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1 Introduction

Spontaneous Symmetry Breaking or SSB is the phenomenon in which an equation
(or system of equations) possesses a symmetry that is not shared by some ‘preferred’
solution. For example, x2 = 1 has a symmetry x 7→ −x, but both solutions x = ±1
‘break’ this symmetry. However, the symmetry acts on the solution space {1,−1}
in the obvious way, mapping one asymmetric solution into another.

In physics, the equations in question are typically derived from a Lagrangian
L or Hamiltonian H, and instead of looking at the symmetries of the equations of
motion one may look at the symmetries of L or H. Furthermore, rather than looking
at the solutions, one focuses on the initial conditions, especially in the Hamiltonian
formalism. These initial conditions are states. Finally, in the context of SSB one is
typically interested in two kinds of ‘preferred’ solutions: ground states and thermal
equilibrium states (both of which are time-independent by definition). Thus we may
(initially) say that SSB occurs when some Hamiltonian has a symmetry that is not
shared by its ground state(s) and/or thermal equilibrium states.1

The archetypical example of SSB in classical mechanics is the potential

V (q) = − 1
2ω

2q2 + 1
4λ

2q4, (1.1)

often called the double-well potential (we assume that ω ad λ are real). It occurs
in the usual single-particle Hamiltonian h(p, q) = p2/2m + V (q) in d = 1. It has
two independent Z2-symmetries, namely p 7→ −p and q 7→ −q. The latter is broken
by, since the ground states are ω+

0 = (p = 0, q = q0) and ω−0 (p = 0, q = −q0), with
q0 = ω/λ. These have energy E0 = h(0,±q0) = −ω4/4λ2.

The same system in quantum mechanics, however, turns out to have unique
ground state! The Hamiltonian is

h = − ~2

2m

d2

dx2
+ V (q), (1.2)

defined on an appropriate domain in H = L2(R), and its lowest energy state Ψ0

is real, strictly positive, and symmetric under reflection in q. According to the
WKB-approximation (which in cases like this has been rigorously justified), Ψ0 has
peaks above ±q0, and exponential decay in the classically forbidden regions; e.g. for
−q0 < x < 0 one has

|Ψ0(x)| ∼ e
−
√

2m
~

R x
−q0

dy
√
V (y)−E0 . (1.3)

In particular, there is no symmetry breaking, spontaneous or otherwise.2

1In a more advanced stage of our discussion, we shall see that for infinite systems the definition
of the Hamiltonian is itself at stake, whereas a good notion of time-evolution survives. In that
case, symmetry of the Hamiltonian has to be replaced by symmetry of the time-evolution.

2For ~ → 0 this ground state converges to the convex sum 1
2 (ω+

0 + ω−0 ) in a suitable sense,
whose explanation requires an algebraic formalism of states and observables to be developed in
these notes. In any, case, the point is that in finite systems featuring classical SSB, a pure quantum
ground state converges to a mixed classical ground state. Thus the classical limit preserves the
symmetric nature of the ground state: although neither ω+

0 nor ω−0 is symmetric, 1
2 (ω+

0 + ω−0 ) is.
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More generally, ground states of quantum-mechanical Hamiltonians of finite sys-
tems tend to be unique, and hence symmetric: for if the ground state were asymmet-
ric, the symmetry would map it into another ground state, which therefore would
be degenerate. Technically, the argument reads like this: suppose that hΨ0 = E0Ψ0

for the lowest energy E0 of h, and assume that [h, u] = 0 for some unitary operator
(implementing the symmetry in question). Then huΨ0 = uhΨ0 = E0uΨ0. So if Ψ0

is unique, then uΨ0 = Ψ0 (up to a phase). A similar argument applies to equilibrium
states ρ : for a finite system at temperature T = β−1, one has ρ = Z−1 exp(−βh),
with Z = Tr (exp(−βh)), so if [h, u] = 0, then uρu∗ = ρ (i.e., ρ is symmetric).

We see that as far as SSB is concerned, there is a fundamental difference between
classical and quantum mechanics: if SSB occus classically, it tends not to occur in
the corresponding quantum theory. Nonetheless, SSB is an accepted phenomenon
in quantum field theory, where the Standard Model of elementary particle physics
would collapse without the Higgs mechanism (in which a gauge symmetry is sponta-
neously broken). Moreover, the idea that SSB occurs is almost entirely based on the
picture suggested by the underlying classical field theory (check any presentation
of SSB in high-energy physics). Similarly, SSB lies at the basis of many theories
of condensed matter physics, such as the Heisenberg theory of ferromagnetism, the
Landau theory of superfluidity, the BCS theory of superconductivity, etc.3

To resolve this, it is usually claimed that SSB, like a genuine phase transition,
can only occur in infinite systems. This is indeed the case, and one purpose of these
notes is to explain this. However, since infinite systems are idealizations of finite
ones, it is quite unsatisfactory to base so much of modern physics on an idealized
phenomenon that seems absent in the real-world case of a finite system.

3It seems to have been Pierre Curie who in 1894 introduced the idea of SSB into physics (al-
though Newton was clearly aware that the rotational symmetry of the solar system is broken by the
actual state in which all planets approximately move into the same plane). More explicitly, Heisen-
berg’s quantum-mechanical description of ferromagnetism in 1928 features a rotational symmetry
of the Hamiltonian that is broken by the ground states. as he noted. In 1937 Landau introduced
the notion of an order parameter as an essential feature of SSB, which (partly in collaboration
with Ginzburg) he applied to superfluidity and superconductivity. From the 1950s onwards, SSB
was implicit (and sometimes explicit) in many areas of condensed matter physics, with impor-
tant contributions by Landau, Bogoliubov, and others. In high-energy physics, once again it was
Heisenberg who stressed the importance of SSB, though in the unfortunate context of his flawed
unified field theory of 1958 (in which chiral symmetry is spontaneously broken).

A few years later this idea was picked up by Nambu and Jona-Lasinio, who applied SSB to
pion physics, and also systematically rewrote the BCS theory of superconductivity emphasizing
SSB. This work led Goldstone to a general study of SSB in quantum field theory, including the
theorem named after him, which was actually proved by Goldstone, Salam, and Weinberg in 1962.
A year later Anderson applied the Goldstone Theorem to condensed matter physics, explaining
that phonons in crystals, spin waves in ferromagnets and Cooper pairs in superconductivity were
examples of Goldstone bosons. In 1964 the so-called Higgs mechanism was discovered by many
people, including Higgs himself, Englert and Brout, and Guralnik, Hagen, and Kibble. In 1967
Weinberg included the Higgs mechanism in his unified model of the electroweak interaction, which
is based on a SU(2)× U(1) gauge symmetry of which a mixture of some part of SU(2) and U(1)
is spontaneously broken. The proof of renormalizibility of this model, as well as of the related
theory of the strong interactions (i.e. quantum chromodynamics, which is an SU(3) gauge theory
without SSB) by ’t Hooft in 1971 (further developed by him and Veltman in 1972) launched the
Standard Model, on which all of (empirically relevant) present-day particle physics is still based.
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Thus it is also of interest to see how SSB comes into existence if one passes from
a finite system to an infinite one.4 We will do this in some detail for spin systems
on a lattice, where methods based on the so-called Bethe Ansatz (dating back to
the 1930s but mainly developed by Elliott Lieb and collaborators from the 1960s
onward) allow an exact determination of the ground state of a finite system.

To see what happens in the idealized case of an infinite spin system on a lattice,
consider the example of the one-dimensional Heisenberg ferromagnet. The simplest
approach is as follows (leaving details to the main text and the exercises). With
M2(C) denoting the 2 × 2 complex matrices), let A be the (involutive) associative
algebra generated by all elements of the form a(n), where a ∈ M2(C) and n ∈ Z,
with relations of the type λa(n) + µb(n) = (λa+ µb)(n), a(n)b(n) = (ab)(n),

[a(n), b(m)] = 0 (m 6= n), (1.4)

etc; the idea is that a(n) is the algebra of observables of a spin 1
2 particle at lattice

site n. Thus we may form finite linear combinations of finite products of the a(n);
physically, this means that only a finite number of sites of the lattice is observed.

We then look at some interesting representations of A. Let S = 2Z be the set
of sequences (sn)n∈Z with sn = ± (so that we identify the two-element set 2 with
{+,−} or with {+1,−1}). This set S is uncountable, but it has many countable
subsets. Two interesting examples are S+ and S−, where S± is defined as the set of
all sequences in S for which sn 6= ± for only finitely many n. Thus we can form the
two separable Hilbert spaces H+ = `2(S+) and H− = `2(S−) in the usual way as

H± =

{
ϕ : S± → C |

∑
s∈S±
|ϕ(s)|2 <∞

}
; (1.5)

(ϕ, ψ) =
∑
s∈S±

ϕ(s)ψ(s). (1.6)

Each classical configuration s ∈ S± defines a basis vector es in H± by es(t) = δst;
the collection of all es, s ∈ S±, forms an orthonormal basis of H±.

We down define an action π± of A on H± by extension of

π±(σx(n))ψ(s) = ψ(θn(s)); (1.7)

π±(σy(n))ψ(s) = isnψ(θn(s)); (1.8)

π±(σz(n))ψ(s) = snψ(s); (1.9)

π±(12(n))ψ(s) = ψ(s). (1.10)

4As we shall see, there is a formal analogy between the classical limit in a finite quantum
system and the thermodynamic limit in a quantum system. Roughly speaking, it turns out that
quantum ground states of large systems tend to be concentrated on all classical configurations that
correspond to minima of the classical Hamiltonian. The many-body wavefunction of the ground
state is nonzero also in between these peaks, but there it decays exponentially in N , the number
of particles. Hence for N →∞ the peaks decouple, and the pure and symmetric quantum ground
state of the finite system converges to a mixed and symmetric ground state of the infinite system.
The latter, then, can be decomposed into pure ground states, each of which is asymmetric.
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This means the following. First, we extend π± to arbitrary a(n) for a ∈ M2(C) (of
which 12 and the Pauli matrices (σx, σy, σz) form a basis). Second, we extend π± to
finite products by putting

π±(a1(n1) · · · ak(nN)) =
N∏
k=1

π±(ak(nk)), (1.11)

where all the nl are different; in that case, the order of the terms in the product on
the right-hand side does not matter because of the local commutativity condition
(1.4). Thirdly, we extend π± to arbitrary elements of A by linearity. More or less by
construction, π± is a representation of A, in the sense that it is linear and satisfies
π±(xy) = π±(x)π±(y) for all x, y ∈ A and π±(x∗) = π±(x)∗ for all x ∈ A. Moreover,
π±(A) is irreducible, according to either one of the following equivalent criteria:

1. If some x ∈ B(H±) satisfies [x, π±(y)] = 0 for each y ∈ A, then x is a multiple
of the unit operator (Schur’s lemma).

2. Any vector ψ ∈ H± is cyclic in that any other ϕ ∈ H± can be approximated
by sequences of the form (π±(xk)), for some sequence (xk) in A.

The point, then, is that π+ and π− are (unitarily) inequivalent representations of A
in the sense familiar from group theory, where we say that two representation π1(A)
and π2(A) on Hilbert spaces H1 and H2, respectively, are (unitarily) equivalent if
there is a unitary map u : H1 → H2 intertwining π1 and π2 in the sense that
uπ1(a) = π2(a)u for all a ∈ A. The proof of this claim is based on the use of
macroscopic observables. For N <∞, consider the local magnetization, defined by

m±N =
1

2N + 1

N∑
n=−N

π±(σz(n)), (1.12)

which defines an operator on H±. For each ϕ ∈ H±, the limit limN→∞m
±
Nϕ exists,5

and indeed it is easily shown to be ± the unit operator. Now suppose there would
be a unitary operator u : H+ → H− such that uπ+(a) = π−(a)u for all a ∈ A. It
follows that um+

N = m−Nu, and hence um+
Nϕ = m−Nuϕ for each ϕ ∈ H+. Taking

N →∞ then yields uϕ = −uϕ, a contradiction. Hence such a u cannot exist.
The existence of inequivalent representations of the algebra of observables turns

out to be the key to SSB. As we saw, the impossibility of SSB in a finite system was a
consequence of the uniqueness of the ground state (or thermal equilibrium state) and
the realization of the symmetry in question by a unitary operator on the Hilbert
space containing this ground state. What happens in an infinite system is that
the algebra of observables has a family of inequivalent irreducible (or ‘thermal’)
representations, each containing a ground state but not a unitary realization of
the symmetry, Instead, the symmetry maps some Hilbert space carrying such a
representation into another one, carrying an inequivalent one. This begs the question
of what is actually meant by a symmetry in quantum theory. We will answer this
question, and others, in these notes, but only after having introduced an appropriate
mathematical framework, which unifies classical and quantum mechanics. Enjoy!

5For experts: the limit does not exist in the operator norm.
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2 Hilbert spaces

For this course it is necessary to know Hilbert space theory at the strictly mathe-
matical level of von Neumann’s book [29] (instead of the heuristic level of Dirac’s
book [8]).6 For details (especially proofs) see also [12, 16, 22], [32]—[35], [49, 50, 51].

The concept of a Hilbert space is seemingly technical and special. It may there-
fore come as a surprise that Hilbert spaces play a central role in many areas of math-
ematics, notably in analysis, but also including geometry, group theory, stochastics,
and even number theory. But first and foremost (at least for us), Hilbert spaces
provide the mathematical formalism of quantum mechanics, as first suggested by
John von Neumann almost immediately after the discovery of the basic physical
principles of quantum mechanics by Heisenberg, Schrödinger, Born, Dirac, and oth-
ers.7 Indeed, the definition of a Hilbert space was first given by von Neumann in
1927 precisely for the latter purpose, but he would not have been able to do so
without the preparatory work by Hilbert and his school, which produced numerous
constructions now regarded as examples of the abstract notion of a Hilbert space.8

It is quite remarkable how a particular development within pure mathematics
crossed one in theoretical physics in this way; this crossing is reminiscent to the
one leading to Newton’s development of the Calculus in 1666. Today, the most
spectacular new application of Hilbert space theory is given by Noncommutative
Geometry [7], where the motivation from pure mathematics is merged with the
physical input from quantum mechanics. Consequently, this is an important field of
research in pure mathematics as well as in mathematical physics.

6Dirac never talked about Hilbert space and did not define what his linear spaces precisely were.
As to his notation, his vectors |ψ〉 are simply called ψ here. Dirac’s inner product 〈ϕ|ψ〉 is our
(ϕ,ψ), with the same properties of being linear in the second variable and antilinear in the first.
If a is an operator, Dirac wrote 〈ϕ|a|ψ〉 for our (ϕ, aψ). Dirac denoted complex conjugation by a
∗, so that his 〈ϕ|ψ〉∗ is the same as our (ϕ,ψ), and adjoints by a dagger, so that his a† is our a∗.
If H = L2(R) (see below) and ψ ∈ H, Dirac wrote 〈x|ψ〉 for ψ(x), and, confusingly, 〈p|ψ〉 for ψ̂(p)
(i.e., the Fourier transform of ψ). Dirac’s expressions |x〉 and |p〉 are not vectors in some Hilbert
space, but so-called distributions, i.e. continuous linear functionals defined on some dense subspace
of L2(R) equipped with a topology different from the topology defined by the inner product.

7In 1925 Heisenberg discovered a form of quantum mechanics that at the time was called‘matrix
mechanics’: when Heisenberg showed his work to his boss Born, a physicist who as a former assis-
tant to Hilbert was well versed in mathematics, Born saw, after a sleepless night, that Heisenberg’s
multiplication rule was the same as the one known for matrices, but now of infinite size. Indepen-
dently, in 1926 Schrödinger was led to a formulation of quantum theory called ‘wave mechanics’.
Whereas Heisenberg attempted to eliminate electronic orbits from atomic theory, Schrödinger
based his work on de Broglie’s idea that in quantum theory a wave should be associated to each
particle. Thus in 1926 one had two alternative formulations of quantum mechanics, which looked
completely different, but each of which could explain certain atomic phenomena. With hindsight,
Heisenberg had a theory of quantum-mechanical observables, whereas Schrödinger had a model of
quantum-mechanical states. Following heuristic ideas of Dirac, Pauli, and Schrödinger, it was von
Neumann who, at the age of 23, recognized the mathematical structure of quantum mechanics.

8Hilbert’s work formed part of the emergence of functional analysis, an area of mathematics that
arose between approximately 1880–1930. Functional analysis is almost indistinguishable from what
is sometimes called ‘abstract analysis’ or ‘modern analysis,’ which marked a break with classical
analysis. The latter involves, roughly speaking, the study of properties of a single function, whereas
the former deals with sets of functions, organized into a vector space.
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2.1 Inner product, norm, and metric

The following definitions are basic to all of functional analysis. Note that the concept
of a metric applies to any set (i.e., not necessarily to a vector space).

Definition 2.1 Let V be a vector space over C.

1. An inner product on V is a map V × V → C, written as 〈f, g〉 7→ (f, g),
satisfying, for all f, g, h ∈ V , t ∈ C:

(a) (f, f) ∈ R+ := [0,∞) (positivity);

(b) (g, f) = (f, g) (symmetry);

(c) (f, tg) = t(f, g) (linearity 1);

(d) (f, g + h) = (f, g) + (f, h) (linearity 2);

(e) (f, f) = 0⇒ f = 0 (positive definiteness).

2. A norm on V is a function ‖ · ‖ : V → R+ such that for all f, g, h ∈ V , t ∈ C:

(a) ‖f + g‖ ≤ ‖f‖+ ‖g‖ (triangle inequality);

(b) ‖tf‖ = |t|‖f‖ (homogeneity);

(c) ‖f‖ = 0⇒ f = 0 (positive definiteness).

3. A metric on V is a function d : V × V → R+ satisfying, for all f, g, h ∈ V :

(a) d(f, g) ≤ d(f, h) + d(h, g) (triangle inequality);

(b) d(f, g) = d(g, f) for all f, g ∈ V (symmetry);

(c) d(f, g) = 0⇔ f = g (definiteness).

These structures are related in the following way:

Proposition 2.2 1. An inner product on V defines a norm on V by

‖f‖ =
√

(f, f). (2.1)

2. This norm satisfies the Cauchy–Schwarz inequality

|(f, g)| ≤ ‖f‖‖g‖. (2.2)

3. A norm ‖ · ‖ on a complex vector space comes from an inner product iff

‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2), (2.3)

in which case

(f, g) = 1
4(‖f + g‖2 − ‖f − g‖2 + i‖f − ig‖2 − i‖f + ig‖2). (2.4)

4. A norm on V defines a metric on V through d(f, g) := ‖f − g‖.
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2.2 Completeness

Many concepts of importance for Hilbert spaces are associated with the metric rather
than with the underlying inner product or norm. The main example is convergence:

Definition 2.3 1. Let (xn) := {xn}n∈N be a sequence in a metric space (V, d).
We say that xn → x for some x ∈ V when limn→∞ d(xn, x) = 0, or, more
precisely: for any ε > 0 there is N ∈ N such that d(xn, x) < ε for all n > N .

In a normed space, hence in particular in a space with inner product, this
therefore means that xn → x if limn→∞ ‖xn − x‖ = 0.

2. A sequence (xn) in (V, d) is called a Cauchy sequence when d(xn, xm) → 0
when n,m → ∞; more precisely: for any ε > 0 there is N ∈ N such that
d(xn, xm) < ε for all n,m > N .

In a normed space, this means that (xn) is Cauchy when ‖xn − xm‖ → 0 for
n,m→∞, in other words, if limn,m→∞ ‖xn − xm‖ = 0.

Clearly, a convergent sequence is Cauchy: from the triangle inequality and symmetry
one has d(xn, xm) ≤ d(xn, x) + d(xm, x), so for given ε > 0 there is N ∈ N such that
d(xn, x) < ε/2, etcetera. However, the converse statement does not hold in general,
as is clear from the example of the metric space (0, 1) with metric d(x, y) = |x− y|:
the sequence xn = 1/n does not converge in (0, 1). In this case one can simply
extend the given space to [0, 1], in which every Cauchy sequence does converge.

Definition 2.4 A metric space (V, d) is called complete when every Cauchy se-
quence in V converges (i.e., to an element of V ).

• A vector space with norm that is complete in the associated metric is called a
Banach space. In other words: a vector space B with norm ‖ · ‖ is a Banach
space when every sequence (xn) such that limn,m→∞ ‖xn− xm‖ = 0 has a limit
x ∈ B in the sense that limn→∞ ‖xn − x‖ = 0.

• A vector space with inner product that is complete in the associated metric is
called a Hilbert space. In other words: a vector space H with inner product
( , ) is a Hilbert space when it is a Banach space in the norm ‖x‖ =

√
(x, x).

A subspace of a Hilbert space may or may not be closed. A closed subspace
K ⊂ H of a Hilbert space H is by definition complete in the given norm on H (i.e.
any Cauchy sequence in K converges to an element of K).9 This implies that a
closed subspace K of a Hilbert space H is itself a Hilbert space if one restricts the
inner product from H to K. If K is not closed already, we define its closure K as
the smallest closed subspace of H containing K; once again, this is a Hilbert space.

9Since H is a Hilbert space we know that the sequence has a limit in H, but this may not lie in
K even when all elements of the sequence do. This is possible precisely when K fails to be closed.
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2.3 Geometry of Hilbert space

The vector spaces Cn from linear algebra are Hilbert spaces in the usual inner prod-
uct (z, w) =

∑n
k=1 zkwk. Indeed, a finite-dimensional vector space is automatically

complete in any possible norm. More generally, Hilbert spaces are the vector spaces
whose geometry is closest to that of Cn, because the inner product yields a notion
of orthogonality: we say that two vectors f, g ∈ H are orthogonal, written f ⊥ g,
when (f, g) = 0.10 Similary, two subspaces11 K ⊂ H and L ⊂ H are said to be
orthogonal (K ⊥ L) when (f, g) = 0 for all f ∈ K and all g ∈ L. A vector f is
called orthogonal to a subspace K, written f ⊥ K, when (f, g) = 0 for all g ∈ K,
etc. We define the orthogonal complement K⊥ of a subspace K ⊂ H as

K⊥ := {f ∈ H | f ⊥ K}. (2.5)

This set is linear, so that the map K 7→ K⊥, called orthocomplementation, is an
operation from subspaces of H to subspaces of H. Clearly, H⊥ = 0 and 0⊥ = H.

Closure is an analytic concept, related to convergence of sequences. Orthogo-
nality is a geometric concept. However, both are derived from the inner product.
Hence one may expect connections relating analysis and geometry on Hilbert space.

Proposition 2.5 Let K ⊂ H be a subspace of a Hilbert space.

1. The subspace K⊥ is closed, with

K⊥ = K
⊥

= K⊥. (2.6)

2. One has
K⊥⊥ := (K⊥)⊥ = K. (2.7)

3. Hence for closed subspaces K one has K⊥⊥ = K.

Definition 2.6 An orthonormal basis (o.n.b.) in a Hilbert space is a set (ek)
of vectors satisfying (ek, el) = δkl and being such that any v ∈ H can be written as
v =

∑
k vkek for some vk ∈ C, in that limN→∞ ‖v −

∑N
k=1 vkek‖ = 0.

If v =
∑

k vkek, then, as in linear algebra, vk = (ek, v), and
∑

k |vk|2 = ‖v‖2. This is
called Parseval’s equality; it is a generalization of Pythagoras’s Theorem.

Once more like in linear algebra, all o.n.b. have the same cardinality, which de-
fines the dimension of H. We call an infinite-dimensional Hilbert space separable
when it has a countable o.n.b. Dimension is a very strong invariant: running ahead
of the appropriate definition of isomorphism of Hilbert spaces in §2.4, we have

Theorem 2.7 Two Hilbert spaces are isomorphic iff they have the same dimension.

10By definition of the norm, if f ⊥ g one has Pythagoras’ theorem ‖f + g‖2 = ‖f‖2 + ‖g‖2.
11A subspace of a vector space is by definition a linear subspace.
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2.4 The Hilbert spaces `2

We say that H1 and H2 are isomorphic as Hilbert space when there exists an
invertible linear map u : H1 → H2 that preserves the inner product, in that
(uf, ug)H2 = (f, g)H1 for all f, g ∈ H1; this clearly implies that also the inverse
of u preserves the inner product. Such a map is called unitary.

To prove Theorem 2.7, we first introduce a Hilbert spaces `2(S) for any set S (in
the proof, S will be a set labeling some o.n.b., like S = N in the countable case).

• If S is finite, then `2(S) = {f : S → C} with inner product

(f, g) =
∑
s∈S

f(s)g(s). (2.8)

The functions (δs)s∈S, defined by δs(t) = δst, t ∈ S, clearly form an o.n.b. of `2(S).
Now let H be an n-dimensional Hilbert space; a case in point is H = Cn.

By definition, H has an o.n.b. (ei)
n
i=1. Take S = n = {1, 2, . . . , n}. The map

u : H → `2(n), given by linear extension of uei = δi is unitary and provides an
isomorphism H ∼= `2(n). Hence all n-dimensional Hilbert space are isomorphic.

• If S is countable, then `2(S) = {f : S → C | ‖f‖2 <∞}, with

‖f‖2 :=

(∑
s∈S

|f(s)|2
)1/2

, (2.9)

with inner product given by (2.8); this is finite for f, g ∈ `2(S) by the Cauchy–
Schwarz inequality. Once again, the functions (δs)s∈S form an o.n.b. of `2(S), and
the same argument shows that all separable Hilbert space are isomorphic to `2(N)
and hence to each other. A typical example is `2(Z).

• If S is uncountable, then `2(S) is defined as in the countable case, where the
sum in (2.9) is now defined as the supremum of the same expression evaluated
on each finite subset of S. Similarly, the sum in (2.8) is defined by first
decomposing f = f1−f2+i(f3−f4) with fi ≥ 0, and g likewise; this decomposes
(f, g) as a linear combination of 16 non-negative terms (fi, gj), each of which
is defined as the supremum over finite subsets of S, as for ‖f‖2.

The previous construction of an o.n.b. of `2(S) still applies verbatim, as does the
proof that any Hilbert space of given cardinality is isomorphic to `2(S) for some S
of the same cardinality. In sum, we have proved (von Neumann’s) Theorem 2.7.

Let us note that for infinite sets S we may regard `2(S) as the closure in the
norm (2.9) of the (incomplete) space `c(S) of functions that are nonzero at finitely
many s ∈ S; this means that for any f ∈ `2(S) there is a sequence (fn) in `c(S) such
that limn→∞ ‖fn − f‖2 = 0. In what follows, we also encounter the Banach space

`∞(S) = {f : S → C | ‖f‖∞ <∞}; (2.10)

‖f‖∞ := sup
s∈S
{|f(s)|}, (2.11)

which is evidently the closure of `c(S) in the supremum-norm ‖ · ‖∞, in that for
any f ∈ `∞(S) there is a sequence (fn) in `c(S) such that limn→∞ ‖fn − f‖∞ = 0.
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2.5 The Hilbert spaces L2

A more complicated example of a Hilbert space is L2(Rn), familiar from quantum
mechanics. which can be defined either directly through measure theory (see §2.6), or
indirectly, as a completion of Cc(Rn), the vector space of complex-valued continuous
functions on Rn with compact support.12 Two natural norms on Cc(Rn) are:

‖f‖∞ := sup{|f(x)|, x ∈ Rn}, (2.12)

‖f‖2 :=

(∫
Rn
dnx |f(x)|2

)1/2

. (2.13)

The first norm is called the supremum-norm or sup-norm; see §2.7. The second
norm is called the L2-norm. It is, of course, derived from the inner product

(f, g) :=

∫
Rn
dnx f(x)g(x). (2.14)

Now, Cc(Rn) fails to be complete in either norm ‖ · ‖∞ or ‖ · ‖2.

• The completion of Cc(Rn) in the norm ‖ · ‖∞ turns out to be C0(Rn).13

• The completion of Cc(Rn) in the norm ‖ · ‖2 is L2(Rn), defined in two steps.

Definition 2.8 The space L2(Rn) consists of all functions f : Rn → C for which
there exists a Cauchy sequence (fn) in Cc(Rn) with respect to ‖·‖2 such that fn(x)→
f(x) for all x ∈ Rn\N , where N ⊂ Rn is a set of (Lebesgue) measure zero.14

We can extend the inner product on Cc(Rn) to L2(Rn) by (f, g) = limn→∞(fn, gn),
where (fn) and (gn) are Cauchy sequences in L2(Rn) w.r.t. the L2-norm. However,
this sesquilinear form fails to be positive definite (take a function f on Rn that is
nonzero in finitely—or even countably—many points). To resolve this, introduce

L2(Rn) := L2(Rn)/N , (2.15)

where
N := {f ∈ L2(Rn) | ‖f‖2 = 0}. (2.16)

Using measure theory, it can be shown that f ∈ N iff f(x) = 0 for all x ∈ Rn\N ,
where N ⊂ Rn is some set of measure zero. If f is continuous, this implies that
f(x) = 0 for all x ∈ Rn. It is clear that ‖ · ‖2 descends to a norm on L2(Rn) by

‖[f ]‖2 := ‖f‖2, (2.17)

where [f ] is the equivalence class of f ∈ L2(Rn) in the quotient space. However, we
normally work with L2(Rn) and regard elements of L2(Rn) as functions instead of
equivalence classes thereof. So in what follows we should often write [f ] ∈ L2(Rn)
instead of f ∈ L2(Rn), which really means f ∈ L2(Rn), but who cares . . .

12The support of a function is defined as the smallest closed set outside which it vanishes.
13This is the space of all continuous functions f : Rn → C that vanish at infinity in the sense

that for each ε > 0 there is a compact subset K ⊂ Rn such that |f(x)| < ε for all x outside K.
14A subset N ⊂ Rn has measure zero if for any ε > 0 there exists a covering of N by an at

most countable set (In) of intervals for which
∑
n |In| < ε, where

∑
n |In| is the sum of the volumes

of the In. (Here an interval in Rn is a set of the form
∏n
k=1[ak, bk]). For example, any countable

subset of Rn has measure zero, but there are many, many others.
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2.6 Measure theory and Hilbert space

The construction of L2(Rn) may be generalized to Hilbert spaces L2(X,µ) defined for
arbitrary locally compact Hausdorff spaces X; the concept of a measure µ underlying
this generalization is very important also for (commutative) C∗-algebras.

Let P (X) be the power set of X, i.e., the set of all subsets of X, and denote
the topology of X (i.e., the set of open subsets of X) by O(X). A σ-algebra on
X is a subset Σ of P (X) such that ∪nAn ∈ Σ and ∩nAn ∈ Σ whenever An ∈ Σ,
n ∈ N. Note that O(X) is generally not a σ-algebra on X; it is closed under taking
arbitrary unions (fine), but under finite intersections only. Let B(X) be the smallest
σ-algebra on X containing O(X); elements of B(X) are called Borel sets in X.

Definition 2.9 A (Radon) measure on X is a map µ : B(X)→ [0,∞] satisfying:

1. µ(∪nAn) =
∑

n µ(An) whenever An ∈ B(X), n ∈ N, Ai ∩Aj = ∅ for all i 6= j;

2. µ(K) <∞ for each compact subset K of X;

3. µ(A) = sup{µ(K), K ⊂ A,K compact} for each A ∈ B(X).

An integral on Cc(X) is a (complex) linear map
∫
X

: Cc(X) → C such that
∫
X
f

is in R+ whenever f(x) ∈ R+ for all x ∈ X (in which case we say f ≥ 0).

The Riesz–Markov Theorem states that these concepts are equivalent:

Theorem 2.10 There is a bijective correspondence between integrals and measures:

• A measure µ on X defines an integral
∫
X
dµ on Cc(X), given on f ≥ 0 by∫

X

dµ f := sup

{∫
X

dµ g | 0 ≤ g ≤ f, g simple

}
, (2.18)

where a simple function is a finite linear combination of characteristic func-
tions χK, K ⊂ X compact, and if g =

∑
i λiχKi, then

∫
X
dµ g :=

∑
i λiµ(Ki).

• An integral
∫
X

on Cc(X) defines a measure µ on X, given on compact K by

µ(K) = inf

{∫
X

f | f ∈ Cc(X), χK ≤ f ≤ 1

}
. (2.19)

For any p > 0, we define Lp(X,µ) as the space of Borel functions15 on X for which

‖f‖p :=

(∫
X

dµ |f |p
)1/p

<∞, (2.20)

where the integral is defined à la (2.18). The map ‖ · ‖p : Lp(X,µ) → R+ has a p-
independent null space N , with associated Banach space Lp(X,µ) := Lp(X,µ)/N .
For p = 2, the Banach space L2(X,µ) is actually a Hilbert space with inner product

(f, g) :=

∫
X

dµ fg ≡
∫
X

dµ(x) f(x)g(x), (2.21)

where similarly ambiguous notation has been used as for L2(Rn) (cf. the end of §2.5).

15Here f : X → C is Borel when f−1
i ((s, t)) ∈ B(X) for each 0 ≤ s < t, i = 1, 2, 3, 4, where

f = f1−f2 + i(f3−f4) is the unique decomposition with fi ≥ 0 (e.g., f1(x) = max{Re((f(x)), 0}).
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2.7 Operators on Hilbert space

An operator a : H1 → H2 between two Hilbert space is simply a linear map (i.e.,
a(λv + µw) = λa(v) + µa(w) for all λ, µ ∈ C and v, w ∈ H1). We write av for
a(v). Taking H1 = H1 = H, an operator a : H → H is just called an operator
on H. Taking H1 = H and H2 = C, we obtain a functional on H. For example,
any f ∈ H yields a functional ϕ : H → C by ϕ(g) = (f, g). By Cauchy–Schwarz,
|ϕ(g)| ≤ C‖g‖ with C = ‖f‖. Conversely, the Riesz–Fischer Theorem states
that if some ϕ satisfies this bound, then it is of the above form, for a unique f ∈ H.

As in real analysis, where one deals with functions f : R → R, it turns out to
be useful to single out functions with good properties, notably continuity. So what
does one mean by a ‘continuous’ operator a : H1 → H2? One answer come from
topology: the inner product on a Hilbert space defines a norm, the norm defines a
metric, and finally the metric defines a topology, so one may use the usual definition
of a continuous function f : X → Y between two topological spaces. We use an
equivalent definition, in which continuity is replaced by boundedness :

Definition 2.11 a : H1 → H2 be an operator. Define ‖a‖ ∈ R+ ∪ {∞} by

‖a‖ := sup {‖av‖H2 , v ∈ H1, ‖v‖H1 = 1}, (2.22)

where ‖v‖H1 =
√

(v, v)H1, etc. We say that a is bounded when ‖a‖ <∞, in which
case the number ‖a‖ is called the norm of a.

If a is bounded, then it is immediate that

‖av‖H2 ≤ ‖a‖ ‖v‖H1 (2.23)

for all v ∈ H1. This inequality is very important. For example, it implies that

‖ab‖ ≤ ‖a‖‖b‖, (2.24)

where a : H → H and b : H → H are any two bounded operators, and ab := a ◦ b,
so that (ab)(v) := a(bv). Eq. (2.23) also implies the easy half of:

Proposition 2.12 An operator on a Hilbert space H is bounded iff it is continuous
in the sense that fn → f implies afn → af for all convergent sequences (fn) in H.

When H is finite-dimensional, any operator on H is bounded (and may be rep-
resented by a matrix). For an infinite-dimensional example, take H = `2(S) and
a ∈ `∞(S), for some set S. It is an exercise to show that if f ∈ `2(S), then
af ∈ `2(S). Hence we may define a multiplication operator â : `2(S)→ `2(S) by

â(f) := af, (2.25)

that is, (âf)(x) = a(x)f(x). This operator is bounded, with

‖â‖ = ‖a‖∞. (2.26)

Similarly, take H = L2(Rn) and a ∈ C0(Rn). Once again, (2.25) defines a bounded
multiplication operator â : L2(Rn)→ L2(Rn), satisfying (2.26).

More generally, for locally compact X, a function a ∈ C0(X) defines a multi-
plication operator â on H = L2(X,µ) satisfying ‖â‖ ≤ ‖a‖∞, with equality iff the
support of the measure µ is X (i.e., every open subset of X has positive measure).
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2.8 The adjoint

Let a : H → H be a bounded operator. The inner product on H gives rise to a map
a 7→ a∗, which is familiar from linear algebra: if a is a matrix (aij) w.r.t. some o.n.b.,
then a∗ = (aji). In general, the adjoint a∗ is uniquely defined by the property16

(a∗f, g) = (f, ag) for all f, g ∈ H. (2.27)

Note that a 7→ a∗ is anti-linear: one has (λa)∗ = λa for λ ∈ C. Also, one has

‖a∗‖ = ‖a‖; (2.28)

‖a∗a‖ = ‖a‖2. (2.29)

The adjoint allows one to define the following basic classes of bounded operators:

1. n : H → H is normal when n∗n = nn∗.

2. a : H → H is self-adjoint when a∗ = a (hence a is normal).

3. a : H → H is positive, written a ≥ 0, when (f, af) ≥ 0 for all f ∈ H.

4. p : H → H is a projection when p2 = p∗ = p (hence p is positive).

5. u : H → H is unitary when u∗u = uu∗ = 1 (hence u is normal).

6. v : H → H is an isometry when v∗v = 1, and a partial isometry when v∗v
is a projection (in which case vv∗ is automatically a projection, too).

Proposition 2.13 1. An operator a is self-adjoint a iff (f, af) ∈ R for all f ∈ H
(and hence positive operators are automatically self-adjoint).

2. There is a bijective correspondence p ↔ K between projections p on H and
closed subspaces K of H: given p, put K := pH, and given K ⊂ H, define p
on f ∈ H by pf =

∑
i(ei, f)ei, where (ei) is an arbitrary o.n.b. of K.

3. An operator u is unitary iff it is invertible (with u−1 = u∗) and preserves the
inner product, i.e., (uf, ug) = (f, g) for all f, g ∈ H.

4. An operator v is a partial isometry iff v is unitary from (ker v)⊥ to ran(v).

5. An operator v is an isometry iff (vf, vg) = (f, g) for all f, g ∈ H.

Similar definitions apply to (bounded) operators between different Hilbert spaces:
e.g., the adjoint a∗ : H2 → H1 of a : H1 → H2 satisfies (a∗f, g)H1 = (f, ag)H2 for
all f ∈ H2, g ∈ H1, and unitarity of u : H1 → H2 means u∗u = 1H1 and uu∗ = 1H2 ;
equivalently, u is invertible and (uf, ug)H2 = (f, g)H1 for all f, g ∈ H1 (cf. §2.4).

16To prove existence of a∗, the Riesz–Fischer Theorem is needed. For fixed a : H → H and
f ∈ H, one defines a functional ϕaf : H → C by ϕaf (g) := (f, ag). By Cauchy–Schwarz and (2.23),
one has |ϕaf (g)| = |(f, ag)| ≤ ‖f‖‖ag‖ ≤ ‖f‖‖a‖‖g‖, so ‖ϕaf‖ ≤ ‖f‖‖a‖. Hence there exists a
unique h ∈ H such that ϕaf (g) = (h, g) for all g ∈ H. Now, for given a the association f 7→ h is
clearly linear, so that we may define a∗ : H → H by a∗f := h; eq. (2.27) then trivially follows.
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2.9 Spectral theory

The spectrum of an operator a generalizes the range of a (complex-valued) function,
and is its only invariant under unitary transformations a 7→ u∗au. To get started, we
first restate the spectral theorem of linear algebra. In preparation, we call a family
(pi) of projections on a Hilbert space H mutually orthogonal if piH ⊥ pjH for
i 6= j; this is the case iff pipj = δijpi. Such a family is called complete if

∑
i pif = f

for all f ∈ H; of course, if dim(H) <∞, this simply means
∑

i pi = 1.

Proposition 2.14 Let a : Cn → Cn be a self-adjoint operator on Cn (i.e., an
hermitian matrix). There exists a complete family (pi) of mutually orthogonal pro-
jections so that a =

∑
i λipi, where λi are the eigenvalues of a. Consequently, pi is

the projection onto the eigenspace of a in H with eigenvalue λi, and the dimension
of the subspace piH is equal to the multiplicity of the eigenvalue λi.

This is no longer true for self-adjoint operators on infinite-dimensional Hilbert
spaces. For example, if a ∈ C0(R,R), then the associated multiplication opera-
tor â on L2(R) has no eigenvectors at all! However, is has approximate eigenvectors,
in the following sense: for fixed x0 ∈ R, take fn(x) := (n/π)1/4e−n(x−x0)2/2, so that
fn ∈ L2(R) with ‖fn‖ = 1. The sequence fn has no limit in L2(R).17 Nonetheless,
an elementary computation shows that limn→∞ ‖(â − λ)fn‖ = 0 for λ = a(x0), so
that the fn form approximate eigenvectors of â with ‘eigenvalue’ a(x0).

Definition 2.15 Let a : H → H be a normal operator. The spectrum σ(a)
consists of all λ ∈ C for which there exists a sequence (fn) in H with ‖fn‖ = 1 and

lim
n→∞

‖(a− λ)fn‖ = 0. (2.30)

1. If λ is an eigenvalue of a, in that af = λf for some f ∈ H with ‖f‖ = 1, then
we say that λ ∈ σ(a) lies in the discrete spectrum σd(a) of a.

2. If λ ∈ σ(a) but λ /∈ σd(a), it lies in the continuous spectrum σc(a) of a.

3. Thus σ(a) = σd(a)∪σc(a) is the union of the discrete and the continuous part.

Indeed, in the first case (2.30) clearly holds for the constant sequence fn = f (for
all n), whereas in the second case λ by definition has no associated eigenvector.

If a acts on a finite-dimensional Hilbert space, then σ(a) = σd(a) consists of
the eigenvalues of a. On the other hand, in the above example of a multiplication
operator â on L2(R) we have σ(â) = σc(â). Our little computation shows that σc(â)
contains the range ran(a) of the function a ∈ C0(R), and it can be shown that
σ(â) = ran(a)− (i.e., the topological closure of the range of a : R → R as a subset
of R). In general, the spectrum may have both a discrete and a continuous part.18

17It converges to Dirac’s delta function δ(x− x0) in a ‘weak’ sense, viz. limn→∞(fn, g) = g(x0)
for each fixed g ∈ C∞c (R), but the δ ‘function’ is not an element of L2(R) (it is a distribution).

18If a is the Hamiltonian of a quantum-mechanical system, the eigenvectors corresponding to
the discrete spectrum are bound states, whereas those related to the continuous spectrum form
wavepackets defining scattering states. Just think of the hydrogen atom. It should be mentioned
that such Hamiltonians are typically unbounded operators; see §2.12 below.
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2.10 Compact operators

Even if H is infinite-dimensional, there is a class of operators whose spectrum is
discrete. First, a finite-rank operator is an operator with finite-dimensional range.
Using Dirac’s notation, for f, g ∈ H we write |f〉〈g| for the operator h 7→ (g, h)f . An
important special case is g = f with ‖f‖ = 1, so that |f〉〈f | is the one-dimensional
projection onto the subspace spanned by f . More generally, if (ei) is an o.n.b.
of some finite-dimensional subspace K, then

∑
i |ei〉〈ei| is the projection onto K.

Clearly, any finite linear combination
∑

i |fi〉〈gi| is finite-rank, and vice versa.

Definition 2.16 A bounded operator Hilbert space is called compact iff it is the
norm-limit of a sequence of finite-rank operators.

Note that multiplication operators of the type â on L2(Rn) for 0 6= a ∈ C0(Rn) are
never compact. On the other hand, typical examples of compact operators on L2(Rn)
are integral operators of the kind af(x) =

∫
dny K(x, y)f(y) with K ∈ L2(R2n).

Theorem 2.17 Let a be a self-adjoint compact operator on a Hilbert space H. Then
the spectrum σ(a) is discrete. All nonzero eigenvalues have finite multiplicity, so
that only λ = 0 may have infinite multiplicity (if it occurs), and in addition 0 is
the only possible accumulation point of σ(a) = σd(a). If pi is the projection onto
the eigenspace corresponding to eigenvalue λi, then a =

∑
i λipi, where the sum

converges strongly, i.e., in the sense that af =
∑

i λipif for each fixed f ∈ H.

The compact operators are closed under multiplication and taking adjoints, so that,
in particular, a∗a is compact whenever a is. Hence Theorem 2.17 applies to a∗a.
Note that a∗a is self-adjoint and that its eigenvalues are automatically non-negative.

Definition 2.18 We say that a compact operator a : H → H is trace-class if the
trace-norm ‖a‖1 :=

∑
k

√
µk is finite, where the µk are the eigenvalues of a∗a.

Theorem 2.19 Suppose a is trace-class. Then the trace of a, defined by

Tr (a) :=
∑
i

(ei, aei), (2.31)

is absolutely convergent and independent of the orthonormal basis (ei). In particular,
if a = a∗ with eigenvalues (λi), then Tr a =

∑
i λi. Furthermore:

1. If b is bounded and a is trace-class, then ab and ba are trace-class, with

Tr (ab) = Tr (ba). (2.32)

2. If u is unitary and a is trace-class, then uau−1 is trace-class, with

Tr (uau−1) = Tr (a). (2.33)

The following notion plays a fundamental role in quantum mechanics; cf. §2.11.

Definition 2.20 A trace-class operator ρ : H → H is called a density matrix if ρ
is positive and Tr (ρ) = 1 (and hence ‖ρ‖1 = 1). Equivalently, ρ is a density matrix
if ρ =

∑
i λipi (strongly) with dim(pi) <∞ for all i, 0 < λi ≤ 1, and

∑
i λi = 1.
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2.11 Quantum mechanics and Hilbert space

We are now ready to state the mathematical model of quantum mechanics introduced
by von Neumann in 1932 [29], and used at least in mathematical physics ever since. It
is based on the general idea that physical theories are given in terms of observables
and states, along with a pairing that maps a given observable a and a given state
ρ into a real number < ρ, a >. This number may be interpreted as the expectation
value of a given ρ (what that means should be discussed in a course on foundations!).

1. The states of a given quantum system are represented by the density matrices
ρ on some Hilbert space H associated to the system.

2. The observables of this system are given as self-adjoint operators a : H → H.

3. The pairing map is given by < ρ, a >= Tr (ρa).

To see that < ρ, a > is real, use Definition 2.1.1.(b), (2.32), a∗ = a, and ρ∗ = ρ.
This model should be contrasted with the corresponding classical version:

1. The states of a given classical system are represented by the probability mea-
sures µ on some phase space M associated to the system (i.e., µ(M) = 1).

2. The observables of this system are bounded Borel functions f : M → R.

3. The pairing map is given by < µ, f >=
∫
M
dµ f (cf. §2.6).

In both cases one has the notion of pure versus mixed states. In physics, a pure
state gives maximal information about a system, whereas a mixed state displays a
certain amount of ignorance. A precise mathematical definition based on convexity
will be given in §3.3 below; for the moment, we note that:

• In classical physics pure states are identified with points x of the phase space
M , which in the above setting should in turn be identified with the corre-
sponding Dirac measures µ = δx, given by < δx, f >= f(x).

• In quantum mechanics, pure states are often erroneously identified with unit
vectors Ψ in H, but in fact they are the corresponding one-dimensional pro-
jections |Ψ〉〈Ψ|, seen as density matrices (these are Ψ “up to a phase”).

Perhaps confusingly, such projections may also be regarded as two-valued observ-
ables, in that pΦ = |Φ〉〈Φ| corresponds to the yes-no question “is the state of the
system Φ?” The expectation value of this observable in a state pΨ = |Ψ〉〈Ψ| is

Tr (pΨpΦ) = |(Ψ,Φ)|2, (2.34)

which is lies in [0, 1] and is called the transition probability between Ψ and Φ.
If we assume for simplicity that an observable a is compact (which is always the

case if H = Cn), then by Theorem 2.17 we have a =
∑

i λi|Φi〉〈Φi| for some o.n.b.
(Φi) of H. Assuming each eigenvalue λi to be simple, the question “is the state of
the system Φ?” then operationally amounts to asking “when a is measured, is its
value found to be equal to λi?”. In a pure state pΨ, according to (2.34) the answer
“yes” then obtains with probability |(Ψ,Φi)|2, called the Born probability.
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2.12 Unbounded operators

But what about the typical operators in quantum theory, like the position operator
x̂ on L2(R) (and similarly the triple (x̂1, x̂2, x̂3) on L2(R3)), the momentum operator
p̂ = −i~d/dx on L2(R) (etc.), and the Schrödinger Hamiltonian ĥ = − ~2

2m
∆ + V̂ ?

These will not play a big role in these notes, but it is good to know that they are
discontinuous or unbounded operators. Such ‘operators’ are not initially defined
on the entire Hilbert space H in question, but merely on some dense subspace D ⊂ H
of it, which is not complete in the norm of H. For example, each of the above
expressions makes sense on the smooth functions with compact support C∞c (Rn)
(for appropriate n), or on the Schwartz space S(Rn) of rapidly decreasing smooth
functions on Rn. Of course, one may initially also define a bounded operator on such
dense subspaces. The fundamental difference between bounded and unbounded
operators then becomes clear if one computes the supremum in (2.22), restricting
to v ∈ D in order for the numbers ‖av‖H on the right-hand side to make sense:

• For a bounded operator a : D → H (i.e., the restriction of a : H → H to D),
the supremum sup {‖av‖H , v ∈ D, ‖v‖H = 1} is finite and equal to ‖a‖ as
defined in (2.22). The original operator a : H → H may then be recovered
from its restriction a : D → H by continuity, in the sense that af = limn afn
for f ∈ H and any sequence (fn) in D converging to f (cf. Prop. 2.12).

• For an unbounded operator a : D → H, sup {‖av‖H , v ∈ D, ‖v‖H = 1} =∞.

It is possible to define the adjoint a∗ of an unbounded operator a, and ask if a∗ = a.

Definition 2.21

1. The adjoint a∗ : D(a∗) → H of an unbounded operator a : D(a) → H has
domain D(a∗) consisting of all f ∈ H for which the functional g 7→ (f, ag) is
bounded. By Riesz–Fischer, it follows that (f, ag) = (h, g) for a vector h ∈ H
uniquely defined by f and a. Writing a∗f := h, we have (a∗f, g) = (f, ag).

2. The operator a is called self-adjoint,19 denoted a∗ = a, when D(a∗) = D(a)
and a∗f = af for all f ∈ D(a).

The operators mentioned above are not self-adjoint. Similarly, if a ∈ C(Rn) defines
a multiplication operator â with D(â) = C∞c (Rn), then the domain of the adjoint
is easily checked to be D(â∗) = {f ∈ L2(Rn) | af ∈ L2(Rn)}, which is bigger than
C∞c (Rn). This suggests that it would have been better to define â on the larger
domain D(â) = {f ∈ L2(Rn) | af ∈ L2(Rn)}, which leads to the same expression
for D(â∗). So in that case D(â∗) = D(â), and if also a is real-valued, then â = â∗.

More generally, suppose a : D(a) → H satisfies D(a) ⊂ D(a∗) and (af, g) =
(f, ag) for all f, g ∈ D(a). Can we find a self-adjoint operator ã : D(ã) → H such
that D(a) ⊂ D(ã) and af = ãf for all f ∈ D(a)? And if so, is this self-adjoint
extension of a unique? If both answers are yes, then a is called essentially self-
adjoint. This holds iff a∗∗ = a∗, in which case the desired self-adjoint extension of
a is simply its adjoint a∗. Indeed, this describes the example of â just given.

19If a is self-adjoint, then (af, g) = (f, ag) for all f, g ∈ D(a). If just this equality holds, in other
words, if D(a) ⊂ D(a∗) and a∗f = af for all f ∈ D(a), then a is called symmetric.
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2.13 Stone’s Theorem

Stone’s Theorem provides a mathematical interpretation of the time-dependent
Schrödinger equation, also explaining the role of self-adjointness. To state the the-
orem, we need to define the notion of time-evolution on a Hilbert space. We moti-
vate this definition by noting that physicists solve the time-dependent Schrödinger
equation with initial value ψ(0) = ψ by ψ(t) = u(t)ψ, where u(t) = exp(−ith/~).
Heuristic reasoning then leads to the properties of u in the following definition.20

Definition 2.22 A time-evolution on H is a map t 7→ u(t) associating a unitary
operator u(t) on H to each t ∈ R, such that u(0) = 1, u(s)u(t) = u(s + t) for all
s, t ∈ R, and limt→0 u(t)ψ = ψ for each ψ ∈ H.

Stone’s theorem relates this to the Hamiltonian of quantum physics, as follows:

1. A time-evolution ψ(t) defines a self-adjoint operator h (the ‘Hamiltonian’);

2. Conversely, a self-adjoint operator h defines a time-evolution ψ(t).

Theorem 2.23 (Stone’s Theorem)

1. Let t 7→ u(t) be a time-evolution on H. Define a (possibly unbounded) operator

h by hψ := i lims→0
u(s)−1

s
ψ, where the domain of h consists of all ψ ∈ H for

which this (norm) limit exists. Then D(h) is dense in H and h is self-adjoint.

2. Provided ψ ∈ D(h), for each t ∈ R the vector ψ(t) = u(t)ψ lies in D(h) as
well and satisfies the time-dependent Schrödinger equation hψ(t) = idψ(t)/dt.

3. Given a (possibly unbounded) self-adjoint operator h on H, there exists a
unique time-evolution t 7→ u(t) on H that is related to h in the above way.

So far, we have thought of t 7→ u(t)ψ as the time-evolution of ψ. But nothing
has relied on this interpretation: this is the power of abstraction in mathematics!
Consider the following example. Take H = L2(R) and define the map t 7→ u(t) by

u(t)ψ(x) := ψ(x− t). (2.35)

This satisfies Definition 2.22. The domain of h is D(h) = {ψ ∈ L2(R) | ψ′ ∈ L2(R)},
where the derivative ψ′ is defined by ψ′(x) := lims→0(ψ(x+s)−ψ(x))/s; the limit is
in the norm of L2(R), rather than pointwise in x. Finally, the action is hψ = −iψ′.
This ‘Hamiltonian’ is just the usual momentum operator p̂ (with ~ = 1). Stone’s
Theorem both provides its domain and states that p̂ is self-adjoint on this domain.

20From a group-theoretical point of view, a time-evolution is a strongly continuous unitary
representation of R (as an additive group). More generally, let G be a (topological) group. A
unitary representation of G on a Hilbert space H is a (strongly continuous) homomorphism U
from G into the group of all unitary operators on H. In other words, one has U(xy) = U(x)U(y)
and U(e) = 1 (and the map (x, ψ) 7→ U(x)ψ from G×H to H is continuous).
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3 Operator algebras

So far, we have mostly studied operators in Hilbert space on their own. It was a
fundamental insight of John von Neumann’s that it is fruitful both for pure mathe-
matics and for quantum physics to study algebras of operators on a Hilbert space,21

also recognizing that bounded operators (simply called operators in what follows)
provide the most convenient setting.22 Indeed, in one of his papers on Hilbert space
theory (1929), von Neumann defined a ring of operators M (nowadays called a von
Neumann algebra) as a ∗-subalgebra of the algebra B(H) of all bounded operators
on a Hilbert space H that contains the unit 1 and is closed in the so-called weak
operator topology.23 In the same paper, von Neumann proved what is still the basic
theorem of the subject: a ∗-subalgebra M of B(H), containing the unit operator
1, is weakly closed iff M ′′ = M . Here the commutant M ′ of a collection M of
bounded operators consists of all bounded operators that commute with all ele-
ments of M , and the bicommutant M ′′ is simply the iterated commutant (M ′)′.
Subsequently, von Neumann went on to develop the theory of such algebras in the
period 1936–1949, partly in collaboration with his assistant Murray [30].24

An important second step in the theory of operator algebras was the initiation
of the theory of C∗-algebras by Gelfand and Naimark in 1943. It turns out that
von Neumann’s rings of operators ar special cases of C∗-algebras, but von Neumann
algebras also continue to be studied on their own. A fruitful mathematical analogy is
that C∗-algebras provide a noncommutative generalization of topology, whereas von
Neumann algebras comprise noncommutative measure theory.25 C∗-algebras were
first applied to quantum theory by Segal in 1947, and have provided the basis for a
mathematically rigorous study of especially infinite quantum systems ever since.

It is the modest purpose of this chapter to develop just enough knowledge and
intuition on operator algebras (mostly C∗-algebras) to understand their applications
to symmetry breaking. For more information, we refer to [4, 18, 48] (see also [21]).

21Recall that an algebra is a vector space with an associative bilinear operation (‘multiplication’)
· : A × A → A; we usually write ab for a · b. We call A unital if there is an element 1 ∈ A, the
unit, such that 1a = a1 = a for all a ∈ A. It is easy to see that a unit is unique when it exists.

22In contrast, the product of two unbounded operators is not necessarily defined. Nonetheless,
there is a certain amount of literature on algebras of unbounded operators, partly in connection
to quantum field theory. See, for example, [1, 39].

23All this means that M is a subalgebra of B(H) with unit under operator mulitplication, that
M is closed under the involution a 7→ a∗, and that if for some sequence {an} ⊂ M one has
|(v, (an − a)w)| → 0 for all v, w ∈ H, then a ∈M . See also §§3.1 and 3.7 below.

24Von Neumann’s reasons for studying rings of operators were plurifold, including representation
theory and ergodic theory; as in his development of Hilbert spaces, important motivation certainly
also came from quantum mechanics. Unlike many physicists then and even now, von Neumann
knew that all Hilbert spaces of a given dimension are isomorphic (cf. Theorem 2.7), so that one
cannot characterize a physical system by saying that ‘its Hilbert space of (pure) states is L2(R3)’.
Instead, von Neumann hoped to characterize quantum-mechanical systems by algebraic conditions
on the observables. He initiated a programme in this direction in the 1930s, partly in collaboration
with Jordan and Wigner, but achieved little himself. After his death, von Neumann’s goals in
this direction have to some extent been realized by Haag and his followers in (algebraic) quantum
statistical mechanics and quantum field theory (as discussed in the main part of this course).

25These analogies form the basis of noncommutative geometry as developed by Connes [7].



3 OPERATOR ALGEBRAS 21

3.1 Basic definitions

If a and b are bounded operators on H, then so is their sum a + b, defined by
(a + b)(v) = av + bv, and their product ab, given by (ab)(v) = a(b(v)). This
follows from the triangle inequality for the norm and from (2.24), respectively. Also,
homogeneity of the norm yields that ta is bounded for any t ∈ C. Consequently, the
set B(H) of all bounded operators on a Hilbert space H forms an algebra over the
complex numbers, having remarkable properties. To begin with (cf. (2.22)):

Proposition 3.1 The space B(H) of all bounded operators on a Hilbert space H is
a Banach space in the operator norm

‖a‖ := sup {‖af‖H , f ∈ H, ‖f‖H = 1}. (3.1)

This is a basic result from functional analysis; it even holds if H is a Banach space.

Definition 3.2 A Banach algebra is a Banach space A that is simultaneously an
algebra in which ‖ab‖ ≤ ‖a‖ ‖b‖ for all a, b ∈ A.

According to (2.24), we see that B(H) is not just a Banach space but even a Banach
algebra. Also this would still be the case if H were merely a Banach space, but the
fact that it is a Hilbert space gives a crucial further ingredient of the algebra B(H).

Definition 3.3 1. An involution on an algebra A is a real-linear map A→ A∗

such that a∗∗ = a, (ab)∗ = b∗a∗, and (λa)∗ = λa∗ for all a, b ∈ A and λ ∈ C.
An algebra with involution is also called a ∗-algebra.

2. A C∗-algebra is a Banach algebra A with involution in which for all a ∈ A,

‖a∗a‖ = ‖a‖2. (3.2)

3. A homomorphism between C∗-algebras A en B is a linear map ϕ : A → B
that satisfies ϕ(ab) = ϕ(a)ϕ(b) and ϕ(a∗) = ϕ(a)∗ for all a ∈ A, b ∈ B.

4. An isomorphism between two C∗-algebras is an invertible homomorphism.26

In view of (2.29), we conclude that B(H) is a C∗-algebra (with the identity operator
as its unit) with respect to the involution defined by the operator adjoint (2.27).

Similarly, if A ⊂ B(H) is a norm-closed subalgebra of B(H) such that if a ∈ A,
then a∗ ∈ A (so that A is an algebra with involution), then A is obviously a C∗-
algebra (not necessarily with unit). A case in point is A = K(H), the C∗-algebra of
compact operators on H. If dim(H) =∞, there is a strict inclusion K(H) ⊂ B(H);
for one thing, the unit operator lies in B(H) but not in K(H), which has no unit.
If dim(H) <∞, though, one has K(H) = B(H) = Mn(C), the n× n matrices.

On the other hand, the set B1(H) of trace-class operators satisfies (3.2) in the
operator norm (3.1) but fails to be complete in that norm, whereas in the trace-norm
‖ · ‖1 it is complete but (3.2) fails. Either way, B1(H) fails to be a C∗-algebra.

26It can be shown that an isomorphism is automatically isometric; see footnote 34.
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3.2 Commutative C∗-algebras

The C∗-algebras K(H) and B(H) are highly noncommutative. For the opposite
case, let X be a locally compact Hausdorff space (physicists may keep X = Rn in
mind). The space C0(X) of all continuous functions f : X → C that vanish at
infinity27 is an algebra under pointwise operations.28 It has a natural involution

f ∗(x) = f(x), (3.3)

and a natural supremum-norm or sup-norm given by (cf. 2.12)

‖f‖∞ := sup{|f(x)|, x ∈ X}. (3.4)

Then C0(X) is a commutative C∗-algebra; the axioms are easily checked. Let us
note that C0(X) has a unit (namely the function equal to 1 for any x) iff X is
compact. The converse, due to Gelfand and Naimark (1943), is a beautiful result:

Theorem 3.4 Every commutative C∗-algebra A is isomorphic to C0(X) for some
locally compact Hausdorff space X, which is unique up to homeomorphism.

This space X is often denoted by Σ(A) and is called the Gelfand spectrum of A.
It may be realized as the set of multiplicative linear functionals on A, that is, as
the set of all nonzero linear maps ω : A → C that satisfy ω(ab) = ω(a)ω(b).29 The
isomorphism A→ C0(Σ(A)) is given by the Gelfand transform a 7→ â, where

â(ω) := ω(a), (3.5)

where a ∈ A and ω ∈ Σ(A). For example, if A is already given as A = C0(X),
then each x ∈ X defines a functional ωx on A by ωx(f) = f(x), which is mul-
tiplicative by the pointwise definition of multiplication in A. Theorem 3.4 then
implies Σ(C0(X)) ∼= X. In general, it follows from basic functional analysis that
â is a continuous function on Σ(A);30 a more detailed analysis proves that it maps
A into C0(Σ(A)). Injectivity and surjectivity of the Gelfand transform both result
from the difficult fact—whose proof relies on axiom (3.2)—that it is isometric, i.e.,
‖â‖∞ = ‖a‖. Given this result, injectivity is trivial, and surjectivity follows from the
Stone–Weierstrass Theorem. Finally, is immediately clear from the multiplicativity
of ω ∈ Σ(A) that the Gelfand transform is an algebra homomorphism.

It follows from Theorem 3.4 that arbitrary commutative C∗-algebras are of the
form A ⊂ B(H) for some Hilbert space H (cf. the end of the preceding subsec-
tion). We have already seen this for A = C0(Rn), which acts on H = L2(Rn) by
multiplication operators on; see text below (2.26). This construction, then, may
be generalized to the case of C0(X) by putting H = L2(X,µ) for some measure µ
whose support is X.

27I.e., for each ε > 0 there is a compact subset K ⊂ X such that |f(x)| < ε for all x outside K.
28Addition is given by (f + g)(x) = f(x) + g(x), multiplication is (fg)(x) = f(x)g(x), etc.
29These functionals lie in the dual space A∗ of A, but the topology in which Theorem 3.4 holds is

not the (relative) norm-topology on X but the (relative) weak∗ topology, also called the Gelfand
topology on X. These concepts are explained in the next subsection.

30Indeed, a 7→ â maps A into the double dual A∗∗ := (A∗)∗ of A, and A ⊂ A∗∗ precisely consists
of all functionals on on A∗ that are continuous with respect to the norm-topology on A∗.
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3.3 States

A more systematic study of the connection between C∗-algebras and Hilbert spaces
relies on the concept of a state, to which we now turn (see also subsection 2.11).

Definition 3.5 A state on a unital C∗-algebra A is a linear map ω : A → C that
is positive, in that ω(a∗a) ≥ 0 for all a ∈ A, and normalized, in that ω(1) = 1.

If we define the dual A∗ of A as the space of linear maps ϕ : A→ C for which

‖ϕ‖ = sup{|ϕ(a)|, a ∈ A, ‖a‖ = 1} (3.6)

is finite (cf. (2.22)), then it can be shown that any state ω on A lies in A∗, with
‖ω‖ = 1. This leads to an extension of Definition 3.5 to general (i.e., not necessarily
unital) C∗-algebras: a state on a C∗-algebra A is a functional ω : A → C that is
positive and normalized in the sense that ‖ω‖ = 1. This implies ω(1) = 1 whenever
A does have a unit, so that the two definitions are consistent when they overlap.

The state space S(A) of A (i.e., the set of all states on A) is a convex set: if
ω1 and ω2 are states, then so is λω1 + (1 − λ)ω2 for any λ ∈ [0, 1]. It follows that
if (ω1, ω2, . . . , ωn) are states, and (λ1, λ2, . . . , λn) are numbers in [0, 1] such that∑

i λi = 1, then
∑

i λiωi is a state. This extends to infinite sums if we equip S(A)
with the weak∗ topology inherited from A∗ (in which ωn → ω if ωn(a) → ω(a) for
each a ∈ A).31 If A has a unit, then S(A) is a compact convex set in this topology.

Definition 3.6 A state ω is pure if ω = λω1 + (1− λ)ω2 for some λ ∈ (0, 1) and
certain states ω1 and ω2 implies ω1 = ω2. The pure states on A comprise the pure
state space of A, denoted by P (A) or ∂S(A). If a state is not pure, it is mixed.

The convex structure of the state space is nicely displayed by A = M2(C), the
C∗-algebra of 2× 2 complex matrices. Put

ρ = 1
2

(
1 + z x+ iy
x− iy 1− z

)
; (3.7)

then ρ is a density matrix on C2 iff (x, y, z) ∈ R3 with x2 + y2 + z2 ≤ 1; this set is
the three-ball B3 in R3. It is easy to see that ρ defines a state ωρ on the M2(C) by

ωρ(a) = Tr (ρa). (3.8)

Conversely, every state on M2(C) is of this form (exercise). Hence the state space
S(M2(C)) of a quantum 2-level system is isomorphic (as a convex set) to B3. The
pure states correspond to the points (x, y, z) for which x2 + y2 + z2 = 1, i.e., to the
two-sphere S2 = ∂B3 (also called the Bloch sphere in this context).

The classical analogue of this example is the phase space M = {x1, x2} consisting
of just two points; the corresponding commutative C∗-algebra is C(M) = C ⊕ C.
Each probability measure µ on M takes the form µ(x1) = λ1 and µ(x2) = λ2 with
λi ∈ [0, 1] and λ1 + λ2 = 1. Hence the state space of C⊕ C may be identified with
the interval [0, 1] with its natural convex structure, in that λ ∈ [0, 1] corresponds
to the probability measure λ1 = λ, λ2 = 1 − λ. Once again, the boundary points
{0, 1} = ∂[0, 1] yield the pure states in question.

31This is the weakest topology making all functions ω 7→ ω(a) from S(A) to C, a ∈ A, continuous.
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3.4 The Born rule revisited

We will now see to what extent the previous example may be generalized. Two
examples of basic importance to classical and quantum physics are (cf. §2.11):

• The Riesz–Markov Theorem 2.10 implies that any probability measure µ on X
defines a state ωµ on A = C0(X) by ωµ(f) =

∫
X
dµ f , and vice versa; the requirement

‖ϕ‖ = 1 in the definition of a state forces µ(X) = 1. We often write ωµ as µ(f).
The pure states are precisely the Dirac measures δx, defined for each x ∈ X

by δx(A) = 1 if x ∈ A and δx(A) = 0 if x /∈ A, for A ⊂ X. The corresponding
integral, which we denote by ωx or evx, then maps f to f(x). Hence P (C0(X))
is homeomorphic to X under the bijection evx ↔ x. More generally, a nonzero
functional on a commutative C∗-algebra defines a pure state iff it is multiplicative,
and hence Theorem 3.4 implies that the pure state space of a commutative C∗-
algebra is homeomorphic to its Gelfand spectrum, or P (A) ∼= Σ(A).

• Any density matrix ρ on a Hilbert space H defines a state ωρ on the C∗-algebra
B(H) by (3.8), i.e., ωρ(a) = Tr (ρa). Such a state is pure iff it is a vector state,
i.e., if ρ is a one-dimensional projection pΨ ≡ |Ψ〉〈Ψ| for some unit vector Ψ ∈ H.
Simply writing ψ for ωpΨ

, we then have

ψ(a) = Tr (pΨa) = (Ψ, aΨ). (3.9)

Indeed, the spectrum σ(ρ) of ρ =
∑

i λipi contains points different from λ = 0 or
λ = 1 iff it is mixed, whereas σ(pΨ) = {0, 1}. However, this argument (for the purity
of ψ) only shows that ψ has no nontrivial decomposition ψ = λω1 + (1−λ)ω2 when
ψ is taken to be a state on B(H), for in that case one has Tr (ρ1a) = Tr (ρ2a) for all
a ∈ B(H) iff ρ1 = ρ2. This is still the case for K(H) instead of B(H) (exercise).

For more general C∗-algebras A ⊂ B(H), however, it may no longer be the case
that vector states as in (3.9) are pure. For example, if H = Cn and Dn consists of
all diagonal n× n matrices, with elements a = diag(a1, . . . , an), ai ∈ C, then

ψ(a) =
n∑
i=1

|Ψi|2ai. (3.10)

So ψ, as a state on the C∗-algebra Dn, coincides with
∑

i λi|ei〉〈ei|, with coefficients
λi = ψ(|ei〉〈ei|) = |(ei,Ψ)|2 = |Ψi|2, where (ei) is the standard basis of Cn. This
state is pure on Dn iff Ψ ∼ ei, so in general it will be mixed. In quantum physics,
λi is the Born probability for the outcome ai of a measurement of a in the state Ψ.

An infinite-dimensional analogue of this example isH = L2(Rn) andA = C0(Rn),
acting on H as multiplication operators (henceforth we omit the hat on a). Then

ψ(a) =

∫
Rn
dnx |Ψ(x)|2a(x), (3.11)

is always mixed: this state corresponds to the probability measure on Rn with
density |Ψ(x)|2. As a limiting case, we may take a to be the characteristic function
a = χ∆ of some region ∆ ⊂ Rn, so that ψ(χ∆) =

∫
∆
dnx |Ψ(x)|2 is the Born

probability for finding the particle within ∆ (first written down in 1926 by Pauli).32

32Although χ∆ /∈ C0(Rn), one has χ∆ ∈ C0(Rn)′′, to which algebra ψ extends; see §§3.6 and 3.7.
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3.5 The spectrum revisited

In order to unify and generalize (3.10) and (3.11), we return to the spectrum, already
encountered for normal operators in §2.9. We first generalize Definition 2.15.

Definition 3.7 Let A be a C∗-algebra with unit 1 (or, more generally, a Banach
algebra with unit).33 The spectrum σ(a) of a ∈ A is the set of all z ∈ C for which
a− z ≡ a− z · 1 has no (two-sided) inverse in A.

The spectrum σ(a) is a closed subset of C. One of the remarkable properties of C∗-
algebras is that the norm may be recovered from the algebraic structure: if we define
the spectral radius r(a) of a ∈ A by r(a) := sup{|z|, z ∈ σ(a)}, then ‖a‖ = r(a) if
a∗ = a, and ‖a‖ =

√
r(a∗a) in general. Consequently, if an algebra with involution

has a norm in which it is a C∗-algebra, then that norm is unique.34

If a ∈ A is normal, then the C∗-algebra C∗(a) generated by a and the unit within
A (i.e., the norm-closure of all polynomials in a and a∗) is obviously commutative.

Theorem 3.8 Let a be a normal element of a unital C∗-algebra A. Then the spec-
trum of a in A coincides with the spectrum of a in C∗(a), so that we may unam-
biguously speak of the spectrum σ(a). Moreover, there is a unique isomorphism

C(σ(a)) ∼= C∗(a) (3.12)

under which the function z 7→ z on σ(a) ⊂ C is mapped to a ∈ C∗(a) ⊂ A.

This isomorphism ϕ : C(σ(a)) → C∗(a) maps a polynomial p ≡ p(z, z) ∈ C(σ(a))
into the corresponding polynomial p(a, a∗) ∈ C∗(a). If f ∈ C(σ(a)), then (by
Stone–Weierstrass) there is a polynomial p on σ(a) such that pn → f in the sup-
norm on C(σ(a)). Defining f(a, a∗) as the norm-limit of pn(a, a∗) in A, we have
ϕ(f) = f(a, a∗). Since isomorphisms between C∗-algebras are isometric, one has
‖f(a, a∗)‖ = ‖f‖∞. In addition, σ(f(a, a∗)) is just the image of σ(a) under f .

In the context of Theorem 3.4, Theorem 3.8 states that the spectrum σ(a) of
a ∈ A coincides with the Gelfand spectrum of the commutative C∗-algebra C∗(a);
indeed, λ ∈ σ(a) provides the multiplicative functional ωλ(f(a, a∗)) = f(λ) on C∗(a).

Finally, the consistency between Definitions 3.7 and 2.15 whenever they overlap
is guaranteed by the following result, whose proof is an exercise.

Proposition 3.9 Let a ∈ B(H) be normal. Then λ ∈ σ(a) iff there exists a se-
quence (fn) in H with ‖fn‖ = 1 for all n such that limn→∞ ‖(a− λ)fn‖ = 0.

33 If A does not have a unit, one has to add one in order to define spectra. This is done as follows.
First, define Ȧ = A⊕C as a vector space, with elements (a, z) ≡ a+̇z. The element (0, 1) will be the
unit of Ȧ. Second, define Ȧ as an algebra with involution by putting (a,w)·(b, z) := (ab+wb+za, wz)
and (a, z)∗ = (a∗, z). Third, define a norm on Ȧ. This is the difficult step. To understand it, regard
Ȧ as a subspace of L(A), the Banach algebra of bounded linear maps from A to A, in the obvious
way, that is, (a, z)(b) = ab+ zb. This provides the norm ‖(a, z)‖ = sup{‖ab+ zb‖, b ∈ A, ‖b‖ = 1}
on Ȧ. Thus defined, Ȧ is a C∗-algebra with unit, called the unitization of A. The spectrum of
a ∈ A, then, is defined as the spectrum of (a, 0) in Ȧ.

34This proves the claim in footnote 26 that an isomorphism ϕ : A → B between C∗-algebras is
isometric: considering the ‘new’ norm ‖a‖′A = ‖ϕ(a)‖B on A, it must be that ‖a‖′A = ‖a‖ ≡ ‖a‖A.
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3.6 Spectral Theorem

Combining the ideas in the previous two subsections, we now take a self-adjoint
operator a ∈ B(H) and a density matrix ρ on H. The restriction of the state ρ to
C∗(a) defines a unique probability measure µρ on σ(a) for which∫

σ(a)

dµρ(λ) f(λ) ≡ µρ(f) = Tr (ρf(a)) for all f ∈ C(σ(a)). (3.13)

We know from §2.6 that the left-hand side of (3.13) actually makes sense for any
f ∈ L1(σ(a), µρ). Since µρ is a probability measure, this class includes all bounded
(Borel) functions f : σ(a)→ R. For example, the characteristic function χ∆ of some
Borel subset ∆ ⊂ σ(a) yields

∫
σ(a)

dµρ χ∆ = µρ(∆), whose physical interpretation is

given by the Born rule: regarding a as an observable and ρ as a state (cf. §2.11),

if a is measured in a state ρ, the probability of finding an outcome in ∆ is µρ(∆).

In particular, if ρ = pΨ for some unit vector Ψ ∈ H, and λ ∈ σd(a) is a simple
eigenvalue of a with eigenvector eλ, then by taking ∆ = {λ} it follows35 that the
probability of finding λ is given by the well-known Born probability |(Ψ, eλ)|2.

We may ask if also the right-hand side of (3.13) makes sense for any bounded
(Borel) function f , and, in particular, if there exists an operator χ∆(a) such that

µρ(∆) = Tr (ρχ∆(a)). (3.14)

This question cannot be answered in the context of Theorem 3.8, since χ∆ is typically
discontinuous, so that χ∆(a) cannot be an element of C∗(a). This problem may be
resolved by completing the latter in a weaker topology on B(H) than the operator
norm topology. Many topologies suffice for this purpose; let us take the strong
topology, in which an → a iff anf → af for all f ∈ H. Defining W ∗(a) as the
(sequential) completion of C∗(a) in the strong topology, it can be shown for any
compact set K ⊂ R that each positive bounded (Borel) function f : K → R is a
pointwise limit of some bounded monotone increasing sequence pn of polynomials on
K. Applying this to K = σ(a), we obtain a bounded monotone increasing sequence
pn(a) of operators onH, which in turn can be shown to have a strong limit. This limit
is by definition equal to f(a), which by construction lies in W ∗(a). In particular,
taking f = χ∆ this defines the so-called spectral projections χ∆(a) ∈ W ∗(a),
which validate (3.14). A straightforward extension of this argument from self-adjoint
operators a to normal ones then yields von Neumann’s great Spectral Theorem:

Theorem 3.10 Let a ∈ B(H) be a normal operator, and let B(σ(a)) be the (com-
mutative) algebra of bounded Borel functions on σ(a), with obvious involution. The
isomorphism C(σ(a)) → C∗(a) of Theorem 3.8 has a unique extension to a homo-
morphism B(σ(a))→ W ∗(a) that satisfies ‖f(a)‖ ≤ ‖f‖∞ for each f ∈ B(σ(a)).

Note that both B(σ(a)) and W ∗(a) are C∗-algebras. This result is stronger than
Theorem 3.8 in that it applies to a much larger class of functions than just continuous
ones, but it is weaker in that the ensuing homomorphism fails to be an isomorphism.

35We assume that λ is separated from σc(a), in case a has some continuous spectrum. In that
case, δλ is a continuous function on σ(a) and (in the context of Theorem 3.8) δλ(a) = |eλ〉〈eλ|.
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3.7 Von Neumann algebras

As already mentioned, von Neumann saw that strong operator completions of the
type C∗(a) W ∗(a) within B(H) may equivalently be done algebraically. For any
Hilbert space H, let A ⊂ B(H) be some subset. The commutant of A, defined by

A′ := {b ∈ B(H) | ab = ba ∀a ∈ A}, (3.15)

is a subalgebra of B(H). Similarly, one has the bicommmutant A′′ = (A′)′ of A.

Definition 3.11 A ∗-algebra M ⊂ B(H) is a von Neumann algebra if M ′′ = M .

This condition forces M to be a C∗-algebra with unit (exercise), and is always sat-
isfied if dim(H) < ∞ (another exercise). If dim(H) = ∞, on the other hand, we
have K(H)′′ = B(H), so that the compact operators do not form a von Neumann
algebra. On the commutative side, the C∗-algebra C0(Rn) of multiplication opera-
tors on L2(Rn) yields C0(Rn)′′ = L∞(Rn), i.e., the algebra of (a.e.) bounded Borel
functions on Rn, and so C0(Rn) is not a von Neumann algebra either.

In order to state von Neumann’s famous double commutant theorem, we review
a few of the most important topologies on B(H) (using sequences for simplicity):36

• The norm-topology corresponds to an → a iff ‖(an − a)‖ → 0 (cf. (3.1)).

• The strong (operator) topology has an → a iff ‖(an − a)f‖ → 0 ∀ f ∈ H.

• The weak (operator) topology has an → a iff |(f, (an−a)g)| → 0∀ f, g ∈ H.

None of these topologies coincide on infinite-dimensional Hilbert spaces. For exam-
ple, if (ei) is an o.n.b. of H, then pn =

∑n
i=1 |ei〉〈ei| does not converge in the norm

topology as n → ∞, whereas pn → 1 in the two others. If H = L2([0, 1]), then the
multiplication operators en(t) = exp(2πint) converge to zero in the weak operator
topology but not in the strong one. So here is the double commutant theorem:

Theorem 3.12 Let M be a unital ∗-algebra in B(H). Then M ′′ = M iff M is closed
in the strong topology, which in turn holds iff M is closed in the weak topology.

However, next to the norm topology, the second intrinsic topology on a von Neumann
algebra in both a mathematical and a physical sense is neither the strong nor the
weak one, but the σ-weak topology, in which an → a iff |Tr (ρ(an − a))| → 0
for each ρ ∈ B1(H). This results from a deep characterization theorem for von
Neumann algebra due to Sakai: a C∗-algebra is a von Neumann algebra iff it is the
dual of a Banach space. The latter is called the predual of M , denoted by M∗, so
that M = M∗

∗ . The σ-weak topology on M then coincides with the weak∗-topology
with respect to M∗, i.e., one has an → a iff |ρ(an − a)| → 0 for each ρ ∈ M∗. For
example, one has B(H)∗ = B1(H) = K(H)∗, so that B(H) = B1(H)∗ = K(H)∗∗.

36Defining a topology in terms of convergence should really be done using nets or filters.
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3.8 Characterization of states

With the concept of a von Neumann algebra at hand, we return to our discussion
of states on C∗-algebras. We saw in §3.3 that all states on the 2 × 3 matrices are
given by density matrices. This conclusion easily extends to the n×n matrices (seen
as Mn(C) = B(Cn)), and also—though less easily—to the C∗-algebra of compact
operators K(H) on an arbitrary Hilbert space H (exercise). To state the far more
substantial Theorem 3.15 below (due to von Neumann), we need some preparation.

Definition 3.13 A normal state on a von Neumann algebra M is an element of
the normal state space Sn(M) := S(M) ∩M∗.
If M ⊂ B(H), each density matrix on H almost by definition yields a normal state.
Less trivially, it can be shown that a state ω is normal iff ω(

∨
i pi) =

∑
i ω(pi)

for arbitrary families of mutually orthogonal projections (pi) in M (i.e. pipj = 0
if i 6= j), where the supremum

∨
i pi is defined with respect to the ordering on

projections given by p ≤ q iff pH ⊆ pH, that is, iff ran(p) ⊆ ran(q).37

One reason why the continuity condition defining normal states may be refor-
mulated in terms of projections, is that (unlike general C∗-algebras) von Neumann
algebras have lots of them. Let Proj(A) be the set of projections in a ∗-algebra A.

Proposition 3.14 If M is a von Neumann algebra, then M = Proj(M)′′.

In particular, by Theorem 3.12 any element of M may be weakly or strongly ap-
proximated by linear combinations of projections within M .38 To see that this is
not true for C∗-algebras, a look at the commutative case suffices: if A = C(X),
then X is connected iff Proj(A) = {0, 1}. So if a commutative von Neumann al-
gebra M is regarded as a commutative C∗-algebra, then the Gelfand isomorphism
M ∼= C(Σ(M)) involves a highly disconnected (‘Stonean’) topological space Σ(M).

This abundance of projections is useful, for example, if M = A′ is the commutant
of some C∗-algebra A ⊂ B(H).39 Namely, for each p ∈ Proj(A′) the closed subspace
pH of H is stable under A (and even under A′′). Taking Hi = piH for a complete
family (pi) of mutually orthogonal projections in A′ (i.e.,

∑
i pi = 1 strongly), one

may therefore decompose H under the action of A (or even of A′′) as H = ⊕iHi.
40

We close this subsection with a characterization of normal states.

Theorem 3.15

1. Every normal state on B(H) is given by a density matrix on H.41

2. More generally, every normal state on a von Neumann algebra M ⊂ B(H) is
given by a density matrix on H (and vice versa).

37In other words, (
∨
i pi)H is the smallest closed subpace containing all subspaces piH.

38Indeed, an old-fashioned way of stating Theorem 3.10 is that a normal operator a can be
approximated by its spectral projections χ∆(a) in a suitable way, which then lie in M = W ∗(a)).

39Exercise: A′′′ = A′ for any ∗-algebra A, so that A′ is indeed a von Neumann algebra.
40We say that H = ⊕iHi under A ⊂ B(H) if aψi ∈ Hi for each a ∈ A and ψi ∈ Hi. See §3.13.
41In the literature on the foundations of quantum mechanics this is called von Neumann’s no

hidden variable theorem, since it proves that (weakly continuous) quantum-mechanical averages
a 7→ ω(a) cannot be dispersion-free (i.e. cannot satisfy ω(a2) = ω(a2) for all a∗ = a ∈ B(H)).
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3.9 The GNS-construction

As in the case of groups, it is natural to look at representations of C∗-algebras.

Definition 3.16 A representation of a C∗-algebra A on a Hilbert space H is a
linear map π : A→ B(H) such that π(ab) = π(a)π(b), and π(a∗) = π(a)∗, ∀a, b ∈ A.

• A representation π : A→ B(H) is called cyclic if there is a vector Ω ∈ H for
which π(A)Ω = H;42 in other words, each Ψ ∈ H is the limit of a sequence
π(an)Ω in H, where an ∈ A. In that case, Ω is called a cyclic vector for π.

Physically, the idea behind cyclicity would be that each state arises by ‘filling up’ the
ground state Ω with ‘excitations’ π(a)Ω. There is a beautiful connection between
cyclic representations of A and states on A, given by the GNS-construction.43 In
quantum physics, this construction provides the bridge between the usual Hilbert
space formalism and the abstract C∗-algebraic approach, so it is quite important.

Theorem 3.17 Let ω be a state on a C∗-algebra A. There exists a cyclic represen-
tation πω of A on a Hilbert space Hω with cyclic unit vector Ωω such that

ω(a) = (Ωω, πω(a)Ωω) ∀a ∈ A. (3.16)

The idea is to construct Hω from A and subsequently define πω by left-multiplication:

1. Define a sesquilinear form (−,−)0 on A by (a, b)0 := ω(a∗b). This form almost
defines an inner product on A, except that it may not be positive definite (i.e.,
it might be that ω(a∗a) = 0 for some a 6= 0). Hence we remove the null space
Nω = {a ∈ A |ω(a∗a) = 0} by forming the quotient A/Nω. The form

([a], [b]) := ω(a∗b) (3.17)

on A/Nω (where a 7→ [a] denotes the canonical projection A → A/Nω) is
positive definite by construction and defines an inner product (−,−). The
Hilbert space Hω, then, is the completion of A/Nω in the corresponding norm.

2. The representation πω(A) is initially defined on A/Nω ⊂ Hω by

πω(a)[b] := [ab]. (3.18)

It is trivial that πω is linear and satisfies πω(ab) = πω(a)πω(b); to prove that
πω(a)∗ = πω(a∗), take inner products with vectors [b] and [c] in A/Nω. The
technical point of the proof, which we omit, is that each πω(a) is well defined
and bounded on A/Nω, so that it may be extended to all of Hω by continuity.

3. If A has a unit, define Ωω = [1]; then (3.16) follows by a simple computation.44

The GNS-construction simplifies when ω is faithful in that ω(a∗a) = 0 iff a = 0;
since Nω is zero, Hω is just the completion of A in the inner product (a, b) = ω(a∗b).

42Here π(A)Ω is the closure of the linear span of the subset {π(a)Ψ, a ∈ A,Ψ ∈ H} of H.
43Named after three founding fathers of the field: I.M. Gelfand, M. Naimark, and I.E. Segal.
44If A has no unit, the GNS-construction is applied to the unitization Ȧ of A (see footnote 33),

in terms of the state ω̇ on Ȧ given by ω̇(a, z) = ω(a) + z. The representation πω(A) is then simply
the restriction of πω̇(Ȧ) to A. Alternatively, one may use a so-called approximate unit of A.
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3.10 Easy examples of the GNS-construction

• Let A = Dn be the diagonal n×n matrices, and let ψ be the state (3.10). Then Nψ

consists of all a = diag(a1, . . . , an) for which ψ(a∗a) =
∑n

i=1 |Ψi|2|ai|2 = 0. Hence
each component Ψj = 0 (if it exists) kills the corresponding j’th copy of C in passing
from A ∼= Cn to Hψ = A/Nψ, for if Ψj = 0, then diag(0, . . . , 0, aj, 0, . . . , 0) ∈ Nψ.
It follows that Hψ = Cm, where m ≤ n is the number of i for which Ψi 6= 0, with
the peculiar inner product (z, w) =

∑
i |Ψi|2ziwi. However, the map u : Hψ → Cm,

given by u(zi) = Ψizi, is clearly unitary for the usual inner product on Cm, and
the resulting representation πψ on Cm is simply given by πψ(a)zi = aizi. The cyclic
vector Ωψ in Hψ is (1, . . . , 1), whose image in Cm under u is simply Ψ itself with
zeros omitted. If ψi = ej for i = j and zero otherwise, then Hψ = C. If, on the other
hand, Ψi 6= 0 for all i, then Hψ = Cn, and πψ recovers the defining representation.

• The previous example (reinterpreted as Dn = C(n)) generalizes to arbitrary com-
mutative C∗-algebras A = C0(X); cf. §3.4. Seen as a state, a probability measure
µ is on X induces the sesquilinear form (f, g)0 =

∫
X
dµ(x) f(x)g(x) on A, so that

Hµ = L2(X,µ) and πµ(f)Ψ(x) = f(x)Ψ(x). The cyclic vector Ωµ is the function
identically equal to 1; we verify (Ωµ, πµ(f)Ωµ) =

∫
X
dµ(x) f(x) = µ(f). If µ = δx,

i.e., µ(f) = f(x), then Hµ = C with πωx(f) = f(x). In the opposite case, the
support of µ is X, as is typically the case for dµ(x) = |Ψ(x)|2dnx, see (3.11).

• For a noncommutative example, take A = Mn(C), with a state necessarily of the
form ωρ(a) = Tr (ρa), for some density matrix ρ. Writing Nρ for Nωρ , etc., it follows
that Nρ = {a ∈ A | Tr (ρa∗a) = 0}. If we expand ρ =

∑
i λipi (cf. §2.10), and for

simplicity assume that pi = |ei〉〈ei| with respect to the standard basis (ei) of Cn,
then once again two cases of special interest arise:

1. If ρ = |ej〉〈ej| is pure, the null space is Nρ = {a ∈ A | aej = 0}. Hence a ∈ Nρ

iff the j’th column Cj(a) of a vanishes, so that a − b ∈ Nρ iff Cj(a) = Cj(b). Thus
the equivalence class [a] ∈ A/Nρ may be identified with Cj(a), so that Hρ = Cn

with the standard inner product. Indeed, representing z ∈ Cn by a matrix a with
Cj(a) = z and zeros elsewhere, and likewise Cj(b) = w, we have (no sum over j):

(z, w) = ([a], [b]) = ρ(a∗b) =
∑
i

aijbij =
∑
i

ziwi = (z, w).

Similarly, (3.18) reads πρ(a)wi = [ab]i =
∑

k[aikbkj] =
∑

k aikwk, or πρ(a)w = aw.
The cyclic vector Ωρ is [1n] = ej. More generally, for a pure state ψ the GNS-
representation πψ(Mn(C)) induced by ψ is equal to the defining representation on
Cn, with cyclic vector Ωψ = Ψ. To verify (3.16), (Ωψπψ(a)Ωψ) = (Ψ, aΨ) = ψ(a).

2. If λi > 0 for all i (as in an equilibrium state ρ = Z−1 exp(−βh), where
Z = Tr exp(−βh) for some Hamiltonian h), then Nρ = 0 and Hρ = Mn(C),
equipped with the inner product (a, b) = Tr (ρ a∗b). The GNS-representation is
given by πρ(a)b = ab, with Ωρ = 1n; note that ‖Ωρ‖2 = (1n, 1n) = Tr (ρ) = 1.
The unitary transformation u(a) = aρ1/2 maps Hρ into Mn(C) with inner product
(a, b) = Tr (a∗b), with inverse u∗(b) = bρ−1/2. For the corresponding representa-
tion π̃ρ = uπρu

∗, we obtain π̃ρ(a)b = ab, too. The cyclic vector in Mn(C) becomes
Ω̃ρ = uΩρ = ρ1/2; note that (Ω̃ρ, π̃ρ(a)Ω̃ρ) = Tr ρ1/2aρ1/2 = Tr (ρa), verifying (3.16).
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3.11 Irreducible representations and pure states

As for group representation, there is a natural notion of irreducibility for C∗-algebras.

Definition 3.18 A representation π : A → B(H) is called irreducible when H
has no nontrivial closed subspaces stable under π(A). In other words, if K ⊂ H is a
closed subspace such that π(a)Ψ ∈ K for all a ∈ A, Ψ ∈ K, then K = 0 or K = H.

If π is not irreducible, then we do have such a subspace K, and since π(a∗) = π(a)∗

it follows that also K⊥ is stable under π. Thus we may reduce H = K ⊕ K⊥,
with π(A)K(⊥) ⊂ K(⊥). For example, the defining representation of A = Mn(C) is
irreducible, but its restriction to Dn is not: each subspace C · ei is stable under Dn.

Proposition 3.19 The following conditions on π : A→ B(H)are equivalent:

1. π is irreducible;

2. Each nonzero vector Ω ∈ H is cyclic;

3. π(A)′ = C · 1, or, equivalently, π(A)′′ = B(H).

To get some idea of the proof, if π(A)′ 6= C · 1, then π(A)′ contains a nontrivial
projection p (since it is a von Neumann algebra), and hence K = pH is stable under
A. This proves ¬3⇒ ¬1 and hence 1⇒ 3. The rest of the proof is a useful exercise.

There is a beautiful characterization of irreducibility of GNS-representations.

Theorem 3.20 The GNS-representation πω(A) is irreducible iff ω is pure.

We just prove the easy direction. When ω is pure yet πω(A) reducible, there is a
nontrivial projection p ∈ πω(A)′. If pΩω = 0, then apΩω = paΩω = 0 for all a ∈ A,
so that p = 0, since πω is cyclic. pΩω 6= 0. Similarly, p⊥Ωω 6= 0 (with p⊥ = 1 − p).
But in that case ω = λψ + (1− λ)ψ⊥, where ψ is the vector state

ψ(a) = (Ψ, πω(a)Ψ) (3.19)

defined by the unit vector Ψ := pΩω/‖pΩω‖, the state ψ⊥ is defined likewise by the
unit vector Ψ⊥ := p⊥Ωω/‖p⊥Ωω‖, and λ = ‖p⊥Ωω‖2 /∈ {0, 1}. Hence ω is mixed.

The following result applies to general representations, but it is particularly
useful for irreducible ones. We say that two representations π1 : A → B(H1) and
π2 : A→ B(H2) are equivalent (π1

∼= π2) if there is a unitary operator u : H1 → H2

intertwining π1 and π2, in the sense that π2(a) = uπ1(a)u∗ for all a ∈ A.

Proposition 3.21 If π : A→ B(H) has a cyclic vector Ω, then the GNS-representa-
tion induced by the vector state ω(a) = (Ω, π(a)Ω) is equivalent to π.

Indeed, initially define u : Hω → H on πω(A)Ωω by uπω(a)Ωω = π(a)Ω, and extend
u to all of Hω by continuity (since πω(A)Ωω = Hω). This u intertwines πω and π.

So if π is irreducible, each unit vector in H defines a GNS-representation equiv-
alent to the given one. Another corollary of Proposition 3.21 is that if one has
two cyclic representations πi with cyclic vectors Ωi (i = 1, 2) such that the equality
(Ω1, π1(a)Ω1) = (Ω2, π2(a)Ω2) holds for all a ∈ A, then π1 and π2 are equivalent.
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3.12 Primary states

Pure states are states about which everything possible is known. To recapitulate,
combining Proposition 3.19 and Theorem 3.20, we have the equivalences

ω pure ↔ ω has no nontrivial decomposition ↔ πω irreducible ↔ πω(A)′ = C · 1.

In physics, one also has pure thermodynamical phases. These are mixed states de-
scribed by so-called primary states, which yields an analogous chain of equivalences:

ω primary ↔ ω has no nontrivial decomposition into disjoint states
↔ πω factorial ↔ πω(A)′ ∩ πω(A)′′ = C · 1.

The first double arrow states a definition, as does the last one, which says that the
center of the von Neumann algebra πω(A)′′ is trivial. In general, the center of a von
Neumann algebra M is M ∩M ′, and M is called a factor if M ∩M = C · 1. Thus
a representation π(A) is factorial if the associated von Neumann algebra π(A)′′ is a
factor. If π is a direct sum of irreducible representations, then it is factorial iff all of
these are equivalent, so that π is equivalent to some multiple n of a single irreducible
representation πω. Factorial representations may arise in many other ways, though,
because representations of C∗-algebras are rarely completely reducible.

To complete the definitions, we call two states ω1 and ω2 on A disjoint, quasi-
equivalent, or equivalent, if the corresponding GNS-representations πω1 and πω2 have
the said property. We know what equivalence means (cf. §3.11). For the other two,
we first call some representation π′(A) on a Hilbert spaceH ′ ⊂ H a subrepresentation
of a representation π(A) on H, written π′ ⊂ π, if π′ = π|H′ . It follows that π1(A) and
π2(A) have equivalent subrepresentations iff there exists a nonzero partial isometry
v : H1 → H2 such that vπ1(a) = π2(a)v for all a ∈ A.

Definition 3.22 Two representations π1(A) and π2(A) are called:

1. disjoint if they do not have any equivalent subrepresentations;45

2. quasi-equivalent if every subrepresentation of π1 has a subrepresentation that
is equivalent to some subrepresentation of π2, and vice versa.46

Two factorial representations (and hence two primary states) are either disjoint or
quasi-equivalent. In the completely reducible case πi ∼= ni · πωi , the latter occurs iff
ω1
∼= ω2. The technical result underlying the above equivalences, then, is as follows:

Proposition 3.23 For any state ω, if ω = λω1 + (1 − λ)ω2 for some λ ∈ (0, 1),
then ω1 and ω2 are disjoint iff there is a projection p ∈ πω(A)′ ∩ πω(A)′′ such that:

πω(A)|pHω
∼= πω1(A); (3.20)

πω(A)|(1−p)Hω
∼= πω2(A). (3.21)

The physical significance of primary states will be further analyzed in §4.4.

45In other words, there exists no representation of A that is equivalent both to some subrepre-
sentation of π1 and to some subrepresentation of π2.

46Equivalently, π1 has no subrepresentations disjoint from π2, and vice versa. π1 and π2 are quasi-
equivalent iff there is a (normal) isomorphism ϕ : π1(A)′′ → π2(A)′′ of von Neumann algebras for
which ϕ(π1(a)) = π2(a) for all a ∈ A, and this is the case iff the set of states on A of the form
a 7→ Tr (ρπi(a)), where ρ is a density matrix on Hi, is the same for i = 1 as it is for i = 2.
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3.13 Characterization of C∗-algebras

Next to Theorem 3.4, the second most famous result about C∗-algebras (also due
to Gelfand and Naimark) gives a complete characterization of them.

Theorem 3.24 A C∗-algebra A admits an injective representation π : A → B(H)
on some Hilbert space H. In other words, each C∗-algebra is isomorphic to a norm-
closed ∗-algebra in B(H), for some Hilbert space H.

Given a state ω on A, the GNS-construction provides us with a representation
πω : A → B(Hω). If this representation were injective, we would be finished, but
firstly we do not know that any state exists on A at all, and secondly we have no
guarantee that πω is indeed injective. The first problem is quickly resolved: for any
normal a ∈ A and λ ∈ σ(a), there is a state ωλ on A for which ωλ(a) = λ. To prove
this, start by constructing ωλ on C∗(a) (as in §3.5), and rely on the Hahn–Banach
Theorem of functional analysis (i.e., on the Axiom of Choice) to extend ω to all of
A. Since σ(a) is closed, there is a λ ∈ σ(a) for which the spectral radius r(a) equals
|λ|. For this λ, we therefore have |ωλ(a)| = |λ| = r(a) = ‖a‖. This proves:

Lemma 3.25 For any selfadjoint element a ∈ A (i.e., a∗ = a), there exists a state
ωa on A such that |ωa(a)| = ‖a‖.

To solve the second problem, we introduce the universal representation47

Hu := ⊕ω∈S(A)Hω; (3.22)

πu(A) := ⊕ω∈S(A)πω(A). (3.23)

The Hilbert space Hu will be the H in the statement of Theorem 3.24. To prove
that π = πu is injective, take some fixed ρ ∈ S(A), and define the vector Ω as
having components Ωω = 0 for ω 6= ρ, and Ωρ equal to the cyclic vector of the
GNS-construction for ρ. This vector clearly lies in Hu. Then (πu(a)Ω)ω = πω(a)Ωρ

for ω = ρ, and zero otherwise. Now suppose that πu(a) = 0 for some a ∈ A.
Then πu(a)Ω = 0, hence πρ(a)Ωρ = 0, hence ‖πρ(a)Ωρ‖2 = ρ(a∗a) = 0 by the
GNS-construction. Taking ρ = ωa∗a, Lemma 3.25 (with a∗a instead of a) implies

‖a‖2 = ‖a∗a‖ = ωa∗a(a
∗a) = 0.

Hence a = 0, so that πu is injective. This concludes the proof of Theorem 3.24.48

Each C∗-algebra A has an enveloping von Neumann algebra πu(A)′′ ⊂ B(Hu).
An element b ∈ πu(A)′′ defines a linear map b̂ : S(A) → C by b̂(ω) = (Ωω, bΩω),
where Ωω ∈ Hω ⊂ Hu. Recalling that S(A) ⊂ A∗, this extends to a continuous map
b̂ : A∗ → C (indeed, ‖b̂‖ = ‖b‖B(Hu)). Hence b̂ ∈ A∗∗, and the ensuing map b 7→ b̂
from πu(A)′′ to A∗∗ turns out to be an isomorphism of Banach spaces.

47If (Hi) is a family of Hilbert spaces, then H =
⊕
Hi consists of all sequences (Ψi) with

Ψi ∈ Hi and
∑
i ‖Ψi‖2H1

<∞, with componentwise linear structure (if the index set is uncountable,
the sums are defined as in §2.4). Writing

∑
i Ψi for (Ψi), the inner product on H is given by

(
∑
i Ψi,

∑
j Φj) =

∑
i(Ψi,Φi)Hi . If πi : A → B(Hi) are representations of A, the direct sum

π =
⊕
πi on H =

⊕
Hi is defined by π(a)

∑
i Ψi =

∑
i πi(a)Ψi, where Ψi ∈ Hi.

48It should be noted that Hu is often larger than necessary. For A = Mn(C), for example, any
vector state in Cn already gives rise to an injective representation, namely the defining one.
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4 Symmetry breaking in quantum theory

We now apply the abstract formalism above to concrete quantum systems [5, 10, 13,
20, 38, 40, 41, 42, 45, 49]. The C∗-algebra A plays the role of the ‘algebra of observ-
ables’ of some quantum system (i.e., its observables will be the self-adjoint elements
of A). If A = B(H), all (self-adjoint) operators on H are deemed observable: we are
typically dealing with a ‘small’ quantum system, without any restriction on what
can be observed (in the lab). In large systems, on the other hand, we impose the
restriction that the observables be localized in finite regions [13].

The simplest large systems are defined on a lattice Zd in d-dimensional space,
with some finite-dimensional Hilbert space H0

∼= Cn associated to each site x ∈ Zd.
For example, in order to describe magnetism one takes H0 = C2, assuming that
each site of some crystal lattice is occupied by an immobile electron (or other spin- 1

2

particle) whose only degree of freedom is its spin. Thus the algebra of observables
of a single site x is just Ax = B(H0) ∼= Mn(C). For any finite subset Λ ⊂ Zd, put

A(Λ) = ⊗x∈ΛAx = ⊗x∈ΛB(H0) ∼= B(⊗x∈ΛH0) ≡ B(HΛ). (4.1)

If a ∈ B(H0) and y ∈ Λ, we write a(y) for the element ⊗x∈Λcx of A(Λ) with cy = a
and cx = 1 (i.e., the unit of B(H0)) for all x 6= y. The product a(y)b(z) in A(Λ) is
⊗x∈Λdx, with dy = ab and dx = 1 for all x 6= y whenever y = z, whereas if y 6= z,
then dy = a, dz = b, and dx = 1 for all x 6= y and x 6= z (linear combinations of a(y)
and b(z) are not of this ‘elementary tensor’ form, however). Clearly, for all a, b,

[a(x), b(y)] = 0 if x 6= y. (4.2)

Then A(Λ) consists of all polynomials in such elements, where y varies over Λ and
a varies over B(H0). Each A(Λ) is a C∗-algebra through the identifications in (4.1).

For Λ ⊂ Λ̃ (both finite) we have an inclusion A(Λ) ⊂ A(Λ̃), defined on the
generators a(y), y ∈ Λ, by saying that a(y) ∈ A(Λ̃) is the element ⊗x∈Λ̃c̃x of A(Λ)
with c̃x = 1 for all x 6= y and c̃y = a. Physically, this means that an observable
localized in Λ stays the same if we extend the region (but not the observable).
Hence the set-theoretic union Aloc = ∪ΛA(Λ) over all finite regions Λ is well-defined,
consisting of all operators that are localized in some finite Λ. Thus Aloc inherits all
algebraic operations as well as the norm of the A(Λ), but it fails to be complete in
that norm and hence—unlike the A(Λ)— it is not a C∗-algebra. The completion

A = Aloc ≡ ∪ΛA(Λ) (4.3)

in the underlying norm is the C∗-algebra of quasi-local observables of the given
system. It contains all A(Λ), but also certain other elements that by definition can
be approximated (in norm) by localized operators.49 The Einstein locality condition

[A(Λ1), A(Λ2)] = 0 if Λ1 ∩ Λ2 = ∅, A(Λi) ⊂ A, (4.4)

then follows from (4.2). For lattice systems the sharper condition A(Λ)′ = A(Λ′)
(Haag duality) holds (cf. [42, Prop. IV.1.6]), where the left-hand side denotes the
commutant of A(Λ) in A, and the right-hand side means A(Zd\Λ) ≡ ∪Λ1⊂Zd\ΛA(Λ1).

49Compare (4.3) with the definition of the commutative C∗-algebra C0(Rn) as the completion
of ∪OCc(O), where O ⊂ Rn is open, and Cc(O) ⊂ Cc(O′) for O ⊂ O′ by extension with value zero.
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4.1 Symmetry in elementary quantum mechanics

In elementary quantum mechanics in a Hilbert space H, in which the algebra of
observables is simply taken to be the C∗-algebra B(H), the concept of symmetry
revolves around the mathematical notion of a unitary operator u : H → H. Phys-
ically, however, unitary operators play (at least) three conceptually distinct roles,
namely as symmetries of: 1. pure states, 2. general states, and 3. observables.

Ad 1. Since pure states are unit vectors up to a phase, the pure state space
of an elementary quantum system is the projective Hilbert space PH, defined as
PH = {Ψ ∈ H | ‖Ψ‖ = 1}/ ∼, where Φ ∼ Ψ iff Ψ = zΦ for some z ∈ C, |z| = 1. The
defining action of a unitary operator u on H descends to an action uP : PH → PH,
which, like u itself, is clearly a bijection, with inverse (uP )−1 = (u−1)P . Moreover,
the physically relevant structure on PH that is preserved by uP so as to qualify as
a symmetry, is that of a transition probability. This is a map P : PH×PH → [0, 1],
given by P (ψ, ϕ) = |(Ψ,Φ)|2, where we have denoted the image of Ψ ∈ H in PH by ψ,
etc. Unitarity immediately gives P (uP (ψ), uP (ϕ)) = P (ψ, ϕ). Conversely, Wigner’s
Theorem [6] states that any bijection of PH that preserves transition probabilities
is necessarily of the form uP , for some unitary or anti-unitary operator u : H → H.

Ad 2. In elementary quantum mechanics on H, states are density matrices on H.
Denoting the set of all density matrices on H by SH, a unitary u on H defines a map
uS : SH → SH by uS(ρ) = uρu∗. This is a bijection (with inverse (uS)−1 = (u−1)S),
which moreover is affine in the sense for each λ ∈ (0, 1) and ρ1, ρ2 ∈ SH one has

uS(λρ1 + (1− λ)ρ2) = λuS(ρ1) + (1− λ)uS(ρ2). (4.5)

Thus uS is an affine bijection of the state space SH. Conversely, a straightforward
extension of Wigner’s Theorem (cf. [6]) states that each affine homeomorphism of SH
is necessarily of the form uS, for some unitary or anti-unitary operator u : H → H.

Ad 3. An automorphism of the C∗-algebra B(H) of observables is an invert-
ible homomorphism α : B(H) → B(H) (i.e., α is linear, α(ab) = α(a)α(b), and
α(a∗) = α(a)∗). Clearly, each unitary u : H → H defines an automorphism
αu : B(H)→ B(H) by putting αu(a) = uau∗. Conversely, Kadison proved that each
automorphism of B(H) is of the form αu, for some unitary u : H → H (cf. [4]). To
find a place for anti-unitary operators, look at B(H)sa = {a ∈ B(H) | a∗ = a} as a
real vector space, equipped with the Jordan product a◦b = 1

2(ab+ba). A Jordan iso-
morphism of B(H) is an invertible real -linear map α : B(H)sa → B(H)sa that pre-
serves the Jordan product (or, equivalently, preserves squares in that α(a2) = α(a)2).
Kadison’s (extended) Theorem then states that any Jordan isomorphism of B(H)
is of the form αU , where u : H → H is either unitary or anti-unitary.

In conclusion, though conceptually quite different, each of the three notions of sym-
metry in quantum mechanics we discussed is reducible to the action of a unitary or
anti-unitary operator on H, so that they are equivalent to one another. For example,
the restriction of uS to PH is uP , which in turn has a unique extension to an affine
bijection of SH, and uS and αU are related by Tr (uS(ρ)a) = Tr (ραu∗(a)).
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4.2 Symmetry in algebraic quantum theory

We now generalize the preceding discussion to the case where the observables form
an arbitrary C∗-algebra A. Once again, we distinguish three notions of symmetry.

1. Pure states. Let P (A) be the pure state space of A. The notion of a transition
probability may be defined as a function P : P (A)× P (A)→ [0, 1], given by [36]

P (ρ, σ) = 1− 1
4‖ρ− σ‖

2. (4.6)

This definition has two attractive features. First, if ρ and σ are equivalent, we may
assume, without loss of generality, that the GNS-representations πρ and πσ are de-
fined on the same Hilbert space, which, then, contains both cyclic vectors Ωρ and
Ωσ. In that case, P (ρ, σ) = |(Ωρ,Ωσ)|2. Second, if ρ and σ (and hence πρ and πσ)
are inequivalent, we have P (ρ, σ) = 0. Thus we would like to define a symmetry of
P (A) as a bijection υP : P (A) → P (A) that satisfies P (υP (ψ), υP (ϕ)) = P (ψ, ϕ).
However, in order to prove that our three notions of symmetry are equivalent, we
require υP to be uniformly continuous with respect to the weak∗-topology on P (A)
inherited from the dual A∗ (in which ωn → ω iff |ωn(a)−ω(a)| → 0 for each a ∈ A).

2. General states. A symmetry of the state space S(A) is defined as an affine home-
omorphism υS : S(A)→ S(A) with respect to the weak∗-topology; see (4.5).

3. Observables. A symmetry of A itself is a Jordan isomorphism of A, that is, an
invertible real -linear map α : Asa → Asa such that α(a ◦ b) = α(a) ◦ α(b). A special
case of this is an automorphism α : A→ A, which is (the restriction of) an invertible
complex -linear map satisfying α(ab) = α(a)α(b), and α(a∗) = α(a)∗.

Theorem 4.1 Let A be a C∗-algebra. There is a bijective equivalence between:

• uniformly continuous bijections of P (A) that preserve (4.6);

• affine homeomorphisms of S(A);

• Jordan isomorphisms of A:

1. A Jordan isomorphism α : Asa → Asa defines an affine homeomorphism
α∗ : S(A) → S(A) by (complex linear extension of) α∗ω(a) = ω(α−1(a)).
Conversely, for every affine homeomorphism ϕ : S(A) → S(A) there is a
unique Jordan isomorphism α : Asa → Asa such that ϕ = α∗.

2. The restriction of an affine homeomorphism α∗ : S(A) → S(A) to the pure
states P (A) ⊂ S(A) is a uniformly continuous bijection of P (A) preserving
(4.6). Conversely, every uniformly continuous bijections of P (A) preserving
(4.6) has a unique extension to an affine homeomorphism of S(A).

The conclusion is the same as for elementary quantum mechanics: our three notions
of symmetry are equivalent,50 but in general there is no unitary operator to impose
this equivalence. So what is the technical link between symmetry and unitarity?

50The only easy part is the passage from α to α∗. The reason why ϕ|P (A) preserves transition
probabilities is that P (ρ, σ) = inf{ρ(a), a ∈ Asa, 0 ≤ a ≤ 1, σ(a) = 1}, so that (4.6) follows
from the convex structure of S(A). The extension of υP : P (A) → P (A) to S(A) relies on the
Krein–Milman Theorem , according to which S(A) is the convex hull of P (A). See [20] for all this.
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4.3 Unitary implementation of symmetries

From now on, we will only deal with the special class of symmetries that are given
by automorphisms of A; this excludes Jordan isomorphisms that satisfy α(ab) =
α(b)α(a) for some a, b (for A = B(H), this corresponds to looking at unitary oper-
ators alone). One reason for this restriction is that we often deal with a symmetry
group G of A, that is, we have a group homomorphism α : G → Aut(A), where
Aut(A) is the group of all automorphisms of A. We will write αg for α(g) and say
that G is an automorphism group of G. Now, if G is a connected Lie group, g ∈ G
may be connected to the unit e ∈ G by a continuous path. Since the unit corre-
sponds to αe = id, which maps every a ∈ A to itself, αe is clearly an automorphism.
Requiring continuity of α (in the sense that for each fixed a ∈ A the map g 7→ αg(a)
from G to A is continuous) then forces each αg to be an automorphism.

A homomorphism α : G→ Aut(B(H)) is always given by a family ug of unitary
operators on H, in that αg(a) = ugau

∗
g for all g ∈ G. The property αgαh = αgh

does not necessarily enforce uguh = ugh (for one may have a ‘projective’ unitary
representation g 7→ ug of G on H), but one may always pass to a central extension

G of G for which this problem does not arise (e.g., SO(3) = SU(2)). In Theorem
4.4 below (describing unbroken symmetry), even such a passage is not necessary.

For general C∗-algebras A (especially those modeling large quantum systems),
one rarely has α(a) = uau∗ for some u ∈ A even for single automorphisms α, let
alone for a whole group of them. What may happen, however, is the following.

Definition 4.2 Let π : A → B(H) be a representation of A. An automorphism
α : A→ A is implemented in π if there exists a unitary operator u : H → H with

π(α(a)) = uπ(a)u∗ for all a ∈ A. (4.7)

Theorem 4.3 An automorphism α : A → A can be implemented in the GNS-
representation πω defined by a state ω on A iff πα∗ω and πω are equivalent.

Whether or not this is true, define w : Hω → Hα∗ω by wπω(a)Ωω = πα∗ω(α(a))Ωα∗ω.
This operator is well defined and unitary, and satisfies wΩω = Ωα∗ω as well as
wπω(a)w∗ = πα∗ω(α(a)); these properties even characterize w. If πα∗ω ∼= πω, there
exists a unitary v : Hω → Hα∗ω satisfying vπω(a)v∗ = πα∗ω(a), a ∈ A. Then u = v∗w
satisfies (4.7) for π = πω. The converse is similar. An important special case is:

Theorem 4.4 Suppose that α∗ω = ω, that is, ω(α(a)) = ω(a) for all a ∈ A. Then
α can be implemented by a unitary operator u : Hω → Hω satisfying uΩω = Ωω.
In particular, if G is a continuous automorphism group of A and α∗gω = ω for all
g ∈ G, we obtain a family of unitaries ug : Hω → Hω that for all g ∈ G satisfy

ugΩω = Ωω; (4.8)

πω(αg(a)) = ugπω(a)u∗g, (4.9)

and form a continuous unitary representation of G on Hω, in that ue = 1, uguh =
ugh, and the function g 7→ ugΨ is continuous from G to Hω for each fixed Ψ ∈ Hω.

For fixed α, one easily shows that the operator defined by uπω(a)Ωω = πω(α(a))Ωω

does the job. For αg, g ∈ G, it is a similar exercise to check the claims.
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4.4 Cluster properties

Through the associated GNS-representation πω : A→ B(Hω), a state ω on a quasi-
local C∗-algebra A as in (4.3) defines two interesting subalgebras of B(Hω):

• the center Acω := πω(A)′′ ∩ πω(A)′;

• the algebra at infinity A∞ω := ∩Λπω(A(Λ′))′′, with A(Λ′) = ∪Λ1⊂Zd\ΛA(Λ1).

It is easy to show from locality (4.4) that A∞ω ⊆ Acω. If one also has Haag duality
A(Λ)′ = A(Λ′) and if each A(Λ) and hence A is simple, then one also has the opposite
inclusion, so that A∞ω = Acω. This is the case, for example, If H0 and hence each
A(Λ) are finite-dimensional; see [42, Thm. IV.1.7] for a complete proof.

The algebra at infinity (and hence the center) is home to the macroscopic observ-
ables in πω, such as the average w− limΛ↑Zd |Λ|−1

∑
x∈Λ πω(b(x)) of some b ∈ B(H0),

or, more generally of expressions like the left-hand side of (4.13) below. Therefore,
if A∞ω is trivial, macroscopic observables are ‘c-numbers’, i.e., multiples of the unit
operator. In particular, they do not fluctuate, which is among the defining proper-
ties of pure thermodynamic phases (cf. §3.12). So this is the case in particular when
the center Acω is trivial, in other words, when ω is primary.

The main result in this area, due to Lanford and Ruelle [24], is as follows.

Theorem 4.5 A state ω on a C∗-algebra A of quasi-local observables (cf. (4.3)) has
trivial algebra at infinity, i.e., A∞ω = C · 1, iff it is clustering, in that for all a ∈ A
and all ε > 0 there is a finite Λ ⊂ Zd such that for all b ∈ A(Λ′), ‖b‖ = 1, one has

|ω(ab)− ω(a)ω(b)| ≤ ε. (4.10)

In particular, if ω is primary, then it is clustering and (4.10) holds.

The complete proof is quite technical [42, Cor. IV.1.8], but the main idea is as
follows. Choose finite regions Λn moving to infinity (i.e., eventually avoiding any
given Λ), and pick elements cn ∈ A(Λn), ‖cn‖ = 1. The sequence (πω(cn)) in B(Hω)
has a weakly convergent subsequence,51 with limit c ∈ B(Hω).

• By von Neumann’s Bicommutant Theorem 3.12,52 we have c ∈ πω(A)′′.

• By locality (4.4) and the delocalization of the Λn, also c ∈ πω(A)′.

Hence c ∈ Acω, and by a more refined argument (which is unnecessary if if A∞ω = Acω),
even c ∈ A∞ω . So if A∞ω = C · 1 we have c = (Ωω, cΩω) · 1. On the other hand, we
have (Ωω, cΩω) = limn(Ωω, πω(cn)Ωω) = limn ω(cn), so that we may compute

lim
n
ω(acn) = lim

n
(Ωω, πω(a)πω(cn)Ωω) = (Ωω, πω(a)cΩω) = ω(a) lim

n
ω(cn).

Thus for any ε > 0 there is an N such that |ω(acn)− ω(a)ω(cn)| ≤ ε for all n > N .
To derive (4.10) from this, an easy reductio ad absurdum argument suffices. The
converse direction of Theorem 4.5 uses the technical Kaplansky Density Theorem.

51This follows from the Banach–Alaoglu Theorem of functional analysis, applied to B(Hω) seen
as the dual space of B1(Hω). On the unit ball, the corresponding weak∗-topology on B(Hω)
coincides with the weak operator topology, so that the unit ball in B(Hω) is weakly compact.

52The weak closure M of any unital ∗-algebra M in B(H) then coincides with M ′′.
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4.5 Uniqueness of translation-invariant states

Further clustering results follow if we equip A in (4.3) with an automorphic action
τ : Zd → Aut(A) of Zd, defined as follows: for x ∈ Zd, define τx : A(Λ)→ A(x+ Λ)
by τx(a(y)) = a(x + y), using the notation explained below (4.1), and extend to
τx : A→ A by continuity. The following property then holds:53

Definition 4.6 An automorphic action τ of Zd on a C∗-algebra A is (uniformly)
asymptotically abelian if in the sense that limx→∞[a, τx(b)] = 0 for all a, b ∈ A.

Theorem 4.7 Let A be a C∗-algebra A equipped with an asymptotically abelian
action τ of Zd, and let ω be a translation-invariant primary state on A (i.e., τ ∗xω = ω
for all x ∈ Zd). Then Ωω is the only translation-invariant vector in Hω. Moreover,54

lim
x→∞

ω(aτx(b)) = ω(a)ω(b); (4.11)

w − lim
x→∞

πω(τx(b)) = ω(b) · 1; (4.12)

w − lim
Λ↑Zd
|Λ|−1

∑
x∈Λ

πω(τx(b)) = ω(b) · 1. (4.13)

The proof is quite instructive: If ω is primary, limx→∞ |ω(aτx(b))− ω(a)ω(τx(b))| =
0 either from Theorem 4.5, or directly, from the same argument. Translation-
invariance then yields (4.11). We then compute ω(aτx(b)) in terms of the projection

P0 = s− lim
Λ↑Zd
|Λ|−1

∑
x∈Λ

U(x) (4.14)

onto the translation-invariant subspace of Hω, where U is the unitary representation
of Zd on Hω from Theorem 4.4 (with G = Zd).55 Since P0Ωω = Ωω, we have

ω(aτx(b)) = (Ωω, πω(a)πω(τx(b))Ωω) = (Ωω, πω(a)([πω(τx(b)), P0] + P0πω(b))Ωω).

We now let x → ∞, upon which the commutator vanishes, because the weak limit
of πω(τx(b)) lies in the center of πω(A)′′, which is assumed trivial. The remaining
term is compatible with (4.11) iff P0 is one-dimensional, so that Ωω is the only
translation-invariant vector in Hω. A similar trick, now using P0 = |Ωω〉〈Ωω|, yields

πω(τx(b))πω(a)Ωω = ([πω(τx(b)), πω(a)] + πω(a)([πω(τx(b)), P0] + ω(b)))Ωω.

Both commutators vanish (weakly) as x→∞, proving (4.12). Similarly, write

πω(τx(b))πω(a)Ωω = ([πω(τx(b)), πω(a)] + πω(a)U(x)πω(b))Ωω,

and use (4.14) and once again P0 = |Ωω〉〈Ωω|, to prove (4.13).

53The condition means that limn→∞ ‖[a, τxn
(b)]‖ = 0 for any sequence (xn) with |xn| → ∞.

54This time, (4.11) means that any sequence (xn) with |xn| → ∞ has a subsequence (x′n) for
which limn→∞ ω(aτx′n(b)) = ω(a)ω(b), and analogously for (4.12) in the weak operator topology
on B(Hω). The limit Λ ↑ Zd in (4.13) is meant (for example) to be taken along an increasingly
largely sequence of hypercubes Λn whose number of points goes as |Λn| ∼ nd for n→∞.

55Eq. (4.14) is a special case of von Neumann’s L2 ergodic theorem, which generalizes the Peter–
Weyl–Schur relation P0 =

∫
G
dg U(g) for compact groups G to amenable groups like Zd or Rd.
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4.6 Dynamics

In a quantum system with a finite-dimensional Hilbert space HΛ, the algebra of
observables is A(Λ) = B(HΛ); for example, one may have HΛ = ⊗x∈ΛHx with
Hx = H0 = Cn for all x ∈ Λ ⊂ Zd, as before. Dynamics is given by a Hamiltonian
hΛ ∈ A(Λ), giving rise to an automorphism group αΛ : R→ Aut(A(Λ)) by

αΛ
t (a) = eithΛae−ithΛ , (4.15)

where a ∈ A(Λ). In the situation (4.3), we would like to assemble the family αΛ

into a single automorphism group α : R → Aut(A), which describes the dynamics
of the corresponding infinite quantum system. This can be done if:

1. The local Hamiltonians hΛ are of the form hΛ =
∑

X⊂Λ Φ(X), where the sum
is over all sublattices X of Λ, with a ‘potential’ Φ(X) ∈ B(HX) ⊂ B(HΛ).

2. The limit of αΛ
t (a) as Λ ↑ Zd (which may be taken to mean that one chooses

increasingly large cubes Λn for Λ and lets n → ∞) exists for each a ∈ A(Λ′)
and each Λ′. This is the case for short-range interactions (such as the typical
nearest-neighbour interactions of the Ising and Heisenberg models, see below.)

For nearest-neighbour interactions, Φ(X) is nonzero iff X = {x, y} is a pair of neigh-
bours, and in the presence of an external magnetic field one also has terms Φ({x}).
For example, in the Ising model one has H0 = C2 and Φ({x, y}) = σ3(x)σ3(y); an
external field gives rise to additional terms Φ({x}) = Bσ(i) (i = 1, 2 or 3). In d = 1
with periodic boundary conditions and i = 1, the total Hamiltonian, then, is

hΛ = −
|Λ|∑
x=1

(σ3(x)σ3(x+ 1) +Bσ1(x). (4.16)

Similarly, the Heisenberg model for (anti)ferromagnetism is given by H0 = C2 and

hΛ = J

|Λ|∑
x=1

3∑
i=1

σi(x)σi(x+ 1) ≡ J
∑
x

~σ(x) · ~σ(x+ 1), (4.17)

where J < 0 yields ferromagnetism, whereas J > 0 gives rise to anti-ferromagnetism.
In any case, if the limit in no. 2 exists, we write

αt(a) = lim
Λ↑Zd

αΛ
t (a); (4.18)

a simple approximation argument then shows that each map αt : ∪ΛA(Λ)→ ∪ΛA(Λ)
thus defined for fixed t ∈ R, may be extended to a map αt : A → A by continuity
(i.e., for general a ∈ A, one defines αt(a) as limn αt(an) for any sequence (an) converg-
ing to a in norm). Simple computations then show that each αt is an automorphism
of A, and that the ensuing map α : R → Aut(A), t 7→ αt, is a homomorphism of
groups, which is continuous in that t 7→ αt(a) is continuous from R to A for a ∈ A.

In conclusion, under the assumption of short-range interactions the local (or
‘finite-volume) Hamiltonians hΛ ultimately define a dynamics on A. This detour
seems necessary, because formal expressions like limΛ↑Zd hΛ are a priori meaningless.
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4.7 Ground states: definition

A ground state of a finite system A(Λ) = B(HΛ) is simply an eigenstate of the local
Hamiltonian hΛ with the lowest eigenvalue.56 For infinite systems, no Hamiltonian
is yet defined, so we need to define ground states in terms of the dynamics (cf. §4.6).

Definition 4.8 Let A be a C∗-algebra with a given automorphism group R, i.e.,
a continuous homomorphism α : R → Aut(A), which gives the dynamics of the
underlying physical system. A ground state of (A,α) is a state ω on A such that:

1. ω is time-independent, i.e. α∗tω = ω (or ω(αt(a)) = ω(a) for all a ∈ A) ∀t ∈ R;

2. The generator hω of the ensuing continuous unitary representation t 7→ ut of
R on Hω (cf. Theorem 4.4) has positive spectrum (with ut = exp(ithω)).57

It follows from this definition, (4.8), and (4.9), that if ω is a ground state, then

hωΩω = 0; (4.19)

πω(αt(a)) = eithωπω(a)e−ithω . (4.20)

Since σ(hω) ⊆ R+, the unit vector Ωω of the GNS-representation πω induced by a
ground state ω is a ground state for the Hamiltonian hω in the usual sense.

In quantum mechanics, the ‘Heisenberg equation of motion’ da(t)/dt = i[h, a(t)]
plays a role as the infinitesimal of the unitary evolution a(t) = exp(ith)a exp(−ith).
In the C∗-algebraic formalism, we have to use the language of derivations.

Definition 4.9 A derivation on a C∗-algebra A is a linear map δ : A→ A satisfying
the Leibniz rule δ(ab) = δ(a)b + aδ(b). An unbounded derivation is a linear map
δ : Dom(δ) → A satisfying theLeibniz rule, where Dom(δ) ⊂ A of δ is dense in A.
We call δ symmetric if Dom(δ)∗ = Dom(δ) and δ(a∗) = δ(a)∗ for all a ∈ Dom(δ).

In fact, (bounded) derivations are quite rare; in the classical case A = C0(M) for
some phase space M , nonzero derivations do not even exist (Sakai), all unbounded
derivations being of the form δX(f) = Xf for some smooth vector field X on M .
In the quantum-mechanical case A = B(H), any (closed, strongly continuous) sym-
metric derivation δ : B(H)→ B(H) is of the form δ(a) = i[h, a] for some self-adjoint
operator h on H (Kadison), so that δ is bounded iff h is a bounded operator.

Given some dynamics α on A, we define an (unbounded) derivation δ on A by

δ(a) =
d

dt
αt(a)|t=0 ≡ lim

t→0

αt(a)− a
t

, (4.21)

where a ∈ Dom(δ) ⊂ A iff this (norm-) limit exists. If αt(a) = exp(ith)a exp(−ith),
then clearly δ(a) = i[h, a]. It is an exercise to prove an alternative to Definition 4.8:

Proposition 4.10 ω is a ground state iff −iω(a∗δ(a)) ≥ 0 for all a ∈ Dom(δ).

The idea is that −iω(a∗δ(a)) = (Ωω, πω(a)∗[hω, πω(a)]Ωω) = (πω(a)Ωω, hωπω(a)Ωω).
Since Dom(δ) is dense in A and Ωω is cyclic for πω(A), positivity of this expression
yields (Ψ, hωΨ) ≥ 0 for all Ψ ∈ Dom(hω), so that σ(hω) ⊆ R+ (and vice versa).

At last, the Heisenberg equation then resurfaces as πω(δ(a)) = i[[hω, πω(a)].

56Because dim(HΛ) <∞, the spectrum of hΛ is discrete and hence local ground states exist.
57Physicists usually write ut for exp(−ith), so that a(t) = exp(ith)a exp(−ith) = u∗taut.
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4.8 Ground states: Ising model in d = 1

Ground states of finite systems typically are, but need not be unique. For example,
the Ising Hamiltonian (4.16) in d = 1 with B = 0 has a doubly degenerate ground
state Ψ±0 (Λ) ∈ HΛ in the usual sense (all spins up or all spins down), but has a unique
ground state ΨB(Λ) if 0 < B < Bc for some critical value Bc > 0 [31]. The latter is
similar to the nondegenerate ground state of the double-well potential discussed in
the Introduction. Indeed, for any B the Ising model has a Z2-symmetry σ1 7→ σ1,
σ2 7→ −σ2, σ3 7→ −σ3, given by a 180-degree rotation around the x-axis, which is
implemented by the unitary operator uΛ = ⊗x∈Λσ1(x) on HΛ. The unique ground

state is obviously symmetric, i.e., uΛΨB(Λ) = ΨB(Λ), whereas uΛΨ
±(Λ)
0 = Ψ∓0 (Λ).

For the corresponding infinite system, the infinite-volume relic of uΛ is the unique
automorphism γ of A that for each a ∈ A(Λ) is given by γ(a) = uΛau

∗
Λ. The property

[uΛ, hΛ] = 0 then becomes [αt, γ] = 0 for each t ∈ R, which implies that γ∗ω is a
ground state whenever ω is one. The situation is then as follows [2, 5, 19].

• For B = 0, there are two translation-invariant pure ground states ω±0 in the
sense of Definition 4.8. These are the Λ→∞ limit of Ψ±0 (Λ), in that for each
Λ and a ∈ A(Λ) one has ω±0 (a) = (Ψ±0 (Λ), aΨ±0 (Λ))HΛ

. The states ω+
0 and

ω−0 are inequivalent,58 and the counterpart of the relation uΛΨ
±(Λ)
0 = Ψ∓0 (Λ)

is γ∗ω±0 = ω∓0 . Any mixture λ · ω+
0 + (1− λ) · ω−0 is also a ground state.59

• If 0 < B < Bc, there are two translation-invariant pure ground states ω±B ,
related by γ∗ω±B = ω∓B , as opposed to the single one in finite volume. This is
a typical situation, in which SSB only occurs in infinite-volume. The unique
symmetric translation-invariant ground state is ωB ≡ 1

2(ω+
B + ω−B), which is

mixed and hence does not have good clustering properties; for example, macro-
scopic observables fluctuate. The restriction ωB(Λ) of ωB to each A(Λ) remains
mixed, but for each a ∈ A(Λ) the difference between ωB(Λ)(a) and the ground
state expectation value ωΛ

B(a) ≡ (ΨB(Λ), aΨB(Λ))HΛ
vanishes (even exponen-

tially fast) as Λ → ∞. In this sense, the mixture ωB is the (weak) Λ → ∞
limit of the pure ground states ωΛ

B: as in the case of Schrödinger’s cat, the
point is that in the macroscopic limit, quantum interference terms vanish [15].

This begs the question which finite-volume states converge to the pure ground states
ω±B . There is a complete analogy with the double-well potential here, in that for
each finite Λ the local Hamiltonian hΛ has a low-energy state Ψ̃B(Λ), such that the
pure vector states on A(Λ) defined by (ΨB(Λ)± Ψ̃B(Λ))/

√
2 converge to ω±B [19].

58Taking b = σ3(y) at some fixed y ∈ Λ we have ω±0 (σ3(y)) = ±1, so that either (4.12) or (4.13)
precludes the existence of a unitary operator u : Hω+

0
→ Hω−0

satisfying uπ+
0 (a) = π−0 (a)u for all

a ∈ A. This argument wal already presented in the Inroduction. The same conclusion follows from
the uniqueness of a translation-invariant vector in Hω±0

according to Theorem 4.7.
59All this is unsurprising. However, there is an additional family ωx0 , x ∈ Z, of non-translation-

invariant pure ground states, described by a ‘kink’ at site x, in that all spins to the left of x are
up and those to the right are down. These states are all equivalent to each other, being related by
a finite number of spin flips σ1, but each is inequivalent to both ω+

0 and ω+
−. The restriction of ωx0

to A(Λ) is not a ground state, but the energy difference with Ψ±0 (Λ) vanishes as Λ→∞.
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4.9 Equilibrium states and the KMS condition

It is a bit more difficult to find an appropriate definition of thermal equilibrium
states of infinite quantum systems. The problem is similar to the definition of
ground states, in that it is clear what to do for finite systems, namely writing down

ωΛ
β (a) =

1

Tr (e−βhΛ)
Tr (e−βhΛa), (4.22)

but that subsequently the lack of a global Hamiltonian in some representation of
A causes trouble.60 This problem was solved in 1967 by Haag, Hugenholtz, and
Winnink [14], who used an earlier observation of Kubo and independently Martin
and Schwinger to the effect that for any a, b ∈ A(Λ) in terms of (4.15) one has

ωΛ
β (αt(a)b) = ωΛ

β (bαt+iβ(a)). (4.23)

Definition 4.11 Let A be a C∗-algebra with an automorphism group R. A KMS-
state at inverse temperature β ∈ R is a state ω on A wit the following property:

1. For any a, b ∈ A, the function Fa,b : t 7→ ω(bαt(a)) from R to C has an
analytic continuation to the strip Sβ = {z ∈ C | 0 ≤ Im (z) ≤ β}, where it is
holomorphic in the interior and continuous on the boundary ∂Sβ = R∪(R+iβ);

2. The boundary values of Fa,b are related, for all t ∈ R, by

Fa,b(t) = ω(bαt(a)); (4.24)

Fa,b(t+ iβ) = ω(αt(a)b). (4.25)

Initially, the mathematical characterization of equilibrium states by the KMS con-
dition was somewhat tentative, but in the 1970s and ’80s it became clear that it
was spot on, being equivalent to local and global thermodynamic stability (against
perturbations of the dynamics), the maximum entropy principle, etc. [5, 41, 42].
The states ωΛ

β are KMS at β. The following properties generalize their properties.

Proposition 4.12 1. A KMS-state at β ∈ R\{0} is time-independent.

2. A KMS-state at β ∈ R is faithful, in that ω(a∗a) = 0 iff a = 0.

3. In the GNS-rep πω induced by a KMS-state the vector Ωω ∈ Hω is both cyclic
(cf. Definition 3.16) and separating, in that πω(a)Ωω = 0 iff a = 0.

We omit the proof (cf. [5, §§5.3.3,5.3.9]); note that 3 is an easy consequence of 2.
If A = Mn(C) the last example of §3.10 evidently applies, i.e., for ω = ωΛ

β

as in (4.23) we have (up to unitary isomorphism) Hω = Mn(C), πω(a)b = ab,
and Ωω = ρ1/2, where ρ = Z−1 exp(−βh) with h ≡ hΛ. It is worth verifying
that the ‘Hamiltonian’ hω that satisfies (4.19) and (4.20) is not given by πω(h),
which meets (4.20) but fails (4.19)), but by hω = πω(h) − Jπω(h)J , where the
anti-unitary operator J : Mn(C) → Mn(C) is given by Ja = a∗. Indeed, because
[πω(a), Jπω(b)J ] = 0 for all a, b ∈Mn(C) one still has (4.20), but in addition we now
have hωΩω = (πω(h)− Jπω(h)J)ρ1/2 = hρ1/2 − (hρ1/2)∗ = 0.

60One might be tempted to use the global Hamiltonian hω of a ground state, but in that case
exp(−βhω) typically will not be in the trace-class B1(Hω), so that (4.22) is not defined.
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4.10 Decomposition of states

Abstracting the previous discussion, spontaneous symmetry breaking involves:

• a C∗-algebra A (e.g., of the form (4.3)) with time-evolution α : R→ Aut(A);

• a symmetry group γ : G→ Aut(A) such that αtγg = γgαt for all t ∈ R, g ∈ G.

• a ground- or KMS-state ω on A for which ωg ≡ γ∗gω 6= ω for some g ∈ G.

Naively, one would conversely say that SSB is absent if a symmetric ground- or KMS-
state exists, but this is incorrect: as we have seen in the Ising model with G = Z2,
the symmetry-breaking ground states ω±0 may be combined into a new ground state
1
2(ω+

0 + ω−0 ), which is symmetric! In fact, combining asymmetric ground states into
a symmetric one by an averaging procedure of ωg over G is possible whenever G is
amenable (this includes the case where G is compact). Moreover, the Λ ↑ Zd limit of
symmetric ground- or KMS-states ωΛ (obtained upon choosing symmetric boundary
conditions for the Hamiltonian hΛ and hence for the canonical density matrix ρΛ) is
a symmetric ground/KMS state, even when asymmetric ground/KMS-states exist.

To handle this, we need a good notion of decomposition of states, to the effect
that even though a ground- or KMS-state may happen to be symmetric, SSB oc-
curs just in case some of its components in a ‘canonical’ decomposition break the
symmetry. The question, then, is what these ‘canonical’ component states are.

The answer is given by convexity theory. Recall (cf. §3.3) that the state space
S(A) is a compact convex set in the weak∗-topology inherited from A∗ (assuming A
to have a unit), and that the pure state space P (A) is just its boundary ∂S(A). It can
be shown that the set Sβ(A) of KMS-states at β is a compact convex subset of S(A),
as is the set S∞(A) of ground states. The ‘canonical’ states, then, are the elements of
∂Sβ(A), which consists of those ω′ ∈ Sβ(A) for which ω′ = λω′1 + (1−λ)ω′2 for some
λ ∈ (0, 1) and certain ω′1 and ω′2 in Sβ(A) implies ω′1 = ω′2 = ω′ (cf. Definition 3.6).
Such extremal decompositions may involve integrals instead of sums; this typically
means that there is a probability measure µ on ∂Sβ(A), such that for each a ∈ A,

ω(a) =

∫
∂Sβ(A)

dµ(λ)ωλ(a)Sβ(A). (4.26)

In case of SSB, the measure µ is typically supported on some G-orbit in ∂Sβ(A).

1. For KMS-states one has ∂Sβ(A) = Sβ(A) ∩ Sp(A), where Sp(A) is the set of
primary states on A (cf. §3.12), so that the extremal decomposition of a KMS
state coincides with its decomposition into primary KMS states. Moreover,
this decomposition is unique [5, Theorem 5.3.30]. This is quite perfect!

2. For ground states, the analogous result would be ∂S∞(A) = S∞(A) ∩ ∂S(A),
where ∂S(A) is the set of pure states on A, so that the extremal decomposition
of a ground state within the set of all ground states coincides with its decom-
position into pure ground states. This is physically expected and holds in
realistic models, but is provably the case only under additional assumptions.61

61See [5, Theorem 5.3.37]. The strongest such assumption is weak asymptotic abeliannnes of the
dynamics, i.e., limt→∞ ω([αt(a), b]) = 0, and a weaker condition is that πω(A)′ is commutative.
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4.11 Order parameters

On the basis of the preceding discussion, one may define SSB as a property of the
dynamics and the symmetry alone by the condition (∂Sβ(A))G = ∅, where, for any
K ⊂ S(A), the set KG consists of the G-invariant elements of A. Rephrasing this
definition as Sβ(A)G ∩ Sp(A) = ∅, we here have the essence of SSB: an invariant
ground/KMS state cannot be primary, whereas a primary ground/KMS state cannot
be invariant.62 However, one may also define SSB as a property of a given state ω,
as in the previous subsection. Leaving the self-evident case of an asymmetric state
apart, we now turn to the problem of detecting SSB in an invariant state [41].

Definition 4.13 Let A be a quasilocal C∗-algebra A with symmetry group G. A
(strong) order parameter in A is an n-tuple ~φ = (φ1, . . . , φn) ∈ An for which ω(~φ) =
0 if (and only if) ω is G-invariant, for any translation-invariant state ω on A.

An order parameter defines an accompanying vector-field x 7→ ~φ(x) by φi(x) = τx(φ).

Since ω is translation-invariant, ω(~φ) = 0 is equivalent to ω(~φ(x)) = 0 for all x.
In the Ising model, with G = Z2, σ3(0) is an order parameter, which can be

extended to a strong one ~φ = (σ2(0), σ3(0)). In the Heisenberg model, where G =
SO(3), the triple (σ1(0), σ2(0), σ3(0)) provides a strong order parameter.

Theorem 4.14 Suppose that ~φ is a (strong) order parameter, as in Definition 4.13.
Then a G-invariant and translation-invariant ground/KMS state ω ∈ Sβ(A)G dis-
plays SSB—in the sense that some of the components in its extremal decomposition
fail to be G-invariant—if (and only if) the following positivity requirement holds:63

lim
x→∞

ω

(
n∑
i=1

φi(0)∗φi(x)

)
> 0. (4.27)

The “if” part of the theorem is equivalent to the claim that the limit in question
vanishes in the absence of SSB. Let (4.26) be the extremal decomposition of ω. If
(almost) each extremal state ωλ is invariant, then ωλ(φi(x)) = 0 for all i by definition
of an order parameter, and similarly ωλ(φi(x)∗) = ωλ(φi(x)) = 0. Interchanging
limx→∞ with the integral over ∂Sβ(A) (which is allowed because µ is a probability
measure), and using (4.11) then shows that the left-hand side of (4.27) vanishes.

To avoid difficult measure-theoretic aspects of the extremal decomposition the-
ory, and also for pedagogical purposes, we prove the “only if” part only in the special
case that ω =

∫
G
dg ρg (weakly), where ρ ∈ ∂Sβ(A) and ρg = γ∗gρ, as before. Since

ρg(
∑n

i=1 φi(0)∗φi(x)) is independent of g (by definition of an order parameter), we
may replace ρg by ρ in the expression for ω; the term

∫
G
dg then factors out and

is equal to unity. Thus we may replace ω in (4.27) by ρ. Since ρ is a primary
state, we may now use (4.11) once again, so that the left-hand side of (4.27) be-
comes

∑n
i=1 |ρ(φi)|2. By assumption, ρ is not G-invariant, so that (by definition of

a strong order parameter) at least one of the terms |ρ(φi)| is nonzero. Q.E.D.

62A weaker definition would be Sβ(A)G 6= Sβ(A), which implies (∂Sβ(A))G 6= ∂Sβ(A) and hence
forces the existence of asymmetric extremal KMS/ground states, but leaves open the possibility
that symmetric extremal KMS/ground states exist.

63In that case, we say that the two-point function on the left-hand side exhibits long-range order.
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4.12 Mean-field theories

In order to illustrate the abstract material so far, we now discuss a class of explicitly
solvable models that display SSB. We work in de the setting of §4.6. Our running
examples are the Weisz-model for ferromagnetism and the BCS-model for super-
conductivity, the latter in the so-called strong coupling limit. Both have arbitrary
dimension d and n = 2, so that H0 = C2, and are given by the local Hamiltonians

hWΛ = − 1
2

J

|Λ|
∑
x,y∈Λ

σ3(x)σ3(y)− ~B ·
∑
x∈Λ

~σ(x); (4.28)

hBCSΛ = 1
2ε
∑
x∈Λ

(1− σ3(x))− λ

|Λ|
∑
x,y∈Λ

σ−(x)σ+(y). (4.29)

In (4.28), J > 0 determines the strength of the spin-spin coupling, and ~B is an
external magnetic field. The symmetry group of hWΛ is at least G = Z2 = {1,−1},
represented on H0 (and thence on HΛ) in a way that depends on the direction of ~B.

We will just consider the two cases where ~B lies in either the z-direction or the x-
direction; in both cases we represent Z2 on C2 by 1 7→ u1 = 12 and −1 7→ u−1 = σ1.
For any group G represented on H0 by g 7→ ug, we then put

uΛ
g = ⊗x∈Λug(x), (4.30)

which is a unitary operator on HΛ. Clearly, with (4.28), [hWΛ , u
Λ
g ] = 0 for g ∈ Z2.

In (4.29), the lattice Λ actually does not lie in physical space; it represents some
labelling of states near the Fermi surface of the material in question. The idea is

that the vectors

(
0
1

)
and

(
1
0

)
in Hx

∼= C2 are states with one and zero Cooper

pairs, respectively; the former has energy ε, whereas the latter—the unoccupied
state—has zero energy.64 The second term denotes the two-body interaction between
Cooper pairs. The symmetry group of hBCSΛ is G = U(1), realized on C2 through
ug = exp(1

2igσ3), g ∈ [0, 4π), and extended to a unitary representation g 7→ uΛ
g on

HΛ by (4.30); with σ± = 1
2(σ1 ± iσ2), one has [hBCSΛ , uΛ

g ] = 0 for all g ∈ U(1).
A general (homogeneous) mean-field theory is defined by the local Hamiltonians

hΛ = |Λ|h̃(TΛ
1 , . . . , T

Λ
n2−1), (4.31)

where the (Ti)
n2−1
i=1 together with T0 ≡ 1n form a basis of the real vector space

Mn(C)h of traceless hermitian n× n matrices, that is, of the Lie algebra su(n),65

TΛ
i =

1

|Λ|
∑
x∈Λ

Ti(x), (4.32)

and h̃ is a polynomial expression (sensitive to operator ordering). Clearly, (4.28)
and (4.29) are of this form. In the next subsection we will see that h̃ really defines
a function on the vector space u(n)∗ dual to the Lie algebra u(n).

64A Cooper pair consists of two electrons whose spins and momenta are anti-alligned.
65The Lie group SU(n) consists of all unitary n× n matrices u with det(u) = 1. Its Lie algebra

su(n) consists of all traceless hermitian n× n matrices. For n = 2 one has Ti = 1
2σi, i = 1, 2, 3.
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4.13 Mean-field Hamiltonian

Given the quantum-mechanical Hamiltonians (4.31), we define a single classical
“Hamiltonian” h̃ ∈ C∞(su(n)∗,R) on the “phase space” su(n)∗. This is simply
accomplished by replacing each TΛ

i in (4.31) by the corresponding coordinate func-
tion θi on su(n)∗, defined by θi(θ) = θ(Ti). For our running examples, this yields

h̃W (θ) = −2Jθ2
3 − 2 ~B · ~θ; (4.33)

h̃BCS(θ) = ε( 1
2 − θ3)− λ(θ2

1 + θ2
2 − θ3). (4.34)

In general, for arbitrary θ ∈ su(n)∗, with coordinates (θ1, . . . , θn2−1), θi = θ(Ti),

h̃θ := h̃(θ) +
n2−1∑
i=1

∂h̃

∂θi
(θ) · Ti (4.35)

defines an hermitian operator h̃θ on H0, called the mean-field Hamiltonian. E.g.,

h̃W
θ

= h̃W (θ)− 2Jθ3σ3 − ~B · ~σ; (4.36)

h̃BCS
θ

= h̃BCS(θ) + 1
2ε(1− σ3)− λ(θ1σ1 + θ2σ2 − 1

2σ3). (4.37)

For any (inverse temperature) β = T−1, the self-consistency equation for θ is

ω̃θβ = θ, or ω̃θβ(Ti) = θi, (i = 1, . . . , n2 − 1); (4.38)

ω̃θβ(a) :=
TrH0(e−βh̃θ a)

TrH0(e−βh̃θ)
. (4.39)

Clearly, the constant h̃(θ) in (4.35) drops out of this equation and may be ig-

nored. For example, if we take (4.36) with ~B = 0, then (4.38) forces θ1 = θ2 = 0,

whereas the mean magnetization m ≡ 2θ3 = ω̃θβ(σ3) satisfies the famous equation
tanh(βJm) = m. This has a solution m = 0 for any β, and for T ≥ Tc = J (so that
βcJ = 1) this is the only solution. For T < Tc, two additional solutions ±mβ with
mβ > 0 appear. Similarly, for the mean-field Hamiltonian (4.34) of the BCS-model,
eq. (4.38) has a critical temperature above which θ = 0 is the only solution, and
below which there is an additional family of nonzero solutions parametrized by U(1).

Proposition 4.15 The self-consistency equation (4.38) has at least one solution.

To see this, we embed the state space S(Mn(C)) ≡ Sn, i.e. the compact convex set
of n× n density matrices, in su(n)∗ in the obvious way: ρ ∈ Sn maps X ∈ su(n) to
Tr (ρX) ≡ ρ(X). This is indeed an embedding, since ρ ∈ su(n)∗ determines ρ ∈ Sn
and vice versa: for ρ(a∗) = ρ(a) and ρ(1) = 1, and the complex linear span of 1
and su(n) is Mn(C). (For example, for n = 2, the embedding S2 ↪→ su(2)∗ ∼= R3 is
just given by realizing S2 as the three-ball B3 in R3, cf. (3.7).) According to (4.38),

θi is precisely of this form, with ρ = ω̃θβ. Thus θ ∈ su(n)∗ is constrained to lie in
Sn ⊂ su(n)∗, and by (4.38) it is a fixed point of the continuous function f : Sn → Sn
defined by f(ρ) = ω̃ρβ. The claim then follows from Brouwer’s Theorem stating that

any continuous map from a compact compact set in Rk to itself has a fixed point.
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4.14 Exactness of the mean-field approximation

The symmetries of hΛ are reflected by the solution set of (4.38). The first point is
that G ⊂ U(n) acts not only on H0 = Cn by g 7→ ug, but also on the state space Sn,
viz. by g 7→ (γ0

g)
∗, where γ0

g : Mn(C)→Mn(C) is the automorphism γ0
g(a) = ugau

∗
g,

so that (γ0
g)
∗ρ = ρ ◦ γ0

g−1 = ugρu
∗
g.

66 For example, for G = SU(2) this action is

just the defining action of SO(3) = SU(2)/Z2 on R3 (with Z2 = {12,−12}). For
G = Z2 = {12, σ1} ≡ {1,−1}, as in the Weisz-model, the nontrivial element g = −1
acts like a rotation of π around the x-axis, so that (γ0

−1)∗(x, y, z) = (x,−y,−z).
Under this action, any symmetry groupG of the local Hamiltonians hΛ also leaves

h̃ ∈ C∞(Sn) invariant in the sense that h̃◦ (γ0
g)
∗ = h̃, restricting h̃ to Sn ⊂ su(n)∗.67

Lemma 4.16 If h̃ ∈ C∞(Sn) is G-invariant under the above G-action on Sn, then
any g ∈ G maps a solution θ of (4.38) into another solution (γ0

g)
∗θ ≡ θg of (4.38).

In other words, the solution set of (4.38) is a union of G-orbits in Sn.

This follows from (γ0
g)
∗ω̃θβ = ω̃

θg
β , which is immediate from (4.39) and (4.35). Q.E.D.

The mean-field approximation—i.e. of the local Hamiltonians (4.31) by the single-
site mean-field Hamiltonians (4.35)—is exact in the following sense [3, 11]:

Theorem 4.17 Let ωβ a limit point of the net (ωΛ
β ) defined by (4.22) and (4.31),

as Λ ↑ Zd. Then the decomposition (4.26) of ωβ into primary states is given by

ωβ =

∫
Sn

dµβ(θ)ωθβ, (4.40)

ωθβ := ⊗x∈Zd ω̃
θ
β(x), (4.41)

for some probability measure µβ on Sn, where the state ω̃θβ(x) on B(Hx) ∼= Mn(C) is

given by (4.39), applied to site x ∈ Zd, with hθ given by (4.35), and θ ∈ Sn satisfies

(4.38). In particular, each state ωθβ defined by (4.41), (4.35), and (4.38) is primary.

In most examples, including the Weisz- and BCS-models, the limit state ωβ is ac-
tually unique, and in addition the pure thermodynamic states contributing to the
primary decomposition (4.26) of ωβ form a single G-orbit in Sn. For T ≥ Tc there is
just one term in (4.40), namely ω0

β at θ = 0. In the Weisz-model this is the unique
tracial state tr on A, given on A(Λ) by tr(a) = Tr (a)/ dim(HΛ), and extended to
A by continuity (the β-independence of this state seems a pathology of the model).
At T < Tc the Z2-orbit carrying the measure in (4.40) is {(0, 0,±2mβ)}.

To see SSB in these models, we extend each automorphism γ0
g of B(H0) to

an automorphism γΛ
g = ⊗x∈Λγ

x
g of A(Λ), which yields an automorphism γg of A

by continuity. The G-invariance (γΛ
g )∗ωΛ

β = ωΛ
β of each Gibbs state ωΛ

β then implies

γ∗gωβ = ωβ for each limit state, but (cf. the proof of Lemma 4.16) we have γ∗gω
θ
β = ω

θg
β ,

so that a primary state ωθβ breaks the G-symmetry whenever θg 6= θ for some g ∈ G.

66This is a double restriction of the coadjoint action of U(n) on u(n)∗, defined by Cog(θ) =
θ ◦ Adg−1 , with Adg : u(n) → u(n) given by Adg(X) = ugXu

∗
g. First, Sn ⊂ u(n)∗ is stable under

this action, and second, the coadjoint action of U(n) on Sn is restricted to the subgroup G ⊂ U(n).
67In fact, the full h̃ ∈ C∞(u(n)∗) is invariant under the G-action defined in the previous footnote.
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4.15 KMS-condition in mean-field theories

One would expect the states ωβ and ωθβ in (4.40) to satisfy the KMS-condition:
the former is a limit of local Gibbs states (4.22), and as to the the latter, primary
states in the decomposition of a state automatically satisfy the KMS-condition if
that state does. However: KMS with respect to which time-evolution? Indeed,
the Hamiltonians (4.31) of mean-field models are long-range, which implies that the
local time-evolutions (4.15), fail to extend to an automorphism group α on A.

The solution is to enlarge A to A⊗C, where C is some algebra generated by the
average values (4.32) in the limit Λ→ Zd. Since the expression (4.32) yields

[TΛ
i , T

Λ
j ] =

1

|Λ|
[Ti, Tj]

Λ, (4.42)

this algebra should be commutative. Consider the set S(A)P of all permutation-
invariant states on A, defined in the obvious way.68 This is a compact convex set in
S(A), whose boundary ∂S(A)P is isomorphic to Sn, in that ρ ∈ Sn defines a product
state ρ⊗ = ⊗x∈Zdρ(x) in ∂S(A)P , and each element of ∂S(A)P is of this form [43].
Each ω ∈ S(A)P defines a probability measure µω on Sn such that the integral

ω =

∫
Sn

dµω(ρ) ρ⊗ (4.43)

yields both the extremal and the primary decomposition of ω. The form of the mean-
field Hamiltonians (4.31) then implies that the state ωβ in (4.40) lies in S(A)P , and

according to (4.41) each of its components ωθβ is an element of ∂S(A)P . In each GNS-
representation πω(A) defined by ω ∈ S(A)P , the limits T ωi := limΛ↑Zd πω(TΛ

i ) exist in
the strong operator topology, lie in the closure πω(A)′′, and generate a commutative
C∗-algebra. If ω = ρ⊗ ∈ ∂S(A)P , then T ωi is a multiple ρ(Ti) of the identity (since
it is easily seen to lie in the center of πω(A)′′, which by definition is trivial if ω
is primary). Thus we abstractly define limΛ↑Zd T

Λ
i as the function T̂i(ρ) = ρ(Ti)

on Sn, and identify the C∗-algebra C introduced above with C(Sn). The above
GNS-representation πω(A) then extends to A⊗ C(Sn) by putting πω(T̂i) := T ωi .

Theorem 4.18 1. There is a unique time-evolution α on A ⊗ C(Sn) such that
for any ω ∈ S(A)P , a ∈ A, and Ti ∈ su(n) (and hence T̂i ∈ Ĉ(Sn)) one has

s- lim
Λ↑Zd

πω(eithΛae−ithΛ) = πω(αt(a)); (4.44)

s- lim
Λ̃↑Zd

lim
Λ↑Zd

πω(eithΛT Λ̃
i e
−ithΛ) = πω(αt(T̂i)). (4.45)

2. The states ωβ and ωθβ in (4.40), extended to A ⊗ C(Sn) by ω(a ⊗ T̂i) =

ω(a)µω(T̂i), cf. (4.43), satisfy the KMS-condition at β with respect to α.

See [3] for the proof. Unlike A, C is actually stable under each αt, so that one obtains
a classical time-evolution on its Gelfand spectrum Sn, seen as a phase space.69

68I.e., the expectation value of an elementary tensor ⊗x∈Λax(x) in ω ∈ S(A)P is unchanged
under permutation of the terms (ax). For Λ = {x, y} this means ω(ax ⊗ ay) = ω(ay ⊗ ax).

69This time-evolution is truly classical, in being the Hamiltonian flow of h̃ ∈ C∞(Sn) with
respect to the canonical Lie–Poisson bracket Sn inherits from su(n)∗ [3, 23].



5 GOLDSTONE THEOREM AND HIGGS MECHANISM 50

5 Goldstone Theorem and Higgs Mechanism

The Goldstone Theorem and the Higgs Mechanism are two aspects of SSB that
apparently contradict each other. In any case both require very careful treatment.
The former results when the broken symmetry group G is a Lie group (of dimension
≥ 1), and the latter arises when it is an infinite-dimensional gauge group (see below).

Let us start with the simple case G = SO(2), acting on R2 by rotation. This
induces the obvious action on the classical phase space T ∗R2, i.e., R(p, q) = (Rp,Rq)
as well as on the quantum Hilbert space H = L2(R2), that is, URψ(x) = ψ(R−1x).
Let us see what changes with respect to the action of Z2 on R considered in the
Introduction. We now regard the potential V in (1.1) as an SO(2)-invariant function
on R2 through the reinterpretation of q2 as q2

1 + q2
2. This is the famous ‘Mexican hat

potential’. Thus the classical Hamiltonian h(p, q) = p2/2m+V (q), with p2 = p2
1+p2

2,
is SO(2)-invariant, and the set of classical ground states

E0 = {(p, q) ∈ T ∗R2 | p = 0, q2 = (ω/λ)2} (5.1)

is the SO(2)-orbit through e.g. the point (p1 = p2 = 0, q1 = ω/λ, q2 = 0). Compared
to the one-dimensional case, the two-point set of ground states with Z2-symmetry is
now connected and forms a circle in phase space. The intuition behind the Goldstone
Theorem is that a particle can freely move in this circle at no cost of energy. If
we look at mass as inertia, such motion is ‘massless’, as there is no obstruction.
However, this intuition is only fully realized in quantum field theory.

In quantum mechanics, the ground state of the Hamiltonian (1.2) (now acting
on L2(R2)) remains unique, as in the one-dimensional case. In polar coordinates
(r, φ) we have

h = − ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂φ2

)
+ V (r), (5.2)

with V (r) = − 1
2ω

2r2 + 1
4λ

2r4. With L2(R2) ∼= L2(R+)⊗ `2(Z) under Fourier trans-
formation in the angle variable, this becomes

hΨ(r, n) =

(
− ~2

2m

(
∂2

∂r2
+

1

r

∂

∂r
− n2

r2

)
+ V (r)

)
Ψ(r, n). (5.3)

Since ~2n2/2mr2 is positive, the ground state Ψ0 has Ψ0(r, n) = 0 for all n 6= 0, and
hence it is SO(2)-invariant, since the SO(2)-action on L2(R2) Fourier-transforms
to the action UθΨ(r, n) = exp(inθ)Ψ(r, n). Indeed, from a group-theoretical point
of view, the unitary isomorphism L2(R2) ∼= L2(R+) ⊗ `2(Z) is nothing but the
decomposition L2(R2) ∼=

⊕
n∈ZHn where Hn = L2(R+) for all n, but with Φn ∈ Hn

transforming under SO(2) as UθΦn(r) = exp(inθ)Φn(r), θ ∈ [0, 2π]. The SO(2)-
invariant subspace of L2(R2), then, is precisely the space H0 in which Ψ0 lies. This
is analogous to the situation occurring in one dimension higher (i.e. R3) with e.g. the
hydrogen atom: in that case, the symmetry group is SO(3), and L2(R3) decomposes
accordingly as L2(R3) ∼=

⊕
j∈NHj, where Hj = L2(R+) ⊗ C2j+1. The ground state

for a spherically symmetric potential then typically lies in H0 and is SO(3)-invariant.
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For our purpose, however, the relevant comparison is with the one-dimensional
case: the decomposition of L2(R) under the natural Z2-action U−1Ψ(x) = Ψ(−x) is

L2(R) = H0 ⊕H1 (5.4)

Hi = {Ψ ∈ L2(R) | Ψ(x) = (−1)iΨ(−x)}, i = 0, 1. (5.5)

This time, H+ is the Z2-invariant subspace containing the ground state Ψ0. Being
Z2-invariant, Ψ0 is has peaks above both classical minima ±q0; in fact, Ψ0 is real-
valued and strictly positive. The ground state of the corresponding two-dimensional
system, seen as an element of L2(R2), is just this Ψ0 extended from R to R2 by rota-
tional invariance. Hence the ground state remains real-valued and strictly positive,
with peaks about the circle of classical minima in R2.

For d = 1, the first excited state Ψ1 lies in H1; it is real-valued, like Ψ0, but since
it has to satisfy Ψ1(−x) = −Ψ(x), it cannot be positive. Indeed, with a suitable
choice of phase, Ψ1 has one positive peak above q0 and the same peak but now
negative below −q0. Using advanced semiclassical analysis, it can be shown that

Ψ± = (Ψ0 ±Ψ1)
√

2 (5.6)

is peaked above ±q0 alone (i.e., the negative peak of ±Ψ1 below ∓q0 exactly cancels
the corresponding peak of Ψ0). The classical limit of Ψ0 comes out as the mixed state
1
2(ω+ +ω−), where ω± = (p = 0,±q0), but each state Ψ± has the pure state ω± as its
classical limit. The latter are ground states, and hence in particular they are time-
independent; to understand this, note that according to the WKB-approximation,
the energy difference E0−E1 beween Ψ0 and Ψ1 vanishes exponentially fast as ~→ 0,
so that in the classical limit the states Ψ± rapidly approach energy eigenstates.

A similar but more complicated situation arises in d = 2. The role of the pair
(Ψ0 ∈ H0,Ψ1 ∈ H1) is now played by an infinite tower (Ψn ∈ Hn, n ∈ Z), where Ψn

is the lowest energy eigenstate (for h in (5.3)) in Hn ⊂ L2(R2). The state Ψ+ for
d = 1 now should be something like limN→∞Ψ(N), with the unit vectors

Ψ(N) =
1√

2N + 1

N∑
n=−N

Ψn, (5.7)

but unfortunately this limit does not exist in L2(R2). The simplest way to proceed

is to keep N finite but large, and define Ψ
(N)
θ = UθΨ

(N) as the analogue of Ψ−;
the upshot is that the set (5.1) of classical ground states emerges as the double

limit limN→∞ lim~→0 applied to Ψ
(N)
θ , seen as a vector state in the algebraic sense.

The easiest way of making this idea precise is to introduce Weyl’s quantization
prescription of classical functions on phase space: for f ∈ C∞c (T ∗Rn), the formula

Q~(f)Ψ(x) =

∫
T ∗Rn

dnpdny

(2π~)n
eip(x−y)/~f (p, 1

2(x+ y)) Ψ(y) (5.8)

defines a bounded operator Q~(f) on L2(Rn). For all f ∈ C∞c (T ∗Rn), we then have

lim
N→∞

lim
~→0

(Ψ
(N)
θ , Q~(f)Ψ

(N)
θ ) = ωθ(f), (5.9)

where ωθ is a pure state on C0(T ∗R2) corresponding to a suitable point in (5.1).
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5.1 SSB in classical field theory

In this subsection we illustrate SSB in classical field theory through a simple ex-
ample, where the symmetry group is G = SO(N), but whenever possible we write
things down in such a way that the generalization to arbitrary scalar field theories
is obvious. Suppose we have N real scalar fields ϕ ≡ (ϕ1, . . . , ϕN), on which SO(N)
acts in the defining representation on RN . Let the usual relativistic Lagrangian,70

L = 1
2∂µϕi∂

µϕi − V (ϕ), (5.10)

contain an SO(N)-invariant potential V , typically of the form (with ϕ2 ≡
∑N

i=1 ϕ
2
i )

V (ϕ) = −m
2

2
ϕ2 +

λ

4
ϕ4, (5.11)

where λ > 0, but m2 may have either sign. If m2 < 0, the minimum of V lies at
ϕ = 0, but if m2 > 0 the minima form the SO(N)-orbit through

ϕc = (v, 0, · · · , 0); (5.12)

v ≡ m/
√
λ = ‖ϕc‖. (5.13)

The idea is that the physical fields are excitations of the ‘vacuum state’ ϕc, so that,
instead of ϕ, as the appropriate ‘small oscillation’ field one should use

χ(x) = ϕ(x)− ϕc. (5.14)

Consequently, the potential is expanded in a Taylor series for small χ as

V (ϕ) = V (ϕc) + 1
2V
′′
ijχiχj +O(χ3); (5.15)

V ′′ij ≡
∂2V

∂ϕi∂ϕj
(ϕc). (5.16)

Note that the linear term vanishes because V ′(ϕc) = 0. We now use the SO(N)-
invariance of V , i.e., V (gϕ) = V (ϕ) for all g ∈ SO(N). For T a ∈ g (i.e. the Lie
algebra of G, realized by anti-symmetric traceless N ×N matrices) this yields

d

dt
V (etTaϕ)t=0 = 0 ⇔ ∂V (ϕ)

∂ϕi
T aijϕj = 0. (5.17)

Differentiation with respect to ϕk and putting ϕ = ϕc then gives

V ′′ikT
a
ijϕ

c
j = 0. (5.18)

In general, let H ⊂ G be the stabilizer of ϕc, i.e., g ∈ H iff gϕc = ϕc. In our example
(5.11) - (5.12), we evidently have H = SO(N−1). Then T aϕc = 0 for all generators
T a of the Lie algebra h of H, so that there are

M ≡ dim(G)− dim(H) = dim(G/H) = dim(G · ϕc) (5.19)

linearly independent null eigenvectors of V ′′ (seen as an N×N matrix). This number
equals the dimension of the submanifold of RN where V assumes its minimum. In
our example we have M = N − 1, since dim(SO(N)) = 1

2N(N − 1).

70From now on, we sum over repeated indices like i and µ (Einstein summation convention).
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5.2 Goldstone Theorem in classical field theory

We now perform an affine field redefinition, based on an affine coordinate trans-
formation in RN that diagonalizes the matrix V ′′. The original (real) fields were
ϕ = (ϕ1, . . . , ϕN), and the new (real) fields are (χ1, θ2, · · · , θN), with χ1 = ϕ1− v as
in (5.14), and the famous Goldstone boson fields are defined, also in general, by

θa =
1

v
〈T aϕc, ϕ〉 =

1

v
T aijϕ

c
jϕi. (5.20)

Here 〈·, ·〉 denotes the inner product in RN , and we have chosen a basis of g in which
the elements (T 1, . . . , T dim(H)) form a basis of h, completed by M further elements
(T dim(H)+1, . . . T dim(G)+1), so as to have basis of g. The index a in (5.20), then, runs
from dim(H) + 1 to dim(G), so that there are M Goldstone bosons, cf. (5.19). In
our running example, this number was shown to be M = N − 1, and in view of
(5.12), the field θa = T ai1ϕi is a linear combination of the ϕ2 till ϕN .

The simplest example is N = 2 with potential (5.11) and m2 > 0. With the
single generator T = −iσ2, we obtain θ = ϕ2. Since V ′′ = diag(2m2, 0), we see that
the mass term − 1

2m
2ϕ2

1 in (5.11) (with ϕ2 = ϕ2
1 +ϕ2

2) changes from the ‘wrong’ sign
−m2 to the ‘right’ sign +2m2 in (5.15), whilst − 1

2m
2ϕ2

2 in (5.11) simply disappears,
so that the field θ comes out to be massless. Indeed, this is the whole point of the
introduction of the Goldstone bosons: in view of (5.18) and (5.20), the Goldstone
fields do not occur in the quadratic term in (5.15) and hence are they are massless,
in satisfying a field equation of the form ∂µ∂

µθa = · · · , where · · · does not contain
any term linear in any field. In general, the Goldstone Theorem states:

Theorem 5.1 Suppose that a compact Lie group G ⊂ SO(N) acts on N real scalar
fields ϕ = (ϕ1, . . . , ϕN), leaving the potential V in the Lagrangian (5.10) invariant.
If G is spontaneously broken to an unbroken subgroup H ⊂ G, then there are at least
dim(G/H) massless fields. Here the assumption means that V assumes a minimum
at ϕc whose stability group is H, and the conclusion states that there exists a transfor-
mation from the original fields (ϕ1, . . . , ϕN) to new fields (χ1, . . . , χN−M , θ1, . . . , θM),
M = dim(G) − dim(H), which is invertible in a neighborhood of ϕ = ϕc, such that
the potential V (ϕ), re-expressed in the fields χ and θ, has no quadratic terms in θ.

The local invertibility of the field redefinition around ϕc 6= 0 is crucial; in our
example, where χ ≡ χ1 = ϕ1 − v and θa = T ai1ϕi, this may be checked explicitly.

An alternative proof uses a nonlinear definition of the Goldstone bosons, namely

ϕ(x) = e
1
v
θa(x)Ta(ϕc + χ(x)), (5.21)

where the sum over a ranges from 1 toM , v = ‖ϕc‖, and the fields χ = (χ1, . . . , χN−M)
are chosen orthogonal (in RN) to the T aϕc, a = 1, . . . ,M , and hence to the θa.

Provided the generators of SO(N) (and hence of G ⊂ SO(N)) have been chosen
such that 〈T aϕc, T bϕc〉 = v2δab, the fields θa defined by (5.21) coincide with the
fields in (5.20) up to quadratic terms in χ and θ; to see this, expand the exponential
and also use 〈T aϕc, ϕc〉 = 〈T aϕc, χ〉 = 0. This transformation is only well defined if
v 6= 0, i..e., if SSB from G to H occurs, and its existence immediately implies the
Goldstone Theorem 5.1, for by (5.21) and G-invariance, V (ϕ) is independent of θ.
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5.3 Higgs Mechanism in classical field theory I

We now proceed to a discussion of SSB in gauge theories, especially with an eye on
the Higgs Mechanism, which plays a central role in the so-called Standard Model of
high-energy physics. We look at the Abelian Higgs Model, given by the Lagrangian

L = − 1
4F

2
A + 1

2〈D
A
µϕ,D

A
µϕ〉 − V (ϕ), (5.22)

where ϕ = (ϕ1, ϕ2) is a scalar field, the usual electromagnetic field strength is
Fµν = ∂µAν − ∂νAµ, in terms of which F 2

A = FµνF
µν , and the covariant derivative is

DA
µϕ ≡ (∂µ − eAµ · T )ϕ =

(
∂µ ·

(
1 0
0 1

)
− eAµ ·

(
0 −1
1 0

))
·
(
ϕ1

ϕ2

)
. (5.23)

Here e is some coupling constant, identified with the unit of electrical charge. We
still assume that V only depends on ‖ϕ‖2 = 〈ϕ, ϕ〉 and hence is SO(2)-invariant.

The novel situation compared to (5.10) and the like is that, whereas (5.10) is
invariant under global SO(2) transformations, the Lagrangian (5.22) is invariant
under local SO(2) “gauge” transformations that depend on x, namely

ϕ(x) 7→ eα(x)·Tϕ(x) =

(
cosα(x) − sinα(x)
sinα(x) cosα(x)

)
·
(
ϕ1(x)
ϕ2(x)

)
; (5.24)

Aµ(x) 7→ Aµ(x) +
1

e
∂µα(x). (5.25)

We say that the gauge group G = C∞(Rd, U(1)) acts on the space of fields (A,ϕ) by
(5.24) - (5.25). Now suppose V has a minimum at some constant value ϕc 6= 0. In
that case, any field configuration (ϕ(x) = exp(α(x) · T )ϕc, Aµ(x) = (1/e)∂µα(x)),
α ∈ G, minimizes the action. Hence the possible ‘vacua’ of the model comprise the
(infinite-dimensional) orbit V of the gauge group through (A = 0, ϕ = ϕc). Note
that DA

µϕ = 0 for (A,ϕ) ∈ V , i.e., ϕ is covariantly constant along the vacuum orbit
(whereas for global symmetries it is constant full stop). Relative to the (arbitrary)
choice (0, ϕc) ∈ V , we then introduce real fields χ and θ, called the Higgs field and
the would-be Goldstone boson, respectively, by (5.21), which now simply reads(

ϕ1(x)
ϕ2(x)

)
= e

1
v
θ(x)·T ·

(
v + χ(x)

0

)
. (5.26)

After this redefinition of the scalar fields, the Lagrangian (5.22) becomes

L = − 1
4F

2
B + 1

2∂µχ∂
µχ+ 1

2e
2(v + χ)2BµB

µ − V (v + χ, 0), (5.27)

where Bµ = Aµ − (1/ev)∂µθ, and F 2
B = FµνF

µν for Fµν = ∂µBν − ∂νBµ. This
describes a vector boson B with mass term 1

2m
2
BBµB

µ, with m2
B = 1

2e
2v2 > 0 (as

opposed to the massless vector field A), and a scalar field χ with mass term 1
2m

2
χχ

2,
with m2

χ = (∂2V/∂φ2
1)|(v,0) > 0 (since V supposedly has a minimum at ϕc = (v, 0)).

This is the Higgs Mechanism: the gauge field becomes massive, whilst the mass-
less (‘would-be’) Goldstone boson disappears from the theory: it is (allegedly) ‘eaten’
by the gauge field. Thus the scalar degree of freedom θ that seems lost is recovered
as the longitudinal component of the massive vector field (which for a gauge field
would merely have been an unphysical ‘gauge degree of freedom’, see below).
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5.4 Higgs Mechanism in classical field theory II

In the description just given, the Higgs Mechanism in classical field theory is seen as
a consequence of SSB under special conditions. Remarkably, there is an alternative
account of the Higgs Mechanism, according to which it has nothing to do with SSB!

We now perform a field redefinition analogous to (5.26) etc. straight away, viz.(
ϕ1(x)
ϕ2(x)

)
= eθ(x)·T ·

(
ρ(x)

0

)
; (5.28)

Aµ = Bµ + (1/e)∂µθ, (5.29)

defined and invertible in a neighbourhood of any (ρ0 > 0, θ0 ∈ (−π, π), B0), where
B0 is arbitrary. Each of these new fields is gauge-invariant: for (5.24) becomes
θ(x) 7→ θ(x) + α(x) with ρ(x) 7→ ρ(x), so that according to (5.25), B does not
transform at all. As in (5.27), the Lagrangian becomes

L = − 1
4F

2
B + 1

2∂µρ∂
µρ+ 1

2e
2ρ2BµB

µ − V (ρ), (5.30)

with V (ρ) ≡ V (ρ, 0). This is a Lagrangian without any internal symmetries at all
(not even Z2, since ρ > 0), but of course one can still look for ‘classical vacua’
that minimize the energy and hence the potential V (ρ). If ρ = 0 is the absolue
minimum, then the above field redefinition is a fortiori invalidated, but if V ′(v) = 0
for some v > 0, we proceed as before, introducing a Higgs field χ(x) = ρ(x)− v, and
recovering the Lagrangian (5.27). This once again leads to the Higgs Mechanism.

This can be generalized to the nonabelian case; we explain the SU(2) case. In
(5.22), the scalar field ϕ = (ϕ1, ϕ2) is now complex, forming an SU(2) doublet, the
brackets 〈·, ·〉 now denote the inner product in C2 (taken linear in the second variable,
as usual), the nonabelian gauge field is A = Aaσa (where the Pauli matrices σa,
a = 1, 2, 3, form a hermitian basis of the Lie algebra of SU(2)), with associated field
strength Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ] and covariant derivative DA

µ = ∂µ + igAµ.
With F 2

A = F a
µνF

µν
a , the Lagrangian (5.22) is invariant under the transformations

ϕ(x) 7→ eiαa(x)σa(x)ϕ(x); (5.31)

Aµ(x) 7→ eiαa(x)σa(x)(Aµ(x)− (i/g)∂µ)e−iαa(x)σa(x). (5.32)

The definition of the gauge-invariant fields B and ρ à la (5.28) - (5.29) is obviously(
ϕ1(x)
ϕ2(x)

)
= eiθa(x)·σa ·

(
ρ(x)

0

)
; (5.33)

Aµ(x) = eiθa(x)σa(x)(Bµ(x)− (i/g)∂µ)e−iθa(x)σa(x), (5.34)

which leads, mutatis mutandis, to the very same Lagrangian (5.30); cf. [17, 28, 37].
As a compromise between these two derivations of the Higgs Mechanism, it is

also possible to fix the gauge by picking the representative (ϕ,A) in each G-orbit for
which ϕ2(x) = 0 and ϕ1(x) > 0; note that this so-called ‘unitary’ gauge is ill-defined
if ϕ1(x) = 0. Calling this unique representative (ρ,B), we are again led to (5.30).
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5.5 Constrained Hamiltonian systems: electromagnetism

Gauge field theories are constrained systems, in which the apparent degrees of free-
dom in the Lagrangian are not the physical ones. For free electromagnetism, the
Lagrangian for the gauge field Aµ is L(A) = − 1

4FµνF
µν , with Fµν = ∂µAν − ∂νAµ.

In terms of the usual gauge-invariant fields Ei = Fi0 = ∂iA0− ∂0Ai and ~B = ∇× ~A,
the corresponding Euler–Lagrange equation for A0 gives Gauss’ Law ∇ · ~E = 0,
whereas the one for Ai gives ∂ ~E/∂t = ∇ × ~B (the remaining Maxwell equations

∂ ~B/∂t = −∇× ~E and ∇ · ~B = 0 follow from the definitions of ~B and ~E out of A).
The first-order nature of the Maxwell equations suggests they are in Hamiltonian

form. The canonical momenta are given by Πµ = ∂L/∂Ȧµ, which yields Πi = −Ei,
as well as the primary constraint Π0 = 0. Nonetheless, the canonical Hamiltonian

h =

∫
d3x

(
Πµ(x)Ȧµ(x)− L(x)

)
=

∫
d3x ( 1

2
~E2(x) + 1

2
~B2(x)− A0(x)∇ · ~E(x))

is well defined. In the Hamiltonian formalism, Gauss’ Law resurfaces as the sec-
ondary constraint stating that the primary constraint be preserved in time, viz.

Π̇0(x) = − δh

δA0(x)
= ∇ · ~E(x) ≡ 0. (5.35)

Since d
dt
∇· ~E(x) = −∂i(δh/δAi(x)) = −∂i(∆Ai−∂i∇· ~A) = 0, there are no ‘tertiary’

constraints. Thus we have canonical (or ‘phase space’) variables ( ~E, ~A) and (Π0, A0),

subject to the constraints Π0(x) = 0 and ∇ · ~E(x) = 0 for all x. Equivalently,

Π0(λ0) ≡
∫
d3xΠ0(x)λ0(x) = 0; Π(λ) ≡

∫
d3x∇ · ~E(x)λ(x) = 0, (5.36)

for all functions λ0 and λ on R3, forms an infinite set of constraints, one for each
choice of λ0 or λ. The constraints (5.36) are first class, meaning that their Poisson
brackets are equal to existing constraints (or zero). In the Hamiltonian formalism,
the role of the space-time dependent gauge transformations of the Lagrangian theory
is played by the canonical transformations generated by the first class constraints,
that is, δλ0A0(x) = {Π0(λ0), A0(x)} = λ0(x) and δλ0Ai(x) = δλ0Ei(x) = 0, and

similarly δλ ~A(x) = ∇λ(x) and δλ ~E(x) = 0, δλA0(x) = 0.
The holy grail of the Hamiltonian formalism is to find variables that are both

gauge invariant and unconstrained. In our case, Aµ = (A0, ~A) are unconstrained but

gauge variant, whilst Πµ = (Π0,− ~E) are gauge invariant but constrained! Now write

some vector field ~V as ~V = ~V L + ~V T , where ~V L = ∆−1∇(∇ · ~V ) is the longitudinal
component, so that V T

i = (δij−∆−1∂i∂j)Vj is the transverse part. Then the physical

variables of free electromagnetism are ~AT and ~ET . The physical Hamiltonian

h = 1
2

∫
d3x ( ~ET · ~ET − ~AT ·∆ ~AT ), (5.37)

then, is well defined on the physical (or ‘reduced’) phase space, which is the subset
of all (Aµ,Πµ) where the constraints (5.36) hold, modulo gauge equivalence.
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5.6 Hamiltonian description of the Higgs Mechanism

After this preparation, we now analyze the abelian Higgs model as a constrained
Hamiltonian system. It is convenient to combine the two real scalar fields ϕ1 and
ϕ2 into a single complex scalar field ϕ = (ϕ1 + iϕ2)/

√
2 and treat ϕ and its complex

conjugate ϕ as independent variables. The Lagranigian (5.22) then becomes

L = − 1
4F

2
A +DA

µϕ ·DA
µϕ− V (ϕ, ϕ), (5.38)

with DA
µϕ = (∂µ − ieAµ)ϕ, etc. The conjugate momenta Πµ to Aµ are the same as

for free electromagnetism, i.e., Π0 = 0 and Πi = −Ei, and for the scalar field we
obtain π = ∂L/∂ϕ̇ = DA

0 ϕ and π = ∂L/∂ϕ̇ = DA
0 ϕ. The associated Hamiltonian is

h =

∫
d3x

(
1
2
~E2 + 1

2
~B2 − A0(∇ · ~E − j0) + ππ +DA

i ϕ ·DA
i ϕ+ V (ϕ, ϕ)

)
, (5.39)

where j0 = ie(πϕ − πϕ) is the zero’th component of the Noether current. Hence
the primary constraint remains Π0 = 0, but the secondary constraints picks up an
additional term and becomes ∇ · ~E = j0 (which remains Gauss’ law!). The physical
(i.e., gauge invariant and unconstrained) variables can be computed as [26, 46]

ϕA = eie∆
−1∇· ~Aϕ, ϕA = e−ie∆

−1∇· ~Aϕ; (5.40)

πA = e−ie∆
−1∇· ~Aϕ, πA = eie∆

−1∇· ~Aπ, (5.41)

plus the same transverse fields ~AT and ~ET as in free electromagnetism. In terms of
the transverse covariant derivative DT

i = ∂i − ieATi , the physical Hamiltonian h is∫
d3x

(
1
2( ~ET · ~ET − ~AT ·∆ ~AT − jA0 ∆−1jA0 ) + πAπA +DT

i ϕA ·DT
i ϕA + V (ϕA, ϕA)

)
.

(5.42)
Physically, the third term in (5.42) is just the Coulomb energy, in which the charge
density jA0 = ie(πAϕA−πAϕA) is the same as j0 (since the latter is gauge invariant).

Remarkably, the physical field variables carry a residual U(1)-symmetry, viz.

ϕA 7→ exp(iα)ϕA, πA 7→ exp(−iα)πA, ϕA 7→ exp(−iα)ϕA, πA 7→ exp(iα)πA,

and no change for ~AT and ~ET , under which the Hamiltonian (5.42) is invariant. If V
has a minimum at ϕ = ϕ = v, then we recover the Higgs Mechanism: after the field
redefinition ϕA = exp(iθ/v)(v+χ) (and complex conjugate) and the reintroduction
of the longitudinal component ALi = −(1/ev)∂iθ of the gauge field, along with (-)
its conjugate momentum EL

i = −ev∆−1∂iπθ, the Hamiltonian (5.42) becomes [46]

1
2

∫
d3x

(
~E2 + ~B2 + π2

χ + ∂iχ∂iχ+
1

e2v2
(∇ · ~E)2 + e2v2 ~A2 + V (v + χ)

)
, (5.43)

where ~A = ~AT + ~AL and ~E = ~ET + ~EL. This describes a massive vector field, and
the would-be Goldstone boson θ has disappeared, as befits the Higgs Mechanism!
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5.7 Goldstone Theorem in QFT: assumptions

The Goldstone Theorem can be derived in quantum field theory, provided some
assumptions are accepted in the absence of mathematically rigorous models [45].
The notation and assumptions underlying the Goldstone Theorem, then, are:

1. A is a ∗-algebra generated by the fields ϕ̂ of some quantum field theory;

2. Space-time Rd+1 acts on A by automorphisms α(x,t), with a(x, t) ≡ α(x,t)(a);

3. A compact Lie group G acts on A by automorphisms γg, g ∈ G;

4. G is a ’global symmetry’, i.e., γg ◦α(x,t) = α(x,t) ◦γg for all (x, t) ∈ Rd+1, g ∈ G;

5. ω is an Rd+1-invariant state on A, i.e., ω ◦ α(x,t) = ω for all (x, t) ∈ Rd+1;

6. ω ◦ γg 6= ω for all g ∈ Ga ⊂ G, Ga = {exp(sT a), s ∈ R, T a ∈ g};

7. δaϕ̂α(x) ≡ (d/ds)γexp(sTa)(ϕ̂α)|s=0 is an order parameter, i.e., ω(δaϕ̂α(x)) 6= 0;

8. There is a field ĵa0 in A that generates the symmetry ϕ̂α 7→ δaϕ̂α, in that:

(a) The function y 7→ ω([ĵa0 (y, 0), ϕ̂α(x, t)]) is in L1(Rd) for all (x, t) ∈ Rd+1;

(b) limΛ↑Rd
∫

Λ
ddy ω([ĵa0 (y, 0), ϕ̂α(x, t)]) = −iω(δaϕ̂α(x, t)) for all (x, t) ∈ Rd+1;

9. For simplicity, assume ϕ̂α(x)∗ = ϕ̂α(x) and ω(ϕ̂α(x)) = 0 (neither is crucial).

Most of these use language we have seen before, with the difference that from
now on A is merely a ∗-algebra instead of a C∗-algebra. We will be quite relaxed
about this relaxation, as we will be about our treatment of quantum fields as if
they were operators (whereas in a completely rigorous treatment, they should be
operator-valued distributions—this simplification actually does not matter, cf. [44]).

To motivate assumption 8, recall from classical field theory that the Noether
current is defined as jaµ =

∑
i Π

i
µ · δaϕi, where we sum over all fields in the La-

grangian, Πi
µ = ∂L/∂∂µϕi, and δaϕ = (d/ds) exp(sT a)ϕ|s=0, for a basis (T a) of the

Lie algebra g of the symmetry group G in question. Assuming the symmetry to
be global, that is, ∂µδ

aϕi = δa∂µϕi, the Euler–Lagrange equations ∂µΠi
µ = ∂L/∂ϕi

then give ∂µj
a
µ = δaL, upon which G-invariance of L yields ∂µj

a
µ = 0. This is

(Emmy) Noether’s First Theorem, which implies that the Noether charge Qa(t) =∫
R3 d

3y ja0 (y, t) is t-independent whenever it exists (which is the case if the fields fall
off sufficiently rapidly at spatial infinity). In that case, from the canonical equal-time
Poisson bracket {Πi

0(y, t), ϕj(x, t)} = δijδ(x− y), one has {Qa, ϕi(x, t)} = δaϕi(x, t).
However, even if the spatial integral comprising Qa does not exist, one nonetheless
has the weaker property

lim
Λ↑R3

∫
Λ

d3y {ja0 (y, 0), ϕi(x, t)} = δaϕi(x, t). (5.44)

We now turn classical fields into operators (indicated by a hat), and assume some
sort of canonical quantization procedure according to which (5.44) remains valid
upon the usual substitution of commutators (times i) for Poisson brackets (Dirac).
Assumption 8 above, then, is a weak form of the operator relation thus obtained.
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5.8 Goldstone Theorem in QFT: proof

Writing ϕ̂α(t) ≡ αt(ϕ̂α) for ϕ(x, t) for simplicity, we compute:

d

dt
ω(δaϕ̂α(t)) =

d

dt

d

ds
ω(γexp(sTa) ◦ αt(ϕ̂α))|s=0 =

d

dt

d

ds
ω(αt ◦ γexp(sTa)(ϕ̂α))|s=0,

where we have consecutively used assumptions 4 and 5 in §5.7. Defining

f(t) = i lim
Λ↑Rd

∫
Λ

ddy ω([ĵa0 (y, 0), ϕ̂α(x, t)]), (5.45)

it then follows from assumptions 7 and 8 that f(t) is well defined, nonzero, and
independent of t. From assumption 9 and the GNS-construction, we then obtain

ω([ĵa0 (y, 0), ϕ̂α(x, t)]) = 2Imω(ϕ̂α(x, t)ĵa0 (y, 0)) = 2Im (Ωω, πω(ϕ̂α(x, t))πω(ĵa0 (y, 0))Ωω).

• In physics style, we omit πω, write |0〉 for Ωω, and use the Fourier transform

〈0|ϕ̂α(x, x0)ĵa0 (y, y0)|0〉 =

∫
Rd+1

dp0 d
dp e−ip0·(x0−y0)+ip·(x−y)G̃(p, p0). (5.46)

This givesG(t) = 2·limp→0 Im
∫

R dp0 exp(−itp0)G̃(p0, p). Since this expression
is nonzero by assumption, the only way for it to be independent of t is that
G̃(p0, p) ∼ δ(p0− ε(p)) for some dispersion relation that satisfies ε(0) = 0. For
example, in the relativistic case we have ε(p) =

√
p2 +m2, so that m = 0.

• Mathematically, by assumption 5, Theorem 4.4, and the SNAG-Theorem in
representation theory, we have self-adjoint energy- and momentum operators
ĥω and p̂iω on Hω, whose spectral projections commute, such that

πω(a(x, t)) = eitĥω−ix·p̂ωπω(a)e−itĥω+itx·p̂ω , (5.47)

and eitĥω−itx·p̂ωΩω = Ωω. We now insert a resolution of the identity operator
in Hω over the joint spectrum of the p̂iω, which leads to the same conclusion:

Theorem 5.2 If the assumptions 1 to 9 in §5.7 are satisfied, then the two-point
function (5.46) has a singularity δ(p0 − ε(p)) in which ε(0) = 0.

In particular, the energy spectrum has no gap above the ground state.

The corresponding (quasi-) particles states, then, are the Goldstone bosons. If |p〉 is
an improper momentum eigenstate of such a boson, then the proof shows that both
〈0|ϕα(x)|p〉 and 〈0|ja0 (y)|p〉 should be nonzero. For example, returning to §5.1 for
notation, in the SO(2) model discussed there, ϕ2 is the present ϕα, with δϕα = −ϕ1

as the order parameter. The Goldstone bosons θ = ϕ2 satisfies these conditions
(check). For SO(3), in order (sic) to obtain ϕ1 as an order parameter, as in §5.1,
one may take either α = 2, a = 3 or vice versa. Either of the (quantized) Goldstone
fields, viz. ϕ2 or ϕ3, will have the required properties in quantum field theory.

Thus the classical proof gives precise information about the choice of the Gold-
stone boson field(s), but one has to realize its lack of uniqueness: all that is required
is that the field in question has the nonzero matrix elements just mentioned.



5 GOLDSTONE THEOREM AND HIGGS MECHANISM 60

5.9 Higgs Mechanism in quantum field theory

It is fair to say that the Higgs Mechanism in quantum field theory—and more gener-
ally, the notion of SSB in gauge theories—is poorly understood. Indeed, the entire
quantization of gauge theories is not well understood, except at the perturbative
level or on a lattice. The problems already come out in the abelian case with d = 3.

The main culprit is Gauss’ Law ∇ · ~E = j0. One would naively expect this
constraint to remain valid in quantum field theory as an operator equation ∂iÊi = ĵ0,
and this is indeed the case in so-called physical gauges (like the Coulomb gauge
∂iÂi = 0). If we now look at condition 8(b) in §5.7, which for G = U(1) reads

lim
Λ↑R3

∫
Λ

d3y ω([ĵ0(y, 0), ϕ̂α(x, t)]) = −iω(δϕ̂α(x, t)), 71 (5.48)

then it is clear that (5.48) can only hold if charged fields are nonlocal. For by

Gauss’ Law the commutator [ĵ0(y, 0), ϕ̂α(x, t)] equals [∇ · ~E(0, y), ϕ̂α(x, t)], and by
Gauss’(!) Theorem in vector calculus all contributions to the left-hand side of (5.48)
come from terms [Ei(0, y), ϕ̂α(x, t)], with y ∈ ∂Λ (i.e., the boundary of Λ). These
must remain nonzero if Λ ↑ R3, at least if (5.48) holds. On the other hand, such
nonlocality must be enforced by massless fields, which idea leads to practically the
only know rigorous result about the Higgs Mechanism (in the continuum) [45]:

Theorem 5.3 In the Coulomb gauge the following conditions are equivalent:

• The electromagnetic field ~A is massless;

• Eq. (5.48) holds for any field ϕ̂α;

• The charge operator Q̂ = limΛ↑R3

∫
Λ
d3y ĵ0(y, 0) exists,72 and satisfies Q̂Ωω = 0.

Hence (contrapositively), SSB of U(1) by the state ω is only possible if ~A is massive.
In that case, the Fourier transform of the two-point function 〈0|ϕ̂α(x, x0)ĵa0 (y, y0)|0〉
(cf. the proof of the Goldstone Theorem in §5.8) has a pole at the mass of ~A.

This theorem indeed yields the Higgs Mechanism for say the abelian Higgs model in
a specific physical gauge: note that the idea that the would-be Goldstone boson is
eaten by the gauge field is already suggested by Gauss’ Law, through which (minus)

the canonical momentum ~E to ~A acquires j0 as its longitudinal component; that is,
the very same field that creates the Goldstone boson from the ground state.

In covariant gauges, all fields remain local, but (5.48) is rescued by the gauge-
fixing term added to the Lagrangian. For example, adding Lgf = −(1/2ξ)(∂µA

µ)2

to (5.22) leads to an equation of motion ∂µF
µ
ν = jν − ∂ν∂µAµ, so that (discarding

all surface terms by locality), −iω(δϕ̂α(x, t)) =
∫

R3 d
3y ω([∂2

0Â0(y, 0), ϕ̂α(x, t)]). In
the proof of the Goldstone Theorem, the massless Goldstone bosons do emerge, but
they turn out to lie in some ‘unphysical subspace’ of Hω (which, for local gauges, is
not a Hilbert space but has zero- and negative norm states). This, however, would
be a more appropriate topic for a course on the quantization of constrained systems!

71E.g., with δϕ̂1 = ϕ̂2 and δϕ̂2 = −ϕ̂1 for a charged field ϕ = (ϕ1 + iϕ2)/
√

2, or δϕ̂ = iϕ̂.
72That is, on some suitable domain in Hω containing Ωω.
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