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We employ the theory of the Vilkovisky-DeWitt effective action, trivially extendable to finite temperatures, to define a mani- 
festly gauge- and vertex-independent coupling constant in the high-temperature phase of quantum chromodynamics. The renor- 
malization-group flow of this effective interaction strength is determined on the basis of a recently constructed thermal generali- 
zation of the MOM subtraction scheme (which is briefly reviewed from a rigorous point of view). This scheme intends to minimize 
the effects of higher orders, and appears to be the most "physical" renormalization prescription at finite 7: It is found that the 
one-loop r-function for the renormalized effective expansion parameter thus defined is positive at high T. It follows that, in 
contradiction to conventional wisdom, asymptotic freedom at high temperature (and/or density) cannot be derived from bare 
one-loop renormalization-group arguments. 

I. Introduction 

The study of  per turbat ive  quantum chromodyn-  
amics ( Q C D )  in a many-body  context was ini t ia ted 
by Collins and Perry [ 1 ]: who argued that  the strong 
interact ion becomes weak not only at very high mo- 
mentum transfer, as in deep inelastic scattering, but  
in ultra-dense nuclear mat ter  as well. This seems ev- 
ident  from the usual heuristic picture o f  asymptot ic  
freedom, and the argument  was rapidly extended to 
the case of  low densit ies but  very high temperatures  
( ~ 300 MeV) [ 2 ]. The idca o f  asymptot ic  f rcedom 
at high tempera ture  a n d / o r  densi ty led to the notion 
of  the quark-g luon  p lasma [3,4]:  the phase d iagram 
of  QCD should have at least two regions, a low-tem- 
perature phase in which quarks and gluons are con- 
fined, and a high-temperature phase (the quark-gluon 
p lasma)  in which these part icles are " l ibera ted" ,  and 
interact only feebly. 

The basic reasoning underlying the predict ion of  
the existence of  this deconfined phase of  QCD was 
quite s imilar  to the original per turbat ive  argument  
leading to asymptot ic  f reedom (sce e.g., ref. [ 5 ] ). To 
remove all divergences in a thermal  field theory, it is 
sufficient to renormal ize  at T = 0  [2,6] ,  which pro- 
duces a renormal ized coupling constant  as(i t)  de- 
pending on the renormalizat ion point  It (e.g., the scale 

in min imal  subtraction,  or  the subtract ion point  in a 
momentum subtraction scheme. Let G( k, T, #, as(#) ) 
bc a thermal  n-point  Green function of  d imension d, 
depending on an arbi t rary set o f  momenta  k. Dimen-  
sionali ty and renormal izat ion group invariance give 
G(k, 7;It, as(p) )=Td~')/2G(k/7, 1, 1, as(T)) ,  with 
( =  Z3(it  = T)/Z3(t.t=it),  in obvious notation.  I f  now 
the ze ro-momentum limit  of  G is under  control,  this 
relation seems to indicate that at high T t h e  theory, is 
governed by an effective coupling as(T). Since the 
evolution of  a s=as ( i t )  is known from the (zero-tem- 
pera ture)  renormal iza t ion group [5 ], it follows that 
a s (T)  = [b log( T/A ) ] - 1 in terms of  the RG-invar -  
iant scale A, and b =  ( 1 1 N -  2.~f) /6 ( N = 3  and Nf=6  
in full Q C D ) .  Hence the coupling decreases at high 
7, and this fact, along with its high-density analogue, 
supposedly implies  deconfinement .  

While  it has, by now, convincingly been shown 
[7,8] that  the (al leged) smallness of  the coupling 
constant  o f  the quark-g luon  plasma by no means 
leads to "per tu rba t ive"  behaviour ,  until recently the 
above reasoning as such has been left unquest ioned.  
It is the purpose of  this let ter  to point  out  that, on top 
of  the usual problems plagueing per turbat ive  thermal  
QCD (for a recent overview please consult  ref. [ 9 ] ), 
the above argument  neither  correctly identif ies the 
coupling constant  of  thermal  QCD,  nor provides  its 
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7"-dependence in a meaningful way: in fact, a sensibly 
defined expansion parameter will turn out to grow 
with 7; at least on the basis of  a one-loop calculation. 
In our approach to the former issue we have been es- 
sentially inspired by the work of Rebhan [ 10,11 ], 
while our treatment of the latter is intended to refine 
thc pioneering work of Nakkagawa et al. [ 12 ] (also 
cf. ref. [ 13 ] ). 

2. The thermal renormalization group 

As reviewed, for example, in refs. [ 14,15 ] or ref. 
[ 16 ] {§5.3}, a physical quan t i ty f (g )  is renormaliza- 
tion-scheme (RS) independent, yet its truncated 
perturbation series in a coupling constant g is not: if 
one truncates the series at order N, the scheme de- 
pendence enters at the next order. In an optimal RS, 
the next (N+  1 ) order contribution to f shou ld  be 
minimized. This poses the RS ambiguity problem: 
"which RS, among all the infinite number of possible 
RS's, should we choose in order to best compare the 
truncated, nth order QCD predictions with experi- 
mental results?" [ 15 ]. It is an unfortunate fact that 
at present no experimental data are available which 
allow a comparison with perturbative thermal QCD. 
Thus the relative virtues of  several RS's in QCD at 
finite Tought to be examined on the basis of certain 
internal consistency requirements of the type dis- 
cussed in the context of vacuum QCD [ 15,16 ]. 

The most straightforward criterion, and the one we 
shall adopt here, is the demand that a given scheme 
minimizes the coefficient of  the next-to leading order 
term (but note that third- and higher-order coeffi- 
cients may be expected to be large in any scheme, 
since the perturbation series is presumably an 
asymptotic one). As long as this requirement is met, 
one expects little numerical difference between var- 
ious RS's [14]; at zero temperature, for many pro- 
eesses this applies to the MS and the MOM (momen- 
tum subtraction) schemes. Nevertheless, despite its 
greater computational complexity, the latter scheme 
has been claimed, on the basis of  explicit higher-or- 
der calculations, to be slightly superior as far as the 
above criterion is concerned (cf. refs. [16,17] and 
references therein ). Moreover, it is a "physical" sub- 
traction scheme, in that it satisfies the decoupling 
theorem of quantum field theory [ 18 ]. 

One may now ask which class of renormalization 
schemes is optimal at finite 7: Although in principle 
this should be settled by explicit higher-order com- 
putations, a particular feature of  thermal perturba- 
tion theory allows the immediate conclusion that the 
RS used in the argument in the Introduction, or any 
other scheme based on a zero-temperature renormal- 
ization prescription (possibly amended by the re- 
placement of the momentum scale/t by 7") cannot be 
satisfactory in the sense explained above. The reason 
is that, while such schemes do minimize the terms 
proportional to powers of log T, at least if the substi- 
tution/~--, T is made (they are summed by the renor- 
malization group (RG) pertaining to this scheme for 
the same reason that leading logs are summed by the 
RG at T = 0  [ 18], because vacuum terms ~log(p2/  
/~2) at finite T are replaced by terms ~ log ( T2/,ll 2) ), 
but higher-order terms proportional to powers of T 
itself are left unaffected. In the imaginary-time for- 
malism [6 ], which we will exclusively use here, the 
former come from the non-static modes, while the 
latter derive from the zero modes. Thus an optimal 
(one might say, correct) RS should minimize the 
zero-mode contributions as well, as otherwise their 
contribution would grow indefinitely with T. 

Although in absence of  two-loop calculations the 
optimal thermal RS (if this exists) is obviously un- 
known, one may argue that such a scheme is at least 
approximated by a two-parameter RS originally in- 
troduced in the context Of thermo field dynamics 
[ 19 ], but easily adaptable to the imaginary-time for- 
malism [20-22].  Below we will introduce this 
scheme, and derive its associated RG equations [23], 
by extending the considerations of Zimmermann 
[ 24 ], in which no bare quantities ever enter, to finite 
75 In view of the ultimate goal of this paper, we will 
do so in the context of  perturbative QCD, for con- 
creteness' sake, in the usual covariant Landau gauge. 
In the following, G ~")(..., T) denotes the thermal 
(grand-canonical) average of a time-ordered prod- 
uct o fn  fields at temperature 7, whereas F ~) (..., T) 
will denotc the associated irreducible vertex func- 
tion; also, we use a euclidean metric, and colour in- 
dices will mostly be omitted. 

The idea is that the operator field Ap(x) in a solu- 
tion of the renormalized equations of  motion, sup- 
plcmented by initial conditions, which are stated in 
terms of normalization conditions on certain Green 
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½ ,E=, 
= 0 ,  

= 0 ,  

functions of A. Nothing forbids us to impose these 
conditions on the thermal Green functions 
G ( ' ) (  .... To) at a given temperature To. It is both 
convenient and physically meaningful (in view of a 
study of the infinite-temperature limit [20,21 ] ) to 
normalize the static Green functions G~ z) and G~ 3). 
An example of a suitable set of conditions is 

HL(K=p, T = T o ) = 0 ,  //~oo(~C=p, T = T o ) = 0 ,  

Go(~C= p, T=To)=g, (1) 

where x =  [kl, and HE 'x and Go are static structure 
functions defined through the two- and three-point 
Green function, respectively, as follows: firstly, in the 
Landau gauge the inverse full propagator (G (2));7o 1 
sat i sties the Ward identity [6 ] kp( G (2) (k))7~ ~ = 0, so 
that it allows the decomposition 

(G (2))~'  = L;,~,( 1 + H  L) + Tpo( l + H  "r ) (2) 

in terms of the kinematic tensors T,o=Apoxz-xpG 
and L,o=gpok2-k;,ko-Tp~ (note that [6] Ap~=gp~ 
- ~),U~, with ~ = ( I , 0 ) ,  and 2p=Apoko; the func- 
tions H L,T defined above are not quite the same as 
/TL,X of ref. [ 6 ] ). Secondly, the spatial ("magnetic")  
part of  the static irreducible three-point vertex func- 
tion 1--~3) aO.~(p, q, r) evaluated at the symmetric point 
k2=qZ=r2=-x2 may be decomposcd as (cf. ref. [ 10] ) 

F~ 3) ' ~ '  ;" r) qk I, t'~, q ,  

=f~b~{[go(k-q)k+cycl.]Go(tC)+... }, (3) 

where the dots stand for terms orthogonal to r;. 
Due to these normalization conditions, the field 

A;,(x) effectively depends on g, #, and To. We now 
call a triple {g,p, To} equivalent to {g', p ' ,  T3 } if there 
exists a z" such that Ap(x; g', p', Tg) = (z p) W2Ap(x; 
g, p, lo)  (no sum overp) .  Thus the RHS is indepen- 
dent o fp  and 7o, and we are led to the RG equations 
for the vertex functions 

od~-+ fl.r~g + To Z )  F(');,~..~,, ,tk, 7, g, p, 7o) 

(4) 

O0---p) F(') tk T,g,p,'lo) + P m...p,, ~ " ,  

(5) 

(no sum over p), where k stands for the set of mo- 
menta on which /" depends. The Callan-Symanzik 

type functions may be obtained from the normaliza- 
tion conditions ( 1 ) (cf. ref. [24] ), which yields 

\ OT} (K=p'T=Y°)' 

• (. c~y-- r ~ -  (~=p, r=7o), (6) 

flr=-3ga~.+ ( T ~ )  (x=p, T=To), (7) 

and similar expressions for ot~ and flu, with the re- 
placement TO/OT"--,~cO/Ox. Note that a°#a i due to 
broken Lorentz invariance at finite 7, and that the 
non-mixing o f H  L with li o in (6) is a result of our 
choice of static normalization conditions. 

It should be mentioned that the RG equations (4) 
and (5) may also be derived from the conventional 
effective action formalism. Here the field is coupled 
linearly to the external source, so that one may show 
that 0F[A]/OTo=OF[A]/0p=0.  On the other hand, 
the mean field X satisfies Oz ~/ZX ( x; g, p, To)/OTo = 0 
(etc.), because the operator A, of  which d is the ex- 
pectation value in the presence of a To- and p-inde- 
pendent source, does. Since the 1PI function F (') is 
the coefficient of A" in the Volterra expansion of F in  
powers of  A, consistency implies (4) and (5). 

After these preparations, it should become clear 
why the present RS is an improvement over schemes 
based on vacuum subtractions: one chooses 1]~ equal 
to the actual temperature 7, and p a relevant momen- 
tum scale of the process, so that the normalization 
conditions ( 1 ) imply that radiative corrections to the 
two- and four-point function vanish at the given tem- 
perature and momentum configuration. Assuming 
that the amplitudes are continuous functions of the 
(off-shell) momenta and of 7, this implies that lead- 
ing powers of 7" (which are definitely present in vac- 
uum-based schemes) and log T (or ~c and log x) will 
indeed be absent in the renormalized Green func- 
tions at the given temperature and momentum scale. 
An additional feature of the thermal MOM RS is that 
it satisfies the dimensional reduction Ansatz at T=oe 
[22 ], in analogy to the fact that the vacuum MOM 
scheme obeys the decoupling theorem for heavy 
particles. 

This, then, suggests that the appropriate effective 
coupling constant is the running one obtained from 
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the fl-functions in the above RS. The relevant com- 
putations have been performed, on the basis of  slightly 
different normalization conditions, in refs. [12,13].  
The results obtained in these publications indicate 
three serious drawbacks of  the above procedure ap- 
plied to QCD: 

- One finds a strong vertex-dependence of  the re- 
normalized coupling constant. This means, that g 
heavily depends on the vertex chosen (i.e., the tri- 
gluon, the ghost-gluon, or the quark-gluon vertex) 
to satisfy the normalizat ion condition of  g. This 
problem is well known at T = 0  as well, where it has 
been found that the heavy-quark contribution to the 
~ func t ion  (which introduces a large dimensionful 
parameter,  similar to T) is very sensitive to the choice 
of  the normalizat ion vertex [25].  

- Even if a vertex has been specified, the fl-func- 
tion is sensitive to the momentum configuration used 
to state the normalizat ion condition. Indeed, refs. 
[ 12,13 ] employed slightly different kinematical  con- 
figurations in the lri-gluon vertex, and obtained qual- 
itatively different running coupling constants. 

- Worst of  all, the renormalized coupling is gauge- 
dependent:  e.g., in covariant  gauges the gauge param- 
eter explicitly enters (in contrast  to the state of  af- 
fairs in the minimal  subtraction scheme, which, un- 
fortunately, is unphysical in other respects [ 18 ] ). 

3. The Vilkovisky-DeWitt  e f f e c t i v e  a c t i o n  

As remarked by Rebhan [ 10 ], the drawbacks men- 
tioned above are each caused by the fact that g has 
been defined in terms of  the conventional  effective 
action of  QCD,  which is gauge-variant (i.e., a gauge 
t ransformation does not leave F invar iant)  as well as 
gauge-dependent (that is, it depends on the gauge 
condition chosen to define the quantum gauge 
theory.). Some years ago, however, the so-called 
Vi lkovisky-DeWit t  effective action FVD has seen the 
light [26,27] (for reviews see refs. [11,28] ). This 
action is explicitly gauge-invariant and gauge-inde- 
pendent,  and it is natural to define the coupling con- 
stant of  ( thermal)  QCD in terms of  it ~l. 

~ The Vilkovisky-DeWitt action has earlier been used in the 
study of the quark-gluon plasma in the context of the so-called 
plasmon damping problem [29-31 ]. 

For our purpose it is useful to first define an aux- 
iliary quantity P, which was originally introduced by 
DeWitt  [27] in the path-integral formalism as the 
solution of  a certain functional equation. Here we di- 
rectly define 

- - 1 
F[A,A*I:= ~ ~. < (ai'[A*,Al--ai'[A*,.'4o]) ... 

× (a~" [A *, A] - a " [ A * ,  do] ) > ~Pi 

X (a,, [A*, A] - a t ,  [A*, do] )... 

x (o-,°[A*, d] -a,o[A*, do] ). (8) 

For brevity we employ the collective index notation, 
in which i stands for {x,p, c~}, and in which a double 
occurrence of  i means that it is to be integrated and 
summed over. The average ( . . . )  stands for the t ime- 
ordered grand-canonical one, and Ao denotes the 
value o f /T  in the absence of  a source. The crucial 
quantity appearing in (8)  is the bi-tensor a t, which is 
defined by virtue of  an essentially unique connection 
on the spacc of  gauge fields [26 ]. For S U ( N )  Yang- 
Mills thcories it has the form [ 32 ] (for clarity we now 
explicitly specify the indices) 

a~, (x)  [A*, A] = A ~ ( x )  -A~(x)  

"4- f d4x'Xgb(x, .x') [A*, A] 

× [ob~Oo+gfha"AU(x ' ) ] [A~(x' ) - A ~ ( x ' )  ], (9) 

where X is some involved functional. 
The main point is that P [ d ,  A*] is a gauge-invar- 

iant and gauge-independent functional of.,~ for any 
choice of  A* [ 27,11,30]. This means, that any gauge 
condition may be used in the computat ion of  the 
thermal avcrages in (8);  the functional P is insensi- 
tive to it. The dependence on the arbitrary reference 
point A* in the field configuration space is usually 
removed by setting A * = A  [27],  which defines the 
Vi lkovisky-DeWit t  action FVD- P[ A, A ]. This 
choice has the advantage that FVD equals the conven- 
tional effective action if the field configuration space 
is flat (as in standard scalar field theories [26] ) #2, 
whereas the gauge invariance and independence is 
maintained.  We are now going to use this object to 

#2 For footnote see next page. 
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define an effective coupling constant in thermal QCD. 

4. A gauge-independent renormalized coupling 

The functional FVD has a conventional Volterra 
expansion 

I r(")"i"'A -Jo,,)...(/L -Xo,°), rvt,[J] = Y 

(10) 

involving certain expansion coefficients F~v~ which, 
as can be seen from (8) ,  cannot  be identified with 
1PI correlation functions of  A, or of  any other oper- 
ator (cf. ref. [28] ). Nevertheless, the F~v~r~ still sat- 
isfy the RG equations (4) ,  (5).  This is firstly be- 
cause the Vi lkovisky-DeWit t  action is invariant  
under field reparametr izat ions [26,27],  hence in 
particular under rescalings, so that it is an RG-invar-  
iant, like the conventional effective action (cf. sec- 
tion 2). Secondly, the mean field A is defined by 
[27,28] ( a ; [ J ,  A] ) ) = 0 ,  so that according to (9)  A 
scales in the same way as the operator  A up to a gauge 
transformation,  to which FvD is insensitive. These 
observations imply (4)  and (5)  with F (') replaced 
by I'~v]~ as defincd above. 

By gauge invariance, one has the Ward identity, 
k r.(2) , ~ . ~  =0 ,  so that we are allowed to make the p *  VD pa~,r~, t 

kinematic decomposi t ion (2),  with (G (2))-~ re- 
placed by F~v~. This identifies two structure func- 
tions H ~ o  x (which in general canno t  be found by just 
computing self-energy diagrams) ,  on which we im- 
pose normalization conditions similar to the first two 
members  of  ( 1 ), respecting gauge invariance. How- 
ever, the crucial difference between FvD and the con- 
ventional (Landau-gauge) F is that we now have a 
second Ward identity (which is, in fact, valid for any 
gauge-invariant effective action, cf. ref. [10] )  
G v D 0 C ) = g ( l  +/-PVD(X)), where GVD is defined in 
complete analogy to (3) ,  with _F '(3) replaced by F~]~. 

~2 This advantage is shared by the choice A*=Ao, which in fact 
seems more natural to us, since the action FoK[A]-- = 
P[A,./io] has a covariant Volterra expansion FoKIA]= 
E (1/n! ) ( a~' [Ao, A ]...a"[Ao, A ] ) ~wa,, [Ao, A]...a~,lAo, A], 
with 1PI correlation functions as coefficients. The Vilkovisky- 
DeWitt action does not admit any interpretation of this kind 
[ 28 ]. However, in this paper we will stick to the known object 
FVD. 

This implies that the third member  of  ( 1 ) is now a 
consequence of  the second one; in other words, the 
normalizat ion of  the coupling constant is now deter- 
mined by gauge invariance (cf. ref. [ 10] ). There is 
no free choice of  a vertex or m o m e n t u m  configura- 
tion, and the present procedure is completely unam- 
biguous (more  precisely, a different choice of  the 
normalization o f g  would spoil the gauge invariance 
of  the renormalized action FvD). As an extra bonus 
of  the use of  the Vilkovisky-DeWit t  action, the re- 
normalized coupling is guaranteed to be independent 
of  the gauge condition employed in computing its,8- 
function. 

One now still has the expressions (6) ,  (7) for the 
thermal Cal lan-Symanzik  functions, but due to the 
second Ward identity ment ioned above, (7)  and its 
/~-analogue in fact drastically simplify to 

fiT = - ½gaT, flu = -- ½goG" ( 11 ) 

Hence in order to compute  the fl-functions one just 
has to calculate the Vilkovislcy-DeWitt two-point 
function (compare  this with an analogous situation 
in the usual background-field gauges [33] ). The cal- 
culation may, of  course, be performed in any gauge, 
but it drastically simplifies in the so-called Landau-  
DeWitt  gauge [32],  in which (9) simplifies to 
a f , ( x )  [A*, A] = A ~ ( x )  - A ~ , ( x ) .  In that case the ex- 
pansion coefficients F~¢'/~ can be evaluated from the 
usual irreducible n-point vertex functions, with 
Feynman rules given in ref. [10] (actually, the 
Landau-DeWi t t  gauge happens to be a special case 
of  the covariant  background-field gauges [33] ). 

The calculation itself is still fairly involved #3, and 
here wcjus t  give the (relevant)  high-temperature ex- 
pansion (obtained using the techniques developed in 
ref. [21] ) .  In terms of  a s - g 2 / 4 7 t  2, x - T / x ,  and 
~.- 7o/#  we find 

[ /~0vD(X, ~)=a~ blog + Tgn , ~ ( ~ - x )  

37ff(3) (X_ 2__ ~__2) ..~_ O (X_4__ ~__4) ] (12) + ~  

Here the logarithmic term is the "usual"  one, coming 

~3 Related computations in the background field gauge have been 
performed in ref. [34], where the complementary non-static 
limit x~0, ko:~0 is addressed. 
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from the nonstatic modes, whereas the term linear in 
x, which dominates the expression, derives from the 
static mode; this is precisely the one neglected in the 
conventional renormalization schemes mentioned in 
the beginning of this paper. The fl-functions ( 11 ) may 
now be computed from (6) and (12), after which 
the running coupling is found by solving two coupled 
differential equations, entirely similar to the proce- 
dure followed in ref. [ 12 ]. It is convenient to pass to 

and ~ as independent variables, defining tis(/~, ~) = 
a~(/L, 7~). One then obtains 

~ b a ~  
~ 2  ~ 3  ~ - / ~  ff~- = + O(a~ ) ,  (13) 

( b _ 2 ,  2~r; 37 ' (3 )  ¢ - 2 + 0 ( ¢ - 4 ) )  ~ 
= -  izn ~ , s -  320n2 

+O(a~). (14) 

Thus for large ~ the thermal fl-function ft~ is positive. 
Eqs. (13), (14) may meaningfully be solved in the 
regime 1 << ~<< ~-~,  in which case one finds 

~P - ~ n  N~+ 37~(3) ~-2 as(.u' ¢)-1 = b  l°g ~ ~ ¢  

+ O ( ¢ - 4 ) ,  (15) 

where AMoM is the usual QCD scale parameter at 
7"=0. 

To close this section, let us recall that the negative 
sign of the coefficient o f x  in (12), which ultimately 
is responsible for the positivity offl~- at high T, and 
which in the present formalism is gauge-indepen- 
dent, has also been found in gauge-dependent polar- 
ization scalars defined similar to IT r in section 2, cf. 
rcf. [35]. 

5. Discussion 

The most conspicious feature of (15) is that the 
effective coupling grows with T at fixcd/1. However, 
for ~ h;- ~ the one-loop approximation to theft-func- 
tion looses its meaning, a fact which just reflects the 
justified folk wisdom that the static sector is not per- 
turbatively under control in the stated regime. In ad- 
dition, we should remark that the positivity of the,8- 

function contradicts lattice data as well as physical 
intuition. This strongly suggests that the positivity 
found above is an artifact of the bare one-loop ap- 
proximation; indeed, it has been suggested [36] that 
nonperturbative mechanisms like (approximate) 
mass generation or Bose condensation [8] would 
render the thermal ft-function negative. What we can 
say with certainty is that the standard one-loop re- 
normalization-group arguments supposedly leading 
to asymptotic freedom at high temperature (and/or  
density) [1,2] arc rather misleading, because they 
deal with a coupling constant and a renormalization 
scheme which lack a proper physical meaning. 

The nature of the renormalized effective interac- 
tion strength in the quark-gluon plasma has been ad- 
dressed in several other publications [37-39, 
12,13,40]. The results of this paper confirm part of 
the conclusions of  Nakkagawa et al. [12] which, 
however, have been obtained by an explicitly gauge- 
dependent procedure. Yamada [40 ] follows a gauge- 
invariant procedure, investigating the interaction of 
a static qcl pair via a thermal Wilson loop. However, 
in contrast to an analogous procedure in QED, the 
effective coupling thus obtained (which is found to 
decrease at high 7' and fixed/~) has little to do with 
the perturbative expansion parameter in thermal 
QCD. 

As a qualifying statement, we wish to stress that we 
obviously do not claim to have identified the unique 
coupling constant of thermal QCD. Firstly, as al- 
ready hinted at in the second footnote to section 3, 
the notion of the Vilkovisky-DeWitt action is itself 
not free of ambiguities [27,28], so that it remains to 
be seen whether alternative definitions would pro- 
duce the same running coupling as the one advertised 
in the present paper. Furthermore, other methods to 
extract gauge-independent and gauge-invariant re- 
sults from the Green functions o fa  nonabelian gauge 
theory do exist [41,42], and do not necessarily all 
lead to the same result, as the controversy concerning 
the QCD plasma damping constant has shown 
[8,9,29-31,431. Even so, the definition of the ther- 
mal coupling parameter suggested in this Letter ap- 
pears to be a natural one, the idea simply being that 
a gauge-invariant effective action can depend on the 
gluon field Ap only via the field strength Fp~= 
OeAo--O~Ap+gA,×Ao, identifying the parameter g as 
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the  coupl ing ,  j u s t  as in  the  classical  ac t ion .  
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