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Abstract

This is a review of the issue of randomness in quantum mechanics, with special empha-
sis on its ambiguity; for example, randomness has different antipodal relationships to
determinism, computability, and compressibility. Following a (Wittgensteinian) philo-
sophical discussion of randomness in general, I argue that deterministic interpretations
of quantum mechanics (like Bohmian mechanics or ’t Hooft’s Cellular Automaton in-
terpretation) are strictly speaking incompatible with the Born rule. I also stress the
role of outliers, i.e. measurement outcomes that are not 1-random. Although these
occur with low (or even zero) probability, their very existence implies that the no-
signaling principle used in proofs of randomness of outcomes of quantum-mechanical
measurements (and of the safety of quantum cryptography) should be reinterpreted
statistically, like the second law of thermodynamics. In three appendices I discuss the
Born rule and its status in both single and repeated experiments, review the notion of
1-randomness (or algorithmic randomness) that in various guises was investigated by
Solomonoff, Kolmogorov, Chaitin, Martin-Löf, Schnorr, and others, and treat Bell’s
(1964) Theorem and the Free Will Theorem with their implications for randomness.
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1 Introduction

Quantum mechanics commands much respect. But an inner voice tells me that it is
not the real McCoy. The theory delivers a lot, but it hardly brings us closer to God’s
secret. Anyway, I’m sure he does not play dice. (Einstein to Born, 1926).1

In our scientific expectations we have grown antipodes. You believe in God playing

dice and I in perfect laws in the world of things existing as real objects, which I try

to grasp in a wildly speculative way. (Einstein to Born, 1944).2

Einstein’s idea of ‘perfect laws’ that should in particular be deterministic is also central to ’t
Hooft’s view of physics, as exemplified by his intriguing Cellular Automaton Interpretation
of Quantum Mechanics (’t Hooft, 2016). One aim of this paper is to provide arguments
against this view,3 but even if these turn out to be unsuccessful I hope to contribute to
the debate about the issue of determinism versus randomness by providing a broad view
of the latter.4 My point in §2 is that randomness is a Wittgensteinian family resemblance
(Sluga, 2006; Baker & Hacker, 2005, Ch. XI), but a special one that is always defined
through its antipode, which may change according to the specific use of the term.

The antipode defining which particular notion of randomness is meant may vary even
within quantum mechanics, and here two main candidates arise (§3): one is determinism,
as emphatically meant by Born (1926) and most others who claim that randomness is
somehow ‘fundamental’ in quantum theory, but the other is compressibility or any of
the other equivalent notions defining what is called 1-randomness in mathematics as its
antipode (see Appendix B for an explanation of this). The interplay between these different
notions of randomness is the topic of §§4-5. In §5 I argue that one cannot eat one’s cake
and have it, in the sense of having a deterministic hidden variable theory underneath
quantum mechanics that is strictly compatible with the Born rule. I also propose, more
wildly, that Einstein’s prohibition of superluminal signaling should be demoted from an
absolute to a statistical law, much as the second law of thermodynamics. My analysis
relies on some mathematical background presented in (independent) Appendices A–C on
the Born rule, Algorithmic (or 1-) randomness, and the Bell and Free Will Theorems.

1The German original is: ‘Die Quantenmechanik ist sehr achtung-gebietend. Aber eine innere Stimme
sagt mir, daß das doch nicht der wahre Jakob ist. Die Theorie liefert viel, aber dem Geheimnis des Alten
bring sie uns kaum näher. Jedenfalls bin ich überzeugt, daß der nicht würfelt.’ (Translation by the author.)
The source is Einstein’s letter to Max Born from December 4, 1926, see Einstein & Born (2005), p. 154.
Note the italics in der, or he in English: Einstein surely means that it is not God (or “the Father”) but
the physicists who play dice. Since some authors claim the opposite, it may be worth emphasizing that
this complaint against the indeterminism of quantum mechanics as expressed in Born (1926), to which
Einstein replies here (see also §3 below for the specific passage that must have upset Einstein), forms the
sole contents of this letter; Einstein’s objections to the non-locality of the theory only emerged in the
1930s. Even his biographer Pais (1982, p. 440) confuses the issue by misattributing the ‘God does not play
dice’ quotation to a letter by Einstein to Lanczos from as late as March 21, 1942, in which at one stroke
he complains that ‘It seems hard to look into God’s cards. But I cannot for a moment believe that He
plays dice and makes use of “telepathic” means (as the current quantum theory alleges He does).’

2Letter dated November 7, 1944. Strangely, this letter is not contained in the Einstein–Born Briefwech-
sel 1916–1955 cited in the previous footnote; the source is Born (1949, p. 176) and the translation is his.

3 What I will not argue for here is the real reason I do not believe in perfect laws, namely the idea
of Emergence, according to which there are no fundamental laws, let alone perfect ones: every (alleged)
law originates in some lower substratum, which itself is subject to laws originating in yet another realm.
As I like to say: ‘Nothing in science makes sense except in the light of emergence’ (free after Theodosius
Dobzhansky, who famously wrote that ‘nothing in biology makes sense except in the light of evolution’).

4See Bricmont et al (2001), Bub & Bub (2018), Cassirer (1936), Frigg (2016), Loewer (2001), Nath Bera
et al (2017), Svozil (1993, 2018), and Vaidman (2014) for other perspectives on randomness in physics.
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2 Randomness as a family resemblance

The idea that in order to get clear about the meaning of a general term one had to find

the common element in all its applications has shackled philosophical investigation;

for it has not only led to no result, but also made the philosopher dismiss as irrelevant

the concrete cases, which alone could have helped him to understand the usage of the

general term. (Wittgenstein, Blue Book, §§19–20).

I’m saying that these phenomena have no one thing in common in virtue of which we

use the same word for all – but there are many kinds of affinity between them. (. . . ) we

see a complicated network of similarities overlapping and criss-crossing: similarities

in the large and in the small. I can think of no better expression to characterize

these similarities than “family resemblances”; for the various resemblances between

members of a family – build, features, colour of eyes, gait, temperament, and so on

and so forth – overlap and criss-cross in the same way. (Wittgenstein, Philosophical

Investigations, §§65–67).

Though he did not mention it himself, randomness seems a prime example of a phe-
nomenon Wittgenstein would call a ‘family resemblance’.5 Independently, as noted by
historians Lüthy & Palmerino (2016) on the basis of examples from antiquity and medieval
thought,6 the various different meanings of randomness (or chance) can all be identified
by their antipode. Combining these ideas, I submit that randomness is not just any old
Wittgensteinian family resemblance, but a special one that is always defined negatively :

• To begin with, in Aristotle’s famous example of a man who goes to the market and
walks into his debtor, the randomness of the encounter derives from the fact that
the man did not go the the market in order to meet his debtor (but instead went
there to buy food). Similarly for the man who digs a hole in his garden to plant
a tree and finds a treasure. Even the birth of female babies (and certain other
‘chance substances’ for which he literally uses the Greek word for ‘monsters’) was
identified by The Philosopher as a failure of purpose in Nature. Thus what actually
happened in all these examples was accidental because (as we would say it) it was
not intended, or, in Aristotelian parlance, because there was no final cause. By the
same token, Aristotle found the atomistic cosmos of Democritus “random” because
it was purposeless, ridiculing him for making the cosmic order a product of chance.

• In contrast, half a century later Epicurus found the atomic world not random at all
and introduced randomness through the swerve, immortalized by Lucretius:

When the atoms are traveling straight down through empty space by their own

weight, at quite indeterminate times and places they swerve ever so little from

their course, just so much that you can call it a change of direction. If it were

not for this swerve, everything would fall downwards like raindrops through the

abyss of space. No collision would take place and no impact of atom on atom

would be created. Thus nature would never have created anything. (Lucretius,

De Rerum Natura, Book II).7

5This may be worth emphasizing, since even first-rate philosophers like Eagle (2005) still try to nail it
down, ironically citing other philosophers who also did precisely that, but allegedly in the ‘wrong’ way!

6See Vogt (2011) for a comprehensive survey of the historical usage of randomness and chance etc.,
including references to original sources. See also Lüthy & Palmerino (2016) for a brief summary.

7Lucretius (1951), p. 66. See also Greenblatt (2011) for the thrilling rediscovery of De Rerum Natura.
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This was, so to speak, the first complaint against determinism (the goal of Epicu-
rus/Lucretius was to make room for free will in a world otherwise seen as effectively
dead because of the everlasting sequence of cause and effect), and indeed, in the
context of our analysis, the key point is that the swerve is random because it is
indeterminate, or because the atoms depart from their natural straight course.

• Neither of these classical meanings is at all identical with the dominant usage from
medieval times to the early 20th century, which was exemplified by Spinoza, who
claimed that not only miracles, but also circumstances that have concurred by chance
are reducible to ignorance of the true causes of phenomena, for which ultimately the
will of God (‘the sanctuary of ignorance’) is invoked as a placeholder.8 Thus Spinozist
randomness lies in the absence of full knowledge of the entire causal chain of events.

• In the Leibniz–Clarke correspondence,9 the latter, speaking for Newton, meant in-
voluntariness by randomness. Against Leibniz, Clarke (and Newton) denied at least
God could be limited like that. Leibniz, on the other hand, in some sense ahead
of his time (yet in another following Epicurus/Lucretius), used the word ‘random’
to designate the absence of a determining cause–a possibility which he (unlike Epi-
curus/Lucretius) denied on the basis of his principle of sufficient reason.10 This is
clear from an interesting passage which is not widely known and predates Laplace:

One sees then that everything proceeds mathematically - that is, infallibly - in

the whole wide world, so that if someone could have sufficient insight into the

inner parts of things, and in addition could have remembrance and intelligence

enough to consider all the circumstances and to take them into account, then

he would be a prophet and would see the future in the present as in a mirror.

(Leibniz).11

• Arbuthnot, a younger contemporary and follower of Newton, may have been one of
the first authors to explicitly address the role of randomness in the deterministic
setting of Newtonian physics. In the Preface to his translation of Huygens’s path-
breaking book De Ratiociniis in Ludo Aleae on probability theory, he wrote:

It is impossible for a Die, with such determin’d force and direction, not to fall on

such determin’d side, only I don’t know the force and direction which makes it

fall on such determin’d side, and therefore I call it Chance, which is nothing but

the want of Art. (Arbuthnot, 1692).12

And similarly, but highlighting the alleged negativity of the concept even more:

8See Ethics, Part I, Appendix.
9See also Lüthy & Palmerino (2016), §2.7 for part of the following analysis. The Leibniz–Clarke corre-

spondence is available in many editions, such as Vailati (1997), and the online edition Bennett (2017).
10Hacking (1990, Ch. 2) calls this the doctrine of necessity and shows it pervaded early modern thought.
11The undated German original is quoted by Cassirer (1936), pp. 19–20: ‘Hieraus sieht man nun, das alles

mathematisch, d.i. uhnfehlbar zugehe in der ganzen weiten Welt, so gar, dass wenn einer eine genugsame
Insicht in die inneren Teile der Dinge haben könnte, und dabei Gedächtnis und Verstand genug hätte,
um alle Umstände vor zu nehmen und in Rechnung zu bringen, würde er ein Prophet sein, und in dem
Gegenwärtigen das Zukünftige sehen, gleichsam als in einem Spiegel.’ English translation by the author.

12The Latin original De Ratiociniis in Ludo Aleae is from 1657 and Arbuthnot’s English translation On
the Laws of Chance appeared in 1692. The quotation is taken from Diaconis & Skyrms (2018), p. 9.
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Chance, in atheistical writings or discourse, is a sound utterly insignificant: It

imports no determination to any mode of Existence; nor in deed to Existence

itself, more than to non existence; it can neither be defined nor understood; nor

can any Proposition concerning it be either affirmed or denied, excepting this

one, “That it is a mere word.” (De Moivre, 1718).13

So this is entirely in the medieval spirit, where ignorance–this time relative to New-
ton’s physics as the ticket to full knowledge–is seen as the origin of randomness.

• A century later, and like Arbuthnot and De Moivre again in a book on probability
theory (Essai philosophique sur les probabilités, from 1814), Laplace portrayed his
demon to make the point that randomness arises in the absence of such an intellect:

An intelligence which could comprehend all the forces that set nature in mo-

tion, and all positions of all items of which nature is composed–an intelligence

sufficiently vast to submit these data to analysis–it would embrace in the same

formula the movements of the greatest bodies in the universe and those of the

lightest atom; for it, nothing would be uncertain and the future, as well as the

past, would be present to its eyes. (Laplace, 1814).14

Note that Leibniz’ prophet appeals to the logical structure of the universe that
makes it deterministic, whereas Laplace’s intelligence knows (Newtonian) physics.15

In any case, it is important to note that Laplacian randomness is defined within a
deterministic world,16 so that its antipode is not indeterminism but full knowledge
(and computing power, etc.). Indeed, less well known than the above quotation is
the following one, from the very same source:

All events, even those which on account of their insignificance do not seem to fol-

low the great laws of nature, are a result of it just as necessarily as the revolutions

of the sun. (Laplace, 1814).17

• The ignorance interpretation of randomness and chance still lurks behind the prob-
abilities introduced in the 19th century in statistical mechanics, which in my view
were therefore wholeheartedly construed in the medieval and early modern sprit.18

13Quoted by Hacking (1990, p. 13) from De Moivre’s Doctrine of Chance, originally written in English.
14The translation is from Laplace (1902), p. 4. See van Strien (2014) for history and analysis.
15However, van Strien (2014) argues that Laplace also falls back on Leibniz (and gets the physics wrong

by not mentioning the momenta that the intelligence should know, too, besides the forces and positions).
16Famously: ‘The world W is Laplacian deterministic just in case for any physically possible world W ′,

if W and W ′ agree at any time, then they agree at all time.’ (Earman, 1986, p. 13).
17Quoted by Hacking (1990), p. 11.
18It is often maintained that these probabilities are objective, which might cast doubt over the idea

that they originate in ignorance. I personally find the distinction between “objective” and “subjective”
chances quite unhelpful in the context of fundamental physics, a left-over from (by now) irrelevant and
outdated attempts to define probabilities “objectively” as relative frequencies (see also Appendix B) as
opposed to interpreting them “subjectively” as credences à la Ramsey (1931). Loewer (2001, 2004) claims
that the probabilities in statistical mechanics are as objective as those in quantum mechanics (and hence
are objective). Indeed, both are predicated on a choice of observables, based on ignoring microscopic and
quantum-mechanical degrees of freedom, respectively. Given that choice, the probabilities are objective,
but the choice is surely subjective (see also Heisenberg quoted in §3 below). Instead of a pointless table-
tennis game between “objective” and “subjective”, a better term would be “perspectival”. For example, I
agree with Rovelli (2017) that time’s arrow is perspectival (but neither “objective” nor “subjective”). See
also Jaynes (1985), pp. 118–120, for similar comments on terminology in the philosophy of probability.
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• Hacking (1990) explains how the doctrine of necessity began to erode in the 19th
century, largely through the use of statistics in population studies and biology.19 In
this respect, the century to some extent culminated in the following words of Peirce:

I believe I have thus subjected to fair examination all the important reasons for

adhering to the theory of universal necessity, and shown their nullity. (. . . ) If my

argument remains unrefuted, it will be time, I think, to doubt the absolute truth

of the principle of universal law. (Peirce, 1892, p. 337).

This partly paved the way for the claim of irreducible randomness in quantum me-
chanics, although the influence of population studies and biology on intrinsic devel-
opments in physics should perhaps not be overestimated. However, the insight that
probability and statistics gave rise to their own laws (as opposed to the fear that
randomness is pretty much the same as lawlessness), which partly dated back to the
previous two centuries (Hacking, 2006), surely made quantum theory possible.

• The randomness of variations in heritable traits that–almost simultaneously with the
rise of statistical physics–were introduced in Darwin’s theory of evolution by natural
selection meant something completely different from Laplace etc., best expressed by
the renowned geneticist Theodosius Dobzhansky a century later (cf. Merlin, 2010):

Mutations are random changes because they occur independently of whether they

are beneficial or harmful. (Dobzhansky et al, 1977, p. 66).

Indeed, both historically and actually, the antipode to Darwin’s randomness of vari-
ations is Lamarck’s goal-orientedness thereof,20 intended to strengthen the species
(like the proverbial sons of the blacksmith who according to Lamarck inherit his
strong muscles). In particular, it does not matter if the variations are of known or
unknown origin, or fall under a deterministic or an indeterministic kind of physics.

• Continuing our detour into biology, the well-known Hardy–Weinberg equilibrium law
in population genetics, which gives the relative frequencies of alleles and genotypes
in a given (infinite) population, is based on the assumption of random mating. This
means that mating takes place between pairs of individuals who have not selected
each other on the basis of their genetic traits (i.e. there is no sexual selection).

• Eagle (2005, p. 775–776) proposes that ‘randomness is maximal unpredictability’
(which agrees with criterion 3 at the end of this section), and argues that this is
equivalent to a random event being ‘probabilistically independent of the current
and past states of the system, given the probabilities supported by the theory.’

• Most people, especially those without scientific training,21 asked to mention a ran-
dom event they have encountered, typically mention what is called a coincidence.
This notion goes back at least to Aristotle, but a modern definition is the following:

19Though also inspired by the eventual rise of quantum mechanics, Kern (2004) gives a completely differ-
ent history of causality and uncertainty in the 19th and 20th centuries, tracking the changing explanatory
roles of these factors in the the study of murder as documented by more than a hundred novels.

20As such, Spinoza’s philosophical analysis, modern physics, and (evolutionary) biology all contributed
to the downfall of the Aristotelian (and subsequently Christian) final causes my list started from.

21Though Stephen Hawking was not adverse to the fact that he was born on January 8th, 1942, exactly
300 years after the death of Galileo Galilei, and, had he been able to note it, would undoubtedly have
rejoiced in the equally remarkable fact that he died in 2018 on the birthday of Albert Einstein (March 14).

6



A coincidence is a surprising concurrence of events, perceived as meaningfully

related, with no apparent causal connection. (Diaconis & Mosteller, 1989, p. 853).

The subjective nature of this definition (i.e. ‘surprising’, ‘perceived’, ‘meaningful’,
and ‘apparent’) may repel the scientist, but ironically, the aim of this definition is
to debunk coincidences. Moreover, there is a striking similarity between analyzing
coincidences in daily life and coincidences in the physical setting of bipartite correla-
tion experiments à la EPR–Bohm–Bell: to this end, let me briefly recall how most if
not all everyday coincidences can be nullified on the basis of the above definition:22

1. Against first appearances there was a causal connection, either through a com-
mon cause or through direct causation. This often works in daily life, and also
in Bohmian mechanics, where direct (superluminal) causation is taken to be
the “explanation” of the correlations in the experiments just referred to. How-
ever, if superluminal causation is banned, then one’s hand is empty because
one interpretation of Bell’s Theorem (cf. Appendix C) excludes common causes
(van Fraassen, 1991), and hence both kinds of causation are out! See also §3.

2. The concurrence of events was not at all as surprising as initially thought. This
argument is either based on the inability of most people to estimate probabilities
correctly (as in the well-known birthday problem), or, if the events were really
unlikely, on what Diaconis and Mosteller call the law of truly large numbers:23

With a large enough sample, any outrageous thing is likely to happen. (Dia-

conis & Mosteller, 1989, p. 859).

Neither of this helps in ERR–Bohm–Bell, though, leaving one’s hand truly empty.

• The choice sequences introduced by Brouwer in his intuitionistic construction of the
real numbers, and then especially the “lawless” ones (which Brouwer never defined
precisely) are often associated with notions of “freedom” and “randomness”:

A choice sequence in Brouwer’s sense is a sequence of natural numbers (to keep it

simple), which is not a priori given by a law or recipe for the elements, but which

is created step by step (. . . ); the process will go on indefinitely, but it is never

finished. (. . . ) Informally, we think of a lawless sequence of natural numbers as

a process of choosing values in N (. . . ) under the a priori restriction that at any

stage of the construction never more that an initial segment has been determined

and that no restrictions have been imposed on future choices, [and that] there is

a commitment to determine more and more values (so the sequence is infinite).

(. . . ) A lawless sequence may be compared to the sequence of casts of a die. There

too, at any given stage in the generation of a sequence never more than an initial

segment is known. (Troelstra, 1996, italics added).24

Indeed, von Mises (1919) mentioned choice sequences as an inspiration for his idea
of a Kollektiv (van Lambalgen, 1996), which in turn paved the way for the theory of
algorithmic randomness to be discussed as the next and final example of this section.

22For details see Landsman (2018), so far available in Dutch only. In practice it usually does not help
to argue that the events in question were not ‘meaningfully related’, since at that point semi-intellectual
opponents will invoke “synchronicities” (Jung, 1952) and the like, and leave the domain of science (as Jung
himself squarely admitted). Even if one goes along with that, discussions tend to become circular.

23In a slightly different phrasing this “law” is also called The Improbability Principle (Hand, 2015).
24See also Troelstra (1977) and references therein to the original literature.
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Nonetheless, a more precise analysis (Moschovakis, 1996, 2016) concludes as follows:

Lawless and random are orthogonal concepts. A random sequence of natural

numbers should possess certain definable regularity properties (e.g. the percentage

of even numbers in its nth segment should apporach 50 as n increases),25 while a

lawless sequence should possess none. Any regularity property definable in L by a

restricted formula can be defeated by a suitable lawlike predictor. (Moschovakis,

2016, pp. 105–106, italics in original, footnote added).

A further conceptual mismatch between lawless choice sequences and random se-
quences of the kind studied in probability theory is that any randomness of the
former seems to lie on the side of what is called process randomness, whereas the
latter is concerned with product randomness.26 In a lawless choice sequence it is its
creation process that is lawless, whereas no finished sequence (i.e. the outcome) can
be totally lawless by Baudet’s Conjecture, proved by van der Waerden (1921), which
implies that every binary sequence x satisfies certain arithmetic laws.

• Finally, serving our aim to compare physical and mathematical notions of random-
ness, I preview the three equivalent definitions of 1-randomness (see Appendix B
and references therein for details) and confirm that also they fit into our general
picture of randomness being defined by some antipode. What will be remarkable is
that the three apparently different notions of randomness to be discusses now, which
at first sight are as good a family resemblance as any, actually turn out to coincide.
The objects whose randomness is going to be discussed are binary strings, and our
discussion here is so superficial that I will not even distinguish between finite and
infinite ones; see Appendix B for the kind of precision that does enable one to do so.

1. A string x is 1-random if its shortest description is x itself, i.e., there exists no
lossless compression of x (in the sense of a computer program that outputs x
and whose length is shorter than the length of x): thus x is incompressible.

2. A string x is 1-random if it fails all tests for patterns (in a computable class).

3. A string x is 1-random if there exists no successful (computable) gambling
strategy on the digits of x; roughly speaking, these digits are unpredictable.

3 Randomness in quantum mechanics

Moving towards the main goal of the paper, I now continue our list of examples (i.e. of the
principle that randomness is a family resemblance whose different meanings are always
defined negatively through their antipodes) in the context of quantum mechanics, which
is rich enough by itself to provide its own family of different meanings of randomness
(all duly defined negatively), although these may eventually be traceable to the above
cases.27 Already the very first (scholarly) exposition of the issue of randomness in quantum
mechanics by Born made many of the major points that are still relevant today:

25See for example Theorem B.2 below. This may relate to Ramsey theory (Trotter & Winkler, 1998).
26See e.g. Eagle (2005) for this terminology.
27It will be clear from the way I discuss quantum mechanics that this paper will just be concerned with

process randomness, as opposed to product randomness. There is certainly a distinction between the two,
but the former drags us into the quagmire of the measurement problem (cf. Landsman, 2017, Chapter 11).
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Thus Schrödinger’s quantum mechanics gives a very definite answer to the question of

the outcome of a collision; however, this does not involve any causal relationship. One

obtains no answer to the question “what is the state after the collision,” but only to the

question “how probable is a specific outcome of the collision” (in which the quantum-

mechanical law of [conservation of] energy must of course be satisfied). This raises the

entire problem of determinism. From the standpoint of our quantum mechanics, there

is no quantity that could causally establish the outcome of a collision in each individual

case; however, so far we are not aware of any experimental clue to the effect that there

are internal properties of atoms that enforce some particular outcome. Should we hope

to discover such properties that determine individual outcomes later (perhaps phases

of the internal atomic motions)? Or should we believe that the agreement between

theory and experiment concerning our inability to give conditions for a causal course

of events is some pre-established harmony that is based on the non-existence of such

conditions? I myself tend to relinquish determinism in the atomic world. But this is

a philosophical question, for which physical arguments alone are not decisive.

(Born, 1926, p. 866).28

Given the fact that Born was the first to discuss such things in the open literature, it
is remarkable how perceptive his words are: he marks the opposition of randomness to
determinism, recognizes the possibility of hidden variables (with negative advice though),
and understands that the issue is not just a technical one. Bravo! Having said this, in line
with the previous section our aim is, of course, to confront the antipode of determinism
with other possible antipodes to randomness as it is featured by quantum mechanics.

The introduction of fundamental probabilities in quantum theory is delicate in many
ways, among which is the fact that the Schrödinger equation is even more deterministic
than Newton’s laws.29 Hence what is meant is randomness of measurements outcomes;
since it is not our aim (here) to solve the measurement problem–for which see Landsman
(2017), Chapter 11–I simply assume that i) measurement is a well-defined laboratory prac-
tice, and ii) measurements have outcomes. In all that follows, I also accept the statistical
predictions of quantum mechanics for these outcomes (which are based on the Born rule
reviewed in Appendix A). Even so, the claim of irreducibility of randomness, which is typ-
ical for all versions of the Copenhagen Interpretation (and for any mainstream view held
by physicists) is almost incomprehensible, since one of the pillars of this interpretation is
Bohr’s doctrine of classical concepts, according to which the apparatus must be described
classically; randomness of measurement outcomes is then seen as a consequence of the
very definition of a measurement. But this suggests that randomness should be reducible
to ignorance about the quantum-mechanical degrees of freedom of the apparatus:

these uncertainties (. . . ) are simply a consequence of the fact that we describe the

experiment in terms of classical physics. (Heisenberg, 1958, p. 53).

Ironically, Bell’s Theorem(s), which arose in opposition to the the Copenhagen Inter-
pretation (Cushing, 1994), did not only prove Einstein (as the leading opponent of this
interpretation) wrong on the issue that arguably mattered most to him (namely locality
in the sense defined later in a precise way by Bell), but also proved Bohr and Heisenberg
right on the irreducibility of randomness, at least if we grant them randomness per se.

28Translation by the author. The reference is to the German original.
29 In the sense that the solution is not only uniquely determined by the initial state, but, by Stone’s

Theorem, even exists for all t ∈ R; in other words, incomplete motion is impossible, cf. Earman (2009).
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Indeed, suppose we equate reducibility of randomness with the existence of a “Laplacian”
deterministic hidden variable theory (i.e. use the antipode of determinism), and assume,
as the Copenhagenists would be pleased to, the conjunction of the following properties:

1. The Born rule and the ensuing statistical predictions of quantum mechanics;

2. (Hidden) Locality, i.e. the impossibility of active superluminal communication or
causation if one knows the state λ of the underlying deterministic theory;30

3. Freedom (or free choice), that is, the independence of the choice of measurement
settings from the state of the system one measures using these settings, in a broad
sense of ‘state’ that includes the prepared state as well as the “hidden” state λ.31

Bell’s (1964) Theorem then implies (robustly) that a deterministic hidden variable sat-
isfying these assumptions theory cannot exist, as does the so-called Free Will Theorem
(which relies on a non-probabilistic but non-robust special case of the Born rule implying
perfect correlation, and also on the Kochen–Specker Theorem, which restricts its valid-
ity to quantum systems with three levels or more).32 Thus the Laplacian interpretation
of randomness does not apply to quantum mechanics (granting assumptions 1–3), which
warrants the Copenhagen claim of irreducible or non-Laplacian or Leibnizian randomness.

Viable deterministic hidden variable theories compatible with the Born rule therefore
have to choose between giving up either Hidden Locality or Freedom (see also the conclusion
of Appendix C). Given this choice, we may therefore distinguish between theories that:

• give up Hidden Locality, like Bohmian mechanics;

• give up Freedom, like the cellular automata interpretation of ’t Hooft (2016).

In both cases the statistical predictions of quantum mechanics are recovered by averaging
the hidden variable or state with respect to a probability measure µψ on the space of
hidden variables, given some (pure) quantum state ψ. The difference is that in Bohmian
mechanics the total state (which consists of the hidden configuration plus the “pilot wave”
ψ) determines the measurement outcomes given the settings, whereas in ’t Hooft’s theory
the hidden state (see below) all by itself determines the outcomes as well as the settings.

• In Bohmian mechanics the hidden variable is position q, and dµψ = |ψ(q)|2dx is the
Born probability for outcome q with respect to the expansion |ψ〉 =

∫
dq ψ(q)|q〉.33

• In ’t Hooft’s theory the hidden state is identified with a basis vector |n〉 in some
Hilbert space H (n ∈ N), and once again the measure µψ(n) = |cn|2 is given by the
Born probability for outcome n with respect to the expansion |ψ〉 =

∑
n cn|n〉.

In Bohmian mechanics (’t Hooft does not need this!) such averaging also restores Surface
Locality, i.e., the impossibility of superluminal communication on the basis of actual mea-
surement outcomes (which is a theorem of quantum theory, though a much more delicate
one than is usually thought, as I will argue in §5), see also Valentini (2002ab).

30This is often called Parameter Independence, as in e.g. the standard textbook by Bub (1997).
31This assumption even makes sense in a super-deterministic theory, where the settings are not free.
32See Cator & Landsman (2014), Landsman (2017), Chapter 6, or Appendix C below for a unified view

of both Bell’s Theorem (from 1964) and the Free Will Theorem (named as such by Conway and Kochen).
33Bohmians call this choice of µψ the quantum equilibrium condition. It was first written down by Pauli.
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4 Probabilistic preliminaries

O False and treacherous Probability,

Enemy of truth, and friend to wickednesse;

With whose bleare eyes Opinion learnes to see,

Truth’s feeble party here, and barrennesse.

When thou hast thus misled Humanity,

And lost obedience in the pride of wit,

With reason dar’st thou judge the Deity,

And in thy flesh make bold to fashion it.

Vaine thoght, the word of Power a riddle is,

And till the vayles be rent, the flesh newborne,

Reveales no wonders of that inward blisse,

Which but where faith is, every where findes scorne;

Who therfore censures God with fleshly sp’rit,

As well in time may wrap up infinite

Philip Sidney (1554–1586), Cœlica, Sonnet CIV.34

My aim is to give a critical assessment of the situation described in the previous section.
My analysis is based on the interplay between the single-case probability measure µ on an
outcome space X, which for the purpose of this paper will be the Born measure µ = µa on
the spectrum X = σ(a) of some self-adjoint operator a, and hence is provided by theory
(see also Appendix A), and the probabilities defined as long-run frequencies for outcome
sequences x = (x1, x2, . . .) of the Bernoulli process defined by (X,µ), which are given by
experiment. To obtain clean mathematical results, I assume experiments can be repeated
infinitely often. This is clearly an idealization, which is regulated by Earman’s Principle:

While idealizations are useful and, perhaps, even essential to progress in physics, a

sound principle of interpretation would seem to be that no effect can be counted as a

genuine physical effect if it disappears when the idealizations are removed. (Earman,

2004, p. 191).

As shown in Appendix B, finite-size effects amply confirm the picture below, comparable
to the way that the law(s) of large numbers have finite-size approximants (such as the
Chernoff-Hoeffding bound). In particular, zero/unit probability of infinite sequence comes
down to very low/high probability for the corresponding finite strings.35 Consequently,
Earman’s Principle (in contrapositive form) holds if we use the canonical probability mea-
sure µ∞ on the infinite product space XN of all infinite sequences x = (x1, x2, . . .), where
xn ∈ X, and XN are canonically equipped with the cylindrical σ-algebra S ⊂ P(XN).36

34The first four lines of this poem are printed on the last page of Keynes (1921), without any source.
35One has to distinguish between outcomes with probability zero and properties that hold with proba-

bility zero. Indeed, every single outcome (in the sense of an infinite bitstream produced by a fair quantum
coin flip) has probability zero, and hence this property alone cannot distinguish between random outcomes
(in whatever sense, e.g. 1-random) and non-random outcomes (such as deterministic outcomes, or, more
appropriately in our technical setting, computable ones), or indeed between any kind of different outcomes.
On the other hand, not being random is a property that holds with probability zero, in that the set of all
outcomes that are not random has probability zero (equivalently, the event consisting of all outcomes that
are random happens almost surely, i.e. with probability 1). And yet outcomes with this probability zero
property exist and may occur (in the finite case, with very small but positive probability). See also §5.

36 Here P(Y ) denotes the power set of Y . The σ-algebra S is generated by all subsets of the form
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To see how one may recover or verify µ from the long-term frequencies governed by
the product measure µ∞, for any function f : X → R define f (N) : XN → R by

f (N)(x1, . . . , xN ) =
1

N
(f(x1) + · · ·+ f(xN )). (4.1)

Then (by the ergodic theorem), for any f ∈ C(X), almost surely with respect to µ∞,

lim
N→∞

f (N) = 〈f〉µ ≡
∫
X
dµ(x) f(x), (4.2)

times the unit function 1XN onXN. This is for continuous functions f , but a limit argument
extends it to characteristic functions 1A : X → 2 ≡ {0, 1}, where A ⊂ X, so that

lim
N→∞

1
(N)
A = µ(A), (4.3)

times 1XN , again µ∞-almost surely. If we define the probability of A within some infinite
sequence (x1, x2, . . .) as the relative frequency of A (i.e. the limit as N →∞ of the number
of xn within (x1, . . . , xN ) that lie in A divided by N), then (4.3) states that for almost
all sequences in XN with respect to the infinite product measure µ∞ this probability of
A equals its Born probability. This is useful, since the latter is a purely mathematical
quantity, whereas the former is experimentally accessible (at least for large N).

For simplicity (but without real loss of generality, cf. footnote 45), in what follows
I specialize this setting to a (theoretically) fair coin flip, that is, X = 2 = {0, 1} and
µ(0) = µ(1) = 1/2. Hence 2N is the space of infinite binary sequences, equipped with the
probability measure µ∞ induced by µ (as I shall argue in §5 below, despite tradition this
situation cannot in fact arise classically, at least not in a deterministic theory). We have:

Theorem 4.1 Almost every binary sequence x ∈ 2N is 1-random with respect to µ∞.

See e.g. Calude (2010), Corollary 6.32. Thus the set E of all sequences that are not 1-
random has probability zero, i.e. µ∞(E) = 0, but this by no means implies that E is
“small” in any other sense: set-theoretically, it is as large as its complement, i.e. the set of
all 1-random sequences, which makes it bizarre that (barring a few exceptions related to
Chaitin’s number Ω) not a single one of these 1-random sequences can actually be proved
to be 1-random, cf. Appendix B. Theorem 4.1 has further amazing consequences:

Corollary 4.2 With respect to µ∞, almost every infinite outcome sequence x of a fair coin
flip is Borel normal,37 incomputable,38 and contains any finite string infinitely often.39

This follows because any 1-random sequence has these properties with certainty, see Calude
(2010), §6.4. The relevance of Bernoulli processes for quantum theory comes from Theorem
5.1 in the next section, whose second option almost by definition yields these processes.

B =
∏N
n=1An ×

∏∞
m=N+1X, where An ⊂ X is Borel measurable and N <∞. The probability measure µ

on X then defines a probability measure µ∞ on S, whose value on B is defined by µ∞(B) =
∏N
n=0 µ(An).

See e.g. Dudley (1989), especially Theorem 8.2.2, for this and related constructions (due to Kolmogorov).
37This means that any group x1 · · ·xn of digits in x occurs with relative frequency equal to 2−n.
38This means that there is no computable function f : N → N taking values in {0, 1} that produces x,

where computability is meant in the old sense of recursion theory, or, equivalently, in the sense of Turing
machines or indeed modern computers. One could also say that there is no algorithm for f .

39This is a strong version of the infinite monkey (typewriter) theorem, to the effect that if some monkey
randomly hits the keys of a typewriter for a very long time, the probability that it produces a play by
Shakespeare (or whatever other canonical text) is positive. See also the “Boltzmann Brain argument.”
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5 Critical analysis and claims

The relevance of the material in the previous section comes from the following result.

Theorem 5.1 The following procedures for repeated identical measurements are equiva-
lent (in giving the same possible outcome sequences with the same probabilities):

1. Quantum mechanics is applied to the whole run (with classically recorded outcomes).

2. Quantum mechanics is just applied to single experiments (with classically recorded
outcomes), upon which classical probability theory takes over to combine these.

See Appendix A for the proof, which culminates in eq. (A.35), showing that the Born
probability µa for single outcomes induces the Bernoulli process probability µ∞a on the
space σ(a)N of infinite outcome sequences. As mentioned before, I specialize to fair quan-
tum coin flips producing 50-50 Bernoulli processes, of which there are examples galore:
think of measuring the third Pauli matrix σz = diag(1,−1) in a state like ψ = (1, 1)/

√
2.

In that case, Theorem 5.1 and Corollary 4.2 obviously have the following implication:

Corollary 5.2 With respect to the product measure µ∞a coming from the Born measure
µa, almost every infinite outcome sequence x of a fair quantum coin flip is 1-random and
therefore Borel normal, incomputable, and contains any finite string infinitely often.

The Born rule therefore implies very strong randomness properties of outcome sequences,
albeit merely with probability one (i.e. almost surely) with respect to µ∞a . Moreover,
Chaitin’s Incompleteness Theorem (see Appendix B) makes it impossible to prove that
some given outcome sequence is 1-random even if it is!40 Also in the spirit of the general
‘family resemblance’ philosophy of randomness, this puzzling situation makes it natural
to compare randomness of infinite measurement outcome sequences as defined by:41

1. 1-randomness (with compressible sequences as its antipode), as suggested by the
Born rule and the above analysis of its mathematical implications;42

2. indeterminism, as suggested by Born himself, and in his wake also by Bell’s Theorem
and the Free Will Theorem (seen as proofs of indeterminism under assumptions 1–3).

To make this comparison precise, we once again need the case distinction between hidden
variable theories giving up Hidden Locality like Bohmian mechanics and those giving up
Freedom, like ’t Hooft’s theory. See Appendix C for notation. In the usual EPR–Bohm–
Bell setting (Bub, 1997), let (α, β) ∈ O × O be Alice’s and Bob’s outcomes for given
settings (a, b) ∈ S ×S, so that (α, a) are Alice’s and (β, b) are Bob’s (outcomes, settings).

40See Abbott et al (2019) and Kovalsky et al (2018) for empirical tests of approximate 1-randomness.
41 In the literature on quantum cryptography and quantum random number generators (QRNG) one also

find notions of (“free”) randomness for single qubits, see e.g. the reviews Brunner et al (2019), Herrero-
Collantes & Garcia-Escartin (2017), Ma et al (2016), and Pironio (2018). The two (closely related)
definitions used there fall into our general scheme of antipodality, namely randomness as unpredictability
defined as minimizing the probability that an eavesdropper correctly guesses the qubit, and randomness as
the absence of correlations between the qubit in question and anything outside its forward lightcone (which
is heavily Leibnizian). These are related, since guessing is done through such correlations of the qubit.
Certification of both cryptographic protocols and QRNGs is defined in these terms, backed by proofs of
indeterminism à la Bell, so that in all versions non-locality plays a crucial role. See also footnote 50.

42I am by no means the first to relate quantum theory to algorithmic randomness: see, for example,
Bendersky et al (2014, 2016, 2017), Calude (2004), Svozil (1993, 2018), Senno (2017), Yurtsever (2001),
and Zurek (1989). The way my work relates to some of these references will become clear in due course.
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• In Bohmian mechanics, the hidden state q ∈ Q just pertains to the correlated par-
ticles undergoing measurement, whilst the settings (a, b) are supposed to be “freely
chosen” for each measurement (and in particular are independent of q).43 The out-
come is then given by (α, β) = q(a, b). So if we number the consecutive runs of the
experiment by n ∈ N = {1, 2, . . .}, then everything is determined by functions

f1 : N→ Q; f1(n) = qn; (5.1)

f2 : N→ S × S; f2(n) = (an, bn), (5.2)

since these also give the outcome sequence by (αn, βn) = qn(an, bn) = f1(n)(f2(n)).

• In ’t Hooft’s theory, the hidden state x ∈ X of “the world” determines the settings
as well as the outcomes, i.e. (a, b, α, β) = (a(x), b(x), α(x), β(x)). In this case, the
entire situation including the outcome sequence is therefore determined by a function

g : N→ X; g(n) = xn. (5.3)

A key point in the analysis of the functions fi and g is the requirement that both theories
reproduce the statistical predictions of quantum mechanics given through the Born rule
relative to some pure state ψ. As already noted, this is achieved by requiring that q is
averaged with respect to some probability measure µψ on Q, and likewise x is averaged
with respect to some probability measure µ′ψ on X. If the experimental run is to respect
this averaging, then in Bohmian mechanics the map f1 must be “typical” for the Born-like
measure µψ (cf. Dürr, Goldstein, & Zanghi, 1992; Callender, 2007; Norsen, 2018; Valentini,
2019);44 see below for the special problems posed also by f2. Analogously to the previous
discussion of the Born measure itself and its sampling, any sampling of µψ produces a
sequence (q1, q2, . . .) that almost surely should have typical properties with respect to µ∞ψ .
In particular, such a sequence should typically be 1-random (in a suitable biased sense
fixed by µψ).45 Anything remotely deterministic, like computable samplings, will only
contribute sequences that are atypical (i.e. collectively have measure zero) for µψ.46

Likewise for the sampling of X with respect to µ′ψ in ’t Hooft’s theory. Thus the
requirement that the functions f1 and g randomly sample µψ and µ′ψ introduces an element
of unavoidable randomness into the hidden variable theories in question, which seems
whackingly at odds with their deterministic character. Indeed, I only see two possibilities:

• This sampling is provided by the hidden variable theory. In that case, the above
argument shows that the theory must contain an irreducibly random ingredient.

• The sampling is not provided by the theory. In that case, the theory fails to deter-
mine the outcome of any specific experiment and just provides averages of outcomes.

43This is true if one knows the hidden positions exactly at the time of measurement. At earlier times, the
pilot wave = quantum state ψ is needed to make predictions, since ψ determines the trajectories. See e.g.
Barrett (1999), Chapter 5, for a discussion of measurement in Bohmian mechanics, including EPR–Bohm.

44Appendix B contains a precise definition of typicality, see in particular point 3 below eq. (B.3).
45 We only defined 1-randomness for outcome sequences of fair coin flips, but the definition can be

extended to other measures, see Downey & Hirschfeldt (2010), §6.12 and references therein.
46 In this light I draw attention to an important result of Senno (2017), Theorem 3.2.7, see also Bendersky

et al (2017), which is entirely consistent with the above analysis: If the functions f1 and g are computable
(within a computable time bound), then Alice and Bob can signal superluminally. In other words, where
mathematically speaking averaging the hidden state over the probability measure µψ suffices to guarantee
Surface Locality even in a theory without Hidden Locality (Valantini, 2002), if this averaging is done by
sampling Q in a long run of repeated measurements, then this sampling must at least be incomputable.
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Either way, although at first sight our hidden variable theories are (Laplacian) deter-
ministic (as is quantum mechanics, see footnote 29), in their accounting for measurement
outcomes they are not (again, like quantum theory). What is the source of indeterminism?

• In standard (Copenhagen) quantum mechanics this source lies in the outcomes of
experiments given the quantum state, whose associated Born measure is sampled;

• In “deterministic” hidden variable theories it is the assignment of the hidden variable
to each measurement no. n, i.e. the sampling of the Born-like measures µψ and µ′ψ.

So at best the source of indeterminism has been shifted. Moreover, in Bohmian mechanics
and ’t Hooft’s theory µψ and µ′ψ equal the Born measure, so one wonders what has been
gained against Copenhagen quantum mechanics. Therefore, one has to conclude that:

Truly deterministic hidden variable theories (i.e. those in which well-defined experiments
have determined outcomes given the initial state and no appeal has to made to irreducibly
random samplings from this state) compatible with the Born rule do not exist.

In other words, as long as they reproduce all statistical predictions of quantum mechanics,
deterministic theories underneath quantum mechanics still need a source of irreducible
randomness in each and every experiment. In my view, this defeats their purpose.47

In classical coin tossing the role of the hidden state is played by the initial conditions (cf.
Diaconis & Skyrms, 2018, Chapter 1, Appendix 2). The 50-50 chances (allegedly) making
the coin fair are obtained by averaging over the initial conditions, i.e., by sampling. By
the above argument, this sampling cannot be deterministic, for otherwise the outcome
sequences appropriate to a fair coin do not obtain: it must be done in a genuinely random
way. This is impossible classically, so that fair classical coins do not exist, as confirmed
by the experiments of Diaconis et al reviewed in Diaconis & Skyrms (2018), Chapter 1.

In response to this argument, both the Bohmians and ’t Hooft go for the second op-
tion and blame the randomness in question on the initial conditions, whose specification
is indeed usually seen as lying outside the range of a deterministic theory.48 As explained
by both parties (Dürr, Goldstein, & Zanghi, 1992; ’t Hooft, 2016), the randomness in the
outcomes of measurement on quantum system, including the Born rule, is a direct con-
sequence of the above randomness in initial conditions. But in a Laplacian deterministic
theory one can either predict or retrodict and these procedures should be equivalent; so
within the context of a deterministic hidden variable theory of the kinds under discussion,
Copenhagenists attributing the origin of randomness to the outcomes of measurement
and our hidden variable theorists attributing it to the initial conditions for measurement,
should be equivalent. Once again, this makes it impossible to regard the hidden variable
theories in question as deterministic underpinnings of (Copenhagen) quantum mechanics.

Bohmians (but not ’t Hooft!) have another problem, namely the function (5.2) that
provides the settings. Although f2 is outside their theory, Bohmians should either account
for both the “freedom” of choosing these settings and their randomness, or stop citing
Bell’s Theorem (whose proof relies on averaging over random settings) in their favour.

47A related point about the double role of ψ in the pilot wave theory of De Broglie was made by
Pauli (1953, p. 38): ‘The hypothesis of a general probability distribution for the hidden variables that is
determined by the single [wave] function ψ is not justified from the point of view of a deterministic scheme:
it is borrowed from a theory which is based on the totally different hypothesis that the [wave] function
provides a complete description of the system.’ I am indebted to Guido Bacciagaluppi for this information.

48The Bohmians are divided on the origin of the quantum equilibrium distribution, cf. Dürr, Goldstein,
& Zanghi (1992), Callender (2007), Norsen (2018), and Valentini (2019). The origin of µψ is not my
concern here; the problem I address is the need to randomly sample it and the justification for doing so.
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Bell (1985) tried to kill these two birds with the same stone by saying that the settings
had to be ‘at least effectively free for the purpose at hand’, and clarifiying this as follows:

Suppose that the instruments are set at the whim, not of experimental physicists, but

of mechanical random generators. (. . . ) Could the input of such mechanical devices be

reasonably be regarded as sufficiently free for the purpose at hand? I think so. Con-

sider the extreme case of a “random” generator which is in fact perfectly deterministic

in nature and, for simplicity, perfectly isolated. In such a device the complete final

state perfectly determines the complete initial state–nothing is forgotten. And yet for

many purposes, such a device is precisely a “forgetting machine”. (. . . ) To illustrate

the point, suppose that the choice between two possible [settings], corresponding to a

and a′, depended on the oddness of evenness of the digit in the millionth decimal place

of some input variable. Then fixing a or a′ indeed fixes something about the input–i.e.,

whether the millionth digit is odd or even. But this peculiar piece of information is

unlikely to be the vital piece for any distinctly different purpose, i.e., it is otherwise

rather useless. (. . . ) In this sense the output of such a device is indeed a sufficiently

free variable for the purpose at hand. (Bell, 1985, p. 105).

This seems to mix up the two issues. Though independence of the settings is defensible in
a theory like Bohmian mechanics (Esfeld, 2015), concerning their randomness Bell appar-
ently ignored von Neumann’s warning against mechanical (i.e. pseudo) random generators:

Any one who considers arithmetical methods of producing random digits is, of course,

in a state of sin (von Neumann, 1951).

See also Markowsky (2014). Thus Bell’s statement was questionable already at the time of
writing, but today we know for sure that mechanical random generators leave a loophole in
the EPR–Bohm–Bell experiment: as soon as just one of the functions defining the settings
(i.e. either of Alice or of Bob) is computable,49 there is a model that is local (in the sense
of Bell). See Bendersky et al (2016) or Senno (2017), Theorem 2.2.1 This implies that
Bohmian mechanics (as well as other deterministic hidden variable theories that leaves the
settings free) requires even more randomness than the sampling of the (Born) probability
measure µψ, which further undermines the claim that it is a deterministic theory.50

The analysis given so far focused on the necessity of correctly sampling a probability
measure µ: if, so far in the context of hidden variable theories, where µ = µψ, this
is not done correctly, quantum-mechanical predictions such as Surface Locality may be
threatened. But in general there are measurement outcome sequences that fail to sample
µ: atypical events with very low or even zero probability can and do occur. This is even
the whole point of the “law of truly large numbers” quoted in §2! In general, the Hidden
Locality (or no-signaling) property of quantum mechanics states that the probability

Pψ(α | a, b) :=
∑
β

Pψ(α, β | a, b) (5.4)

is independent of b, where Pψ(α, β | a, b) is the Born probability that measurement of
observables determined by the settings a and b give outcomes α and β. Indeed, we have

Pψ(α | a, b) = Pψ|A(α | a), (5.5)

49The computable function is subject to a time bound, but this is true for all pseudo-random generators.
50 In order not to be in a state of sin even Copenhagen quantum mechanics has yet to prove that it is

capable of building “true” Random Number Generators. See e.g. Abbott et al (2012, 2019), Aćın et al
(2016), Ananthaswamy (2019), Bendersky et al (2016), Herrero-Collantes & Garcia-Escartin (2017), and
Kovalsky et al (2018). See also the end of Appendix B for the (lacking) connection with 1-randomness.
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where ψ|A is the restriction of the state ψ on B(HA⊗HB) to Alice’s part B(HA). Similarly,
the Born probability Pψ(β | a, b) should be independent of a and in fact equals Pψ|B (β | b).
However, I have repeatedly noted that the empirical probability extracted from a long
measurement outcome sequence coincides with the corresponding Born probability only
almost surely with respect to the induced probability measure on the space of outcome
sequences, and hence outliers violating the property (5.4) exist (for finite sequences even
with positive probability). If one such run is found, the door to superluminal signaling
is open, at least in principle. To see this, recall that the crudest form of determinism is
what is called Predictability by Cavalcanti & Wiseman (2012), i.e. the property that

Pψ(α, β | a, b) ∈ {0, 1}. (5.6)

It is easy to show that the conjunction of Predictability and Surface Locality implies
factorization and hence, for random settings, the Bell (CHSH) inequalities, and therefore
for suitable states ψ this conjunction contradicts the statistical predictions of quantum
mechanics as expressed by the Born rule. Accepting the latter, Surface Locality therefore
implies unpredictability and hence some (very weak) form of randomness. There are many
other results in this direction, ranging from e.g. Barrett, Kent, & Hardy (2005) to Wolf
(2015),51 involving varying definitions of randomness, all coming down to the implication

no signaling ⇒ randomness, (5.7)

assuming Freedom and random settings.52 What I’d like to argue for is the contrapositive

no randomness ⇒ signaling . (5.8)

My argument is only heuristic, since the terms are used differently in (5.7) and (5.8): to
prove (5.7) one typically uses Born probabilities and other theoretical entities, whereas for
(5.8) I use probabilities obtained from outcome sequences as limiting relative frequencies:
(5.8) then comes from low-probability sequences that violate (5.4), which is satisfied with
probability one by sufficiently random sequences. Indeed, this difference is the whole point:

Surface Locality is a statistical property, like the second law of thermodynamics.53

51Note that the aim of Barrett, Kent, & Hardy (2005) is to prove security of some quantum key distribu-
tion protocol on the basis of Surface Locality even if quantum mechanics turns out to be incorrect, whereas
the present paper investigates the role of statistical outliers assuming quantum mechanics is correct. These
aims are closely related, of course, since too many (how many?) outliers may make one question the theory.

52See Hermens (2019) for arguments for (5.7) and (5.8) even without assuming Freedom.
53Similarly, Valentini (2002ab) pointed out that violation of the equilibrium condition in Bohmian me-

chanics leads to superluminal signaling. Giving an actual signaling protocol for an outcome sequence (in
the EPR–Bohm–Bell setting) that violates (5.4) is highly nontrivial. Yurtsever (2001) gives a protocol for
superluminal signaling if the outcome sequence is not 1-random, but his arguments are tricky and the paper
with complete details he announces has never appeared. His approach may be neither viable nor necessary,
since such a protocol need only exist for outcome sequences violating (5.4), which is a stronger property
than violating 1-randomness–since contrapositively 1-randomness implies all averaging properties like (5.4).
In fact, further assumptions are necessary in order for Alice to have a chance (sic) to learn Bob’s settings
b from her part (αn)n of the (double) outcome sequence (αn, βn)n; a complete lack of structure would
also make any kind of signaling random. I know of only one such protocol (which, however, should suffice
as a “proof of concept”): if the unlikely outcome sequence (αn, βn)n comes from computable functions
αn = α(a, b, n) and βn = β(a, b, n) with O(T 2) time bounds, then signaling is possible through a learning
algorithm for computable functions, see Senno (2017), Theorem 3.2.7 and Bendersky et al (2017). This is
the same result as in footnote 46; by Proposition 3.1.7 in Senno (2017), mutatis mutandis it applies both
with and without hidden variables. This protocol enables Alice (or Bob) to signal after a finite (but alas
unknown and arbitrarily large) number of of measurements (this answers a speculation by Carlo Rovelli
that finite-size corrections to the lack of randomness may conspire to prevent superluminal signaling).
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A The Born rule revisited

Every argument on probabilities in quantum mechanics relies on the Born rule, which is
so natural that it will probably (!) be with us forever. In order to explain its canonical
mathematical origin, I use the C*-algebraic approach to quantum theory, which because of
its ability to simultaneously talk about commutative and non-commutative algebras (and
hence about classical and quantum probabilities) is especially useful in this context.54

Indeed, the Born rule arises by restricting a quantum state ω on the non-commutative
algebra B(H), i.e. the algebra of all bounded operators on some Hilbert space H, to the
commutative C*-algebra C∗(a) generated by some self-adjoint operator a = a∗ ∈ B(H)
and the unit operator 1H (so perhaps C∗(a, 1H) would have been better notation).55

This view has been inspired by the Copenhagen Interpretation, in that the associated
probabilities originate in the classical description of a measurement setting, as called for
by Bohr. However, precisely because of this, my derivation also seems to undermine the
Copenhagen claim of the irreducibility of randomness, which may now clearly be traced
back to a voluntary loss of information in passing from an algebra to one of its subalgebras
and ignoring the rest (see also §3). Happily, the Copenhagen Interpretation will be saved
from this apparent inconsistency by a mathematical property that has no classical analog.

As I see it, the Born rule is the quantum-mechanical counterpart of the following
elementary construction in measure theory. Let X be a compact Hausdorff space,56 with
associated commutative C*-algebra A = C(X) of complex-valued continuous functions on
X. Let f ∈ A be real-valued and denote its (automatically closed) range in R by σ(f); the
notation is justified by the fact that the spectrum of a self-adjoint operator in quantum
theory is analogous to σ(f) in every possible way. Let ω be a state on A, or, equivalently
(by the Riesz representation theorem), a probability measure µ on X, related to ω by

ω(f) =

∫
X
dµ(x) f(x). (A.1)

The state ω then also defines a probability measure µf on the “spectrum” σ(f) through

µf (∆) = µ(f ∈ ∆), (A.2)

where ∆ ⊆ σ(f) and f ∈ ∆ or f−1(∆) denotes the subset {x ∈ X | f(x) ∈ ∆} of X.
Virtually all of probability theory is based on this construction, which I now rephrase.
For any C*-algebra A with unit 1A, let C∗(a) be the smallest C*-algebra in A (under the
same operations and norm) that contains a and the unit 1A, as above for A = B(H). If
a∗ = a, then C∗(a) is the norm-closure of the set of all (finite) polynomials in a. Take
A = C(X) and f ∈ C(X), assumed real-vaued (since f∗ = f). This gives as isomorphism

C(σ(f))
∼=→ C∗(f); (A.3)

g 7→ g ◦ f, (A.4)

where f ∈ C(X), g ∈ C(σ(f)), as follows from the Stone–Weierstrass Theorem.57

54See e.g. Haag (1992), Ruetsche (2011), or Landsman (2017) for the C*-algebraic approach. My dis-
cussion of the Born rule is partly taken from the latter, which in turn elaborates on Landsman (2009), but
the corresponding “classical” construction has been added and may be new; I find it very instructive.

55This is well defined, since C∗(a) is the intersection of all C*-algebras in B(H) that contain a and 1H .
56With some modifications the construction easily generalizes to the locally compact case.
57if K ⊂ R is compact, then polynomials on K are dense in C(K) for the supremum-norm, i.e. the norm

on C(X). To prove that (A.3) - (A.4) is an isomorphism of C*-algebras one may therefore start with
polynomial functions g (taking K = σ(f)) and finish with a continuity argument.
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If C is a C*-subalgebra of A with the same unit as A, then any state ω on A defines
a state ω|C on C. Thus ω|C∗(f) is a state on C∗(f). Furthermore, if ϕ : B → C is a
unital homomorphism of unital C*-algebras (i.e., a linear map preserving all operations
as well as the unit—in our case ϕ is even an isomorphism), and if ω′ is a state on C, then
ϕ∗ω

′ = ω′ ◦ ϕ is a state on B. Using (A.3) - (A.4), we apply this construction to

A = C(X), B = C(σ(f)), C = C∗(f); (A.5)

ω ∈ S(C(X)), ω′ = ω|C∗(f), ϕ(g) = g ◦ f, (A.6)

where S(A) is the state space of A, so that a state ω on C(X) defines a state ω′ on C(σ(f)).
Once again using the Riesz representation theorem then turns ω′ into a probability measure
µ′ on σ(f); and this is exactly the probability measure µf = µ′ defined in (A.2).

Copying this reasoning for quantum mechanics mutatis mutandis immediately gives
the Born measure. Instead of (A.5) - (A.6), for some given a = a∗ ∈ B(H) we now take

A = B(H), B = C(σ(a)), C = C∗(a); (A.7)

ω ∈ S(B(H)), ω′ = ω|C∗(a), ϕ(g) = g(a), (A.8)

where (A.3) - (A.4) is replaced by the continuous functional calculus (CFC), that is,

C(σ(a))
∼=→ C∗(a); (A.9)

g 7→ g(a). (A.10)

Here σ(a) is the spectrum of a, defined as the set of λ ∈ C for which the operator a−λ ·1H
is not invertible in B(H); if dim(H) <∞, then σ(a) is the set of eigenvalues of a. In most
applications the state ω is normal, i.e., given by a density operator ρ on H through

ω(a) = Tr (ρa). (A.11)

We then replay our record: a state ω ∈ S(B(H)) restricts to a state ω|C∗(a) on C∗(a),
which is mapped to a state on C(σ(a)) by the CFC, which state in turn is equivalent
to a probability measure on σ(a). The probability measure µa on σ(a) obtained by this
construction is exactly the Born measure, which is more commonly defined as follows:

Theorem A.1 Let H be a Hilbert space, let a∗ = a ∈ B(H), and let ω be a state on
B(H). There exists a unique probability measure µa on the spectrum σ(a) of a such that

ω(g(a)) =

∫
σ(a)

dµa(λ) g(λ), g ∈ C(σ(a)). (A.12)

We now return to the issue raised in the introduction to this appendix: even short of hidden
variables (see §3), to what extent is the probabilistic structure of quantum mechanics that
is already inherent in the Born measure reducible to ignorance? From a naive perspective
it is, for in the corresponding classical case the measure µf on σ(f) does not determine
the measure µ on X except when C∗(f) = C(X) (which is certainly possible, take e.g.
X = [0, 1] and f(x) = x). However, in the quantum case it so happens that if a is maximal
(i.e. its spectrum is nondegenerate, or, equivalently, C∗(a) is a maximal commutative C*-
subalgebra of B(H)), then the measure µa on σ(a) does determine the state ω, at least
if ω is pure and normal, as in (A.11), despite the fact that C∗(a) is just a small part of
B(H). So the Copenhagen Interpretation is walking a tightrope here, but it doesn’t fall.58

58This discussion is closely related to the so-called Kadison–Singer conjecture in operator algebras, which
however is nontrivial only for non-normal states. See Stevens (2016) and Landsman (2017), §2.6 and §4.3
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The Born measure is a mathematical construction; what is its relationship to exper-
iment? This relationship must be the source of the (alleged) randomness of quantum
mechanics, for the Schrödinger equation is deterministic. We start by postulating, as
usual, that µa(A) is the (single case) probability that measurement of the observable a
in the state ω (which jointly give rise to the pertinent Born measure µa) gives a result
λ ∈ A ⊂ σ(a). What needs to be clarified in the above statement is the word probability.

Although I do not buy Lewis’s (1994) “Best Systems Account” (BSA) of laws of na-
ture,59 I do agree with his identification of single-case probabilities as numbers (consistent
with the probability calculus as a whole) that theory assigns to events, upon which long-
run frequencies provide empirical evidence for the theory in question,60 but do not define
probabilities.61 The Born measure is a case in point: these probabilities are theoretically
given, but have to be empirically verified by long runs of independent experiments. In
other words, by the results reviewed below such experiments provide numbers whose role
it is to test the Born rule as a hypothesis. This is justified by (4.3) in §4, which equates
probabilities computed from long-run frequencies with the corresponding single-case prob-
abilities that define the clause “with probability one” under which (4.3) holds, and without
which clause the limit in (4.3) would be undefined. As explained in §§4-5, the relevance
of (4.3) to quantum physics comes from Theorem 5.1, which I now prove.

Proof of Theorem 5.1. Let a = a∗ ∈ B(H), where H is a Hilbert space and B(H) is the
algebra of all bounded operators on H, and let σ(a) be the spectrum of a. For simplicity
(and since this is enough for our applications, where H = C2) I assume dim(H) < ∞, so
that σ(a) simply consists of the eigenvalues λi of a (which may be degenerate). Let us
first consider a finite number N of runs of an identical measurement of a. The first option
in the theorem corresponds to a simultaneous measurement of the commuting operators

a1 = a⊗ 1H ⊗ · · · ⊗ 1H ; (A.13)

· · ·
aN = 1H ⊗ · · · ⊗ 1H ⊗ a, (A.14)

all defined on the N -fold tensor product HN ≡ H⊗N of H with itself.62 To put this in
a broader perspective, consider any set (a1, . . . , aN ) ≡ a of commuting operators on any
Hilbert space K (of which (A.13) - (A.14) is obviously a special case with K = HN ).
These operators have a joint spectrum σ(a), whose elements are the joint eigenvalues
λ = (λ1, . . . , λN ), defined by the property that there exists a nonzero joint eigenvector
ψ ∈ K such that aiψ = λiψ for all i = 1, . . . , N ; clearly, the joint spectrum is given by

σ(a) = {λ ∈ σ(a1)× · · · × σ(aN ) | eλ ≡ e
(1)
λ1
· · · e(n)λn

6= 0} ⊆ σ(a1)× · · · × σ(aN ), (A.15)

59See Loewer (2004) and, concisely, Callender (2007) for summaries of Lewis’s BSA. As I understand
it, Lewisian laws describe nature, but fail to govern or guide it in the way that the Law of Moses, carved
in stone, is supposed to influence (decent) human behaviour. Now I agree with Loewer (2004) that it is
hard to see how laws as mathematical expressions in physics books could govern anything, but I expect
this problem to be solved in due course by an emergentist account in which lower-level behaviour–though
never fundamental–gives rise to emergent laws at some higher substratum of reality. See also footnote 3.

60Within the Lewisian ideology this is ultimately justified by his Principal Principle, which roughly
speaking equates chance as subjective degree of belief (i.e. credence) with objective chance.

61This, as is well known by now, is a dead end street (Hájek & Hitchcock, 2016). It should be mentioned
though that the fascinating yet ultimately flawed attempts of von Mises to provide such a definition played
a decisive role in the road towards algorithmic randomness (van Lambalgen, 1987).

62This can even be replaced by a single measurement, see Landsman (2017), Corollary A.20.
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where e
(i)
λi

is the spectral projection of ai on the eigenspace for the eigenvalue λi ∈ σ(ai).
Von Neumann’s Born rule for the probability pa(λ) of finding λ ∈ σ(a) then simply reads

pa(λ) = ω(eλ), (A.16)

where ω is the state on B(K) with respect to which the Born probability is defined. If
dim(K) < ∞, as I assume, we always have ω(a) = Tr (ρa) for some density operator ρ,
and for a general Hilbert space K this is the case iff the state ω is normal on B(K). For
(normal) pure states we have ρ = |ψ〉〈ψ| for some unit vector ψ ∈ K, in which case

pa(λ) = 〈ψ, eλψ〉. (A.17)

The Born rule (A.16) follows from the same reasoning as the single-operator case explained
in the run-up to Theorem A.1 (Landsman, 2017, §4.1):63 we have an isomorphism

C∗(a) ∼= C(σ(a)) (A.18)

of (commutative) C*-algebras, and under this isomorphism the restriction of the state
ω, originally defined on B(K), to C∗(a) defines a probability measure µa on the joint
spectrum σ(a), which is just the Born measure whose probabilities are given by (A.16).
For (A.13) - (A.14) we have equality in (A.15); since in that case σ(ai) = σ(a), we obtain

σ(a) = σ(a)N , (A.19)

and, for all λi ∈ σ(a) and states ω on B(HN ), the Born rule (A.16) becomes

pa(λ1, . . . , λN ) = ω(eλ1 ⊗ · · · ⊗ eλN ). (A.20)

Now take a given state ω1 on B(H). Reflecting the idea that ω is the state on B(HN ) in
which N independent measurements of a ∈ B(H) in the state ω1 are carried out, choose

ω = ωN1 , (A.21)

i.e. the state on B(HN ) defined by linear extension of its action on elementary tensors:

ωN1 (b1 ⊗ · · · ⊗ bn) = ω1(b1) · · ·ωN (bN ), (A.22)

where bi ∈ B(H) for each i = 1, . . . , N . It follows that

ωN (eλ1 ⊗ · · · ⊗ eλN ) = ω1(eλ1) · · ·ω1(eλN ) = pa(λ1) · · · pa(λN ), (A.23)

so that the joint probability of the outcome (λ1, . . . , λN ) ∈ σ(a) is simply

p~a(λ1, . . . , λN ) = pa(λ1) · · · pa(λN ). (A.24)

Since these are precisely the probabilities for option 2 (i.e. the Bernoulli process), i.e.,

µa = µNa , (A.25)

this proves the claim for N <∞.

63Moreover, quite apart from te above derivation, on separable Hilbert spaces the Born rule for multiple
commuting operators is in fact a special case of the one for single operators (Landsman, 2017, §2.5).
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To describe the limit N → ∞, let B be any C*-algebra with unit 1B; below I take
B = B(H), B = C∗(a), or B = C(σ(a)). We now take

AN = B⊗N , (A.26)

the N -fold tensor product of B with itself.64 The special cases above may be rewritten as

B(H)⊗N ∼= B(H ⊗ · · · ⊗H); (A.27)

C∗(a)⊗N ∼= C∗(a1, . . . , aN ); (A.28)

C(σ(a))⊗N ∼= C(σ(a)× · · · × σ(a)), (A.29)

with N copies of H and σ(a), respectively; in (A.28) the ai are given by (A.13) - (A.14).
We may then wonder if these algebras have a limit as N → ∞. They do, but it is

not unique and depends on the choice of observables, that is, of the infinite sequences
a = (a1, a2, . . .), with aN ∈ AN , that are supposed to have a limit. One possibility is to
take sequences a for which there exists M ∈ N and aM ∈ AM such that for each N ≥M ,

aN = aM ⊗ 1B · · · ⊗ 1B, (A.30)

with N −M copies of the unit 1B. On that choice, one obtains the infinite tensor product
B⊗∞, see Landsman (2017), §C.14. The limit of (A.27) in this sense is B(H⊗∞), where
H⊗∞ is von Neumann’s ‘complete’ infinite tensor product of Hilbert spaces,65 in which
C∗(a)⊗∞ is the C*-algebra generated by the operators (a1, a2, . . .). The limit of (A.29) is

C(σ(a))⊗∞ ∼= C(σ(a)N), (A.31)

where σ(a)N, which we previously saw as a measure space (as a special case of XN for
general compact Hausdorff spaces X), is now seen as a topological space with the product
topology, in which it is compact.66 As in the finite case, we have an isomorphism

C∗(a)⊗∞ ∼= C(σ(a))⊗∞, (A.32)

and hence, on the given identifications and the notation (A.13) - (A.14), we have

C∗(a1, a2, . . .) ∼= C(σ(a)N). (A.33)

It follows from the definition of the infinite tensor products used here that each state ω1

on B defines a state ω∞1 on B⊗∞. Take B = B(H) and restrict ω∞1 , which a priori is
a state on B(H⊗∞), to its commutative C*-subalgebra C∗(a1, a2, . . .). The isomorphism
(A.33) then gives a probability measure µa on the compact space σ(a)N, where the label
a now refers to the infinite set of commuting operators (a1, a2, . . .) on H⊗∞. To compute
this measure, use (A.12) and the fact that by construction functions of the type

f(λ1, λ2, . . .) = f (N)(λ1, . . . , λN ), (A.34)

where N < ∞ and f (N) ∈ C(σ(a)N ), are dense in C(σ(a)N) with respect to the appro-
priate supremum-norm, and that in turn finite linear combinations of factorized functions
f (N)(λ1, . . . , λN ) = f1(λ1) · · · fN (λN ) are dense in C(σ(a)N ). It follows from this that

µa = µ∞a . (A.35)

Since this generalizes (A.25) to N =∞, this finishes the proof of Theorem 5.1. �

64If B is infinite-dimensional, for technical reasons the so-called projective tensor product should be used.
65See Landsman (2017), §8.4 for this approach. The details are unnecessary here.
66From Tychonoff’s Theorem. The associated Borel structure is the one defined in footnote 36 in §5.
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B 1-Randomness

As we have seen, randomness (of measurement outcomes) in quantum mechanics was
originally defined by Born as indeterminism. This is what hidden variable theories like
’t Hooft’s and Bohmian mechanics challenge, to which in turn Bell’s Theorem and the
Free Will Theorem (read in a specific way reviewed in Appendix C below) provide ob-
stacles. Indeterminism is a physical definition of randomness, which in mathematics is
most closely matched by incomputability. However, there is a much deeper notion of ran-
domness in mathematics, which is what at least in my view quantum mechanics should
aspire to produce. This notion, now called 1-randomness, has its roots in Hilbert’s Sixth
Problem, viz. the Mathematical Treatment of the Axioms of Physics,67 which was taken
up independently and very differently by von Mises (1919) and by Kolmogorov (1933).

Von Mises was a strict frequentist for whom probability was a derived concept, predi-
cated on first having a good notion of a random sequence from which relative frequencies
defining probability could be extracted. Kolmogorov, on the other hand, started from
an axiomatic a priori notion of probability from which a suitable mathematical concept
of randomness was subsequently to be extracted. Despite the resounding and continuing
success of the first step, Kolmogorov’s initial failure to achieve the follow-up led to his
later notion of algorithmic randomness, which (subject to a technical improvement) was
to become one of the three equivalent definitions of 1-randomness. In turn, von Mises’s
failure to adequately define random sequences eventually led to the other two definitions.68

Kolmogorov’s problem, which was noticed already by Laplace and perhaps even earlier
probabilists, was that, specializing to a 50-50 Bernoulli process for simplicity,69 any binary
string σ of length N has probability P (σ) = 2−N and any (infinite) binary sequence x
has probability P (x) = 0, although say σ = 0011010101110100 looks much more random
than σ = 111111111111111. In other words, their probabilities say little or nothing about
the randomness of individual outcomes. Imposing statistical properties helps but is not
enough to guarantee randomness. It is slightly easier to explain this in base 10, to which
I therefore switch for a moment. If we call a sequence x Borel normal if each possible
string σ in x has (asymptotic) frequency 10−|σ| (so that each digit 0, . . . , 9 occurs 10% of
the time, each block 00 to 99 occurs 1% of the time, etc., then Champernowne’s number

0123456789101112131415161718192021222324252629282930 . . .

can be shown to be Borel normal. The decimal expansion of π is conjectured to be Borel
normal, too (and has been empirically verified to be so in billions of decimals), but these
numbers are hardly random: they are computable, which is an antipode to randomness.

Von Mises’s problem was that his definition of a random sequence (called a Kollektiv),
despite his great insights, simply did not work. Back to binary sequences, his notion
of randomness was supposed to guarantee the existence of limiting relative frequencies
(which in turn should define the corresponding single-case probabilities), but of course he
understood that a sequence like 01010101 · · · is not very random at all. His idea was that
limiting relative frequencies should exist not only for the given sequence, but also for all
its permutations defined by so-called place-selection functions, which he tried to find (in
vain) by precluding successful gambling strategies on the digits of the sequence.

67‘The investigations on the foundations of geometry suggest the problem: To treat in the same manner,
by means of axioms, those physical sciences in which mathematics plays an important part; in the first
rank are the theory of probabilities and mechanics.’ (Hilbert, 1902, p. 448). See also Gorban (2018).

68See van Lambalgen (1987) or, for a lighter account, Diaconis & Skyrms (2018), for this history.
69A string σ is finite row of bits, whereas a sequence x is an infinite one. The length of a string σ is |σ|.
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Of the three equivalent definitions of 1-randomness already mentioned in §2, namely:

Incompressibility ; Patternlessness; Unpredictability,

the first may be said to go back to Kolmogorov’s struggle, whereas the other two originate
in later attempts by other mathematicians to improve the work of von Mises.70

Although there isn’t a single “correct” mathematical notion of randomness, the notion
of 1-randomness featured here stands out (and represents a consensus view) largely because
it can be defined in these three equivalent yet fairly different ways, each of which realizes
some basic intuition on randomness (of course defined through its obvious antipode!).

In what follows, these notions will be defined more precisely, followed by some of their
consequences.71 We assume basic familiarity with the notion of a computable function
f : N → N, which may technically be defined through recursion theory or equivalently
through Turing machines: a function is computable if it can be computed by a computer.

Incompressibility

The idea is that a string or sequence is random iff its shortest description is the sequence
itself, but the notion of a description has to made precise to avoid Berry’s paradox :

The Berry number is the smallest positive integer that cannot be described in less

than eighteen words.

The paradox, then, is that on the one hand this number must exist, since only finitely
many integers can be described in less than eighteen words and hence the set of such
numbers must have a lower bound, while on the other hand Berry’s number cannot exists
by its own definition. This is, of course, one of innumerable paradoxes of natural language,
which, like the liar’s paradox, will be seen to lead to an incompleteness theorem once the
notion of a description has been appropriately formalized in mathematics, as follows.72

The plain Kolmogorov complexity C(σ) of σ ∈ 2N is defined as the length (in bits)
of the shortest computer program (run on some fixed universal Turing machine U) that
computes σ. The choice of U affects this definition only up to a σ-independent constant.
For technical reasons (especially for defining the randomness of sequences) it is preferable
to work with prefix-free Turing machines T , whose domain D(T ) consists of a prefix-
free subset of 2∗, i.e., if σ ∈ D(T ) then στ /∈ D(T ) for any σ, τ ∈ 2∗, where στ is the
concatenation of σ and τ , as the notation suggests. This is also independent of U up
to a constant, and defines the the prefix-free Kolmogorov complexity K(σ) as the length
of the shortest program (run on some fixed universal prefix-free Turing machine U) that
computes σ. For fixed c ∈ N we then say that σ ∈ 2∗ is c-compressible if K(σ) < |σ|−c; of
course, this depends on U via K(σ), but nonetheless a simple counting argument shows:

70As mentioned and referenced in most literature as well as in the next footnote, Kolmogorov’s work in
the 1960s on the first definition was predated by Solomonoff and matched by independent later work of
Chaitin. Key players around the other definitions were Schnorr and Martin-Löf, respectively.

71In increasing order of technicality, readers interested in more detail are referred to Diaconis & Skyrms
(2018, Chapter 8), Terwijn (2016), or Volchan (2002) at a popular level, then Grünwald & Vitányi (2008),
Dasgupta (2011), Downey et al (2006), or Muchnik et al (1998), then Li & Vitányi (2008) or Calude
(2010), and finally Downey & Hirschfeldt (2010). See also Baumeler et al (2017), Bendersky et al (2014),
Calude (2004), Eagle (2019), Earman (2004), Kamminga (2019), Senno (2017), Svozil (1993, 2018), Wolf
(2015), and Zurek (1989) for brief introductions to Kolmogorov randomness with applications to physics.

72We write 2N for the set of all binary strings σ of length |σ| = N ∈ N, and 2∗ = ∪N2N for the set of
all binary strings. Finally, 2N denotes the set of all binary sequences x (which are infinite by convention).
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At least 2N − 2N−c+1 + 1 strings σ of length |σ| = N are not c-compressible.

Clearly, as σ grows and c > 0, these will form the overwhelming majority. Finally, σ is
Kolmogorov c-random if it is not c-compressible, i.e., if K(σ) ≥ |σ| − c, and Kolmogorov
random if it is not c-compressible for any c ∈ N, that is, if one even has K(σ) ≥ |σ|. Since
K(σ) can at most be equal to the length of an efficient printing program plus the length
of σ, this simply means that σ is Kolmogorov random if

K(σ) ≈ |σ|, (B.1)

where ≈ means ‘up to a σ-independent constant’. Finally, if x|N is the initial segment of

length N of a sequence x ∈ 2N, i.e. |x|N | = N , then x is Kolmogorov–Chaitin random if

lim
N→∞

K(x|N )

N
= 1. (B.2)

Equivalently,73 a sequence x is Kolmogorov–Chaitin random if there exists c ∈ N such that
each truncation x|N satisfies K(x|N ) ≥ N − c. I note with satisfaction that randomness of
sequences, seen as idealizations of finite strings, as such satisfies Earman’s principle (§4).

This definition of randomness of both finite strings and infinite sequences looks very
appealing, but in a way it is self-defeating, since although it is defined in terms of com-
putability, the complexity function K is not computable, and hence one cannot even
determine algorithmically if a finite string σ is random (let alone an infinite one).74

Moreover, Berry’s paradox strikes back through Chaitin’s incompleteness Theorem: For
any consistent, sound, and sufficiently rich formal system F (containing basic arithmetic)
there is a constant f such that the statement K(σ) > f cannot be proved in F for any
σ ∈ 2∗, although it is true for all (random) strings σ that satisfy K(σ) ≥ |σ| > f (and
there are infinitely many such strings, as the above counting argument shows). To get a
very rough idea of the proof, let me just say that any proof in F of the sentence K(σ) > f
would identify σ and hence give a shorter description of σ than its complexity K(σ) allows.

Chaitin’s Theorem gives a new and inexhaustible class of unprovable but true state-
ments (which also lie in a very different class from those provided by Gödel himself):

For almost all random strings their randomness cannot be proved.75

To the extent that there are deep logico-philosophical truths, surely this is one! Compare:

It may be taken for granted that any attempt at defining disorder in a formal way will

lead to a contradiction. This does not mean that the notion of disorder is contradictory.

It is so, however, as soon as I try to formalize it.76

The satisfactory definition of 1-randomness proves this wrong, but the statement preceding
it is a correct version of a similar intuition: randomness is by its very nature elusive.

73See Calude (2010), Theorem 6.38 (attributed to Chaitin) for this equivalence.
74To see this, define a function L : N→ N by L(n) = min{m ∈ N | K(m) ≥ n}. Identifying N ∼= 2∗ (in a

computable way), L(n), seen as an element of 2∗, is the shortest string m whose complexity K(m) exceeds
n, so that by construction K(L(n)) ≥ n. If K were computable, then so would L be. Suppose T is the
shortest prefix-free program that computes L. Since K(L(n)) is the length of shortest prefix-free program
that computes L(n), we have K(L(n)) ≤ |n|+ |T |, where |n| is the length of σ under the above bijection
n↔ σ, so that |n| ≈ 10logn. Thus n ≤ K(L(n)) ≤ |n|+ |T |, which cannot be true for large n.

75See Raatikainen (1998) for a detailed presentation of Chaitin’s incompleteness Theorem including a
devastating critique of the far-reaching philosophical interpretation Chaitin himself gave of his theorem.

76Statement by the influential German-Dutch mathematician and educator Hans Freudenthal from 1969,
quoted in both van Lambalgen (1987), p. 8 and Terwijn (2016), p. 51.
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Patternlessness

This is the most direct attack on the “paradox of probability”, which states that each
individual sequence has probability zero despite the huge differences in their (true or
apparent) “randomness”. We use the notation of §4, so that µ∞ is the probability measure
on the set 2N of all binary sequences induced by the 50-50 measure on the outcome space
{0, 1} of a single fair coin flip (the discussion is easily adapted to other cases).

As opposed to single outcomes, a key role will be played by tests, i.e. (measurable) sets
T ⊂ 2N of outcomes for which µ∞(T ) = 0. Such a test defines a property that a sequence
x ∈ 2N may or may not have, namely membership of T . Conversely, and perhaps less
circularly, one may start with a given pattern that x might have, which would make it
appear less random if it had it, and express this pattern as a test T . Conceptually, tests
contain outcomes that are supposed to be “atypical”, and randomness of x ∈ 2N will be
defined by the property of not belonging to any such test, making x “typical”. For example,
the property limN→∞N

−1∑N
n=1 xn = 1/2 is “typical” for a fair coin flip and indeed (by

the strong law of large numbers) it holds with probability 1 (in that the set E of all x for
which this limit exists and equals 1/2 has µ∞(E) = 1, so that its complement T = 2N\E
has µ∞(T ) = 0). One has to proceed very carefully, though, since all singletons T = {x}
for x ∈ 2N are to be excluded; indeed, these all have measure zero and yet, returning to the
paradox of probability, some uncontroversially random sequence x (on whatever definition)
would fail to be random by the criterion just proposed if all measure zero sets were included
in the list of tests. Kolmogorov’s former PhD student Martin-Löf (1966) saw his way out
of this dilemma, combining techniques from computability/recursion theory with some
ideas from the intuitionistic/constructive mathematics of the great L.E.J. Brouwer:

1. One specializes to tests of the form T = ∩n∈NUn, where Un+1 ⊆ Un and

µ∞(Un) ≤ 2−n, (B.3)

which guarantees that µ∞(T ) = 0. Perhaps the simplest example is not the law of
large numbers, for which see Li & Vitányi (2008), §2.4, Example 2.4.2, but the test
where Un consists of all sequences starting with n zeros; clearly, µ∞(Un) = 2−n. In
this case, the test T = {xlove} does consist of a singleton xlove = 000 · · · (zeros only).

2. Both the sets Un and the map n 7→ Un have to be computable in a suitable sense.77

3. A sequence x ∈ 2N is Martin-Löf random (= typical) if x /∈ T for any such test T .

If x /∈ T , one says that x passes the test T . Note that the computability requirement
implies that the set of all tests T satisfying these two criteria is countable, which fact by
itself already shows what a huge cut in the set of all measure-zero sets has been achieved.78

It should be clear that this definition makes no sense if the sample space is finite, but
in order to adhere to Earman’s principle one could still check to what extent randomness
of sequences is determined by their finite initial segments. This is indeed the case, as
follows from the detailed structure of the admissible sets Un above (see footnote 77).

77First, each Un has to be open in 2N, which means that Un = ∪σ∈VnN(σ), where Vn ⊂ 2∗ and
N(σ) = {σy | y ∈ 2N} consists of all sequences x = σy that start with the given finite part σ. Second,
each Vn must be countable, so that Vn = ∪mσ(n,m), where each σ(n,m) ∈ 2∗. Finally, there must be a
single program enumerating the sets (Vn), so that all in all one requires a (partial) computable function
σ : N × N → 2∗ such that Un = ∪mN(σ(n,m)) and hence T = ∩n ∪m N(σ(n,m)). Such a set T is called
effective, and if also (B.3) holds, then T is an effective measure zero set or Martin-Löf test.

78There is even a single “universal” Martin-Löf test U such that x /∈ U iff x is Martin-Löf random.
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Unpredictability

Unpredictability is a family resemblance, like randomness: the following definition is just
one possibility, cf. e.g. footnote 41 and eq. (5.6). Having said this: unpredictability of a
binary sequence x = (x1, x2, . . .) is formalized as the impossibility of a successful betting
strategy on the successive digits of x. Suppose a punter with initial capital d(0) starts by
betting b(x1 = 0) ≡ b(0) on x1 = 0 and b(x1 = 1) ≡ b(1) on x1 = 1, where b(0) + b(1) =
d(0), with fair payoff d(x1) = 2b(0) if x1 = 0 and d(x1) = 2b(1) if x1 = 1. It follows that

d(0) + d(1) = 2(b(0) + b(1)) = 2d(0). (B.4)

This motivates the concept of a martingale as a function d : 2∗ → [0,∞) that satisfies

d(σ0) + d(σ1) = 2d(σ), (B.5)

for each σ ∈ 2∗. Both the betting strategy itself and the payoff (for given x ∈ 2N) can be
reconstructed from d: the bet on the N + 1’th digit xN+1 is given by

b(xN+1 = 0) = 1
2
d(xN0); (B.6)

b(xN+1 = 1) = 1
2
d(xN1), (B.7)

and after N bets the punter owns d(x|N ). A martingale d succeeds on A ⊂ 2N if

lim sup
N→∞

d(x|N ) =∞ for each x ∈ A, (B.8)

in which case the punter beats the casino.79 Our first impulse would now be to call x ∈ 2N

random if there exists no martingale that succeeds on A = {x}, but, Ville (1939) proved:

Let A ⊂ 2N. Then µ∞(A) = 0 if and only if there exists a martingale that succeeds on A.

Here A should be measurable. In particular, for any sequence x ∈ 2N there exists a
martingale that succeeds on x, and hence no sequence x would be random on the criterion
that no martingale succeeds on it. Fortunately, the previous two definitions of randomness
suggest that all that is missing is a suitable notion of computability for martingales. This
notion was provided by Schnorr (1971): all that needs to be added is that the class of
martingales d that succeed on A be uniformly left computably enumerable, in the sense that
firstly each real number d(σ) is the limit of a computable increasing sequence of rational
numbers, and secondly that there is a single program that computes d(σ) in that way.

Defining x ∈ 2N to be Schnorr random if there exists no uniformly left computably enu-
merable martingale that succeeds on it,80 one has the crowning theorem on 1-randomness:81

Theorem B.1 A sequence x ∈ 2N is Kolmogorov–Chaitin random (i.e. incompressible) iff
it is Martin-Löf random (i.e. patternless) and iff it is Schnorr random (i.e. unpredictable).

These equivalent conditions, then, define 1-randomness of sequences x ∈ 2N.

79In practice someone beating the casino will go home with a finite amount of money. The fact that the
right-hand side of (B.8) is infinite is the result of idealizing long strings by sequences: if the punter has a
uniform winning strategy and places infinitely many bets, he will earn an infinite amount of money.

80In the literature the term ‘Schnorr randomness’ is often used differently, namely to indicate that the
martingales d in the above definition are merely computable, which yields a weaker notion of randomness.
Also, note that Schnorr (1971) used so-called supermartingales in his definition, for which one has ≤
instead of equality in (B.5), but martingales also work, cf. Downey & Hirschfeldt (2010), Theorem 6.3.4.

81The equivalence between the criteria of Martin-Löf and of Kolmogorov–Chaitin was proved by Chaitin
(cf. Calude, 2010, Theorem 6.35) and by Schnorr (1973). The equivalence between Martin-Löf and Schnorr
is due to Schnorr (1971), Staz 5.3. See also Downey & Hirschfeldt (2010), Theorems 6.2.3 and 6.3.4.
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Some reflections on 1-randomness

Any sound definition of randomness (for binary sequences) has to navigate between Scylla
and Charybdis: if the definition is too weak (such as Borel normality), counterexamples
will undermine it (such as Champernowne’s number), but if it is too strong (such as being
lawless as in Brouwer’s choice sequences, cf. §2), it will not hold almost surely in a 50-50
Bernoulli process. In this respect 1-randomness does very well: see Theorem 4.1 and the
theorem below (which lies at the basis of Corollary 4.2):

Theorem B.2 Any 1-random sequence is Borel normal, incomputable, and contains any
finite string infinitely often.82

In fact, since computability is sometimes used as a mathematical metaphor for deter-
minism, it is worth mentioning that 1-random sequences are incomputable in a very
strong sense: each 1-random sequence x is immune in the sense that neither the set
{n ∈ N | xn = 1} nor its complement {n ∈ N | xn = 0} is computably enumerable (c.e.),
or can even contain an infinite c.e. subset. Thus 1-randomness is far stronger than mere
incomputability (or perhaps indeterminism). On the other hand, as already noted in §5,
Chaitin’s Incompleteness Theorem (see Appendix B) makes it impossible to prove that
some given outcome sequence of a quantum-mechanical experiment with binary outcomes
with 50-50 Born probabilities is 1-random even if it is (which is worrying, because one can
never be sure, but only almost sure, that outcomes are 1-random). At best, in a bipartite
(Alice & Bob) setting of the kind discussed in §5, one may hope for results showing that
if an outcome is not 1-random, then some kind of superluminal signaling is possible, but,
as reviewed in §5, even that much has not been rigorously established so far.83

This suggests to try and prove randomness properties of such outcomes sequences that
are on the one hand weaker than 1-randomness, like incomputability, but on the other hand
are stronger, in that they hold surely. To this end, Abbott, Calude, & Conder (2012) take
a 3-level quantum system, prepare this in some state ψ ∈ C3 and repeatedly (indeed,
infinitely often) measure any projection |ϕ〉〈ϕ| for which

√
5/14 ≤ |〈ϕ,ψ〉| ≤

√
9/14; for

an experimental setup realizing these measurements see Kulikov et al (2017). In that
case there is a finite set P of 1-dimensional projections on C3 that contains |ϕ〉〈ϕ| as well
as |ψ〉〈ψ| and admits no coloring (Abbott, Calude, & Svozil, 2015).84 Some particular
outcome sequence is described by a function f : N → {0, 1}. The crucial assumption
Abbott et al then make is that if f is computable, then it extends to a function f̃ :
N × P → {0, 1} for which each f̃n : P → {0, 1} is a coloring of P, where f̃n(e) = f̃(n, e).
Clearly, then, on this assumption f cannot be computable. This gives the desired result,
but moves the burden of proof to justifying the assumption. Phrased by the authors in
terms of “elements of physical reality” à la EPR, their assumption in fact postulates that
if f is computable, then it originates in some (“morally” deterministic) non-contextual
hidden-variable theory (to which their own sharpened Kochen–Specker Theorem applies).

A different line of attack (see e.g. Aćın et al, 2016; Bendersky et al, 2016; Herrero-
Collantes & Garcia-Escartin, 2017; Kovalsky et al, 2018) assumes Hidden Locality and
some amount of Freedom (cf. §3) to prove that outcome sequences cannot originate in a
hidden-variable theory (to which Bell’s Theorem applies) and hence are indeterministic.

82See the footnotes to Corollary 4.2 for the meaning of these terms, and Calude (2010), §6.4 for proofs.
83See also Kamminga (2019) and references therein for a survey of the literature on this topic.
84 A coloring would be a function C : P → {0, 1} such that for any orthogonal set {e1, e2, e3} in P with

e1 + e2 + e3 = 13 (where 13 is the 3× 3 unit matrix) there is exactly one ei for which C(ei) = 1.
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C Bell’s Theorem and Free Will Theorem

In support of the analysis of hidden variable theories in §3 this appendix reviews Bell’s
(1964) Theorem and the Free Will Theorem, streamlining earlier expositions (Cator &
Landsman, 2014; Landsman, 2017, Chapter 6) and leaving out proofs and other adorn-
ments.85 In the specific context of ’t Hooft’s theory (where the measurement settings
are determined by the hidden state) and Bohmian mechanics (where they are not, as in
the original formulation of Bell’s Theorem and in most hidden variable theories) a major
advantage of my approach is that both determined und undetermined stettings fall within
its scope; the latter case arises from the former by adding an independence assumption.86

As a warm-up I start with a version of the Kochen–Specker Theorem whose logical
form is very similar to Bell’s (1964) Theorem and the Free Will Theorem, as follows:

Theorem C.1 Determinism, Nature, Non-contextuality, and Freedom are contradictory.

Of course, this slightly unusual formulation hinges on the precise meaning of these terms.

• Determinism is the conjunction of the following two assumptions:

1. There is a state space X with associated functions A : X → S and L : X → O,
where S is the set of all possible measurement settings Alice can choose from, namely
a suitable finite set of orthonormal bases of R3 (11 well-chosen bases will to to arrive
at a contradiction),87 and O is some set of possible measurement outcomes. Thus
some x ∈ X determines both Alice’s setting a = A(x) and her outcome α = L(x).

2. There exists some set Λ and an additional function H : X → Λ such that

L = L(A,H), (C.1)

in the sense that for each x ∈ X one has L(x) = L̂(A(x), H(x)) for a certain function
L̂ : S×Λ→ O. This self-explanatory assumption just states that each measurement
outcome L(x) = L̂(a, λ) is determined by the measurement setting a = A(x) and
the “hidden” variable or state λ = H(x) of the particle undergoing measurement.

• Nature fixes O = {(0, 1, 1), (1, 0, 1), (1, 1, 0)}, which is a non-probabilistic fact of
quantum mechanics with overwhelming (though indirect) experimental support.

• Non-contextuality stipulates that the function L̂ just introduced take the form

L̂((~e1, ~e2, ~e3), λ) = (L̃(~e1, λ), L̃(~e2, λ), L̃(~e3, λ)), (C.2)

for a single function L̃ : S2 × Λ→ {0, 1} that also satisfies L̃(−~e, λ) = L̃(~e, λ).88

85The original reference for Bell’s Theorem is Bell (1964), with innumerable follow-up papers of which
we especially recommend Werner & Wolf (2001). The Free Will theorem originates in Heywood & Redhead
(1983), Stairs (1983), Brown & Svetlichny (1990), Clifton (1993), and Conway & Kochen (2006, 2009).
Both theorems can and have been presented and (re)interpreted in many different ways, of which we choose
the one that is relevant for the general discussion on randomness in the main body of the paper.

86This addresses a problem Bell faced even according to some of his most ardent supporters (Norsen,
2009; Seevinck & Uffink, 2011), namely the tension between the idea that the hidden variables (in the
causal past) should on the one hand include all ontological information relevant to the experiment, but on
the other hand should leave Alice and Bob free to choose any settings they like. Whatever its ultimate
fate, ’t Hooft’s staunch determinism has drawn attention to issues like this, as has the Free Will Theorem.

87If her setting is a basis (~e1, ~e2, ~e3), Alice measures the quantities (J2
~e1
, J2
~e2
, J2
~e3

), where J~e1 = 〈 ~J,~ei〉 is

the component of the angular momentum operator ~J of a massive spin-1 particle in the direction ~ei.
88Here S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1} is the 2-sphere, seen as the space of unit vectors in

R3. Eq. (C.2) means that the outcome of Alice’s measurement of J2
~ei

is independent of the “context”
(J2
~e1
, J2
~e2
, J2
~e3

); she might as well measure J2
~ei

by itself. The last equation is trivial, since (J−~ei)
2 = (J~ei)

2.
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• Freedom finally states that the following function is surjective:

A×H : X → S × Λ; x 7→ (A(x), H(x)). (C.3)

In other words, for each (a, λ) ∈ S × Λ there is an x ∈ X for which A(x) = a and
H(x) = λ. This makes A and H “independent” (or: a and λ are free variables).

See Landsman (2017), §6.2 for a proof of the Kochen–Specker Theorem in this language.89

Bell’s (1964) Theorem and the Free Will Theorem both take a similar generic form, namely:

Theorem C.2 Determinism, Nature, (Hidden) Locality, and Freedom, are contradictory.

Once again, I have to explain what these terms exactly mean in the given context.

• Determinism is a straightforward adaptation of the above meaning to the bipartite
“Alice and Bob” setting. Thus we have a state space X with associated functions

A : X → S; B : X → S; L : X → O R : X → O, (C.4)

where the set S of all possible measurement settings Alice and Bob can each choose
from differs a bit between the two theorems: for the Free Will Theorem it is the same
as for the Kochen–Specker Theorem above, as is the set O of possible measurement
outcomes, whereas for Bell’s Theorem (in which Alice and Bob each measure a 2-level
system), S is some finite set of angles (three is enough), and O = {0, 1}.

– In the Free Will case, these functions and the state x ∈ X determine both the
settings a = A(x) and b = B(x) of a measurement and its outcomes α = L(x)
and β = R(x) for Alice on the Left and for Bob on the Right, respectively.

– Although this is also true in the Bell case, his theorem relies on measurement
statistics (as opposed to individual outcomes), so that one in addition assumes a
probability measure µ on X (sampled by repeated measurements, see §§4–5).90

Furthermore, there exists some set Λ and some function H : X → Λ such that

L = L(A,B,H); R = R(A,B,H), (C.5)

in the sense that for each x ∈ X one has functional relationships

L(x) = L̂(A(x), B(x), H(x)); R(x) = R̂(A(x), B(x), H(x)), (C.6)

for certain functions L̂ : S × S × Λ→ O and R̂ : S × S × Λ→ O.

• Nature reflects elementary quantum mechanics of correlated 2-level and 3-level
quantum systems for the Bell and the Free Will cases, respectively, as follows:91

89The assumptions imply the existence of a coloring Cλ : P → {0, 1} (cf. footnote 84), where P ⊂ S2

consist of all unit vectors contained in all bases in S, and λ “goes along for a free ride”. Indeed, one finds
Cλ(~e) = L̃(~e, λ). The point, then, is that on a suitable choice of the set S such a coloring cannot exist.

90The existence of µ is of course predicated on X being a measure space with corresponding σ-algebra
of measurable subsets, with respect to which all functions in (C.4) and below are measurable.

91In Bell’s Theorem quantum theory can be replaced by experimental support (Hensen et al, 2015).
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– In the Free Will Theorem, O = {(0, 1, 1), (1, 0, 1), (1, 1, 0)} is the same as for
the Kochen–Specker Theorem. In addition perfect correlation obtains: if a =
(~e1, ~e2, ~e3) is Alice’s orthonormal basis and b = (~f1, ~f2, ~f3) is Bob’s, one has

~ei = ~fj ⇒ L̂i(a, b, z) = R̂j(a, b, z), (C.7)

where L̂i, R̂j : S×S×Λ→ {0, 1} are the components of L̂ and R̂, respectively.
Finally,92 if (a′, b′) differs from (a, b) by changing the sign of any basis vector,

L̂(a′, b′, λ) = L̂(a, b, λ); R̂(a′, b′, λ) = R̂(a, b, λ). (C.8)

– In Bell’s Theorem, O = {0, 1}, and the statistics for the experiment is repro-
duced as conditional joint probabilities given by the measure µ through

P (L 6= R|A = a,B = b) = sin2(a− b). (C.9)

• (Hidden) Locality, which replaces Non-contextuality in Theorem C.1, means that

L(A,B,H) = L(A,H); R(A,B,H) = R(B,H). (C.10)

In words: Alice’s outcome given λ does not depend on Bob’s setting, and vice versa.

• Freedom is an independence assumption that looks different for both theorems:

– In the Free Will Theorem it means that each (a, b, λ) ∈ S × S × Λ is possible
in that there is an x ∈ X for which A(x) = a, B(x) = b, and H(x) = λ.

– In Bell’s Theorem, (A,B,H) are probabilistically independent relative to µ.93

This concludes the joint statement of the Free Will Theorem and Bell’s (1964) Theorem in
the somewhat unusual form we need for the main text. The former is proved by reduction
to the Kochen–Specker Theorem, whilst the latter follows by reduction to the usual version
of Bell’s Theorem via the Freedom assumption; see Landsman (1917), Chapter 6 for details.

For our purposes these theorems are equivalent, despite subtle differences in their
assumptions. Bell’s Theorem is much more robust in that it does not rely on perfect
correlations (which are hard to realize experimentally), and in addition it requires almost
no input from quantum theory.94 On the other hand, Bell’s Theorem uses probability
theory in a highly nontrivial way: like the hidden variable theories it is supposed to
exclude it relies on the possibility of fair sampling of the probability measure µ. The
factorization condition defining probabilistic independence passes this requirement of fair
sampling on to both the hidden variable and the settings, which brings us back to §5.

All trusting Nature, different parties may now be identified by the assumption they drop:

• Following Copenhagen quantum mechanics, most physicists reject Determinism;

• Bohmians reject (Hidden) Locality ;

• ’t Hooft rejects Freedom.

However, as we argued in §5, even the latter two camps do not really have a deterministic
theory underneath quantum mechanics because of their need to randomly sample the
probability measure they must use to recover the predictions of quantum mechanics.

92As in Kochen–Specker, this is because Alice & Bob measure squares of (spin-1) angular momenta.
93This implies that each pair (A,B), (A,H), and (B,H) is independent. See also Esfeld (2015).
94To the extent that it does, at least in its orginal version Bell’s Theorem applies to 2-level systems,

whereas (through its reliance on Kochen–Specker) the Free Will Theorem applies to 3-level systems.
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