are �nite in number. In fact, it is not hard to see that the CPT transform-
ation forms its own inverse, so the corresponding group has only two elements. In this
thesis, on the other hand, we shall mostly be interested in in�nite symmetry groups.
We have already seen an example of such a symmetry before; the rotational sym-
metries of a sphere. In particular, we are interested in so-called Lie groups, named
after Norwegian mathematician Marius Sophus Lie (1842�1899), which are groups
that simultaneously have the structure of a smooth manifold. (See Section 3 for the
formal de�nition.) Symmetries based on Lie groups are prevalent, for example, in
the Standard Model, which is the model in quantum �eld theory that describes all of
the currently known elementary particles. These symmetries are somehow di�erent
from the ones we have encountered so far, in that they describe invariant properties
of certain mathematical structures, rather than physical objects themselves.

We have seen everyday symmetries; of cubes and spheres and triangles, and more
abstract symmetries; of molecules and crystals and charge-parity-and-time. One may
wonder whether or not symmetry is a fundamental property of nature. May it be
the case that we �nd a plethora of symmetries, simply because we are looking for
them? Undeterred by this philosophical question, symmetry is undoubtedly a very
useful tool in describing the universe, and we therefore consider it very much worth
studying.

2.1 Galilean spacetime and principles of relativity

In both classical and quantum physics the general framework describes certain objects,
speci�cally particles, in some background environment. This background is called
spacetime. Points in spacetime are called events. For our purposes here, we take the
mathematical structure of spacetime to be something like a smooth manifold endowed
with some notion of distance, but possibly with additional structure.

One example is Rn as a vector space, endowed with the Euclidean metric (or
standard inner product), which turns it into the Euclidean vector space. However, a
vector space has a special element: the origin. This somehow seems undesirable in a
physical model (where is the centre of the universe?), and therefore vector spaces may
be replaced by a�ne spaces. These generalise Euclidean spaces in that the origin is
`removed' (by letting a vector space act on itself freely and transitively, to be thought
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of as translation), giving Euclidean space En.
In Newtonian physics space and time are modelled by these a�ne spaces. Isaac

Newton (1642�1726) believed that space and time are both absolute. Anyone occupy-
ing the spacetime would, despite their spatial position, always experience the same
time as any other observer. Movement of objects is to be understood as movement
with respect to some absolute frame1.

An obvious �rst attempt at de�ning the appropriate spacetime for Newtonian
physics is to take E1 × E3, where the �rst component de�nes time, and the second
component de�nes space2. However, this de�nition has some conceptual shortcom-
ings, which we may understand by using the ideas of Galileo Galilei (1564�1642), an
important Italian �gure in physics and astronomy (but really in all of science). Con-
sider, for instance, the positions of the letters on this page. Saying that they are the
same at this very moment you are reading this as they were ten seconds ago, would
imply that somehow the position of the paper has not changed at all. But really, you
have probably moved this document around over the course of the past few seconds.
Even if not (perhaps you are reading this digitally), the rotation of the Earth can
certainly not be discounted, nor any other cosmic movement for that matter. Even
though their positions with respect to the paper remains the same, it would be an
amazing coincidence if the space E3, representing space, just so happened to co-move
with the letters on this paper! The conclusion is that it is not useful to say that any
point in space E3 is the same point (in the same E3) at any two distinct moments in
time.

The solution to this is to consider spacetime as a so-called �bre bundle (see Fig-
ure 4 on page 69) over E1 (time), with �bres E3 (space). This is called Galilean
spacetime [30, Sec.17.2], and we shall denote it by G . In the bundle, time and space
are disentangled, so that it is impossible to compare two spatial points when they
occupy di�erent �bres (i.e., occur at di�erent times). Despite these conceptual intric-
acies, we will keep working with the idea of E1 × E3 in mind.

For simplicity one often thinks of the Euclidean spaces En as vector spaces, as
opposed to a�ne spaces, and we will do so from now on. Even though, as remarked
earlier, vector spaces are conceptually inadequate as a model for space (or time),
this can nevertheless be physically justi�ed with the use of coordinate systems. A
coordinate system is a nicely behaved smooth map that assigns to each point in an
open subset of spacetime a point in R4. Such a point, say, (t, x, y, z) ∈ R4, is then
called a coordinate for a certain event in spacetime. Since spacetime is modelled by a
smooth manifold, at every point in spacetime there exists such a coordinate system,
and the transitions between them are di�eomorphisms. In the case of Euclidean
space En it is possible to pick one coordinate system that covers the entire space,
and doing so amounts to specifying an `origin', usually coinciding with the location of
an observer. Newton's laws (or any other physical laws for that matter) are usually
expressed in the resulting coordinates. This means that the form of these laws depend
on the coordinate system. There are, then, certain coordinate systems in which
Newton force law3, F = ma, may be written down �in its simplest form� (all other

1This view is opposite to that of his nemesis Gottfried Wilhelm Leibniz (1646�1716), who believed
that space and time were to be seen as the relative distances between physical objects. Movement of
objects is then to be understood as movement with respect to other objects. We know that a car is
moving because we see its motion with respect to the road, trees, and buildings. If there was a car
in an otherwise empty space, we would not, Leibniz argues, be able to determine whether the car is
moving at all.

2This space has been called Aristotelian spacetime, after ancient Greek philosopher Aristotle
(384�322 BCE) [30, Sec.17.2].

3Newton's force law, also called Newton's second law (in the usual enumeration), is a relation
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things being equal). These systems are called Newtonian inertial reference frames (or
inertial (reference) frames for short), and in them, any particle on which no forces
act will move with constant velocity, meaning that their path is a straight line that
they traverse with constant speed. In other words, they are frames in which Newton's
�rst law holds. Certainly not every coordinate system is an inertial reference frame.
The classic example is that of a rotating coordinate system, in which there may be all
kinds of `�ctitious' forces; namely the Coriolis-, centrifugal- and Euler forces. These
cause particles to move in curved arcs, as opposed to straight lines, despite the fact
that there is no actual force working on them.

The important notion is that it is always possible to switch between coordinate
systems (in fact in a smooth way), as long as they both describe the same portion of
spacetime. A transformation between coordinate systems can be realised by so-called
transition functions. The following question arises:

Under which coordinate transformations are the laws of physics invariant?

And, speci�cally for our current discussion, under which coordinate transformations
are Newton's laws of an inertial frame invariant? The answer is: under Galilean
transformations. These are characterised as follows:

1. First, we have time and space translations. In a given inertial frame we may
represent an event in spacetime by a point (t,x) ∈ R4, the �rst component
representing time, and the latter components representing a position in space.
A translation is represented by the map

(t,x) 7→ (t+ s,x+ a),

where s ∈ R and a ∈ R3 are �xed.

2. Next, we have spatial rotations and re�ections. The group of rotations and
re�ections in three-dimensional Euclidean space is denoted by O(3), the ortho-
gonal group (see Section 3.2). This group acts on R3 canonically by rotating any
given vector as prescribed by the group element. Then, a rotation is represented
by the map

(t,x) 7→ (t, Rx),

where R ∈ O(3) is �xed, and Rx ∈ R3 denotes the vector x rotated according
to R.

3. Lastly, we have the uniform motions, also called (Galilean) boosts. These are
represented by the map

(t,x) 7→ (t,x+ vt),

where v ∈ R3 is a �xed vector, representing the velocity at which the new frame
moves with respect to the original one.

It is of course possible to apply any combination of the above three transformations
simultaneously. The fact that Newton's laws have the same form, even after applying
these transformations, is called the principle of Galilean relativity. And every two
inertial reference frames are related through a Galilean transformation. The prin-
ciple thus states that we have a symmetry of physical laws! The symmetry group

between the force F acting on an object with mass m, and the acceleration a of the object. The
acceleration is de�ned as the second time derivative of the position vector. Together with initial
conditions, this law determines uniquely the motion of the object (but see [2, pp.3�4]). For this
reason, it is known as an equation of motion.

9



here is called the Galilei group, denoted Gal(3), which embodies the Galilean trans-
formations. The elements of Gal(3) should therefore be characterised by a number
s ∈ R describing temporal translation, a vector a ∈ R3 describing spatial transla-
tion, another vector v ∈ R3 describing the velocity of a uniform motion, and �nally,
an element R ∈ O(3) describing rotation or re�ection. As a set we therefore de�ne
(following [24])

Gal(3) := {(s,a,v, R) : s ∈ R,a,v ∈ R3, R ∈ O(3)}.

The group operation may not be obvious at a �rst glance, but it can be uncovered
by considering the natural action of Gal(3) on the Galilean spacetime G . Given an
element G = (s,a,v, R) in the group, and coordinates (t,x) of an event in spacetime,
the action is de�ned according to the following formula:

G(t,x) := (t+ s,Rx+ vt+ a).

If G′ = (s′,a′,v′, R′) is another element in the group, we �nd that letting G′ act after
G gives the following coordinate:

(G′G)(t,x) = G′(t+ s,Rx+ vt+ a) = ((t+ s) + s′, R′(Rx+ vt+ a) + v′(t+ s) + a′)

= (t+ (s+ s′), R′Rx+ (R′v + v′)t+ (R′a+ v′s+ a′)).

Despite looking quite complicated, this motivates the de�nition of the following group
operation on Gal(3):

(s′,a′,v′, R′) · (s,a,v, R) := (s+ s′, R′a+ v′s+ a′, R′v + v′, R′R). (2.1)

It is easy to see that this makes Gal(3) into an actual group, with identity element
(0, 0, 0, I), where I ∈ O(3) is the identity rotation. The inverse of a given element can
be calculated from (2.1), and is given by the following formula:

(s,a,v, R)−1 = (−s,R−1(vs− a),−R−1v, R−1).

2.2 Minkowski space and principles of special relativity

In special relativity the situation is slightly di�erent: space and time are intertwined.
This conclusion is reached after imposing the fundamental postulate that the speed of
light is the same in every inertial frame. In particular, this leads us to abandon the
notion of absolute time, and hence the �bre bundle structure of G .

The concept of an isometry group is something we can de�ne for a mathematical
structure that has some notion of distance. One of the most elementary mathematical
structures that has this notion is that of a metric space. Let X be some set, with
arbitrary elements x, y, z ∈ X. A metric on X is a function d : X ×X → R with the
following properties:

1. The distance between the points x and y is the same as the distance between
the points y and x; that is: d(x, y) = d(y, x).

2. The distance between two points x and y is zero if and only if they are the same
points; that is: d(x, y) = 0 if and only if x = y.

3. The triangle inequality holds, meaning that

d(x, y) 6 d(x, z) + d(z, y).
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The pair (X, d) is called a metric space .
In particular, we can now associate to (X, d) its isometry group, which contains all

functions that `preserve the metric'. Speci�cally, an isometry of (X, d) is a function
f : X → X such that for all points x, y ∈ X we have d(f(x), f(y)) = d(x, y), that is,
such that the distance between f(x) and f(y) is the same as the distance between x
and y. The isometry group of (X, d), denoted Isom(X, d), is de�ned as the set of
all its bijective isometries, endowed with the operation of composition. Of particular
general interest to us is the isometry group of the Euclidean vector space En. The
metric of this space is de�ned via the usual inner product:

〈·, ·〉 : Rn × Rn → R; (x,y) 7→ 〈x,y〉 :=

n∑
i=1

xiyi.

This inner product de�nes the Euclidean norm (also known as the `2 norm) by the
formula ‖x‖ =

√
〈x,x〉, and in turn, the Euclidean metric by the formula d(x,y) =

‖x− y‖. An isometry of Euclidean space is therefore a function f : Rn → Rn
such that for all x,y ∈ Rn we have ‖f(x)− f(y)‖ = ‖x− y‖. The isometry group
Isom(En) of the n-dimensional Euclidean vector space is called the Euclidean group,
and we shall denote it by E(n). This group is well understood. For one, we know its
structure is that of a semi-direct product : E(n) = Rn o O(n). (We will prove this in
Section 3.3.) The Galilean group Gal(3) is not quite an isometry group (at least not
of spacetime), but it is closely related to the Euclidean group E(3), as we will see in
Section 3.3.

The spacetime symmetry group of special relativity, on the other hand, is exactly
the isometry group of the special relativistic spacetime. This spacetime is the well-
known four-dimensional Minkowski space M4, named after German mathematician
Hermann Minkowski (1864�1909). The di�erence between this space and Euclidean
space is the manner in which they measure distance. As a set, M4 is simply R4, but
now it is endowed with the following form:

〈·, ·〉 : R4 × R4 → R; (x,y) 7→ 〈x,y〉 := x1y1 −
4∑
i=2

xiyi.

This form de�nes something like a metric on Minkowski space, just as done above for
the Euclidean spaces:

d(x,y)2 = (x1 − y1)2 −
4∑
i=2

(xi − yi)2.

Strictly speaking, however, this is not actually a metric. Namely, there may exist dis-
tinct non-zero vectors in spacetime whose distance in Minkowski space is nevertheless
zero, violating the second axiom in the de�nition of a metric. In this physical context,
these points are then said to be lightlike separated. It is even possible for the squared
distance between two events to be negative, something that is not possible for a true
metric (the distance between two points in a metric space is always non-negative);
these points are then said to be spacelike separated. It is impossible to go from one
of these point to the other, without breaking the speed of light speed limit. On the
other hand, two events whose distance squared is positive can be reached without
breaching the limit, and are called timelike separated.

This makes M4 into a pseudometric space, and its distance function d is called a
pseudometric. It is nevertheless possible to de�ne an isometry group. And indeed, this
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group, denoted Poin(1, 3) := Isom(M4), is called the Poincaré group, named after
French mathematician Jules Henri Poincaré (1854�1912), and it is the fundamental
spacetime symmetry group of special relativity. Its structure is similar to that of the
Euclidean group, as we will see in Section 3.3.3. Just as for the Galilei group, the
Poincaré group consists of spacetime translations:

(t,x) 7→ (t+ s,x+ a).

But now, instead of spatial rotations and Galilei boosts, we have Lorentz transform-
ations. These can be thought of as the generalisation of orthogonal transformations
on the Euclidean space to Minkowski space. They will be de�ned and discussed in
more detail in Section 3.2.3.

2.3 Representation theory in quantum mechanics

We now have an idea what the symmetry groups are that describe the invariance of
the laws of physics, both in a Newtonian and a relativistic setting. But how are these
symmetries incorporated into the physical theory? To understand this, we need to
have a general grasp of the underlying mathematical formalism for both classical- and
quantum mechanics.

In quantum physics pure states may be identi�ed with unit vectors of a complex
Hilbert space H . In the case that the �maximal amount of information is available�
[18], the entire state space of a physical system can be de�ned in terms of these pure
states. (In a statistical setting we need to introduce so-called density operators.) From
such a pure state one usually deduces expectation values of physical quantities and
probabilities for certain physical events to occur. Conventionally, these calculations
are based on unit vectors in H (i.e., pure states). Still, any non-zero vector ψ ∈ H
de�nes a pure state by multiplying it by the reciprocal of its norm, allowing us to
think of even non-unit vectors as (non-normalised) physical states. In this formalism,
these calculations turn out the same when multiplying the unit vectors by complex
phases. Therefore, the physical state that an element ψ ∈ H represents is invariant
under scalar transformations, meaning that for any non-zero complex number λ ∈ C
the vector λψ gives the same physical description of a system as does the state ψ.

This motivates the introduction of a relation ∼ on H that identi�es vectors which
only di�er by scalar multiplication. That is, if ψ and φ are elements in H , we say
that they are equivalent, and in that case we write ψ ∼ φ i� there exists a non-zero
complex number λ ∈ C such that ψ = λφ. It is straightforward to verify that ∼ is
an equivalence relation. The equivalence classes of H \ {0} under this equivalence
relation will form the true state space of a quantum system4, called the projective
Hilbert space :

P(H ) := (H \ {0})/∼.

The equivalence class [ψ] in P(H ) of some non-zero vector ψ ∈ H is sometimes
called the ray of ψ.

2.3.1 Symmetries of the quantum state space

Let us denote by P : H \{0} → P(H ) the canonical projection that sends a non-zero
element in the Hilbert space to its equivalence class: ψ 7→ P (ψ) = [ψ]. This map is
trivially surjective. Given two elements P (ψ) and P (φ) in the state space P(H ), we

4The set-theoretic notation A \B is meant to denote the set A with all elements it shares with B
taken out. So H \ {0}, as a set, is the Hilbert space H without the origin.
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de�ne their transition probability as

δ(P (ψ), P (φ)) :=
|〈ψ, φ〉|2

‖ψ‖2 ‖φ‖2
, (2.2)

where 〈·, ·〉 : H ×H → C is the inner product of the Hilbert space. In the case that
we restrict our attention to normalised vectors, as is usual, (2.2) can be simpli�ed by
leaving out the norms in the denominator. To make the notation somewhat less tedi-
ous, one often identi�es ψ ∈H with P (ψ) ∈ P(H ), and in turn one may then write
δ(ψ, φ) to denote the value of δ(P (ψ), P (φ)). The usual physical interpretation of the
transition probability δ(ψ, φ) is that it represents the probability that (appropriate)
measurements upon the state ψ will yield a result corresponding to the state φ.

We are interested in bijections T : P(H ) → P(H ) that leave the transition
probability invariant, in the sense that for all ψ, φ ∈ P(H ):

δ(Tψ, Tφ) = δ(ψ, φ).

Such a map is called a projective automorphism , or a projective transformation
of H , and these are exactly the symmetries of the quantum system. The inverse
and composition of projective automorphisms again form projective automorphisms;
again we �nd a group structure. The set of all projective automorphism together
with composition is a group denoted by Aut(P(H )), which is called the symmetry
group of the quantum state space [33].

Symmetries of the quantum state space (i.e., projective automorphisms) arise
already from certain physical considerations we have discussed before; in particular
from the principles of relativity [43]. The form of the vectors in a Hilbert space
may depend on the coordinate system of the observer. This is the case, for example,
for the wave functions in the Hilbert space L2(R3) of square-integrable functions
on R3 (which is the Hilbert space corresponding to, for example, a massive spinless
particle in three-dimensional Euclidean space). By the principle of relativity, then, any
inertial coordinate transformation (i.e., one described by an element of the Poincaré
group) should not change the outcome of our experiments, and any wave function in
one coordinate frame corresponds to some (non-unique) wave function in the other
coordinate system. Say we have two wave functions ψ and φ in one coordinate frame,
and two corresponding wave functions ψ′ and φ′ in the other coordinate system,
respectively. The principle of relativity then states that

δ(ψ, φ) = |〈ψ, φ〉|2 = |〈ψ′, φ′〉|2 = δ(ψ′, φ′),

meaning that a Poincaré transformation de�nes a projective automorphism on the
state space.

What exactly is meant by `de�nes' is clari�ed by the following theorem from
1931 [42], due to Eugene P. Wigner (1902�1995).

Theorem 2.1 (Wigner's Theorem). Every projective automorphism T on P(H )
arises from either a unitary or an anti-unitary operator U on H , and U is determined
uniquely by T up to a complex phase. (Cf. [33, Thm.3.3].)

(The exact way in which the projective automorphisms arise from the unitary
operators is explained in Section 6.2.) In other words, if the particular group ele-
ment L ∈ Poin(1, 3) is responsible for the Poincaré transformation from the un-
primed system to the primed system, there is a unitary or an anti-unitary operator
D(L) : H → H , uniquely determined up to phase by L, which realises the trans-
formation between the two coordinate systems: ψ′ = D(L)ψ. Given two Poincaré
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transformations L1, L2 ∈ Poin(1, 3), the wave function of the coordinate system ob-
tained by applying either these two transformations simultaneously, or one after the
other, should represent the same physical system. In other words, the two vectors
D(L2L1)ψ and D(L2)D(L1)ψ, assuming they are normalised, can only di�er by a
complex phase. This implies that

D(L2)D(L1) = ω(L2, L1)D(L2L1),

where ω(L2, L1) is some complex number of unit modulus, depending on L1 and
L2. The map D, which to every element of the symmetry group Poin(1, 3) assigns a
unitary or an anti-unitary operator on the Hilbert space, is known as a projective
unitary representation of the group Poin(1, 3). We will discuss these in more
detail in Section 6, but �rst, more abstractly, in Section 4.2. It may so happen
that ω(L2, L1) = 1 for every two Poincaré transformations, in which case D becomes
a true (or ordinary) unitary representation of the Poincaré group by the Hilbert
space H . Ordinary unitary representations are easier to calculate than projective
ones, and have been extensively studied in the literature. For instance, the so-called
`irreducible' unitary representations (see below) of the special unitary group SU(2)
are well-known, and sometimes even categorised in physics textbooks on quantum
mechanics. It turns out that these give the desired representations of the rotation
group SO(3). (See Section 3.2 for the de�nition of SU(2) and SO(3).) The formal
de�nition of a representation is as follows:

De�nition 2.2. Let G be a group and let V be a vector space over a �eld k. A (lin-
ear) representation of G over V is a group homomorphism σ : G→ GL(V, k). Here
GL(V, k) := Aut(V ) is the automorphism group of V (endowed with the operation of
composition), containing all k-linear isomorphisms on V .

A representation is really just a di�erent incarnation of a group action (recall
De�nition 1.1). Suppose that we have a representation σ : G → GL(V, k). It may
then be naturally associated to the group action

G× V → V ; (g, v) 7→ σ(g)(v).

Note here that σ(g) ∈ GL(V, k), so it is in fact a linear map V → V . It is easy to
verify that this does indeed de�ne a group action. This is the intuitive way to think
about group representations.

In the context of the present thesis, we will be especially interested in so-called
irreducible projective unitary representations of the spacetime symmetry groups. The
physical motivation for this is the following [32]. Suppose that we have some Hilbert
space H that represents some real physical system. The objects in this system
are comprised of elementary particles, and so we expect certain subspaces of H to
correspond to the Hilbert space of any of those single elementary particles. The
pertinent symmetry group, say, the Poincaré group, can act on the Hilbert space
H via a projective unitary representation D (in the sense of De�nition 1.1). In
particular, if L ∈ Poin(1, 3), we can apply the operator D(L) to every element in the
Hilbert space to obtain the transformed Hilbert space H ′ = D(L)H , whose physical
interpretation is the same as that of H . There may then be subspaces of the Hilbert
space H that, when transformed by D(L), also remain physically invariant. Such
systems are called invariant subsystems. We expect elementary particles to be such
invariant subsystems. Therefore, if H1 ⊆ H is the Hilbert space corresponding to
the states of a single elementary particle occupying the bigger system, we require that
the transformed system D(L)H1 still corresponds to that particular single elementary
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particle. In particular, this means that if we restrict D to H1, we again obtain a
projective unitary representation of the Poincaré group. The crucial point is now that
an elementary particle has no further subsystem that is again an invariant subsystem.
In the group theoretical terminology, this means that the restricted representation D
to H1 is irreducible:

De�nition 2.3. Consider a representation σ : G → GL(V, k). A linear subspace
W ⊆ V is called an invariant subspace if σ(g)(w) ∈W for all g ∈ G and w ∈W . The
representation is called irreducible if V is at least one-dimensional, and the only
invariant subspaces are the trivial vector space and V itself.

It is therefore that elementary particles are mathematically identi�ed with irredu-
cible projective unitary representations of the pertinent symmetry group.

2.4 Coadjoint orbits in classical mechanics

The mathematical context of classical mechanics is somewhat di�erent to the Hilbert
space formalism of quantum mechanics. Instead of a projective Hilbert space, the
rôle of the state space is now played by a symplectic manifold (or more generally, by
a Poisson manifold). A classical symmetry is then a symplectomorphism of the state
space (replacing the notion of projective automorphisms). The pertinent symmetry
group can once again act on the state space, this time via so called Hamiltonian
group actions (replacing the notion of a unitary representation). We forgo the formal
de�nition of these terms for now (and postpone them to Section 7), since they rest on
the concepts we will de�ne (mostly) in Section 3. They are presented in Sections 7
and 8.

The notion of an elementary particle now becomes that of a symplectic mani-
fold, together with a certain type of transitive symplectic action. In the literature
this is sometimes called a symplectic homogeneous space. Transitivity simply means
that every state in the system can be reached from another by virtue of a symmetry
transformation acting on the manifold. See Section 8.4 in particular for the formal
de�nition of classical elementary particles. We will see in Theorem 8.10 that these
particular types of symplectic homogeneous spaces are classi�ed by the orbits of a very
particular type of action: the twisted coadjoint action . These so-called (twisted)
coadjoint orbits replace the notion of irreducible (projective) unitary representa-
tions.

3 Structure of the spacetime symmetry groups
The mathematical framework necessary for our discussions rests largely on the concept
of a Lie group. We state the de�nition right away:

De�nition 3.1. A Lie group is a group G, endowed with the structure of a smooth
manifold such that the product map G × G → G : (g, h) 7→ gh and inversion map
G→ G : g 7→ g−1 are smooth.

The general theory of Lie groups is quite abstract, but very powerful, allowing us
(among other things) to de�ne the notion of di�erentiation of functions on a group.
We shall �rst give a short exposition of the general theory, and then in the next
section move on to matrix Lie groups. For details on the theory of smooth manifolds
we refer to the lecture notes [28].

Suppose that G is a Lie group with identity element e ∈ G. Since G is a manifold,
we may consider the tangent space TeG at the identity element, which will play an
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important rôle. The tangent space is a vector space with the same dimension as G (as
a manifold), to be thought of as the `velocities' of smooth curves running through some
�xed point. Formally, the tangent space TpG at any point p ∈ G may be de�ned as
the space of all derivations of smooth functions at that point: Derp(C

∞(G),R). Here
we denote by C∞(G) the vector space of all smooth functions on G, where addition
and scalar multiplication is de�ned in a pointwise fashion. If we choose a tangent
vector at every point on the manifold in a smooth way, the result is a vector �eld. If
X is a vector �eld, we denote its value at the point p by Xp. More formally, a vector
�eld is a smooth section of the tangent bundle TG. The space of all vector �elds
is linearly isomorphic to the space of all derivations Der(C∞(G)), seen as a C∞(G)-
module. A derivation D ∈ Der(C∞(G)) is a linear map D : C∞(G) → C∞(G) such
that D(fg) = fD(g) +D(f)g for any two smooth functions f, g ∈ C∞(G). Given the
identi�cation of vector �elds with derivations, we may de�ne a real bilinear operation
with the use of their compositions:

[·, ·] : Der(C∞(G))×Der(C∞(G))→ Der(C∞(G)); (X,Y ) 7→ [X,Y ] := X◦Y−Y ◦X.

This operation, called the commutator of vector �elds, is well de�ned (in the sense
that [X,Y ] is again a vector �eld), skew-symmetric, and satis�es the so-called Jacobi
identity :

∀X,Y, Z ∈ Der(C∞(G)) : [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

Therefore, the space of all vector �elds form a concrete example of what is called a
Lie algebra:

De�nition 3.2. A real bilinear operation, de�ned on some vector space, that is skew-
symmetric and satis�es the Jacobi identity, i.e., that satis�es the following properties

1. [X,Y ] = −[Y,X], (skew-symmetry)

2. [aX + bY, Z] = a[X,Y ] + b[Y,Z], (bilinearity)

3. [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0, (Jacobi identity)

for all X,Y, Z ∈ Der(C∞(G)) and a, b ∈ R, is called a (real) Lie bracket . A Lie
algebra is a real vector space endowed with a Lie bracket.

We want to associate a canonical Lie algebra Lie(G) to our Lie group G. This is
done as follows. In any group we can de�ne the left translation map:

λg : G→ G; h 7→ gh,

for any �xed element g ∈ G. By de�nition of a Lie group, this map is smooth, and
in fact, it is a di�eomorphism. Its di�erential deλg : TeG → TgG maps tangent
vectors at the identity to tangent vectors at the point g. This map de�nes a vector
�eld X by the formula Xg := deλg(v), which is uniquely determined by the tangent
vector v ∈ TeG. The vector �eld X is called the left invariant extension of v, and
is denoted vL. The space of all left invariant extensions is linearly isomorphic to the
tangent space TeG. This allows us to extend the commutator on vector �elds to a
`commutator' of tangent vectors, leading us to the following de�nition.

De�nition 3.3. Let G be a Lie group. The Lie algebra of G is the vector space
Lie(G) := TeG, usually denoted by the lower case Fraktur letters, in this case g,
together with the Lie bracket

[·, ·] : g× g→ g; (u, v) 7→ [u, v] := [uL, vL]e.
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On the right hand side the expression [uL, vL]e denotes the value of the vector �eld
[uL, vL] at the identity.

The Lie algebra of a Lie group is an important instance of the general notion of
a Lie algebra. Its importance arises because a great deal of the structure of G is
encoded in its Lie algebra. This is in part due to the exponential map. Formally, this
is the smooth map exp : g → G that moves vectors in TeG along the �ow lines of
their left invariant extension for one unit of time.

De�nition 3.4. Let G and H be Lie groups. We say the map F : G → H is a
homomorphism of Lie groups if it is a smooth group homomorphism. That is, if
F is smooth and F (g1g2) = F (g1)F (g2) for all g1, g2 ∈ G.

Let g and h be Lie algebras. We say the map f : g→ h is a homomorphism of
Lie algebras if it is linear and respects the Lie bracket structure. The latter means
that f([X1, X2]) = [f(X1), f(X2)] for all X1, X2 ∈ g. Note that on the left hand side
the bracket is that of g, while on the right hand side it is that of h.

The exponential map now provides a relation between Lie group and Lie algebra
homomorphisms.

Proposition 3.5. Let G and H be Lie groups with Lie algebras g and h respectively.
Any Lie group homomorphism F : G→ H induces a Lie algebra homomorphism by

deF : g = TeG→ h = TeH,

and the following diagram commutes5:

G H

g h.

F

exp

deF

exp

For the sake of simplicity, in this thesis we shall restrict ourselves to connected Lie
groups. A topological space is said to be connected when it cannot be written as
the disjoint union of two non-empty open sets. Any Lie group contains a connected
Lie group, via the result of the next elementary proposition.

Proposition 3.6. The identity component of any Lie group is a closed normal sub-
group.

Here, the identity component is the largest connected subset containing the iden-
tity element. The proof of the topological part can be found in, for example, [29,
Lem.9.1.9], and the algebraic part is quite easy. Next to the notion of connectedness,
we have the notion of simple connectedness. We say a topological space is simply
connected when every continuous loop can be continuously contracted into a point.
In this sense, a simply connected space has no `holes' (cf. Figures 3b and 3c). Simply
connected Lie groups behave nicely in that they allow for the converse of Proposi-
tion 3.5 to hold:

Proposition 3.7. Let G and H be Lie groups, with Lie algebras g and h respectively.
Furthermore, suppose that G is simply connected. Then for any Lie algebra homo-
morphism f : g → h there exists a unique Lie group homomorphism F : G → H,
such that deF = f .

This proposition is proven in, for example, [45, Prop.1.20].

5A diagram is said to commute if the composition of any sequence of arrows with the same start-
and end points gives the same map. In this particular instance commutativity means F ◦ exp =
exp ◦ deF .
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(a) Disconnected space.

(b) Connected, simply
connected space. (c) Connected, non-

simply connected space.

Figure 3: Illustrations of (from left to right) a disconnected space, a connected space that is also
simply connected, and a connected space that is nevertheless not simply connected. (Note: in some
conventions Figure 3a may be considered simply connected, while in others it may not. There will
be no confusion for us.)

3.1 Matrix Lie groups and their Lie algebras

The generality of the above theory is vast, and abstract. There is, however, one very
concrete family of Lie groups that will (more than) su�ce for our purposes here. In
fact, all of the Lie groups we will need are of this kind. These are the matrix Lie
groups.

The general linear group GL(V, k) of any vector space V over the �eld k is the
group of its automorphisms, i.e., the group of all k-linear isomorphisms mapping the
vector space to itself. Its operation is that of composition. When it is clear what the
underlying �eld is, we may write GL(V ) instead. It is a well-known fact from linear
algebra that

GL(n,C) := GL(Cn) = {M ∈ Mn(C) : det(M) 6= 0},

where Mn(C) is the space of all n× n matrices with complex entries. In this case the
operation of composition is realised via the usual matrix multiplication. GL(n,C) will
serve as our `proto-Lie group'. In order for this group to be considered a Lie group, we
need to at least de�ne a topology on it. To do this, we identify the space of all matrices
Mn(C) with the complex space Cn2 ∼= R2n2

, together with the standard Euclidean
topology (induced by the Euclidean metric). Convergence of matrices becomes a
question of component-wise convergence. Since the determinant map det : Mn(C)→
C is continuous (its expression is polynomial in terms of the matrix components) and
C\{0} is open, we �nd that GL(n,C) = det−1(C\{0}) is an open subset of Mn(C). It
can therefore be endowed with the structure of a (real) smooth manifold of dimension
2n2. Moreover, since the multiplication and inversion operations in GL(n,C) are of
polynomial nature, they are smooth, and hence we see that the general linear matrix
groups de�ne Lie groups in the sense of De�nition 3.1.

De�nition 3.8. A matrix Lie group G is a closed subgroup of GL(n,C), for some
n ∈ N. This means that, given a convergent sequence (An)n∈N in G, either its limit
lies in G or in Mn(C) \GL(n,C). (The reason that the limit may not be an invertible
matrix is that GL(n,C) is not closed in Mn(C).)

It is not obvious that matrix Lie groups (besides GL(n,C)) are Lie groups in the
sense of De�nition 3.1. For a proof that they are, we refer to [15, Ch.3].

In the case of matrix groups, the relation between Lie groups and their Lie al-
gebras, formed by the exponential map, is very pronounced. For matrix Lie groups
the exponential map coincides with the matrix exponential. Given X ∈ Mn(C), its
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exponential is de�ned as the convergent power series

exp(X) = eX :=

∞∑
m=0

1

m!
Xm.

We adopt the convention that X0 = I, where I ∈ Mn(C) is the identity matrix. We
state some properties of the matrix exponential, the proof of whose can be found
in [14,15].

Proposition 3.9. Let X and Y be two matrices in Mn(C), and M ∈ GL(nC) an
invertible matrix. We denote the matrix transpose of X by XT, and the Hermitian
transpose by X†. The matrix exponential has the following properties:

1. eX
T

= (eX)T and eX
†

= (eX)†;

2. eMXM−1

= MeXM−1;

3. det(eX) = eTr(X);

4. eX+Y = limm→∞(eX/meY/m)m;

5. If XY = Y X then the above simpli�es to eX+Y = eXeY ;

6. (eX)−1 = e−X ;

7. And lastly, we have
d

dt
etX
∣∣∣∣
t=0

= X. (3.1)

The Lie algebra can now be directly de�ned in terms of the exponential:

De�nition 3.10. Let G ⊆ GL(n,C) be a matrix Lie group. Thematrix Lie algebra
Lie(G) of G, again denoted by g, is de�ned as the set

g := {X ∈ Mn(C) : ∀t ∈ R : etX ∈ G},

together with the usual vector space structure of Mn(C) and the matrix commutator
bracket:

[·, ·] : g× g→ g; (X,Y ) 7→ [X,Y ] := XY − Y X.

The following proposition proves that the matrix Lie algebra is a linear subspace
of Mn(C), and that it is closed under the matrix commutator (i.e., that the bracket
above is well-de�ned).

Proposition 3.11. Let g be the matrix Lie algebra belonging to some matrix Lie
group G. Then the following holds:

1. The zero matrix 0 is an element of g;

2. g is closed under real scalar multiplication of matrices;

3. g is closed under component-wise matrix addition;

4. For every g ∈ G and X ∈ g we have gXg−1 ∈ g;

5. g is closed under the matrix commutator, i.e., for all X,Y ∈ g we have [X,Y ] ∈ g.

The proof makes use of Proposition 3.9 (see [14, Sec.16.5] for more details).
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3.2 The classical Lie groups

There are several speci�c Lie groups that have an important place in the contemporary
literature, and have come to be dubbed the `classical Lie groups'. It is these classical
groups (for lack of a better term) that play fundamental rôles in physical symmetries.

First we must note that the real invertible matrices GL(n,R) form a matrix Lie
group. What are the Lie algebras gl(n,C) and gl(n,R) of GL(n,C) and GL(n,R),
respectively? A matrix X ∈ Mn(C) is in gl(n,C) if and only if for each t ∈ R the
matrix etX is invertible, i.e., if and only if for each t we have det(etX) 6= 0. Using
Proposition 3.9 we �nd that this inequality holds if and only if eTr(tX) = etTr(X) 6= 0,
which we know to always be the case. Therefore gl(n,C) = Mn(C). Similarly we
�nd gl(n,R) = Mn(R), the space of all n× n matrices with real entries. For both of
the general linear groups we can de�ne the special linear group; the group of all
matrices with unit determinant. For the complex case the notation is

SL(n,C) := {M ∈ Mn(C) : det(M) = 1}.

Again using Proposition 3.9, we �nd that any elements X ∈ sl(n,C) of its Lie algebra
should satisfy det(etX) = etTr(X) = 1, for every t ∈ R. It follows that

sl(n,C) = {X ∈ Mn(C) : Tr(X) = 0}.

Being such basic examples of Lie groups, it would be useful to be able to view
the additive groups Cn and Rn as matrix Lie groups. This can be done using the
following homomorphism:

Φ : Cn → GL(n+ 1,C); z 7→
[
1 z
0 I

]
.

Here I denotes the n × n identity matrix, and the element z ∈ Cn is `embedded' as
a row vector into the matrix on the right hand side. As a group, we may therefore
identify Cn ∼= im(Φ) via the �rst isomorphism theorem for groups (the map is clearly
injective). In this way, Cn is a matrix Lie group, because the limit of any of its
convergent sequences has unit determinant. We similarly identify Rn with im(Φ|Rn).
The Lie algebra of Rn is isomorphic to Rn as a vector space endowed with trivial
bracket.

3.2.1 The orthogonal and unitary groups

The orthogonal group O(n) is de�ned as the set of all matrices whose inverse is the
transpose:

O(n) := {R ∈ Mn(R) : RRT = RTR = I}.

Its elements are called orthogonal matrices. Now, if R ∈ O(n) we �nd that det(R)2 =
det(RRT) = det(I) = 1, and hence det(R) = ±1. (The converse is not true; not any
matrix with determinant ±1 is orthogonal.) This naturally leads to the de�nition of
the special orthogonal group:

SO(n) := {R ∈ O(n) : det(R) = 1}.

These two groups have a geometric interpretation. Namely, their elements, when
acting on the Euclidean space in the usual way, preserve the Euclidean inner product.
That is to say, if x,y ∈ Rn and R ∈ O(n) then 〈Rx, Ry〉 = 〈x,y〉. In fact, every (not
necessarily linear) function Rn → Rn that preserves the Euclidean inner product and
has the origin as a �xed point corresponds uniquely to an element in O(n). (This claim
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is proven for n = 2 in [23, Ex.2.18].) The interpretation of O(n) is that it contains
all the re�ections and rotations about the origin of Euclidean space, whereas SO(n)
contains just the rotations. To put it di�erently; the orthogonal group represents
all isometries of Euclidean space that preserve the origin. The group O(n) has two
connected components, corresponding to matrices with determinants ±1, respectively.
The identity component is therefore the special orthogonal group SO(n).

The complex analogue of the orthogonal group is the unitary group:

U(n) := {U ∈ Mn(C) : UU† = U†U = I}.

Here we use the dagger symbol † to indicate the Hermitian transpose of a matrix,
which is its transpose where all of its components are complex conjugated. The
elements of the unitary group are called unitary matrices. Again, we have a geometric
interpretation; in this case the invariance of the standard complex inner product:

〈·, ·〉 : Cn × Cn → C; (x,y) 7→ 〈x,y〉 :=

n∑
i=1

xiyi.

Any unitary matrix U has a determinant with unit modulus: |det(U)| = 1. Analogous
to the special orthogonal group we de�ne

SU(n) := {U ∈ U(n) : det(U) = 1},

called the special unitary group. The unitary groups U(n) are connected, and the
special unitary group SU(n) is even simply connected (see the end of [14, Sec.16.2]).

3.2.2 . . . and their Lie algebras

What are the Lie algebras of the orthogonal and unitary groups? We start by cal-
culating the algebra of O(n), which we denote by o(n). A matrix X ∈ Mn(R) is an
element of the Lie algebra if and only if for each t ∈ R we have etX ∈ O(n). This

means that, in light of Proposition 3.9, in that case we should have e−tX = etX
T

. We
clearly see that any anti-symmetric matrix is an element of o(n). On the other hand,
if X ∈ o(n) then the previous equation does hold for every t ∈ R, and (3.1) gives
XT = −X. Hence we have proved that the Lie group of O(n) contains exactly all
anti-symmetric matrices:

o(n) = {X ∈ Mn(R) : XT = −X}.

The Lie algebra so(n) of SO(n) should clearly be a subset of o(n). Any matrix
X ∈ so(n) has to satisfy the equation det(etX) = etTr(X) = 1, for all t ∈ R. It follows
that Tr(X) = 0. However, this property already holds for any anti-symmetric matrix,
and so the two Lie algebras are in fact the same: so(n) = o(n). Of particular interest
to us is the group SO(3) and its Lie algebra so(3), as they correspond to the rotation
group of three-dimensional Euclidean space. The standard basis for so(3) is given by
the following three matrices:

J1 =

0 0 0
0 0 −1
0 1 0

 , J2 =

 0 0 1
0 0 0
−1 0 0

 , J3 =

0 −1 0
1 0 0
0 0 0

 . (3.2)

Together, these matrices satisfy the property that the commutator of either two gives
the third: [Ji, Jj ] = εijkJk, where εijk is the Levi-Civita symbol. We use the Einstein
summation convention to sum over repeating indices.
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The Lie algebras u(n) and su(n) of U(n) and SU(n), respectively, are, as opposed
to o(n) and so(n), distinct because of a subtle di�erence between the real transpose
and the Hermitian transpose (especially in the sense that an anti-Hermitian matrix
does not necessarily have zero trace.) Nevertheless, calculations analogous to the
above can be done to �nd

u(n) = {X ∈ Mn(C) : X† = −X},
su(n) = {X ∈ u(n) : Tr(X) = 0}.

Of particular interest, so far perhaps for unclear reasons, is the group SU(2) and its
Lie algebra su(2). The Lie algebra contains all 2 × 2 anti-Hermitian matrices with
zero trace:

su(2) =

{[
ia z
−z −ia

]
: a ∈ R, z ∈ C

}
,

where the overline denotes complex conjugation. A standard basis is given by the
imaginary rescaled Pauli matrices:

S1 =
1

2

[
i 0
0 −i

]
, S2 =

1

2

[
0 1
−1 0

]
, S3 =

1

2

[
0 i
i 0

]
.

Just like the basis matrices J1, J2, J3 for so(3), these matrices satisfy the relations
[Sj , Sk] = εjklSl. Indeed, we have a Lie algebra isomorphism su(2) ∼= so(3) de�ned
by the linear extension of Sj 7→ Jj , for j = 1, 2, 3. The question is now whether we
also have a Lie group isomorphism between SO(3) and SU(2). This turns out to not
be the case, but there is nevertheless an important relation between the two, as we
will see in Section 3.4.1. One simple way to tell that SO(3) and SU(2) cannot be
isomorphic is by comparing their centres; they are not equal [14] (i.e., Z(SO(3)) is
trivial, while Z(SU(2)) ∼= Z/2Z).

3.2.3 The generalised orthogonal groups

We have interpreted the orthogonal group O(n) as the group of all rotations and
re�ections of the n-dimensional Euclidean space. A completely analogous construction
can be made when Rn is equipped with a di�erent inner product. Speci�cally, we
consider the space Rn+k endowed with the inner product:

〈·, ·〉n,k : Rn+k × Rn+k → R; (x,y) 7→ 〈x,y〉n,k =

n∑
i=1

xiyi −
n+k∑
j=n+1

xjyj .

The generalised orthogonal group O(n, k) is de�ned as [15, Sec.1.2.3]

O(n, k) := {R ∈ Mn+k(R) : gRg = R−1},

where g is the matrix with the �rst n diagonal components equal to 1, and the
last k diagonal components equal to −1. (Note that g = g−1.) These generalised
orthogonal matrices R ∈ O(n, k) have the property that for all x,y ∈ Rn+k we have
〈Rx, Ry〉n,k = 〈x,y〉n,k. From the de�ning condition gRg = R−1 we immediately
�nd that any generalised orthogonal matrix has det(R) = ±1. As one expects, we
then de�ne

SO(n, k) := {R ∈ O(n, k) : det(R) = 1}.

Clearly Minkowski space M4 corresponds to the special case n = 1, k = 3. Its
orthogonal group O(1, 3) is called the Lorentz group, after Dutch physicist Hendrik

22



Antoon Lorentz (1853�1928). The elements of this group are called Lorentz trans-
formations. The Lie algebra of the Lorentz group O(1, 3) and the special Lorentz
group SO(1, 3) are calculated similarly to the above, and one �nds:

o(1, 3) = so(1, 3) = {X ∈ M4(R) : gXTg = −X}.

3.3 Spacetime symmetry groups as matrix Lie groups

3.3.1 The structure of the Euclidean group, semi-direct products

The geometric interpretation of the orthogonal groups makes it sound like they should
have some relation with the Euclidean group. Translations in the Euclidean group do
not preserve the Euclidean inner product, but they do preserve the Euclidean metric.
On the other hand, any orthogonal transformation also preserves the Euclidean metric.
It seems like the orthogonal group should somehow be embedded in the Euclidean
group. But the orthogonal group certainly does not capture the entire Euclidean
group, since spatial translations form Euclidean symmetries, but are not part of the
orthogonal group as they move the origin (at least the non-trivial ones). However,
these two types of transformations are, as it turns out, the only ones, and it can be
shown that together they form the entire Euclidean group. In a more precise language,
if we denote the group of all translations of n-dimensional Euclidean space by T(n),
seen as a subgroup of the Euclidean group E(n), then we have E(n) = T(n) ◦ O(n),
by which we mean

E(n) = {t ◦R : t ∈ T(n), R ∈ O(n)}.

Here we identify the matrices in O(n) with the corresponding linear maps Rn → Rn
they represent. Geometrically, the above equation implies that every isometry of
Euclidean space can be obtained by �rst applying an orthogonal transformation, and
thereafter a translation. It is quite easy to see that the translation and orthogonal
groups are both subgroups of the Euclidean group. Moreover, the translation group
forms a normal subgroup of the Euclidean group. To denote this we write T(n)CE(n).
This follows from the following fact; supposing we write ta ∈ T(n) to denote the
translation along a vector a ∈ Rn, and taking R ∈ O(n) to be arbitrary, the following
identity holds:

R ◦ ta ◦R−1 = tRa. (3.3)

This result can be veri�ed easily by evaluating either side at some point in Rn, and
using the fact that orthogonal transformations are linear. Now, indeed, conjugating ta
with some general element t◦R of the Euclidean group, we �nd that (t◦R)◦ta◦(R−1◦
t−1) = t ◦ tRa ◦ t−1, which is again an element in the translation group. Together,
the translation and orthogonal groups only share the identity transformation, as any
orthogonal map necessarily preserves the origin. Therefore, the translational and
orthogonal groups satisfy the conditions to form a semi-direct product :

De�nition 3.12. Let G be a group with two subgroups: N and H, the former of
which is a normal subgroup. If G = NH = {nh : n ∈ N,h ∈ H} and N ∩H = {1G},
we say that G is the (inner) semi-direct product of N and H, and in that case
we write G = N oH.

The additive group Rn can be identi�ed with the translation group T(n) in an
obvious way, and so we identify RnCE(n) as a normal subgroup. Given the discussion
above, the Euclidean group is therefore a semi-direct product:

Isom(En) = E(n) = Rn o O(n).
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What exactly is the structure of the Euclidean group, presented in this fashion? In
light of this question, and because we will need the concept of semi-direct products
to describe both the Galilean and Poincaré groups (done below), we shall go into
some more detail. Next to the notion of inner semi-direct products, de�ned in De�n-
ition 3.12, we have the following di�erent notion:

De�nition 3.13. Let N and H be groups, and let τ : H → Aut(N) be a group
homomorphism. Then the (outer) semi-direct product of N and H with respect
to τ is de�ned as the group NoτH, which is the set N×H endowed with the following
operation:

(n, h)(m, k) = (nτ(h)(m), hk).

We leave it to the reader to verify that N oτ H de�nes a group.

Besides their notation, there may not seem to be an obvious connection between
inner- and outer semi-direct product. However, the following two points hold, allowing
us to think of inner semi-direct products as outer semi-direct products, and vice versa.

Proposition 3.14. We have:

1. An inner semi-direct product G = N oH is isomorphic to the outer semi-direct
product N oϕ H, where ϕ : H → Aut(N) sends an element h ∈ H to the inner
automorphism ϕ(h) : N → N ;n 7→ hnh−1.

2. An outer semi-direct product G = N oτ H is an inner semi-direct product of
the groups {(n, 1H) : n ∈ N} ∼= N and {(1N , h) : h ∈ H} ∼= H.

We shall give a proof for the �rst point, since we were initially given an inner
semi-direct product structure of the Euclidean group. The proof of the second point
is substantially easier, and is left to the reader. We will need the following lemma.

Lemma 3.15. Let G be a group with subgroups N and H, so that N CG. Then the
following are equivalent:

1. G = N oH, i.e., G = NH and N ∩H = {1G};

2. For each g ∈ G there are unique elements n ∈ N and h ∈ H so that g = nh.

Proof. Suppose �rst that G is the inner semi-direct product of N and H. Then any
element g ∈ G can be written as a product g = nh, for some n ∈ N and h ∈ H.
We are to show that n and h are unique. For that, suppose that there are two other
elements m ∈ N and k ∈ H such that g = nh = mk. Rewriting this equation shows
that m−1n = kh−1. Hence both sides of the equation are elements of the intersection
N ∩H = {1G}, from which uniqueness follows.

For the converse, we take it that every element g ∈ G can be written uniquely as
g = nh. The fact that G = NH trivially follows. Lastly, take an element g ∈ N ∩H.
Now the identity element 1G can be written as gg−1. It can also be written as the
square of itself: 1N1H = 1G, and since this decomposition is unique we must have
g = 1G.

The proof of the proposition is now easy:

Proof of Proposition 3.14.1. We are to show that G = N o H ∼= N oϕ H, where
the function ϕ : H → Aut(N) is the homomorphism described in the proposition
statement. Using the above lemma, we introduce the map

Φ : G→ N oϕ H; g = nh 7→ (n, h)
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to de�ne this isomorphism. The fact that G = NH, together with the lemma, makes
Φ a well-de�ned bijection. In G we have the identity nhmk = nϕ(h)(m)hk, for all
n,m ∈ N and h, k ∈ H, which ensures that Φ is a homomorphism:

Φ((nh)(mk)) = Φ(

∈N︷ ︸︸ ︷
nϕ(h)(m)

∈H︷︸︸︷
hk ) = (nϕ(h)(m), hk) = Φ(nh)Φ(mk).

We return back to our study of the Euclidean group. Armed with Proposi-
tion 3.14.1, we conclude that the Euclidean group is isomorphic to, and hence may be
identi�ed with, the outer semi-direct product E(n) ∼= RnoϕO(n). (We will, however,
mostly use the notation of the inner semi-direct product.) It means that, when (a, R)
and (b, S) are elements in the group Rn oϕ O(n), their product reads

(a, R)(b, S) = (a+ ϕ(R)(b), RS) = (a+Rb, RS),

where we use ϕ(R)(b) = Rb, which follows from (3.3) and the identi�cation T(n) ∼=
Rn. Given that the direct product of two smooth manifolds can be endowed with a
natural smooth structure, the additional fact that inner automorphisms are smooth
then shows that the Euclidean group E(n) is a Lie group. Given the multiplication law
above, we can also view it as a matrix Lie group. Namely, we have the homomorphism

Φ : E(n)→ GL(n+ 1,C); (a, R) 7→
[
R a
0 1

]
.

On the right-hand side we view a as a column vector embedded into the matrix, and
0 as a row vector of length n. The map is clearly injective, and hence we see that
E(n) can be viewed as the matrix group im(Φ). To show that E(n) is a matrix Lie
group, we need to show that it is closed in GL(n+ 1,C). For that, it is useful to note
that det(Φ(a, R)) = det(R). Now, if (Φ(am, Rm))m∈N is a convergent sequence in the
matrix group, it must be that (Rm)m∈N is a convergent sequence as well, say, with limit
R ∈ Mn(C). Since O(n) is a matrix Lie group, we know that R is either non-invertible,
or is again an orthogonal matrix. In the �rst case, the limit of our original sequence
(Φ(am, Rm))m∈N will also be non-invertible, since 0 = det(R) = det(Φ(a, R)), where
a is the limit of (am)m∈N. If, on the other hand, R is an orthogonal matrix, it is clear
that Φ(a, R) is again an element of the Euclidean group. We conclude that, with the
identi�cation E(n) ∼= im(Φ), the Euclidean group is a matrix Lie group.

Now that we know the structure of the Euclidean group as a matrix Lie group,
we turn to its matrix Lie algebra. The notation is e(n), accordingly, and it is given
by (cf. [13, p.124]):

e(n) =

{[
X a
0 0

]
∈ Mn+1(R) : X ∈ o(n),a ∈ Rn

}
.

3.3.2 The structure of the Galilei group as a matrix Lie group

We now want to �nd the structure of the Galilei group Gal(3) in a similar fashion.
The group can immediately be realised as a matrix group:

Φ : Gal(3)→ GL(5,C); (s,a,v, R) 7→

R v a
0 1 s
0 0 1

 .
Again, the map is clearly injective, so we identify Gal(3) with its image. The argument
above used to show that the Euclidean group is a matrix Lie group can be repeated
to show that Gal(3) is a matrix Lie group.
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Is the Galilei group also a semi-direct product? The answer is �yes�, but the
situation is a little more subtle. To �nd out, we �rst consider the subgroup

UGal(3) := {(0, 0,v, R) ∈ Gal(3)} 6 Gal(3),

called the group of uniform Galilean motions. Moreover, we identify R3 ∼= {(0, 0,v, I) ∈
Gal(3)} and O(3) ∼= {(0, 0, 0, R) ∈ Gal(3)}. It is an easy exercise to show that under
these identi�cations, R3 and O(3) form subgroups of the uniform Galilean motions.
Now take an arbitrary element (0, 0,v, R) ∈ UGal(3), and also (0, 0,w, I) ∈ R3. Then

(0, 0,v, R)(0, 0,w, I)(0, 0,v, R)−1 = (0, 0, Rw+v, R)(0, 0,−R−1v, R−1) = (0, 0, Rw, I) ∈ R3,

so in fact we have R3 C UGal(3), i.e., R3 is a normal subgroup of UGal(3). It is
also easy to see that R3 ∩ O(3) is trivial, and R3 O(3) = UGal(3). Hence the group
of uniform Galilean motions is an inner semi-direct product of R3 and O(3), and is
therefore by Proposition 3.14.1 isomorphic to the Euclidean group:

UGal(3) = R3 o O(3) ∼= R3 oϕ O(3) ∼= E(3).

Note, however, that on the right hand side we interpret R3 as a group of translations,
while on the left hand side it represents the velocities of uniform motion. Nevertheless,
the isomorphism holds, giving us a useful description of the structure of the uniform
Galilean motions.

The only thing that is missing from the group of uniform Galilean motions is the
spacetime translations, which we identify with R4 ∼= {(s,a, 0, I) ∈ Gal(3)}. Calcula-
tions similar to the ones above, show that R4 CGal(3), and furthermore, provide the
structure of the Galilei group in terms of a double semi-direct product:

Gal(3) = R4 o UGal(3) ∼= R4 o E(3) ∼= R4 o (R3 o O(3)).

The Lie algebra of Gal(3) is [4, p.39]

gal(3) =


X v a

0 0 s
0 0 0

 ∈ M5(R) : s ∈ R,a,v ∈ R3, X ∈ o(3)

 .

As mentioned above, we shall only consider the identity component of the Galilei
group, which is found by simply replacing O(3) with its respective identity component,
i.e., SO(3). To simplify terminology, from now on, when referring to the Galilei group
we will mean its connected component: Gal(3) := R4 o (R3 o SO(3)). The latter
term is the connected component of the Euclidean group, called the special Euclidean
group, and denoted by SE(n) := Rn o SO(n). In this case, the Lie algebras of the
connected components are the same as for their respective encompassing groups, since
o(n) = so(n).

A basis for a Lie algebra is often called a set of generators, since they can be
seen to `generate' the Lie group via the exponential map. Such a set of generators,
when also given their commutation relations, is an easy way to describe the entire
Lie algebra. In this case, the Lie algebra gal(3) of the Galilei group is generated by
the set {H,Pi,Ki, Ji : i = 1, 2, 3} (following the notation of [25]). Here H generates
the time translations (to be thought of as some sort of `Hamiltonian'); the generators
P1, P2, P3 account for spatial translations; the generators K1,K2,K3 account for Ga-
lilean boosts; and �nally, we have the rotation generators J1, J2, J3. These generators
are subject to the following commutator relations:

[Ji, Jj ] = εijkJk, [Ji,Kj ] = εijkKk, [Ji, Pj ] = εijkPk, [Ki, H] = Pi,
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for all i, j ∈ {1, 2, 3} (k being summed over as a repeated index), and all other
commutator relations being zero. (For a derivation of this result, cf., for example,
[3,19,35].) These generators show a shimmer of the special orthogonal and translation
groups. For instance, J1, J2, J3 forms a set of generators for the Lie algebra so(3), as
we know.

3.3.3 The structure of the Poincaré group as a matrix Lie group

The Lorentz group O(1, 3), de�ned in Section 3.2.3, classi�es all the isometries of
Minkowski space that leave the origin �xed. As mentioned, we shall only concern
ourselves with the identity component of the Poincaré group, which means we must
replace the Lorentz group by SO(1, 3). However, this special generalized ortho-
gonal group is not itself connected. The identity component of SO(1, 3) is given
by SO+(1, 3), which is the group of Lorentz transformations with unit determinant
and that preserve the direction of time. What remains to be added to obtain the
(connected component of the) Poincaré group is the spacetime translations, again
represented by R4:

Poin(1, 3) := Isom(M4) = R4 o SO+(1, 3).

In the structure of the semi-direct product, the action of SO+(1, 3) on R4 is simply
the de�ning one. As such, as a matrix Lie group, it may be described as follows:

Poin(1, 3) =

{[
Λ a
0 1

]
∈ M5(R) : a ∈ R4,Λ ∈ SO+(1, 3)

}
.

Its matrix Lie algebra is given by [13, p.114]:

poin(1, 3) =

{[
X a
0 0

]
∈ M5(R) : a ∈ R4, X ∈ so+(1, 3)

}
.

The Poincaré algebra is in fact generated similarly to the Lie algebra of the Galilei
group. We use the same letters for the generators, since they have a similar interpret-
ation: {H,Pi,Ki, Ji : i = 1, 2, 3}. For the Poincaré algebra, the brackets are [40, p.61]

[Ji, Jj ] = εijkJk, [Ji,Kj ] = εijkKk, [Ji, Pj ] = εijkPk,

[Ki, H] = Pi, [Ki, Pj ] = δijH, [Ki,Kj ] = −εijkJk,
(3.4)

all others vanishing. Note that the �rst four relations are simply the non-vanishing
ones from the Galilei algebra. In the literature, the generator H is sometimes denoted
P0, standing for the energy component of the four-momentum.

3.4 Universal covering groups

Another important concept we will need is that of a universal covering. Let X be a
topological space. A covering space of X is a topological space C together with a
continuous map p : C → X, called the covering map, with the following property: for
every x ∈ X there is an open neighbourhood U ⊆ X of x so that the preimage p−1(U)
can be written as the union of disjoint open sets in C. That is, there exists a family
(Vi)i∈I of disjoint open sets in C such that p−1(U) =

⋃
i∈I Vi. Moreover, for every

i ∈ I we have Vi ∼= U , where the homeomorphism is given by p. If we now endow X
and C with continuous group structures (so that they are topological groups) and we
impose the additional condition that p should be a homeomorphism, we say that C
(together with p) is a covering group of X. A universal covering space is a covering
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space C that is simply connected. A universal covering group is then a simply
connected covering group. In the even more speci�c case that X is a Lie group, we
require C to be a Lie group also, and p should be smooth. The universal covering
group of a connected Lie group is the unique simply connected Lie group that has the
same Lie algebra:

Theorem 3.16 (Lie's Third Theorem, [8, 10]). Every real �nite-dimensional Lie al-
gebra g corresponds to a simply connected Lie group G such that Lie(G) = g. In
particular, for every connected Lie group there is a unique simply connected Lie group
so that their Lie algebras are isomorphic.

This means that, in a sense, there are more Lie groups than Lie algebras. Namely,
there may be several distinct Lie groups that nonetheless share the same Lie algebra
(up to isomorphism). The orthogonal groups form a prime example of this fact. The
theorem tells us that, given a connected Lie group, up to isomorphism, there is only
one simply connected Lie group that shares its Lie algebra.

To demonstrate the concept of universal covering groups, we prove that the addit-
ive Lie group R is the universal covering of U(1). Not only is this useful for illustrative
purposes, but it will help simplify some constructions for us later on.

Lemma 3.17. The universal covering group of U(1) is R with covering map p : x 7→ e2πix.

Proof. The map p is clearly a surjective Lie group homomorphism (i.e., a smooth
homomorphism), and has discrete kernel ker(p) = Z. Let z = e2πiy ∈ U(1) be
arbitrary. The preimage p−1({z}) now consists of all real numbers that di�er an
integer amount from y. More generally, for a su�ciently small open neighbourhood
U 3 z we can write the preimage p−1(U) as a union of disjoint open sets over Z. It
is clear that each of these disjoint sets is isomorphic to U via p.

3.4.1 Universal covers of SO(3) and SO+(1, 3)

In particular, we need to calculate the universal covers of the Galilei and Poincaré
groups. Since Rn is connected and simply connected for every n ∈ N, it is its own
universal cover. We therefore need only calculate the universal covers of the rotation
group SO(3) and the Lorentz group SO+(1, 3).

We have already seen that the Lie algebras of SO(3) and SU(2) are isomorphic.
We have also seen that the groups themselves are not isomorphic. However, since
SO(3) is connected, and SU(2) is both connected and simply connected, a suspicion
arises that SU(2) must be the universal cover of SO(3). And indeed, this turns out
to be the case:

Theorem 3.18. SU(2) is the universal covering group of SO(3). The covering map
p̃ : SU(2)→ SO(3) has kernel ker(p̃) ∼= Z/2Z.

The proof is well known, and for an explicit construction of the covering map we
refer to [22, Prop.5.5]. The above theorem helps us in our study of the Galilei group,
but for the Poincaré group we need the following:

Theorem 3.19. SL(2,C) is the universal covering group of SO+(1, 3). The covering
map p̃ : SL(2,C)→ SO+(1, 3) has kernel ker(p̃) ∼= Z/2Z.

For a proof (which is similar to the one of Theorem 3.18), see the entry [34] in the
nLab.
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Part II

Quantum particles

4 Central extensions and projective representations
Our goal in this section is to develop the necessary mathematical framework to classify
projective representations in terms of linear representations. This is motivated by
physical considerations, because, as we saw in Section 2.3, quantum particles are
identi�ed with certain types of projective representations of the spacetime symmetry
group. We want to classify these representations. However, it is much easier to
calculate and classify ordinary representations, so it is preferable to �nd a relation
between projective- and ordinary representations, instead of simply calculating the
projective ones. Here we discuss how this is done; for which we need to start with
the seemingly unrelated concept of a central extension:

4.1 Central extensions

Consider a sequence of groups and group homomorphisms:

G0 G1 G2 . . . Gn−1 Gn.
f1 f2 f3 fn−1 fn

We say such a sequence is exact if the image of each homomorphism is exactly the
kernel of the next homomorphism. That is to say, for every k ∈ {1, . . . , n − 1} we
have fk(Gk−1) = im(fk) = ker(fk+1). A short exact sequence is an exact sequence
of the form

1 G1 G2 G3 1.
f g

Here 1 is the trivial group. The left- and rightmost arrows are �xed, being homo-
morphisms. Namely, the leftmost arrow sends the only element of 1 to the identity
element 1G1

∈ G1, and the rightmost arrow sends every element of G3 to the only
element in 1. The fact that this sequence is exact means that {1G1

} = ker(f),
im(f) = ker(g) and im(g) = G3. Hence f is injective and g is surjective. In this sense
a short exact sequence is equivalent to an exact sequence

G1 G2 G3.

De�nition 4.1. A central extension of G is a short exact sequence

1 A E G 1ι π (4.1)

such that the image of ι is contained in the centre of E: im(ι) ⊆ Z(E). More informally
we may say that the group E is the central extension of G by A when it is clear what
the maps ι and π are.

Note that if ι is injective then im(ι) ∼= A by the �rst isomorphism theorem for
groups. Hence A must necessarily be abelian. Similarly, we obtain E/ ker(π) ∼= im(π),
which, in this case, reads E/ im(ι) ∼= G, informally written as E/A ∼= G.

As with most mathematical structures, there is a trivial example. In this case, the
trivial extension of G by any abelian group A is de�ned as the short exact sequence

1 A A×G G 1,
iA prG
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where A×G is the direct product group, iA : a 7→ (a, 1G) is the inclusion map of A,
and prG : (a, g) 7→ g is the projection map onto G. This already shows that there are
plenty central extensions of any given group G (at least as many as there are abelian
groups).

It is useful to introduce some notion by which we can compare di�erent central
extensions. Then we can investigate whether two given extensions of G are really
di�erent. Suppose we have two central extensions E1 and E2 of G by A, as given by
the following (commutative) diagram:

E1

1 A G 1.

E2

π1ι1

ι2 π2

We say that these extensions are equivalent if there exists an isomorphism Φ : E1 →
E2 such that the following diagram commutes:

E1

1 A G 1.

E2

Φ

π1ι1

ι2 π2

This de�nes an equivalence relation on central extensions of G by A. To see this,
note that re�exivity simply follows from the fact that the identity map on any group
de�nes an isomorphism, and symmetry follows from the fact that isomorphisms are
(by de�nition) invertible. For transitivity, consider a third central extension E3 with
corresponding maps ι3 : A→ E3 and π3 : E3 → G, and suppose that E1 is equivalent
to E2, and E2 is equivalent to E3. Then we can �nd isomorphisms Φ : E1 → E2

and Ψ : E2 → E3 with corresponding commutative diagrams. The composition
Ψ ◦ Φ : E1 → E3 now de�nes an isomorphism as well as a commutative diagram

E1

1 A E2 G 1,

E3

Φ
π1

ι2

ι1

ι3

π2

Ψ π3

which shows that E1 and E3 are also equivalent, proving that the relation is transitive.
A special case arises when a central extension is equivalent to the trivial extension.

In that case, we say the extension is trivial (or trivializable). A seemingly di�erent
notion is that of a split extension. We say that the central extension (4.1) splits if
there exists a group homomorphism σ : G → E so that π ◦ σ = idG. This condition
can be summarised by the following diagram:

1 A E G 1.ι
π

σ

In fact:

Lemma 4.2. A central extension is trivializable if and only if it splits.
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Proof. Suppose �rst that the extension E as given above in (4.1) splits. Then we
have a homomorphism σ : G → E that is the right inverse of π. This de�nes a map
Φ : A × G → E sending a pair (a, g) ∈ A × G to the product ι(a)σ(g) ∈ E. Since
the extension is central, Φ is a homomorphism. Moreover, we have Φ ◦ iA = ι and
π ◦ Φ = prG, so by the short �ve lemma (cf. [17, Lem.1.1]) it follows that Φ is an
isomorphism, and hence that E is equivalent to the trivial extension A×G.

Now suppose that E is trivializable. Then there exists an isomorphism Φ : A×G→
E such that π ◦ Φ = prG. De�ne σ : G → E by σ(g) = Φ(1A, g). Now σ is clearly a
homomorphism, and furthermore π ◦ σ(g) = π ◦ Φ(1A, g) = prG(1A, g) = g, showing
that σ is a right inverse to π. Hence the extension splits, and we are done.

Given an abelian group A, a natural question is to ask how many inequivalent
central extensions (4.1) of G there are. We shall try to answer this question by de-
�ning an object which in essence `measures' the trivializability of a central extension.
Motivated by Lemma 4.2, we may do this by considering sections (i.e., right inverses)
s : G → E of π with the property that s(1G) = 1E , but which are not necessarily
homomorphisms. (If it were, the extension would be trivial.) s induces a map [33]

ω : G×G→ im(ι) ∼= A; (g, h) 7→ s(g)s(h)s(gh)−1, (4.2)

where, for typographical reasons, we shall temporarily write sg := s(g) for each g ∈ G.
Note that, indeed, this map is well de�ned, since π(sgshs

−1
gh ) = gh(gh)−1 = 1E , and

hence im(ω) ⊆ ker(π) = im(ι). There are two properties that characterise ω; �rstly,
we have

ω(1G, 1G) = s(1G)s(1G)s(1G1G)−1 = 1E1E1−1
E = 1E ,

and secondly:

ω(g, h)ω(gh, k) = (sgshs
−1
gh )(sghsks

−1
ghk) = sgshsks

−1
ghk

= sgshsks
−1
hk shks

−1
ghk = sgω(h, k)shks

−1
ghk = ω(g, hk)ω(h, k),

for all g, h, k ∈ G. (In the last step use that im(ι) ⊆ Z(E).) The map ω in a
sense measures the degree to which s is (not) a homomorphism. Indeed, when s
is a homomorphism (in which case the extension is trivial) ω would simply be the
trivial map (g, g) 7→ 1E . This turns out to be the right concept that will help us
classify central extensions (culminating in Theorem 4.6), and leads us to the following
de�nition.

De�nition 4.3. A map ω : G×G→ A de�ned on a group G and an abelian group
A that satis�es

ω(1G, 1G) = 1A, and ω(g, h)ω(gh, k) = ω(g, hk)ω(h, k)

for any g, h, k ∈ G is called a (unital) 2-cocycle (or cocycle for short) on G with
values in A.

A cocycle ω on G with values in A de�nes a group, denoted A×ωG, de�ned as the
set A × G together with the operation (a, g) · (b, h) := (ω(g, h)ab, gh). The identity
element of A×ω G is simply (1A, 1G). Given an element (a, g) ∈ A×ω G, its inverse
is given by (a, g)−1 = (ω(g, g−1)−1a−1, g−1), as one easily veri�es. The main task lies
in proving associativity. For that, let (a, g), (b, h), (c, k) ∈ A×ωG. Using the de�ning
property of ω as a cocycle, we �nd

[(a, g) · (b, h)] · (c, k) = (ω(g, h)ab, gh) · (c, k) = (ω(g, h)ω(gh, k)abc, ghk)

= (ω(g, hk)ω(h, k)abc, ghk) = (a, g) · (ω(h, k)bc, hk)

= (a, g) · [(b, h) · (c, k)],
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so we may conclude that A×ω G is indeed a group. It de�nes a central extension of
G by A in the following way;

Construction 4.4. Let G be a group and let A be an abelian group. Let ω : G×G→
A be a cocycle on G with values in A. ω induces a central extension of G by A:

1 A A×ω G G 1.
iA prG

Proof. Clearly iA and prG are injective and surjective, respectively, and form an exact
sequence: im(iA) = A× {1G} = ker(prG). Now, iA is a homomorphism, since

iA(ab) = (ab, 1G) = (ω(1G, 1G)ab, 1G) = (a, 1G) · (b, 1G) = iA(a) · iA(b),

for any a, b ∈ A. Similarly, prG is a homomorphism, because

prG((a, b) · (b, h)) = prG(ω(g, h)ab, gh) = gh = prG(a, g) prG(b, h),

for any two elements (a, b), (b, h) ∈ A×ω G.
That leaves us to show that the extension is central. Note that iA(a) · (b, h) =

(ω(1G, h)ab, h) and (b, h) · iA(a) = (ω(h, 1G)ba, h). Hence it su�ces to show that
ω(1G, h) = ω(h, 1G) for all h ∈ G. This follows from the cocycle property, which gives
us ω(h, 1G)ω(h, h) = ω(h, h)ω(1G, h). Since A is abelian, this reduces to the desired
equality. (In fact ω(h, 1G) = ω(1G, h) = 1A.)

Since any cocycle de�nes a central extension, we want to �gure out to what extent
this construction captures all central extensions. The answer is, indeed, all central
extensions, at least, up to equivalence.

To give a precise answer to this question, we need to investigate the cocycles more
closely. Let us denote the set of all cocycles on G with values in some abelian group
A by

Z2
gr(G,A) := {cocycles G×G→ A},

endowment of which with pointwise multiplication making it into an abelian group. As
a �rst step, we will try to �gure out when an extension A×ωG as in Construction 4.4
is trivial. By Lemma 4.2 we know this is equivalent to the extension splitting, i.e.,
the existence of a homomorphism σ : G → A ×ω G that is the right inverse of the
projection prG. Most generally, such a map σ is of the form σ(g) = (α(g), β(g)), for all
g ∈ G, and where α : G→ A and β : G→ G are some maps. Now since prG ◦σ = β,
we �nd that β must simply be the identity map on G. The other property of σ,
namely it being a homomorphism, places restrictions on α. This restriction comes
from the equation

(α(g)α(h)ω(g, h), gh) = σ(g)σ(h) = σ(gh) = (α(gh), gh),

which holds for all elements g, h ∈ G, and from the equation σ(1G) = (1A, 1G), which
gives α(1G) = 1A. Hence we have an explicit expression for the cocycle ω in terms of
α:

ω(g, h) = α(gh)α(g)−1α(h)−1.

Clearly, any time a cocycle can be written as such, and the map α has the property
that α(1G) = 1A, the corresponding extension will split. A cocycle of this form
is called a 2-coboundary on G with values in A (or again just coboundary for
short) [22]. In this terminology, an extension A ×ω G is trivial if and only if ω is a
coboundary.

32



We denote the set of all coboundaries by

B2
gr(G,A) := {coboundaries G×G→ A}.

More explicitly, if we denote the set of all functions G → A that map 1G 7→ 1A by
B1

gr(G,A), and for any such function α ∈ B1
gr(G,A) we de�ne the expression

∂α : G×G→ A; (g, h) 7→ α(gh)α(g)−1α(h)−1,

then the set of coboundaries is exactly

B2
gr(G,A) = ∂B1

gr(G,A) = {∂α : α ∈ B1
gr(G,A)}.

Again, endowing B2
gr(G,A) with pointwise addition gives an abelian group. It is

even a normal subgroup of the cocycles Z2
gr(G,A). To see this, it helps to note that

∂(αβ) = ∂α∂β, and normality follows automatically, because Z2
gr(G,A) is abelian.

De�nition 4.5. The second cohomology group of G with values in A is de�ned
as the quotient

H2
gr(G,A) :=

Z2
gr(G,A)

B2
gr(G,A)

.

For brevity, we shall usually call this group just the cohomology group of G with values
in A. Its elements are called cohomology classes.

It is useful to understand when two cocycles ω and δ represent the same co-
homology class. We know that this is the case if and only if the product ωδ−1 is a
coboundary, i.e., if and only if there exists a map α ∈ B1

gr(G,A) such that ωδ−1 = ∂α.
(Note; here δ−1 is the pointwise inverse of δ, not the inverse map.) Naturally, this
de�nes an equivalence relation between cocycles, where ω ∼ δ if and only if there
exists a map α such that

α(gh) = ω(g, h)δ(g, h)−1α(g)α(h),

for all g, h ∈ G. (In that case ω and δ are sometimes called cohomologous.) Of course,
the second cohomology group H2

gr(G,A) is isomorphic to the group of all equivalence
classes of cocycles under this relation.

We have seen that the extension A×ω G is trivial if and only if ω is equivalent to
a coboundary, i.e., if and only if ω is equivalent to the trivial cocycle (g, g) 7→ 1A. We
will now see that the equivalence of cocycles and the equivalence of their respective
central extensions fully matches up. When the extensions A ×ω G and A ×δ G are
equivalent, it is easy to see that the cocycles are equivalent (by similar arguments to
those used to show that coboundaries induce trivial extensions). Therefore, we are
left to show the converse: equivalence of cocycles implies equivalence of extensions.
Suppose that ω ∼ δ. Then we are given a map α ∈ B1

gr(G,A) so that ωδ−1 = ∂α,
which we use to de�ne

Φ : A×δ G→ A×ω G; (a, g) 7→ (aα(g), g).

For all a, b ∈ A and g, h ∈ G we �nd

Φ(a, g)Φ(b, h) = (aα(g), g)(bα(h), h) = (abα(g)α(h)ω(g, h), gh)

= (abα(gh)δ(g, h), gh) = Φ(abδ(g, h), gh) = Φ((a, g)(b, h)),
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and Φ(1A, 1G) = (1Aα(1G), 1G) = (1A, 1G), so Φ de�nes a homomorphism. It is also
straightforward to see that the diagram

A×δ G

1 A G 1

A×ω G

Φ

commutes, and hence the extensions A×ωG and A×δG are equivalent by the short �ve
lemma. The conclusion is that the extensions induced by two cocycles are equivalent
if and only if the cocycles themselves are equivalent.

But the main question still remains unanswered; does every central extension
arise from a cocycle? More precisely, is every central extension equivalent to some
extension A ×ω G, for some cocycle ω ∈ Z2

gr(G,A)? To see why the answer to this
question is positive, we note that every extension (4.1) admits a section s : G→ E of
the projection map π, which we may choose to have the property that s(1G) = 1E .
Any such section composes a cocycle ω : G × G → A, as we have seen already in
(4.2)6. Furthermore, this cocycle is uniquely determined by the extension E up to
equivalence, meaning that a di�erent choice of section s can only result in a cocycle
that is cohomologous to ω. This follows from the fact that, for another section s′ :
G → E of π, there would exist a map α : G → A so that s′ = sα. This map α can
be explicitly constructed via the formula α(g) := s′(g)s(g)−1, which is well-de�ned
because π(α(g)) = π(s′(g))π(s(g))−1 = gg−1 = 1G, so im(α) ⊆ ker(π) ∼= A. Now, if
we denote the cocycle induced by the section s′ by ω′, we �nd that ω′ω−1 = ∂(α−1),
so ω and ω′ are indeed in the same cohomology class. As a last step we shall prove
that the extension E is equivalent to extension A ×ω G, thus induced. For this, we
de�ne

A×ω G→ E; (a, g) 7→ as(g).

The fact that this is a homomorphism follows from the de�nition of ω in terms of s,
and the commutativity of the appropriate diagram from the fact that s is a section
for the projection π. Using the short �ve lemma we may �nally conclude that, indeed,
any central extension of G by A is equivalent to some A×ω G.

Our discussion in this section so far can be succinctly summarised by the following
theorem.

Theorem 4.6. The central extensions of G by A are classi�ed up to equivalence by
the second cohomology group H2

gr(G,A).

4.2 Projective representations

We will now see the connection between projective representations (our main interest)
and central qextensions.

The �eld k has an associated abelian multiplication group, denoted k×, which is
simply the set k \ {0k} endowed with the multiplication of k. The map

diag : k× → GL(V, k); λ 7→ λ idV

identi�es the multiplication group k× with scalar multiplication in the vector space
V . This map clearly forms an injective group homomorphism, since ker(diag) = {1k}.
Hence k× ∼= diag(k×). It is also easy to verify that diag(k×) C GL(V, k), i.e., that

6Even though this expression looks like a coboundary, it need not necessarily actually be one,
because the section may not map into im(ι) ∼= A.
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diag(k×) is a normal subgroup of GL(V, k). The projective linear group of V is
now de�ned as the quotient

PGL(V, k) := GL(V, k)/diag(k×).

A projective representation ofG over V is a group homomorphismG→ PGL(V, k).
The canonical projection map

P : GL(V, k)→ PGL(V, k); f 7→ f · diag(k×)

of this quotient is by construction surjective, and has kernel ker(P ) = diag(k×). To
put things together, we now have a short exact sequence

1 k× GL(V, k) PGL(V, k) 1.
diag P

Moreover, it is easy to check that diag(k×) ⊆ Z(GL(V, k)), and so we have a central
extension of the projective linear group PGL(V, k) in our hands!

What is the relation between ordinary (linear) representations and projective rep-
resentations? Consider a groupG with a projective representation ρ : G→ PGL(V, k).
This representation cannot be directly converted into a linear representation of G.
However, it can be used to create a linear representation of a central extension of G,
which may be done as follows:

Theorem 4.7. Let G be a group and let ρ : G → PGL(V, k) be a projective repres-
entation. Then there exists a central extension E of G by k× and a representation
σ : E → GL(V, k) so that the following diagram commutes:

1 k× E G 1

1 k× GL(V, k) PGL(V, k) 1.

id

ι

σ

π

ρ

diag P

Proof. (Note that the speci�cation of ι and π belongs to the proof of the existence of
the central extension.) We will �rst de�ne the central extension of G, followed by the
representation σ. Firstly, the set E is de�ned as follows:

E := {(M, g) ∈ GL(V, k)×G : P (M) = ρ(g)}.

We verify that E is a subgroup of the direct product GL(V, k) × G. It is clear
that (idV , 1G) ∈ E since P and ρ are homomorphism, so they must map the iden-
tity elements of GL(V, k) and G, respectively, to the identity element of PGL(V, k).
Now let (M, g) and (N,h) be arbitrary elements in E. Then (M, g) · (N,h)−1 =
(MN−1, gh−1) ∈ E, which can easily be deduced from the fact that P and ρ are
homomorphisms. Indeed: E is a subgroup, and hence in particular a group itself.

We now de�ne the maps ι and π. First:

ι = ik× : k× → E; λ 7→ (diag(λ), 1G) = (λ idV , 1G).

It is clear that this is an injective homomorphism. The image of ι is calculated to be

im(ι) = P ◦ diag(k×)× {1G} ⊆ E,

which is obviously in the centre of E. Next we de�ne

π = prG : E → G; (M, g) 7→ g.
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Again, this is clearly a homomorphism. Take g ∈ G arbitrary. We need to �nd a linear
isomorphism M : V → V such that P (M) = ρ(g). But since ρ(g) ∈ PGL(V, k) :=
im(P ), this can be done, which means that π is surjective. Furthermore, through
an easy calculation we �nd ker(π) = im(ι), showing that the top row of the above
diagram is a short exact sequence, and that E is a central extension of G. As a last
step, we de�ne the map

σ = prGL(V,k) : E → GL(V, k); (M, g) 7→M.

This is a homomorphism, and for any (M, g) ∈ E we now have

P ◦ σ(M, g) = P (M) = ρ(g) = ρ ◦ π(M, g),

showing that the diagram commutes. This concludes the proof.

The theorem shows that every projective representation ρ of G by V lifts to some
linear representation σ of the extension E constructed in the proof. We also know,
from the preceding section, that this extension must be equivalent to some central
extension k× ×ω G. The equivalence is realised by the cocycle ω induced (up to
equivalence) by any section s : PGL(V, k) → GL(V, k), with s(idV ) = idV , of the
projection map P :

ω : G×G→ k×; (g, h) 7→ ∂(s ◦ ρ)−1(g, h) = s(ρ(g))s(ρ(h))s(ρ(gh))−1

(of which well-de�nedness follows from P ◦ s = idGL(V,k)), and the homomorphism

k× ×ω G→ E; (a, g) 7→ (as(ρ(g)), g).

We therefore �nd that any projective representation ρ : G → PGL(V, k) de�nes a
unique equivalence class of central extensions of G by k×.

It is illustrative to consider the case that the second group cohomology is trivial:

Proposition 4.8. Let G be a group with cohomology H2
gr(G, k

×) = 1. Then every
projective representation G → PGL(V, k) arises from an ordinary representation
G→ GL(V, k).

Proof. A projective representation ρ : G→ PGL(V, k) de�nes a cocycle ω = ∂(s◦ρ)−1,
as above. Since H2

gr(G, k
×) is trivial, we know that ω is cohomologous to the trivial

cocycle, i.e., ω is a coboundary. Hence we may �nd a map α ∈ B2
gr(G, k

×) so that
ω = ∂α. Now the pointwise product σ := α · (s ◦ ρ) de�nes a representation of G by
the vector space V :

σ(g)σ(h) = α(g)α(h)s(ρ(g))s(ρ(h))

= α(g)α(h)ω(g, h)s(ρ(gh))

= α(g)α(h)
[
α(gh)α(g)−1α(h)−1

]
s(ρ(gh))

= α(gh)α(gh)−1σ(gh) = σ(gh).

The projective representation is now easily reconstructed via the formula ρ = P ◦ σ.

Lemma 4.9. The projective representations G → PGL(V, k) inducing (up to equi-
valence) a cocycle ω : G × G → k×, are in bijective correspondence to linear repres-
entations σ : k× ×ω G → GL(V, k) with the property that for all a ∈ k× : σ(a, 1G) =
diag(a). (Cf. [21, Prop.III.1.5.1].)
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Proof. Throughout the proof, let s : PGL(V, k) → GL(V, k) be a section of the
projection map P . Given a projective representation ρ : G → PGL(V, k), de�ne
u : G→ GL(V, k) by u(g) = s(ρ(g)). This map now satis�es

u(g)u(h) = ω(g, h)u(gh),

where ω is the cocycle ∂(s ◦ ρ)−1 as de�ned above. One easily veri�es that the map

σ : k× ×ω G→ GL(V, k); (a, g) 7→ au(g)

de�nes a representation of the central extension k× ×ω G that satis�es the desired
property.

On the other hand, if given a representation σ : k× ×ω G → GL(V, k) with the
desired property, de�ne u : G→ GL(V, k) by u(g) = σ(1k, g). Applying the projection
map P after u now gives a projective representation ρ = P ◦u : G→ PGL(V, k). This
construction is easily seen to be the left inverse of the construction in the previous
paragraph.

We are therefore left to show that the �rst construction is the left inverse of the
second construction. For that, let σ : k× ×ω G → GL(V, k) be a representation with
the desired property, and let ρ = P ◦ u be the induced projective representation. We
now apply the �rst construction to ρ, which �rst gives a map v : G→ GL(V, k) given
by v(g) = s(ρ(g)) = (s ◦ P )(σ(1k, g)), and in turn, a map κ : k× × G → GL(V, k)
de�ned by κ(a, g) = av(g) = a(s ◦ P )(σ(1k, g)). De�ning the section s in such a
way that (s ◦P )(σ(1k, g)) = σ(1k, g) (which we may do without loss of generality), it
follows that κ = σ, and hence the result.

4.3 Central extensions of Lie groups and Lie algebras

Section 4.1 gave us an overview of the theory of central extensions of general groups,
culminating in Theorem 4.6, showing that all central extensions of a group G by some
abelian group A are classi�ed (up to equivalence) by the second cohomology group
H2

gr(G,A). The story changes when we want to describe the central extensions of Lie
groups; in particular, the group A×ω G may not be a Lie group, although G and A
are. This problem arises from the possibility that the cocycle ω : G×G→ A need not
be smooth, and the fact that it is inherited by the multiplication law of A ×ω G. In
Section 4.3.3 we will see how to deal with this problem, eventually giving an analogue
of Theorem 4.6 for (certain types of) Lie groups. But �rst, we shall investigate the
problem of Lie algebra extensions.

4.3.1 Central extensions of Lie algebras

The discussion of Section 4.1 can be repeated for Lie algebras, with obvious modi-
�cations we shall present here, albeit somewhat more brie�y. First, an abelian Lie
algebra is one whose Lie bracket vanishes identically. This follows from the usual
idea of commutativity, since [X,Y ] = [Y,X] implies [X,Y ] = 0 by skew-symmetry.
Consequently, the centre Z(g) of a Lie algebra g is de�ned as all elements X ∈ g so
that [X,Y ] = 0 for all other elements Y ∈ g. If g and h are two Lie algebras, we
de�ne their commutator as [g, h] = span{[X,Y ] : X ∈ g, Y ∈ h}. To say that g ⊆ h is
contained in the centre of h can therefore simply be stated as [g, h] = 0, where 0 de-
notes the trivial Lie algebra (i.e., the trivial vector space). In analogue to the concept
of a normal subgroup, we need the concept of an ideal of an algebra. In particular,
if g is a linear subspace of h, we say it is is an ideal in h if [g, h] ⊆ g, meaning that if
X ∈ g and Y ∈ h, then [X,Y ] ∈ g.

Completely analogous to De�nition 4.1, we now have [33]:
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De�nition 4.10. Let a be an abelian Lie algebra, and g another Lie algebra. A
central extension of g by a is a short exact sequence of Lie algebra homomorphisms

0 a e g 0ι π (4.3)

so that [a, e] = 0. Here we have identi�ed a ∼= im(ι) as an ideal of e via the �rst iso-
morphism theorem for Lie algebras. Invoking exactness in turn gives the isomorphism
g ∼= e/a.

The trivial extension of g by a is de�ned as the sequence

0 a a⊕ g g 0.

Here a ⊕ g is the (outer) direct sum, de�ned as the set a × g together with the
component-wise vector space structure (i.e., just the direct sum of vector spaces) and
the Lie bracket

[a⊕X, b⊕ Y ] = [a, b]⊕ [X,Y ],

where we write a ⊕ X instead of (a,X) ∈ a ⊕ g. In the case that a is abelian, as
assumed here, we �nd that

[a⊕X, b⊕ Y ] = 0⊕ [X,Y ],

which we may identify with [X,Y ] ∈ g ∼= 0⊕ g.
Equivalence and splitting of central extensions of g over a are de�ned completely

analogously to the abstract group case; we call two extensions e1 and e2 with inclusion
maps ι1, ι2 and projection maps π1, π2, respectively, equivalent if there exists a Lie
algebra isomorphism Φ : e1 → e2 so that the following diagram commutes:

e1

0 a g 0.

e2

Φ

π1ι1

ι2 π2

We call the extension (4.3) split if there exists a Lie algebra homomorphism σ : g→ e
that is a section of the projection map π. An analogue of Lemma 4.2 now holds
(whose proof is obvious); any central extension is equivalent to the trivial extension
if and only if it splits.

De�nition 4.11. Let g and a be Lie algebras, where a is abelian. A bilinear map
Ω : g× g→ a with the properties

Ω(X,Y ) = −Ω(Y,X), and Ω(X, [Y, Z]) + Ω(Y, [Z,X]) + Ω(Z, [X,Y ]) = 0,

holding for all X,Y, Z ∈ g, is called a 2-cocycle (just cocycle for short) of g with
values in a. The latter property is to be thought of as a sort of Jacobi identity.

We want to prove a similar result to Theorem 4.6 for Lie algebra extensions. First
we introduce some terminology, also not too dissimilar to that in Section 4.1. Let us
write Z2

al(g, a) for the set of all cocycles on g with values in a. We endow this set with
pointwise scalar multiplication and addition in a. In particular, the addition turns
Z2

al(g, a) into an abelian group.

Construction 4.12. Let g be a Lie algebra, and a an abelian Lie algebra. Any
cocycle Ω : g× g→ a de�nes a Lie algebra a⊕Ω g, which forms a central extension

0 a a⊕Ω g g 0,

with the inclusion map a 7→ a⊕ 0 and projection map a⊕X 7→ X.
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Proof. We de�ne the underlying vector space of a⊕Ω g simply as the direct sum a⊕g,
and endow it with the following Lie bracket:

[a⊕X, b⊕ Y ]Ω := Ω(X,Y )⊕ [X,Y ],

for any a, b ∈ a and all X,Y ∈ g. To verify that this makes a⊕Ω g a Lie algebra, for
which it su�ces to show that the above actually is a Lie bracket, we use the cocycle
properties of Ω. In fact, each property will account for the corresponding property of
the Lie bracket (showing that Ω need necessarily be a cocycle). We just verify skew-
symmetry, and leave the other properties to the reader. For a, b ∈ a and X,Y ∈ g we
verify

[a⊕X, b⊕ Y ]Ω = Ω(X,Y )⊕ [X,Y ] = (−Ω(Y,X))⊕ (−[Y,X])

= −(Ω(Y,X)⊕ [Y,X]) = −[b⊕ Y, a⊕X]Ω.

Knowing that a ⊕Ω g is a Lie algebra, we prove that the above sequence is ex-
act. To do so, we need to show the inclusion and projection maps are Lie algebra
homomorphisms. They are clearly linear, so it su�ces to show they respect the Lie
brackets. The proof is obvious; the bracket [a, b] = 0 maps to 0⊕0, and the bracket of
the images a⊕0 and b⊕0 gives the same result: [a⊕0, b⊕0]Ω = Ω(0, 0)⊕ [0, 0] = 0⊕0.
Similarly for the projection map. Exactness follows trivially, as does centrality, since
a is an abelian ideal in a⊕Ω g.

To �gure out what the algebra `coboundaries' are, we start, just as in the group
case, with �guring out what cocycle-induced extensions are trivial. Suppose that
a⊕Ωg, as constructed above, is trivial. Then we can �nd a splitting map σ : g→ a⊕Ωg,
which is a section of the projection map prg. In most general form, σ maps X ∈ g
to α(X) ⊕ β(X), where α : g → a and β : g → g are some maps. Since σ is linear,
both α and β are also linear. Moreover, since prg ◦σ = idg we must have that β is
the identity on g, also. This fact alone already gives

[σ(X), σ(Y )]Ω = [α(X)⊕X,α(Y )⊕ Y ]Ω = Ω(X,Y )⊕ [X,Y ],

for arbitrary X,Y ∈ g. But since σ is a Lie algebra homomorphism, we also have

[σ(X), σ(Y )]Ω = σ([X,Y ]) = α([X,Y ])⊕ [X,Y ].

Therefore, by component-wise equality, we have an expression for the cocycle:

Ω(X,Y ) = α([X,Y ]).

Conversely, when Ω takes this form for some arbitrary linear map α : g → a, it is
straightforward to verify that Ω de�nes a cocycle, and that the map σ : X 7→ α(X)⊕X
de�nes a splitting map for the extension a⊕Ω g.

The preceding paragraph motivates the following de�nition; the 2-coboundaries
(abbreviated coboundaries) of g with values in a are exactly the cocycles of the form
(X,Y ) 7→ α([X,Y ]), where α : g → a is any linear map. The set of all coboundaries
is denoted B2

al(g, a), which, when endowed with pointwise addition, forms a normal
subgroup of Z2

al(g, a).

De�nition 4.13. The second cohomology group of g with values in a is de�ned
as

H2
al(g, a) :=

Z2
al(g, a)

B2
al(g, a)

.
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The natural equivalence between cocycles that is induced by the second cohomo-
logy group is that two cocycles Ω,∆ ∈ Z2

al(g, a) are equivalent if and only if there
exists a linear map α : g→ a such that

Ω(X,Y )−∆(X,Y ) = α([X,Y ])

for allX,Y ∈ g. The fact that equivalence of cocycles matches up with the equivalence
of their respective cocycles is proved similarly to the group case; as a result we have
the following theorem:

Theorem 4.14. The second cohomology group H2
al(g, a) classi�es the equivalence

classes of central extensions of g by a.

An important special case for us is when a is (isomorphic to) the abelian Lie
algebra R. Furthermore, we say a Lie group G is semi-simple if it has no connected
normal abelian subgroups; we say a Lie algebra g is semi-simple if it has no abelian
ideals. In particular, any semi-simple Lie group induces a semi-simple Lie algebra.
For any such Lie algebra we now have the following important result:

Lemma 4.15 (Whitehead's Lemma). Let g be a semi-simple Lie algebra. Then
H2

al(g,R) is trivial.

For a proof we refer to [13, �52]. An important example where Whitehead's
Lemma applies is the rotation group SO(3). Its Lie algebra so(3) is semi-simple, and
hence it has no non-trivial extensions: H2

al(so(3),R) = 0. We will prove this also in
Section 5.1.1, independently of Whitehead's Lemma.

4.3.2 Lie algebra extensions using structure constants

Lie algebras have a vector space structure. As such, we may �nd a (Hamel) basis;
a linearly independent set of elements of the Lie algebra that span the entire space.
Elements of such a basis for a Lie algebra are the generators. By bilinearity of the
bracket, a full description of the Lie brackets of the generators gives a full description
of the entire Lie algebra. Most generally, when {X1, . . . , Xn} is a basis for an n-
dimensional Lie algebra g, the Lie brackets are encoded by the structure constants:
{Ckij : i, j, k = 1, . . . , n} ⊆ R, via

[Xi, Xj ] = CkijXk,

where we again employ the Einstein summation convention, now also summing over
an index that occurs both in sub- and superscript, meaning that the dummy index
k is summed over between k = 1 and k = n in this particular expression. These
structure constants must satisfy certain obvious relations, forced by skew-symmetry
and the Jacobi identity.

The speci�cation of structure constants yields a very concrete method of con-
structing Lie algebras. We therefore want to �nd a way to construct the extension
a ⊕Ω g in terms of something similar to structure constants, hopefully giving for a
very `hands-on' approach of classifying central extensions. Let g be the Lie algebra of
the previous paragraph, and let a be an abelian Lie algebra with basis {a1, . . . , am},
whose structure constants necessarily vanish. The set

{a1 ⊕ 0, . . . , am ⊕ 0, 0⊕X1, . . . , 0⊕Xn}

now forms a basis for the (n+m)-dimensional vector space a⊕ g. By de�nition, we
have [a⊕Xi, b⊕Xj ]Ω = Ω(Xi, Xj)⊕ [Xi, Xj ] for any two basis elements Xi and Xj
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of g, and any two arbitrary elements a, b ∈ a. This means that specifying the values
Ω(Xi, Xj) for all pairs of generators now uniquely determines the extension a ⊕Ω g,
up to equivalence.

We expand Ω(Xi, Xj) = Blijal in terms of basis vectors in a. Hence we have, in
total:

[a⊕Xi, b⊕Xj ] = Blijal ⊕ CkijXk.

Of course, the coe�cients (Blij) will depend on the cocycle Ω, and once the basis is
�xed, they are completely determined by it. Conversely, specifying a set of coe�cients
(Blij) with the properties

CpjkB
l
ip + CpkiB

l
jp + CpijB

l
kp = 0,

Blij = −Blji,

corresponding to the Jacobi identity and skew-symmetry, respectively, de�ne a cocycle
Ω ∈ Z2

al(g, a) by linear expansion of Ω(Xi, Xj) = Blijal (cf. [25, Sec.III.A.2]). Choosing
such a set of coe�cients therefore provides us with a way to de�ne central extensions
of g by a.

Suppose now we have another cocycle ∆ ∈ Z2
al(g, a) that is cohomologous to Ω.

Clearly the extension a⊕∆ g can be taken to have the same basis as a⊕Ω g, and the
only thing that may di�er are the coe�cients for the expansion: ∆(Xi, Xj) = Dl

ijal.
The fact that Ω and ∆ are cohomologous would mean that we could �nd a linear map
α : g→ a so that

Dl
ijal = ∆(Xi, Xj) = Ω(Xi, Xj)− α([Xi, Xj ]) = Blijal − Ckijα(Xk).

If we in turn expand α(Xk) = λlkal in the basis for a, we see that equivalence between
Ω and ∆ rests on the existence of coe�cients (λlk) that satisfy the equation

Blij −Dl
ij = Ckijλ

l
k.

As a particular case of this equation, we have:

Corollary 4.16. Consider a cocycle Ω ∈ Z2
al(g, a) with expansion Ω(Xi, Xj) = Blijal

as above. The extension a ⊕Ω g is trivial if and only if we can �nd coe�cients (λlk)
so that Blij = Ckijλ

l
k, where (Ckij) are the structure constants of g.

4.3.3 Central extensions of Lie groups

We want to build a theory of central extensions for Lie groups that is analogous to
the theory presented in Section 4.1. As we noted before, the extensions A ×ω G
of Construction 4.4 may not be Lie groups, and we would therefore not call them
extensions of Lie groups. An obvious remedy would be to consider only smooth
cocycles, but this turns out to be too restrictive [38]. Instead, the �tting setting is
that of e-smooth cocycles, i.e., cocycles that are smooth on a neighbourhood of the
identity (1G, 1G) ∈ G × G. The resulting cohomology group of G by A is denoted
H2

es(G,A), containing the equivalence classes of e-smooth cocycles that di�er by e-
smooth coboundaries. For a proof that this cohomology group classi�es Lie group
extensions, we refer to [38, Prop.3.11].

We are particularly interested in calculating this cohomology group H2
es(G,A),

preferably in terms of the Lie algebra cohomology group H2
al(g, a). At this point it is

best to restrict ourselves to the case that the abelian group A is given by the circle
group U(1), so that a = u(1) ∼= R. This is justi�ed in a physical setting because, as

41



we will see, all extensions that we will actually be interested in are performed over
U(1). In this special (but plentiful) case we have a relation between Lie group and
Lie algebra cohomologies:

Theorem 4.17. If G is a connected, simply connected Lie group, then the Lie group
cohomology H2

es(G,U(1)) and the corresponding Lie algebra cohomology H2
al(g,R) are

isomorphic.

For a proof, see [22, Thm.5.55]. In conjunction with Whitehead's Lemma 4.15 this
now gives:

Corollary 4.18. The second cohomology group H2
es(G,U(1)) of a connected, simply

connected, semi-simple Lie group G is trivial.

Sadly, these results do not apply to the important case that G = SO(3), which is
not simply connected. This is where Lie's Third Theorem 3.16 comes into play; or
rather, the following re�nement (cf. [22, Thm.5.41]):

Theorem 4.19. Let G be a connected Lie group with Lie algebra g. Up to isomorph-
ism, there exists a unique connected and simply connected Lie group G̃ so that

1. Lie(G̃) = g;

2. G ∼= G̃/D, where D C Z(G̃);

3. D ∼= π1(G).

Here, π1(G) is the (�rst) fundamental group of G, which measures the degree
to which G is simply connected. (Speci�cally, G is simply connected if and only if

π1(G) is trivial.) Note that, in particular, when p̃ : G̃→ G is the covering map, then

D = ker(p̃), so that G̃ is a central extension of G by D, i.e., we have a short exact
sequence:

1 D G̃ G 1.
p̃

The discrete groupD will turn out to play a fundamental rôle in the classi�cation of
central extensions. The importance is realised through the concept of the Pontryagin
dual. The Pontryagin dual Â of an abelian Lie group A is de�ned as the space of
all continuous homomorphisms A → U(1), endowed with pointwise operations. Its
elements are often called characters, which are the irreducible unitary representations
of A.

Theorem 4.20. For a connected Lie group G whose Lie algebra g has a trivial co-
homology H2

al(g,R), the map

D̂ → H2
es(G,U(1)); χ 7→ [cχ] (4.4)

de�nes a surjective homomorphism, where cχ := χ◦∂s̃−1, and D is the discrete group
of the previous theorem. (Cf. [22, Thm.5.57] and [6, Lem.11].)

Proof. The covering map p̃ : G̃ → G ∼= G̃/D admits a section s̃ : G → G̃ so that
s̃(1G) = 1G̃. The covering map is a homomorphism, and so combined with the
equation p̃ ◦ s̃ = idG we �nd

p̃(s̃(g)s̃(h)s̃(gh)−1) = p̃(s̃(g))p̃(s̃(h))p̃(s̃(gh))−1 = gh(gh)−1 = 1G,

and hence s̃(g)s̃(h)s̃(gh)−1 ∈ ker(p̃). A character χ ∈ D̂ is a homomorphism from
D = ker(p̃) to the torus U(1). Using previous notation to write ∂s̃−1(g, h) =
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s̃(g)s̃(h)s̃(gh)−1, we de�ne the map (4.4) as stated in the theorem. We verify that cχ
is actually a cocycle. Note that

cχ(g, h)cχ(gh, k) = χ(∂s̃−1(g, h))χ(∂s̃−1(gh, k)) = χ(∂s̃−1(g, h)∂s̃−1(gh, k)),

so it su�ces to show that

∂s̃−1(g, h)∂s̃−1(gh, k) = ∂s̃−1(g, hk)∂s̃−1(h, k).

This is done by direct veri�cation:

∂s̃−1(g, h)∂s̃−1(gh, k) = s̃(g)s̃(h)s̃(gh)−1s̃(gh)s̃(k)s̃(ghk)−1

= s̃(g)s̃(h)s̃(k)s̃(ghk)−1

= s̃(g)s̃(h)s̃(k)s̃(hk)−1s̃(hk)s̃(ghk)−1

= s̃(g)∂s̃−1(h, k)s̃(hk)s̃(ghk)−1

= ∂s̃−1(g, hk)∂s̃−1(h, k),

where in the last step we use that ∂s̃−1(h, k) ∈ ker(p̃) = D, and the fact that D is

abelian (it is contained in the centre of G̃). We are left to show that cχ is unital,
for which it is su�cient to show that cχ(1G, 1G) = 1. This follows directly from
s̃(1G) = 1G̃. Therefore cχ ∈ Z2

gr(G,U(1)). When we take the section s̃ to also be
e-smooth, it follows that cχ ∈ Z2

es(G,U(1)).
To make sure that this class of cocycles is independent on the chosen section,

suppose we have another e-smooth section s of p̃ with s(1G) = 1G̃. We can now

de�ne the e-smooth map α : G→ G̃ by α(g) = s̃(g)s(g)−1, so that s̃ = αs. In fact α
maps into D, because p̃(α(g)) = p̃(s̃(g))p̃(s(g))−1 = gg−1 = 1G. This means that the

image of α is contained in the centre of G̃. Now denote by ωχ the cocycle induced by
s. Then

ωχ(g, h)cχ(g, h)−1 = χ(s(g)s(h)s(gh)−1)χ(s̃(gh)s̃(h)−1s̃(g)−1)

= χ(s(g)s(h)s(gh)−1s(gh)s(h)−1s(g)−1α(g)−1α(h)−1α(gh))

= χ(∂α−1(g, h)) = ∂(χ ◦ α−1)(g, h).

Therefore ωχ and cχ di�er by coboundary, and are therefore cohomologous. This
means that the two sections s̃ and s de�ne equivalent cocycles.

We are left to show that (4.4) is a surjection. Let ω ∈ Z2
es(G,U(1)) be some

arbitrary cocycle. Using the projection map p̃, we de�ne

c : G̃× G̃→ U(1); c(x, y) = ω(p̃(x), p̃(y)).

It turns out that this is a cocycle on G̃ with values in U(1), and hence Corollary 4.18

tells us it must take the form of a coboundary: c = ∂α, for some α : G̃ → U(1)

with α(1G̃) = 1. Whenever x ∈ D = ker(p̃) we �nd that, for each y ∈ G̃, c(x, y) =
ω(1G, y) = 1. But since c = ∂α this implies that α(x)α(y) = α(xy), so the restriction

χ := α|D de�nes an element of the dual D̂. It now follows that the cocycles ω and
cχ di�er by coboundary ∂(α ◦ s̃), and therefore [ω] = [cχ], showing that (4.4) is
surjective.

In the case that G = SO(3) we know by Theorem 3.18 that G̃ = SU(2) and
D = {±I} ∼= Z/2Z. The dual of Z/2Z is isomorphic to Z/2Z itself. We therefore
have the important result:

H2
es(SO(3),U(1)) ∼= Z/2Z.
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This means that there is merely one non-trivial central extension of SO(3) by U(1).
(Compare this with the fact that H2

al(so(3),R) = 0.) Notwithstanding, this one non-
triviality is su�cient to ensure the existence of fermions (at least mathematically
speaking), cf. Summaries 10.2 and 10.3.

Lemma 4.21. For a connected, simply connected Lie group G we have an iso-
morphism between H2

es(G,U(1)) and H2
es(G,R). In particular, a real-valued cocycle

ξ : G×G→ R de�nes a unique cohomology class of U(1)-valued cocycles, represented
by ω(g, h) = eiξ(g,h). (Cf. [6, Lem.7].)

This lemma is actually a special case of [39, Cor.7.32], making use of Lemma 3.17
speci�cally. In particular, the U(1)-valued cocycles ω can be seen as the composition
p ◦ ξ of the covering map p : R → U(1) and a real-valued cocycle ξ. (The factor
2π in Lemma 3.17 may obviously be removed without problem.) At the moment
Lemma 4.21 may seem to have too narrow a use (it is only applicable to simply
connected Lie groups), but in Section 6 we will come to see that it simpli�es the
situations we are interested in.

5 Extensions of the spacetime symmetry groups
Having discussed the necessary central extension theory for Lie groups, we are now
ready to apply it to the Galilei and Poincaré groups.

5.1 Extensions of the Galilei group

5.1.1 Central extensions of the Galilei algebra

We have seen that the Lie algebra gal(3) of the Galilei group has ten generators
subject to the commutator relations

[Ji, Jj ] = εijkJk, [Ji,Kj ] = εijkKk, [Ji, Pj ] = εijkPk, [Ki, H] = Pi, (5.1)

and all others vanishing. The Lie algebra gal(3) contains several interesting sub-
algebras whose extensions�or rather, their lack thereof�we now calculate (follow-
ing [25, Sec.III.A.3], but also see [16, Sec.12.5]). The formalism of Section 4.3.2 seems
particularly appropriate here.

First, consider the special orthogonal algebra so(3), generated by {J1, J2, J3}. We
are particularly interested in the case that a is a one-dimensional Lie algebra (such
as u(1) = iR). In that case, a is spanned by just one element, and we will treat it
like 1 ∈ R to simplify notation. Furthermore, the coe�cients (Blij) of some cocycle

Ω ∈ Z2
al(g,R) are written as Bij := B1

ij , so that the speci�cation of a cocycle becomes
a question of specifying an anti-symmetric n×n real matrix B = (Bij)

n
i,j=1, subject to

some Jacobi-type identity. In the particular case that g = so(3), this Jacobi identity
takes the form

0 = εpjkBip + εpkiBjp + εpijBkp = ±Tr(B)

which gives us nothing new since B is already anti-symmetric. Hence the matrix
B has three free variables we can specify. This means that every central extension
R⊕Ω so(3) of so(3) is of the form

[Ji, Jj ]Ω = εijk(Bk ⊕ Jk),

where B1, B2, B3 ∈ R are some real numbers. However, the requirements of Corol-
lary 4.16 are now clearly met, since Bij = εijkBk, and therefore there are no non-
trivial extensions of so(3): H2

al(so(3),R) = 0. This con�rms Whitehead's Lemma 4.15,
since so(3) is semi-simple.
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Next, we consider the Euclidean Lie algebra e(3), whose generators are {Ji, Pi :
i = 1, 2, 3}. Since the so(3) portion of this algebra cannot be non-trivially extended,
we leave the Lie brackets of J1, J2, J3 unmodi�ed. The only possible non-trivial
modi�cations we can make are

[Ji, Pj ]Ω = εijk(Bk ⊕ Pk), and [Pi, Pj ]Ω = εijkbk ⊕ 0,

where b1, b2, b3, B1, B2, B3 are arbitrary real numbers. In this case the Jacobi identity
of Ω does impose restrictions; we have

0 = Ω(Ji, [Pj , Pk]) + Ω(Pj , [Pk, Ji]) + Ω(Pk, [Ji, Pj ]) = Ω(Pk, εijpPp)− Ω(Pj , εikqPq).

Taking, for instance, i = k = 1 and j = 2 gives 0 = Ω(P1, P3)−Ω(P2, 0) = Ω(P1, P3) =
b2, and similar calculations show that the bracket of the generators P1, P2, P3 cannot
be non-trivially extended. Moreover, similar arguments as for so(3) show that the
remaining extension in the brackets [Ji, Pj ] is likewise trivial. We conclude that e(3)
has no non-trivial extensions, either: H2

al(e(3),R) = 0.
We are �nally ready to determine the central extensions of gal(3) itself. The

preceding discussion tells us that the brackets on the rotation generators, boost gen-
erators and spatial translation generators cannot be non-trivially extended. We use
this knowledge by letting the cocycle Ω vanish on these generators, without any loss
of generality. The Jacobi identity gives further restrictions, in particular on the time
translation generator; we calculate

0 = Ω(Ji, [Jj , H]) + Ω(Jj , [H,Ji]) + Ω(H, [Ji, Jj ]) = Ω(H, εijkJk),

so the brackets between the rotation and time translation generators cannot be ex-
tended. Replacing one of the rotation generators Jj in this equation by either the
translation generator Pj or the boost generator Kj , further shows that Ω(H,Pk) =
Ω(H,Kk) = 0.

Only the brackets between the boost and spatial translation generators leave room
for a non-trivial extension. Invoking the Jacobi identity once more gives

0 = Ω(Ji, [Kj , Pk]) + Ω(Kj , [Pk, Ji]) + Ω(Pk, [Ji,Kj ]) = εiklΩ(Pl,Kj) + εijlΩ(Pk,Kl).

In the case that i = j 6= k, we �nd that the second term vanishes, so that εiklΩ(Pl,Ki) =
0. For i 6= l this gives Ω(Pl,Ki) = 0. More importantly, when i, j, k are distinct, we
have

εikjΩ(Pj ,Kj) + εijkΩ(Pk,Kk) = ±(Ω(Pj ,Kj)− Ω(Pk,Kk)) = 0,

showing that Ω(Pi,Ki) has the same value irrespective of i. But we are not able to
place any restrictions on the actual value of Ω(Pi,Ki). Its value can therefore be freely
prescribed. We set Ω(Pi,Ki) = M ∈ R. We will come to see that this number can be
interpreted as the mass of an elementary particle, cf. Section 6.5. The extensions of
gal(3) therefore take the form

[Ki, Pj ]Ω = Mδij ⊕ 0

(δij is the Kronecker delta), all other generators commuting as usual. We denote
the extension corresponding to the value M by galM (3). This extension is not trivial,
unlessM = 0. Indeed, triviality amounts to the existence of a linear map α : gal(3)→
galM (3) so that M = Ω(Pi,Ki) = α([Pi,Ki]) = α(0) = 0. Similar equations show
that two extensions are equivalent if and only if their extension parameter M is the
same. In terms of the second cohomology group we therefore have:

H2
al(gal(3),R) ∼= R.
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In a more lax notation, the Lie brackets of the extended Lie algebra galM (3) are as
follows:

[Ji, Jj ] = εijkJk, [Ji,Kj ] = εijkKk, [Ji, Pj ] = εijkPk,

[Ki, H] = Pi, [Ki, Pj ] = Mδij ,

all others being zero.

5.1.2 Central extensions of the Galilei group

We have just seen that the Galilei algebra gal(3) has an in�nitude of inequivalent
central extensions, namely the ones galM (3), whereM is some arbitrary real number,
and the case M = 0 corresponding to the trivial extension. Surprisingly, this does
not carry over to the Galilei group. It turns out, as we will now discover, that the
Galilei group has only one non-trivial central extension. Throughout this section, we
follow the arguments in [25, Sec.III.B].

To calculate the central extensions of the Galilei group, we use the following two
elementary facts from Lie group theory:

Lemma 5.1. Any connected Lie group is generated by any neighbourhood of the
identity element. (Cf. [45, Lem.1.18].)

Corollary 5.2. Let G be a connected Lie group, and let g be its Lie algebra. Then
G is generated by the image exp(g). More explicitly, if g ∈ G is an arbitrary element,
then there exists a �nite number of elements X1, . . . , Xn in the Lie algebra so that we
may write

g = exp(X1) · · · exp(Xn).

(Cf. [14, Cor.16.28].)

Let us denote by GalM (3) the centrally extended Galilei group corresponding to
the extended Lie algebra galM (3). Elements of GalM (3) are of the form (θ, g), where
θ ∈ R and g ∈ Gal(3). For the purposes of the current computations, we interpret
the �rst component as a phase, rather than an element of the circle eiθ ∈ U(1).
This does not make much di�erence, but only that we can treat the �rst component
as an additive structure, and it is permitted via the result of Lemma 4.21. Given
g = (s,a,v, R) (in the notation of Section 2.1), we shall write the element of the
extended group simply as (θ, g) = (θ, s,a,v, R). Now we have [25, Eq.(3.31)]

(θ, g) = eθIesHea·P ev·KR,

where P = (P1, P2, P3) and K = (K1,K2,K3). (Note that the rotation matrix
R ∈ SO(3) is generated by the generators J1, J2, J3 from the exponential map, so that
we directly obtain the term R instead of an exponential involving J = (J1, J2, J3).)
The product between vectors a ∈ R3 and triplets of matrices P ∈ gal(3)3 is de�ned
in the obvious way: a · P = aiPi.

Using the expression of arbitrary group elements in terms of these exponentials,
and the so-called Baker-Campbell-Hausdor� formula (cf. [15, Ch.5]), which here is
useful in the forms

e−YXeY = X + [X,Y ] +
1

2
[[X,Y ], Y ] + · · · , (5.2)

eXeY = eX+Y+ 1
2 [X,Y ]+ 1

12 [X,[X,Y ]]− 1
12 [Y,[X,Y ]]+···, (5.3)
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we will �nd a description of the group law of GalM (3). Further terms in these formulas
all contain nested expressions of [X,Y ]. We calculate

[v ·K,a · P ] = viaj [Ki, Pj ] = viajMδij = 〈v,a〉M,

where we use the de�ning commutator relation [Ki, Pj ] = Mδij of the extension
galM (3). Note: here 〈·, ·〉 is simply the Euclidean inner product. The mass term M is
contained in the centre of galM (3), and hence commutes with everything. Equation
(5.3), in conjunction with Proposition 3.9.5, therefore give

ev·Kea·P = ev·K+a·P+ 1
2 〈v,a〉M = ev·K+a·P e

1
2 〈v,a〉M . (5.4)

In exactly the same way we calculate

ea·P ev·K = ev·K+a·P e−
1
2 〈v,a〉M ,

which we rewrite to
ev·K+a·P = ea·P ev·Ke

1
2 〈v,a〉M . (5.5)

Equations (5.4) and (5.5) now tell us how to commute the elements ev·K and ea·P :

ev·Kea·P = ea·P ev·Ke〈v,a〉M . (5.6)

Similarly, we calculate [v ·K, sH] = svi[Ki, H] = sviPi, and therefore

[[v ·K, sH], sH] = s2vi[Pi, H] = 0.

Only the �rst two terms in (5.2) survive (with X = v ·K and Y = sH), and thus:

e−sHv ·KesH = viKi + sviPi = v · (K + sP ).

Proposition 3.9.2 now shows us how to commute esH and ev·K :

ev·KesH = esHev·(K+sP ). (5.7)

Suppose now that we have another group element (θ′, g′) = (θ′, s′,a′,v′, R′) ∈
GalM (3), with the corresponding exponentiation (θ′, g′) = eθ

′Ies
′Hea

′·P ev
′·KR′. We

want to calculate the product

(θ′, g′)(θ, g) = eθ
′Ies

′Hea
′·P ev

′·KR′eθIesHea·P ev·KR. (5.8)

At once it is clear that we may group the central terms eθ
′I and eθI together into the

term e(θ+θ′)I . The commutator relations (5.1) of the Galilei algebra moreover give

R′esHea·P ev·KR = esHeR
′a·P eR

′v·KR′R,

so that the product (5.8) can be simpli�ed to

(θ′, g′)(θ, g) = e(θ+θ′)Ies
′Hea

′·P ev
′·KesHeR

′a·P eR
′v·KR′R.

Applying (5.7) to the term ev
′·KesH , and thereafter the fact that the time and trans-

lation generators commute, we further simplify:

(θ′, g′)(θ, g) = e(θ+θ′)Ie(s+s′)Hea
′·P ev

′·(K+sP )eR
′a·P eR

′v·KR′R.

Equation (5.5) now gives

ev
′·(K+sP ) = esv

′·P ev
′·Ke

1
2 sv
′2M .
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Substituting this into the previous equation gives

(θ′, g′)(θ, g) = e(θ+θ′+ 1
2 sv
′2M)Ie(s+s′)He(a′+sv′)·P ev

′·KeR
′a·P eR

′v·KR′R

after some obvious rewriting. As a last step we apply (5.6) to �nd

ev
′·KeR

′a·P = eR
′a·P ev

′·Ke〈v
′,R′a〉M ,

which allows us to simplify the product in the group to:

(θ′, g′)(θ, g) = eθ+θ
′+ 1

2 sv
′2M+〈v′,R′a〉Me(s+s′)He(a′+sv′+R′a)·P e(R′v+v′)·KR′R,

which is the desired form. From this expression we can directly observe the expression
for the group law of the central extension GalM (3):

(θ′, s′,a′,v′, R′)(θ, s,a,v, R) = (θ+θ′+
1

2
sv′2M+〈v′, R′a〉M, s+s′, R′a+v′s+a′, R′v+v′, R′R).

We immediately recognise the group operation of the base Galilei group (cf. (2.1)) in
the last four components. It is also immediately clear from the �rst component that
the ordinary Galilei group Gal(3) is not a subgroup of the central extension GalM (3).
De�ning the cocycle

ωM : Gal(3)×Gal(3)→ U(1); (g, g′) 7→ eiξM (g,g′) = ei(
1
2 sv
′2M+〈v′,R′a〉M),

we see that GalM (3) ∼= U(1)×ωM
Gal(3). It appears that we have again obtained an

in�nitude of central extensions, this time of the Galilei group Gal(3). But, in actual
fact, when M,M ′ ∈ R \ {0}, the following map de�nes an isomorphism:

GalM (3)→ GalM ′(3); (θ, g) 7→
(
M ′

M
θ, g

)
.

Clearly M = 0 corresponds to the trivial extension, for which the above map is not
well-de�ned. We are therefore justi�ed to speak of the non-trivial central extension
GalM (3) of the Galilei group Gal(3). Notwithstanding, the value of M will turn out
to play an important rôle in the classi�cation of Galilean elementary particles.

5.1.3 Universal cover of the Galilei group

We have already seen in Theorem 3.18 that SU(2) is the universal cover of SO(3), with
covering map p̃ : SU(2)→ SO(3), which has kernel ker(p̃) = {±I}. Since for all n ∈ N,
the space Rn is connected and simply connected, the only non-simply connected part
of the Galilei group is the rotation group. The universal covering group of the Galilei
group Gal(3) is therefore given by

G̃al(3) = R4 o S̃E(3) = R4 o (R3 o S̃O(3)) = R4 o (R3 o SU(2)).

The covering map is what one would expect:

p̃ : G̃al(3)→ Gal(3); (s,a,v, U) 7→ (s,a,v, p̃(U)).
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5.2 Extensions of the Poincaré group

5.2.1 Central extensions of the Poincaré algebra

Recall the de�ning commutator relations (3.4) of the Poincaré algebra poin(1, 3),
which we here reproduce for convenience:

[Ji, Jj ] = εijkJk, [Ji,Kj ] = εijkKk, [Ji, Pj ] = εijkPk,

[Ki, H] = Pi, [Ki, Pj ] = δijH, [Ki,Kj ] = −εijkJk.
(5.9)

A large amount of work on calculating the central extensions of poin(1, 3) has already
been done in Section 5.1.1, where we calculated the central extensions of the Ga-
lilei algebra. We proceed, as before, by calculating restrictions of a cocycle Ω ∈
Z2

al(poin(1, 3),R). We already know that the �rst three brackets in (5.9) cannot be
extended, as neither can any commutator with H. Just as with the Galilei algebra,
we may therefore only have non-trivial extensions via

[Ki, Pj ]Ω = Ω(Ki, Pj)⊕ [Ki, Pj ].

Only now, we know the explicit expression for the commutator between the boost and
translation generators: [Ki, Pj ] = δijH. In any case, the Jacobi identity for Ω gives

0 = Ω(Ki, [Jj , Pk]) + Ω(Jj , [Pk,Ki]) + Ω(Pk, [Ki, Jj ])

= Ω(Ki, εjklPl) + Ω(Jj ,−δkiH) + Ω(Pk,−εijpKp).

The middle term vanishes, so we have Ω(Ki, εjklPl) = Ω(Pk, εijpKp). Clearly whenever
j = i the right hand side vanishes, while the left hand side may not. Picking i,
k and l distinct, we have Ω(Ki,±Pl) = 0. This remains for terms of the form
Ω(Ki, Pi) to be non-trivial, however: picking j, k and i mutually distinct, we �nd
Ω(Ki, Pi) = Ω(Pk, εijpKp) = ±Ω(Pk,Kk). This means that we have one apparent
degree of freedom, and we set Ω(K1, P1) = C. Explicitly setting i = 2, j = 3 and
k = 2 we �nd Ω(K2, P2) = −C. Similarly, setting i = 3, j = 2 and k = 1 we �nd
Ω(K3, P3) = C. However, when we set i = 2, j = 1 and k = 3 we �nd C = −C,
showing that C = 0, and proving that the Poincaré algebra poin(1, 3) cannot be
non-trivially extended:

H2
al(poin(1, 3),R) = 0.

5.2.2 Universal cover of the Poincaré group

Since the result H2
al(poin(1, 3),R) = 0 will be su�cient for our needs, we do not bother

with calculating the explicit forms of central extensions of the Poincaré group itself.
Let p̃ : SL(2,C) → SO+(1, 3) be the universal covering map as in Theorem 3.19.

The universal cover of the Poincaré group reads

P̃oin(1, 3) ∼= R4 o S̃O+(1, 3) ∼= R4 o SL(2,C),

with covering map

p̃ : P̃oin(1, 3)→ Poin(1, 3); (a,∆) 7→ (a, p̃(∆)).

6 Classifying the quantum elementary particles
We are now ready to apply the formalisms of universal covers (Section 3.4), central
extensions (Section 4), and the pertinent results thereof (Section 5), to classify the
elementary particles in both relativistic and non-relativistic quantum mechanics. First
we elaborate on the mathematical de�nition of a quantum elementary particle.
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6.1 Unitary operators on a Hilbert space

As always, mathematically speaking we regard a symmetry as a bijective map that
preserves the structure of some object. In the case of Hilbert spaces, we have a linear
structure and an inner product structure (the latter of which also induces a topological
structure). The notion of symmetry is then realised by unitary operators. A unitary
operator on a Hilbert space H is a bijective linear operator U : H → H so that
for any two elements ψ, φ ∈H we have

〈Uψ,Uφ〉 = 〈ψ, φ〉,

where 〈·, ·〉 denotes the inner product of H . This is equivalent to the condition that
UU† = U†U = idH , where U† denotes the adjoint of U and idH : ψ 7→ ψ is the
identity operator on H . If U is a unitary operator, then

〈ψ, φ〉 = 〈UU−1ψ,UU−1φ〉 = 〈U(U−1ψ), U(U−1φ)〉 = 〈U−1ψ,U−1φ〉,

so that U−1 is also a unitary operator. Similarly, if V is another unitary operator on
H , then the composition UV is again a unitary operator on H . This shows that
the unitary operators on a Hilbert space adhere to a group structure. In light of this
fact, we de�ne the unitary group:

U(H ) := {unitary operators on H },

which, when endowed with the operation of composition, does indeed form a group.
Recall from Section 3.2 that the unitary matrix group U(m) is de�ned as the group
of all unitary complex m×m matrices:

U(m) := {U ∈ GL(m,C) : U−1 = U†}.

In fact, when H is �nite dimensional, U(H ) ∼= U(dim(H )).

6.2 Symmetries of the state space

We have already seen in Section 2.3.1 that the corresponding notion of symmetry
on the true quantum state space (i.e., the projective Hilbert spaces) are projective
automorphisms.

Recall that the canonical projection P : H \ {0} → P(H ) sends a non-zero
element in the Hilbert space to its ray: ψ 7→ P (ψ) = [ψ]. The transition probability
δ : P(H )×P(H )→ R (see (2.2)) de�nes a topology on P(H ), which is generated by
the open balls Br(ψ) = {φ ∈ P(H ) : δ(ψ, φ) < r}. This topology is the �nal topology
induced by the projection map P , which is the topology {V ⊆ P(H ) : P−1(V ) ⊆
H \ {0} open} (i.e., the largest topology on P(H ) so that P is continuous).

From Wigner's Theorem 2.1 we know that any projective automorphism T ∈
Aut(P(H )) arises from either a unitary or an anti-unitary operator on H , determined
uniquely by T up to a complex phase. The precise way in which this happens is as
follows. Given a unitary operator U ∈ U(H ), we de�ne the projective operator

P̂ (U) : P(H )→ P(H ) by

P̂ (U)(P (ψ)) := P (Uψ),

where ψ ∈ H . We need to verify that this operator is well de�ned by checking that
the right hand side does not depend on the representative ψ of the ray P (ψ). For
that, let ψ, φ ∈ H be two elements in the same ray, meaning that P (ψ) = P (φ).
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We can now �nd a non-zero complex number λ ∈ C so that φ = λψ. Since U is
linear, we �nd that P (U(φ)) = P (U(λψ)) = P (λU(ψ)) = P (U(ψ)). (More generally,
we �nd that any injective linear operator on H respects the equivalence relation ∼.)
This shows that P̂ (U) is well-de�ned. It turns out that P̂ (U) is in fact a projective
automorphism:

δ(P̂ (U)(P (φ)), P̂ (U)(P (ψ))) = δ(P (Uψ), P (Uφ)) =
|〈Uψ,Uφ〉|2

‖Uψ‖2 ‖Uφ‖2
=
|〈ψ, φ〉|2

‖ψ‖2 ‖φ‖2
= δ(φ, ψ).

Thus we see that P̂ (U) ∈ Aut(P(H )) for any U ∈ U(H ). This motivates the
de�nition of the unitary projective transformations:

PU(H ) := P̂ (U(H )) ⊆ Aut(P(H )).

PU(H ) is called the projective unitary group of H . The unitary projective trans-
formations do not necessarily give all of the projective automorphisms (some may arise
from anti -unitary U), but since we are concerned with connected symmetry groups,
it will su�ce to only consider projective automorphisms that arise from unitary op-
erators.

The unitary projective transformations PU(H ) form a subgroup of the projective

transformations Aut(P(H )). To see this, let P̂ (U) and P̂ (V ) projective unitary
transformations. Then

P̂ (U)P̂ (V )(P (φ)) = P̂ (U)
(
P̂ (V )(P (φ))

)
= P̂ (U)(P (V φ))

= P (U(V φ)) = P (UV φ) = P̂ (UV )(P (φ)).

Hence P̂ (U)P̂ (V ) = P̂ (UV ), and since UV is again a unitary operator we see

P̂ (U)P̂ (V ) ∈ PU(H ). Furthermore, we easily verify that P̂ (idH ) = idP(H ) ∈
PU(H ), which together with the above gives P̂ (U)−1 = P̂ (U−1). Since U−1 is

unitary when U is unitary, it follows that P̂ (U)−1 ∈ PU(H ). We conclude that
PU(H ) is indeed a subgroup of Aut(P(H )).

Perhaps unsurprisingly, we can think of the projective unitary group PU(H ) like
a projective general linear group (cf. Section 4.2):

Lemma 6.1. The sequence

1 U(1) U(H ) PU(H ) 1
diag P̂

is exact. Moreover, U(H ) de�nes a central extension of PU(H ) by U(1).

Proof. Above we have seen already that P̂ de�nes a homomorphism. It is in fact
surjective, because by very de�nition PU(H ) = im(P̂ ). It is also clear that diag :
λ 7→ λ idH is an injective homomorphism. The fact that diag is well-de�ned here
follows from the fact that the inner product is linear in one component, and anti-
linear in the other.

Let diag(λ) ∈ U(H ). Now:

P̂ (diag(λ))(P (φ)) = P (λ idH φ) = P (idH φ) = P̂ (idH )(P (φ))

for each φ ∈H , so that diag(U(1)) ⊆ ker(P̂ ). The converse inclusion follows similarly.
We conclude that the above sequence is in fact exact.

Lastly, note that U(1) is an abelian group. It is easy to see that diag(U(1)) ⊆
Z(U(H )), so that U(H ) is indeed a central extension of PU(H ).
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6.3 Projective unitary representations on Lie groups

We can now formally de�ne the notion of a projective unitary representation on a Lie
group. To do this, we need to equip U(H ) with a topology. The most �tting one
turns out to be the strong (operator) topology, which is the topology in which a net
(uι)ι∈I converges to some u ∈ U(H )7, if and only if the net (uιψ)ι∈I converges to uψ
in the Hilbert space H , for each ψ ∈ H . The reason that this topology is �tting is
due to the following result:

Proposition 6.2. If u : G → U(H ) is a homomorphism of some locally compact
topological group G (such as a Lie group) to the unitary operators on a Hilbert space
H , then the following conditions are equivalent:

1. The map G×H →H ; (g, ψ) 7→ u(g)ψ is continuous;

2. The map G→ U(H ); g 7→ u(g) is continuous in the strong topology on U(H ).

Proof. Suppose that the �rst point is true. Then for every convergent net (gι, ψι)ι∈I
in G×H , say, with limit (g, ψ), the net (u(gι)ψι)ι∈I in the Hilbert space converges to
u(g)ψ. This means that in particular every net of the form (gι, ψ)ι∈I , where ψ ∈H
is �xed, the net (u(gι)ψ)ι∈I converges to u(g)ψ. Since ψ is arbitrary, this is exactly
what it means for g 7→ u(g) to be strongly continuous.

The converse direction is somewhat less trivial. Suppose the second point is true;
for every convergent net (gι)ι∈I in the group (again with limit g) the net (u(gι))ι∈I
converges strongly to u(g). Furthermore, let (ψι)ι∈I be an arbitrary net in the Hilbert
space that converges to ψ. To show that (g, ψ) 7→ u(g)ψ is continuous, we need to
show that (u(gι)ψι)ι∈I converges to u(g)ψ in the Hilbert space. Using the triangle
inequality we �nd

‖u(gι)ψι − u(g)ψ‖ 6 ‖u(gι)ψι − u(gι)ψ‖+ ‖u(gι)ψ − u(g)ψ‖
6 ‖u(gι)‖ ‖ψι − ψ‖+ ‖u(gι)ψ − u(g)ψ‖ .

The second term will clearly vanish when the limit is taken, by strong continuity of
g 7→ u(g). The term ‖ψι → ψ‖ on its own will also vanish, since we assume ψ is
the limit of (ψι)ι∈I . Therefore it su�ces to show that the factor ‖u(gι)‖ is bounded.
To do this, we appeal to the Principle of Uniform Boundedness [26, Thm.3.11]. We
assume that G is locally compact, so that around the limit g we may �nd a compact
neighbourhood K. Clearly the net (gι)ι∈I is eventually in K, so we can �nd ν ∈ I
so that for all ι > ν we have gι ∈ K. Per hypothesis, the image u(K) ⊆ U(H ) is
compact in U(H ).

For the Principle of Uniform Boundedness to apply, we need to show

∀ϕ ∈H : Sϕ = sup{‖u(gι)ϕ‖ : ι > ν} 6 sup{‖u(k)ϕ‖ : k ∈ K} <∞.

Since u(K) is compact, the image u(K)ϕ = {u(k)ϕ : k ∈ K} ⊆H is bounded, so the
above inequality holds. Therefore the Principle of Uniform Boundedness gives

S = sup{‖u(gι)‖ : ι > ν} <∞,

and the result follows; for ι > ν

‖u(gι)ψι − u(g)ψ‖ 6 S ‖ψι − ψ‖+ ‖u(gι)ψ − u(g)ψ‖ → 0.

7A net is a generalisation of a sequence; see for example [29, Sec.5].
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We therefore endow U(H ) with the strong operator topology. This directly en-
dows the projective unitary operators PU(H ) with a similar topology, to which we
shall also refer as the strong operator topology. (This makes it into a topological
group [33, Prop.3.11].)

De�nition 6.3. Let G be a connected Lie group, as always. A unitary represent-
ation of G by a Hilbert space H is a continuous homomorphism u : G → U(H ).
A projective unitary representation of G by H is a continuous homomorphism
ρ : G→ PU(H ).

The notion of irreducibility for unitary representations is just that of De�nition 2.3.
For projective unitary representations we say that ρ : G → PU(H ) is irreducible
whenever one (and hence all) of the unitary representations u : U(1)×ω G→ U(H );
u(z, g) = z(s◦ρ)(g) of the central extension U(1)×ωG corresponding to ρ is irreducible.

6.4 Lifting projective unitary representations

Since U(H ) is a central extension of PU(H ) (see Lemma 6.1), we may ask if it is
possible to `lift' a projective unitary representation ρ : G → PU(H ) to a unitary
representation u : G → U(H ), just like in Theorem 4.7. In light of Lemma 6.1 we
have the following theorem for non-continuous unitary representations:

Theorem 6.4. Let G be a group and let ρ : G→ PU(H ) be a homomorphism. Then
there exists a central extension E of G by U(1) and a homomorphism u : E → U(H )
so that the following diagram commutes:

1 U(1) E G 1

1 U(1) U(H ) PU(H ) 1.

id

ι

u

π

ρ

diag P̂

The proof is almost exactly the same as that of Theorem 4.7. The di�culty is
now in �nding a similar theorem for continuous projective unitary representations.
Central extensions provide the solution for algebraically lifting a projective (unitary)
representation, but now we also have a topological obstruction.

The solution for this obstruction turns out to be the concept of a universal central
extension. In the �rst place, we have the following lemma connecting the unitary
representations of a connected Lie group G and its universal cover. Let G̃ be this
universal cover of G, with covering map p̃ : G̃ → G of Lie's Third Theorem 4.19, so
that D = ker(p̃).

Lemma 6.5. Every unitary representations G→ U(H ) arises from another unitary

representation ũ : G̃→ U(H ) with the property that D ⊆ ker(ũ).

Proof. Starting with a unitary representation u : G → U(H ), we straightforwardly
de�ne the unitary representation ũ := u ◦ p̃. It is trivial to see that ũ satis�es the
desired property, since ker(p̃) = D.

Conversely, suppose that we have a unitary representation ũ : G̃ → U(H ) of the

universal covering group, with the desired property. A section s̃ : G → G̃ of the
covering map p̃ with s̃(1G) = 1G̃ de�nes a map

δ : G×G→ D; δ := ∂s̃−1.
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Now the fact that D ⊆ ker(ũ) makes the map u := ũ ◦ s̃ into a homomorphism:

u(g)u(h) = ũ(s̃(g)s̃(h)) = ũ(δ(g, h)s̃(gh)) = ũ(δ(g, h))u(gh) = u(gh).

The second paragraph clearly describes a construction that is the left inverse of the
construction in the �rst paragraph. Precisely speaking, every unitary representation
u arises from a unitary representation ũ (with the desired property) via u = ũ◦ s̃.

We now move on to a simple case where the problem of central extensions can be
partially avoided. For this, we consider the situation of Theorem 4.20.

Proposition 6.6. Let G be a connected Lie group with H2
al(g,R) = 0, and H a

separable Hilbert space (i.e., a Hilbert space with countable orthonormal basis). Every

projective unitary representation ρ : G→ PU(H ) is of the form ρ = P̂ ◦ u ◦ s̃, where
s̃ is a section of the covering map p̃ preserving units, and u : G̃→ U(H ) is a unitary
representation of the universal cover with the property that u(D) ⊆ diag(U(1)). More
simply (but less accurately), the following diagram commutes:

1 D G̃ G 1

1 U(1) U(H ) PU(H ) 1.

u

p̃

ρ

diag P̂

Proof. (We follow the proof of [22, Thm.5.59.1].) We start given a projective unitary
representation ρ : G → PU(H ). Using a section ŝ : PU(H ) → U(H ) of the

projection map P̂ we can de�ne a cocycle ω = ∂(ŝ◦ρ)−1 on G with values in U(1) (as
we know). Using Theorem 4.20 we may �nd a continuous homomorphism χ : D →
U(1) so that [ω] = [cχ]. By rede�ning the section ŝ, we may therefore simply take
ω = cχ.

Using these ingredients, we de�ne the map

u : G̃→ U(H ); x 7→ χ
(
x(s̃ ◦ p̃(x))−1

)
(ŝ ◦ ρ ◦ p̃)(x). (6.1)

Let x ∈ G̃. Evaluating the covering map p̃ at the point x(s̃ ◦ p̃(x))−1 shows that this
element is in the kernel D, so that the above expression for u is well-de�ned. An easy
calculation

u ◦ s̃(g) = χ
(
s̃(g) (s̃ ◦ p̃ (s̃(g)))

−1
)

(ŝ ◦ ρ ◦ p̃) (s̃(g))

= χ
(
s̃(g)s̃(g)−1

)
(ŝ ◦ ρ)(g) = ŝ ◦ ρ(g)

shows that ρ = P̂ ◦ u ◦ s̃. It is furthermore clear that u(D) ⊆ diag(U(1)), since if
x ∈ D then p̃(x) = 1G, and hence u(x) = χ(x) ∈ diag(U(1)). For the veri�cation of u
being a homomorphism we need the fact that ω = ∂(ŝ ◦ ρ)−1 = cχ = χ ◦ ∂s̃−1. This
gives the identity

(ŝ ◦ ρ)(p̃(x)) = χ
(
s̃(p̃(x))s̃(p̃(y))s̃(p̃(xy))−1

)
(ŝ ◦ ρ)(p̃(xy))(ŝ ◦ ρ)(p̃(y))−1.

We now calculate, using the above equation, that u respects the group multiplication
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in G̃:

u(x)u(y) = χ
(
xs̃(p̃(x))−1

)
(ŝ ◦ ρ)(p̃(x))χ

(
ys̃(p̃(y))−1

)
(ŝ ◦ ρ)(p̃(y))

= χ
(
xs̃(p̃(x))−1

)
χ
(
s̃(p̃(x))s̃(p̃(y))s̃(p̃(xy))−1

)
(ŝ ◦ ρ)(p̃(xy))(ŝ ◦ ρ)(p̃(y))−1

· χ
(
ys̃(p̃(y))−1

)
(ŝ ◦ ρ)(p̃(y))

= χ
(
xs̃(p̃(y))s̃(p̃(xy))−1

)
(ŝ ◦ ρ)(p̃(xy))(ŝ ◦ ρ)(p̃(y))−1χ

(
ys̃(p̃(y))−1

)
(ŝ ◦ ρ)(p̃(y))

= χ
(
x
[
ys̃(p̃(y))−1

]
s̃(p̃(y))s̃(p̃(xy))−1

)
(ŝ ◦ ρ)(p̃(xy))

= χ
(
xys̃(p̃(xy))−1

)
(ŝ ◦ ρ)(p̃(xy)) = u(xy).

In the last step we use that ys̃(p̃(y))−1 ∈ D is an element in the centre of G̃. It is
further trivial to check that u(1G̃) = idH .

Sadly, this result does not apply to the Galilei group, since H2
al(gal(3),R) ∼= R (see

Section 5.1.1). To classify the projective unitary representations of the Galilei group,
we need to do some more work. By Lemma 4.21 we know that the cohomology group
H2

es(G̃,U(1)) of the universal cover G̃ of some connected Lie group G is isomorphic to

H2
es(G̃,R). Theorem 4.17 is an easy way to see that H2

es(G̃,R) is a �nite dimensional
vector space. For our purposes we need to consider a certain subset of this cohomology
group. In particular, we need cocycles ξ ∈ Z2

es(G̃,R) so that for every x ∈ G̃ we
have ξ(x, δ) = ξ(δ, x), whenever δ ∈ D = ker(p̃). This property is respected by the

cohomology relation: suppose that ξ′ ∈ Z2
es(G̃,R) is cohomologous to ξ. Then we may

�nd a coboundary ∂α ∈ B2
es(G̃,R) so that ξ′ − ξ = ∂α. (Note: the notation ∂α in

this case means ∂α(x, y) = α(xy)−α(x)−α(y).) Now, since D ⊆ Z(G̃) we �nd every
coboundary satis�es the aforementioned property: ∂α(x, δ) = ∂α(δ, x). Hence:

ξ′(x, δ) = ξ(x, δ) + ∂α(x, δ) = ξ(δ, x) + ∂α(δ, x) = ξ′(δ, x),

as claimed. The property therefore gives a well de�ned subspace

H2
p̃(G̃,R) := {[ξ] ∈ H2

es(G̃,R) : ∀x ∈ G̃, δ ∈ ker(p̃) : ξ(x, δ) = ξ(δ, x)}.

Suppose that ξ1, . . . , ξN ∈ Z2
es(G̃,R) are some real-valued cocycles whose cohomology

classes induce a basis for H2
p̃(G̃,R), for some N ∈ N. The map

ξ? : G̃× G̃→ RN ; (x, y) 7→ (ξ1(x, y), . . . , ξN (x, y))

de�nes a RN -valued cocycle on the covering group G̃. This map is clearly smooth
near the identity whenever ξ1, . . . , ξN are, and we therefore de�ne:

De�nition 6.7. The group G? = RN ×ξ? G̃ de�ned as a central extension of G̃ by

RN , i.e., as the product manifold RN×G̃ endowed with the operation (see Section 4.1)

(a, x)(b, x) = (a+ b+ ξ?(x, y), xy),

for a, b ∈ RN and x, y ∈ G̃, is called the universal central extension of G. Given
the covering map p̃ : G̃ → G, we de�ne the universal central covering map in an
obvious way:

p? : G? → G; (a, x) 7→ p̃(x).

We write the kernel of the universal central covering map p? as K := ker(p?). It
is clear that K = RN × ker(p̃) = RN ×D. We therefore have an exact sequence

1 K G? G 1.
p?
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Moreover, by the very construction of the universal central extension G?, we have
that ξ?(δ, x) = ξ?(x, δ) for all x ∈ G̃ and δ ∈ D, so that K ⊆ Z(G?). The universal
central extension is therefore, indeed, a central extension of G in the ordinary sense
of De�nition 4.1.

Using universal central extensions we may improve on Theorem 4.20:

Theorem 6.8. Let G be a connected Lie group and let G? = RN×ξ? G̃ be its universal
central extension, with central subgroup K = RN × D, as above. Take a section
s? : G → G? of the universal central covering map with s?(1G) = 1G? . We have the
following surjective homomorphism (cf. (4.4)):

K̂ → H2
es(G,U(1)); χ 7→ [µχ],

where µχ : G×G→ U(1) is the cocycle de�ned by

µχ := χ ◦ ∂(s?)−1.

Proof. (We follow the proof of [6, Lem.11], which is similar to that of Theorem 4.20.)
We leave it to the reader to show that the map is a well de�ned homomorphism, and
only show that the map in question is surjective. Take ω ∈ H2

es(G,U(1)) to be an
arbitrary cocycle. Since the cohomology class of µχ does not depend on the section

s?, we take s?(g) = (0, s̃(g)), where s̃ : G→ G̃ is a section of the covering map p̃ with
the property that s̃(1G) = 1G̃. With this section we have

∂(s?)−1(g, h) =
(
ξ?(s̃(g), s̃(h))− ξ?(∂s̃−1(g, h), s̃(gh)), ∂s̃−1(g, h)

)
. (6.2)

We extend the cocycle ω to a cocycle ω̃ := ω◦(p̃×p̃) of G̃. Since G̃ is simply connected,
we know by Lemma 4.21 that ω̃ must be cohomologous to an exponentiated real-valued
cocycle:

ω̃(x, y) = ∂α(x, y)eiτ(x,y),

where α : G̃ → U(1) is some e-smooth map, and τ is a real-valued cocycle on G̃. In
the proof of [6, Lem.11] it is shown that

τ(κ, x) = τ(κ, x)

for all x ∈ G̃ and κ ∈ K, and hence τ ∈ H2
p̃(G̃,R). Now, since the components of ξ?

are real-valued cocycles on G̃ that span H2
p̃(G̃,R), we �nd

τ = w · ξ? := w1ξ1 + · · ·+ wNξN ,

for some w ∈ RN . Having �xed this vector w, we de�ne the character χ ∈ K̂ via the
following formula:

χ(v, x) := ei〈w,v〉α(x).

χ de�nes a cocycle µχ as described in the theorem. Using (6.2) we �nd the explicit
expression

µχ(g, h) = χ ◦ ∂(s?)−1(g, h) = ei〈w,ξ
?(s̃(g),s̃(h))−ξ?(∂s̃−1(g,h),s̃(gh))〉α(∂s̃−1(g, h)).

With the expression τ = w · ξ? the cohomology relation between ω̃ and eiτ can be
updated to

ω̃(x, y) = ∂α(x, y)eiw·ξ
?(x,y).

Applying this relation twice to the previous equation shows that µ and µχ are co-
homologous: µχ = ∂(α ◦ s̃)−1µ, which completes the proof.
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The advantage of this version of the theorem over Theorem 4.20 is that it also
applies to Lie groups that have H2

al(g,R) 6= 0. It is an advantage that we need, since
the Galilei group has non-trivial Lie algebra extensions: H2

al(gal(3),R) ∼= R.
We now come to the main theorem of this section:

Theorem 6.9. Let G be a connected Lie group. Any projective unitary representation
G→ PU(H ) on some seperable Hilbert space arises from a unitary representation
u : G? → U(H ) of the universal central extension, with the property that u(RN×D) ⊆
diag(U(1)). (Cf. [22, Thm.5.62] and [6, Thm.3].)

Proof. The idea of the proof rests on the following construction: given a unitary
representation u : G? → U(H ) with the desired property, we de�ne

ρ : G→ PU(H ); g 7→ P̂ (u(a, x)),

where (a, x) ∈ G? is some element such that p(x) = g. The condition u(K) ⊆
diag(U(1)) ensures that ρ is well de�ned. Ambiguity allows us to set ρ(g) = P̂ ◦u◦s?,
where s? : G → G? is a section of the universal central covering map that satis�es
s?(1G) = 1G? . We easily verify that ρ is a homomorphism:

ρ(gh) = P̂ (u(s?(gh)))

= P̂ (u(s?(gh)))P̂ (u(∂(s?)−1(g, h)))

= P̂ (u(s?(g))u(s?(h)))

= P̂ (u(s?(g)))P̂ (u(s?(h)))

= ρ(g)ρ(h).

Here we have used that ∂(s?)−1(g, h) ∈ K, and hence u(∂(s?)−1(g, h)) ∈ diag(U(1)) ⊆
ker(P̂ ).

We are left to show that the map u 7→ P̂ ◦u◦s? is surjective. For this, Theorem 6.8
comes in handy. Let ρ : G → PU(H ) be a projective unitary representation. We
de�ne the cocycle

µ : G×G→ diag(U(1)); µ = ∂(ŝ ◦ ρ)−1,

where ŝ : U(H ) → PU(H ) is a section of the projection map P̂ with ŝ(idH ) =

idP(H ). By Theorem 6.8 there exists a character χ ∈ K̂ which de�nes a cocycle µχ
that is cohomologous to µ, meaning there is a map α : G→ U(1) that makes for the
cohomology relation

µ(g, h) = ∂α(g, h)µχ(g, h)

between µ and µχ. We put these ingredients together to de�ne

u : G? → U(H ); x 7→ χ
(
x(s? ◦ p?(x)−1

)
(α ◦ p?)(x)(ŝ ◦ ρ ◦ p?)(x)

for x ∈ G?, cf. equation (6.1). Similar arguments as in the proof of Proposition 6.6
show that u is a unitary representation with the desired property. That leaves us to
show that u, as de�ned by ρ, again gives rise to ρ via the construction P̂ ◦ u ◦ s?.
Using p? ◦ s? = idG, an easy calculation transpires:

u ◦ s?(x) = χ
(
s?(x)(s? ◦ p?(s?(x)))−1

)
(α ◦ p?)(s?(x))(ŝ ◦ ρ ◦ p?)(s?(x))

= χ
(
s?(x)s?(x)−1

)
α(x)(ŝ ◦ ρ)(x)

= α(x)(ŝ ◦ ρ)(x).
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Lastly, the fact that P̂ ◦ ŝ = idPU(H ) now clearly gives

P̂ ◦ u ◦ s?(x) = P̂ (α(x))(P̂ ◦ ŝ ◦ ρ)(x) = ρ(x),

�nishing the proof.

Since irreducible unitary representations of G? automatically satisfy u(RN ×D) ⊆
diag(U(1)) [6, p.35], this condition poses no further restrictions on our classi�cation.

6.5 Projective unitary representations of the Galilei group

We are now ready to apply the result of Theorem 6.9 to the Galilei group Gal(3). It
should be noted that the construction of lifting a projective unitary representation
preserves the irreducibility property. It therefore su�ces to determine all irreducible
unitary representations of the universal central extension.

The underlying strategy is the one that has �rst been outlined by Bargmann in
his article [4, p.16], but also by Lévy-Leblond in [25]. In summary, it reads as follows.
Take a connected Lie group G.

1. Determine all the inequivalent central extensions of G. In other words, de-
termine all the inequivalent real- or U(1)-valued cocycles on G. Let us take
real-valued cocycles, for simplicity's sake.

2. Extend these cocycles to the universal covering group G̃ via a section s̃ : G→ G̃
of the covering map p̃ : G̃ → G. This preserves the equivalency of the cocycles
(see the proof of [4, Thm.3.4]).

3. Determine all irreducible unitary representations of the central extensions of G̃
so obtained, say, with cocycle ξ. The projections of the restrictions of these
representations to G̃ are projective unitary representations that correspond to
the cocycle ξ.

4. Those irreducible unitary representations u : R ×ξ G̃ → U(H ) that satisfy
u(D) ⊆ U(1) then give rise to all of the irreducible projective unitary repres-
entations of G.

For the Galilei group the following result is obtained. In it's totality, there are
�ve di�erent types of irreducible projective unitary representations. For a derivation,
we refer to [25, Sec.IV] or [6, Sec.5.2]. We adopt the former reference's notation to a
large extent. The �rst four of these unitary representations are actually (equivalent
to) ordinary unitary representations of the Galilei groups:

1. The �rst type of representations are de�ned by two real positive numbers p, ν ∈
R>0. The Hilbert spaces read Hp,ν = L2(S1

ν × (R× S2
p)), where S1

ν is the circle
in the real plane with radius ν, and (recalling previous notation) S2

p is the sphere
with radius p so that R× S2

p = {(E,p) ∈ R4 : ‖p‖ = p}. Here, for some subset
X ⊆ Rn, the Hilbert space L2(X) contains the square integrable functions with
respect to the Lebesgue measure. The explicit form of the irreducible unitary
representation reads [25, Eq.(4.21)]:

up,ν(s,a,v, U)ψ(ν, E,p) = ei(sE+〈p,a〉+〈Rpν,v〉)ψ
(
ν−α(U,p), E − 〈p,v〉, p̃(U)−1p

)
.

We identify S1
ν with the circle in the plane perpendicular to some reference

point (0,p0) ∈ R × S2
p . Furthermore, we de�ne the rotation matrix Rp as one

(of many) that satis�es p = Rpp0. The real number α(U,p) is the angle of
rotation around the p0 axis, and ν−α(U,p) is the vector obtained by rotating ν
in the plane by an angle −α(U,p).
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2. The second class of representations is de�ned by two parameters; a positive real
number p ∈ R>0 and a half integer σ ∈ Z/2. The representation takes the
form [25, Eq.(4.24)]

up,σ(s,a,v, U)ψ(E,p) = ei(sE+〈p,a〉+σα(U,p))ψ(E − 〈p,v〉, p̃(U)−1p),

de�ned on the Hilbert space Hp,σ = L2(R× S2
p).

3. The third (and actually also the fourth) class appears as the case p = 0 of
the previous class. The labels are threefold; a real number V ∈ R, a positive
real number k ∈ R>0, and a half-integer ξ ∈ Z/2. The Hilbert space and
representation read, respectively, HV,k,ξ = L2(S2

k) and [25, Eq.(4.26)]

uV,k,ξ(s,a,v, U)ψ(k) = ei(sV+〈k,v〉+ξα(U,k))ψ(p̃(U)−1k).

4. The fourth case arises similarly via the further restriction k = 0. The labels
are borrowed from the previous class, but we replace ξ by l ∈ N/2. We denote
the irreducible unitary representation of SU(2) with label j by Dj : SU(2) →
U(C2j+1) ∼= U(2j + 1). For reference, see [22, Sec.5.8] or [14, Sec.17.8]. The
Hilbert space of the fourth class is the same one as for the representation of
SU(2) corresponding to j = l. The representation reads [25, Eq.(4.27)]

uV,l(s,a,v, U) = eisVDl(p̃(U)) ∈ U(2l + 1).

The �fth and last class is the only one that describes irreducible representations
that are projectively non-trivial, and is therefore the only one that is physically relev-
ant. Irreducible unitary representations of central extensions of the universal covering

group G̃al(3) give rise to all of the irreducible projective unitary representations of
the Galilei group by restricting the ordinary representation to the covering group. We
consider the extension corresponding to the parameter M ∈ R. This may actually be
viewed as a label for the representations. The Hilbert spaces are

Hm,j = L2(R3)⊗ C2j+1,

where we recall that L2(R3) are the square integrable functions on R3. Physicists
will be familiar with the term wave function for these functions. The elements of
L2(R3)⊗C2j+1 are of the form (ψ1, . . . , ψ2j+1), where each component is an element
of L2(R3). Let ψ ∈ L2(R3)⊗C2j+1 be a vector in the Hilbert space. The irreducible
unitary representations of the extended Galilei group then read [25, Eq.(4.39)]:

um,j(θ, s,a,v, U)ψ(p) = e
i
(
θ+s

(
V+ p2

2m

)
+〈a,p〉

)
Dj(U)ψ

(
p̃(U)−1(p+mv)

)
,

where (s,a,v, U) ∈ G̃al(3), ψ ∈ L2(R3) and p ∈ R3. (See also [24, Eq.(III.20)].) Here
Dj(U) is a (2j + 1) × (2j + 1) unitary matrix, and the product Dj(U)ψ is de�ned
in the obvious way. The representations um,j are labelled by real number V ∈ R, a
non-zero real number m := M ∈ R \ {0}, which is the extension parameter of the
Galilei group, and a non-negative integer or half integer j ∈ N/2 ∪ {0}. Actually,
one �nds that the real parameter V does not a�ect the corresponding projective
representation [24, p.780], so we set V = 0. Restricting to the covering group we may
write [22, Eq.7.181]:

um,j(s,a,v, U)ψ(p) = e
i
(
s p2

2m +〈a,p〉
)
Dj(U)ψ

(
p̃(U)−1(p+mv)

)
.
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Note that the condition `u(D) ⊆ U(1)' poses no further restrictions to these rep-
resentations. In Section 10, Summary 10.2, we will summarise the results and provide
a physical interpretation. For a more in-depth physical discussion of the results for
the Galilei group we refer to [24, Sec.III].

6.6 Projective unitary representations of the Poincaré group

The (physically relevant) irreducible projective unitary representations of the Poincaré
group were �rst classi�ed by Wigner in 1939 [43]. Since the Lie algebra cohomology
H2

al(poin(1, 3),R) is trivial, instead of Theorem 6.9, we may even use Proposition 6.6.
This proposition tells us that we need to �nd all irreducible unitary representations
of the universal cover Poin?(1, 3) = R4 o SL(2,C) that are represented by complex
phase factors on the kernel of the covering map. We now have four di�erent families
of irreducible unitary representations [21, Prop.IV.3.3.1]. (Also see [40].)

First, two similar classes labelled by a real number m > 0 and j ∈ N/2∪ {0}, and
a sign ±. In the + case, the Hilbert space is Hm,+,j , which is similar to the one for
the Galilei group, only that the square integrable functions are now de�ned on the
so-called mass-shell : S+

m := {(E,p) ∈ R4 : E2 − p2 = m2, E > 0}. Upon further
inspection, however, it is clear that S+

m
∼= R3, so that the Hilbert space is the same

as for the Galilei group:

Hm,+,j = L2(S+
m)⊗ C2j+1 ∼= L2(R3)⊗ C2j+1.

For a = (a0,a) ∈ R4 and ∆ ∈ SL(2,C) one �nds

um,+,j(a,∆)ψ(p) = e
i
(
a0
√
p2+m2−〈a,p〉

)
Dj(b

−1
p ∆bp̃(∆)−1p)ψ(p̃(∆)−1p).

Here we denote by bp ∈ SL(2,C) the matrix so that p̃(bp) ∈ SO+(1, 3) is the Lorentz

transformation that maps (m, 0) to (
√
p2 +m2,p). Moreover,Dj : SL(2,C)→ U(2j + 1)

is the irreducible representation of SL(2,C) (cf. [15, Sec.4.6,Thm.4.32]).
The negative sign representation is the same in the sense that um,−,j is de�ned by

the same expression as um,+,j , but di�ering in the sense that the space S+
m is replaced

by S−m := {(E,p) ∈ R4 : E2 − p2 = m2, E < 0}, so that Hm,−,j = L2(S−m)⊗ C2j+1.
For m = 0 we get additional values for the discrete label: j ∈ Z/2, and the

representation changes. The Hilbert space is now the square integrable functions on
the light cones S±0 = {(E,p) ∈ R4 : E2 − p2 = 0,±E > 0}:

H±,j = L2(S±0 ).

The explicit formula for the representation is a modi�ed version of um,+,j , after sub-
stituting m = 0, and replacing the SL(2,C) representation Dj by the map dj (de�ned
below) [37]:

u±,j(a,∆)ψ(p) = e
i
(
a0
√
p2−〈a,p〉

)
dj(b

−1
p ∆bp̃(∆)−1p)ψ(p̃(∆)−1p).

We de�ne dj(b
−1
p ∆bp̃(∆)−1p) as the phase eijα(∆,p), where the real number α(∆,p) is

de�ned analogously to the angle α(U,p) in Section 6.5 (see also [9, Eq.(B.67)] and
surrounding text). (Note: there is also an elusive class of representations called the
`continuous spin' or `in�nite spin' representations, where j is a real number instead
of being discrete. These representations are harder to construct, and are not believed
to have any physical relevance, so we omit them here.)

The result of this section (or at least, part of it) is known asWigner's classi�cation.
Cf. [21, Chap.IV,Sec.3.3]. See [5] for a generalisation of Wigner's classi�cation to
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any spacetime dimension. It should be noted that the extension of Poin(1, 3) to its
universal covering Poin?(1, 3) merely gives us the half-integer values for the label j.
For the regular Poincaré group the representations are the same, only that we have
j ∈ N ∪ {0} (for m > 0) or j ∈ Z (for m = 0). See Summary 10.3.
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Part III

Classical particles

7 The classical formalism
At this point we must elaborate on the comments made in Section 2.4, wanting
to justify the de�nition of (connected) symplectic homogeneous spaces as classical
elementary particles. And moreover, we want to con�rm that these are classi�ed by
so-called twisted coadjoint orbits.

7.1 Classical state spaces

The model for state space in classical mechanics is a smooth manifold, together with
additional structure.

De�nition 7.1. Let M be a smooth manifold. A Poisson bracket on M is a
Lie bracket {·, ·} : C∞(M) × C∞(M) → C∞(M) (cf. De�nition 3.2) so that for all
h ∈ C∞(M) the map

C∞(M)→ C∞(M); f 7→ {h, f}

de�nes a smooth vector �eld on M . The pair (M, {·, ·}) is called a Poisson mani-
fold .

In any particular set of local coordinates (x1, . . . , xm) on a Poisson manifold M ,
its Poisson bracket may be expressed in terms of the Poisson tensor B as follows:

{f, h}(x) =

m∑
i,j=1

Bij(x)
∂f

∂xi
(x)

∂h

∂xj
(x),

for any x ∈ M , and each f, h ∈ C∞(M). A Poisson manifold is called symplectic
whenever its Poisson tensor is invertible at every point. In that case, the manifold is
necessarily even-dimensional. The �rst half of the local coordinates are often inter-
preted as momentum coordinates, while the second half are interpreted as position
coordinates. For simplicity, we shall restrict ourselves to Poisson manifolds that are
symplectic, and in turn, assume that the state space is a connected symplectic man-
ifold. The common de�nition of a symplectic manifold is as follows, and is of course
equivalent to our previous de�nition.

De�nition 7.2. A symplectic manifold is a smooth manifold M , together with a
di�erential 2-form ω so that dω = 0, and so that at each point x ∈ M the bilinear
form ωx : TxM × TxM → R is non-degenerate, meaning that if for �xed u ∈ TxM we
have ωx(u, v) = 0 for every other v ∈ TxM , then u = 0.

The notion of a smooth map between smooth manifolds can be sharpened to
�t symplectic manifolds. Namely, a smooth map f : M → N between symplectic
manifolds (M,ω) and (N, σ) is called symplectic when f∗σ = ω, where f∗ is the
pullback map of f , so that the 2-form f∗σ on M is de�ned via

(f∗σ)x(v1, v2) = σf(x)(dxf(v1),dxf(v2)),

where x ∈ M is any point on the manifold, and v1, v2 ∈ TxM are two points in
the tangent space at x. We say f is a symplectomorphism if it is a symplectic
di�eomorphism.
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7.2 Smooth and symplectic group actions

Recall the de�nition of a group action at the very start of this thesis (De�nition 1.1).
The context of classical mechanics calls for a smoothness property of the group action.
A smooth action (also called a Lie group action) of a Lie group G on a smooth
manifold M is a group action that is smooth as a map on the product manifold
G×M →M . A smooth manifold M endowed with such a group action is sometimes
called a G-space. Of particular interest to us is the case that M is the Lie algebra
g of G, or its dual g∗. In any case, given a �xed point x ∈ M in the manifold, the
so-called orbit map G→ M : g 7→ g · x is a smooth map. The G-orbit (or just orbit,
when there is no confusion) of x is de�ned as the image of this map:

OrbG(x) := {g · x : g ∈ G} ⊆M.

Similarly, the stabiliser of x is de�ned as

StabG(x) := {g ∈ G : g · x = x} ⊆ G.

Stabilisers always form subgroups of G. Smoothness of the orbit map furthermore
ensures that StabG(x) is a closed subgroup of G, so it forms a matrix Lie subgroup of
G. In the literature one often encounters the notation Gx to denote the stabiliser of
x in G. Borrowing from this notation, we denote the Lie algebra of Gx by gx, called
the stabiliser algebra of x. Directly from the de�nition of a matrix Lie algebra we
�nd that gx is a Lie subalgebra of g.

Suppose now that we endow M with a symplectic structure. The smooth action
of G on M is called symplectic if for each g ∈ G the map M → M ;x 7→ g · x is a
symplectomorphism.

8 Coadjoint orbits

8.1 Some more representation theory

Given a representation ρ of G over a vector space V , we may naturally de�ne its dual
representation. This is a representation of G, denoted ρ∗, over the dual vector space
V ∗. To de�ne it, we need the concept of a dual operator: given a linear operator
A : V → V on V , we de�ne its dual as the linear map A∗ : V ∗ → V ∗ such that

A∗(T )(v) = T (Av)

for all v ∈ V and T ∈ V ∗. In the literature the value of a linear functional T ∈ V ∗ at
v ∈ V is sometimes denoted by 〈T, v〉 := T (v). In this notation, the notion of a dual
operator becomes similar to that of the adjoint operator. Namely, the dual operator
A∗ satis�es the formula:

〈A∗T, v〉 = 〈T,Av〉.

More generally, if A : V → W is a linear operator, its dual is de�ned as above, but
now it is a map A∗ : W ∗ → V ∗.

We can now apply this concept to group representations:

De�nition 8.1. Let ρ be a representation of G over a vector space V . The dual
representation of ρ is de�ned as the map

ρ∗ : G→ GL(V ∗); g 7→ ρ(g−1)∗.

Here the expression ρ(g−1)∗ denotes the dual operator of ρ(g−1) ∈ GL(V ). It is not
hard to see that ρ∗ still de�nes a homomorphism. Let g, h ∈ G be two arbitrary
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elements; then using the de�nition of the dual operator and the fact that ρ is a
homomorphism gives

〈ρ∗(gh)T, v〉 = 〈T, ρ(h−1)ρ(g−1)v〉 = 〈ρ(g−1)∗ρ(h−1)∗T, v〉 = 〈ρ∗(g)ρ∗(h)T, v〉

for all v ∈ V and T ∈ V ∗. Hence ρ∗(gh) = ρ∗(g)ρ∗(h), as desired.

8.2 The adjoint- and coadjoint representations

Consider again the general situation of a (not necessarily matrix) Lie group G with
Lie algebra g (to be identi�ed with the tangent space TeG together with the bracket
de�ned via left-invariant extensions, see Section 3). De�ne ϕ : G→ Aut(G); g 7→ ϕg,
where ϕ(g) = ϕg is the inner automorphism h 7→ ghg−1. The di�erential of ϕg at the
identity element e ∈ G is denoted by

Ad(g) = Adg := de(ϕg) : TeG→ Tϕg(e)G = TeG.

With the identi�cation g ∼= TeG, Adg : g → g is a Lie algebra automorphism. The
map

Ad : G→ Aut(g); g 7→ Adg

is called the adjoint representation of G. One property of the adjoint representa-
tion that we need later is the following:

Lemma 8.2. Let F : G → H be a Lie group homomorphism. Then the following
diagram commutes for each g ∈ G:

g h

g h.

deF

Ad(g) Ad(F (g))

deF

Proof. We have the following elementary commutative diagram, stemming from the
fact that F is a homomorphism:

G H

G H.

F

ϕg ϕF (g)

F

The result follows by taking the di�erential at the identity e ∈ G for each of the
arrows, which preserves the commutativity of the diagram.

Given the adjoint representation, De�nition 8.1 gives us a representation of G by
the dual g∗, namely Ad∗ : G → Aut(g∗); g 7→ Ad(g−1)∗. We give this representation
a special name: the coadjoint representation , and denote it by

Coad : G→ Aut(g∗); g 7→ Ad(g−1)∗.

The fact that it is dual to the adjoint representation means that for all X ∈ g and
F ∈ g∗:

〈Coad(g)F,X〉 = 〈F,Ad(g−1)X〉.

Despite the level of abstractness in the preceding paragraphs, as always, the situ-
ation becomes more straightforward when we restrict ourselves to matrix Lie groups.
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In that case the adjoint and coadjoint representations in fact have a very concrete
form. Therefore, from now, let G be a matrix Lie group, whose identity element is
the identity matrix I, and which has Lie algebra g. To �gure out how Ad(g) acts on
g, we consider the expression ϕg(e

tX) = getXg−1, for arbitrary g ∈ G, X ∈ g and
t ∈ R. Using (3.1) in Proposition 3.9, we determine

d

dt

(
getXg−1

)∣∣∣∣
t=0

= g
d

dt
etX
∣∣∣∣
t=0

g−1 = gXg−1 ∈ g.

On the other hand, di�erentiating the right hand side of the equation using the chain
rule gives8

d

dt

(
ϕg(e

tX)
)

= dexp(tX)ϕg ◦
(

d

dt
etX
)
,

and with the special property of the exponential map that d0 exp = idg, we �nd that
evaluation at t = 0 reduces the equation to:

d

dt

(
ϕg(e

tX)
)∣∣∣∣
t=0

= dexp(0)ϕg ◦
d

dt

(
etX
)∣∣∣∣
t=0

= dIϕg(X) =: Ad(g)(X).

We therefore �nd that the adjoint map Ad(g), for any group element g ∈ G, acts as
matrix conjugation on the the Lie algebra:

Ad(g) : g→ g; X 7→ gXg−1,

which is well-de�ned by Proposition 3.11.4. Note that, despite ϕg and Ad(g) both
describing matrix conjugation, the former is de�ned on the group G, while the latter
is de�ned on the algebra g. They are therefore not formally the same.

Determining the coadjoint representation is now easy; given a group element
g ∈ G, the map Coad(g) sends a functional F ∈ g∗ to

Coad(g)F : g→ C; X 7→ F (Ad(g−1)(X)) = F (g−1Xg).

The coadjoint action is the group action associated to the coadjoint representation,
which reads

G× g∗ → g∗; (g, F ) 7→ Coad(g)F.

The orbits of this action in g∗ are what are called the coadjoint orbits. Given a
functional F ∈ g∗, we denote its orbit by OG(F ) := {Coad(g)F : g ∈ G} ⊆ g∗}.

8.3 Coadjoint orbits of semi-direct products

In light of the structure of the Galilei and Poincaré groups, discussed in Section 3.3, we
want to be able to �nd the coadjoint orbits of a semi-direct product. For our purposes
here, let V be a �nite-dimensional vector space, to be thought of as a translation
group; and let L be another matrix Lie group, to be thought of as the Lorentz group,
or an orthogonal group. Together with a homomorphism ρ : L→ GL(V ) we consider
the semi-direct product G = V oρ L. The Lie algebra of G is g = v odρ l, which is
the vector space v⊕ l together with the Lie bracket

[v ⊕X,w ⊕ Y ] = (dρ(X)w − dρ(Y )v)⊕ [X,Y ],

8Given a smooth curve γ : t 7→ γ(t) on a smooth manifoldM , its velocity is de�ned as the smooth

curve dγ
dt

(s) := dsγ(∂/∂t) in the tangent bundle TM , where ∂/∂t is the unit vector �eld on R.
Therefore if f :M →M is a smooth map, we have

d(f◦γ)
dt

(s) = ds(f◦γ)(∂/∂t) = dγ(s)f◦dsγ(∂/∂t) =
dγ(s)f ◦ dγ

dt
(s), by the chain rule.
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for v, w ∈ v and X,Y ∈ l. Recall that the pushforward dρ is de�ned as the di�erential
of ρ at the identity of L. Assuming that V is connected, its abelian Lie algebra v
may be identi�ed with V itself [38]. As always, we assume that L is a matrix Lie
group, so we may as well restrict ourselves to the case that ρ is the action of matrix
multiplication on V . Now the group G may be identi�ed with the matrix group

G ∼=
{[

Λ v
0 1

]
: Λ ∈ L, v ∈ V

}
,

and in turn, we identify its Lie algebra with [13, p.124]

g ∼=
{[
X w
0 0

]
: X ∈ l, w ∈ V

}
.

The representation ρ is in fact linear, so dρ = ρ is the usual matrix action of l on V ,
and the commutator of matrices here conforms with the previous expression for the
Lie bracket on g. As a last preparatory note; we identify g∗ with V ∗ ⊕ l∗, where the
functional p⊕F ∈ V ∗⊕l∗ maps an element w⊕X ∈ g to p(w)+F (X) = 〈p, w〉+〈F,X〉.

We are now ready to calculate the coadjoint action of G on g∗. In matrix form the
adjoint action is determined easily via the matrix conjugate; with abuse of notation:

Ad(v,Λ)(w ⊕X) =

[
Λ v
0 1

] [
X w
0 0

] [
Λ v
0 1

]−1

=

[
ΛXΛ−1 Λw − ΛXΛ−1v

0 0

]
,

in other words: Ad(v,Λ)(w ⊕ X) = (Λw − Ad(Λ)Xv) ⊕ Ad(Λ)X. We calculate the
coadjoint action. For that, we determine

Ad((v,Λ)−1)(w⊕X) =

[
Λ−1XΛ Λ−1Xv + Λ−1w

0 0

]
= (Λ−1Xv+Λ−1w)⊕ (Λ−1XΛ).

Now the coadjoint action follows as

〈Coad(v,Λ)(p⊕ F ), w ⊕X〉 =
〈
p⊕ F,Ad((v,Λ)−1)(w ⊕X)

〉
=
〈
p⊕ F, (Λ−1Xv + Λ−1w)⊕ (Λ−1XΛ)

〉
=
〈
p,Λ−1Xv

〉
+
〈
p,Λ−1w

〉
+
〈
F,Λ−1XΛ

〉
.

In the last term we recognise the coadjoint action of L on l∗. The �rst term is
independent of w, so we would like to interpret this expression as a functional on
l. For this, we de�ne the linear functional p ∧ v : l → C;X 7→ 〈p, dρ(X)v〉, for
p ∈ V ∗ and v ∈ V . We therefore have 〈p,Λ−1Xv〉 = 〈ρ∗(Λ)p ∧ v,X〉. Similarly
〈p,Λ−1w〉 = 〈ρ∗(Λ)p, w〉. Putting things together, we obtain

〈Coad(v,Λ)(p⊕ F ), w ⊕X〉 = 〈ρ∗(Λ)p, w〉+ 〈Coad(Λ)F + ρ∗(Λ)p ∧ v,X〉,

for all w ∈ V and X ∈ l. In other words:

Coad(v,Λ)(p⊕ F ) = ρ∗(Λ)p⊕ (Coad(Λ)F + ρ∗(Λ)p ∧ v) , (8.1)

for all (v,Λ) ∈ G and p ⊕ F ∈ g∗. From this expression it seems that the coadjoint
orbits in g∗ are not simply the direct sums of the coadjoint orbits in V ∗ and l∗.
Rather, we recognise the coadjoint action of L on l∗ (plus some extra term), and
the dual action ρ∗ of L on V ∗. The following theorem gives a classi�cation of the
coadjoint orbits of G = V oρ L:
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Theorem 8.3. There is a bijection between coadjoint orbits OG(p ⊕ F ) in g∗, and
pairs of orbits (OrbL(p),OLp

(F )), where OrbL(p) is the orbit of p ∈ V ∗ under the
dual action ρ∗, and OLp

(F ) is the coadjoint orbit of F |lp in the stabiliser algebra dual

l∗p. (Cf. [21, Prop. IV.1.10.1].)

Proof sketch. The method of classi�cation (outlined in [13, �19]) starts by �xing an
orbit OrbL(p) = {ρ∗(Λ)p : Λ ∈ L} for some functional p ∈ V ∗, and then investigating
what orbits the second component of (8.1) constitutes. The orbit OrbL(p) is fully
determined by the �rst component of the coadjoint action because, in fact:

OG(p⊕ F ) = OrbL(p)× {Coad(Λ)F + ρ∗(Λ)p ∧ v : v ∈ V,Λ ∈ L}. (8.2)

However, the �rst component also in�uences the second via the term ρ∗(Λ)p ∧ v.
To investigate this term, let q ∈ OrbL(p) be some functional in the orbit of p, so that
there exists a group element ∆ ∈ L with ρ∗(∆)p = q. Now consider the stabiliser
Lq = {Λ ∈ L : ρ∗(Λ)q = q}, with stabiliser Lie algebra lq. Functionals on lq can
be seen as restrictions of functionals on l, which is to say that the following map is
surjective:

πq : l∗ → l∗q ; F 7→ F |lq .
We claim that, for any two functionals F1, F2 ∈ l∗, we have ∃v ∈ V : F1−F2 = q∧v if
and only if πq(F1) = πq(F2). To see this, suppose �rst that F1−F2 is of the form q∧v
for some vector v ∈ V . It su�ces to show that for all X ∈ lq we have 〈q ∧ v,X〉 = 0.
Any element X of the stabiliser algebra lq satis�es, by the very de�nition of a matrix
Lie algebra, the equation ρ∗(etX)q = q for all t ∈ R. Di�erentiating this equation
with respect to the variable t around t = 0 yields

0 =
d

dt
q

∣∣∣∣
t=0

=
d

dt

(
ρ∗(etX)q

)∣∣∣∣
t=0

= dexp(0)ρ
∗ ◦ d

dt

(
etX
)∣∣∣∣
t=0

q = dρ∗(X)q,

and hence

〈q ∧ v,X〉 = 〈q,dρ(X)v〉 = 〈dρ(X)∗q, v〉 = 〈−dρ∗(X)q, v〉 = 〈0, v〉 = 0,

as desired. It is also useful to note that the stabiliser algebra lq in fact entirely consists
of elements X ∈ l that satisfy dρ∗(X)q = 0; by Proposition 3.5 we �nd that, if X ∈ l
does satisfy this equation, then for all t ∈ R:

ρ∗(etX)p = et dρ∗(X)p =

∞∑
n=0

1

n!
tn dρ∗(X)np = p,

because for n > 0 the summand vanishes. Therefore, lq = {X ∈ l : dρ∗(X)q = 0}.
Further still, following [31], we de�ne the linear map τq : l→ V ∗ by X 7→ −dρ∗(X)q.
Now clearly ker(τq) = lq. The dual of this map τ∗q : V ∗∗ ∼= V → l, with the usual
identi�cation of V with its double-dual for �nite-dimensional vector spaces, is given
by τ∗q (v) = q∧v. To see this, note that the nature of the isomorphism V ∼= V ∗∗ means
that any linear functional Φ : V ∗ → C is actually an evaluation map q 7→ 〈q, v〉, at
some vector v ∈ V . Therefore,

〈τ∗q Φ, X〉 = 〈Φ,− dρ∗(X)q〉 = 〈− dρ∗(X)q, v〉 = 〈q,dρ(X)v〉 = 〈q ∧ v,X〉,

as claimed9, i.e., im(τ∗q ) = {q ∧ v : v ∈ V }.
9Note that dρ is a representation of the Lie algebra, so its dual is de�ned with respect to the

addition of the underlying vector space. The inverse of X is then −X, and not the inverse matrix
X−1, so dρ∗(X) = − dρ(X)∗.
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For the converse part of the claim, we need to show that every functional in the
so-called annihilator l0q := {F ∈ l∗ : F |lq = 0} is of the form q ∧ v for some v ∈ V .
That is, it is su�cient to show l0q = im(τ∗q ). We have already seen that l0q ⊇ im(τ∗q )
as linear subspaces of l∗, so in turn it su�ces to show that the dimensions of these
two spaces are equal. This is done in [31, Lem. 1]. Now, in particular, any di�erence
of two functionals on l that agree on lq can be written in the form q ∧ v; proving the
claim.

Having done so, we �nally establish the sought-after bijective correspondence. In
this case it turns out to be easier to disassemble the coadjoint orbit OG(p⊕F ) into the
desired pairs. Clearly, the coadjoint orbit directly determines the orbit OrbL(p) via
the �rst component of the coadjoint action, as shown in (8.2). To distill the coadjoint
orbit OLp

(F ) out of the second component of OG(p⊕F ), we restrict ourselves to group
elements Λ ∈ Lp, for which we have ρ∗(Λ)p = p. By the claim, we now know that
Coad(Λ)F then coincides with Coad(Λ)F + ρ∗(Λ)p∧ v on lp. The latter expression is
determined by OG(p⊕ F ), so in turn it fully determines the coadjoint orbit

OLp
(F ) := {Coad(Λ)πp(F ) : Λ ∈ Lp}

in l∗p, where we use that πp(Coad(Λ)F ) = Coad(Λ)πp(F ). More symbolically, the
bijective correspondence is played by the map

OG(p⊕ F ) 7→ (OrbL(p),OLp
(F )).

The theorem does not help us calculate the actual form of the coadjoint orbits
OG(p⊕ F ). Strictly speaking, for our goals of classifying the coadjoint orbits, this is
not necessary. However, for the sake of completeness, we may use the following result:

Proposition 8.4. The coadjoint orbit OG(p⊕F ) is a �bre bundle over the cotangent
bundle T ∗OrbL(p) with typical �bre OLp(F ).

The proper details and proof of this proposition go way beyond the level of this
thesis. For a proof (and more context) we refer to [21, Thm.IV.1.10.4] and surrounding
text. In the particular case that F0 ∈ l0p, the �bres OLp

(F0) are trivial, and hence we
have OG(p⊕F0) ∼= T ∗OL(p). We only quickly recall the de�nition of a �bre bundle:

De�nition 8.5. A �bre bundle is a quadruplet (E,B, π, F ), where E,B and F are
topological spaces, and a projection map π : E → B, which is a continuous surjective
map. The spaces B and F are called the base and (typical) �bre, respectively. The
data satis�es the following condition: for every point p ∈ E there exists an open
neighbourhood U ⊆ B of π(p) and a homeomorphism Φ : π−1(U) → U × F so that
the following diagram commutes:

π−1(U) U × F

U.

Φ

π

The preimages π−1({x}), for x ∈ B, are called �bres (above x), and are all homeo-
morphic to F .
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Figure 4: Illustration of a �bre bundle π : E → B with typical �bre F .

8.4 Hamiltonian actions and de�ning classical elementary particles

We need to further sharpen the notion of symplectic actions. Consider a symplectic
action of G on M . The action induces a vector �eld on M for each element of the
Lie algebra g. Namely, the fundamental vector �eld XM on M induced by X ∈ g is
de�ned at the point x ∈M by

(XM )x :=
d

dt
etX · x

∣∣∣∣
t=0

=
d

dt
ϕexp(tX)(x)

∣∣∣∣
t=0

,

where we recall the notation ϕg : M →M ;x 7→ g · x.

De�nition 8.6. Let Φ : M → g∗ be a smooth map. For X ∈ g de�ne

〈Φ, X〉 : M → C; x 7→ 〈Φ(x), X〉.

We say Φ is a moment map for the G-space M if for all X ∈ g the fundamental
vector �eld XM satis�es

dx〈Φ, X〉(v) = ω((XM )x, v),

for all x ∈ M and v ∈ TxM (see [12]), and moreover, such that for each g ∈ G the
following diagram commutes:

M M

g∗ g∗.

ϕg

Φ Φ

Coad(g)

A symplectic action of G on M is called Hamiltonian if there exists a moment map
for it.

The coadjoint representation is the prime example of a Hamiltonian action. Its
moment map is simply the identity map on g∗.

The notion of a symplectic manifold M with a Hamiltonian G-action becomes the
correct notion of a symmetry action on a classical state space. Hamiltonian actions
on connected symplectic manifolds are therefore the classical analogue of projective
unitary representations. The analogue of the irreducibility property here is that of
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transitivity. A group action is called transitive if it induces a single orbit. This
means that, for every point x ∈ M , there exists another poin y ∈ M and a group
element g ∈ G so that g · y = x. In other words, every two elements in M can be
reached from one another by letting the group G act on M . Classical elementary
particles are therefore identi�ed with transitive Hamiltonian actions on a connected
symplectic manifold. In the next section, speci�cally Theorem 8.10, we will see how
to classi�es these actions in terms of a modi�ed version of the coadjoint action.

8.5 Twisted coadjoint orbits and elementary particles

The structure of the coadjoint orbits alone does not su�ce to classify the elementary
particles we �nd in nature, and they can therefore not be the correct mathematical
de�nition of an elementary particle. Instead, we need to modify them into twisted
coadjoint orbits. (Throughout this section we follow [21, Chap.III.1]. Also see [20,
Chap.1,Sec.4] and [7, Sec.3.6].)

At this point some of the theory in Section 4.1 makes its return in a di�erent
setting: Let G be a connected Lie group. A 1-cocycle on G with values in g∗ is a
smooth function γ : G→ g∗ that satis�es the following property:

γ(gh) = γ(g) + Coad(g)γ(h),

for all g, h ∈ G. We denote the space of all such cocycles by Z1
Coad(G, g∗), which forms

an abelian group under pointwise addition. A 1-coboundary on G with values in g∗

is a cocycle γ ∈ Z1
Coad(G, g∗) of the form

γ(g) = Coad(g)F0 − F0,

for some �xed functional F0 ∈ g∗. Accordingly, the normal subgroup of 1-coboundaries
is denoted B1

Coad(G, g∗).
A 1-cocycle γ ∈ Z1

Coad(G, g∗) de�nes a real-valued map Γ : g × g → R via [21,
Eq.III.1.24]:

Γ(X,Y ) := − d

dt

〈
γ(etX), Y

〉∣∣∣∣
t=0

. (8.3)

This map satis�es the Jacobi identity of the Lie algebra cocycles (see [7, Thm.3.6.2]).
It is, however, not always anti-symmetric. Hence we have the following de�nition.

De�nition 8.7. Any 1-cocycle γ ∈ Z1
Coad(G, g∗) that de�nes a real-valued Lie al-

gebra cocycle Γ ∈ Z2
al(g,R) via (8.3) is called a symplectic cocycle . The space of

symplectic cocycles Z1
sym(G, g∗) induces the quotient

H1
sym(G, g∗) :=

Z1
sym(G, g∗)

H1
Coad(G, g∗)

,

called the (�rst) symplectic cohomology group of G with respect to the coadjoint
representation.

We now have an extension of Theorem 4.17:

Corollary 8.8. For any connected, simply connected Lie group G with Lie algebra g,
we have the following isomorphisms between di�erent cohomology groups:

H2
es(G,U(1)) ∼= H2

al(g,R) ∼= H1
sym(G, g∗).

(See [21, Cor.III.1.3.7].)
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De�nition 8.9. LetG be a connected Lie group with coadjoint action Coad : G→ Aut(g∗).
Let γ ∈ Z1

sym(G, g∗) be a symplectic cocycle on G with values in g∗. The twisted
coadjoint action on G with respect to γ is de�ned according to the following for-
mula:

Coadγ : G→ Aut(g∗); Coadγ(g)F = Coad(g)F + γ(g).

It is straightforward to verify that Coadγ is a homomorphism. The twisted coadjoint
orbits (also called Coadγ-orbits) are the orbits of the twisted coadjoint action in g∗.
An orbit trough a functional F ∈ g∗ is denoted by

Oγ
G(F ) := {Coadγ(g)F : g ∈ G}.

Finally, the reason that we consider twisted coadjoint orbits is justi�ed by the
following theorem.

Theorem 8.10. Let M be a connected symplectic space with transitive Hamiltonian
G-action. There exists a symplectic cocycle γ ∈ Z1

sym(G, g∗) so that M is isomorphic
to a Coadγ-orbit, i.e., M ∼= Oγ

G(F ) for some F ∈ g∗, or M is isomorphic to a twisted

coadjoint orbit of the universal cover G̃. (Cf. [21, Cor.III.1.4.8].)

Recalling that symplectic manifolds with transitive Hamiltonian actions are ex-
actly the phase spaces of elementary particles, we �nd that the correct mathematical
notion for an elementary particle must indeed be that of the twisted coadjoint orbit.

We will now state the classical analogue of Theorem 6.9, which will help us clas-
sify the classical elementary particles. Given a central extension U(1) ×ω G of our
connected Lie group G, we can identify its Lie algebra with R ⊕Ω g. In turn, the
functionals of its Lie algebra may be identi�ed with R ⊕ g∗ as a vector space. The
coadjoint action of the central extension U(1)×ω G on R⊕ g∗ is merely an action of
G on R ⊕ g∗, since the group U(1) acts trivially [20, p.23]. (Any abelian group acts
trivially through the (co)adjoint action, as easily seen from the de�nitions.)

Lemma 8.11. The coadjoint action of G on R⊕Ω g∗ is of the form

(g, a⊕ F ) 7→ a⊕ (Coad(g)F + aγ(g)),

where γ ∈ Z1
sym(G, g∗).

Proof. (This is the proof of [20, Chap.1,Lem.7].) Let us denote by CoadΩ the coadjoint
action of G on R ⊕Ω g∗, and by Coad the ordinary coadjoint action of G on g∗. We
consider the projection map p : R⊕Ωg∗ → R⊕Ωg∗/g∗. Via the composition p◦CoadΩ,
we let G act on R⊕Ω g∗/g∗. This must be trivial, since the extension is central. This
tells us that the coadjoint action of G on R ⊕ g∗ mus leave the �rst component
invariant. In particular, then, the coadjoint action on an element 0⊕F ∈ R⊕g∗ must
simply be the coadjoint action of G on g∗:

CoadΩ(g)(0⊕ F ) = 0⊕ Coad(g)F.

More generally, the coadjoint action of G on R⊕ g∗ must be of the form:

CoadΩ(a⊕ F ) = a⊕ (Coad(g)F + aγ(g)),

where γ : G→ g∗ is some function. Multiplicativity of CoadΩ gives that γ ∈ Z1
sym(G, g∗).

The lemma and preceding theory motivates our main theorem:
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Theorem 8.12. Let G be a connected Lie group. There is a bijective correspondence
between twisted coadjoint orbits of G and ordinary coadjoint orbits of the universal
central extension G?.

It is here that we �nd a remarkable resemblance to the quantum formalism. There,
irreducible projective unitary representations of the symmetry group (i.e., elementary
particles) are classi�ed by ordinary irreducible unitary representations of a universal
central extension. Here, too, the same reasoning works, once we replace the words
�projective� by �twisted,� and �irreducible unitary representation� by �coadjoint orbit�.

9 Coadjoint orbits of the spacetime symmetry groups
We will now put the formalism of Section 8.3, and especially the result of Theorem 8.3,
to use. In order to make our calculations simpler, we perform some standard iden-
ti�cations. For instance, we know that we can identify the Lie algebra of V = Rn
with the abelian Lie algebra v = Rn. In turn, the dual (Rn)∗ is identi�ed with Rn
via the Riesz representation theorem with respect to the standard Euclidean inner
product. That is, given a functional p on Rn, we identify it with the unique vector
p ∈ Rn so that p : a 7→ 〈p,a〉, where on the right hand side we have the Euclidean
inner product. (The Riesz representation theorem also applies to Minkowski space,
and even to matrix Lie algebras with appropriate inner products de�ned on them.)

9.1 Coadjoint orbits of the Galilei group

For illustrative purposes, we calculate the coadjoint orbits of the un-extended Galilei
group. As with the calculation of the extensions, we take a bottom-up approach by
�rst calculating the coadjoint orbits of SO(3) and SE(3). To some extent we follow
the general strategy and notation of [13, �19]. (Also see [1].)

9.1.1 Coadjoint orbits of SO(3)

We start with the coadjoint orbits of the special orthogonal group SO(3). Its Lie
algebra so(3) is spanned by the angular momentum matrices (3.2). As a three-
dimensional vector space, we identify it with R3 via a 7→ Xa := aiJi. This iden-
ti�cation is often useful in the mechanics of rotations, because if x ∈ R3 is another
vector, then the matrix action Xax is the cross-product a × x. (For a Lie algebra
isomorphism between so(3) and R3, we may endow the latter with the Lie bracket
[a, b] = a× b.) The cross-product behaves pleasantly under multiplication by ortho-
gonal matrices R ∈ O(3), because R(a × x) = (Ra) × (Rx). Using this identity, we
�nd that the adjoint action of SO(3) on so(3) is given by:

Ad(R)(Xa)x = (RXaR
−1)x = R(a× (R−1x)) = (Ra)× x

for all x ∈ R3, that is: Ad(R)(Xa) = XRa. Sticking to the identi�cation so(3) ∼= R3,
we may even write Ad(R)(a) = Ra, so the adjoint action is in fact simply the matrix
action of SO(3) on R3. To calculate the coadjoint action, we further identify so(3)∗ ∼=
R3. Now, if F ∈ so(3)∗ is a functional corresponding to F ∈ R3, and a ∈ so(3) is
arbitrary, then

〈Coad(R)(F ),a〉 = 〈F,Ad(R−1)(a)〉 = 〈F , R−1a〉.

Orthogonality of R gives R−1 = RT, and so 〈Coad(R)(F ),a〉 = 〈RF ,a〉. Therefore,
under the proper identi�cations (i.e., identi�cation of F with F ), the coadjoint action
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of SO(3) on so(3)∗ coincides with the adjoint action:

Coad(R)(F ) = RF . (9.1)

The classi�cation of the coadjoint orbits in so(3)∗ therefore amounts to the classi�c-
ation of the orbits of the de�ning action of SO(3) on R3. These are, of course, well
known. The origin constitutes an orbit by itself, and any non-zero vector F ∈ R3

de�nes an orbit which is precisely the sphere whose radius is that of ‖F ‖. The coad-
joint orbits therefore are simply the 2-spheres in R3, parametrised as follows:

OSO(3)(F ) =

{
{0} if ‖F ‖ = 0;

{x ∈ R3 : ‖x‖ = ‖F ‖} if ‖F ‖ > 0.

Introducing the notation for the 2-sphere with radius r as S2
r := {x ∈ R3 : ‖x‖ = r}⊆ R3,

we may write the above as OSO(3)(F ) = S2
‖F ‖.

9.1.2 Coadjoint orbits of SE(3)

Next up is the special Euclidean group. The Euclidean group is a semi-direct product
E(3) = R3 oρ O(3), where ρ : O(3)→ GL(R3) is simply the de�ning action:

ρ(R)(x) = Rx.

In light of Theorem 8.3, we �rst classify the dual orbits OrbSO(3)(p) of SO(3) in
(R3)∗ ∼= R3. Through now familiar calculations we �nd that the dual action of SO(3)
on (R3)∗ is simply given by matrix multiplication

ρ∗(R)p = Rp,

for a functional p ∈ (R3)∗ identi�ed with p ∈ R3. The dual orbits are therefore also
2-spheres, just like the coadjoint orbits: OrbSO(3)(p) = OSO(3)(p). The coadjoint
action of SE(3) on se(3)∗ is now the following simpli�ed version of (8.1):

Coad(a, R)(p⊕ F ) = Rp⊕ (RF +Rp ∧ a). (9.2)

Here we have once more identi�ed so(3)∗ ∼= R3, which in this equation comes to light
via the identi�cation of F ∈ so(3)∗ with F ∈ R3, and in turn the substitution of (9.1).
To determine the coadjoint orbits, we distinguish between a few cases;

When p = 0 we have OrbSO(3)(p) = {0}, and the term Rp ∧ a vanishes. In turn,
this case breaks down to the absolutely trivial case, when also F = 0. Then the entire
coadjoint orbit is OSE(3)(p⊕F ) = {(0, 0)}. In the less trivial case that F is non-zero,
we �nd that the coadjoint orbit through 0⊕ F is essentially the coadjoint orbit of F
in so(3)∗, which we know to be the 2-sphere with radius ‖F ‖. More precisely:

OSE(3)(0⊕ F ) = {0} × OSO(3)(F ) = {0} × S2
‖F ‖
∼= S2

‖F ‖.

The same transpires when we follow Theorem 8.3, since the stabiliser SO(3)0 of p = 0
is clearly the entire group SO(3).

Lastly, we have the case that p 6= 0. It is now appropriate to employ Proposi-
tion 8.4, and calculate the coadjoint orbits of the stabiliser SO(3)p (as opposed to
directly calculating the coadjoint orbit from (9.2)). Elements in the stabiliser SO(3)p
are clearly exactly the rotations R ∈ SO(3) about the p-axis. Without loss of gener-
ality, we may take this axis to coincide with the z-axis. We now have an isomorphism
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SO(3)p ∼= SO(2), where we identify the two-dimensional rotation group as a subgroup
of SO(3), in the sense that it describes all rotations in the xy-plane R2 × {0} ⊆ R3.

Therefore, we need to calculate the coadjoint orbits of SO(2). The elementary
isomorphism SO(2) ∼= U(1), where we understand a rotation about the z-axis with
angle α to correspond to the element eiα ∈ U(1), gives a Lie algebra isomorphism
su(2) ∼= u(1) ∼= R. (This also easily follows from the properties of matrices in su(2).)
By the very de�nition of the coadjoint action we �nd

〈Coad(eiθ)F,X〉 = 〈F, e−iθXeiθ〉 = 〈F,X〉,

so that Coad(z) = idR for all z ∈ U(1). (The (co)adjoint actions are always trivial
on abelian groups.) The coadjoint orbits of SO(2) are therefore simply points on the
real line:

OSO(3)p(x) ∼= OSO(2)(x) ∼= OU(1)(x) = {x},

where x ∈ R.
Putting things together, we �nd through Proposition 8.4 that for p 6= 0 the

coadjoint orbit of SE(3) through p ⊕ F is a �bre bundle over the cotangent bundle
T ∗OrbSO(3)(p) = T ∗S2

‖p‖, whose �bres consist of points OSO(2)(x) = {x} on the real
line. This �bre bundle is trivial in the sense that it is di�eomorphic to the cotangent
bundle T ∗S2

‖p‖ itself, and hence we have

OSE(3)(p⊕ F ) ∼= T ∗S2
‖p‖.

Note that the cotangent bundle is not trivial (as a bundle) due to the hairy-ball
theorem. Instead, as a set we can describe it as being isomorphic to the tangent
bundle:

T ∗S2
r
∼=
{

(q,p) ∈ R6 : ‖p‖ = r, 〈q,p〉 = 0
}
.

In general, then, we see that the coadjoint orbits of SE(3) are parametrised by a
positive real number k ∈ R>0 and a non-negative number s ∈ R>0, and the orbits are
of the form

Ok,s
SE(3) :=

{
S2
s if k = 0;

T ∗S2
k if k 6= 0.

(9.3)

9.1.3 Coadjoint orbits of the Galilei group

Finally, we are in a position to consider the Galilei group Gal(3) = R4oρSE(3), where
ρ : SE(3)→ GL(R4) is simply the de�ning action:

ρ(v, R)(t,x) = (t, Rx+ vt).

With the proper identi�cations this becomes the matrix action of GL(4,R) on R4.
We identify the dual algebra gal(3)∗ with the space R4 ⊕ se(3)∗, where we in turn
re-identify se(3)∗ with elements of the form q ⊕ F , where q ∈ R3 ∼= (R3)∗ and
F ∈ R3 ∼= so(3)∗. We denote elements of gal(3)∗ by ((E,p), (q ⊕ F )).

Through easy matrix calculations, we �nd that on a functional (E,p) ∈ R4 the
dual action of (R,v) ∈ SE(3) becomes:

ρ∗(v, R)(E,p) = (E − 〈Rp,v〉, Rp). (9.4)

For p = 0 we have a singleton dual orbit:

OrbSE(3)(E, 0) = {(E, 0)}. (9.5)
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For p 6= 0 we can vary the �rst component through all the reals due to the term
〈Rp,v〉. The second component is simply the orbit OrbSO(3)(p) = S2

‖p‖, and hence:

OrbSE(3)(E,p) = R×OrbSO(3)(p) = R× S2
‖p‖. (9.6)

Following Theorem 8.3 as usual, we calculate the coadjoint orbits of the corres-
ponding stabiliser subgroups to these dual orbits. We start with the easier case, where
p = 0. An element (v, R) ∈ SE(3) is in the stabiliser of the point (E, 0) whenever
ρ∗(v, R)(E, 0) = (E, 0), which is always the case. The stabiliser is therefore the entire
group, of which we know what the coadjoint orbits are (see the previous section).
Hence by Proposition 8.4 we �nd a class of coadjoint orbits in the Galilei group that
are �bre bundles over T ∗OrbSE(3)(E, 0) = T ∗{(E, 0)}, with �bres Ok,s

SE(3), for some

k ∈ R>0 and s ∈ R>0 (see (9.3)). As a zero-dimensional manifold, the singleton
{(E, 0)} has trivial (co)tangent bundle. Namely, since it contains but one point, the
tangent bundle T{(E, 0)} becomes simply the tangent space T(E,0){(E, 0)}, and since
the manifold is zero-dimensional the tangent space is trivial as a vector space. We
therefore �nd that the coadjoint orbit simply becomes the �bre:

O0,r,s
Gal(3) := OGal(3)((E, 0), (q ⊕ F )) ∼= Or,s

SE(3),

where k = ‖q‖ and s = ‖F ‖. This includes the trivial coadjoint orbit.
Now assume that p 6= 0. Since the dual orbit is now of the form R×S2

‖p‖, we need

only concern ourselves with points of the form (0,p). Were an element (v, R) to be
an element in the stabiliser of such a point, we would �nd that R is a rotation about
the p-axis, and that v is perpendicular to Rp = p. The �rst restriction reduces the
SO(3) part of the Euclidean group to a subgroup that is isomorphic to SO(2), as we
have seen. The second restriction reduces v to, say, the xy-plane R2 ∼= R2×{0} ⊆ R3.
The stabiliser is therefore the two-dimensional Euclidean group: SE(3)(0,p)

∼= SE(2).
We thus have to calculate the coadjoint orbits of SE(2) = R2 oσ SO(2), where σ is

simply the action of matrix multiplication. Through familiar arguments we �nd that
the dual action of σ is also matrix multiplication, so that the dual orbits are circles
in the plane:

OrbSO(2)(q) = S1
‖q‖,

where a functional q ∈ (R2)∗ is identi�ed with the vector q ∈ R2 just as in the three-
dimensional case. Familiarly, we divide the situation up into two cases; �rst we take
q = 0. The corresponding stabiliser group is clearly the full group SO(2), of which
we know the coadjoint orbits are just points on the real line. Thus OSE(2)(0 ⊕ x) ∼=
OSO(2)(x) = {x}, for some x ∈ R. In the case that q 6= 0, the stabiliser is the
trivial group {I} ⊆ SO(2), of which the coadjoint action is trivial. By Proposi-
tion 8.4 the coadjoint orbits are therefore simply the cotangent bundle of the circles:
OSE(2)(q ⊕ x) ∼= T ∗S1

‖q‖, which are well known to be isomorphic to the cylinders

R× S1
‖q‖. Summarising, we have the following types of coadjoint orbits in SE(2):

Or,h
SE(2) :=

{
{h} if r = 0;

R× S1
r if r 6= 0;

(9.7)

for h ∈ R and r ∈ R>0, the latter number corresponding to the norm of q.
Putting it together, we have the following new class of coadjoint orbits of the

Galilei group. They are �bre bundles over T ∗(R × S2
k) whose �bres are Or,h

SE(2). The

coadjoint orbit through the point ((E,p), (0⊕ h)) is of the form

Ok,0,0
Gal(3) := OGal(3)((E,p), (0⊕ h)) ∼= T ∗(R× S2

k),
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where k = ‖p‖. Since we have the following identity for tangent bundles: T (R×S2
k) ∼=

TR⊕TS2
k, we obtain a similar identi�cation for the cotangent bundles: T ∗(R×S2

k) ∼=
T ∗R⊕ T ∗S2

k. Canonically identifying TRn ∼= Rn × Rn ∼= R2n, we therefore have

Ok,0,0
Gal(3)

∼= R2 × T ∗S2
k.

For q 6= 0 we have a class of orbits that is isomorphic to the �bre bundle over R2×T ∗S2
k

with �bres R× S1
r , for some r > 0. We denote these coadjoint orbits by Ok,r,0

Gal(3).

9.2 Coadjoint orbits of the extended Galilei group

The classical non-relativistic elementary particles are the coadjoint orbits of the uni-

versal central extension Gal?M (3) = R5 oρ S̃E(3). We have already calculated the
group structure of GalM (3) = R5 o SE(3) in Section 5.1.2. The extension of this
structure to the universal central extension is merely a matter of replacing rotation

matrices by unitary matrices. In particular the de�ning action ρ of S̃E(3) on R5 is
given by the following equation:

ρ(v, U)(θ, s,a) =

(
θ +

1

2
sv2M + 〈v, p̃(U)a〉M, s, p̃(U)a+ sv

)
. (9.8)

Re-introducing the notation ξM : Gal(3)×Gal(3)→ R for the real-valued cocycle of
the extended Galilei group (with mass M), and modifying the notation to write

ξM (s,a,v, R) := ξM ((s,a,v, R), (s,a,v, R)) =
1

2
sv2M + 〈v, Ra〉M,

the action ρ may be written more concisely as

ρ(v, U)(θ, s,a) = (θ + ξM (s,a,v, p̃(U)), s, p̃(U)a+ sv).

We calculate the dual action ρ∗ of S̃E(3) on (R5)∗ ∼= R5. Take an element
(Θ, E,p) ∈ R5 representing a functional in (R5)∗. By de�nition we have

〈ρ∗(v, U)(Θ, E,p), (θ, s,a)〉 =
〈
(Θ, E,p), ρ(−p̃(U)−1v, p̃(U)−1)(θ, s,a)

〉
.

Working out the action using (9.8) we �nd

〈ρ∗(v, U)(Θ, E,p), (θ, s,a)〉 =

〈
Θ, θ +

1

2
s〈p̃(U)−1v, p̃(U)−1v〉M − 〈p̃(U)−1v, p̃(U)−1a〉M

〉
+ 〈E, s〉+ 〈p, p̃(U)−1(a− sv)〉

=

〈
Θ, θ +

1

2
sv2M − 〈v,a〉M

〉
+ 〈E, s〉+ 〈p̃(U)p,a− sv〉.

The next steps are a matter of simply rewriting this expression through the linearity
of the situation. We �nd:

ρ∗(v, U)(Θ, E,p) =

(
Θ, E +

1

2
Θv2M − 〈p̃(U)p,v〉, p̃(U)p−ΘvM

)
. (9.9)

Calculation of the dual orbits Orb
S̃E(3)

(Θ, E,p) is now straightforward. There are

three types of orbits. First, assume that Θ = 0 and p = 0. The orbit is then the
singleton

Orb
S̃E(3)

(0, E, 0) = {(0, E, 0)}.
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These are clearly analogous to the dual SE(3)-orbits (9.5). We would do well to
calculate the stabilisers of these points right away. In this case we clearly have

S̃E(3)(0,E,0) = S̃E(3). If, on the other hand, p 6= 0, then we �nd

Orb
S̃E(3)

(0, E,p) = Orb
‖p‖
S̃E(3)

:= {(0, V, q) ∈ R5 : V ∈ R, ‖q‖ = ‖p‖} ∼= R× S2
‖p‖,

which is exactly the dual orbit (9.6) of the ordinary Euclidean group through (E,p).
An element (v, U) is in the stabiliser of the point (0, E,p) if and only if p̃(U)p = p,
which means that p̃(U) must be an element of the stabiliser SO(3)p, i.e., p̃(U) must
be a rotation about the axis spanned by p. In turn we then also need v to be
perpendicular to p. Without loss of generality (recall that we are free to pick any
functional in Orb

S̃E(3)
(0, E,p)), we may take p to be parallel to the z-axis. This

restricts v to the xy-plane R2 × {0} ∼= R2. Considering the rotations around the
z-axis as a subgroup isomorphic to SO(2) ⊆ SO(3), the stabiliser is then isomorphic
to the universal covering space of the two-dimensional Euclidean group:

S̃E(3)(0,E,p)
∼= S̃E(2) = R2 o S̃O(2).

Here we view S̃O(2) as the appropriate subgroup of S̃O(3) = SU(2).
The case that Θ 6= 0 is the most complicated. It is useful to consider the case

that p = 0 �rst. In fact, this is without loss of generality, since the parameter v still
allows us to vary the last component of the orbit throughout all of R3. We have

ρ∗(v, U)(Θ, E, 0) =

(
Θ, E +

1

2
Θv2M,−ΘvM

)
.

Denoting the third component byx = −ΘvM , we �nd that the expression

E − x2

2ΘM
= E

is a constant, whenever E is constant. Therefore orbits through (Θ, E,p) are of the
form

Orb
S̃E(3)

(Θ, E,p) ∼= OrbM,V

S̃E(3)
:=

{
(Θ, E,p) ∈ R5 : E − p2

2ΘM
= V

}
, (9.10)

for some real number V ∈ R, andM ∈ R\{0} the extension parameter of the centrally
extended Galilei group. Note that this is a completely di�erent type of dual orbit to
those that we found for the ordinary Galilei group, and moreover, the only one that
depends on the parameter M . The stabiliser of these types of functionals must be
the stabilisers of functionals of the form (Θ, E, 0), which is simply SU(2).

Following Theorem 8.3, we determine the coadjoint orbits of the stabiliser groups.

This means calculating the coadjoint orbits of S̃E(3), S̃E(2) and S̃O(3) = SU(2). We
have already calculated the coadjoint orbits of the groups SE(3), SE(2) and SO(3).
The following lemma is therefore extremely useful.

Lemma 9.1. Let G be a connected Lie group with universal covering G̃. The coadjoint
orbits of G̃ are exactly the coadjoint orbits of G.

Proof. We use Lemma 8.2. Since the covering map p̃ : G̃ → G is a homomorphism,
for every g ∈ G we have the following relation:

Ad(p̃(g)) ◦ dp̃ = dp̃ ◦Ad(g),
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from which it follows that Ad(p̃(g)) = Ad(g), since the di�erential dp̃ serves as an

isomorphism between g and Lie(G̃). The adjoint action of G̃ therefore coincides with
the adjoint action of G, and it follows that the same holds for the coadjoint action.
(See also [27, p.35].)

We therefore have the the following coadjoint orbits in the extended Galilei group;
for the stabiliser SE(3) we have a coadjoint orbit that is a �bre bundle trivial �bre
bundle over T ∗Orb

S̃E(3)
(0, E, 0) ∼= {(0, E, 0)} with typical �bre Or,s

SE(3):

O0,r,s
Gal?(3) := OGal?(3)((0, E, 0), (q ⊕ F )) ∼= Or,s

SE(3),

where r = ‖q‖ and s = ‖F ‖.
For the stabiliser SE(2) the coadjoint orbit is a �bre bundle over T ∗Orb

S̃E(3)
(0, E,p) =

R2 × T ∗S2
k with typical �bre Or,h

SE(2). For r = 0 this gives a class

Ok,0,0
Gal?(3) := OGal?(3)((0, E,p), (0⊕ h)) ∼= R2 × T ∗S2

k,

where k = ‖p‖. For r > 0 the typical �bre not trivial, but instead is isomorphic to

the cylinder Or,h
SE(2) = R× S1

r , giving a class Ok,r,0
Gal?(3).

And lastly, for the stabiliser SO(3) the coadjoint orbits are �bre bundles over

OrbM,V

S̃E(3)
(see (9.10)), with typical �bres simply being spheres Os

SO(3) = S2
s . We

denote this class of coadjoint orbits by OM,V,s
Gal?(3). This coadjoint orbit goes through

the point ((Θ, E,p), (0⊕ F )), where s = ‖F‖ and

V = E − p2

2ΘM
.

9.3 Coadjoint orbits of the Poincaré group

We calculate the coadjoint orbits of the ordinary Poincaré group. Following The-
orem 8.3, we �rst determine the dual orbits of the de�ning action ρ of the Lorentz
group SO+(1, 3) on R4. The dual action ρ∗ is again matrix multiplication of SO+(1, 3)
on (R4)∗ ∼= R4. There are four di�erent types of dual orbits [21, p.411]. The �rst,
and most obvious one, is the trivial orbit

Orb0
SO+(1,3) := OrbSO+(1,3)(0, 0, 0, 0) = {(0, 0, 0, 0)}.

The corresponding stabiliser is obviously the entire Lorentz group SO+(1, 3). Next
we consider the orbits through points of the form (E, 0) ∈ R4:

Orbm,±
SO+(1,3)

:= OrbSO+(1,3)(±m, 0) = {(E,p) ∈ R4 : E2 − p2 = m2,±E > 0}.

Since the property of the elements in this orbit clearly only depend on the length of
p, we see that the stabiliser is the rotation group SO(3). The next orbit type is

Orb0,±
SO+(1,3)

:= OrbSO+(1,3)(±1, 0, 0,−1) = {(E,p) ∈ R4 : E2 − p2 = 0,±E > 0}.

In this case the stabiliser is the two-dimensional Euclidean group SE(2). Lastly, we
have orbits through points with vanishing �rst component:

Orb−m
SO+(1,3)

:= OrbSO+(1,3)(0, 0, 0,m) = {(E,p) ∈ R4 : E2 − p2 = −m2},
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whose stabiliser is the two-dimensional Lorentz group SO+(1, 2).
For the trivial orbit Orb0

SO+(1,3) the corresponding coadjoint orbits simply become
the coadjoint orbits of the Lorentz group. But these are just the dual orbits we
calculated moments ago.

Corresponding to the dual orbits Orbm,±
SO+(1,3)

are the coadjoint orbits of SO(3),

which are the spheres S2
s . The coadjoint orbits OPoin(1,3)((±m, 0),F ) are �bre bundles

over T ∗Orbm,±
SO+(1,3)

with typical �bre S2
s . The de�ning relation E2 − p2 = m2 of the

dual orbit completely determines the �rst component of (E,p) in terms of the second,
and we therefore have

Orbm,±
SO+(1,3)

∼= R3

via the map p 7→ (
√
p2 +m2,p). This gives the following class of coadjoint orbits:

Om,±,s
Poin(1,3)

∼= T ∗R3 × S2
s
∼= R6 × S2

s .

Next we determine the coadjoint orbits corresponding to the dual orbits Orb0,±
SO+(1,3)

.

We identify this orbit with R3, just as we did for Orbm,±
SO+(1,3)

. The coadjoint orbits

of the two-dimensional Euclidean group are Or,h
SE(2), labelled by h ∈ R and r ∈ R>0,

and given by (9.7). The corresponding coadjoint orbits in the Poincaré group are

therefore �bre bundles over T ∗R3 ∼= R6 with �bres Or,h
SE(2). For r = 0 this gives

O0,±,h
Poin(1,3)

∼= R6,

while for r > 0 we have that O0,±,h,r
Poin(1,3) is a �bre bundle over R6 whose �bres are the

cylinders R× S1
r .

This leaves us to calculate the coadjoint orbits corresponding to the two-dimensional
Lorentz group SO+(1, 2), which amounts to calculating the orbits of its canonical ac-
tion on R3. This gives a class of orbits that is essentially the same as the dual orbits
of SO+(1, 3). We omit the statement, since the corresponding coadjoint orbits of the
Poincaré group are not believed to have physical signi�cance (see Section 10.2.2).

The classical relativistic elementary particles are classi�ed by the coadjoint orbits
of the universal central extension Poin?(1, 3) = R4 oρ SL(2,C), which is simply the
universal cover of the Poincaré group. (The symplectic cohomology of the Poincaré
group is trivial [36, Prop.13.62].) By Lemma 9.1 we therefore already know the
coadjoint orbits of Poin?(1, 3).

10 Summary and physical interpretation
The point of this thesis was to give a thorough description of the mathematics un-
derlying the physical concept of an elementary particle, with an emphasis on the
classi�cation of these particles. In particular, we have applied the resulting formal-
ism to two di�erent kinds of spacetime symmetry groups: the Galilei group and the
Poincaré group (actually their identity components).

Summary 10.1. Let G be one of the spacetime symmetry groups (or any other
connected Lie group, for that matter). A classical elementary particle is de�ned
as a transitive Hamiltonian G-space, i.e., a transitive Hamiltonian action of G on some
connected symplectic manifold. By Theorems 8.10 and 8.12 the classical elementary
particles are classi�ed by the coadjoint orbits of the universal central extension G?.

A quantum elementary particle is de�ned as an irreducible projective unitary
representation of G. By Theorem 6.9 the quantum elementary particles are classi�ed
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by irreducible unitary representations of G?. More practically, the quantum element-
ary particles are classi�ed by irreducible unitary representations of central extensions
of the universal cover G̃ [4,25], where these central extensions are in turn classi�ed by

the second cohomology group H2
es(G̃,U(1)) ∼= H2

es(G̃,R) ∼= H2
al(g,R) (see Lemma 4.21

and Section 4.3.3).

In the classi�cation of either classical- and quantum elementary particles we there-
fore need the universal central extension of the spacetime symmetry groups. For the
calculation of the universal central extensions the second cohomology groups are an
important part. We found in Section 5:

H2
al(gal(3),R) ∼= R, H2

al(poin(1, 3),R) = 0.

Despite the Galilei algebra gal(3) having an in�nitude of non-trivial central extensions,
we found in Section 5.1.2 that the Galilei group has only one non-trivial central
extension (up to isomorphism). The universal central extensions read:

Gal?M (3) ∼= R5 oρ S̃E(3) ∼= R5 oρ
(
R3 o S̃O(3)

)
Poin?(1, 3) ∼= R4 o S̃O+(1, 3) ∼= R4 o SL(2,C),

where ρ is as in (9.8), and M ∈ R \ {0} is the extension parameter of galM (3).
We start with quantum elementary particles:

10.1 Quantum elementary particles

Summary 10.2. In Section 6.5 we state the classi�cation of the irreducible unitary
representations of the universal covering of the Galilei group. (For further references,
please see [6, 24, 25] and [22, p.273].) The only physically relevant unitary represent-
ation is

um,j(t,a,v, U)ψ(p) = e
i
(
t p2

2m +〈a,p〉
)
Dj(U)ψ

(
p̃(U)−1(p+mv)

)
,

de�ned on the Hilbert space L2(R3) ⊗ C2j+1. Here Dj : SU(2) → U(2j + 1) are the
irreducible representations of SU(2). The quantum elementary particles are therefore
labelled by two numbers: m and j. The labelm is called themass of the particle, and
can be any non-negative real number: m ∈ R>0. Notably, the mass arises from the
fact that the Galilei group has non-trivial central extensions, and indeed, a particle
of mass m corresponds to unitary representations of the universal cover of Galm(3).

In the massive case (m > 0) the label j takes values in N/2 ∪ {0}, and is called
the spin of the particle. In the massless case (m = 0) the label j instead takes values
in Z/2, and is called the helicity . We consider the right representation for this case
to be that of class 2. The representation is now of the form

up,j(s,a,v, U)ψ(E,p) = ei(〈p̃(U)p,a〉−s(E+〈p̃(U)p,v〉)+jα(U,p))ψ(E + 〈p̃(U)p,v〉, p̃(U)p),

cf. [24, Eq.(IV.8)], where the Hilbert space is L2(R× S2
p), for some p ∈ R>0.

Summary 10.3. In Section 6.6 we state the classi�cation of the irreducible unitary
representations of the universal cover of the Poincaré group. (For the original classi-
�cation by Wigner, see [43]. We further refer to [21, Prop.IV.3.3.1].) The physically
relevant representations are labelled by a number m ∈ R>0, called the mass of the
particle, and a discrete number j. The Hilbert space is L2(R3) ⊗ C2j+1. For the
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massive case (m > 0) we have j ∈ N/2∪{0}, and it is called the spin of the particle.
The explicit form of the representation is then

um,+,j(a,∆)ψ(p) = e
i
(
a0
√
p2+m2−〈a,p〉

)
Dj(b

−1
p ∆bp̃(∆)−1p)ψ(p̃(∆)−1p).

In the massless case (`m = 0') we have j ∈ Z/2, where the Hilbert space is L2(S±0 ).
(For the explicit expression of the representation we refer to Section 6.6.)

10.2 Classical elementary particles

Next we have the classi�cation of classical elementary particles, which is the same as
the classi�cation of the coadjoint orbits of the universal central extensions. Here we
provide some more detail as to the origin of the interpretation, opening with Galilean
particles:

10.2.1 Classical Galilean elementary particles

There are four types of coadjoint orbits through the universal central extension of the
Galilei group:

O0,r,s
Gal?(3), Ok,0,0

Gal?(3), Ok,r,0
Gal?(3), OM,V,s

Gal?(3),

for r, s ∈ R>0, k ∈ R>0, V ∈ R and M ∈ R \ {0}. We pose that the physically most

relevant orbit is OM,V,s
Gal?(3). Recall that the corresponding dual orbit reads (9.10):

OrbM,V

S̃E(3)
:=

{
(Θ, E,p) ∈ R5 : E − p2

2ΘM
= V

}
.

We interpret E as the total energy of the particle, p as the momentum, M as the

mass, and V as the internal energy. Since the dual action of S̃E(3) does not act on
the �rst component of (Θ, E,p), see (9.9), and it acts merely as a scale factor for
the momentum, we may set Θ = 1 [25, p.250]. In that case, the de�ning relation of
the dual orbit is interpreted as the classical energy-momentum relation between the
total-, kinetic- and internal energy. Discarding the Θ component, the dual orbits are
now four-dimensional parabolas whose o�set from the origin is determined solely by
V , so it is obvious that

OrbM,V1

S̃E(3)

∼= OrbM,V2

S̃E(3)

for any two V1, V2 ∈ R, and hence we set V = 0, without any loss of generality.
Physically speaking, we interpret this as the non-absoluteness of internal energy as a
quantity, meaning that the internal energy of an elementary particle is not a de�ning
property. We relabel the coadjoint orbit OM,0,s

Gal?(3) to Om,s
Gal?(3), where s ∈ R>0 is the

spin and m := M is the mass of the particle, recalling the extension label M of the
centrally extended Galilei group. It is seen that the non-trivial central extensions of
the Galilei group are responsible for the non-zero mass of these elementary particles.
We similarly relabel the dual orbit:

Orbm
S̃E(3)

:=

{
(E,p) ∈ R4 : E − p2

2m
= 0

}
∼= R3.

We can now view the coadjoint orbit Om,s
Gal?(3) in a much simpler light:

Om,s
Gal?(3)

∼= T ∗Orbm
S̃E(3)

×Os
SO(3)

∼= T ∗R3 × S2
s
∼= R6 × S2

s .
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Since the coadjoint orbits are (up to isomorphism) the state spaces of elementary
particles, we see that we have one component of the state space in S2

s , representing the
intrinsic angular momentum (whose absolute value is the spin), and a six-dimensional
vector (q,p) in the cotangent bundle T ∗Orbm

S̃E(3)
∼= R6, where q is interpreted as the

position, and p again as the momentum.
It remains for us to interpret the coadjoint orbits O0,r,s

Gal?(3), Ok,0,0
Gal?(3) and Ok,r,0

Gal?(3)

that correspond to `M = 0', which, given the above interpretation of this label as the
mass, we would like to interpret as massless particles. Such an interpretation is given
in [13, �52,pp.440-441], which we quote. The orbits O0,r,s

Gal?(3) correspond to �particles of

zero mass and �nite velocity at in�nity.� The orbits Ok,r,0
Gal?(3) are �particles at in�nity

with in�nite velocity and mass zero.� Lastly, we have the most physically relevant
orbit: Ok,0,0

Gal?(3), which correspond to �particles of zero mass and in�nite velocity.�

10.2.2 Classical Poincaré elementary particles

As a last part of the classi�cation, we consider the classical relativistic elementary
particles. We found four classes of coadjoint orbits of the (universal cover of the)
Poincaré group; one corresponding to the coadjoint orbits of the Lorentz group, three
others:

Om,±,s
Poin(1,3), O0,±,h

Poin(1,3), O0,±,h,r
Poin(1,3)

and one more class corresponding to the coadjoint orbits of the two-dimensional
Lorentz group. Only the second and third classes are believed to have physical sig-
ni�cance [21, Prop.III.3.1.1]. (The coadjoint orbits arising from the two-dimensional
Lorentz group are called tachyonic.)

First we consider the coadjoint orbits Om,±,s
Poin(1,3) corresponding to the dual orbits

Orbm,±
SO+(1,3)

= {(E,p) ∈ R4 : E2 − p2 = m2,±E > 0} =: S±m,

where we recall notation from Section 6.6. Just as for the Galilei group, E is inter-
preted as the total energy, p is interpreted as momentum so that (E,p) is the four-
momentum, and m is interpreted as the mass. The de�ning relation of the dual orbit
is recognised as the relativistic mass-energy-momentum relation (in natural units).
The orbit themselves are one sheet hyperboloids, which are isomorphic to R3. The
coadjoint orbit becomes

Om,±,s
Poin(1,3)

∼= R6 × S2
s ,

which corresponds to the state space of a particle with mass m ∈ R>0 and spin
s ∈ R>0. The other coadjoint orbits then correspond to massless particles. We have
the coadjoint orbits

O0,±,h
Poin(1,3)

∼= R6

which describe massless particles with helicity h ∈ R. The reason that the state
spaces for the massless particles look like the ones for massive spinless particles is
that the direction of the helicity is always along (or against) the momentum. Hence
there is no need for an additional component to specify the direction of the helicity.

10.3 Discrete spin in classical mechanics

We have an incredible analogue between classical and quantum mechanics. In both
cases the elementary particles are labelled by two numbers: the mass and spin (or
helicity). The main di�erence is that in quantum mechanics the spin is discrete,
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meaning that in particular it takes half integer values, whereas in classical mechanics
it is not. To get a `true' analogy, we can restrict ourselves to integral coadjoint orbits:

De�nition 10.4. LetG be a connected Lie group. We say a coadjoint orbit OG(F1) ⊆
g∗ is integral if for some (and hence all) F ∈ OG(F1) its restriction to its own
stabiliser algebra F |gF

is of the form

F (X) = i
d

dt
χ(etX)

∣∣∣∣
t=0

for each X ∈ gF , and for some character χ : GF → U(1). (Cf. [22, Def.5.47].)

In [22, p.163] it is shown that this integrability condition ensures that the classical
spin s is also a non-negative half-integer, just as the quantum spin.

10.4 Elementary particles of the Standard Model

We have found that elementary particles are de�ned by two labels: the mass m, and
for massive particles the spin s, while for massless particles we have the helicity h.
For the quantum elementary particles, the spin and helicity are half-integer valued.
In the Standard Model we know that every particle does indeed have half-integer
valued spin. There are four types of massive particles (m > 0): for spin s = 1

2 we
have the leptons and quarks, which are the main constituents of `ordinary matter'.
The Higgs boson is a massive spinless particle: s = 0. Lastly, we have the electroweak
bosons, with spin s = 1. Besides the massive particles, we have three types of massless
particles (m = 0). Two of them have helicity h = ±1, which are the photons and
gluons. Finally, we have the elusive gravitons, which are massless particles of helicity
h = ±2.

We quote [22, p.272]: �On the one hand, this classi�cation is a triumph of math-
ematical physics, but on the other hand, it fails to single out which cases actually
occur in nature. . . � It should be noted, however, that there are various `composit
particles', i.e., particles that are composed of the elementary ones, which may have
mass and spin other than those of the elementary particles (e.g., spin s = 5

2 ).

Quantum Classical

m > 0,
j ∈ N/2 ∪ {0}

m = 0,
h ∈ Z/2

m > 0,
s ∈ R>0

m = 0,
h ∈ R

Galilean L2(R3)⊗ C2j+1 L2(R× S2
p) R6 × S2

s R2 × T ∗S1
|h|

Poincaré L2(R3)⊗ C2j+1 L2(S±0 ) R6 × S2
s R6

Table 1: The classi�cation of quantum- and classical elementary particles in Galilei- and Poincaré
spacetime, with the corresponding state spaces. The label m is the mass, the labels j, s are the spin,
and h is helicity.

83



References
[1] P. Arathoon and J. Montaldi, Adjoint and coadjoint orbits of the euclidean group, (2015).

[2] J. C. Baez, Struggles with the continuum, arXiv preprint arXiv:1609.01421, (2016).

[3] L. E. Ballentine, Quantum Mechanics: A Modern Development, World Scienti�c, 1998.

[4] V. Bargmann, On unitary ray representations of continuous groups, Annals of Mathematics,
(1954), pp. 1�46.

[5] X. Bekaert and N. Boulanger, The unitary representations of the poincaré group in any

spacetime dimension, arXiv preprint hep-th/0611263, (2006).

[6] G. Cassinelli, E. Vito, A. Levrero, and P. Lahti, The Theory of Symmetry Actions

in Quantum Mechanics: with an Application to the Galilei Group, Lecture Notes in Physics,
Springer Berlin Heidelberg, 2004.

[7] J. A. de Azcárraga and J. M. Izquierdo, Lie Groups, Lie Algebras, Cohomology and

some Applications in Physics, Cambridge Monographs on Mathematical Physics, Cambridge
University Press, 1995.

[8] J. J. Duistermaat and J. A. C. Kolk, Lie Groups, Universitext, Springer Berlin Heidelberg,
1999.

[9] G. Eichmann, Hadron physics, 2014. Lecture notes, http://cftp.ist.utl.pt/~gernot.

eichmann/2014-hadron-physics/hadron-app-2.pdf.

[10] R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, Dover Books on
Mathematics, Dover Publications, 2012.

[11] J. J. Gleason, The C∗-algebraic formalism of quantum mechanics, 2009.

[12] T. E. Goldberg, The very, very basics of hamiltonian actions on symplectic manifolds, 2009.
Notes, http://www.math.cornell.edu/~goldberg/Notes/HamiltonianBasics.pdf.

[13] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University
Press, 1990.

[14] B. C. Hall, Quantum Theory for Mathematicians, Graduate Texts in Mathematics, Springer
New York, 2013.

[15] , Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate
Texts in Mathematics, Springer International Publishing, 2015.

[16] M. Hamermesh, Group Theory and Its Application to Physical Problems, Addison Wesley
Series in Physics, Dover Publications, 1962.

[17] P. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Math-
ematics, Springer New York, 1997.

[18] C. J. Isham, Lectures on Quantum Theory: Mathematical and Structural Foundations, Imper-
ial College Press, 1995.

[19] T. F. Jordan, Why −i∇ is the momentum, American Journal of Physics, 43 (1975), pp. 1089�
1093.

[20] A. A. Kirillov, Lectures on the Orbit Method, Graduate studies in mathematics, American
Mathematical Society, 2004.

[21] N. P. Landsman, Mathematical Topics Between Classical and Quantum Mechanics, Springer
Monographs in Mathematics, Springer New York, 1998.

[22] , Foundations of Quantum Theory, Fundamental Theories of Physics, Springer Interna-
tional Publishing, 2017.

[23] H. W. Lenstra, Jr. and F. Oort, Groepentheorie, 2014. Lecture notes (in Dutch),Moonen,

B. J. J., ed., https://www.math.ru.nl/~bmoonen/GroepenTh/Groepentheorie2015.pdf.

[24] J.-M. Lévy-Leblond, Galilei group and nonrelativistic quantum mechanics, Journal of math-
ematical Physics, 4 (1963), pp. 776�788.

[25] , Galilei group and galilean invariance, in Group Theory and Its Applications, Vol. 2,
Academic Press, 1971.

[26] B. MacCluer, Elementary Functional Analysis, Graduate Texts in Mathematics, Springer
New York, 2008.

[27] J. Maes, An introduction to the orbit method, master's thesis, 2011.

[28] I. M rcuµ, Manifolds, 2016. Lecture notes, http://www.math.ru.nl/~imarcut/index_files/
lectures_2016.pdf.

84

http://cftp.ist.utl.pt/~gernot.eichmann/2014-hadron-physics/hadron-app-2.pdf
http://cftp.ist.utl.pt/~gernot.eichmann/2014-hadron-physics/hadron-app-2.pdf
http://www.math.cornell.edu/~goldberg/Notes/HamiltonianBasics.pdf
https://www.math.ru.nl/~bmoonen/GroepenTh/Groepentheorie2015.pdf
http://www.math.ru.nl/~imarcut/index_files/lectures_2016.pdf
http://www.math.ru.nl/~imarcut/index_files/lectures_2016.pdf


[29] M. Müger, Topology for the working mathematician, 2016. Unpublished.

[30] R. Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe, Vintage
Series, Vintage Books, 2007.

[31] J. Rawnsley, Representations of a semi-direct product by quantization, Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 78(2), pp. 345�350.

[32] J. F. Samani, Why do we say that irreducible representation of poincare group represents the

one-particle state? Physics Stack Exchange. https://physics.stackexchange.com/q/73600

(version: 08-08-2013).

[33] M. Schottenloher, A Mathematical Introduction to Conformal Field Theory, Springer Berlin
Heidelberg, 2008.

[34] U. Schreiber, Poincare group. nLab. https://ncatlab.org/nlab/revision/Poincare+group/
23 (version: 01-01-2015).

[35] J. Schwinger, Particles, Sources, and Fields, Vol. 1, Advanced Book Classics, Avalon Pub-
lishing, 1998.

[36] J.-M. Souriau, Structure of Dynamical Systems: A Symplectic View of Physics, Progress in
Mathematics, Birkhäuser Boston, 1997.

[37] N. Straumann, Unitary representations of the inhomogeneous lorentz group and their signi-

�cance in quantum physics, in Springer Handbook of Spacetime, Springer, 2014, pp. 265�278.

[38] G. M. Tuynman and W. A. J. J. Wiegerinck, Central extensions and physics, in Studies
in geometric quantization, Universiteit van Amsterdam, 1988.

[39] V. S. Varadarajan, Geometry of Quantum Theory, Springer New York, 2007.

[40] S. Weinberg, The Quantum Theory of Fields, no. v. 1 in The Quantum Theory of Fields 3
Volume Hardback Set, Cambridge University Press, 1995.

[41] H. Weyl, Symmetry, Princeton paperbacks, Princeton University Press, 1952.

[42] E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren.
- Braunschweig: Vieweg 1931., Die Wissenschaft, Vieweg, 1931.

[43] E. Wigner, On unitary representations of the inhomogeneous lorentz group, Annals of Math-
ematics, 40 (1939), pp. 149�204.

[44] Wikimedia Commons, Vitruvian man. https://commons.wikimedia.org/wiki/File:

Vitruvian.jpg.

[45] W. Ziller, Lie groups. Representation Theory and Symmetric Spaces, Citeseer, 2010.

85

https://physics.stackexchange.com/q/73600
https://ncatlab.org/nlab/revision/Poincare+group/23
https://ncatlab.org/nlab/revision/Poincare+group/23
https://commons.wikimedia.org/wiki/File:Vitruvian.jpg
https://commons.wikimedia.org/wiki/File:Vitruvian.jpg

	Introduction
	I Symmetry in physics
	Symmetries and elementary particles
	Galilean spacetime and principles of relativity
	Minkowski space and principles of special relativity
	Representation theory in quantum mechanics
	Symmetries of the quantum state space

	Coadjoint orbits in classical mechanics

	Structure of the spacetime symmetry groups
	Matrix Lie groups and their Lie algebras
	The classical Lie groups
	The orthogonal and unitary groups
	…and their Lie algebras
	The generalised orthogonal groups

	Spacetime symmetry groups as matrix Lie groups
	The structure of the Euclidean group, semi-direct products
	The structure of the Galilei group as a matrix Lie group
	The structure of the Poincaré group as a matrix Lie group

	Universal covering groups
	Universal covers of `39`42`"613A``45`47`"603ASO(3) and `39`42`"613A``45`47`"603ASO+(1,3)



	II Quantum particles
	Central extensions and projective representations
	Central extensions
	Projective representations
	Central extensions of Lie groups and Lie algebras
	Central extensions of Lie algebras
	Lie algebra extensions using structure constants
	Central extensions of Lie groups


	Extensions of the spacetime symmetry groups
	Extensions of the Galilei group
	Central extensions of the Galilei algebra
	Central extensions of the Galilei group
	Universal cover of the Galilei group

	Extensions of the Poincaré group
	Central extensions of the Poincaré algebra
	Universal cover of the Poincaré group


	Classifying the quantum elementary particles
	Unitary operators on a Hilbert space
	Symmetries of the state space
	Projective unitary representations on Lie groups
	Lifting projective unitary representations
	Projective unitary representations of the Galilei group
	Projective unitary representations of the Poincaré group


	III Classical particles
	The classical formalism
	Classical state spaces
	Smooth and symplectic group actions

	Coadjoint orbits
	Some more representation theory
	The adjoint- and coadjoint representations
	Coadjoint orbits of semi-direct products
	Hamiltonian actions and defining classical elementary particles
	Twisted coadjoint orbits and elementary particles

	Coadjoint orbits of the spacetime symmetry groups
	Coadjoint orbits of the Galilei group
	Coadjoint orbits of `39`42`"613A``45`47`"603ASO(3)
	Coadjoint orbits of `39`42`"613A``45`47`"603ASE(3)
	Coadjoint orbits of the Galilei group

	Coadjoint orbits of the extended Galilei group
	Coadjoint orbits of the Poincaré group

	Summary and physical interpretation
	Quantum elementary particles
	Classical elementary particles
	Classical Galilean elementary particles
	Classical Poincaré elementary particles

	Discrete spin in classical mechanics
	Elementary particles of the Standard Model



