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We give a perturbative analysis of dimensional reduction in the infinite-temperature limit of thermal field theory in the imagi- 
nary-time formalism. In analogy with the ordinary (Appelquist-Carazzone) decoupling theorem, we seek a class of renormaliza- 
tion schemes in which the heavy (non-static) modes decouple. This class turns out to consist of temperature-dependent schemes, 
so that the appropriate context to study dimensional reduction at high T is seen to be the finite-temperature renormalization 
group. As a corollary, it follows that dimensional reduction to all orders occurs only in exceptional cases; in scalar field theories 
and QCD such a reduction is valid only up to a given (low) order of renormalization-group improved perturbation theory. 

1. Introduction 

It has been stated by many authors  [ 1-7 ] that  in 
the inf in i te- temperature  l imi t  thermal  field theories 
exhibit  an effective reduct ion from four to three di- 
mensions.  This  d imens iona l  reduct ion ( D R )  is usu- 
ally analyzed in per turba t ion  theory,  and is argued to 
take place on account of  the decoupl ing theorem of  
Appelquis t  and Carazzone (AC)  [ 8 ]. 

The basic reasoning is as follows: in the free prop-  
agators [ k 2 + m 2 + ( 2 n n T ) 2 ]  - l  of  imaginary- t ime 

perturbat ion theory, the term 2nnTacts  like a "mass"  
in a three-dimensional  theory. According to the AC 
theorem all non-stat ic  modes  (n ~ 0)  decouple in the 
l imi t  T--, oo, leaving the static ( = three-d imens ional )  
sector as the effective theory. 

However,  one should realize that  the AC theorem 
is only val id  in a par t icular  class of  renormal iza t ion  
schemes. As a mat ter  &fac t ,  it turns out that in trying 
to demons t ra te  the decoupl ing of  the non-stat ic 
modes,  one is forced to adopt  a tempera ture-depen-  
dent  renormal iza t ion  scheme (RS) .  Consequently,  
one has T-dependent  renormal ized  parameters ,  e.g. 
m = m (T) ,  etc. In such an RS a general ized AC theo- 
rem (i.e. extended to an infinite set of  masses)  can 
be shown to hold up to terms of  the order  m Z / T  2 

[ 9,10 ]. Dimens iona l  reduction,  then, actually takes 
place only i f  l i m T ~  m ( T ) / T = O .  Insert ion of  the 
well-known [4] "generated mass", moc2~VT, for static 
fields shows that  this is not expected to be the case. 

The main  purpose of  this paper  is to show that  DR 
should be invest igated by fully taking into account 
the consequences of  the renormalizat ion group ( R G )  
at f inite temperature .  In part icular ,  the precise defi- 
ni t ion of  t empera ture-dependent  masses and their  
impl icat ions  for D R  will be discussed. 

2. Dimensional reduction and renormalization 

To explain the impor tan t  role o f  thermal  renor- 
mal iza t ion  in the subject of  DR,  we investigate a 0 4 
theory with a bare field ~a. Fol lowing Jour j ine  [ 5 ], 
we rewrite the eucl idean action, def ined as a func- 
t ional  of  per iodic  fields [ 11 ], as a three-dimensional  
vacuum theory with an infinite number  of  massive 
fields. I f  we turn directly to renormal ized  fields, this 
is achieved by substi tut ing 

OB(Z,x)=Zt3/2T 1/2 ~, q~,(x) exp(iog, z),  (1)  
t l =  - - o o  
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where m, = 2 n n T  are the well-known Matsubara  fre- 
quencies [4,11 ]. The renormal iza t ion  program is 
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completed by introducing the renormalized mass and 
coupling constant as m g = Z l  Z~ -l m 2 and 2B =Z2 
X Z~-2).. 

Perturbation theory is set up with an action cast 
into the form 

SE= f d 3 x  (~a}Wo~a~W~St+~Pq-~(~gW~cnt). (2) 

The static (s) and nonstatic (n) free lagrangians, 
given by 

f d 3 x  [ 1 (V~)o)2 + 1 m'~ 2rA2 = ~"~ WO], 

Y~r= fd3x½ ~ [ V q . V 0 _ . + ( m 2 + o 9 2 ) O . ~ - . ] ,  
n¢0 

(3) 

respectively, are used to generate the free propaga- 
tors of  the theory. The interaction part ("basic la- 
grangian" [12])  ~ , = ( 2 T / 4 ! ) ~  4 produces the 
purely static interaction vertex, and Y~b = ( ; tT/4!)  
X E'n, 6( rll + n2 + n3 + n4 ) ~n, ~n20n3~n4 yields the non- 
static and mixed ones. Here Y' denotes that the static 
term is excluded. 

The subtractions, which remove the ultra-violet 
(UV) divergences, and, if possible, also the leading 
corrections to dimensional reduction (see below), are 
implemented by counterterms. For the static part we 
have 

~cSt = 1 ( 2  3 -- 1 ) (Vi00)2"~ ½ ( Z  l - -  1 )m2~o 2 

1 
+ ~ (Z2 - 1 )2Tfb 4, (4) 

and it is straightforward to write down the expression 
for LG". 

It is to be remarked that this theory with an infinite 
number of  fields is renormalizable, because it is es- 
sentially a four-dimensional finite-temperature field 
theory. At T>  0 there will be no UV divergences ad- 
ditional to the T =  0 ones. In particular, renormali- 
zations at different temperatures T are connected by 
finite reparametrizations [ 13,14 ]. The renormaliza- 
tion constants Z~ are determined by suitable normal- 
ization conditions on the amputated one-particle- 
irreducible (1PI)  two- and four-point vertex func- 
tions in momentum space with vanishing external 
energies. At finite T such conditions do not have a 
direct physical interpretation [ 15 ]. We stress that the 
renormalized parameters 2 and m are defined by, and 

thus depend on, the particular choice of  these condi- 
tions, which uniquely define a RS. 

In the present case, the counterterms in principle 
consist of two independent terms, i.e. Z i -  1 = 8Z s + 
8Z n, where 8Z~ receives only contributions from 
purely static graphs, while 8Z n corresponds to the 
additional non-static mode summations. For DR to 
take place it is necessary that non-negligible contri- 
butions from the latter to static Green functions are 
removed by a proper choice of  the non-static renor- 
malization constants 8Z~. As already stated, this re- 
quirement leads to a temperature-dependent pre- 
scription. Obviously, there is no specific constraint 
for the static renormalization constants 8Zp. 

Before turning to explicit calculations, we will give 
an RS which has proved to be very useful in the treat- 
ment of  DR [16,10,8]. This scheme consists of a 
minimal subtraction (MS) for the purely static graphs 
at scale v, while 1PI (sub)graphs containing at least 
one non-static internal propagator are subtracted at 
momentum scale 12 and at temperature z. In terms of 
1PI vertex functions/'~") with n static external lines, 
this scheme implies the normalization conditions 

F62)  (p2  = /22 ,  2") = F o  ~2) (p2 =/22, ~')stalic,MS, 

0-p0--~2 F62) (p 2 =/2 2, l") - 002 F62 ) (if2 =/2 2, "c) static, 

(5) 

(6) 

r~4) ( s = t = b / =  ~/2 2, r ) = F 6 4 ) ( s = t = u =  4#2, r)st,t,c, 
(7) 

with s =  (Pl +P2) 2, t=  (P l -P3)  2 and u=  (Pl -P4)  2. 
The RG invariance of the bare theory leads to re- 

normalization group equations (RGE)  for the renor- 
malized vertex functions. Extending the analysis in 
the real-time formalism [ 14,17 ] to the imaginary- 
time case, we simply have 

~ ~+//,~-~ +y, m23- ~ + r  --,r<~),...,~--n~ (8) 

for a 1PI function carrying N external legs with fre- 
quencies n~, ..., nu. A similar equation holds with z 
replaced by/2. The RG functions are 

0 02 Om 2 
°¢~=- - r~z l °gZ3 '  fl~=zOz' Y~=m-2z 0 z '  

(9) 

and similar expressions for a u, etc. These RG func- 
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tions can be derived in a standard manner from the 
renormalization constants, which in turn can be found 
by computing the two- and four-point vertex func- 
tions with static external legs, satisfying the condi- 
tions (5 ) -  (7). Solving (9) gives the renormalized 
parameters m =  m(z) ,  etc. 

3. One-loop results 

To show that DR indeed takes place one must show 
that Feynman graphs with internal non-static propa- 
gators can be neglected relative to static graphs, which 
are generated by the three-dimensional static action. 
We obviously need a calculational method for the di- 
vergent expressions, which admits a clean separation 
between regularized static and non-static contribu- 
tions. The standard way of using a contour integral 
[ 11 ] is not suited here, because it leads to a regular- 
ization of the total sum. Consequently, direct com- 
parison with calculations in the static theory, with its 
own different regularization scheme, is out of the 
question. Therefore, we introduce the following way 
of calculating graphs. We first perform the momen- 
tum integrations using dimensional regularization. 
Hereby we introduce a scale u, and set D = 3 - 2 e  
(e > 0). Then the non-static mode summation, which 
is now automatically regularized, is performed, after 
which one can make an expansion in re~T, or alter- 
natively in T/m,  and take e- ,0 [9 ]. Instead, for sim- 
plicity, we will first make the high-temperature ex- 
pansion and then perform the summation, cf. refs. 
[ 18,19 ]. This procedure rigorously leads to the same 
result [ 9 ]. 

For the non-static self-energy tadpole diagram with 
vanishing external frequency we obtain 

f~o 2) ( T),s 

{ T2 m2 [ ~ _ 3  {4nT2"x-] 

m 2 
,10, 

It is remarkable that the pole comes from the ~-func- 
tion rather than a F-function, as in D=  4. The static 
mode gives F ;  2) (T)s = -~.mT/8n. 

An application of the RS outlined in the previous 

section shows that we must choose z= T in order to 
remove the non-suppressed term oc T z in (10). 

In a similar way one may compute the four-point 
function as 

F~ 4) (S, t, U, T),s 

322T [ ~ - 3  / 4 n T 2 )  
- 32n2 v s-°  - y + l n  \-~-5--] 

~(3) [ m 2 + ~ ( s + t + u )  ] 
16~r2T 2 

( m  4 s 2 t 2 U2)]  
+O  -~--g, T4,  T4,  ~-~ , (11) 

and for the static part one finds 

F64)(S, t, u, T)s 

-J.2T2 4 2 
arcsin 1 + s- 

87~S |/2 

+ (s~t )  + (s--.u). (12) 

The renormalized non-static contribution is mini- 
mized by choosing z= T,/z=0.  From these subtrac- 
tions for the non-static parts of the graphs it is 
straightforward to find the RG functions (9). Using 
the RG invariance of the bare mass and coupling, as 
well as formula (9) for aT one derives f ir= 322/16~z 2 
and 7T=2TZ/12m 2 + 2/16/t 2, from which 

1 
g ( T ) =  In(A2/T2),  (13) 

m2(T)=gW3A2[C+F(}) -4-2'''~j~ ~,~, l / g ) ] ,  (14) 

in terms of g=32 /32n  2 and the RG invariants 
A 2 = To 2 exp [ 1/g(To) ] and C. Using the asymptotic 
expansion for the incomplete ~,-function in (14) gives 

mZ(T)=Cgl/3A2+41IZgTZ+O(gZ)T2, (15) 

with g=g(T) .  The appearance of the second term in 
(15) is obviously a direct consequence of the fact that 
we absorbed the first term in (10) into a mass coun- 
terterm. As already claimed before, the corrections of 
order m/Tdo  not vanish in the limit T--.~, but rather 
approach 4/tZgWO(g2) (in view of triviality prob- 
lems, this result is valid for Cg ~/3 << T<<A [9] ). 

The fact that such corrections are always present, 
and cannot all be removed by an improved RS, can 

423 



Volume 223, number 3,4 PHYSICS LETTERS B 15 June 1989 

be inferred by a s imple d imens iona l  analysis  for the 
one-loop UV-convergent  s ix-point  funct ion/-~6) .  I f  
we take, for s implici ty,  all external  momen ta  equal to 
zero, we have 

F ( 6 ) ~ : 3 T 3 F  ( m 3 ) ]  
0 ~-,~ ~-3 L 1 + O  ~ , (16)  

static non-static 

where m = m (T)  def ined by the RS. F r o m  this result 
it is immedia te ly  clear that  complete  D R  does not  oc- 
cur. Nevertheless,  the reduced theory still yields a 
val id  approx imat ion  up to a certain low order  in the 
coupling constant, depending on the part icular  Green 
funct ion under  considera t ion  [ 9 ]. 

4. Concluding remarks 

dicates the b reakdown of  the D R  process in higher- 
order  per turba t ion  theory. Only in exceptional  cases 
like QED, in which there is no mass generat ion for 
the static spatial  gauge field [ 1 ], complete  D R  occurs 
[9] .  

The T-dependent  masses acquire their  p roper  
meaning by means  o f  the R G  at finite T, and  cannot  
be removed  from the theory by a redef ini t ion o f  the 
T- independent  bare mass. This is in some sense 
closely related to the hierarchy problem.  

In our  opinion,  the results of  our  invest igat ion im- 
ply that  results ob ta ined  non-per turbat ive ly  in a 3D 
theory,  especially (QCD)3 ,  cannot  be direct ly ex- 
t rapola ted  to the h igh- temperature  4D theory. An ex- 
tensive account  of  d imens iona l  reduct ion at high 
temperature,  with applicat ions to QED and QCD, will 
appear  elsewhere [ 9 ]. 

Let us point  out, in the context  of  the AC theorem,  
why non-stat ic  modes  do not decouple,  while a heavy 
field in vacuum does. For  a vacuum field theory the 
light mass m is an input  pa ramete r  found to be small  
from experiment .  However ,  f rom an R G  analysis 
s imilar  to the one given above one would immedi -  
ately f ind that  moc2nM, where M i s  the large mass o f  
the decoupl ing field. Clearly, this ruins the decou- 
piing for the same reasons as in the f ini te-Tcase.  This  
d i lemma can be resolved by fine-tuning the bare mass, 
that  is, giving it an M dependence  so as to make the 
renormalizedmass m independent  o f  M. The fact that  
both m and M are fixed parameters ,  with the bare 
mass unknown from the beginning, legit imates this 
procedure.  The need for such f ine-tuning is jus t  the 
hierarchy problem [ 12 ]. On the other hand, the bare 
mass, being temperature independent by definition, 
cannot be fine-tuned with a temperature-dependent 
term. Therefore  one can never get r id o f  the gener- 
a ted T-dependent  masses. 

Of  course, the fact that  the static fields acquire  a 
mass as such has fully been recognized in the l i tera- 
ture. In the convent ional  t rea tment  of  DR,  this mass 
is added  by hand  to the 3D static action. The main  
lesson to be learnt  from our  approach,  based on the 
R G  at finite T, is that  such an inclusion induces cor- 
rections to DR of  order  m2/T 2 as a feedback mech- 
anism. This feature causes D R  to fail in many  cases, 
i n c l u d i n g  ~4 and QCD.  

The main  conclusion o f  this let ter  is that  in general 
the appearance  of  t empera ture -dependent  masses in- 
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