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The time-path method in finite temperature field theory is extended to arbitrary covariant fields. Explicit expressions for the 
free thermal propagators are obtained using the multi-mass Klein-Gordon divisor. The key formula which shows that the 
interacting theory is free of singularities is derived. Finally, a simple method for the determination of free massless propagators 
is given. 

Over the last decade significant progress has been 
made in the real-time approach to relativistic quantum 
field theory at finite temperature and density [1 -6 ] .  
It has been shown [1] that the algebraic operator 
method known as thermo field dynamics [2 -4 ]  leads 
to the same Feynman rules as the time-path method 
in its formulation by Niemi and Semenoff [5]. How- 
ever, these considerations were restricted to some sim- 
ple fields of  spin ~<1, and it is the purpose of  this let- 
ter to extend the time-path method and the consisten. 
cy proof it requires [5,6] to fields of  arbitrary spin 
and mass. 

Let ¢~(x) be a covariant complex field *t ,  trans- 
forming under some representation D of  the Lorentz 
group and carrying an arbitrary number of  charges qA 
such that [QA, ~o~] = - - q A ~ .  Internal indices are sup- 
pressed here, and qA could be a matrix in internal 
space. The free lagrangian is given by 

~ o  = ~ A ~ a ( a ) 9 # ,  (1) 

where ~ = ~a tA~ such that A intertwines the repre- 
sentationsDT and D -  , and A is a differential operator 
of  finite order satisfying (AA(a)) t = A A ( - a ) .  The mass 
spectrum m 1 (l = 1 ..... k) and spin content of  the 
field ¢ can be inferred from A [7]. 

In the time-path approach the first step in obtain- 

.1 For a real field the RHS of eelS. (1) and (5) must be multi- 
plied by 1/2. 
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ing the thermal propagator consists in solving the equa. 
tion 

% ~ ( a x ) D 0 ~ ( x  - x ' )  = a ~ a c ( t  - t ' ) a  3(x - x ' ) ,  

(2) 

with the boundary conditions 

D O a a ( x  - x ' )  = 0 c(t - t ' )D+aa(x  - x ' )  

+ Oe( t '  - t ) D g # ( x  - x ' ) ,  (3) 

+ t '  ' a - , a ~ # ( t  - - i/~, x - x ) = ~ e D a # ( x  - x ) .  (4) 

Here the delta, and stepfunction are defined on a spec- 
ified contour [5], and contourordering is covariant in 
the sense that the stepfunctions commute with the 
Klein-Gordon divisor. Eq. (4) is the KMS condition, 
with the linear combination o f  the independent chem- 
ical potentials ~ = - (3  ~'A l a A q A ,  and the inverse tem- 
perature/L We now assume the existence of  a multi- 
mass Klein-Gordon divisor d(a) [7 -9 ]  satisfying 

k 

daa(a)Aa,r(a ) = ( - 1 ) k f a ,  l__l~l (O * m 2 ) ,  (5) 

in terms of  which .2 eqs. (2 ) - (4)  can be solved to 
yield 

*2 A general formula for the multi-mass case is given in ref. 
[7]. Explicit forms of the KGD for the single mass > 0 
case may be found in ref. [9]. 

0370-2693/86/$ 03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Volume 172, number 1 PHYSICS LETTERS B 8 May 1986 

A a(p) = f d 4 x  eipXDoa~(x) 

= [A(p, mi)(1 + r/Np) - r~A*(p, mi)Np] d , f ( - i p ) ,  

(6) 

= f d4x eipxo~#(x) 

= [A(p, mi) _ A*(p, mi) l [0(+P0 ) + rlNp]d~3(-ip), 
(7) 

with 

A(p'mi)= ~l (p2--m2 +ie)-l ' (8) 

Np = 0(P0) [exp(3p 0 + or) - 71-1 

+ O(-Po){exp[-(3po + ~)] - ~7} -1 . (9) 

In the single-mass case the terms in (6) proportional 
to Np may be combined into the well-known mass- 
shell delta function [1-6]. In analogy with the scalar 
case [5] the free thermal 2 × 2-matrix propagator is 
now deemed as *a 

• 1 1   D0.a(p) = f d4x e'PXiDoc~3(x) = iAa3(p ) , (10) 

1Doa#(p). 12 = f d 4 x  eipXiDo~#(t+ 1/2i3,x) 

= exp(3p 0/2)iA~-3(p), (11) 

• 2 1  
1 D 0 ~ # ( P )  - f d4x eipXiDoa3(t - 1/2i3, x) 

= exp(-3P0/2 ) iA+#(p), (12) 

iD0./s(p ) .  22 _- ~fd4xeipx(iD0c,3(-x))* = (iAa0(p)), . 

(13) 

In eq. (13) and in the following the complex conjuga- 
tion refers to factors i and ie only, not to possible 
group matrices, etc. The explicit form (6), (7) of the 
A's allows us to write 

* 3 The equations in ref. [5 ] corresponding to out (11) and 
(12) have a sign error. 

D~/#(p ) Mn ( Aa#(p, mi) 0 ) = M,1 , 
" 0 --a*3(p, mi) 

(14) 

in terms of the Bogoliubov transformation matrix 

(cos(h) O r/e-~/2 sin(h)O ) ( 1 5 )  

Mn = e a/2 sin(h) O cos(h) O 

with sin(h)20 = Np, of. (9). The hyperbolic/goniomet- 
ric functions arise in the bosonic/fermionic case. 

Proceeding with the interacting case we define the 
propagator D/~(p) by full thermal 

1O 3 ( p ) "  11 _- fd4x eipx(T~oa(x)~3(O)), (16) 

iDI2- - .:p) =,  f d4x elPX(~#(O)~(t + 1/2i3, x)) ,  (17) 

iD21 - . _ ~3tp)-  f d4x efPX(~o(t - 1/2i3, x)~3(O)), (18) 

• 2 2  _ 1 D # ( p )  - f d4x eipx(T*~o (x)~p#(O)). (19) 

The KMS condition then leads to 

D 2 1 - "  caD 12" " (20) a3h o) = ~ ~(P) • 
From the definitions (16)-(19) and eq. (20) we now 
immediately have 

• 2 2  • 1 1  • i o  ~(p) = ( w  ~(p)) , (21) 

iD 1 1 ~  + "iD l l r  --* 

= [77 exp(~ + 3P0/2) + exp(-fP0/2)]" iD~(p)  . 1 2  

(22) 

Now let us deEme a quantity Gut3(p) according to 

iD ll~fltp)" " -- (1 + ~TNp)G~fl(p) + rlNpG~(p), (23) 

then eqs. (21)-(23) imply that we may write the full 
matrix propagator in terms of the single quantity 

.. (G.~(p)  0 ) 
M n , (24) iD~(p)  = M n 0 G*~(p) 

in terms of the same Bogoliubov matrix as in eq. (14). 
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Of course, eqs. (10) - (14)  are special cases of  eqs. 
(16)- (24) .  

Eq. (24) is of  the type discovered by Takahashi 
and Umezawa [2] and is by now more or less axiomat- 
ic in the construction of  thermo field dynamics. For 
scalar fields eq. (24) was derived in ref. [5] on the as- 
sumption of  the existence of  a spectral representation, 
the use of  which is not at all necessary, as we have 
demonstrated. The importance of the representation 
(24) for the full matrix propagator derives from its 
use in the proof  [5,6] that the real-time method is 
consistent, i.e. free of  singularities of  the type 6N(p2 
-- rn/2), N > 1, the occurrence of which would be naive- 
ly expected from eqs. (10) - (13)  for the free propaga- 
tor. Starting from eq. (24), the consistency proof  giv. 
en for the scalar case in refs. [5,6] can be literally 
copied to conclude that the correctly applied real- 
time method leads to a consistent theory for any spin 
and mass (foregoing possible infrared divergences). Eq. 
(24) may also be used to define a thermal self-energy 
[5,6,10] which can be shown to be the standard ana- 
lytic continuation of  the imaginary-time self-energy 
[111. 

We will finally elaborate on the derivation of the 
free propagator for massless theories. In order to ob- 
tain the correct fimite temperature e-prescription as in 
eq. (6) it is mandatory to avoid the use of  nonlocal 
projection operators. For fields describing a single 
massless particle of  helicity 2~ no problems will be en- 
countered [12]. Gauge theories do not belong to this 
class, but for these our method involving the multi- 
mass Kle in-Gordon divisor comes in handy. For the 
photon (or gluon) field A u we take the Stuckelberg 
lagrangian [13] with the differential operator 

A~(a )  = g ~ ( ~  + u 2) + (X - 1)a~a~, (25) 

which possesses the mass spectrum m21 = .u 2, m 2 =/a2/ 
k. The two-mass Kle in-Gordon divisor 

daO(a) = g~t3([3 +/a2/X) - (1 - k - 1 ) a a a o  (26) 

satisfies eq. (5) for k = 2. We can at once setla = 0 to 
arrive with (6), (8) and (26) at the correct massless 
propagator,  which had been previously obtained in 
refs. [14,15] by rather different methods. The meth- 
od sketched above is of  course applicable to zero tem- 
perature and density as well, and is somewhat simpler 
than the one described in textbooks [13]. 

In conclusion, the author wishes to thank H. 
Umezawa and G.W. Semenoff  for correspondence and 
for sending preprints in advance of  publication. 
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