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Abstract

It is a well-know fact that insulating quantum systems are given by a certain Hilbert space H and
that the Hamiltonians, topological phases and energy states of this quantum system are given by
gapped self-adjoint operators on H, the connected components of these operators and functionals
on B(H) respectively. In case a symmetry condition is imposed, the Hamiltonians must respect
this symmetry. This restriction affects the remaining topological phases and states as well. In
this context it is natural to investigate what quantum systems and ensuing observables, states
and topological phases can arise from a Hilbert space H and a symmetry group G.

The investigation into this classification is made under the assumption that G is compact.
In the end results are also given for the case that G contains a (non-compact) lattice symmetry
Zd. The notion of symmetry relies on Wigner’s theorem and is formulated using twisted group
extensions as was proposed by D. Freed. This starting point leads to real representation theory,
which in turn yields to some unexpected classification results.

The classification of the quantum systems (ways to implement the symmetry group) is
achieved by means of elementary group cohomology. The classification of real representations
by J. Dyson is subsequently used to classify the general form of the Hamiltonians. Finally, the
states and topological phases are classified by irreducible subspaces of the representation of the
symmetry group. In case the symmetry can be related to a Clifford module, a classification of
the topological phases can be given using K-theory. This was proposed by A. Kitaev and is
now a popular research area. A generalisation to symmetry groups containing a d-dimensional
lattice symmetry can be achieved by parametrising the compact case over the d-dimensional
torus.
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Introduction

In the introduction we provide a quick sketch of the main problem in this thesis.

Assume that we are given a (classical) physical system with phase space consisting of the
integers N. States ω are probability distributions on the phase space. That is to say, we must
assign to each number n ∈ N a probability ω(n) ∈ [0, 1]. The number ω(n) indicates the
probability to find a particle in phase n. Let M(R) be the set of Borel measurable subsets of R
and P(N) the power set of N. An observable is a way to assign outcomes to the phase space.
Classically an observable would be a function

E : M(R)→ P(N) (1)

assigning to each measurable subset U of R a subset of N. The subset E(U) ⊂ N is interpreted
as the part of the phase space that grants outcomes U ⊂ R under the observable in question.
An observable should satisfy

E(∅) = ∅ (2)

E(R) = N (3)

E(t∞i=0Ui) = t∞i=0E(Ui). (4)

The probability for an outcome of a measurement to be contained in U is given by

ω(E(U)). (5)

In the quantum-mechanical setting we replace N by a Hilbert space H with orthonormal
basis {en | n ∈ N}. A state ω is a probability distribution on some basis {ei} of H. We write
this state as an operator

r =

∞∑
i=1

piPei , (6)

where pi is the probability of the basis-vector ei and Pei is the orthonormal projection on ei. In
this way a state forms a probability measure on orthonormal subsets U of H.

U → Tr(rPU ), (7)

with PU the orthonormal projection on U . This time an observable E is a function

E : M(R)→ P (H), (8)
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where P (H) is the set of orthonormal projections on H. This map should satisfy

E(∅) = 0 (9)

E(R) = I (10)

E(t∞i=1Ui) = ⊕∞i=1E(Ui) and for all i 6= i′ E(Ui′) ⊥ E(Ui). (11)

The probability for the set of outcomes U ⊂ R is now

∞∑
i=1

ω(ei), (12)

where ei is a basis of E(U). For short we can write this expression by ω(E(U)).

Let a group G act on the observables

E → g · E. (13)

At this point it is not yet clear what correct implementations of G actions on the set of observ-
ables should look like.

In this thesis we are interested in the observable associated to the energy, the so-called
Hamiltonian. We will impose a symmetry condition on this observable E and require that

E = g · E. (14)

A quantum system will be a Hilbert space H, a symmetry group G and a way to impose a
symmetry with underlying group G on the observables. Our mission is now to classify for a
Hilbert space H and symmetry group G all possibilities we are presented with. Firstly we
need to track down all possible ways in which we can implement a symmetry with underlying
group G. Secondly we need to find all Hamiltonians satisfying eq. (14). Thirdly we investigate
what states such a Hamiltonian can separate. Lastly, the connected components of the space of
possible Hamiltonians are tracked down. The last part is done under the assumption that we
are looking at an insulator and is useful in the context of topological insulators.

In chapter 1 we define the correct notion of symmetry (to be justified in chapter 2) and
classify the possible quantum systems.

In chapter 2 we find that the maps E correspond to self-adjoint operators and that symme-
tries should act as unitary or anti-unitary operators. This will justify the definition of a quantum
system. In the end we classify the general form of a Hamiltonian respecting the symmetry.

In chapter 3 we define quantum states. The set of states restricted to observables satisfying
eq. (14) is studied and classified.

In chapter 4 we impose that the Hamiltonian is ‘gapped’. Under this assumption we treat
two ways in which we can classify the connected components of the Hamiltonians.

The previous chapters deal with compact symmetry groups. In the last chapter we generalise
to systems presenting a (non-compact) Zd lattice symmetry.
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Chapter 1

Quantum systems

In this chapter we start with introducing the definition of a quantum system. Next we classify
the possibilities under a fixed symmetry group G and Hilbert space H. The justification of the
definition is postponed to the next chapter.

1.1 Quantum systems

The definition of a quantum system relies on the notions of a graded group, a twisted extension
[11] and an (anti)-unitary operator. We start out by defining these three notions.

First we define a grading of a topological group G.

Definition 1.1.1. A φ-graded group is a topological group equipped with a continuous homo-
morphism

φ : G→ Z/2Z. (1.1)

Elements g ∈ G for which φ(g) is 1 or −1 are called even and odd respectively.

A twisted extension with respect to a grading φ is a small adaptation of the better known
notion of a central extension.

Definition 1.1.2. Let A be an Abelian topological group. A central extension τ of a topological
group G by A is a short exact sequence

e // A
ι
// Gτ

π
// G // e (1.2)

of topological groups, where A lies in the centre of Gτ .

In other words, ι and π are continuous homomorphisms, which are open onto their image,
that are injective and surjective respectively. Notice we abuse the notation a bit by saying
A ⊂ Gτ . Furthermore ι(A) = ker(π) and ι lies in the centre of Gτ .

In order to get a twisted extension we adapt the commutation relations in definition 1.1.2 a
little.

Definition 1.1.3. Let A be an Abelian group and G be a φ-graded group. A φ-twisted extension
τ of a group G by A is a short exact sequence

e // A
ι
// Gτ

π
// G // e (1.3)
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of topological groups. This time we require for the commutation relations

agτ = gτaφ(π(gτ )), (1.4)

for a ∈ A. We usually abbreviate φ(π(gτ ))by writing φ(gτ ).

Let T be the subgroup of complex numbers of norm one. Throughout this paper we will be
interested in extensions of φ-graded Lie groups by A = T only. It turns out that such extensions
are Lie groups as well.

Theorem 1.1.4. Let G be a φ-graded Lie group, which is a semi-direct product of the connected
component of the identity of G and a discrete subgroup group. Let A be an Abelian compact Lie
group. If Gτ is a twisted extension of G by A, there is a unique way to equip Gτ with a manifold
structure, for which π and ι in eq. (1.2) are smooth homomorphisms. Gτ is a Lie group with
respect to this manifold structure.

Proof. For the untwisted (central) see [42] theorem 16.02 which combines results from [29]
and [16]. By lemma 1.2.15 taking extensions distributes over the semi-direct product. Since
extensions of discrete groups by T can always be equipped with a manifold structure, namely
taking the disjoint union of copies of T, we only need to worry about twisted extensions of the
component of the identity. Twisted extensions are due to the continuity of φ always central
extensions. We can hence apply the untwisted case.

Corollary 1.1.5. Theorem 1.1.4 implies that we may restrict ourselves to twisted extensions of
G that are Lie groups.

Now we turn our attention to anti-unitary operators. The adjoint of a bounded anti-linear
operator a is defined to be the unique operator satisfying

〈aψ, φ〉 = 〈ψ, a∗φ〉. (1.5)

Definition 1.1.6. An operator v is called anti-unitary if it is anti-linear and vv∗ = v∗v = I.

There is a simple way to describe these anti-unitary operators. Let H be a separable Hilbert
space and C be the anti-linear operation of complex conjugation defined by

Cψ = ψ. (1.6)

Lemma 1.1.7. If the Hilbert space H is separable each anti-unitary operator v can be written
as

v = uC, (1.7)

with u unitary.

Proof. Let v be an anit-unitary operator. In that case u = vC is a unitary operator. Since
C2 = I we find v = uC as desired.

Write AutQM (H) for the group of unitary and anti-unitary operators. Equip this group with
the following grading

φ(u) =

{
1 if u is unitary,

−1 if u is anti-unitary.
(1.8)

Equip this group with the strong operator topology.

Lastly we get to the notion of a twisted representation.
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Definition 1.1.8. Let G be a φ-graded group. A φ-twisted representation of Gτ is a continuous
homomorphism

ρτ : Gτ → AutQM (H) (1.9)

respecting the grading. Furthermore, we require ρτ (λ) = λI for all λ ∈ T ⊂ Gτ .

We are now ready to formally define what we mean by a quantum system.

Definition 1.1.9. A quantum system is a tuple

(H,G, φ, τ, ρτ ), (1.10)

with H a separable complex Hilbert space, G a finite dimensional Lie group, φ a grading of G,
τ a φ-twisted extension of G, and finally ρτ a φ-twisted representation of Gτ . In regard of the-
orem 1.1.4 we additionally require that G is the semi-direct product of the connected component
of the identity and a discrete sub-group.

Non-compact Lie groups are generally quite hard to handle. Restricting to compact Lie
groups is therefore usually necessary for the classification theorems to come.

The occurrence of a Hilbert space in the definition plays the role of the ’phasespace’ in
classical physics and should not come as a surprise to anyone who has encountered quantum
physics before. The group G signifies the symmetry group of the system and should not raise
too many eyebrows either. However, the extension τ and implementation of the symmetry in
a possibly anti-unitary way might look unnatural. The justification of this is postponed to
section 2.2.1. See also Appendix A for an example of an anti-unitary symmetry.

We yet need to say when quantum systems are equivalent or isomorphic.

Definition 1.1.10. A twisted extension Gτ of G by A is isomorphic to an extension Gτ
′

of G′

by A′ if there exists a commutative diagram

1 //

��

A //

ψ1

��

Gτ

ψ2

��

// G

ψ3

��

// 1

��

1 // A′ // Gτ
′

// G′ // 1,

(1.11)

where ψ1, ψ2 and ψ3 are (Lie) group isomorphisms. We denote this by Gτ ∼= Gτ
′

The expression Gτ ∼= Gτ
′

is stronger then merely isomorphism of groups. In turn, two
representations ρτ and ρτ

′
are equivalent whenever their domains Gτ and Gτ

′
are isomorphic

and there exists a unitary operator u such that

ρτ (gτ ) = uρτ
′
(ψ(gτ ))u−1, (1.12)

with ψ the given isomorphism between Gτ and Gτ
′
.

Definition 1.1.11. Two quantum systems (H,G, φ, τ, ρτ ) and (H ′, G′, φ′, τ ′, ρ′τ ) are equivalent
whenever ρτ ∼= ρ′τ , in particular G′τ ∼= Gτ and H ∼= H ′.

We now define what we mean by isomorphism of quantum systems. The definition may seem
arbitrary, a justification follows in definition 2.3.4 below.
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Definition 1.1.12. Given two quantum systems (H,G, φ, τ, ρτ ) and (H ′, G′, φ′, τ ′, ρ′τ ), let Asa
and A′sa respectively be the set of bounded self-adjoint operators that intertwine ρτ (Gτ ) respec-
tively ρ′τ

′
. We say that the two quantum systems are isomorphic whenever

Asa = uA′sau
∗ (1.13)

for some unitary or anti-unitary operator u : H → H ′.

The next proposition makes sure that two equivalent quantum systems are isomorphic.

Proposition 1.1.13. Whenever (H,G, φ, τ, ρτ ) and (H ′, G′, φ′, τ ′, ρτ
′
) are equivalent we have

(H,G, φ, τ, ρτ ) ∼= (H ′, G′, φ′, τ ′, ρτ
′
). (1.14)

Proof. It is sufficient to prove that the self-adjoint intertwiners Asa and A′sa of ρτ (Gτ ) and
ρ′τ (G′τ ) are unitarily equivalent whenever ρτ and ρ′τ are unitary equivalent with respect to the
unitary operator u. To this end we show that the map

Asa → A′sa (1.15)

a 7→ uau−1 (1.16)

is well defined and bijective. To see that it is well defined we need to prove that uAsau
−1 ⊂ A′sa.

That is to say, for each a ∈ A, uau−1 intertwines ρτ
′
(Gτ

′
). We verify this by calculating for

gτ
′ ∈ Gτ ′ ,

uau−1ρτ
′
(gτ
′
) = uau−1uρτ (φ(gτ))u−1 = uaρτ (φ(gτ))u−1 (1.17)

= uρτ (ψ′(gτ))u−1uau−1 = ρτ
′
(gτ
′
)uau−1.

Bijectivity of this map follows from bijectivity of u.

Remark 1.1.14. Mind that isomorphism is a strictly weaker notion then equivalence.

An important question remaining is whether it is really important what twisted extension
of G we choose to work with. Is it just a matter of bookkeeping, or can two distinct extensions
lead to non-isomorphic quantum systems? The following example demonstrates that two distinct
extensions generally lead to distinct quantum systems.

Example 1.1.15. Let H = C2 and G = Z/2Z = {±1}. Pick the extension Gτ to be the direct
product {±1} × T. Consider the following twisted representation

ρτ ((±1, λ))v =

{
v if v ∈ L(e1)
±v if v ∈ L(e2)

(1.18)

The self-adjoint elements commuting with this representation are the matrices for which e1 and
e2 are eigenvectors.

Now take Gτ
′

to be the extension that is the set ±1× T with multiplication defined by

(±1, λ) · (1, λ′) = (±1, λλ′) (1.19)

(±1, λ) · (−1, λ′) = (∓1, λ−1λ′). (1.20)

The multiplication is associative since T is commutative. Now consider the following represen-
tation of Gτ

′
:

(1, λ) 7→ λI (1.21)

(−1, λ) 7→ CλI, (1.22)
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with C complex conjugation. The self-adjoint elements commuting with this representation con-
sists of all self-adjoint real matrices.

The two distinct extensions therefore lead to distinct isomorphism classes of quantum sys-
tems.

We conclude that we cannot restrict ourselves to just one extension of G, but must study
them all.

1.2 Classification of extensions

The aim in this section is to find all possible twisted extensions of a given symmetry group G
and Hilbert space H. That is to say, given a group G and a Hilbert space H, we want to track
down all possible gradings φ and twisted extensions τ .

A grading φ of the Lie group G is by definition an element of the set

Hom(G,Z/2Z), (1.23)

where we consider continuous homomorphisms only.

In the rest of this section we will track down all possible φ-twisted extensions Gτ of G
for some fixed grading. The discussion consists of four parts. First we determine the twisted
extensions of discrete, simply connected and connected groups, thereafter we combine these
cases to obtain a result for more general Lie groups.

1.2.1 The discrete case

Let G be a discrete group and A be an Abelian Lie group. The φ-twisted extensions of G by
A can be identified with an easily computable group. The construction of this group is a small
modification of the usual procedure for the case of central extensions [43].

Define the set of cocycles Z2(G,A) (with respect to the chosen φ) to be all functions c :
G×G→ A that satisfy

c(g, h)c(gh, z) = c(h, z)φ(g)c(g, hz) (1.24)

c(g, e) = c(e, a) = e. (1.25)

The set Z2(G,A) forms a group under pointwise multiplication. A cocycle c ∈ Z2(G,A) deter-
mines a twisted extensions of G by A. Write

G×c A (1.26)

for the group that is G×A as a set and whose multiplication is defined by

(g, a) ·c (g′, a′) = (gg′, c(g, g′)aφ(g′)a′). (1.27)

Group inversion is then defined by

(g, a)−1 = (g−1, a−φ(g−1)c(g, g−1)−1). (1.28)

Equation (1.26) is a φ-twisted extension of G by A. It turns out that in fact all φ-twisted
extensions of discrete groups are isomorphic to eq. (1.26) for some c ∈ Z2(G,A).
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Lemma 1.2.1. Let G be a discrete group and A be an Abelian Lie group. The map sending a
cocycle c ∈ Z2(G,A) to

G×c A (1.29)

is a surjection onto the φ-twisted extensions of G by A.

Proof. Let Gτ be a φ-twisted extension of G. Fix once and for all a section s : G → Gτ and
define the function c : G×G→ A by

c(g, h) = s(g)s(h)s(gh)−1. (1.30)

This function c is chosen in such a way that for g, h ∈ G and a, a′ ∈ A

s(g)as(g′)a′ = s(gg′)c(g, g′)aφ(g′)a′. (1.31)

Associativity of multiplication implies eq. (1.24) and hence that c ∈ Z2(G,A). It is easy to see
that the extension Gτ is isomorphic to the extension in eq. (1.29) for this particular cocycle.

The next step is to find the possibilities up to isomorphism (recall eq. (1.11)). To this end,
let B1(G,A) be the set of functions k : G×G→ A that can be written as

k(g, h) = b(g)−φ(h)b(h)b(gh)−1, (1.32)

for some map b : G→ A. It is easy to verify that B1(G,A) is a subgroup of Z2(G,A).

Lemma 1.2.2. Let G be a discrete group and A an Abelian Lie group. For c, c′ ∈ Z2(G,A)

G×c A ∼= G×c′ A (1.33)

iff
c′ = ck, (1.34)

for some k ∈ B1(G,T).

Proof. First assume eq. (1.33). There exists an isomorphism ψ : G ×c A → G ×c′ A fitting in
the diagram eq. (1.11). This implies that

ψ(g, a) = (g, ab(g)), (1.35)

for some function b : G→ A. We calculate

(gh, c′(g, h)) = (g, e) ·c′ (h, e) = ψ(g, b(g)−1) ·c′ ψ(h, b(h)−1) (1.36)

= ψ
(
(g, b(g)−1) ·c (h, b(h)−1)

)
= ψ

(
(gh, b(g)−φ(h)b(h)−1c(g, h)

)
= (gh, b(g)−φ(h)b(h)−1c(g, h)b(gh))

verifying that
c = c′k (1.37)

for k ∈ B1(G,T).

On the other hand, each k in B1(G,T) for which c = kc′ provides a function b that defines
an isomorphism ψ via

ψ(g, λ) = (g, b(g)a). (1.38)
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Applying the above two lemmas to the case of quantum systems at hand, we obtain the
following result.

Corollary 1.2.3. Let G be a discrete symmetry group. The twisted extensions up to isomor-
phism, are in bijective correspondence with

Hom(G,Z/2Z)× Z2(G,T)/B1(G,T), (1.39)

where the first part of the cartesian product fixes the grading φ and the second part determines
the φ-twisted extension.

1.2.2 The simply connected case

We would like to find a similar identification in the case of twisted extensions of simply con-
nected Lie groups. Note that twisted extensions of simply connected Lie groups are in fact
just central extensions. The procedure for discrete subgroups is not suitable in this case, since
the construction of central extensions using cocycles in Z2(G,A) does not guarantee a smooth
multiplication. The correct procedure is to transit to extensions of Lie algebras. For a start we
define what we mean by a central extensions of Lie algebras [44].

Definition 1.2.4. A central extension of a Lie algebra g by a is a sequence of Lie algebras

0 // a
i
// gτ

π
// g // 0, (1.40)

where the arrows are Lie algebra homomorphisms, the map i is injective, the map π is surjective
and Im(i) = ker(π). Furthermore

[a, gτ ] = 0. (1.41)

Two central extensions are isomorphic whenever there exists a Lie algebra isomorphism L
that fits in the following commuting diagram

gτ
′

L

�� ��
0 // a

??

// gτ // g // 0.

(1.42)

The following lemma justifies the definition above.

Lemma 1.2.5. Let G be a Lie group, A an Abelian Lie group and Gτ a central extension

1 // A
ι
// Gτ

π
// G // 1. (1.43)

Let in turn a, gτ and g be the Lie algebras of the respective Lie groups. The following sequence

0 // a
Teι
// gτ

Teπ
// g // 0, (1.44)

where Te is the derivation at the unit, is a central extension of g by a.

Furthermore two central extensions of Lie algebras obtained from isomorphic Lie group are
isomorphic.
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Proof. The map ι is an embedding of A in Gτ , hence Teι will be an embedding of a in gτ .
Secondly, since the Lie groups Imι and kerπ are equal, their Lie algebras should be equal as
well. Therefore ImTeι = kerTeπ. Since G has dimension dim(Gτ ) − dim(A) and the kernel of
Teπ has dimension dim(A), it follows that Teπ is surjective. Lastly, the fact that A is contained
in the centre of Gτ implies that

[a, gτ ] = 0. (1.45)

This verifies all requirements in definition 1.2.4.

If two extension are isomorphic there exists an isomorphism ψ fitting in the diagram eq. (1.11).
The derivative of this map grants the desired isomorphism between the central extensions of the
Lie algebra.

Central extensions of connected Lie groups determine central extensions of Lie algebras. The
question remaining is to what extent the central extensions of Lie algebras determine central
extensions of connected Lie groups. The question up to what extent a Lie algebra determines a
Lie group is a well known result in Lie theory.

Proposition 1.2.6. Let g be a finite-dimensional Lie algebra. Up to isomorphism there exists
one and only one simply connected Lie group with this Lie algebra.

Any connected Lie group G with Lie algebra g is isomorphic to

G̃/D, (1.46)

where G̃ is the unique simply connected Lie group with Lie algebra g and D a discrete subgroup
in the centre of G̃. The subgroup D is determined up to isomorphism of G̃. That is to say

G̃/D ∼= G̃/D′ (1.47)

iff there exists an automorphism ψ : G̃→ G̃ such that ψ(D) = D′.

Proof. See [47] corollary 1.21.

This suggests the following definition.

Definition 1.2.7. Let G be a Lie group. We call a simply connected group G̃ for which G̃/D ∼=
G, for some discrete subgroup in the centre of G̃, the universal cover of G.

Consider the map assigning to each Lie group its Lie algebra. The above result shows
that this map is bijective after restriction to the domain of simply connected Lie groups. It
is now natural to wonder whether the restriction to simply connected groups makes the map
in lemma 1.2.5, taking central extensions of Lie groups to central extensions of Lie algebras,
bijective as well. In order to prove this we need the following result.

Proposition 1.2.8. Let G̃ and H̃ be two simply connected Lie groups with Lie algebras g and
h. A Lie algebra homomorphism L : g → h induces a unique homomorphism ψ̃ : G̃ → H̃ for
which Teψ̃ = L.

Let G and H be Lie groups groups and let G̃ and H̃ be their respective universal covers. For
each homomorphism ψ : G → H there exists a unique homomorphism ψ̃ : G̃ → H̃, for which
Teψ̃ = Teψ. This particular map ψ̃ is the unique map that descents to ψ after taking the quotient
of G̃ and H̃ by the discrete subgroups D ⊂ G̃ andD′ ⊂ H̃ for which G = G̃/D and H = H̃/D′.

Furthermore, if a ⊂ g is an ideal then Ã is a normal Lie sub-group of G̃ and the simply
connected Lie group with Lie algebra g/a is isomorphic to G̃/Ã.

12



Proof. See [39] chapter 8.

The above proposition delivers the bijection we were after.

Lemma 1.2.9. Let G̃ and Ã be simply connected Lie groups with Lie algebra g respectively a.
The map taking isomorphism classes of central extensions G̃τ of G̃ by Ã to isomorphism classes
of central extensions gτ of g by a, via the assignment in lemma 1.2.5 is bijective.

Proof. First we note that a central extension G̃τ of a simply connected group G̃ by a simply
connected group Ã is once again simply connected. This can be seen by using the standard long
exact sequence of a fibration

· · · // π2(G̃) // π1(Ã) // π1(G̃τ ) // π1(G̃) // π0(Ã) // · · · , (1.48)

where π1(G̃τ ) is squeezed between two trivial groups and hence trivial itself.

The assignment is injective by the first par the claim in proposition 1.2.6.

We now prove that the map is surjective. Let

0 // a
i
// gτ

p
// g // 0 (1.49)

be some central extension of g by a. By proposition 1.2.8 we obtain a sequence of simply
connected Lie groups

e // Ã
ι
// G̃τ

π
// G̃ // e. (1.50)

Since a ⊂ gτ is an ideal we obtain by proposition 1.2.8 that Ã is a normal Lie sub-group of G̃τ

and G̃ ∼= G̃τ/Ã. Pick ι′ the inclusion of A in Gτ and π′ to be the quotient of G̃τ by Ã. The
derivation of these maps ι′ and π′ at the unit is i respectively p and hence by the uniqueness in
proposition 1.2.8 ι = ι′ and π = π′. Therefore G̃τ is indeed a central extension of G̃ by Ã.

We found that all central extensions of simply connected Lie groups by Abelian simply
connected Lie groups are given by central extensions of their respective Lie algebras. In the
case of quantum systems we are interested in extensions by T, which is not simply connected.
Luckily we can generalise the result.

Proposition 1.2.10. Let G be a simply connected Lie group. The central extensions of G by
T are in bijective correspondence with Lie algebra extensions of g by R. The bijection is given
by composing the following two maps. First assign to an extension

e // T
i
// Gτ

π
// G // e (1.51)

the by proposition 1.2.8 unique extension

e // R
ĩ

// G̃τ
π̃
// G // e, (1.52)

where R and G̃τ are the universal covers of T and Gτ . To finish we assign to such a central
extension of G by R a Lie algebra extension in the way of lemma 1.2.5.

13



Proof. Since Lie algebra extensions are in bijective correspondence with central extensions of
simply connected Lie groups was already established it suffices to prove that bijectivty of the
first map. the following map is bijective. We should check that eq. (1.52) is indeed a central
extension. The sequence eq. (1.51) is a central extension of connected groups and hence their
Lie algebras form by lemma 1.2.5 a central extension as well. By lemma 1.2.5 this implies that
the sequence eq. (1.52) of simply connected Lie groups is a central extension.

Next we prove surjectivity of this mapping. Let G̃τ be an extension of G by R. That is to
say, we have an exact sequence

e // R
ĩ

// G̃τ
π̃
// G // e. (1.53)

Define D = ĩ(Z). Obviously π̃(D) = e and ĩ−1(D) = Z. For this reason the exact sequence
descends to an exact sequence

e // R/Z ∼= T
ĩ

// G̃τ/D
π̃
// G // e. (1.54)

Hence G̃τ/D is an extension of G by T. The universal cover of this extension is G̃τ , proving
surjectivity.

Lastly, we look at the injectivity of the map. Assume G̃τ and G̃τ ′ are isomorphic. In regard
of eq. (1.11) the isomorphism above should satisfy

ĩ = ψ̃ ◦ ĩ′. (1.55)

The isomorphism hence descends to an isomorphism

Gτ ∼= G̃τ /̃i(D) ∼= G̃τ ′ /̃i(D′) ∼= Gτ
′
. (1.56)

In case G is not simply connected, a central extension of g by R might not lift to a central
extension of G by T.

In order to find the central extensions of a simply connected Lie groups G by T we can by
lemma 1.2.9 equivalently search for central extensions of the Lie algebras g by R. In case G is
only connected we need to look for extension of g by R such that Ad(D) = 0. For this reason we
now focus on finding the Lie algebra extensions. The central extension problem for Lie algebras
can be dealt with in a similar way as we did in the discrete case [43].

Define for a Lie algebra g and Abelian Lie algebra a the set Z2(g, a) of all bilinear functions
c : g× g→ a satisfying

c(X,Y ) = −c(Y,X) (1.57)

0 = c(X, [Y, Z]) + c(Z, [X,Y ]) + c(Y, [Z,X]). (1.58)

The set Z2(g, a) forms a group under pointwise addition. For a cocycle c ∈ Z2(g, a) we can
define a Lie algebra

g⊕c a (1.59)

by defining for the Lie bracket as

[X ⊕X ′, Y ⊕ Y ′]c = [X,Y ]′ ⊕ c(X,Y ), (1.60)

where [, ]′ is the Lie bracket of g.
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Lemma 1.2.11. All central extensions of g by a are isomorphic to eq. (1.59) for some c ∈
Z2(g, a).

Proof. Since we are dealing with a central extension

[a, gτ ] = 0. (1.61)

It follows that the Lie bracket is determined by a bracket

gτ/a× gτ/a→ gτ . (1.62)

Since g ∼= gτ/a this is to say the Lie algebra is defined once we know the bracket

g× g→ gτ . (1.63)

This Lie bracket has for X,Y ∈ g the general form

[X,Y ] = [X,Y ]′ + c(X,Y ), (1.64)

where [, ]′ is the bracket in g and c is some bilinear function c : g× g→ a. By the requirements
of the Lie bracket we can derive that c satisfies eq. (1.57) and is hence a cocycle in Z2(g, a).
This proves that gτ is isomorphic to eq. (1.59) for some c ∈ Z2(g, a).

Next we need to track down these possibilities up to isomorphism. Define a subgroup B1(g, a)
of Z2(g, a) by selecting all elements satisfying

c(X,Y ) = ω([X,Y ]) (1.65)

for some linear function ω : g→ a.

Lemma 1.2.12. Two extensions g⊕c a and g⊕c′ a of g by a are isomorphic iff

c = c′ + b (1.66)

for some b ∈ B1(g, a).

Proof. Assume that
g⊕c a ∼= g⊕c′ a. (1.67)

Since the two Lie algebras are isomorphic there exists a bijective linear map L : g⊕c a→ g⊕c′ a
respecting the Lie bracket. Since eq. (1.42) commutes we have for each a ∈ a

La = a. (1.68)

For X,Y ∈ g, define
b(X,Y ) = [X,Y ]− L([X,Y ]), (1.69)

obviously b ∈ B1(g, a). Furthermore, we find that

c(X,Y )− c′(X,Y ) = [X,Y ]c − [X,Y ]c′ = [X,Y ]c + L
(
[X,Y ]c

)
(1.70)

= [X,Y ] + c(X,Y )− L
(
[X,Y ]− c(X,Y )

)
= [X,Y ]− L[X,Y ] = b(X,Y ),

where we used eq. (1.68) in the fourth step. This verifies eq. (1.66).

On the other hand, for each b ∈ B1(g, a) we may define a linear function L by

L(Z)

{
[X,Y ] + b(X,Y ) if Z ∈ [gτ , gτ ] ,

Z if Z ∈ [gτ , gτ ]⊥.
(1.71)

It is a straightforward check that L is a Lie algebra isomorphism fitting in the diagram eq. (1.42).
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Wrapping it all together leads to the main result for central extensions of connected Lie
groups.

Corollary 1.2.13. Let G be a simply connected Lie group. The central extensions of G by T
bijectively correspond with the group

Z2(g,R)/B1(g,R). (1.72)

The correspondence is obtained by using the three bijective maps constructed in the above.
Firstly, the bijective mapping between central extensions of G by T and central extensions of
G̃ by R in proposition 1.2.10. Secondly, the bijective map in lemma 1.2.9 between central exten-
sions of simply connected Lie groups and their Lie algebras. Lastly the bijective correspondence
of central Lie algebra extensions and the group in eq. (1.72).

1.2.3 The connected case

In many examples the group G is merely connected and not simply connected. In this case
we can look at an adaptation of the discrete case [43]. In the same spirit as before, define the
group Z2

s (G,A) consisting of functions that satisfy eq. (1.57) and are smooth around the identity
e ∈ G. Define B1(G,A) to be the subgroup of Z2(G,A) of elements for which eq. (1.32) holds.

Proposition 1.2.14. The central extensions of a connected Lie group G by an Abelian Lie
group A are in bijectively correspond with

Z2
s (G,A)/B1

s (G,A). (1.73)

via the assignment
c→ G×c A. (1.74)

Proof. The proof of this proposition is a modification of the proof in lemma 1.2.1 and lemma 1.2.2.
First we note that there exists a section s : G→ Gτ that is locally smooth around e ∈ G. This
in turn implies that the cocycle c with respect to this s should be smooth around e ∈ G as well.
To finish we need to show whenever c is smooth around e ∈ G, that G×cA is a smooth manifold
with smooth multiplication.

Pick to this end a contractible neighbourhood V of e on which c is smooth. Now V × A
allows us to construct a fundamental system of neighbourhoods turning Gτ into a manifold.
The cocycle c is smooth and hence the multiplication will be smooth as well.

As opposed to the other groups defined thus far, this group is in general quite hard to
compute explicitly.

1.2.4 The general case

Thus far we obtained an identification of the φ-twisted extensions of discrete, simply connected
and connected Lie groups by relatively easy computable groups. If we want to obtain an identi-
fication for general Lie groups G occurring in quantum systems we need to invoke the additional
assumption made in the definition of a quantum system. A symmetry group in a quantum
system is given by the following semi-direct product

G ∼= Ge ×α (G/Ge), (1.75)
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where Ge is the connected component of e ∈ G and α is a homomorphism

α : G/Ge → Aut(Ge). (1.76)

Recall that multiplication in a semi-direct product Ge ×α (G/Ge) is defined by

(u, z) · (u′, z′) = (uα(z)(u′), zz′). (1.77)

Since Ge is connected and G/Ge is discrete, we can through corollary 1.2.3 and corol-
lary 1.2.13 find the respective φ-twisted extensions of these groups. From a φ-twisted extensions
of Ge and G/Ge we can construct a φ-twisted extensions Gτ of G in the following way. Given
a homomorphism

α̃ : G/Ge → Aut(Gτe ) (1.78)

that lifts the homomorphism α occurring in the quantum system. That is to say, for each
z ∈ G/Ge the diagram

Gτe π
//

α̃(z)

��

Ge

α(z)

��

Gτe π
// Ge

(1.79)

must commute. The quotient

Gτe ×α̃ (G/Ge)
τ/ ∼ , where (uτ , zτ ) ∼ (λuτ , λzτ ) for λ ∈ T, (1.80)

with multiplication defined by

(uτ , zτ ) · (u′τ , z′τ ) = (uτ α̃(π(zτ ))(u′τ ), zτz′τ ), (1.81)

is a φ-twisted extensions of G. As a matter of fact we obtain all φ-twisted extensions of G this
way [11] page 29.

Lemma 1.2.15. Let G be a semi-direct product Ge ×α (G/Ge). Any extension of G by T is
isomorphic to eq. (1.80) for some lift α̃ of α.

Proof. Let Gτ be a φ-twisted extension of G and π the quotient map π : Gτ → Gτ/T ∼= G.
Then Gτ is a semi-direct product of π−1(Ge) = Gτe and π−1(G/Ge) = (G/Ge)

τ . The α̃′ of this
semi-direct product is

α̃′ : (G/Ge)
τ → Aut(Gτe ) (1.82)

α̃(zτ )(uτ ) = zτuτzτ−1. (1.83)

Since T commutes with Ge, the homomorphism α̃′ only depends on π(zτ ). Therefore α̃′ can
be replaced by a homomorphism α̃ : G/Ge → Aut(Gτe ). We conclude that Gτ is isomorphic to
eq. (1.80), with respect to this α̃.

In order to find all φ-twisted extensions we may proceed by finding all φ-twisted extensions
of Ge and G/Ge plus all lifts α̃ of α. The φ-twisted extensions of connected and discrete Lie
groups were already taken care of in the previous two subsections.

Write Lift(α) for the set of homomorphisms α̃ that lift α.
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Theorem 1.2.16. Let G be a symmetry group of some quantum system. If Ge is simply
connected the twisted extensions of G are in bijcective correspondence with the set

Hom(G/Ge,Z/2Z)× Lift(α) (1.84)

× Z2(G/Ge,T)/B1(G/Ge,T)× Z2(g,Z)/B1(g,R).

If Ge is not simply connected the twisted extensions of G are given by

Hom(G/Ge,Z/2Z)× Lift(α) (1.85)

× Z2(G/Ge,T)/B1(G/Ge,T)× Z2
s (Ge,T)/B1

s (Ge,T),

where we may have some redundancy due to the fact that distinct elements in Lift(α) might
result in isomorphic groups.

Proof. The expression Hom(G/Ge,Z/2Z) gives us the gradings of G. By assumption we can
write

G = G/Ge ×α Ge, (1.86)

for some homomorphism α : G/Ge → Aut(Ge). By lemma 1.2.15 we can simply search for
twisted extensions of Ge respectively G/Ge and lifts of α. The group G/Ge is discrete and the
twisted extension are therefore given by corollary 1.2.3. In case Ge is simply connected, the
extensions are given by corollary 1.2.13. In case Ge is merely connected the extensions are given
by proposition 1.2.14. Finally Lift(α) gives all possible lifts of α.

1.2.5 Examples

For the sake of concreteness we treat two examples for finding twisted extensions using theo-
rem 1.2.16.

Consider the group Z. First we look for the number of gradings of this group. The grading
φ is fixed whenever we know φ(1), so there are two gradings in all.

We will now calculate the group Z2(Z,T)/B1(Z,T). We find by eq. (1.24) that for c ∈
Z2(Z,T)

c(z, z′)c(0, z) = c(0, z′ + z)c(z, z′). (1.87)

that is to say (0, z) is equal for each z ∈ Z. Furthermore whenever we know c(±1, z) for all
z ∈ Z, we find all c(z′, z) for z′ 6= 0 by ingratiatingly applying the equality

c(z′ ± 1, z) = c(1, z)φ(z′)c(z′, z ± 1)c(z′,±1)−1. (1.88)

The equality above is again obtained from eq. (1.24). The observations above imply that two
cocycles c, c′ ∈ Z2(Z,T) are equal iff

c(0, 0) = c′(0, 0) and c(±1, z) = c′(±1, z), for all z ∈ Z. (1.89)

For some c ∈ Z2(Z,T) define the function b : Z→ T by

b(0) = c(0, 0) (1.90)

b(1) = c(1, 1)

b(−1) = c(−1, 1)

b(z + 1) = b(z − 1)b(z)c(1, z)−1 for z ≥ 2

b(z − 1) = b(z + 1)b(z)c(−1, z)−1 for z ≤ −2.
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This function is defined in such a way that eq. (1.89) holds for

c′(z, z′) = b(z)b(z′)b(z + z′)−1 ∈ B1(Z,T). (1.91)

Therefore, c ∈ B1(Z,T). This holds for any cocycle, hence Z2(Z,T) = B1(Z,T). This means
there is only one φ-twisted extension.

There hence exist two twisted extensions of Z: the first is simply the direct product T× Z,
whereas the other is the semi-direct product T×φ Z with group action defined by

(λ, z)(λ′, z′) = (λλ′φ(z), z + z′), (1.92)

where φ(z) equals 1 if z is even and −1 if z is odd.

Now consider the Lie group R. This group is simply connected so we only need to calculate
Z2(R,R)/B1(R,R). We start with determining Z2(R,R). The cocycle c must be bilinear and
anti-symmetric. We obtain for X,Y ∈ R

c(X,Y ) = c(X,λX) = λc(X,X) = 0, (1.93)

where λ ∈ R is chosen such that λX = Y . We found that Z2(R,R) is trivial. There is hence is
no need to bother with B1(R,R).

There is only one twisted extension of T, namely the trivial extension

R× T. (1.94)

1.2.6 Group cohomology

It is helpful to see the groups Z2(G,A)/B1(G,A), Z2(g, a)/B1(g, a) and Z2
s (G,A)/B1

s (G,A) in
the context of a chain complex [32]. We use the standard chain complex of Lie algebras [43] and
a slightly adapted version of the standard chain complex for discrete groups in order to make it
fit for twisted extensions [44].

Definition 1.2.17. A chain complex is a sequence of Abelian groups and homomorphisms

0
δ1 // C1 δ2 // C2 δ3 // C3 δ4 // · · · , (1.95)

where for each n ∈ N, δn+1 ◦ δn = 0.

Define the n-th cohomology group to be

Hn(G,A) = ker(δn+1)/Im(δn). (1.96)

We start with the case of a discrete group G and an Abelian Lie group A. Write Cn(G,A)
for the Abelian group of functions

σ : ×nG→ A (1.97)

under pointwise multiplication. Secondly, define boundary maps by

δn+1 : Cn(G,A)→ Cn+1(G,A) (1.98)

δn+1(σ)(g1, · · · , gn+1) = σ(g2, · · · , gn+1)φ(g1)· (1.99)

Πn
i=1σ(g1, · · · , gi−1, gigi+1, · · · , gn+1)(−1)iσ(g1, · · · , gn)(−1)n+1

. (1.100)
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A straightforward check gives that δn+1 ◦ δn = 0 for each n ∈ N.

Define the chain complex Cs(G,A) in the same way, only now additionally requiring that
the maps in eq. (1.97) are smooth around e ∈ G.

Secondly we turn to the case of a Lie algebras. Let g and a be two Lie algebras. Write
Cn(g, a) for the Abelian group of multi-linear and anti-symmetric functions

σ : ×ng→ a, (1.101)

under pointwise addition. Next, define the boundary maps

δn+1 : Cn(g, a)→ Cn+1(g, a) (1.102)

δn+1(σ)(X1, · · · , Xn+1) =
∑
i<j

(−1)i+jσ([Xj , Xi], X1, · · · , Xi−1, Xi+1, · · · , Xj−1, Xj+1, · · · , Xn+1).

(1.103)

A straight forward check gives that δn+1 ◦ δn = 0 for each n ∈ N.

Corollary 1.2.18. From the above we can conclude

Z2(G,A)/B1(G,A) = H1(G,A) (1.104)

Z2(g, a)/B1(g, a) = H1(g, a) (1.105)

Z2
s (G,A)/B1

s (G,A) = H1
s (G,A). (1.106)

1.3 Pull-back construction

In this section we discuss a short cut for obtaining some twisted extensions, skipping the calcu-
lation of the cohomology groups. We do this by using the pull-back construction [11].

Definition 1.3.1. Let A and G be Lie groups, γ : G → A a continuous homomorphism and
π : Aτ → A a twisted extension. Define the pull-back Gτ to be the group

{(g, aτ ) ∈ G×Aτ | γ(g) = π(aτ )}, (1.107)

with multiplication defined in each component of the cartesian product by the multiplications in
Aτ and G. Write γτ for the projection on the second component of the cartesian product.

As one can expect from the notation Gτ is a twisted extension of G.

Lemma 1.3.2. For a continuous homomorphism of Lie groups γ : G → A and a twisted
extension Aτ of A, the pull-back Gτ is a twisted extension of G.

Proof. The direct product G×Aτ is a Lie group. Since γ and π are continuous we see by taking
limits that Gτ is a closed subgroup of G× Aτ . A well known result in Lie theory ([5] theorem
9.1) states that a closed subgroup Gτ is in fact a Lie subgroup.

Furthermore, the embedding i′ : Gτ → G × Aτ and the projection π′ : G × Aτ → G are
smooth. Define π : Gτ → G as the composition π′ ◦ i′. The kernel of this map is obviously T.
We found that Gτ is a twisted extension of G as desired.
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We can visualize the pull-back construction by the following commutative diagram with
exact rows

e

��

// T //

��

Gτ

γτ

��

// G

γ

��

// e

��
e // T // Aτ // A // e

, (1.108)

where the dashed arrows and Gτ are constructed from the rest of the diagram.

Lemma 1.3.3. Let G and A be Lie groups and let γ : G → A be a surjective continuous
homomorphism. The map assigning to a twisted extension Aτ of A its pull back Gτ is an
injective mapping from the set of twisted extensions of A to twisted extensions of G.

Proof. Suppose that two pull-backs Gτ and Gτ
′

are isomorphic. There exists an isomorphism
ψ between these twisted extensions

ψ : {(g, aτ ) ∈ G×Aτ | γ(g) = π(aτ )} → {(g, aτ
′
) ∈ G×Aτ

′
| γ(g) = π′(aτ

′
)}. (1.109)

Since ψ is required to fit in the diagram eq. (1.11) and since the quotient map of both Gτ and
Gτ
′

onto G is simply the projection on the first component, ψ must leave the first component
in the cartesian product fixed. We may recast the isomorphism by an isomorphism

ψ : {aτ ∈ Aτ | ∃g∈Gγ(g) = π(aτ )} → {aτ
′
∈ Aτ

′
| ∃g∈Gγ(g) = π′(aτ

′
)}. (1.110)

Finally since γ is surjective this is simply an isomorphism

ψ : Aτ → Aτ
′
. (1.111)

This isomorphsim fits in the diagram eq. (1.11) and hence Aτ ∼= Aτ
′
. This concludes the proof

of injectivity of the mapping.

Note that for each normal closed subgroup N of a Lie group G, the homomorphism γ : G→
G/N is surjective. Lemma 1.3.3 grants that the pull-back of twisted extensions of G/N, are
distinct twisted extensions of G. So for every normal subgroup N ⊂ G we can search for twisted
extensions of the simpler group G/N and by pulling them back obtain some twisted extensions
of G in an easier way.

For a φ-graded group we can apply this procedure to the normal subgroup G1 consisting of
the elements for which φ(g) = 1. There are two possibilities

G/G1 = {±1} or G/G1 = {1}. (1.112)

In case that G/G1 = {1} there is only the trivial extension, namely T. In case that G/G1 =
{±1}, there are two possibilities. First assume that elements in the pre-image of −1 commute
with T. In this case there is only the trivial twisted extension

{±1} × T. (1.113)

Now assume that elements in the pre-image of −1 anti-commute with T. In this case we are left
with the extension

{±1} ×′ T, (1.114)

where the multiplication is defined by

(±1, λ) · (±1, λ′) = (1, λ±1λ′) and (∓1, λ) · (±1, λ′) = (−1, λ±1λ′). (1.115)

The pull-backs of these three twisted extensions provide three distinct twisted extensions of G.
This is commonly referred to as the threefold way in solid state physics [11].
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1.4 Classification of twisted representations

In the previous part of this chapter we found all possible twisted extensions of a Lie group G.
Now we turn our attention to finding the twisted representations of these Gτ . In order to do
this, we will translate the problem to orthogonal graded real representations.

First, we introduce two graded groups of importance in this context.

Definition 1.4.1. Fix some Hilbert space H.

Write AutQM (H) for the group of unitary and anti-unitary operators on H, equipped with
the grading in eq. (1.8).

Write HR for the real linear span of some basis of H. We give the R-linear algebra
B(HR ⊕HR) a grading by decomposing

B(HR ⊕HR) =

{(
a −b
b a

)}
⊕
{(

a b
b −a

)}
a, b ∈ B(HR). (1.116)

Write Aut(HR ⊕HR) for the group consisting of homogeneous orthogonal operators in B(HR ⊕
HR).

We would like to bring a twisted representation ρτ in AutQM (H) back to a representation
ρgr of Gτ in Aut(HR ⊕HR), which resembles the usual approach for group representations. To
this end we will show that AutQM (H) and Aut(HR⊕HR) are isomorphic as graded groups. For
the proof we need some groundwork. First note that

H ∼= C⊗R HR = (1⊗R HR)⊕ (i⊗R HR) ∼= HR ⊕HR. (1.117)

We can decompose each C-linear map on H as

a = a1 + ia2, (1.118)

for a1, a2 : HR → HR. In the same way we can write each anti-linear operator as

b = aC = a1C + ia2C, (1.119)

where C is complex conjugation and a is a linear operator with decomposition a1 +ia2 as before.

Proposition 1.4.2. The graded group AutQM (H) is isomorphic to the graded group
Aut(HR ⊕HR). Using the notation above the isomorphism in question is given by sending each
unitary operator a to

ψ(a) = ψ(a1 + ia2) =

(
a1 −a2

a2 a1

)
(1.120)

and each anti-unitary operator aC to

ψ(aC) = ψ(a1C + ia2C) =

(
a1 a2

a2 −a1

)
. (1.121)

Proof. It is an easy verification that the maps in eq. (1.120) and eq. (1.121) form a graded
algebra isomorphism between B(HR ⊕ HR) and the algebra generated by the linear and anti-
linear operators. To complete the proof we must show that each unitary or anti-unitary operator
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is indeed sent to an orthogonal element in B(HR ⊕HR). It is sufficient to prove that the map
ψ respects the ∗-operation. For the linear case

ψ((a1 + ia2)∗) = ψ(a∗1 − ia∗2) =

(
a∗1 a∗2
−a∗2 a∗1

)
= ψ(a1 + ia2)∗. (1.122)

For the anti-linear case

ψ(((a1+ia2)C)∗) = ψ(C(a∗1−ia∗2)) = ψ((a∗1+ia∗2)C) =

(
a∗1 a∗2
a∗2 −a∗1

)
= ψ((a1+ia2)C)∗. (1.123)

It follows that we can recast a φ-twisted representation ρτ of Gτ in AutQM (H) as a graded
representation ρτgr in the algebra Aut(HR ⊕HR) simply by setting

ρτgr(g
τ ) = ψ(ρτ (gτ )), (1.124)

where ψ is the isomorphism in proposition 1.4.2. The map φ that indicated ρτ (gτ ) to be unitary
or anti-unitary now describes the commutation relation with the operator

J =

(
∅ −I
I ∅

)
(1.125)

that plays the role of the operator i. On HR ⊕HR we have

ρτgr(g
τ )J = φ(gτ )Jρτgr(g

τ ). (1.126)

To finish, we yet need to show that this assignment respects equivalence of representations.

Lemma 1.4.3. Two twisted representations ρτ and ρ′τ of Gτ are unitary equivalent iff the rep-
resentations ρτgr and ρ′τgr obtained via the map ψ in proposition 1.4.2 are orthogonally equivalent.

Proof. Whenever ρτ and ρ
′τ are unitary equivalent there exists a unitary operator u such that

ρτ = uρ′τu−1. This operator u will be sent to an orthogonal o = ψ(u), providing an orthogonal
equivalence between ρτgr and ρ′τgr.

For the other way around, assume that o is an orthogonal equivalence between the graded
orthogonal representations ρτgr and ρ′τgr. Since ρτ and ρ′τ send λ ∈ T ⊂ Gτ to λI, we must have

ρτgr(sin(θ) + i cos(θ)) = ρ′τgr(sin(θ) + i cos(θ)) =

(
sin(θ)I − cos(θ)I
cos(θ)I sin(θ)I

)
. (1.127)

The orthogonal operator o should therefore commute with these matrices. An easy calculation
shows that o must be of degree zero with respect to the grading in definition 1.4.1. That is
to say, it corresponds to a unitary u under the isomorphism ψ. This u now provides a unitary
equivalence of ρτ and ρ′τ .

All this yields to the main result of this section.

Theorem 1.4.4. Up to orthogonal equivalence, the φ-twisted representations of Gτ are in bi-
jective correspondence with φ-graded orthogonal representations of Gτ in B(HR⊕HR) satisfying

ρτgr(λ) = ρτgr(sin(θ) + icos(θ)) =

(
sin(θ)I − cos(θ)I
cos(θ)I sin(θ)I

)
, (1.128)

for λ ∈ T.
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Proof. Equation (1.124) gives a bijection between these representations of Gτ in AutQM (H) and
Aut(HR ⊕ HR). By lemma 1.4.3 this bijection respects equivalence. Since we specify that we
want a graded orthogonal representation and since Aut(HR⊕HR) are precisely all homogeneous
orthogonal elements we can equivalently represent the group in B(HR ⊕HR).

This theorem together with theorem 1.2.16 finishes our aim to characterize all quantum
systems with Hilbert space H and symmetry group G.
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Chapter 2

Observables

In the introduction we defined observables as projection valued measures. Projection-valued
measures are in bijective correspondence with self-adjoint operators. For this reason we focus
in this chapter on self-adjoint operators on a Hilbert space. Later on, we turn our attention to
the correct notion of symmetry. In the end we classify the general form of bounded observables
that respect the symmetry.

2.1 Self-adjoint operators

Good candidates for the observables of a quantum system would be the bounded self-adjoint
linear operators on the Hilbert space H that commute with ρτ (Gτ ). Many important observables
however turn out to be unbounded. This forces us to allow unbounded operators as well. Such
an unbounded self-adjoint operator a cannot be defined on the whole Hilbert space H. We
therefore require the second best thing and consider possibly unbounded linear operators with
a dense domain D(a) ⊂ H.

Definition 2.1.1. Let H be a Hilbert space. An operator a is a linear function from a dense
subspace D(a) of H to H. Write the set of all operators as O(H). Write B(H) for the subset
of bounded operators.

Due to the fact that unbounded operators are only defined on a dense domain D(a) ⊂ H,
you constantly need to keep track of this domain. Even the most basic definitions are hence a
bit more subtle then you might expect.

Two operators are equal iff they have equal domains and coincide on that domain. In case
D(a) ∩D(b) is dense, define the operator a+ b on this domain by (a+ b)ψ = aψ + bψ. In case
{ψ ∈ D(b) | bψ ∈ D(a)} is dense, define ab on this domain by (ab)ψ = a(bψ). In case ψ ∈ D(a),
define (λa)ψ by λ(aψ). Lastly, we define the quite elaborate operation of taking adjoints, [38]
definition 13.1.

Definition 2.1.2. Let a be an operator and D(a) ⊂ H its domain. The domain D(a∗) of a∗ is
the linear space consisting of vectors ψ such that the functional

D(a)→ C (2.1)

φ 7→ 〈aφ, ψ〉, (2.2)

is bounded. That is to say, 〈aφ, ψ〉 ≤ C ‖φ‖ for som C ∈ N.
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In case D(a∗) is dense we define a∗ on this domain by sending ψ to the unique ψ′ for which

〈aφ, ψ〉 = 〈φ, ψ′〉 (2.3)

for all φ ∈ D(a). This vector ψ′ exists due to the Riesz representation theorem.

An operator a is called symmetric if D(a) ⊂ D(a∗) and aψ = a∗ψ for all ψ ∈ D(a). In case
an operator a is symmetric and D(a) = D(a∗), a is called self-adjoint. Write Osa(H) for the
set of self-adjoint operators and Bsa(H) for the set of self-adjoint operators in B(H).

The subset B(H) of O(H) forms a C∗-algebra under the operations above.

In this thesis our interest lies in self-adjoint operators only. Note the annoying fact that a
symmetric operator might not be self-adjoint simply because its domain was chosen ‘too small’.
To counter this we define so-called extensions of operators, [38] definition 13.1.

Definition 2.1.3. Let a′ be some operator on a Hilbert space H. An operator a for which
D(a′) ⊂ D(a) and for which a and a′ coincide on D(a′) is called an extension of a. Denote this
by a′ ⊂ a. In case a is self-adjoint it is called a self-adjoint extension. Write Extsa(a′) for the
set of all self-adjoint extensions of a′.

Note that only symmetric operators can have self-adjoint extensions. A symmetric operator
may have none or multiple self-adjoint extension. We now take a moment to study extensions
of symmetric operators. There is a canonical way to define an extension of an operator, [37]
page 250.

Definition 2.1.4. An operator is called closable if the closure of its graph G(a) = {(ψ, aψ) | ψ ∈ D(a)}
is the graph of an operator. The operator whose graph is given by G(a) is called the closure of
a. We denote a− for the closure of a. An operator a for which a− exists and coincides with a
is called closed.

Keep in mind that the closure of the graph of an operator does not need to be a graph of an
operator. That is to say, not every operator has a closure. Also keep in mind that an operator
might have other closed extensions besides its closure. A closed extension of an operator a is
always an extension of a− as well. That is to say, the closure of a is its minimal closed extension.

Lemma 2.1.5. The adjoint of an operator is, if it exists, closed.

Proof. Let a be any operator. We need to show that the graph G(a∗) is closed. To this end,
define the unitary operator

u : H ×H → H ×H (2.4)

u(ψ, φ) = (−ψ, φ). (2.5)

We claim that G(a∗) = V (G(a)⊥). We have (φ1, φ2) ∈ V G(a)⊥ iff for all ψ ∈ D(a)

〈(φ1, φ2), V (ψ, aψ)〉 = 0. (2.6)

Rewriting this equation delivers for all ψ ∈ D(a)

〈φ1, ψ〉 = 〈φ2, aψ〉. (2.7)

This is by definition iff φ1 = a∗φ2, validating the claim. Since taking the orthoplement of a
subspace always results in a closed subspace this finishes the proof.
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In particular self-adjoint operators are closed. The following lemma characterizes closable
operators, [37] page 253.

Lemma 2.1.6. An operator a is closable iff the adjoint a∗ exists. In this case a− = a∗∗.

Proof. Let a be an operator with adjoint a∗. Furthermore, let u be the unitary operator from
lemma 2.1.5 and recall that G(a∗) = u(G(a))⊥. Since D(a) ⊂ D(a∗∗) we find that a∗∗ exists
and hence in particular

G(a∗∗) = u(G(a∗))⊥. (2.8)

The following calculation now proves the claim

G(a) = G(a)⊥⊥ = u2(G(a)⊥⊥) = u(uG(a)⊥)⊥ = u(G(a∗))⊥ = G(a∗∗). (2.9)

For symmetric operators we have D(a) ⊂ D(a∗), this implies that all symmetric operators
are closable.

As already mentioned an operator might have none, one or multiple self-adjoint extensions.
In the special case that the closure of an operator is self-adjoint, the self-adjoint extension is
unique, [37] page 253.

Lemma 2.1.7. Let a be a closable operator. If a− is self-adjoint, it is the only self-adjoint
extension of a.

Proof. Assume a is a closable operator, whose closure is self-adjoint. Let a′ be a self-adjoint
extension of a. On the one hand we have

a− = a∗∗ ⊂ a′∗∗ = a′− = a′. (2.10)

On the other hand
a′ = a′∗ ⊂ a∗ = a∗∗∗ = a−∗ = a−. (2.11)

We found a′ = a−, concluding the uniqueness.

In particular we found that a self-adjoint operator a has only one self-adjoint extension,
namely a itself. We now treat examples for the cases that there is one, multiple and no self-
adjoint extension of a symmetric operator.

Example 2.1.8. For the case that there exists a unique self-adjoint extension, we use the well-
known position operator in quantum physics, [18] page 17. Take H = L2(R,C). Let D(X ′) be
the subspace the compactly supported functions in H. Define the operator X ′ on this domain by

(X ′ψ)(x) = xψ(x). (2.12)

Now let X be the closure of X ′. We claim that X is self-adjoint. First of all we have ψ ∈ D(X)
iff there exists a sequence {ψn} ⊂ D(X ′) converging to ψ for which the limit limn→∞X ′ψn
exists. This is in turn iff for every ψn → ψ

〈φ, lim
n→∞

X ′ψn〉 =

∫
R
dxφ(x) lim

n→∞
xψn(x) =

∫
R
dxxφ(x)ψ(x) (2.13)

exists and coincides for every φ ∈ H. This holds true iff

φ→
∫
R
dx(Xφ)(x)ψ(x) =

∫
R
dxxφ(x)ψ(x) (2.14)
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is bounded on D(X). We obtain that D(X) = D(X∗). Finally, X = X∗ on this domain since
for ψ, φ ∈ D(X) ∫

R
dxXψ(x)φ(x) =

∫
R
dx xψ(x)φ(x) =

∫
R
dxψ(x)Xφ(x). (2.15)

Now we turn our attention to a symmetric operator that has multiple self-adjoint exten-
sions, [40] chapter 1. Set H = L2([0, 1],C) and let D be the domain of infinitely differentiable
compsSactly supported functions on (0, 1) in H. Define the operator a on this dense domain D
by

aψ = − d2

dx2
ψ. (2.16)

By integration by parts one can show that a is symmetric. The operator has however multiple
self-adjoint extensions. Define a the domains DD and DN of H as functions on [0, 1] that satisfy
Dirichlet and Neumann boundary conditions respectively

DD = {ψ ∈ C∞[0, 1] | ψ(0) = ψ(1) = 0} (2.17)

DN = {ψ ∈ C∞[0, 1] | d
dx
ψ(0) =

d

dx
ψ(1) = 0}. (2.18)

The closure of − d2

dx2 on these two domains give rise to two distinct self-adjoint operators both
extending a.

Lastly, an example of a symmetric operator having no self-adjoint extensions. Consider a
Hilbert space with orthonormal basis e1, e2, · · · . Define an alternative basis u1, u2, · · · by

un = en − en+1. (2.19)

Let D be the domain of all finite linear combinations of the set {un | n ∈ N}. Define the operator
a on this domain by

aun = ien + ien+1. (2.20)

This operator a is symmetric, but has no self-adjoint extensions. See [37] page 259 for a proof.

2.1.1 Spectral decomposition

The reason that we are interested in self-adjoint operators is their bijective correspondence with
projection valued measures. Recall from the introduction that these projection-valued measures
play the role of observables in quantum physics. This bijective relation is granted by the spectral
theorem, which forms in many aspects the core of quantum physics. Before we can state this
theorem we need some preliminary notation [38] definition 12.17.

Definition 2.1.9. A projection valued measure E on a measure space X is a function from the
measurable subsets of X to projections in B(H). We require E(X) = I, E(∅) = 0, and for all
ψ, φ ∈ H the function

M(X)→ R (2.21)

U 7→ 〈ψ,E(U)φ〉 (2.22)

is a measure on X. We write ∫
X

f(x)d〈ψ,E(x)φ〉 (2.23)

for the Riemann-Stieltjes integral of the function f on X with respect to this measure.
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For X some subset of C, f an integrable function f : X → C and E a projection valued
measure on X, we introduce the notation

a =

∫
X

fdE(λ), (2.24)

for the operator with domain

D(a) = {ψ ∈ H |
∫
X

|f(λ)|2d〈ψ,E(λ)ψ〉 <∞} (2.25)

defined through

〈φ, aψ〉 =

∫
X

f(λ)d〈φ,E(λ)ψ〉. (2.26)

Next we generalise the notion of a spectrum to the case of unbounded operators.

Definition 2.1.10. The spectrum σ(a) of an operator a consists of all values λ ∈ C for which
there does not exists a bounded operator b such that

∀ψ∈H (a− λI)bψ = ψ (2.27)

∀ψ∈D(a) b(a− λI)ψ = ψ. (2.28)

For later use we additionally introduce the following notation:

σp(a) = {λ ∈ σ(a) | ∃ψ∈H s.t. aψ = λψ} (2.29)

σc(a) = σ(a)\σp(a). (2.30)

The following is the famous spectral theorem.

Theorem 2.1.11. The self-adjoint operators Osa(H) are in bijective correspondence with pro-
jection valued measures on R. The bijection is given by

E 7→
∫
R
λdE(λ). (2.31)

Furthermore, for all subsets U ⊂ R for which U ∩ σ(a) = we have E(U) = 0.

The same goes for the unitary operators U(H), only this time we need integrate over the
norm one complex numbers T instead of R.

Proof. See [38] theorem 12.21 for the bounded case. See theorem 13.24 and theorem 13.30 for
the unbounded case.

Base on the introduction this suggests the following definition.

Definition 2.1.12. Let H be a Hilbert space. We call an element in Osa(H) an observable.

It is important to realise that self-adjoint operators do not necessarily have an orthonormal
basis of eigenvectors. The decomposition in eq. (2.31) should be seen as a generalisation of
this notion, where the projection-valued measure replaces the projections on eigenspaces. As
you might guess from the spectral decomposition, an operator is bounded iff its spectrum is
bounded.

Proposition 2.1.13. A self-adjoint operator a is bounded iff its spectrum σ(a) is bounded from
above and below. In fact

‖a‖ = sup|σ(a)|. (2.32)
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Proof. Let a be a self-adjoint operator. In case a is bounded the spectral radius theorem [38]
theorem 10.13 states

sup|σ(a)| = lim
n→∞

‖an‖
1
n . (2.33)

Since
‖a‖2 = ‖aa∗‖ =

∥∥a2
∥∥ (2.34)

σ(a) is bounded.

On the other hand assume that σ(a) is bounded by C. We can estimate for ψ and φ two
norm one vectors in H ∫

σ(a)

λd〈φ,E(λ)ψ〉 ≤ C. (2.35)

Therefore a is bounded.

Equation (2.32) follows from the above discussion if we set ‖a‖ = ∞ whenever a is un-
bounded.

Now we turn our attention to unitary group representations. In case of a commutative group
G with a representation ρ we can decompose all ρ(G) simultaneously. This is called the SNAG
theorem.

Theorem 2.1.14. For a unitary representation ρ of a Abelian group G there exists a projection
valued measure on the set of characters Ĝ such that for each g ∈ G,

ρ(g) =

∫
Ĝ

χ(g)dE(χ). (2.36)

Proof. See [30] page 160.

Lastly we generalise the notion in finite dimension that whenever two self-adjoint operators
a and b commute, an eigenspace of b contains eigenspaces of a or vice versa.

Definition 2.1.15. Given two self-adjoint operators a and b that commute and some λ ∈ σ(a).
Let Un be some sequence of open sets in R for which ∩nUn = {λ} write, Vn ⊂ σ(b) be the largest
possible set such that

E(Vn)H ⊂ E(Un)H. (2.37)

The set K = ∩nVn ⊂ σ(b) is set belonging to λ ∈ σ(a).

This notion will be used in section 5.3.1 in the context of band structure.

2.1.2 Topology on O(H)

We now want to equip O(H) with a topology. We generalise the strong topology on B(H) as
follows.

Definition 2.1.16. For a0 ∈ O(H), ε > 0, and ψ ∈ D(a0), define the set

U(a0, ψ, ε) = {a ∈ O(H) | ψ ∈ D(a), ‖(a− a0)ψ‖ < ε}. (2.38)

Define the topology on O(H) by taking the sets

B = {U(a0, ψ, ε)} (2.39)

as a subbase.
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The topology is very weak, but exhibits some interesting properties.

Lemma 2.1.17. The operator a is an extension of a′ iff a is contained in every open neigh-
bourhood around a′. In particular the topology in definition 2.1.16 restricted to Osa(H) is T1.

Proof. In case a is contained in every open neighbourhood of a we find that for each ψ ∈ D(a)
and each ε > 0 that ψ ∈ D(a) and

‖aψ − a′ψ‖ < ε. (2.40)

In other words a is an extension of a′. The other way around is obvious.

If we recall that a self-adjoint operator has no self-adjoint extensions other then itself, the
second part of the claim follows.

For a and a′ two elements in O(H) the open sets used in the proof above may intersect in
case D(a) 6= D(a′). Limits are therefore generally not uniquely defined. A limit is only well
defined if we mention the domain as well.

Proposition 2.1.18. Two operators a and a′ are equal whenever D(a) = D(a′) and there exists
a sequence converging to both a and a′.

Proof. Let an be a sequence converging to a and a′. For each ψ ∈ D(a) = D(a′) there exists for
all ε > 0 an N ∈ N such that for all n > N

‖aψ − anψ‖ <
ε

2
and ‖a′ψ − anψ‖ <

ε

2
. (2.41)

Hence aψ = a′ψ for all ψ ∈ D(a) = D(a′).

Due to this fact the Hausdorff property breaks down in a rather manageable fashion. Next
we check that the topology inherited by B(H) is indeed the strong topology.

Proposition 2.1.19. The restriction of the topology in definition 2.1.16 to B(H) coincides with
the strong topology.

Proof. It is easy to see that the subbase of the strong topology is contained in the subbase of
the topology in definition 2.1.16. For the other way around we show that the set

U(a, ψ, ε) ∩B(H) (2.42)

is contained in the subbase of the strong topology. There exists a bounded operator a0 for which
aψ = a0ψ. It follows that.

U(a, ψ, ε) ∩B(H) = U(a0, ψ, ε) ∩B(H). (2.43)

The latter one is contained in the subbase of the strong topology. We conclude that the respective
topologies coincide.

The topology was chosen in such a way that B(H) is a dense subset in O(H). It is clear
that each finite intersection of sets in the subbase of the topology in definition 2.1.16 contains
a bounded self-adjoint operator. We can sharpen this even further.

Proposition 2.1.20. For each a ∈ O(H) there exists a sequence in B(H) converging to it. In
case a ∈ Osa(H) there exists a sequence in Bsa(H) converging to it.
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Proof. Given an operator a ∈ O(H). Pick a basis e1, e2, · · · of D(a). The operator aN for which

aNψ =

{
aψ if ψ ∈ L{e1, e2, · · · , eN}

0 otherwise.
(2.44)

is bounded. The sequence aN converges to a.

For the second part of the claim define for each n ∈ N the following function

fn : Osa(H)→ Bsa(H) (2.45)

fn(a) = fn

(∫
σ(a)

λdEa(λ)

)
=

∫ n

−n
λdEa(λ). (2.46)

Let a be any element in Osa. We claim that the sequence defined by an = fn(a) converges to a.
To this end we need to prove that for each finite intersection of sets in eq. (2.38) containing a
there exists an N ∈ N such that an is contained in the intersection for all n > N .

Let a1, · · · , an ∈ Osa(H), ψ1 ∈ D(a1), · · ·ψn ∈ D(an) and ε1, · · · , εn > 0 such that

a ∈ U(ai, ψi, εi). (2.47)

We now demonstrate that there indeed exists an N ∈ N such that an is contained in each
U(ai, ψi, εi) for all n > N .

Pick ε = Min(εi − ‖(a− ai)ψi‖) > 0. Now pick N ∈ N such that for all n > N and all i∥∥∥∥∥
∫
σ(a)\[−N,N ]

dEa(λ)ψi

∥∥∥∥∥ < ε. (2.48)

This implies by construction that for all n > N and all ψi

‖(a− an)ψi‖ < ε. (2.49)

It follows that for all n > N

‖(ai − an)ψi‖ = ‖(ai − a)ψi + (a− an)ψi‖ ≤ ‖(ai − a)ψi‖+‖(a− an)ψi‖ < ‖(ai − a)ψi‖+ε ≤ εi.
(2.50)

It follows that there indeed exists a sequence of bounded operators converging to a.

The space Osa(H) is not Hausdorff, so if we want to grasp Osa(H) using convergent sequences
in Bsa(H) we still need to do some work. We proceed as follows. Let X ⊂ H be a dense subspace
and let an be a sequence of bounded operators such that the limit of anψ exists for all ψ ∈ X.
Furthermore we require for each sequence ψm in X for which limm→∞ limn→∞ anψm exists that

lim
m→∞

lim
n→∞

anψm ∈ X (2.51)

and that we can interchange limits

lim
n→∞

lim
m→∞

anψm = lim
m→∞

lim
n→∞

anψm. (2.52)

Denote such a sequence with subspace X as a pair by

(an, X). (2.53)
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Two of these tuples (an, X) and (bn, Y ) are called equivalent whenever X = Y and for all
ψ ∈ X = Y

lim
n→∞

anψ = lim
n→∞

bnψ. (2.54)

These tuples now determine Osa(H).

Theorem 2.1.21. The map assigning to each tuple (an, X), as defined above an operator with
domain X acting on H by

(an, X)ψ = lim
n→∞

anψ (2.55)

is a well defined bijection between the tuples (an, X) and Osa(H).

Proof. First we check that the map is well defined. That is to say, we need to check that (an, X)
is indeed sent to a linear operator. For ψ,ψ′ ∈ X

(an, X)ψ+λ(an, X)ψ′ = lim
n→∞

anψ+λ lim
n→∞

anψ
′ = lim

n→∞
an(ψ+λψ′) = (an, X)(ψ+λ′ψ). (2.56)

Next we need to show that (an, X) is self-adjoint. The domain of (an, X)∗ is given by all ψ ∈ H
for which the functional

X → C (2.57)

φ 7→ 〈 lim
n→∞

anφ, ψ〉 (2.58)

is bounded. Assume that ψ ∈ D((an, X)∗). In that case the above functional is bounded and
hence for each sequence ψm in X converging to ψ

lim
m→∞

lim
n→∞

〈φ, anψm〉 (2.59)

is bounded. Therefore,
lim
m→∞

lim
n→∞

anψm (2.60)

exists. This implies by construction that limm→∞ ψm is contained in X. Hence ψ ∈ X. On the
other hand, if ψ ∈ X, the functional in eq. (2.57) is given by

φ→ 〈φ, lim
n→∞

anψ〉 (2.61)

and therefore bounded. As desired X = D((an, X)∗). Since the sequence an consists of self-
adjoint operators it follows that (an, X) and (an, X)∗ coincide on this domain X.

We proceed to check surjectivity. By proposition 2.1.20 there exists for each a ∈ Osa(H) a
sequence of bounded operators an such that eq. (2.55) holds on X = D(a). We need to check
that D(a) satisfies the requirements of X stated in the text preceding this theorem. Let ψm be
a sequence in D(a) converging to ψ such that the limit

lim
n→∞

lim
m→∞

anψm = lim
m→∞

aψm (2.62)

exists. Since self-adjoint operators are closed, the limit is contained in D(a). We yet need to
verify that we can interchange limits. Since ψ ∈ D(a) we find

lim
n→∞

lim
m→∞

anψm = lim
n→∞

an lim
m→∞

ψm = lim
n→∞

anψ = aψ = lim
m→∞

aψm = lim
m→∞

lim
n→∞

anψm.

(2.63)
Hence we can interchange the limits. It follows that we may pick X = D(a).
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Lastly we check that the map is injective. Assume (an, X) and (bn, Y ) are sent to the same
operator a. This implies X = Y and that

lim
n→∞

anψ = lim
n→∞

bnψ (2.64)

for all ψ ∈ X = Y . It follows that (an, X) = (bn, Y ).

One can compare this theorem with the Banach Steinhaus theorem. This theorem states
that for there exists for each sequence of bounded operators an, for which anψ converges for all
ψ ∈ H, a bounded operator a such that

lim
n→∞

anψ = aψ for all ψ ∈ H. (2.65)

Due to theorem 2.1.21 we can control the set Osa(H) by the easier to grasp set Bsa(H). The
following example stresses that we cannot omit the domain X in the tuple.

Example 2.1.22. Consider the Hilbert space L2([0, 1],C). Recall that {einx | n ∈ Z} forms a
basis of this Hilbert space. Define a sequence aN of bounded operators by linearly extending the
map

aNe
inx =

{
−n2einx if n ≤ N

0 if n > N .
(2.66)

This sequence converges to − d2

dx2 . As seen in the second part of example 2.1.8 this results in
distinct self-adjoint operators for the domains DD and DN .

For a sequence an of bounded self-adjoint operators, there may exist two dense domains X
and Y such that eq. (2.51) and eq. (2.52) hold for both (an, X) and (an, Y ).

Remark 2.1.23. In the rest of this paper we work with the topology in definition 2.1.16. Always
keep in mind that this is simply the strong topology whenever it is restricted to Bsa(H).

2.2 Symmetry

This section delivers on the promise made in section 1.1 to justify definition 1.1.9 and discuss
the correct notion of symmetry in quantum physics.

A symmetry is a way of shuffling an initial object that leaves all relevant structure intact.
Recall from the introduction that everything is built starting from a Hilbert space H. We could
wonder what happened if we shuffle the elements in H using a bijective map

s : H → H. (2.67)

Note that this map s is not yet required to satisfy any properties. Such a map induces a map
on O(H) as follows

S(a,D(a)) = (sas−1, sD(a)). (2.68)

The physically important objects are the self-adjoint operators. The relevant structure is hence
operations on self-adjoint operators that result in self-adjoint operators. We should be careful
at this point, since many operations result in symmetric operators that are not self-adjoint, but
might however have self-adjoint extensions. For this reason we make the following definition.
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Definition 2.2.1. Let H be a Hilbert space and s : H → H a bijective map. Write Osym(H)
for the set of symmetric operators on H, which have a self-adjoint extensions. The map

S : Osym(H)→ Osym(H) (2.69)

S(a,D(a)) = (sas−1, sD(a)) (2.70)

is called a quantum symmetry if for each double sequence (aij)
N,M
i=1,j=1 ∈ Osym(H) and each

sequence λi in R, for which
∑N
i=1 λi

∏M
j=1 aij ∈ Osym(H) the following sets coincide.

Extsa(S(

N∑
i=1

M∏
j=1

aij)) = Extsa(

N∑
i=1

M∏
j=1

S(aij)). (2.71)

Write AutQM (Osym(H)) for the set consisting of all symmetries.

Note that AutQM (Osym(H)) forms a group under composition of maps. The reason that we
required the map S to respect composition, addition and real scalar multiplication, is that these
operations are used in physics to built new observables from old.

Example 2.2.2. Once again consider the Hilbert space L2(R,C). The momentum operator
is the closure of the operator i ddx defined on compactly supported differentiable functions. The
position operator is the closure of the operator X defined on compactly supported functions by
(Xψ)(x) = xψ(x). The self-adjoint operator that is the closure of

h = − d

dx

2

+X2 (2.72)

is the energy operator (Hamiltonian) of a harmonic oscillator. A quantum symmetry S should
shuffle the self-adjoint elements in such a way that an extension of S(h) is once again the
Hamiltonian of a harmonic oscillator with respect to the new momentum operator S(i ddx ) and
position operator S(X).

S(h) = −S(
d

dx
)2 + S(X)2 (2.73)

As one might expect, a unitary operator u : H → H induces a quantum symmetry.

Lemma 2.2.3. Let H be a Hilbert space and u be a unitary operator. The map

S : Osym(H)→ Osym(H) (2.74)

S(a,D(a)) = (uau−1, uD(a)) (2.75)

is a symmetry.

Proof. First we show that (ab)u∗ = a(bu∗) for all unitary operators u. The domains of these
tow operators coincide since

D((ab)u∗) = {ψ ∈ uD(b) | bu∗ψ ∈ D(a)} = u{ψ ∈ D(b) | bψ ∈ D(a)} = D(a(bu∗)). (2.76)

For ψ ∈ D((ab)u∗) we have ψ = uψ′ for some ψ′ ∈ D(ab) and so

(ab)u∗ψ = (ab)u∗uψ′ = (ab)ψ′ = a(bψ′) = a(bu∗ψ) = a(bu∗)ψ. (2.77)

We conclude that
S(ab) = u(ab)u∗ = (uau∗)(ubu∗) = S(a)S(b). (2.78)
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For the addition we verify

D(uau∗ + uλbu∗) = uD(a) ∩ uD(b) = u(D(a) ∩D(b)) = u(D(a+ λb)). (2.79)

It is easy to see that for ψ ∈ u(D(a+ λb)) u(a+ b)u∗ψ = (uau∗ + uλbu∗)ψ. We may conclude

S(a+ λb) = S(a) + λS(b). (2.80)

Since
S−1(U(a0, ψ, ε)) = U(ua0u

∗, uψ, ε), (2.81)

S is continuous.

We found that S(
∑N
i=1

∏M
j=1 λi,jaij)) =

∑N
i=1

∏
λi,jS(aij) for all double sequences (ai,j)

N,M
i=1,j=1.

In particular eq. (2.71) holds and hence that S is a symmetry.

We want to track down the whole group AutQM (Osym(H)). The map a 7→ uau∗ from the
lemma above forms a good starting point. Consider the map

a 7→ uau∗ (2.82)

for u anti-unitary. For the same reasons as for the unitary case this map is well defined and
respects all operations aside from multiplication by λ ∈ C. In case of multiplication by λ ∈ C
we find

u(λa)u∗ = λuau∗. (2.83)

However, since we only require that a symmetry must respect multiplication by real scalars, we
find that the map in eq. (2.82) is a quantum symmetry as well!

It is left to show that the above possibilities are in fact all possibilities. This can be shown
by restricting to Bsa(H). We proceed by showing that the symmetries AutQM (Osym(H)) can
be restricted to the bounded self-adjoint operators Bsa(H).

Lemma 2.2.4. A restriction of a quantum symmetry S to Bsa(H) is a continuous bijective
map from Bsa(H) to Bsa(H) that satisfies eq. (2.71).

Proof. We need to prove that an operator a is bounded iff S(a) is bounded. Recall from
proposition 2.1.13 that a is bounded iff the spectrum of a self-adjoint extension is bounded.
It is therefore sufficient to show that σ(a) = σ(S(a)).

Let a be any bounded self-adjoint operator. If a is self-adjoint a− λI is self adjoint and its
inverse (if it exists) as well. Therefore, if λ 6∈ σ(a) we find

S(a− λI)S((a− λI)−1) = S((a− λI)(a− λI)−1) = S(I) = I. (2.84)

Since S(a)− λI = S(a− λI) this is iff λ 6∈ σ(S(a)). We found that σ(S(a)) = σ(a), proving the
claim.

A continuous bijection S′ : Bsa(H) → Bsa(H) satisfying the conditions in eq. (2.71) is
called a symmetry on Bsa(H). By lemma 2.2.4, a restriction of a symmetry S of Osym(H) to
Bsa(H) delivers a symmetry S′ on Bsa(H). Let’s first track down the symmetries S′ on Bsa(H).
The seemingly liberal definition of symmetry pins the symmetries further down than one might
expect.

36



Theorem 2.2.5. The group of symmetries AutQM (Bsa(H)) is isomorphic to the group of uni-
tary and anti-unitary operators AutQM (H) modded out by T.

In other words, the following sequence is exact:

1→ T→ AutQM (H)→ AutQM (Bsa(H))→ 1. (2.85)

Proof. We start out by extending S in a C-linear fashion to B(H). This map will in particular
be a complex linear map satisfying

S(ab+ ba) = S(a)S(b) + S(b)S(a), (2.86)

S(a∗) = S(a)∗. (2.87)

Such a map is called a Jordan map. All Jordan maps have the following form:

S(a) = uau∗, with u unitary, (2.88)

S(a) = ua∗u∗, with u anti-unitary. (2.89)

It is an easy check that maps of the above form are symmetries on Bsa(H). To finish the proof
we note that eq. (2.88) and eq. (2.89) are uniquely fixed by the unitary or anti-unitary involved,
up to a scalar λ ∈ T.

The statement that all Jordan maps are of the above form is equivalent to Wigner’s theorem,
see [12] for a nice proof of Wigner’s Theorem.

We found that the maps
u : H → H, (2.90)

for u either unitary or anti-unitary are the only maps inducing symmetries.

Corollary 2.2.6. All symmetries on Osym(H) are of the form

(a,D(a)) 7→ (uau∗, uD(a)), (2.91)

with u either unitary or anti-unitary. In other words the following sequence of topological groups
is exact

1→ T→ AutQM (H)→ AutQM (Osym(H))→ 1. (2.92)

The anti-unitary symmetries are not just a phantom of the abstract theory, but really occur
in physics.

Example 2.2.7. Time reversal on L2(R,C) must be implemented by complex conjugation. Ap-
pendix A demonstrates why this needs to be the case.

2.2.1 Group actions

A symmetry group G should now act on Osym(H) via a strongly continuous group homomor-
phism

ρ : G→ AutQM (Osym(H)). (2.93)

We would now like to represent G on H. This can be achieved by a lift ρl of the map ρ

G

ρ

��

ρl

uu

AutQM (H) // AutQM (Osym(H)).

(2.94)
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Such a lift ρl is, however, in general not a homomorphism, let alone a continuous one. In
order to get a homomorphism to AutQM (H), we extend the group G by T and look at twisted
representations ρτ of this twisted extensions Gτ of G. In this manner we arrive at definition 1.1.9
of a quantum system.

Theorem 2.2.8. Each quantum system (H,G, φ, τ, ρτ ) induces a continuous homomorphism

G : ρ(= πρτπ−1)→ AutQM (Osym(H)), (2.95)

where π is the map π : Gτ → G. Note that ρ = πρτπ−1 is well defined even though π−1(g) is
not unique.

The continuous homomorphisms are induced in a surjective manner. That is to say for
each continuous homomorphism ρ : G → AutQM (Osym(H)) there exists a quantum system
(H,G, φ, τ, ρτ ) for which ρ = πρτπ−1.

Proof. To prove the first part of the claim we must prove the existence of the dotted arrow in
the following commuting diagram

1 //

��

T ι //

��

Gτ
π //

ρτ

��

G //

ρ

��

1

��

1 // T
ι
// AutQM (Osym(H))

π
// AutQM (H) // 1.

(2.96)

For the second part of the claim we need to define some twisted extension Gτ of G and prove
the existence of the dotted arrows in the following commuting diagram

1 //

��

T ι //

��

Gτ
π //

ρτ

��

G //

ρ

��

1

��

1 // T
ι
// AutQM (H)

π
// AutQM (Osym(H)) // 1.

(2.97)

Recall definition 1.3.1 and defineGτ , ι, π and ρτ by the pull back of AutQM (H)→ AutQM (Osym(H)).
By lemma 1.3.2 we find that indeedGτ is a twisted extension and ρτ a twisted representation.

Remark 2.2.9. This justifies definition 1.1.9. A quantum system is just a way of encoding a
representation ρ : G → AutQM (Osym(H)). That is to say, a quantum system fixes a Hilbert
space and a symmetry.

2.3 Observables

Definition 2.3.1. A subset X ⊂ Osa(H) is said to posses a certain symmetry S whenever for
each a ∈ X

S(a) = a. (2.98)

This now results in a natural definition of the observables of a quantum system.

Definition 2.3.2. The set of observables Obs of a quantum system (H,G, φ, τ, ρτ ) is the maxi-
mal subset of Osa(H) possessing the symmetries ρτ (Gτ ). That is to say Obs conists of all closed
operators that commute with ρτ (Gτ ).
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In this respect a quantum system is just a way of picking a set of self-adjoint operators
respecting a certain symmetry. The terminology ‘observable’ is a bit misleading. All self-
adjoint operators are in principle observables, but we choose to restrict to self-adjoint operators
respecting the symmetry. From now on we refer only to self-adjoint operators that respect the
symmetry as an observable. This makes the term observable respective to the quantum system
in consideration. The set Osa(H) holds a special status. The set Osa(H) is the set of observables
if no symmetry is present. In this respect Osa(H) is the set of the ‘actual’ observables.

As an example we treat two important observables in physics [18] page 17.

Example 2.3.3. The most common Hilbert space of a quantum system is the already used
L2(R,C) with trivial symmetry group {e}.

The position operator X in example 2.1.8 is the observable associated to the position of a
particle. Using partial integration we can byy similar means as for X show that the closure P of
i ddx defined on the domain of compactly supported differentiable functions is self-adjoint. This
operator P is the observable associated with the momentum.

Now let the symmetry group Z/2Z = {±1} act on L2(R,C) by

(±1 · ψ)(x) = ψ(±1 · x). (2.99)

The position operator X is no longer an observable of such a quantum system as it does not com-
mute with the group action. We should replace X with |X| defined by (|X|ψ)(x) = |x|ψ(x). This
operator does intertwine the action and is hence a good position observable for this particular
quantum system.

The correct notion of isomorphism is now clear.

Definition 2.3.4. Two quantum systems with the same Hilbert space H and observables Obs
respectively Obs′ are isomorphic whenever there exists S ∈ AutQM (Osym(H)) such that

Obs = S(Obs′). (2.100)

The inconvenience of observables is the lack of algebraic structure. This motivates the search
for something presenting more algebraic structure.

Definition 2.3.5. The algebra of observables A ⊂ B(H) consists of all bounded operators that
intertwine ρτ (Gτ ).

Note that Asa = Obs∩B(H). The algebra of observables is an R-linear algebra closed under
taking adjoints. The self-adjoint elements of the algebra of observables are now precisely the
bounded observables. Note that since ρτ (Gτ ) may act anti-unitarily, the algebra A is in general
real linear and not complex linear. In case ρτ (Gτ ) contains solely unitary operators, the algebra
of observables A forms a C∗-algebra.

Note that the C∗-algebra B(H) holds a special status as the algebra of observables in case no
symmetry is present. The following lemma justifies why we may restrict to bounded observables.

Proposition 2.3.6. Write Asa for the self-adjoint elements in A. With respect to the topology
in definition 2.1.16,

Asa ∩ {a ∈ Osa(H) | ρτ (Gτ )D(a) = D(a)} = Obs. (2.101)

In other words if we restrict to those operators whose domain is respected by ρτ (Gτ ) the closure
of the bounded observables are the observables.
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Proof. Assume a ∈ Asa and ρτ (Gτ )D(a) = D(a). For each ψ in D(a) and each n ∈ N there
exists an an ∈ A contained in U(a, ψ, 1

2n ) ∩ U(a, ρτ (gτ )ψ, 1
2n ). This implies that for all n ∈ N

‖aρτ (gτ )ψ − ρτ (gτ )aψ‖ = ‖(aρτ (gτ )ψ − anρτ (gτ )ψ)− (anρ
τ (gτ )ψ − ρτ (gτ )aψ)‖ (2.102)

≤ ‖aρτ (gτ )ψ − anρτ (gτ )ψ‖+ ‖ρτ (gτ )anψ − ρτ (gτ )aψ‖

≤ ‖aρτ (gτ )ψ − anρτ (gτ )ψ‖+ ‖aψ − aψ‖ < 1

n
.

Hence for each ψ ∈ D(a) we have aρτ (gτ )ψ = ρτ (gτ )aψ and hence a ∈ Obs.

On the other hand, assume that a ∈ Obs. Recall fn from eq. (2.45). The sequence of bounded
self-adjoint operators fn(a) converges to a. The operator fn(a) has support Ea(−n, n)H. The
subspace Ea(−n, n) is invariant for ρτ (Gτ ) and a subspace of D(a). Furthermore, fn(a)ψ = aψ
for all ψ ∈ Ea(−n, n). Therefore,

fn(a)ρτ (gτ )ψ = fn(a)ρτ (gτ )E(−n, n)ψ = aρτ (gτ )E(−n, n)ψ = ρτ (gτ )aE(−n, n)ψ = ρτ (gτ )fn(a)ψ.
(2.103)

therefore fn(a) ∈ A. Since fn(a)→ a, we conclude a ∈ Asa.

In the sense of theorem 2.1.21 this means that all observables are given by pairs (an, X),
where an is a sequence in Asa and X is a dense subspace of H for which ρτ (gτ )X = X for all
gτ ∈ Gτ . We obtain that the observables are determined by Asa. The notion of isomorphism is
therefore also determined on the bounded observables only.

Corollary 2.3.7. Given two quantum systems with observables Obs and Obs′ respectively and
algebra of observables A and A′ respectively. We find

Obs = Obs′ iff Asa = A′sa. (2.104)

Furthermore, for some symmetry S

S(Obs) = Obs′ iff S(Asa) = A′sa. (2.105)

Remark 2.3.8. This at last justifies definition 1.1.12.

There is a lot of theory for C∗-algebras, it is therefore natural to define a C∗-algebra lying
close to the bounded observables B(Obs).

Definition 2.3.9. Write C(A) for the C∗-algebra generated by the bounded observables.

Let’s compare C(A) and A.

Lemma 2.3.10. If ρτ (Gτ ) consists solely of unitary operators we find that A and C(A) coincide.

Proof. Obviously the complex algebra generated by the bounded observables is a subset of the
algebra of observables.

To prove the converse inclusion we decompose a bounded intertwiner into two observables

a+ a∗

2
− i ia− ia

∗

2
= a1 − ia2. (2.106)
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This lemma no longer holds if we include anti-unitary operators in the representation.
Namely, i is contained in the complex algebra generated by the observables, but it is not con-
tained in A, for it is not an intertwiner of an anti-unitary action. One could wonder whether
we could save lemma 2.3.10 by taking the real algebra generated by the bounded observables
instead. The following example shows that this surprisingly enough does not hold.

Example 2.3.11. In section 2.4 we will see that the quaternions(
a b

−b a,

)
a, b ∈ C, (2.107)

can be the intertwiners of some twisted representation. The self-adjoint elements are(
a 0
0 a,

)
a, b ∈ R. (2.108)

The real algebra generated by the self-adjoint elements is not equal to the whole algebra of the
quaternions!

The algebra of observables is hence not be uniquely determined by the observables. This is
quite a disappointing result.

2.4 Classification of the observables

In this last section we want to classify the representation of the symmetry(= algebra generated
by ρτ (Gτ )) and its commutant (= algebra of observables) in case of quantum systems with a
compact symmetry group. That is to say, we want to find the most general form of both the
algebra generated by ρτ (Gτ ) and its commutant.

We look at the problem in a slightly broader context and later specialise to the case of
quantum systems.

Remark 2.4.1. In this section we assume G to be a graded compact Lie group. Furthermore,
ρ is always assumed to be a real graded representation of G on B(HR ⊕HR), with respect to the
grading in definition 1.4.1.

Note that we drop the requirement that the extended symmetry group must contain T and
that the twisted extension must send λ ∈ T to λI. In the end we will re-impose these conditions
and see what possibilities in the classification are left.

We start by introducing some preliminary notation. A division algebra is an algebra in which
every non-zero element is invertible. By Frobenius theorem there are, up to isomorphism, only
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three division algebras over the real numbers. Namely:

R = L{1} (2.109)

C = L

{(
1 0
0 1

)
,

(
0 1
−1 0

)}
(2.110)

H = L




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 , (2.111)


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 ,


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0


 ,

where L stands for taking the R-linear span. The division algebras are represented as real
matrices, since we study real representations ρ of G. For some given representation ρ, define
the following three algebras:

C = L{ρ(g) ∈ ρ(G) | Jρ(g) = ρ(g)J} (2.112)

B = L{J, ρ(g) ∈ ρ(G) | Jρ(g) = ρ(g)J} (2.113)

D = L{J, ρ(G)}, (2.114)

where J is the operator in eq. (1.125). Write C ′, B′, D′ for the respective commutants of the
algebras above. Note that C ⊂ B ⊂ D. For the special case of quantum systems D′ is the
algebra of observables, since in this case J ∈ ρ(G).

The first subsection is devoted to finding the general forms of D′, that is, the algebra of ob-
servables. The second subsection is devoted to finding the general forms of D and its subalgebras
B and C.

In both sections the strategy will be to decompose D into irreducible components.

Definition 2.4.2. The group algebra A with underlying group G and representation ρ is the
R-linear span of ρ(G). One may take infinite converging (under the strong topology) sums.

It is not hard to show that a group algebra is a strongly closed involutive unital sub-algebra
of B(H). Since ρ is a homomorphism, A is automatically closed under multiplication. The
algebra A is closed under taking adjoints as well since this corresponds with inverting in G. We
found that A is indeed an algebra. Lastly we need to show that the algebra is closed. Since G
is compact any sequence gn has a limit point g ∈ G. The result can be generalised for infinite
sums.

Definition 2.4.3. A group algebra A is irreducible if the only invariant subspaces of H under
A are {0} and H.

Lemma 2.4.4. A group algebra is irreducible iff the underlying representation is irreducible.

Proof. It suffices to prove that a linear subspace U ⊂ H is invariant for A iff it is invariant for
the underlying representation ρ. If U is invariant for A it is in particular invariant for ρ(G) ⊂ A.
On the other hand if U is invariant for ρ(G) it will be a closed subspace. Therefore u is invariant
for its linear span as well.
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Write G1 for the subgroup of elements g ∈ G for which ρ(g) commutes J . The algebras
D, B and C are group algebras, with groups G, {J,G1} and G1. In all of the three cases the
underlying group is compact and hence the algebras can be decomposed into irreducible group
algebras. These irreducible algebras will be finite dimensional and have even dimension. The
strategy is now to assume that D is an irreducible algebra and later to take direct sumes of
these irreducible algebras together in order to obtain the general result.

2.4.1 Classification of the algebra of observables

First we look for the algebra of observables under the assumption that D is irreducible. The
following proposition, which is a generalisation of Schur’s lemma, describes the commutant of
irreducible algebras.

Proposition 2.4.5. Let E ⊂ B(HR ⊕ HR) be an irreducible algebra, with respect to some
irreducible representation ρ of G. The commutant E′ of E is isomorphic to R, C, or H (see
eq. (2.109)).

Proof. We claim that the commutant E′ is a division algebra. Let a be a non-zero element in
E′. Both ker(a) and Im(a) are invariant subspaces with respect to ρ. Since the representation
is irreducible we find either Im(a) = {0} or Im(a) = HR ⊕ HR. We assumed a 6= 0, hence
the only possibility is that Im(a) = HR ⊕HR. By the same reasoning ker(a) = {0}. In other
words, a is invertible. This proves that E′ is a division algebra. By Frobenius theorem the only
division algebras over the real numbers are R, C and H.

We now introduce some notation in order to state Weyl’s theorem. Let E be an algebra.
Write In×E for the algebra consisting of n×n block diagonal matrices with the same operator
a ∈ E on the diagonal. Write En for the algebra of n × n matrices with possibly distinct
operators a ∈ E in the entries. In other words

In × E =


a 0 0

0
. . . 0

0 0 a

 | a ∈ E
 (2.115)

En =




a1,1 a1,2

a2,1
. . .

. . .

. . .
. . . an−1,n

an,n−1 an,n

 | ai,j ∈ E
 . (2.116)

We are now ready to state Weyl’s theorem.

Theorem 2.4.6. Every group algebra A can be written in terms of irreducible algebras Ei

A = ⊕iIni × Eimi , (2.117)

where mi, ni ∈ N. Write Ei
′

for the commutant of Ei. Then

A′ = ⊕iImi × Ei
′

ni . (2.118)

Proof. see [45] theorem 3.5B.

Together with proposition 2.4.5 this theorem provides the general form of D′.
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Corollary 2.4.7. Combining theorem 2.4.6 with proposition 2.4.5 and using the isomorphism
In ×Em ∼= Em we find the general expression of D′ we were after. Every algebra of observables
is isomorphic to direct sums of matrices over the division algebra R, C or H.

Write Mn×n(R) for the n× n matrices over R. The algebra of observables has the following
form:

⊕∞i=1 (R⊗R Mni×ni(R))⊕∞i=1 (C⊗R Mni×ni(R))⊕∞i=1 (H⊗R Mni×ni(R)) . (2.119)

In the spirit of [7] we find that all division algebras over the real numbers are treated on equal
footing in quantum physics.

We are interested in the self-adjoint ellements of this set. For R ⊗R Mn×n(R) these are
given by the symmetric matrices. For ⊕∞i=1C ⊗R Mn×n(R) these are given by the union of the
symmetric matrices times 1 and the skew symmetric matrices times i. For ⊕∞i=1H⊗RMn×n(R),
these are given by the union of the symmetric matrices in H times the symmetric matrices in
Mn×n(R) and the skew symmetric matrices in H times the skew symmetric matrices in Mn×n(R).

To make the above statement relevant we of course need to show that all of the three cases
above indeed occur in some physical situation.

Example 2.4.8. Time reversal on position space L2(Rd,C) is simply complex conjugation. The
observables can therefore be represented as real infinite matrices. The irreducible subspaces are
one dimensional subspaces so the restriction of the interwiners(= observables) to these subspaces
is clearly R.

In case of space inversion, the group {±1} acts on L2(Rd,C) as follows

(±1 · ψ)(x) = ψ(±x) (2.120)

. The irreducible subspaces are simply one dimensional subspaces and the intertwiners(= ob-
servables) are obviously given by multiplication by C.

Lastly we look at time reversal symmetry in spin space (= C2). Spin rotation is generated
by the famous Pauli spin matrices(

0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
. (2.121)

Time reversal T must be anti-unitary, square to −I and flip the spin. There is only one option
left:

T =

(
0 −1
1 0

)
C, (2.122)

where C stands for complex conjugation. Under the map in proposition 1.4.2, this operator is
send to 

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

 . (2.123)

A straightforward calculation shows that the the commutant of this matrix is H in eq. (2.109).
Under the map in proposition 1.4.2 these operators all correspond to C-linear operators. Hence
the algebra of observables is isomorphic to the quaternions.
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This implies that all three division algebras also occur in physics.

We proceed treating the right notion of equivalence on group algebras.

Definition 2.4.9. Let A1, A2 ⊂ B(HR⊕HR) be two group algebras with group G. The algebras
A1 and A2 are equivalent if there exists a bijective linear operator N such that the map a →
NaN−1 is a bijection between A1 and A2.

Lemma 2.4.10. The operator N in definition 2.4.9 can be chosen orthogonal.

Proof. Let N be any operator providing an equivalence between two algebras A1 and A2. We
can write N as a polar decomposition N = OP = P ′O, with O an orthogonal operator and
P, P ′ two positive operators. Let o ∈ E1 be some orthogonal operator and write o′ for NoN−1.
Now rewriting the equation No = o′N using the polar decomposition of N grants

P ′Oo = o′OP. (2.124)

Using uniqueness of the orthogonal operator in the polar decomposition, we conclude Oo = o′O.
We find that the map

o→ OoO−1 (2.125)

is a bijection between the orthogonal operators of A1 and A2. Since A1 and A2 are generated
by their orthogonal operators this map in fact provides a bijection between A1 and A2. Hence
N can be replaced by the orthogonal operator O.

Note that for a group G two irreducible group algebras are equivalent if and only if the
representations are orthogonally equivalent. This justifies the definition.

2.4.2 Classification of the symmetry algebra

In this section we follow [10] to find the general forms of the algebras D, B and C in eq. (2.112).
Again we start with assuming irreducibility of D and use theorem 2.4.6 in the end to obtain the
general result. Recall that the dimension of irreducible subspaces is finite and even.

Remark 2.4.11. In the following we will frequently make use of the fact that the algebras R,C
and H in eq. (2.109) have dimension 1, 2 and 4 respectively.

By proposition 2.4.5 there are three possibilities for D′ in the 2n× 2n matrices, namely

D′ ∼= I2n × R, (2.126)

D′ ∼= In × C, (2.127)

D′ ∼= I 1
2n
×H, (2.128)

where we use the notation in eq. (2.115). In case n is not even the last possibility is discarded.
The algebra D ⊂ B(H) is closed and contains I, hence by the bicommutant theorem (see
Appendix B) D = D′′. In the three cases we find

D ∼= R2n (2.129)

D ∼= Cn (2.130)

D ∼= H 1
2n
, (2.131)

where we used that R′ ∼= R, C′ = C and H′ = H, when seen as a sub-algebra of the algebra of
matrices of size respectively 1× 1, 2× 2 and 4× 4. Again in case n is not even, the last case is
dismissed.
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Next we turn our attention to the sub-algebras C and B of D. In the case of B our hand
turns out to be rather forced.

Lemma 2.4.12. The dimension of B is half of the dimension of D or B = D.

Proof. The subalgebra B consists of the homogeneous elements in D with degree 0. If B 6= D
then there exists an element g ∈ G for which ρ(g) is homogeneous of degree −1. This operator
ρ(g) defines a linear map on D, by multiplication. Since the algebra is graded, this map sends
the elements of degree 1 to elements of degree 1. Since ρ(g−1) is the inverse of ρ(g), this map
is a linear bijection between the subspaces of the homogeneous elements degree 1 and those of
degree −1. We may conclude the dimension of the homogeneous elements of degree 1 and −1
to be equal. Therefore B must be half the dimension of D.

Remark 2.4.13. From now on assume D 6= B.

The dimension of D in the cases eq. (2.129), eq. (2.130) and eq. (2.131) is 4n2, 2n2 and n2

respectively. This fixed the dimension of B there is only one possibility in each of the three
cases. Namely:

B ∼= Cn, (2.132)

B ∼= C 1
2n
⊕ C 1

2n
, (2.133)

B ∼= I2 × C 1
2n
. (2.134)

Therefore B is fixed once we know D.

Next we turn our attention to the possibilities for the algebra C.

Lemma 2.4.14. The dimension of the algebra C is half the dimension of the algebra B or
C = B.

Proof. Assume C 6= B. In this case J 6∈ C. For a basis {ai} of C the set {Jai} are linearly
independent operators not contained in C. Since C ⊕ JC = B we find that C has half the
dimension of B.

There are two group subalgebras of Cn that have half its dimension. Namely:

C = I2 × Rn (2.135)

C = Cn (2.136)

C = H 1
2n
, (2.137)

where the last is only possible if n is even. This grants three possibilities for C in the cases
of eq. (2.132) and eq. (2.134). The case eq. (2.133) is a little more subtle, since this time B
consists of two copies of Cn. The following lemma restricts the possibilities in this last case.

Lemma 2.4.15. Let B have the form eq. (2.133). The sub-algebra C will be the direct sum of
two equivalent algebras.

Proof. Let G1 ⊂ G be the subgroup of even elements. The algebra C is the algebra generated
by elements ρ(g) that commute with J , that is to say the algebra generated by ρ(G1). If we
restrict G to G1, we can, by eq. (2.133), decompose the representation

ρ = ρ1 ⊕ ρ2. (2.138)
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Since D 6= B we can pick an uneven element a ∈ G\G1. Introduce a representation ρ′ of G by
setting

ρ′ : g → ρ(aga−1). (2.139)

Clearly,
ρ′(g) = ρ(a)ρ(g)ρ(a)−1 = ρ(a)ρ1(g)ρ(a)−1 ⊕ ρ(a)ρ2(g)ρ(a)−1. (2.140)

On the other hand,

ρ′(g) = ρ(aga−1) = ρ1(aga−1)⊕ ρ2(aga−1) = ρ′1(g)⊕ ρ′2(g). (2.141)

We find that either
ρ′1 = ρ(a)ρ1ρ(a−1) and ρ′2 = ρ(a)ρ2ρ(a−1), (2.142)

or
ρ′1 = ρ(a)ρ2ρ(a−1) and ρ′2 = ρ(a)ρ1ρ(a−1). (2.143)

We now show that eq. (2.142) is not possible, leaving us with eq. (2.143). For the sake of
contradiction assume that indeed

ρ1(aua−1) = ρ(a)ρ1(u)ρ(a)−1, (2.144)

for all u ∈ G1. In this case we find for each a′ ∈ G\G1 and u ∈ G1 that

ρ1(a′ua′−1) = ρ1(aa−1a′ua′−1aa−1) = ρ(a)ρ1((a−1a′)u(a′−1a))ρ(a)−1 (2.145)

= ρ(a)ρ(a−1a′)ρ1(u)ρ(a′−1a)ρ(a)−1 = ρ(a′)ρ1(u)ρ(a′−1),

where, in the third equality, we used that a−1a′ is unitary. So if eq. (2.144) holds for one
a ∈ Gτ\G1, it holds for all a ∈ G\G1. The operator ρ1(e) is now an intertwiner of ρ. First we
check for all a ∈ G\G1

ρ1(e)ρ(a) = ρ(a)ρ1(e)ρ(a)−1ρ(a) = ρ(a)ρ1(e). (2.146)

Likewise for u ∈ G1,

ρ1(e)ρ(u) = (ρ1(e)⊕ 0)(ρ1(u)⊕ ρ2(u)) = (ρ1(u)⊕ ρ2(u))(ρ1(e)⊕ 0) = ρ(u)ρ1(e). (2.147)

It follows that ρ1(e) projects onto a non-trivial invariant subspace V1 with respect to ρ. This
contradicts that D and hence ρ should be irreducible. Therefore eq. (2.143) must hold, this
immediately implies that ρ1 ∼ ρ2 which proves the claim.

The lemma above provides only four possibilities for C if B is of the form (2.133). Namely,
either C is I2 × Cn, or C is two copies of either (2.135), (2.136), or (2.137).

For the case that D 6= B we can label the possibilities by

RR,RC,RH,CR,CC1,CC2,CH,HR,HC,HH, (2.148)

where the first symbol indicates whether the algebra D is of the form eq. (2.129), eq. (2.130)
or eq. (2.131). This label fixes B as well. The second symbol indicates C to be of the form
eq. (2.135), eq. (2.136) or eq. (2.137). For CC we need an additional symbol 1, 2 to specify
whether C is isomorphic to Cn ⊕ Cn (case 1) or I2 × Cn (case 2).

If we now assume B = D, the representation ρ of G commutes with J and may hence be
interpreted as a complex representation. By Schur’s lemma D′ must be isomorphic to In × C,
hence fixing D = B ∼= Cn. The algebra C is simply

D/J ∼= Rn. (2.149)

Under the map in proposition 1.4.2 this is the case CR.
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Theorem 2.4.16. We can classify irreducible group algebras by the symbols

RR,RC,RH,CR,CC1,CC2,CH,HR,HC,HH (2.150)

indicating the general form of D and its subalgebras B and C. These irreducible subalgebras
make up all other algebras in the way of theorem 2.4.6.

Corollary 2.4.17. In the case of quantum systems the group is a twisted extension of some
symmetry group. We must have

ρτ (i) = J. (2.151)

This implies that B = C. There are four possibilities in all, namely

RC,CR,CC1,HC. (2.152)

Using theorem 2.4.6 we can generalize to non-irreducible group algebras D.
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Again it remains to show that all of these possibilities occur.

Example 2.4.18. All examples are given by Clifford algebras. (see Appendix D.) The inclusion

Table 2.1: Examples for C and D.

Symbol D C

RC Cliff0,8 Cliff0,7

CR Cliff0,3 Cliff0,2

CC1 Cliff2 Cliff1

HC Cliff0,4 Cliff0,3

C ⊂ D is obtained by leaving out one negative generator from the set of generators in the Cliford
algebra D. This negative generator corresponds with the operator J .
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Chapter 3

States

In this chapter we define and classify the equivalence classes of states upon restriction to the
observables of some quantum system. The approach is through the familiar notion of a state
on a C∗-algebra. Later on we restrict to so-called normal states. Some attention is also paid to
the physical meaning of the mathematical construction.

Remark 3.0.19. In this chapter a vector ψ ∈ H is always assumed to be a unit vector. We
write eψ and eU for the orthogonal projection on C ·ψ and on the closed subspace U respectively.

3.1 States

Recall that Bsa(H) is the set of bounded observables if no symmetry is present. It therefore
makes sense to define states on Bsa(H).

Definition 3.1.1. A state on Bsa(H) is a continuous R-linear functional satisfying

ω(I) = 1 (3.1)

ω(a2) ≥ 0. (3.2)

Equip the states with the weak-∗ topology.

Each operator in B(H) can be written as a sum of two self-adjoint elements in the way of
eq. (2.106). Therefore we can C-linearly extend the states to B(H). A sate is in this respect a
bounded C-linear functional on B(H) such that

ω(I) = 1 (3.3)

ω(aa∗) ≥ 0. (3.4)

The equivalence relies on the fact, [34] theorem 2.2.5, that

{aa∗ | a ∈ B(H)} = {a2 | a ∈ Bsa(H)}. (3.5)

A bounded state with the requirements in eq. (3.3) is the usual definition of a state on a C∗-
algebra, [34] page 89.

In a quantum system we impose a symmetry constraint on Bsa(H). The following definition
accommodates this restriction.
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Definition 3.1.2. Recall that Asa ⊂ B(H) is the algebra of observables of some quantumsystem.
Two states on B(H) are equivalent with respect to this quantum system, whenever the restriction
of these states to Asa coincide.

Write S(A) for the set of equivalence classes of sates. Equip S(A) with the quotient topology.
We refer to an equivalence class in S(A) as a phase.

Remark 3.1.3. The phases of states of a certain quantum system should be thought of in terms
of degeneracy. Under a symmetry ρτ (Gτ ) the observables B(Obs) can separate fewer sates
then Bsa(H). Two states of B(H) contained in the same phase cannot be distinguished by the
observables of the quantum system in consideration.

Now break the symmetry, that is, restrict to a subgroup G′τ ⊂ Gτ . We find ρτ (G′τ ) ⊂ ρτ (Gτ ).
The set of observalbes B(Obs′) will grow. Therefore, the number of states that can be separated
on this domain grows as well. We obtain a finer partition into equivalence classes and with that
more phases. In case we break all symmetries the observables are Bsa(H), this set separates all
states by definition,making the phases coincide with the states.

The states on B(H) endowed with the weak-∗ topology form a very manageable space.

Theorem 3.1.4. The states on B(H) form a convex set that is compact with respect to the
weak-∗ topology.

Proof. It is elementary to show that the space is convex and closed. Applying the Banach
Alaoglu theorem, [38] theorem 3.15, implies that the closed unit ball is in fact compact.

Due to the convexity of the set we can identify extreme points and make the following
definition, [34] page 89.

Definition 3.1.5. The extreme points of the states on B(H) are called pure states.

The Krein-Milman theorem guarantees that the pure states completely determine the set of
states.

Proposition 3.1.6. The set states is the closure of the convex hull of the pure states.

Proof. See [38] theorem 3.21 for a proof.

Since the set S(A) consists of equivalence classes of states we obtain the same results.

Corollary 3.1.7. Let A be an algebra of observables of some quantum system. The set S(A)
forms a compact convex set. The closure of the convex hull of the extreme points in S(A) equals
S(A).

Note that a non-pure element in B(H) may fall into a pure equivalence class in S(A).
Likewise, a pure element in B(H) may represent a non-pure element in S(A). However, in finite
dimension each pure phase in S(A) can be represented by a pure state.

Lemma 3.1.8. Assume that the quantum system in question has a finite dimensional Hilbert
space. If a phase is pure it can be represented by a pure state.

Proof. Assume that the equivalence class of the phase in question would not contain a pure state.
Pick any representant from the phase and write it as a convex combination of pure states. These
pure state do not fall in the same phase and hence the phase in S(A) is a convex combination
of some other phases. It follows that the phase in S(A) is not pure.
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We now select a special subset of the states on B(H). A density operator is an operator
satisfying

Tr(r) = 1 (3.6)

r ≥ 0. (3.7)

We use this notion to define a subset of the states.

Definition 3.1.9. A state is called normal if there exists a density operator such that

ωr(a) = Tr(ra) (3.8)

for all a ∈ B(H). A state is called a vector state whenever it can be written as

ωψ(a) = 〈ψ, aψ〉. (3.9)

For H finite dimensional all states are normal. However if the dimension of the Hilbert space
is infinite there exist non-normal states.

Remark 3.1.10. When we refer to r or ψ as a state we mean the associated functionals

ωr(a) = Tr(ra) or ωψ(a) = 〈ψ, aψ〉 (3.10)

respectively.

These normal sates form a subset of the states, which is once again convex. The pure states
of this convex set are the vector states.

Lemma 3.1.11. A state ω on B(H) is both normal and an extreme point of the set of normal
states iff ω is normal and an extreme point of the set of all states iff ω is a vector state.

Proof. By construction a state is both normal and a pure state of the normal states iff it is a
vector state eψ.

Assume that ωψ can be written as some convex combination

ωψ = tω + (1− t)ω′. (3.11)

Evaluating this states on eψ ∈ B(H), we find

ωψ(eψ) = 1 = tω(eψ) + (1− t)ω′(eψ). (3.12)

This implies ω′(eψ) = ω(eψ) = 1. By [17] section 4, the evaluation of a non-normal state on a
finite dimensional representation always yields 0. This now implies that ω and ω′ are normal.
Therefore, a vector state should be a convex combination of normal states. Since eψ is pure
with respect to the normal states we find that ωψ = ω = ω′. We conclude that a state is a
vectors state iff it is normal and pure.

A phase in S(A) is normal if it contains a normal state. A phase is non-normal if it does
not contain any normal states. Once again the above results hold for the phases as well.

Corollary 3.1.12. The normal phases N(S)(A) form a convex set, whose extreme points can
be represented by vector states. The extreme points of N(S(A)) are extreme points of the whole
of S(A).
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In case of normal pure states we can generalize lemma 3.1.8 to infinite dimension.

Lemma 3.1.13. A phase is pure and normal if it contains a pure state. In particular this pure
state is a vector state.

Proof. Assume that a pure normal phase ω does not contain any pure states. The phase is
assumed normal, hence we can pick a normal state ω contained in this equivalence class. To this
state ω belongs a density operator that can be diagonalized. We can hence write ω as a convex
combination of vector states. These vector states are by assumption not contained in the class.
The phase ω is hence a convex combination of the phases belonging to the vector states. This
implies that the state ω is not pure. We may conclude that a pure and normal phase contains
a pure state.

3.1.1 Probability measure

Outcomes should be real numbers. We should therefore establish a probability distribution on
R based upon an observable a and a state ω. Before we can define the so called Born measure
we need some ground work.

A state ω is sequentially strongly continuous if ω(an)→ ω(a) whenever an → a in the strong
topology. All states are bounded and hence continuous with respect to the norm topology. The
stronger notion of sequentially strong continuity however does not hold in general.

Proposition 3.1.14. A normal phase in S(A) is sequentially strong continuous on Asa.

Proof. A normal phase in S(A) can be represented by a normal state. Normal states are convex
combinations of vector states, we hence first prove the statement for the vector states. This is
easily proven since for an → a strongly we have anψ → aψ for all ψ ∈ H. In particular

ωψ(an) = 〈ψ, anψ〉 → 〈ψ, aψ〉 = ωψ(a). (3.13)

Now let ω be any normal state and let an again be a sequence converging strongly to a. We
can write ω =

∑∞
m=0 λmωψm . Since an converges strongly the set {anψ | ψ ∈ H} is bounded for

all ψ ∈ H. Recall the uniform boundedness principle [38] theorem 2.6 to state that there exists
C ∈ N such that ‖an‖ ≤ C for all n ∈ N. This implies that |ωψm(an)| ≤ ‖ωψm‖ ‖an‖ ≤ C. By
using dominated convergence in the second step and eq. (3.13) in the third we obtain

lim
n→∞

ω(an) = lim
n→∞

∞∑
m=0

λmωψm(an) =

∞∑
m=0

lim
n→∞

λmωψm(an) =

∞∑
m=0

λmωψm(a) = ω(a). (3.14)

Using the above we can define a probability measure on the spectrum of an observable in
case of normal states.

Lemma 3.1.15. Let ω be a representative of a normal phase in S(A) of some quantum sys-
tem. For a ∈ Obs any (possibly unbounded) observable with projection valued measure E (see
theorem 2.1.11), the function assigning to each measurable set X ⊂ σ(a)

X → ω(E(X)) (3.15)

is a probability measure on σ(a) ⊂ R.
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Proof. We need to check the three axioms for a probability measure.

First we verify that the measure of the total space is 1 and that the measure of the empty
set is 0:

ω(E(σ(a))) = ω(I) = 1 (3.16)

ω(E(∅)) = ω(0) = 0. (3.17)

The measure is positive since ω is positive.

For {Un} a sequence of mutually disjoint measurable sets

ω(E(t∞n=1Un)) = ω(

∞∑
n=1

E(Un)) = ω( lim
N→∞

N∑
n=1

E(Un)) = lim
N→∞

ω(

N∑
n=1

E(Un)) =

∞∑
n=1

ω(E(Un)),

(3.18)
where we used in the third equality that ω is normal and hence sequentially strong continuous.

Note that the proof of countable additivity relies on the state being normal. The above
lemma demonstrates how the spectral theorem, the self-adjoint operators and the states neatly
collaborate.

Remark 3.1.16. Definition 3.1.17 justifies why we restricted observables to self-adjoint ele-
ments and states to functionals satisfying eq. (3.1).

The assumption that a is self-adjoint is equivalent to the assumption that a has a projection-
valued measure and real spectrum. In turn, the requirements in eq. (3.1) make sure that the
expression eq. (3.15) is a probability measure.

Definition 3.1.17. Let a be an observable with projection valued measure E and let ω be a
normal state. Write ω(E) for the probability measure on R in eq. (3.15).

We could wonder whether it is possible to find a probability measure for non-normal states
as well. The following lemma shows that the naive extension of definition 3.1.17 does not work.

Lemma 3.1.18. For a quantum system with compact group G and for each representative ω
of a non-normal phase in S(A), there exists an observable a, with projection-valued measure E
such that ω(E) is not a probability measure on σ(a).

Proof. First we show that countable additivity breaks down in the case of a pure non-normal
state. There exists a non-normal state hence the dimension of H will be infinite. Write H =
⊕∞n=1Un for a choice of mutually perpendicular irreducible subspaces. Define the (unbounded)
observable a′ on the dense domain consisting of finite linear combinations of elements in the
subspaces Un by

a′ =

∞∑
n=1

neUn . (3.19)

Now let a be the closure of a′. The operator a is self-adjoint and commutes with ρτ (Gτ ) by
construction. We have σ(a) = N. On the one hand

ω((E)(N)) = ω(E(σ(a))) = ω(I) = 1. (3.20)
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On the other hand, since Un is finite dimensional we have by a result from Glimm [17] section
4, that ω(eUn) = 0 for all n ∈ N. This implies

∞∑
n=1

ω(E)(n) =

∞∑
n=1

ω(eUn) =

∞∑
n=1

0 = 0. (3.21)

If ω(E) would be a measure it should be countably additive

1 = ω(E)(N) = ω(E)(t∞n=1n) =

∞∑
n=0

ω(E)(n) = 0. (3.22)

This proves the failure of the countable additivity in the case of non-normal pure states.

In case ω is non-normal it contains at least one non-normal state ω′ in its convex decompo-
sition. We find

∞∑
n=0

ω(eUn) =

∞∑
n=0

(
λ′ω′(eUn) +

∞∑
m=1

λmωm(eUn)

)
=

∞∑
n=0

∞∑
m=1

λmωm(eUi) ≤
∞∑
m=1

λm (3.23)

= 1− λ′ < 1. (3.24)

Since once again

ω(

∞∑
n=1

eUn) = ω(I) = 1 (3.25)

this yields a contradiction.

Assume that the assignment of probability measures to sates is sequentially continuous, we
proceed to show that a probability measure for a pure non-normal phase of states cannot be
found.

Proposition 3.1.19. The normal states are weak−∗ dense in the states.

Proof. The algebra B(H) is a unital Banach algebra whose pre-dual is the unital Banach algebra
consisting of the trace phase operators. This means that we can apply [31] theorem 2.2 and
state that the normal states are dense in B(H) with respect to the weak−∗ topology.

The above proposition also implies that N(S(A)) lies dense in S(A). Recall that a sequence
of measures µn converges in the strong topology if

µn → µ ⇐⇒ ∀X⊂σ(a)µn(X)→ µ(X). (3.26)

We now postulate that the assignment
ω → µω, (3.27)

must be at least sequentially continuous, where we look at the measures under the strong
topology and at the states under the weak−∗ topology. This condition now implies that no
measure for a non-normal state ω on σ(a) can be given.

Proposition 3.1.20. If the map in eq. (3.27) is sequentially continuous and we assign to each
normal phase the probability measure in definition 3.1.17 we cannot continuously extend the map
to non-normal phases of S(A).
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Proof. By proposition 3.1.19, the normal states lie dense in the states. So for each non-normal
state ω there is a sequence of normal states ωn converging to it in the weak−∗ topology. We
find that for each measurable X ⊂ σ(a)

lim
n→∞

ωn(E(X)) = ω(E(X)), (3.28)

whence
µω(X) = lim

n→∞
µωn(X) = lim

n→∞
ωn(E(X)) = ω(E(X)). (3.29)

By lemma 3.1.18 the right hand side of this equation is not a measure for all elements in
Obs. This proves that the assignment in definition 3.1.17 cannot be extended to non-normal
states.

However, to obtain a sensible physical theory a state should induce a probability measure
on R for any a ∈ Obs. For this reason we throw out the non-normal phases in S(A).

Definition 3.1.21. A quantum state is a normal sate on B(H): we restrict S(A) to N(S(A)).

Remark 3.1.22. Note that the states with which we are left are precisely the sates we used in
the introduction.

Let E be the projection valued measure of a. By construction in definition 2.1.9,

lim
N→∞

N∑
z=−N

z

n
· E(

[ z
n
,
z + 1

n
)
)
= a (3.30)

for the topology in definition 2.1.16. In case ω is normal we find the following elegant expression
for the expectation value of a with respect to ω

Eω(a) =

∫
σ(a)

λ dω(E(λ)) = lim
n→∞

∞∑
z=−∞

z

n
· ω(E(

[ z
n
,
z + 1

n

)
)) (3.31)

= ω( lim
n→∞

∞∑
z=−∞

z

n
· E(

[ z
n
,
z + 1

n

)
) = ω(a),

where we used for the second equality that the integral is a Riemann-Stieltjes integral and in
the third and fourth equality that ω is sequentially strong continuous (by proposition 3.1.14).
For unbounded operators we use the notation ∞ in case the integral is not defined. For the
variance we find

Varω(a) =

∫
σ(a)

λ2 dωE(λ)− E(a)2 = lim
n→∞

∞∑
z=−∞

(
z

n
)2 · ω(E(

[ z
n
,
z + 1

n

)
)− ω(a)2 (3.32)

= ω(a2)− ω(a)2.

In case of non-normal states we can still postulate that ω(a) is the expectation value and
that ω(a2) − ω(a)2 is the variance. The only thing left to check is that the variance is indeed
positive.

Lemma 3.1.23. For each state ω and each observable a

0 ≤ ω(a2)− ω(a)2 (3.33)
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Proof. By eq. (3.1)

0 ≤ ω((a− ω(a)I)2) = ω(a2 + ω(a)2I− 2aω(a)I) = ω(a2)− ω(a)2. (3.34)

However in order to get a sensible physical theory we need a probability measure on R and
not only an expectation value.

3.1.2 State collapse

Thus far we achieved for each state ω and each observable a a probability measure on R. At
some point a measurement will be made and a certain subset X ⊂ σ(a) will be realised. At this
point a rather unexpected move enters the scene. When the observable a is measured and a
subset of outcomes X is realised, the initial state will collapse to a certain other state. We use
Lüders rule [28] page 2.

Definition 3.1.24. Let a be an observable, ω a state and X ⊂ σ(a) a measurable set for which
ω(E(X)) 6= 0. Define the X-collapse to be the state

ω′(a) =
1

ω(E(X))
ω(E(X)aE(X)). (3.35)

It remains to show that the above state is well defined.

Lemma 3.1.25. Equation (3.35) defines a state.

Proof. We need to prove that eq. (3.1) holds. First we check

ω′(I) =
1

E(X)
ω(E(X)IE(X)) =

1

ω(E(X))
ω(E(X)2) = 1. (3.36)

Secondly, we check

ω′(aa∗) =
1

ω(E(X))
ω(E(X)aa∗E(X)) =

1

ω(E(X))
ω(E(X)a)(E(X)a)∗) ≥ 0. (3.37)

We conclude that ω′ is a state.

Remark 3.1.26. The above is the ‘measuring is influencing’ result from quantum physics.
Whenever a measurement is made the state collapses accordingly.

Let ω be a state and a an observable. Let ω′ be the X-collapsed state of ω under a. An
interesting observation is that the X-collapse of ω′ is once again ω′

1

ω′(E(X))
ω′(E(X)aE(X)) =

1

ω(E(X)E(X)E(X))
ω(E(X)2aE(X)2) (3.38)

=
1

ω(E(X))
ω(E(X)aE(X)) = ω′(a). (3.39)

Physically this means that whenever we measure a for the second time it realises the previous
result with certainty.
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3.1.3 Continuous spectrum and point spectrum

The subset σp(a) ⊂ R has a special status.

Proposition 3.1.27. Given an observable a, there exists a state ω for which the variance is 0
and the expectation value is λ0 iff λ0 ∈ σp(a).

Proof. First we establish the following fact. A probability measure µ on R is either a point
measure at λ0 or it contain an open subset U around λ0 such that µ(U c) > 0. In order to
prove this assume that there would not exists an open U around λ0 such that µ(U c) > 0. In
particular, we find µ((λ0 − 1

n , λ0 + 1
n )c) = 0. This implies

µ({λ0}c) = µ(∪∞n=1(λ0 −
1

n
, λ0 +

1

n
)c) ≤

∞∑
n=0

µ(λ0 −
1

n
, λ0 +

1

n
)c) = 0. (3.40)

Hence µ({λ0}) = 1. It follows that µ is a point measure at λ0.

Applying the above result to the case at hand, we find that if E(ω) is not a point measure
that there exists a neighbourhood U around λ0 such that E(ω)(U c) > 0. Hence there exists
ε > 0 such that [λ− ε, λ+ ε] ∩ U c = ∅. This means that∫ ∞

−∞
(λ− λ0)2dEω(λ) ≥

∫
Uc

(λ− λ0)2dEω(λ) > εω(E(U c)) > 0 (3.41)

contradicting the zero-variance assumption. The measure ω(E) on σ(a) should therefore be a
point measure. It follows that

ω(E(λ0)) = 1. (3.42)

This can only hold if E(λ0)H 6= 0, implying that λ0 ∈ σp(a).

On the other hand assume that λ0 ∈ σp(a). Pick ψ ∈ E(λ0)H. The vector state ωψ has zero
variance under a and λ0 as its expectation value.

For λ ∈ σc(a) we have ω(E(λ)) = 0, we hence cannot speak of a λ-collapse. There is however
a sequence of states for which the previous lemma holds in the limit.

Proposition 3.1.28. Whenever λ′ ∈ σc(a) there is a sequence of states {ωn} for which

Varn(a)→ 0 and En(a)→ λ′. (3.43)

Proof. Write a− λ′I by means of the projection valued measure E of a,

a− λ′I =

∫
σ(a)

(λ− λ′)dE(λ). (3.44)

This operator in non-invertible by definition of the spectrum. This means that E(X) 6= 0 for
every open X that contains λ′ ∈ X. Define the open balls B( 1

n , λ
′) of radius 1

n around λ′. And
pick for every n ∈ N an unit vector ψn ∈ E(B( 1

n , λ
′))H. We claim that the sequence ωn of

vector states of ψn is the sequence we are after. First we check the expectation value

En(a) = 〈ψn, aψn〉 =

∫
σ(a)

λ d〈ψn, E(λ)ψn〉 =

∫
B( 1

n ,λ
′)

λ d〈ψn, E(λ)ψn〉 (3.45)

→ λ′I.
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Next we calculate the variance,

Varn(a) =

∫
σ(a)

λ2 d〈ψn, E(λ)ψn〉 −

(∫
σ(a)

λ d〈ψn, E(λψn〉

)2

(3.46)

=

∫
B( 1

n ,λ
′)

λ2 d〈ψn, E(λ)ψn〉 −

(∫
B( 1

n ,λ
′)

λ d〈ψn, aψn〉

)2

→= λ′2I− (λ′I)2 = 0.

Example 3.1.29. Let X be the position observable in example 2.3.3. There is no function in
L2(R,C) for which Xψ = xψ. However, X has a clear meaning of determining a position of
a vector state ψ. Whenever we concentrate ψ around x the observable X will tend to realise x
with certainty.

More explicitly, whenever we pick

ψn =
1

2
√
nπ

en(x−x′)2 , (3.47)

for the states eψn , the observable X, will tend to result in x′ with certainty .

3.2 Classification of the quantum phases

As was argued in the previous section, our interest lies in the normal states on B(H). Given
some quantum system with algebra of observables A, we should classify the phases N(S)(A).
By the convexity of this space, we may restrict ourselves to classifying the extreme points.

Our main result is the classification of normal pure phases by irreducible subspaces of the
twisted representation of the particular quantum system. The claim is inspired by the fact that
the states for indistinguishable particles are given by the irreducible representations of Sn [4]
chapter 1.

Before we state and prove the main claim, we repeat some material from chapter 2 and lay
some ground work. Recall the following result from proposition 2.4.5. Let U be an irreducible
subspace of the representation ρτ . The automorphisms on U that intertwine the representation
are isomorphic to either of the following division algebras:

C,R,H. (3.48)

Definition 3.2.1. Let D be one of the division algebras in eq. (3.48) and let ρτ be a twisted
representation of some group. An irreducible subspace of ρτ whose intertwining automorphisms
form the division algebra D is called a subspace of type D.

Since G is compact we can decompose H into finite dimensional mutually perpendicular
irreducible subspaces. Fix in each closed irreducible subspace U ⊂ H a unit vector ψU in such
a way that whenever

∑
i λiψUi = ψU we have λi ≥ 0 for all i. Recall that the intertwiners from

U to U ′ are isomorphic to some division algebra over the real numbers D. There hence exists a
unique operator

TU
′

U : H → H (3.49)
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such that TU
′

U U⊥ = 0 and

〈ψU ′ , TU
′

U ψU 〉 = 1. (3.50)

Fix these operators once and for all. Define

AD = LR{TU
′

U | U type D and 〈ψU ′ , TU
′

U ψU 〉 = 1}, (3.51)

where LR is the R-linear span allowing infinite (converging) sums.

Lemma 3.2.2. The set AD forms a closed involutive R-linear subalgebra of B(H).

Proof. First we check the involution

TU
′∗

U = TU
′−1

U = TUU ′ ∈ AD. (3.52)

Now look at the composition T
U ′1
U1
T
U ′2
U2

. This operator is an intertwiner from U2 to U ′1 and

〈ψU ′1 , T
U ′1
U1
T
U ′2
U2
ψU2〉 = 〈ψU ′1 , T

U ′1
U1

(λψU1 + φ)〉, (3.53)

where λ > 0 and φ ∈ U⊥1 . We continue

· · · = λ〈ψU ′1 , T
U ′1
U1
ψU1〉 = λ. (3.54)

Therefore T
U ′1
U1
T
U ′2
U2

= λT
U ′1
U2

with λ ∈ R. So T
U ′1
U1
T
U ′2
U2
∈ AD.

Lastly, we check that AD is closed. Observe that for all TU
′

U we have

〈ψV ′ , TU
′

U ψV 〉 > 0 (3.55)

for all irreducible subspaces V and V ′. A limit T of a sequence in the real linear span of the
operators TU

′

U therefore satisfies
〈ψV ′ , TψV 〉 ∈ R (3.56)

for all irreducible subspaces V and V ′. Write H = ⊕iUi. If we restrict T to Ui the above

equation implies that T |U = λT
U ′i
U for U ′i = TUi and λ ∈ R. Since T =

∑∞
i=1 T |Ui it follows

that T is in the real linear span of the operators TU
′

U .

In case we take the C-linear span we obtain a C∗-algebra. We can write the algebra of
observables in the following way:

A = (R⊗R AR)⊕ (C⊗R AC)⊕ (H⊗R AH) . (3.57)

We are interested in the pure normal phases, we can search for these phases on the individual
components of the direct sum.

PN (S(A)) = PN (S(R⊗R AR))⊕ PN (S(C⊗R AC))⊕ PN (S(H⊗R AH)). (3.58)

Theorem 3.2.3. Let (H,G, φ, τ, ρτ ) be a quantum system with compact group G. Let UR, UC
and UH be the sets consisting of all irreducible subspaces of ρτ of type R, C and H respectively.
Write S(H) for the vector states of B(C2). There is a bijective map between

U = UR ∪ UC ∪ (S(H)× UH) (3.59)

60



and the pure normal phases of states PN (S(A)). The bijection in question is given by

UR → PN (S(R⊗R AR)) (3.60)

ωU (λ⊗R a) = λTr(eUa)

UC → PN (S(C⊗R AC))

ωU (λ⊗R a) = λTr(eUa)

S(H)× UH → PN (S(H⊗R AH))

ω(ω′,U)(λ⊗R a) = ω′(λ) · Tr(eUa).

Proof. The search for pure normal phases PN (S(A)) distributes over the direct sum in eq. (3.57).
We can therefore treat the terms D⊗R AD individually.

Recall the operators TU
′

U and vectors ψU that were fixed in the text preceding this theorem.
Introduce the notation H ′ = LC{ψUi | U type D} and H ′R = LR{ψUi | U type D}. Write
H = ⊕iUi with respect to some choice of mutually perpendicular irreducible subspaces Ui.
The C∗-algebra C ⊗C AD = LC{TU

′

U | U type D} is isomorphic to B(H ′). We construct an
isomorphism φ as follows. Given any operator a ∈ AD we can decompose

a = ⊕iλUiT
U ′i
Ui
, (3.61)

with T
U ′i
Ui

uniquely fixed and λUi ∈ R. Now φ sends this operator to the operator a′ ∈ B(H ′)
defined by

a′ψUi = λUiψU ′i . (3.62)

This mapping φ is an isomorphism.

We will now treat the three cases individually. In each of the cases we make use of the
following fact. Since due to lemma 3.2.2 C⊗CD⊗CAD is a C∗-algebra, we can equivalently look
for phases of states on C⊗C D⊗C AD upon restriction to D⊗R AD.

First we track down the normal pure phases on R ⊗R AR = AR. Under the isomorphism φ
we find that AR ∼= B(H ′R) ⊂ B(H ′). If searching for phases of B(H) under restriction to AR we
can look for phases of B(H ′) under restriction to B(H ′R). The self-adjoint elements of B(H ′R)
are given by the symmetric operators Bsym(H ′R). All vector states on B(H ′) can be separated
on the domain Bsym(H ′R). This is not hard to see since if eψ 6= eψ′ these states can be separated
by the operator eψ ∈ Bsym(H ′R). We conclude that the pure normal phases are simply given by
the pure normal states on B(H ′). The pure normal states are therefore the vector states eψ.
Under the isomorphism φ these states correspond with states eU , where U ⊂ H is an irreducible
subspace of type R.

Secondly we look at C⊗R AC. Since we are searching for C-linear states, this is the same as
restricting to C ⊗C AC ∼= AC. This algebra is under φ isomorphic to B(H ′). The pure normal
phases are therefore simply the pure normal states on B(H ′). The normal pure states are as
already established the vector states eψ. Under the isomorphism φ these states correspond with
states eU , where U ⊂ H is an irreducible subspace of type C.

Lastly we proceed with H⊗R AH. Represent the quaternions H in B(C2) as follows:

H ∼=
{(

a b

−b a,

)
| a, b ∈ C

}
. (3.63)
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Using the above identification and the isomorphism φ, we find that H⊗RAH is contained in the
C∗-algebra B(C2)⊗R B(H ′). For this reason we can look for phases of B(C2)⊗C B(H ′) under
restriction to H⊗R B(H ′R). The self-adjoint elements of H⊗R B(H ′R) are given by

(Hsa ⊗R Bsym(H ′R))⊕ (Hskew ⊗R Bskew(H ′R)). (3.64)

The normal pure states are the vector states eψ′⊗ψ = eψ ⊗ eψ′ , where ψ ∈ C2 and ψ′ ∈ H ′. We
claim that all these states can be separated by (H⊗R B(H ′R))sa.

We already proved that Bsym(H ′R) ⊂ B(H ′) separates all states eψ′ with ψ′ ∈ H ′. Next we
look at H. For the skew adjoint part of the quaternions we have

Hskew =

(
ia b+ ic

−b+ ic −ia

)
a, b ∈ R. (3.65)

Observe that C ⊗C Hskew = B(C2). Therefore, once we know a C-linear function on Hskew
we know it on the whole of B(C2). We may conclude that all states eψ, with ψ ∈ C2, can be
separated on Hskew.

Given two distinct states eψ ⊗ eψ′ and eφ ⊗ eφ′ we have two cases. In case ψ′ 6= φ′ we can
pick a symmetric operator a in B(H ′) separating ψ and φ. This way I ⊗ a will separate the
two respective states. In case ψ 6= φ and ψ′ = φ′ we can pick any anti-symmetric operator a
in B(H ′) and an anti-symmetric operator b in H that separates ψ′ and φ′. This way a⊗ b will
separate the two respective states.

The phases in PN (S(H⊗RAH)) are therefore given by the vector states on C2⊗CH
′. Under

the isomorphism φ these are the states eψ ⊗ eU , where U ⊂ H is of type H and ψ ∈ C2.

The case thatH ′ is one dimensional is special. In this instance we are only left with restricting
states on B(C2) to Hsa. Since

Hsa =

{(
a 0
0 a

)
| a ∈ R

}
, (3.66)

there is only one phase and hence only one normal pure phase in this case.

Example 3.2.4. In case the symmetry group G is trivial we find Gτ = T and therefore the
irreducible subspaces are one-dimensional. The conclusion is that all normal pure states on the
algebra of observables B(H) are given by the one dimensional projections.

In case of the n-particle Hilbert space ⊗nH on which the symmetric group Sn acts by permut-
ing the entries. Examples of irreducible subspaces are the completely symmetric and completely
anti-symmetric states ∑

σ∈Sn

σ · ⊗ni=1ψi respectively
∑
σ∈Sn

(−1)|σ|σ · ⊗ni=1ψi (3.67)

form irreducible subspaces. These pure states are the well-known Bosonic and fermionic states.
Note, however, that there are more irreducible subspaces and hence more pure states! See also
[4] chapter 1.

Recall time reversal on the spin space discussed in example 2.4.8. The irreducible subspaces
are of quaternionic type and hence contain multiple pure states!
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We continue by finding a nice physical property to distinguish the pure normal states. To
this end we define the notion of non-degeneracy.

Definition 3.2.5. Let a and a′ be two observables with spectral measures E and E′ respectively.
Whenever σ(a) ⊂ σ(a′) and for every measurable X ⊂ σ(a) there exists a measurable Y ⊂ σ(a′)
with Y ∩ σ(a) = X such that

E(Y ) = E(X), (3.68)

we say a′ is finer then a.

A non-degenerate observable is an observable a for which the only finer observable is a itself.

A non-degenerate observable is in this way the maximal element of the partial ordering
induced by being finer. The idea behind the definition of non-degeneracy is to expresses that
a separates as many outcomes as possible. It is now natural to proceed with the following
definition.

Definition 3.2.6. A state is called a state of maximal certainty if there exists a non-degenerate
observable for which the variance is zero.

The next theorem now shows the special status of normal pure states in physics.

Theorem 3.2.7. Given a quantum system with compact symmetry group, a quantum state ω
on the algebra of observables of this quantum system is a state of maximal certainty iff it is a
pure normal state.

Proof. Let ω be a state of maximal certainty and let a be a non-degenerate observable having
zero variance under ω. Recall proposition 3.1.27 to see that we must have λ ∈ σ′p(a) and ω = ωψ
for some ψ ∈ H. The vector ψ must be contained in an irreducible subspace. The vector state
ωψ therefore coincides with one of the normal pure states found in theorem 3.2.3.

On the other hand, it is easy to see that the normal pure states found in theorem 3.2.3
all have zero variance when applied to the observable that is the projection on the irreducible
subspace belonging to that particular normal pure state.

Remark 3.2.8. The above result justifies the special significance attributed to the normal pure
states and the non-degenerate observables. A non-degenerate observable distinguishes a maximal
number of outcomes and the normal pure states are the states that hold maximal information for
a certain maximally refined operator. These normal pure states are, however, still probabilistic
with respect to most other observables, the best you can get in quantum physics.
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Chapter 4

Topological phases

Having read the previous chapter one question pops up. Where is the mechanics in quantum
mechanics? Until now a state does not evolve over time. The formalism thus far is locked up at
t = 0. To this end we will introduce the Hamiltonian, which gives rise to a time evolution. In
the last section two ways to classify the connected components of Hamiltonians are given.

Remark 4.0.9. It is worth noting that the theory is already very exciting, even though it only
describes a system trapped in t = 0. In classical mechanics the system at t = 0 is little more
than fixing a point in phase space. In the quantum case the the measuring is influencing property
kicks in and introduces some ‘movement’ due to the collapsing of states.

4.1 Hamiltonians

Definition 4.1.1. A Hamiltonian of a quantum system is an observable with spectrum bounded
from below.

We make a small remark on the seemingly arbitrary assumption on the spectrum.

Remark 4.1.2. Recall from proposition 3.1.28 that for each λ ∈ σ(h) there exists a sequence of
states ωn which after a measurement tends to result in λ with certainty. In case σ(h) would not
be bounded from below, there exist states with arbitrary low energy expectation value. By ever
further lowering the quantum system in lower energy states, we could extract an infinite amount
of energy from the system. This would violate the laws of thermodynamics.

In order to complete the formalism we need to introduce a time evolution. For the sake of a
good build-up we start with defining a notion lying close to that of time evolution.

Definition 4.1.3. An evolution is a continuous (with respect to the topology in definition 2.1.16)
homomorphism

ρ : R→ AutQM (Osym(H)). (4.1)

Given ρ the evolution of a state is given by

ω(t)(a) = ω(ρ(t)(a)). (4.2)

In theorem 2.2.5 we saw that either of the two cases below must hold

ρ(t)(a) = uau∗, u unitary (4.3)

ρ(t)(a) = vav∗, v anti-unitary. (4.4)
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Since R is connected the image of its representation must be connected and hence fall completely
in the unitary operators.

Using Stone’s Theorem, [33] section 2.3, the representation is uniquely given by some self-
adjoint generally unbounded operator a via

t→ e−ita. (4.5)

We want to interpret a as the Hamiltonian. We arrive at the following definition of a time
evolution.

Definition 4.1.4. A time evolution of a quantum system is an evolution that is generated by a
Hamiltonian h of this quantum system.

As a last remark we prove a well know result in quantum physics, [18] page 115.

Proposition 4.1.5. The expectation value of an observable a does not change over time under
arbitrary states ω iff the observable commutes with h.

Proof. A bounded observable a commutes with h iff it commutes with e−ith. This in turn is the
case iff for every ω

ω(eithae−ith) = ω(a). (4.6)

In other words,
ω(t)(a) = ω(a), (4.7)

proving the claim.

We can obtain the same result result for unbounded observables for which there exists a
sequence of bounded observables, that commute with e−ith, converging to it.

4.2 Classification of topological phases

In this section we take a look at the topological phases of some selected subset H of Hamiltonians
of some quantum system.

Definition 4.2.1. Select some subset H of the Hamiltonians of a quantum system. Equip H
with the topology in definition 2.1.16. A continuous path is a continuous function

[0, 1]→ H (4.8)

t→ ht. (4.9)

Two hamiltonians h and h′ are connected whenever there exists a continuous path

R→ H (4.10)

such that h0 = h and h1 = h′.

Being connected is an equivalence relation ∼, whose equivalence classes are called topological
phases. Denote the set of topological phases by Tp(H).

Example 4.2.2. If we take a look at the subset of Hamiltonians of some quantum system
without imposing any additional requirements, there is only one topological phase. Namely,
every Hamiltonian h is connected to 0 via the path

ht = th. (4.11)
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The result of there being only one topological phase is not very interesting. We should
add additional conditions on the Hamiltonians in order to extract non-trivial results. In the
following we restrict to Hamiltonians of a certain quantum system with compact symmetry
group presenting a so called gap in its spectrum. First we classify topological phases by invariant
subspaces. Second we use the procedure of Kitaev [26] to classify the topological phases in case
a Hamiltonian can be looked upon as an extension of some Clifford module.

Gapped Hamiltonians of quantum systems with compact symmetry group can be interpreted
as 0-dimensional insulators. The physics behind the problem is explained in section 5.3 later
on.

4.2.1 Gapped Hamiltonians

Let (H,G, φ, τ, ρτ ) be a quantum system with compact group G. Let H be the space consisting of
Hamiltonians of this quantum system for which there exists an ε > 0 such that σ(h)∩ [−ε, ε] = ∅.
A Hamiltonian h ∈ H is called gapped.

We start by observing a promising simplification on the gapped Hamiltonians, [11] page 28.

Definition 4.2.3. The spectral flattening of a Hamiltonian h is the operator

hs =

∫
σ(h)+

dE(λ)−
∫
σ(h)−

dE(λ) = h+ − h−, (4.12)

where E is the projection valued measure of h and σ±(h) = σ(h) ∩ R±.

The spectral flattening of a Hamiltonian hs is connected to the original Hamiltonian h.

Lemma 4.2.4. For h ∈ H the spectral flattening hs is connected to h via the path

ht =

∫
σ(h)

λ

|t(1− λ) + λ|
dE(λ), t ∈ [0, 1]. (4.13)

Proof. Fix a ψ ∈ D(ht0) and ε > 0. There exists an N ∈ N such that∥∥∥∥∥
∫
R\[−N,N ]

λdE(λ)ψ

∥∥∥∥∥ < ε

4
. (4.14)

For this N there also exists δ > 0 such that for all t ∈ [t0 − δ, t0 + δ],∥∥∥∥∥
∫

[−N,N ]

(
λ

|t0(1− λ) + λ|
− λ

|t(1− λ) + λ|

)
dE(λ)ψ

∥∥∥∥∥ (4.15)

≤ 2N ‖ψ‖ | N

|t0(1−N) +N |
− N

|t(1−N) +N |
| < ε

2
.

It follows that for all ht with t ∈ [t0 − δ, t0 + δ]

‖(ht0 − ht)ψ‖ <

∥∥∥∥∥
∫

[−N,N ]

(
λ

|t0(1− λ) + λ|
− λ

|t(1− λ) + λ|

)
dE(λ)ψ

∥∥∥∥∥+ 2 · ε
4
< ε. (4.16)

Therefore, ht ∈ U(ht0 , ψ, ε). The same result can be reached for finite intersections of sets of
the form ht ∈ U(ht0 , ψ, ε). In case om M such sets we take the apply the procedure above M
times and pick the minimum of the M chosen δ and the maximum of the M chosen N . Since
the sets ht ∈ U(ht0 , ψ, ε) form a basis for the topology, we may conclude that indeed ht → ht0 .
It follows that ht is a continuous path. By construction it connects h with hs.
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Note that in the lemma above we were able to deform the positive spectrum of the Hamil-
tonian to 1 and the negative spectrum to −1. We can however not deform the whole spectrum
to, say, 1 because of the gap at 0.

Using the deformation in eq. (4.13) we even find the following lemma.

Lemma 4.2.5. The topological phases of H coincide with the topological phases of spectral
flattened Hamiltonians in H.

Proof. By lemma 4.2.4 each topological phase contains a spectral flattened Hamiltonian. To
finish the proof we must show that whenever two spectral flattened Hamiltonians h0 and h1

are connected, there exists a path between h0 and h1 solely consisting of spectral flattened
Hamiltonians. To this end assume that h0 and h1 are two spectral flattened Hamiltonians that
are connected. Let ht be any continuous path connecting the two Hamiltonians. We claim that
hst is a continuous path between h0 and h1 as well.

First, we prove that there exists an ε > 0 such that σ(ht) ∩ [−ε, ε] = ∅ for all t ∈ [0, 1]. For
the sake of contradiction assume that this would not hold. There would exist a sequence htnψm
with ψm norm one for all m ∈ N such that

lim
n→∞

lim
m→∞

‖htnψm‖ = 0. (4.17)

Since [0, 1] is compact there exists a t′ ∈ [0, 1] such that limm→∞ ht′ψm = 0. This implies that
0 ∈ σ(ht′), contradicting our assumption.

Since there exists an ε > 0 such that [−ε, ε] is not contained in the spectrum of any ht, we
find ∥∥∥∥∥

∫
R\[−ε,ε]

λd(Et0 − Et)ψ

∥∥∥∥∥ = ‖(ht0 − ht)ψ‖ → 0. (4.18)

Since |λ| ≥ ε,

∥∥(hst0 − h
s
t )ψ
∥∥ =

∥∥∥∥∥
∫
σ(h)

d(Et0 − Et)ψ

∥∥∥∥∥ ≤ 1

ε
‖(ht0 − ht)ψ‖ → 0. (4.19)

We conclude that hst is a continuous path, which by construction connects h0 and h1.

For this reason we may restrict ourselves to classifying topological phases of spectral flattened
Hamiltonians under their usual strong topology. In other words, we need to find the topological
phases of operators of the form

hs = h+ − h−. (4.20)

The self-adjoint operator hs has a discrete spectrum and therefore h+ and h− are projections
on the eigenspaces of hs with eigenvalues 1 and −1 respectively. Since 0 is not contained in the
spectrum of hs, we find

Im(h−)⊥ = Im(h+). (4.21)

The topological phase is therefore fixed once we know Im(h−). The operator hs intertwines
ρτ (Gτ ) iff Im(h−) is an invariant subspace V . There is now a nice identification of topological
phases of Hamiltonians with equivalence of the corresponding invariant subspaces.
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Lemma 4.2.6. For a given extended symmetry group Gτ and representation ρτ , we have

h+ − h− = hs ∼ h′s = h′+ − h′− (4.22)

iff
Im(h−) ∼ Im(h′−) (4.23)

as invariant subspaces of ρτ .

Proof. We can decompose Im(h−) into irreducible subspaces ⊕∞i=1Ui. It therefore suffices to
show that eU ∼ eU ′ iff U ∼ U ′.

Assume U ∼ U ′. In this case there exists an intertwiner T : U → U ′. The operator
(1−t)I+tT is an intertwiner as well. Its image Ut is therefore an irreducible subspace equivalent
to U . The function t→ eUt is a continuous path between eU and eU ′ .

On the other hand, assume that eU and eU ′ are connected via a continuous path of projections
on invariant subspaces et. By the compactness of the group the subspace U is finite dimensional.
Therefore, there exists a t1 > 0 such that for all t ∈ (0, t1) and all ψ ∈ U we have

‖(et − eU )ψ‖ < 1. (4.24)

We clai that the map
eU : Im(et)→ Im(eU ) (4.25)

is injective for t ∈ (0, t1). Assume for the sake of contradiction that there would exist a ψ ∈
Im(et) such that eUψ = 0. This implies that ‖(et − eU )ψ‖ = 1. This contradicts eq. (4.24). By
the same reasoning,

et : Im(eU )→ Im(et), (4.26)

is injective. We conclude that the dimensions of Im(eU ) and Im(et) are equal. The map in
eq. (4.25) is therefore a bijective intertwiner. It follows that U ∼ Im(et) for all t ∈ (0, t1).

For t ∈ [0, 1] define an open interval Vt in [0, 1] such that for all t, t′ ∈ Vt we have

‖(et − et′)ψ‖ < 1. (4.27)

These open sets {Vt | t ∈ [0, 1]} cover [0, 1] and since the space [0, 1] is compact there is a finite
sub-cover. A finite repetition of the previous argument now yields that U ∼ Im(et) for all
t ∈ [0, 1]. In particular, U ∼ U ′.

The topological phase is uniquely fixed by the equivalence class of the invariant subspace
Im(h−). We obtain the following theorem as a result.

Theorem 4.2.7. Label the irreducible subspaces of ρτ , up to equivalence, by {1, · · ·N}. Write
mj for the multiplicity of the irreducible subspace of ρτ belonging to j ∈ {1, · · · , N}. The map

{(n1, · · ·nN ) ∈ NN | nj ≤ mj} → Tp(H) (4.28)

(n1, · · ·nN ) 7→ ⊕Nj=1 ⊕
nj
i=1 (eU⊥i − eUi) (4.29)

is a bijection.
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4.2.2 Hamiltonians by Clifford module extensions

In many physical cases the search for h is equivalent with searching for an extension of a Clifford
module. The reader is advised to consult Appendix D at this point. First we define what we
mean by an extension of a Clifford module.

Definition 4.2.8. A positive extension of a Cliffp,q-module N is a Cliff p+1,q-module that is
isomorphic to the original Clifford module N after restriction. Write Ext+(Cliff p,q, N) for the
set of positive extensions of N .

In other words, a positive extension of a representation ρ of Cliff p,q is a representation ρ′

of Cliff p+1,q, such that the following diagram commutes:

Cliff p+1,q

ρ′

%%

Cliff p,q

i

OO

ρ
// B(N).

(4.30)

In the same way a negative extension of a Cliff p,q-module N is a Cliff p,q+1-module that is
isomorphic to the original Clifford module after restriction. Write Ext−(Cliff p,q, N) for the set
of negative extensions of N .

Finally, an extension of a Clif q-module N is a Clif q+1-module that is isomorphic to the
former after restriction. Write Ext(Cliff p,q, N) for the set of extensions of N .

A Clifford module onH is generated by a set of positive and negative generators e1, · · · , ep e′1, · · · , e′q
on H. A positive extension is in this respect nothing more than a self-adjoint operator ep+1

that squares to I and commutes with e1, · · · , ep e′1, · · · , e′q. A negative extension is on the
other hand a skew adjoint eq+1 that squares to −I and anti-commutes with the generators
e1, · · · , ep e′1, · · · , e′q. We can therefore equip the set of positive or negative extensions with the
strong operator topology.

Recall that we may restrict the discussion to spectral flattened Hamiltonians. That is to say,
Hamiltonians for which h2 = I. Symmetries and generators of symmetries have a tendency to
square to either plus or minus I. In many situations the requirement of commuting with ρτ (Gτ )
is equivalent with commuting with some Clifford module. By replacing h by a suitable operator
h′ it might be possible to find anti-commutation relations between h′ and the Clifford module.
In this way searching for h is equivalent with searching an additional (positve or negative)
generator of some Clifford module. We treat some examples.

Example 4.2.9. • No symmetry. In case there is no symmetry, there are no restrictions
on h. All self-adjoint operators that square to I are spectral flattened Hamiltonians of
this quantum system. In other words, h is a self-adjoint element squaring to I and anti-
commuting with the generators of a Cliff 0-module. Note that the last statement is empty
since Cliff has no generators. The operator h will therefore be a positive extension of this
module, since h2 = I.

• Time reversal. Time reversal is anti-unitary (see Appendix A), skew-adjoint and squares
to −I. This time we need to use a real graded representation in the way we did in section 1.4
to get rid of the anti-unitarity. Recall the operator J in eq. (1.125) that indicated the
number i. The representation of time reversal is hence a Cliff 0,1-module. The search for
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skew-adjoint matrices Jh squaring to −I is equivalent to the search for self-adjoint matrices
h squaring to I. The matirces Jh anti-commute with T iff T commutes with h. We should
hence search for matrices Jh that are negative extensions of the Cliff 0,1-module.

• Spin rotation. The spin rotations are generated by the well known Pauli spin matrices

J1 =

(
0 1
1 0

)
J2 =

(
0 −i
i 0

)
J3 =

(
1 0
0 −1

)
. (4.31)

Commuting with the spin rotations is equivalent with commuting with its generators, hence
h is required to commute with J1, J2 and J3. This is equivalent with requiring that it
commutes with just J1 and J2. The operators J1 and J2 form a Cliff 2-module. Instead of
searching for Hamiltonians h that commute with J1 and J2 we can equivalently search for
operators iJ1J2h that anti-commutes with J1 and J2. The operator iJ1J2h is self-adjoint,
squares to I and anti-commutes with the generators J1 and J2. We are therefore searching
for extensions of a Cliff 2-module.

• Charge conservation and time reversal. Now consider charge conservation together
with time reversal. Charge conservation means a U(1) invariance under eiθQ, where Q is
the self-adjoint charge operator that squares to I and anti-commutes with T . Commuting
with this U(1) group is equivalent with commuting with its self-adjoint generator Q. Hence
h needs to commute with the algebra generated by T and Q, equivalently, the skew-adjoint
operator Jh needs to anti-commute with the algebra generated by T and TQ. This is a
negative extension of the Cliff 0,2-module generated by TQ and T .

• Spin rotation and time reversal This time the Hamiltonian needs to commute with
J1, J2 and T . The matrices J1, J2 and T anti-commute with each other. Furthermore,
T is skew-adjoint and J1 and J2 are self-adjoint. Therefore J1, J2 and T are generators
of a Cliff 0,3-module. Replacing h for the skew-adjoint JTh is now makes the search of
Hamiltonians into searching for negative extensions of this module.

The above example illustrates that searching for a spectral flattened operator h commuting
with ρτ (Gτ ) can (at times) be interpreted as searching for an extending positive or negative
generator ep+1 of some Clifford module. There is, however, no fundamental reason why this
would be the case, it just turns out to be possible in many cases [26]. We are interested in the
connected components of H. For this reason we start tracking down the connected components
of extensions of Clifford modules.

Searching for negative extensions can be reinterpreted as searching for positive extensions.
This is due to the isomorphism, [26] equation 18,

Cliff p+2,q ∼= Cliff q,p ⊗R M2×2(R), (4.32)

given by the unique extension (see lemma D.0.22) of

ej → ej ⊗R

(
0 1
−1 0

)
for j ≤ p (4.33)

ej → ej ⊗R

(
0 1
−1 0

)
for j ≤ q (4.34)

ep+1 → I⊗R

(
1 0
0 −1

)
(4.35)

ep+2 → I⊗R

(
0 1
1 0

)
. (4.36)
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We do not equip M2×2(R) with a grading, hence by lemma D.0.28 M2×2(R) is Morita equivalent
with R. The Clifford algebra Cliff q,p is therefore Morita equivalent with Cliff q,p ⊗R M2×2(R).
This implies that the above isomorphism provides a bijection between positive extensions of a
Cliff p+2,q-module N and negative extensions of a Cliff q,p-module N ′.

It is therefore sufficient to search for connected components of positive extensions of some
Clifford module N . Positive extensions of a Clifford module N can equivalently be reinterpreted
as gradings of the Clifford module N , [3] proposition 4.19.

Lemma 4.2.10. Gradings of Clifford modules are in bijective correspondence with positive ex-
tensions of Clifford modules.

Proof. A grading η on a module N of Cliff q,p is a decomposition N = H1 ⊕H−1 in such a way
that Cliff p,q acts in a graded way. We may define an operator ep+1 : H → H by setting

ep+1ψ =

{
ψ iff ψ ∈ H1

−ψ if ψ ∈ H−1
(4.37)

This self-adjoint operator ep+1 anti-commutes with the generators {e1, · · · , ep, e′1, · · · , e′q} in
the Cliff p, q module and squares to I. Adding ep+1 to the set of generators therefore forms a
Cliff p+1,q module.

For the other way around, let ep+1 : H → H be an operator extending the Cliff p,q module to
a Cliff p+1,q module. Since ep+1 is self-adjoint and squares to I, it decomposes the Hilbert space
by its eigenspaces with eigenvalue 1 respectively −1. Since ep+1 anti-commutes with the odd
generators of Cliff p,q, this decomposition makes the Cliff p,q module into a graded module. This
provides an inverse construction and hence proves the bijectivity of the relation in question.

The proof for the complex goes in a similar fashion.

The above lemma implies that we can equivalently search for connected components of
gradings. In particular we can equip gradings of some Clifford module with the topology it
inherits from the positive extensions.

Corollary 4.2.11. Assume that the search for a Hamiltonian can be reformulated as a Clifford
extension problem. The topological phases of H are in this case in bijective relation with connected
components of gradings of some Clifford module in the way of lemma 4.2.10.

Let N be a finite dimensional module Clifford module. We are interested in the module
⊕∞i=1N . The following monoid and group are of interest.

Definition 4.2.12. Fix a finite dimensional Clifford module N . Write MN (∗) for the monoid
consisting of elements

(⊕ni=1N, η), (4.38)

where η is a grading of ⊕ni=1N . Addition is defined by

(⊕ni=1N, η) + (⊕mi=1N, η
′) = (⊕n+m

i=1 N, η ⊕ η′). (4.39)

Write GradN (Cliffp,q) for the topological space consisting of elements

(⊕ni=1N, η1, η2), (4.40)

where η1 and η2 are gradings of ⊕ni=1N . The set GradN (Cliffp,q) forms a commutative monoid
under the operation

(N, η1, η2)⊕ (N ′, η′1, η
′
2) = (N ⊕N ′, η1 ⊕ η′1, η2 ⊕ η′2). (4.41)
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Now define KN (∗) as the group freely generated by GradN (Cliffp,q) up to the relation

(⊕ni=1N, η1, η2) + (⊕mi=1N, η
′
1, η
′
2) = (⊕m+n

i=1 N, η1 ⊕ η′1, η2 ⊕ η′2) (4.42)

(N, η1, η2) ∼ e iff η1 ∼ η2. (4.43)

The group KN (∗) in some sense describes the difference classes ofthe monoid MN (∗). The
monoid MN (∗) provides information on what physical behaviour we would expect on ⊕∞i=1N , but
it can be hard to calculate. The group KN (∗), on the other hand, can be related to topological
K-groups, [23] chapter 4. The trade off is that the group KN (∗) is harder to interpret.

Definition 4.2.13. Write Grad(Cliffp,q) for the topological space consisting of tuples

(N, η1, η2), (4.44)

where N is a finite dimensional Cliffp,q-module and both η1 and η2 are gradings of this module
N . The set Grad(Cliffp,q) forms a commutative monoid under the operation

(N, η1, η2)⊕ (N ′, η′1, η
′
2) = (N ⊕N ′, η1 ⊕ η′1, η2 ⊕ η′2). (4.45)

Write KO
p,q

(∗) for the group freely generated by the connected components of Grad(Cliffp,q)
up to the relations

f + g ∼ f ⊕ g (4.46)

f ∼ e if η1 and η2 are path conected.

In the case of a complex Clifford algebra Cliff q, likewise define K
q
(∗).

As the notation might suggest, these groups are isomorphic to topological K-groups. See
Appendix C.

Theorem 4.2.14.
KOp−q(∗) ∼= KO

p,q
(∗) and K−q(∗) ∼= K

q
(∗). (4.47)

Proof. This is a special case of [24] theorem 4.22 and 5.12. The general theorem is valid for
an arbitrary compact topological space, here reduced to a point, and will be stated in the next
chapter.

By construction we find the following identification.

Corollary 4.2.15. The group KN (∗) is a subgroup of some topological K-group.

Proof. The group KN (∗) is by construction a subgroup of either KO
p,q

(∗) or K−q(∗). These
groups coincide with topological K-groups by theorem 4.2.14.

In case N is the only irreducible representation of the Clifford algebra, the above statement
specializes to isomorphism of the whole group (rather then just a subgroup). Some explicit
calculations are made at the end in section 5.4.2.
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Chapter 5

Quantum systems with lattice
symmetry

5.1 Quantum systems with lattice symmetry

Many physical systems posses a translational symmetry. A common example is a band insulator
which will be treated in section 5.3.

Definition 5.1.1. A quantum system with a d-dimensional lattice symmetry is a quantum
system (H,G, φ, τ, ρτ ) that satisfies the following requirements.

• The Hilberspace H is given by

L2(Rd,C)⊗W ∼= L2(Rd,W ), (5.1)

where W is some finite dimensional complex Hilbert space.

• The symmetry group G is a semi-direct product

G′ ×α Zd, (5.2)

with respect to some compact Lie group G′ and homomorphism α : G′ → Zd. For the
extension Gτ ∼= G′τ ×α̃ Zdτ , we require Zdτ ∼= Zd × T.

• Finally, for zτ ∈ Zτ ⊂ Gτ

(ρτ (zτ )ψ)(x) = (ρτ (λz)ψ)(x) = λψ(x+ z). (5.3)

An automorphism on Z is fixed once we know the image of −1. There are therefore only two
bijective homomorphism, −1 is sent to either 1 or −1. In turn, all automorphisms α on Zd are
given by

(z1, · · · , zd)→ (±1z1, · · · ,±1zd) (5.4)

it makes sense to write
α(g′)(z) = α(g′)z (5.5)

for α : G′ → ×d{±1}d.

Note that for d > 0 the symmetry group G is no longer compact. The classification theorems
in the previous chapters only hold for the special case of zero dimensional quantum systems.
The question is now how to generalise to quantum systems with a lattice symmetry.
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5.2 Classification of quantum systems with lattice sym-
metry

In this section we decompose a quantum system with d-dimensional lattice over Td. In this way
we can get rid of the non-compact Zd part of the group. This will allow us to extract the same
results we had for compact groups (d = 0) only now parametrized by Td.

5.2.1 Equivariant bundles

Preliminary we define what we mean by a Hilbert bundle [32] section 9.

Definition 5.2.1. A Hilbert bundle over topological space X is a topological space E together
with a continuous and surjective map π : E→ X in which each pre-image Ex of x ∈ X has the
structure of a Hilbert space. Furthermore, there exists for each x0 ∈ X an upen subset U ⊂ X
such that π−1(U) is homeomorphic to H × U .

Two Hilbert bundles E and E′ are isomorphic if there exists a homeomorphism ψ : E → E′

such that the restrictions to the fibres Ex

ψ : Ex → E′x (5.6)

are unitary maps.

In the spirit of [11], we now define a slight variation on an equivariant Hilbert bundle.

Definition 5.2.2. Let Gτ be a φ-twisted extension of a Lie group G and let X be a topological
space with a continuous G action. Define a Gτ action on X by

gτ · x = π(gτ ) · x, (5.7)

where π is the map π : Gτ → G. A φ-twisted Gτ -equivariant Hilbert bundle is a complex finite
dimensional Hilbert bundle p : E→ X equipped with a continuous Gτ action on E such that the
map

· gτ : Ex → Egτ ·x (5.8)

is unitary whenever φ(gτ ) = 1, and anti-unitary whenever φ(gτ ) = −1. Furthermore, if λ ∈
T ⊂ Gτ , then

λ · x = λx. (5.9)

Write VectφGτ (X) for the set of all φ-twisted Gτ -equivariant Hilbert bundles over X. Notice that
the action of Gτ on X is implied in the notation.

In the light of section 1.4 we can double the dimension and equivalently interpret a φ-twisted
Gτ -equivariant Hilbert bundle as a real Hilbert bundle with φ-graded Gτ action. We yet need
a notion of isomorphism.

Definition 5.2.3. Two φ-twisted Gτ -equivariant Hilbert bundles E and E′ are isomorphic iff
there exists a homeomorphism ψ : E→ E′ such that the following diagram commutes

Ex
ψ
//

·gτ

��

E′x

·′gτ

��

Eg·x
ψ
// E′g·x

. (5.10)
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We can also define φ-twisted Gτ -equivariant bundles using continuous families of operators
[11].

Definition 5.2.4. A set of bounded operators {ax : H → H | x ∈ X} is called a continuous
family over a topological space X on H if the assignment

x→ ax (5.11)

is continuous in the topology of section 2.1.2.

A set of twisted representations {ρτx : H → H | x ∈ X} is called a continuous family over a
topological space X if the assignment

(x, g)→ ρτx(g) (5.12)

is continuous in the topology defined in section 2.1.2, which in this instance is equivalent to the
strong topology.

We arrive at an alternative definition of the φ-twisted Gτ -equivariant Hilbert bundles.

Definition 5.2.5. Let Gτ be some φ-twisted extension of a Lie group G, let X be a compact
topological space with a continuous G action and let H be a Hilbert space. A φ-twisted Gτ -
equivariant Hilbert bundle over X is a continuous family of projections Px over X on finite
dimensional subspaces of H together with a continuous family of twisted representations ρτx on
H, for which

ρτx(gτ ) : ImPx → ImPg·x. (5.13)

Two such φ-twisted Gτ -equivariant Hilbert bundles coincide whenever ρτx and ρ′τx coincide on
ImPx.

Note that the action of ρτx outside the subspace ImPx ⊂ H should be neglected, since we
are only interested in the action of Gτ on the bundle.

Proposition 5.2.6. Definition 5.2.2 and definition 5.2.5 are equivalent. The bijection is given
by assigning to each tuple (Px, ρ

τ
x) a Gτ -equivariant Hilbert bundle E in the sense of defini-

tion 5.2.2 as follows. Define the fibres of E by

Ex = PxH. (5.14)

The topology is induced by the embedding

E ⊂ H ×X. (5.15)

Lastly, the Gτ -action on E is defined through

gτ · (x, v) = (g · x, ρτx(gτ )v). (5.16)

Proof. We start of by showing that te map is well defined. This can be done in two steps.
Firstly, we prove that the images of Px induce a Hilbert bundle and secondly we show that the
action of Gτ is indeed continuous.

In order to prove that E is a Hilbert bundle, we need to show that there exists for each
x0 ∈ X an open neighbourhood U ⊂ X such that EU ∼= U × Ex0

. The family Px is continuous
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and projects on a finite dimensional subspaces of H. There hence exists a neighbourhood U of
x0 such that for all x ∈ U and for all unit vectors ψ ∈ H

‖(Px − Px0)ψ‖ < 1. (5.17)

We claim that the map
Px0

: PxH → Px0
H (5.18)

is injective. For the sake of contradiction assume Px0
ψ = 0 for some norm one vector ψ ∈ PxH.

This would imply that ‖(Px − Px0
)ψ‖ = 1, contradicting eq. (5.17). This means that eq. (5.18)

is indeed injective. By the same reasoning, the map

Px : Px0
H → PxH (5.19)

is injective. It follows that dim(PxH) = dim(Px0
H). We conclude that eq. (5.18) is in fact

bijective.

The bijectivity of eq. (5.18) implies that the map

Px0
: EU = U × PxH → U × Px0

H (5.20)

(x, ψ) 7→ (x, Px0
ψ) (5.21)

is a continuous fibre-wise linear bijection. The map is surjective and therfore, by the open
mapping theorem, open onto its image. If we pick a basis in H and rescale the image of each
basis vector, the map will preserve the norm and with that the inner product. We hence found
a local trivialisation EU ∼= U ×Px0H proving that the family Px indeed fixes a Hilbert bundle.

Secondly, we show that eq. (5.16) is indeed continuous. The statement is local, it hence
suffices to prove that for each x0 ∈ X there exists an open neighbourhood such that the above
map is continuous when restricted to EU . We hence only need to prove the continuity of

(gτ , x, ψ)→ (gτ · x, ρτx(gτ )ψ), (5.22)

which holds by definition.

The above construction can be reversed. For a φ-twisted Gτ -equivariant Hilbert bundle E
in the sense of definition 5.2.2 we can take the trivial bundle E⊕ E⊥ ∼= X ×H. We must now
define a continuous family of representations and projections on H. Define ρτx(gτ ) on H by
letting it act on Ex as the multiplication by gτ and letting it act on E⊥x simply by I. Define a
continuous family of projections Px by projecting on Ex ⊂ H. This construction results in a
φ-twisted Gτ -equivariant Hilbert bundle in the sense of definition 5.2.5.

Due to this equivalence we can write a φ-twisted Gτ -equivariant bundle over X both as E
and as (Px, ρ

τ
x).

Example 5.2.7. Let G be the trivial group. The extended symmetry group is Gτ = T. The
group T is represented by scalar multiplication on the fibres. Of course, all continuous families
of projections commute with this representation. The φ-twisted T-equivariant bundles over X
are simply all continuous families of projections over X. In the light of proposition 5.2.6, these
are the complex Hilbert bundles over X.

Using the viewpoint of continuous families to describe Hilbert bundles we can define defor-
mations of such bundles.
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Definition 5.2.8. Let ρτx be a continuous family of representations over X. A deformation of
twisted equivariant Hilbert bundles is a continuous family of projections Px,t over X × [0, 1],
such that each t′ ∈ [0, 1] (Px,t′ , ρ

τ
x) is a φ-twisted Gτ -equivariant Hilbert bundle.

Two twisted equivariant Hilbert bundles (Px, ρ
τ
x) and (P ′x, ρ

τ
x) over X are called homotopic

whenever there exists a deformation (Px,t, ρ
τ ) for which (Px,0, ρ

τ
x) = (Px, ρ

τ
x) and (Px,1, ρ

τ
x) =

(P ′x, ρ
τ
x).

In case we are dealing with a compact space X, deformation classes and isomorphism classes
coincide.

Proposition 5.2.9. Let X be a compact topological space. Two homotopic φ-twisted Gτ -
equivariant Hilbert bundles are isomorphic.

Proof. Let (Px,t, ρ
τ
x) be a deformation between two φ-twisted Gτ -equivariant Hilbert bundles.

For each (x0, t0) ∈ X × [0, 1] there exists an open interval V ⊂ [0, 1] containing t0 such that for
all t ∈ V

‖Px,t − Px0,t0‖ < 1. (5.23)

Since X is compact this can be done uniformly. That is to say, for each t0 ∈ [0, 1] there exists
an open neighbourhood V of t0, such that for all x ∈ X and all t′ ∈ V

‖Px,t′ − Px,t0‖ < 1. (5.24)

Both Hilbert bundles (Px,t0 , ρ
τ
x) and (Px,t′ , ρ

τ
x) are a sub-bundle of a trivial Hilbert bundle

X ×H. That is to say, we can write (x, v) for an element in the Hilbert bundle (Px,t0 , ρ
τ
x), with

x ∈ X and v ∈ ImPx,t0 ⊂ H. Now construct a map ψ between the φ-twisted Gτ -equivariant
Hilbert bundles (Px,t0 , ρ

τ
x) and (Px,t′ , ρ

τ
x) as follows

ψ(x, v) = (x, Px,t0v). (5.25)

By the same reasoning as in proposition 5.2.6 this map is bijective. If we rescale the images of
an orthonormal basis the map preserves the norm as well. By construction ψ respects the fibres
and is linear within these fibres. Furthermore, Px,t0 projects on an invariant subspace of ρτx,
whence ψ respects the Gτ action.

It is left to show that ψ is a homeomorphism. We first show that the map is open. A basis
for the topology of E is given by sets of the form U ×Bε(V ′), where U is an open set of X and

Bε(v
′) = {v ∈ ImPx | ‖v − v′‖ < ε.} (5.26)

Due to the linearity of ψ we may without loss of generality take v′ = 0. The map ψ preserves
the norm and is surjective onto E′. Sets of the form U ×Bε(0) are therefore sent to sets of this
same form. In particular the map is open. The same goes for the inverse of ψ. We may conclude
that ψ is a homeomorphism.

We found that all Hilbert bundles in {(Px,t, ρτx) | t ∈ V } are isomorphic. The space [0, 1] is
compact. A finite repetition of the argument hence yields that all Hilbert bundles in {(Px,t, ρτx) |
t ∈ [0, 1]} are isomorphic. In particular (Px,0) and Px,1 are isomorphic as desired.

In case of quantum systems we consider a fixed representation ρτ of Gτ on H.
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Definition 5.2.10. Let ρτ be some twisted representation of Gτ on H. Write V ectφGτ ,ρτ (X) ⊂
VectφGτ (X) for the set consisting of elements

(Px,⊕ni=1ρ
τ ), (5.27)

for some n ∈ N.

This set forms a sub-monoid under taking direct sums

(Px,⊕ni=1ρ
τ ) + (P ′x,⊕mi=1ρ

τ ) = (Px ⊕ P ′x,⊕n+m
i=1 ρτ ). (5.28)

Lastly we construct a group lying closet to this monoid. Recall the notation

[X,Y ] (5.29)

for the homotopy classes of maps from X to Y .

Definition 5.2.11. Write Repρτ for the space consisting of elements

(⊕ni=1ρ
τ , P, P ′), (5.30)

where P and P ′ are projections on finite dimensional subspaces commuting ⊕ni=1ρ
τ . This space

forms a monoid under the operation ⊕ given by

(⊕ni=1ρ
τ , P, P ′)⊕ (⊕mi=1ρ

τ , E,E′) = (⊕n+m
i=1 ρτ , P ⊕ E,P ′ ⊕ E′). (5.31)

We say (⊕ni=1ρ
τ , P, P ′) is trivial whenever PH ∼ PH ′ as invariant subspaces.

Define the group Kφ
Gτ ,ρτ (X) to be the group freely generated by [X,Repρτ ] up to the relations

(f + g)(x) = f(x)⊕ g(x) (5.32)

f ∼ e iff f(x) is trivial for some and hence all x ∈ X. (5.33)

In some sense Kφ
Gτ ,ρτ (X) describes difference classes of V ectφGτ ,ρτ (X).

Now look at a similar model. Let N be a finite dimensional Clifford module (see Appendix
D). In the spirit of definition 5.2.10 define MN (X) to be the monoid with elements

(ex,⊕ni=1N), (5.34)

where ex is a continuous family of self-adjoint operators over X that square to I and that
anti-commute the generators of the Clifford module ⊕ni=1N . The addition is defined by

(ex,⊕ni=1N) + (e′x,⊕mi=1N) = (ex ⊕ e′x,⊕n+m
i=1 N). (5.35)

By lemma 4.2.10 the elements of MN (X) consist of continuous families of gradings of ⊕ni=1N
over X. We would again like to construct a group lying ‘close’ to this monoid. Recall the monoid
GradN (Cliffp,q) in definition 4.2.12.

Definition 5.2.12. Fix a finite-dimensional Clifford module N . Write KN (X) for the group
freely generated by elements

[X,GradN (Cliffp,q)], (5.36)

up to the relations

(f + g)(x) = f(x)⊕ g(x) (5.37)

f ∼ e iff for f(x) = (⊕ni=1N, η1, η2) we have η1 ∼ η2. (5.38)

In some sense KN (X) describes difference classes of MN (X). Compare the monoid MN (X)
and the group KN (X) with definition 4.2.12.
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5.2.2 Decomposition over Td

The Hilbert space L2(Rd,W ) can in some sense be decomposed over the torus [11] Appendix D.
To make this precise we introduce the direct integral, which generalises the direct sum.

Definition 5.2.13. Let X be a Borel space with measure µ and let H a function assigning to
each x ∈ X a Hilbert space H(x). The direct integral of H over X consists of functions

f : X → ∪x∈xH(x) such that f(x) ∈ H(x) and

∫
X

‖f(x)‖2 dµ <∞, (5.39)

up to almost everywhere equality. This set of functions forms a Hilbert space under the inner-
product

〈f, g〉 =

∫
X

〈f(x), g(x)〉dµ. (5.40)

Now we apply this definition to the situation at hand. Pick X = Td and ∀λ∈Td H(λ) =
L2([0, 1],W ). In this respect L2(Rd,W ) is a direct integral of L2([0, 1],W ) over Td. The
isomorphism F between these Hilbert spaces must take vectors in L2(Rd,W ) to functions f on
Td with values in L2([0, 1],W ). In particular f = Fψ must have two entries, firstly an element
λ ∈ Td and secondly an element x ∈ x ∈ [0, 1]d.

Theorem 5.2.14. The Hilbert space L2(Rd,W ) is isomorphic to the direct integral of L2([0, 1],W )
over Td.

Recall that Td is the topological space of characters of Zd. The character λ ∈ Td is defined
by

λ(z) = λz = λz11 · · ·λ
zd
d . (5.41)

Note that we can replace Rd/Zd by [0, 1)d ⊂ Rd as domain of integration.

The isomorphism F is given by:

(Fψ)(x, λ) =
∑
z∈Zd

λ(z)−1ρτ (z)ψ(x). (5.42)

Its inverse is

F−1(f)(x) =

∫
Td
dλ λ(z′)(f)(λ, x′), (5.43)

where we pick x′ ∈ [0, 1)d and z′ ∈ Zd ⊂ Zdτ in such a way that x′ + z′ = x.

Proof. This is the Bloch-Floquet theorem, [11] equation D.19.

Remark 5.2.15. From here on F denotes the isomorphism in theorem 5.2.14.

For each ψ ∈ L2(Rd,W ) and λ ∈ Td

Fψ(λ, ·) = f(λ, ·) ∈ L2([0, 1),W ). (5.44)

That is to say, if we leave the second entry of Fψ open we obtain a vector in L2([0, 1),W . In
fact for each λ ∈ Td we have the following isomorphism

{(Fψ)(λ, ·) | ψ ∈ L2(Rd,W )} ∼= L2([0, 1),W ). (5.45)
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This fact will frequently be used in the proceeding text.Now let’s see how ρτ behaves on these
spaces. Recall from definition 5.1.1 that Gτ is a semi-direct product G′τ ×α Zdτ . For g ∈ Gτ
we have

gz = (α(g)z)g. (5.46)

We find

F (ρτ (g)ψ)(λ, ·) =
∑
z∈Z

λ(z)−1ρτ (z)ρτ (g)ψ(·) (5.47)

= ρτ (g)
∑
z∈Z

λ(z)−1ρτ (z)α(g)ψ(·) = ρτ (g)((Fψ)(λ−α(g), ·)).

This way, ρτ (g) defines a map

ρτλ(g) : {(Fψ)(λ, ·) | ψ ∈ L2(Rd,W )} → {Fψ(λ−α(g), ·) | ψ ∈ L2(Rd,W )} (5.48)

by
(ρτ (g)λ(Fψ)(λ, ·))(x′) = (Fρτ (g)ψ)(λα(g), x′). (5.49)

Keep in mind that this map does, in general, not need to be linear or satisfy any other properties.
For z′ ∈ Zd we have

F (ρτ (z′)ψ)(λ, ·) =
∑
z∈Z

λ(z)−1ρτ (z)ρτ (z′)ψ(·) =
∑
z∈Z

λ(z′′z′−1)−1ρτ (z′′)ψ(·) (5.50)

= λ(z′)(Fψ)(λ, ·).

The spaces F (ρτ (z′)ψ)(λ, ·) occurring in the direct integral can hence be seen as ‘eigenspaces’
of the translations. The family {ρτλ(g)} determines ρτ (g).

Lemma 5.2.16. Let ρτ be a twisted representation. Write ρτ (g)λ for the family of maps over
Td associated to ρτ (g) via eq. (5.49). We can recover ρτ (g) from this family by setting

(ρτ (g)ψ)(x) =

∫
Td
dλ λ(−z′)(ρτ (g)λFψ(λ, ·))(x′), (5.51)

for x = x′ + z′.

Proof. The proof is given by the following computation∫
Td
dλ λ(−z′) (ρτ (g)λFψ(λ, ·)) (x′) =

∫
Td
dλ λ(−z′)

∑
z∈Zd

λ(−z)ρτ (z)(ρτ (g)ψ)

 (x′) (5.52)

=

∫
Td
dλ
∑
z∈Zd

λ(−z′ − z)ρτ (z)(ρτ (g)ψ)(x′)

=

∫
Td
dλ
∑
z∈Zd

λ(−z)ρτ (z′ + z)(ρτ (g)ψ)

 (x′)

=

∫
Td
dλ
∑
z∈Zd

λ(−z)ρτ (z)ρτ (z)ρτ (g)ψ

 (x′)

= (ρτ (z′)ρτ (g)ψ)(x′) = ρτ (g)ψ(x).
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Inspired by this lemma, we call ρτλ the decomposition of ρτ over Td. Since ρτλ(z) was already
fixed by sending ψ(λ, ·) to λ(z)ψ(λ, ·) we only need to worry about ρτ restricted to G′τ . We
now require the following.

Assumption 5.2.17. For a quantum system (H,G, φ, τ, ρτ ) with lattice symmetry, we require
that the decomposition of ρτ over Td is a continuous family of twisted representations ρτλ of G′τ

on L2([0, 1],W ). In this way G′τ acts on Td by g′ · λ = λα(g′).

See definition 5.2.4 for what is meant by a continuous family. Since G′ is compact this
decomposition will allow us under sufficiently strong conditions to re-derive the already found
classification theorems for compact groups, only this time parametrized over Td.

5.2.3 Classification theorems

Quantum systems

Given a Hilbert space H and symmetry group G ∼= G′×αZd, we wonder what quantum systems
we can construct. Use the theory established in section 1.2 to find the possible twisted exten-
sions of G′. Under assumption 5.2.17 all continuous families of twisted representations of these
extensions G′τ over Td now determine the possible quantum systems.

Corollary 5.2.18. A quantum system with d-dimensional lattice symmetry for which G ∼=
G′ ×α Zd is a continuous family of φ-twisted representations of G′τ on L2([0, 1],W ) over Td.

Observables

For the observables we proceed in the same spirit as we did for the operators ρτ (gτ ). We would
again like to decompose the operator over Td. An observable commutes with the translations,
therefore

F (aψ)(λ, ·) =
∑
z∈Z

λ(z)−1ρτ (z)aψ(·) = a
∑
z∈Z

λ(z)−1ρτ (z)ψ(·) = a((fψ)(λ, ·)). (5.53)

This way a defines for each λ ∈ Td a map aλ on L2([0, 1),W ) by setting for each x′ ∈ [0, 1)

(aλ(Fψ)(λ, ·))(x′) = (Faψ)(λ, x′). (5.54)

The family {aλ} determines a by the same reasoning as in lemma 5.2.16. In order to get things
under control we make the following assumption.

Assumption 5.2.19. Let a be a bounded observable. We can pick a decomposition aλ of a that
is a continuous family of operators over Td.

This assumptions expresses that a should depend continuously on the momentum. Compare
this assumption with assumption 5.3.2 below.

The assumption turns out to be sufficient for a bijection between continuous families of self-
adjoint bounded operators on L2([0, 1],W ) over Td and bounded observables a on H. First we
consider the case without any additional symmetries besides lattice translation.

Proposition 5.2.20. Given a quantum system with lattice symmetry for which G′τ = e. Assign
to each continuous family of bounded self-adjoint operators {aλ} over Td on L2([0, 1],W ) an
operator a as follows. The operator a is the unique operator for which for each x ∈ Rd

(aψ)(x) =

∫
Td
dλ λ(−z′)(aλ(Fψ)(λ, ·))(x′), (5.55)
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where we again write x = x′ + z′, with x′ ∈ [0, 1]d and z′ ∈ Zd and where F is the isomorphism
in theorem 5.2.14. The constructed mapping is a bijection between bounded observables of this
quantum system and continuous families of bounded self-adjoint operators on L2([0, 1],W ) over
Td.

Proof. By assumption 5.2.19 this map is surjective. We proceed by showing that it is injective
as well. Let aλ and a′λ be two distinct continuous families. There exists a λ0 ∈ Td and
v ∈ L2([0, 1),W ) such that aλv 6= a′λv. By continuity there exists an open neighbourhood
U ⊂ Td of λ0 such that ‖(aλ − a′λ)v‖ > 0 for λ ∈ U . Pick ψ such that Fψ ∈ L2([0, 1)× Td,W )
is the function

(Fψ)(x, λ) =

{
v(x) if λ ∈ U ,

0 if λ 6∈ U .
(5.56)

For this vector ψ we find

‖(a− a′)ψ‖ = ‖F ((a− a′)ψ)‖ = ‖(aλ − a′λ)Fψ‖ =

(∫
Td
dλ

∫
[0,1)

dx |(aλ − a′λ)(Fψ)(λ, x)|2
) 1

2

(5.57)

=

(∫
U⊂Td

dλ ‖(aλ − a′λ)v‖2
) 1

2

> 0.

This implies that the two distinct families aλ and a′λ are mapped to distinct operators.

Lastly we need to show that {aλ} is self-adjoint and bounded iff a is self-adjoint and bounded.

The operator a is self-adjoint iff a = a∗. Due to the injectivity this is iff (a∗)λ = aλ. Since
(a∗)λ = (aλ)∗ we find that a is self-adjoint iff the family {aλ} is self-adjoint.

Next we need to show that an operator a is bounded iff aλ is bounded for each λ ∈ Td. First
assume that aλ is bounded for each λ ∈ Td. We find

‖a‖ = supψ ‖aψ‖ = supψ ‖F (aψ)‖ ≤ supλsup(Fψ)(λ,·) ‖aλ(Fψ)(λ, ·)‖ = Supλ∈Td ‖aλ‖ . (5.58)

We claim that right-hand side of this equation is bounded. Let λn be any sequence in Td. Since
Td is compact and since aλψ varies continuously over Td we find that for all ψ ∈ H the set
{aλnψ} is bounded. Therefore, by the uniform boundedness principle, we find that ‖aλn‖ is
bounded.

On the other hand assume that a is bounded. For each λ ∈ Td there exists a sequence of
unit vectors {vn} ⊂ L2(Rd/Zd,W ) such that

‖aλvn‖ → ‖aλ‖ . (5.59)

Let Un be a sequence of open sets such that U1 ⊃ U2 ⊃ · · · and ∩∞n=1Un = {λ}. Now define the
sequence {ψn} in L2(Td × [0, 1)d,W ) by

ψn(λ, x) =

{
|Un|−1vn(x) if λ ∈ Un

0 otherwise
, (5.60)
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where |Un| =
∫
Un
dλ. For this sequence of unit vectors we have

‖a‖ ≥ lim
n→∞

∥∥aF−1ψn
∥∥ = lim

n→∞

∥∥∥∥∫
Td
λ(−z)aλψn(λ, ·)dλ

∥∥∥∥ (5.61)

= lim
n→∞

∥∥∥∥∫
Un

λ(−z)aλψn(λ, ·)dλ
∥∥∥∥ = ‖aλ‖ .

We found that we can uniquely decompose each observable a over Td. The requirement of
commuting with ρτ translates to

ρτλ(g′τ )aλρ
τ
λ(g′τ )−1 = ag′·λ. (5.62)

We only need to worry about G′τ since the family aλ commutes with ρτ (Zd) by construction.
The equation above provides that aλ is fixed as soon as we know it on Td/G′. We can therefore
replace Td by Td/G′ and G′ by the subgroup G′′ consisting of elements stabilizing Td. The
observables are now given by continuous families of self-adjoint operators aλ over Td/G′ that
commute with ρτλ(G′′τ ). The family ρτλ restricted to G′′τ respects the fibres, since G′′ acts
trivially on Td.

Assumption 5.2.21. We assume that there exists a φ-twisted representation ρ of G′′τ such
that ρτλ|G′′τ = ρ for all λ ∈ Td/G′.

The following definition now makes sense.

Definition 5.2.22. Given a quantum system with lattice symmetry with symmetry group Zd ×
G′. Let G′′ ⊂ G′ be the stabiliser of Td. Let ρ be the representation of G′′ in assumption 5.2.21.
We define the algebra of observables A of this quantum system a quantum system to be the algebra
of bounded operators that intertwine ρ, where ρ is the representation in assumption 5.2.21.

Corollary 5.2.23. Observables are given by continuous maps

s : Td/G′ → Asa. (5.63)

Since A is the algebra of observables of a quantum system with compact group G′′, the results
from section 2.4 can be applied to find the general form of this algebra.

States

For quantum systems with compact groups we saw in theorem 3.2.3 that (normal) pure states
could be identified with irreducible subspaces of ρτ . A twisted representation of a quantum
system with lattice does not have any irreducible subspaces. The spaces L2([0, 1],W ) in theo-
rem 5.2.14 are as close as we can get to irreducible subspaces. It therefore makes sense to define
the following.

Definition 5.2.24. A quantum state of a quantum system with lattice symmetry is a functional
on the observables of the following form

aλ →
∫
Td
dλωλ(aλ), (5.64)

where each ωλ is a normal state on B(L2([0, 1],W )) in such a way that∫
Td
dλωλ(Iλ) = 1. (5.65)
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The normal pure states on B(L2([0, 1],W )) are called the pure states.

Note that the pure quantum states are not quantum states. They are called pure states since
we can obtain all states by taking convex sums and integrals of the pure states. Since the group
G′ acting on B(L2([0, 1],W )) is compact, we can apply theorem 3.2.3 to classify all equivalence
classes of normal states upon restriction the the algebra of observables.

Topological phases

Recall from lemma 4.2.5 that we may restrict to bounded Hamiltonians. The Hamiltonian is
therefore a bounded observable and can be regarded as a continuous family hλ over Td. We
are interested in the topological phases of the Hamiltonians. We should therefore study how
deformation classes of Hamiltonians relate to deformation classes of their decompositions.

Two Continuous families of bounded operators hλ and h′λ are homotopic whenever there
exists a continuous family hλ,t over Td × [0, 1] such that hλ0

= hλ and hλ,1 = h′λ.

Lemma 5.2.25. Two Hamiltonians h and h′ are connected iff their respective decompositions
{hλ} and {h′λ} are homotopic.

Proof. Assume that the families hλ and h′λ are homotopic via the path hλ,t. Write ht′ for the
Hamiltonian with decomposition hλ,t′ . We find

lim
t→t′

htψ(x) =

(
lim
t→t′

∫
Td
λ(−z)hλ,t(Fψ)(λ, ·)(x)dλ

)
(5.66)

=

(∫
Td
λ(−z) lim

t→t′
hλ,t(Fψ)(λ, ·)(x)dλ

)
=

(∫
Td
λ(−z)hλ,t′Fψ(λ, ·)(x)dλ

)
= ht′ψ(x).

The integral and limit can be swapped since hλ,t is a continuous family over a compact space
and hence as already seen bounded. We found that ht is a continuous path. By construction it
connects h and h′.

For the other way around assume that h and h′ are path connected via the continuous path
ht. Write hλ,t for the continuous decomposition of ht. For the sake of contradiction assume that
there would exists a vector ψ ∈ L2([0, 1],W ) such that

lim
n→∞

hλ,tnf 6= hλ,tf (5.67)

for some sequence tn converging to t and some λ ∈ Td. Since the family is continuous we find
that there exists an open neighbourhood U of λ such that the equation above holds. For the
vector f in the direct integral of L2([0, 1], w) over Td,W ) defined by

f(x, λ) =

{
ψ(x) if λ ∈ U

0 if λ 6∈ U . , (5.68)

we find
lim
n→∞

htnF
−1f 6= htF

−1f. (5.69)

This contradicts the assumption. Therefore, hλ,t is a continuous path connecting hλ and h′λ.
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The lemma above grants that we can look at deformation classes of families hλ instead of
deformation classes of Hamiltonians h.

If we make no restrictive assumptions there is only one topological phase. The continuous
path

th (5.70)

connects any Hamiltonian h to 0. For non-trivial results we need to restrict to a subset H of
the Hamiltonians. In the following we will study the subset of Hamiltonians that have a gap in
their spectrum. These kind of systems have a clear physical meaning on which we will dwell in
the next section.

5.3 Insulators

In this intermezzo section we give a brief outline of insulators and their topological phases. The
discussion will justify why we restrict to gapped Hamiltonians and provides some applications.

We start with defining what we mean by an insulator.

Definition 5.3.1. An insulator is a quantum system with lattice symmetry together with some
fixed Hamiltonian h, satisfying [x− ε, x+ ε] ∩ σ(h) = ∅ for some x ∈ R and ε > 0.

The property [x − ε, x + ε] ∩ σ(h) = ∅ is referred to as h being gapped. Take x = 0 for the
sake of simplicity. As we will see later on the gap gives rise to the insulating property of the
material. The requirement that the Hamiltonian h commutes with the translations originates
from the lattice symmetry of the crystal.

5.3.1 Band structure

Since we assume the Hamiltonian to commute with the lattice translations ρτ (Zd), we can in the
way of definition 2.1.15 assign to each λ ∈ σ(ρτ (z)) a set Uλ ⊂ σ(h) belonging to it. Since Zd is
commutative, theorem 2.1.14 implies that this can be done simultaneously for all translations
and that for each z ∈ Zd, the space σ(ρτ (z)) is the space of characters of Zd. Recall that the
space of characters of Zd is Td.

Assumption 5.3.2. For all λ ∈ Td the space Uλ ⊂ R is discrete. There exists a sequence of
continuous maps f1, f2, f3, · · ·

fi : Td → σ(h) (5.71)

such that ∪∞i=1fi(λ) = Uλ for all λ ∈ Td.

Physically, this assumption expresses that the energy depends continuously on the momen-
tum.

Definition 5.3.3. A function fi in assumption 5.3.2 is called a band of the particular insulator
in question.

We obtain in this way a so-called band structure plot [27] page 161 of the insulator. This is
a graph depicting all bands of an insulator. An example of such a plot is shown in the figure
below. The plot is for d = 1 and shows two bands.
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Figure 5.1: Schematic view of an insulator with two energy eigenstates for each k.

In the diagram we relabelled the characters T of Z by values k ∈ [−π, π], in which the value
k stands for the character λ = eik ∈ T1. Note that the points π and −π are identified.

The band structure plot only describes the energy values in σ(h) for each λ ∈ σ(ρτ (z)) = Td.
If we also want to keep track of what subspaces of H belong to the energy values (values in σ(h)),
we arrive at the starting point of topological band structure. Recall from the previous section
that we can write the Hamiltonian h as a continuous family hλ of Hamiltonians on L2([0, 1],W )
over Td. We need the following lemma.

Lemma 5.3.4. Let h be a Hamiltonian, hλ its continuous decomposition and f1, f2, · · · its
bands. We have

∪∞i=1 fi(λ
′) = σ(hλ′). (5.72)

Proof. Set fi(λ
′) = E. Since λ′ ∈ σ(ρτ (z)) and E ∈ σ(h) and since E belongs to λ′, there exists

a sequence of unit vectors ψn such that both

‖hψn − Eψn‖ → 0 and ‖(ρ(z)ψn − λ′ψn)‖ → 0. (5.73)

Under the isomorphism F in theorem 5.2.14 the second part of this equation is equivalent with

‖(Fρ(z)ψn − λ′Fψn)‖ → 0. (5.74)

Since
Fρ(z)ψn(λ, x) = ρλFψ(λ, ·)(x) = λFψn(λ, ·)(x) (5.75)

it follows that Fψn(λ, ·) → 0 for λ 6= λ′. That is to say, the sequence Fψn is centred around
λ′ ∈ Td. The family hλ is continuous and the limit therefore only depends on hλ′ . The firs part
of eq. (5.73) now implies that

‖hλ′Fψn(λ′, ·)− Eψ(λ′, ·)‖ → 0. (5.76)

In other words E ∈ σ(hλ′).

For the other way around, assume that E ∈ σ(hλ′). Since σ(hλ′) is discrete there exists a unit
vector v ∈ L2([0, 1],W ) such that hλ′v = Ev. Construct fn in the direct integral of L2([0, 1],W )
over Td as follows. Let Un be a sequence of open neighbourhoods such that ∩∞n=1Un = {λ′}.
Define a sequence {fn} by

fn(λ, x) =

{
|Un|−1vn(x) if λ ∈ Un

0 otherwise
, (5.77)

By construction we find for ψn = F−1fn that ‖hψn − Eψn‖ → 0. We conclude that E ∈ σ(h).
This implies that E ∈ ∪∞i=1fi(λ

′).
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Since assumption 5.3.2 implies that for each λ′ ∈ Td the spectrum of hλ′ is discrete, we can
speak of an eigenspace of hλ′ belonging to a certain value fi(λ

′).

Definition 5.3.5. Let h be the Hamiltonian of an insulator, hλ its continuous decomposition
and f1, f2, · · · its bands. Define a function gi that assigns to each λ′ ∈ Td the eigenspace of hλ′

belonging to fi(λ
′) ∈ σ(hλ′). This way we obtain a sequence of functions

gi : Td → P (L2([0, 1],W )), (5.78)

where we write P (L2([0, 1],W )) for the closed subspaces of L2([0, 1],W ). We call a function gi
a topological band.

The bands g1, g2, · · · deliver us the topological band structure of the Hamiltonian. Assume
that each gi(λ) is finite dimensional. This way, a topologial band gi indicates a family of finite-
dimensional subspaces of L2([0, 1],W ) parametrized over Td. It will be shown in the next section
that the continuity of the family hλ implies that this family in fact indicates a sub-Hilbert bundle
of the trivial bundle Td × L2([0, 1],W ).

The band structure is a plot of a sequence of continuous functions f1, f2, · · · : Td → R,
whereas the topological band structure is a sequence of Hilbert bundles over Td. Informally, the
band structure encodes the energy ‘eigenvalues’ and the topological ban structure the energy
‘eigenspaces’.

5.3.2 The band gap

In this section we show that the gap in the spectrum is equivalent to the insulating property
and discuss the physical origin of the gap. The arguments rely on intüıtion and are not mathe-
matically precise.

Without loss of generality we may assume that the gap in the Hamiltonian is centred around
0. The Hamiltonian presenting a gap is equivalent to the requirement that for each band

mink|f(k)| > ε. (5.79)

This in turn is, as we will now demonstrate, equivalent with the insulating property.

First assume eq. (5.79) holds. A particle occupying a vector state of some E′k is both an
energy eigenvector and a translational eigenvector. Eigenvectors of the translations are of the
form

ψ(x) = u(x)eikx, (5.80)

with u a d-periodic function. This is called the Bloch condition [27] page 162. (Note that the
argument becomes sketchy as this function is actually not L2). This vector is a wave moving in
the direction k. In order to see this write the time evolution (see chapter 4) of this eigenvector
as follows

ψ(x, t) = u(x)eikxe−iht = u(x)eikxe−iEt = u(x)eikx−iEt. (5.81)

This function moves in the direction k with velocity E
|k| . The last ingredient is that we are

dealing with fermions and that therefore each state can be occupied by at most one particle.
This consideration leads to the fact that bands can be completely filled. Fill all states with
energy lower then 0 with electrons. Now all bands containing electrons are completely filled.
There is an equal amount of electrons flowing from left to right as there is from right to left.
This leaves us with no netto current. This in turn implies that for a current to flow, electrons
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must cross over to a higher energy band, for as this happens all momenta no longer cancel each
other. For an electron to promote to a higher band it must however take a discrete energy jump.
This means that a lot of energy must be added to the system for a notable current to flow. This
makes the material an insulator.

On the other hand, if eq. (5.79) would not hold, one could change k by just adding an
infinitesimal amount of energy, making the material a conductor. Hence the gap in the Hamil-
tonian is precisely the requirement of the system being insulating.

Finally, we heuristically explain the origin of these so called band gaps. For simplicity we
look at a one-dimensional lattice, the argument for arbitrary dimension is similar. This deserves
some attention since you would expect that the energy eigenvalues E vary continuously. We
follow the standard approach [27] page 163 using Bragg reflection. Suppose a wave ei(kx−Et)

goes through a lattice with periodicity p. We assume that the waves collide with the atoms on
the lattice points and that these collisions are elastic. The reflected wave of eikx−Et does not
lose energy if it collides and is therefore given by ei(kx+Et). A reflecting wave will occur only if
it interferes constructively with the original wave. So the wavelength of the reflected wave must
fit an integer number of times in p. That is to say that the Bragg condition

p · k = n · π (5.82)

needs to hold. Now whenever k satisfies eq. (5.82), an energy eigenstate will constructively inter-
fere with its reflected wave. For this reason such energy states always occur as a superposition,
namely

ψ(x, t) = u(x)(ei(kx−Et) + ei(kx+Et)) or u(x)(ei(kx−Et) − ei(kx+Et)). (5.83)

These two standing waves cause different electron distributions in the lattice and hence have
distinct potential energies. This causes a discontinuous step in the energy at this value of k.
This explains why the spectrum of h will present a gap whenever eq. (5.82) is satisfied. The
space of k-values that satisfy eq. (5.82) is called the Brillouin zone [27] page 33.

5.3.3 Topological phases

The above discussion motivates looking at the subspace H of Hamiltonians of insulators. We
could ask ourselves what topological properties this space has. A property that immediately
has a clear meaning is the number of connected components. Two Hamiltonians contained in
distinct connected components cannot be deformed to one another via a path, that is to say there
is no deformation of one insulator to the other without closing the energy gap or breaking the
symmetry. Being in the same connected component grants an equivalence relation motivating
the following definition.

Definition 5.3.6. The connected component of H in which a certain insulator is contained is
its topological phase.

There are two possible reasons, see [9] abstract, for an insulator to have no deformation to
some other insulator. This is captured in the following definition.

Definition 5.3.7. A transition between two insulators in distinct topological phases is called
symmetry protected if there is a deformation whenever we drop the symmetry constraint G′τ .
That is to say if we allow transitions over possibly non-G′τ -invariant Hamiltonians. It is said
to be topology protected otherwise.
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5.3.4 An application

In order to understand the physical significance of topological insulators let’s turn our attention
to an important application. For the sake of simplicity restrict to the one dimensional case.

For a compact interval K of R, we first need to define a localized Hamiltonian hK . For K ⊂ R
write h′K for the Hamiltonian h restricted to the subspace of compactly supported functions on
U . Since

L2(K,W ) ∼= L2([0, 1],W ) (5.84)

there is a unitary map φ between these spaces. Now define the localized Hamiltonian hK to be

hK = φh′Kφ
−1. (5.85)

The localized Hamiltonian is required to vary continuously, that is to say

hKn → hK , whenever Kn → K. (5.86)

Now we turn our attention to the situation in the figure below, in which two materials (black and
blue) are displayed. The red area is the area close to the edge of both materials. Assume that for
each compact interval K outside the red area, the translational symmetry holds precisely enough
to approximate the localized Hamiltonian hK by a restriction of a Hamiltonian belonging to the
idealised case of an infinite insulator. This idealised case is precisely what we have studied so
far. Assume that the idealised Hamiltonians h0 and h1 in the respective materials are in distinct
topological phases. Now let {hKi | i ∈ [0, 1]} be a set of localized Hamiltonians such that Ki

continuously takes the interval K0 contained in the blue area to K1 contained in the black area.
All the while assume that hKi remains compatible with the translation symmetry, that is, it
remains a restriction of some idealised infinite dimensional insulator. The continuous path hKi
this way defines a continuous path between the idealised h0 and h1. By definition of topological
phases, the gap in the spectrum must close somewhere in the red area. The boundary between
these two insulators therefore behaves like a conductor.

Figure 5.2: A topological insulator embedded in a trivial surrounding.

In case the transition between the topological phases is symmetry protected, the conducting
edges can only be destroyed when the symmetry is broken. If the phase is topologically pro-
tected the conducting edges cannot be destroyed at all, unless the whole insulator undergoes a
topological phase transition (and hence becomes conducting).

We should remark that the situation above is a bit more subtle. The assumption that all
hUi commute with the translations might after all very well break down along the edges. That
is to say the boundary between a trivial and topological insulator can be insulating just as well
as a boundary between two trivial insulators can be conducting. However, it turns out that
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the topological and symmetry protection have a big impact, making distinct topological phases
boundaries strongly leaning to conducting and the same topological phases boundaries strongly
leaning to insulating [14] section 3.5.7.

This property of insulating edges has numerous applications, especially due to the fact that
the boundaries can be made insulating or conducting at will by symmetry breaking.

5.4 Classification of topological phases of insulators

In this section we classify the topological phases of gapped Hamiltonians of quantum systems
with lattice. We uphold assumption 5.2.19 and assumption 5.2.21. The first assumption allows
us to continuously decompose the Hamiltonian over Td/G′ and look for connected components
of these families instead. The second assumption makes sure that we can write ρτλ restricted to
G′′τ by ⊕∞i=1ρ for all λ ∈ Td.

First we check that being gapped is inherited by the continuous family decomposing h.

Lemma 5.4.1. Let h be a bounded Hamiltonian and hλ be its continuous decomposition. Then
we have 0 6∈ σ(h) iff for all λ ∈ Td 0 6∈ σ(hλ).

Proof. If there exists a λ ∈ Td for which 0 ∈ hλ, there exists a sequence of norm one vectors
ψn in L2([0, 1],W ) such that hλψn → 0. Construct a sequence ψ′n as in eq. (5.60). For this
sequence we have hf−1ψ′n → 0. This would imply that h has no bounded inverse and hence
0 ∈ σ(h). In other words 0 6∈ σ(h) implies that 0 6∈ σ(hλ) for all λ ∈ Td.

On the other hand if 0 6∈ σ(hλ) for all λ ∈ Td we find that all hλ are invertible. The family
h−1
λ defines an inverse of h. Hence 0 6∈ σ(h).

Due to this lemma we can restrict ourselves to classifying continuous families of gapped
bounded Hamiltonians on L2([0, 1],W ) commuting with ⊕∞i=1ρ. We proceed by simplifying to
spectral flattened Hamiltonians.

Lemma 5.4.2. The topological phases of Hamiltonians are in bijective correspondence with
connected components of continuous families of spectral flattened Hamiltonians.

Proof. This follows by similar reasoning as was applied in lemma 4.2.4 and lemma 4.2.5.

Remark 5.4.3. In order to classify topological phases of gapped Hamiltonians of a quantum
system with d-dimensional lattice symmetry, we can classify continuous families of spectral flat-
tened Hamiltonians on L2([0, 1],W ) over Td that commute ⊕∞i=1ρ.

The spectral flattened Hamiltonians are completely determined by the images of

h+
λ =

∫
σ(hλ)+

dE(λ) and h−λ =

∫
σ(hλ)−

−dE(λ). (5.87)

The operator h+ is a projection and Im(h) = H, therefore

Im(h+
λ ) = Im(h+

λ ) = Im(h−λ )⊥. (5.88)

We are now close to an identification by Hilbert bundles.

90



Lemma 5.4.4. The family h−λ forms a continuous family over Td.

Proof. The spectrum of h−λ is just the point {−1}. We can therefore find a compact contour Γ
enclosing σ(h−) that does not intersect σ(h) = {±1}. Now use spectral calculus, [38] section
10.22, to restrict the operator

h−λn = hλn |σ−(hλ) =

∫
Γ

dx (hλn − xI)−1. (5.89)

If λn → λ0 it follows that (hλn − x)−1 → (hλ0
− x)−1, since (λ, x)→ (hλ − x)−1 is continuous.

The integral is over a compact space so in fact h−λn → h−λ0
.

Searching for Hamiltonians is equivalent to searching for continuous families of projections
{h−λ } that intertwine the twisted representations ⊕∞i=1ρ. We need one last assumption.

Assumption 5.4.5. Im(h−λ ) is finite dimensional.

The operator h− is the Hamiltonian restricted to the filled bands below the energy gap. This
assumption is equivalent with assuming that there are finitely many electrons per atom.

Definition 5.2.5 is applicable. By proposition 5.2.9 the connected components coincide with
isomorphism classes.

Corollary 5.4.6. The topological phases of a quantum system are described by the monoid
V ectφρ,G′′τ (Td/G′) defined in definition 5.2.11. We can make this monoid into a group Kφ

ρ,G′′τ (Td/G′)
by the construction in definition 5.2.11.

5.4.1 Classification by Clifford extensions

Now assume that we can translate the problem of finding Hamiltonians to finding positive
extensions of some Clifford module N . See example 4.2.9 for situations in which this is indeed
possible. In this case we are looking for continuous families of extensions of ⊕∞i=1N over Td.
The monoid MN (Td) and the group KN (Td) in definition 5.2.12 describe this problem.

The monoid MN (Td) is usually difficult to compute, the group Kφ
N (Td) however is related

to a topological K-group. In the following we describe this relation. First definition 4.2.13 and
theorem 4.2.14 must be generalised.

Definition 5.4.7. Write Grad(Cliffp,q) for the topological space consisting of tuples

(N, η1, η2), (5.90)

where N is a finite dimensional Cliff p,q-module and both η1 and η2 are gradings of this module
N . For X a connected compact topological space write [X,Grad(Cliff p,q)] for the homotopy
classes of functions from X to Grad(Cliff p,q). Introduce the notation ⊕ for

(f ⊕ g)(x) = f(x)⊕ g(x) = (N, η1, η2)⊕ (N ′, η′1, η
′
2) = (N ⊕N ′, η1 ⊕ η′1, η2 ⊕ η′2). (5.91)

Furthermore, call f trivial if for one (and hence for all) x ∈ X,

f(x) = (N, η1, η2) with η1 and η2 path connected. (5.92)

Write KO
p,q

(X) for the group freely generated by [X,Grad(Cliff p,q)] up to the relations

f + g ∼ f ⊕ g (5.93)

f ∼ e iff f is trivial.

In the case of a complex Clifford algebra Cliff q likewise define K
q
(X).
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As the notation suggests these groups are isomorphic to the topological K-groups.

Theorem 5.4.8.
KOp−q(X) ∼= KO

p,q
(X) and K−q(X) ∼= K

q
(X). (5.94)

Proof. See [24] theorem 4.22 and 5.12.

By construction the topological K-groups contains Kφ
N (Td) as a subgroup.

Theorem 5.4.9. The group KN (Td) isomorphic to a subgroup of some topological K-group.

If N is the only irreducible representation of the Clifford algebra, the statement specialises
to an isomorphism of the groups in question.

5.4.2 Some calculations

In this section we find the explicit results for the positive extensions of Cliff0,q or Cliffq-modules
in the physically relevant dimensions d = 1, 2, 3. Due to Bott periodicity we may in the real
case restrict ourselves to 1 ≥ q ≤ 8 and in the complex case to q = 1, 2.

Proposition 5.4.10. There is one irreducible Cliffq-module if q = 1 and there are two if q = 2.
There is one irreducible Cliff0,q-module if q = 1, 2, 3, 5, 6, 7 and there are two if q = 4, 8.

Proof. See [3] proposition 5.4.

The three Clifford algebras for which there exist two irreducible modules easily allow us to
find the gradings(= positive extensions) of a module. This comes in handy, since in this case
the group KN (Td) is not isomorphic to a topological K-group.

Proposition 5.4.11. Positive extensions of irreducible Cliff0,4, Cliff0,8 and Cliff2 modules have
exactly two positive extensions.

Proof. We prove it for the case of a Cliff0,4-moduleN , the other cases are similar. Let e1, e2, e3, e4

be the odd generators of N . It is an easy check that

η = e1e2e3e4 (5.95)

is a grading. Let η′ be another grading of the module. The operator η′ anti-commutes with the
generators ei and therefore commutes with η. Hence

(ηη′)2 = I. (5.96)

Furthermore, ηη′ commute with all Clifford actions and is therefore an intertwiner. By lemma D.0.25,

ηη′ = λI, λ ∈ H,C,R. (5.97)

Combining eq. (5.96) and eq. (5.97) implies λ = ±1 and therefore η′ = ±η. This means that
there are exactly two gradings.

The above proposition solves the extension problem for irreducible modules of the respective
Clifford algebras. For a general Clifford modules of the Clifford algebras in question, the number
of positive extensions are simply 2 times the number of irreducible sub-modules contained in
the decomposition of N .

Now we turn our attention to the remaining cases. By proposition 5.4.10 there is in this case
only one irreducible module of the pertinent Clifford algebra. This means, by theorem 5.4.9,
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that the group KN (Td) constructed in definition 4.2.13 is isomorphic to K−q(Td) in the complex
case and to KO−q(Td) in the real case.

We would like to tabulate these topological K-groups in the physically relevant dimensions
d = 1, 2, 3. In order to calculate these K-groups we use the homotopy equivalences

T1 ∼= S1, (5.98)

T2 ∼= S1 ∨ S1 ∨ S2, (5.99)

T3 ∼= S1 ∨ S1 ∨ S1 ∨ S2 ∨ S2 ∨ S2 ∨ S3. (5.100)

Recall the notation ∨
X ∨ Y ∼= X × Y/(x0, Y0), (5.101)

for some x0 ∈ X and uy0 ∈ Y . By excision the K groups distribute over these ∨. Furthermore,

ΣSn ∼= Sn+1, (5.102)

where Σ indicates the reduced suspension (Appendix C). These two facts yield the following
powerful equalities

K−q(∨iSnii ) ∼= ⊕iK0(Sni+qi ) and KO−q(∨iSnii ) ∼= ⊕iKO0(Sni+qi ). (5.103)

Combining the isomorphism in eq. (5.103) with the following table of the well known K and
KO-groups of the spheres

Table 5.1: K- and KO-groups of Sd.

n KO−n(S0) K−q(S0)
1 Z/2Z Z
2 Z/2Z 0
3 0
4 Z
5 0
6 0
7 0
8 Z

,

allows us to calculate all topological K and KO-groups over the d-dimensional torus. For
the KO-groups we have the table
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Table 5.2: KO-groups of Td.

n mod 8 d = 1 d = 2 d = 3
1 Z/2Z ⊕3Z/2Z ⊕6Z/2Z
2 Z/2Z ⊕2Z/2Z Z⊕3 Z/2Z
3 0 ⊕2Z ⊕3Z
4 Z ⊕3Z ⊕3Z
5 0 0 0
6 0 0 Z
7 0 ⊕2Z ⊕3Z⊕ Z/2Z
8 Z Z⊕2 Z/2Z Z⊕6 Z/2Z

.

For the K-groups we have where we denote ⊕nA for A⊕A · · · ⊕A.

Table 5.3: K-groups of Td.

n mod 2 d = 1 d = 2 d = 3
1 0 ⊗2Z ⊕4Z
2 Z Z ⊕3Z

,

Example 5.4.12. Assume that d = 1, that the symmetry of the quantum system is given by
a Cliff0,1-module and that the Hamiltonian given by some positive extension of this module.
The relevant group is isomorphic to the topological KO−1(T1) group. Using the table above
this should be Z/2Z. Since there is by proposition 5.4.10 only one irreducible module we find
K−1(T1) ∼= KN (T1). Having a closer look at KN (T1) in definition 5.4.7 provides that there are
two continuous families of extensions for ⊕ni=1N if n is odd and that there is only one continuous
family of extension for ⊕ni=1N if n is even. Taking n→∞ there are two topological phases for
such an insulator.

In case of dimension d = 1 and the search of topological phases is equivalent with searching
extensions of Cliff1. The relevant group is K(T) ∼= 0. There is hence only one grading of each
module N . We find there to be only one topological phase for n→∞.
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Conclusion

Now we answer the main question in this thesis. Namely the classification of quantum systems,
observables (Hamiltonians), equivalence classes of states, and topological phases that occur
under a phase space H and a symmetry group G.

• Quantum systems should be defined by tuples (H,G, φ, τ, ρτ ), where H and G have the
usual interpretation of the phase space and symmetry group. The correct implementation
of G is encoded by φ, τ and ρτ . The observables (Hamiltonians) of such a system are the
intertwiners of ρτ (Gτ ). These observables in turn give rise to the states, which are normal
functionals on B(H).

• The quantum systems with Hilbert space H and symmetry group G are given by the φ-
twisted extensionsGτ ofG and the twisted representations ofGτ . The extensions ofG were
tracked down in theorem 1.2.16, using cohomology groups. The twisted representations
were characterized in section 1.4, using real representation theory.

• The algebra of observables determines, by proposition 2.1.20, the observables. The algebra
of observables is in turn, by corollary 2.4.7, some direct sum of n× n matrices over either
the real, the complex or the quaternion numbers. In this way we found the general
form Hamiltonians can have under a symmetry. For the symmetry algebra there are four
possibilities, all described in corollary 2.4.17.

• By the discussion in section 3.1.1 we may restrict ourselves to normal states, which are
convex combination of pure normal states. The equivalence classes of pure normal states
upon restriction to the observables were classified in theorem 3.2.7. The states could be
identified with irreducible subspaces of the representation ρτ . The pure states are precisely
the states having zero variance for some non-degenerate observable by theorem 3.2.7.

• In case that an irreducible subspace is of quaternionic type you need an addtional state
on H to specify the state. Due to this real numbers, complex numbers and quaternion
numbers can despite the result for the algebra of observables not be treated on equal
footing as there are multiple C-linear states on the quaternions as opposed to there being
only one H-linear state.

• There is only one topological phase in the algebra of observables. To obtain non-trivial
results the condition of a gapped spectrum must be imposed. This assumption physically
means restricting to Hamiltonians of insulators. We found a classification using irreducible
subspaces in section 4.2.1. An identification using topological K-groups was laid out in
corollary 4.2.15.

• In case of an insulator in dimension higher than zero the symmetry group contains non-
compact lattice translations Zd. To counter the non-compactness of the symmetry group
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we used theorem 5.2.14 to decompose H continuously over Td. Under sufficiently strong
and heuristically justifiable assumptions we obtain the previous classification results for
compact groups, only this time parametrized over Td.
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Appendix

The appendices below contain additional information for the text in this thesis. There is a
reference to the Appendix whenever relevant information can be found here.
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Appendix A

Time reversal

It might look natural to discharge the anti-unitary operators as unphysical and only allow rep-
resentations that map Gτ to the unitary operators. However, it turns out that some symmetries
in physics are necessarily anti-unitary. The proposition in this section, for example, shows that
time reversal needs to be implemented in an anti-unitary fashion. Besides this practical necessity
it will be shown in section 3.2 that the anti-unitary operators allow quantum physics to treat
all division algebras over the real numbers on equal footing, providing an aesthetic argument as
well.

Proposition A.0.13. Let ρ : G → AutQM (Osym(H)) be a symmetry of a certain quantum-
system containing time translations and time reversal. Time reversal is an anti-unitary opera-
tion.

Proof. Pick a twisted extension π : Gτ → G and twisted representation ρτ : Gτ → AutQM (H)
such that the following diagram commutes.

1

��

// T

��

// Gτ

��

// G

��

// 1

��

1 // T // AutQM (H) // AutQM (Osym(H)) // 1.

(A.1)

Let R ∼= U ⊂ Gτ be the subgroup of time-translations and write by restricting the following
diagram with exact rows

1

��

// T

��

// π−1(U)

��

// U

��

// 1

��

1 // T // AutQM (H) // AutQM (Osym(H)) // 1.

(A.2)

Since U ∼= R is a simply connected Lie group the extensions are given by the Lie algebra
cohomology group

H1(R,R) = {1}, (A.3)

where we used the fact that R is the Lie algebra of R. This calculation has been done explicitly
in section 1.2.5.

It follows that there is only one central extension of R, namely the trivial central extension

π−1(U) ∼= T× U. (A.4)
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Now define a section s by

s : U → π−1(U) ∼= T× U (A.5)

s(g) = (1, g). (A.6)

Then s(U) ⊂ Gτ is a 1-dimensional Lie-subgroup of Gτ . Hence the restriction of ρτ to s(U) ∼= R
is a representation of R in the unitary operators. By the theorem of Stone the representation is
given by

t→ e−ith, (A.7)

for some generally unbounded self-adjoint operator h. Now take a look at the element g ∈ Gτ
signifying time reversal. Since e−ith is a time translation we find

ρτ (g)e−ithρτ (g)−1 = eith, (A.8)

which can only be the case if
ρτ (g)(−ih)ρτ (g−1) = ih. (A.9)

Tracking whether ρτ (g) is unitary or anti-unitary, via φ, gives:

− iφ(g)ρτ (g)hρτ (g−1) = ih. (A.10)

As h is the generator of time translations, it should be the Hamiltonian. If we demand that this
operator is contained in the algebra of observables belonging to this quantum-system, it should
intertwine the group action of this quantum-system, hence

− iφ(g)h = ih. (A.11)

We conclude (Assuming h 6= 0) that φ(g) = −1 and hence that time reversal is anti-unitary.
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Appendix B

Bicommutant theorem

The well-known bicommutant theorem [34] can be used in case of real Hilbert spaces as well.
For the proof of the bicommutant theorem we need the notion of an orthogonal projection. In
order to define this we need the following proposition [38].

Proposition B.0.14. Let H be a real linear space with an innerproduct and V be a closed linear
subspace of H. For each ψ ∈ H the map

V → R (B.1)

φ→ ‖ψ − φ‖ (B.2)

attains its minimum at a unique ψ′ ∈ V .

Proof. This is Riesz lemma [38].

This proposition allows us to define an orthogonal projection on a closed subspace.

Definition B.0.15. Let V be a closed linear subspace of a real Hilbert space H. The projection
on V is a map that assigns to each ψ ∈ H the unique element in V for which eq. (B.1) attains
its minimum.

For A a subalgebra of B(H), recall the notation A′ for the algebra of intertwiners of A.

Theorem B.0.16. Let H be a real Hilbert space and let A be a unital subalgebra of B(H) that
is closed under taking adjoints. With respect to the strong closure of A we have

A = A′′. (B.3)

Proof. We take the same approach as in the complex case. The inclusion A ⊂ A′′ is trivial.
Since A′′ is strongly closed we also find

A ⊂ A′′. (B.4)

In order to prove the converse we first show that for each ψ ∈ H and each T ∈ A′′ there exists
an a ∈ A such that aψ = Tψ. Let T be some element in A′′. Let P be the projection on Aψ.
By lemma B.0.17 below P is contained in A′. The vector ψ is contained in Aψ, since I ∈ A. It
follows that

Tψ = TPψ = PTψ ∈ Aψ. (B.5)
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Hence for each ψ ∈ H there exists an operator a ∈ A such that

aψ = Tψ. (B.6)

We can in fact get this result for an arbitrary (finite) number of vectors {ψi}ni=1. To prove
this simply look at the Hilbert space H ′ = ⊕ni=1H and the vector ψ = ⊕ni=1ψi. Use the notation
in section 2.4.1 to replace T and A acting on H by In×T and In×A acting on ⊕ni=1H. By the
same procedure we find an operator a′ ∈ In ×A such that

a′ψ = Tψ. (B.7)

This implies that there exists an operator a ∈ A for which

aψi = Tψi (B.8)

for all ψi ∈ {ψi}ni=1. In this way we can find a sequence in A converging point-wise to T ∈ A′′.
It follows that

A′′ ⊂ A. (B.9)

In the proof we used the following lemma.

Lemma B.0.17. The projection P commutes with A.

Proof. Obviously Pa = a for all a ∈ A. This implies

〈ψ, aPφ〉 = 〈ψ, PaPφ〉 = 〈Pa∗Pψ, φ〉 = 〈a∗Pψ, φ〉 = 〈ψ, Paφ〉, (B.10)

where we used that a∗ ∈ A. Since this holds for all ψ, φ ∈ H we find Pa = aP as desired. Hence
P ∈ A′

Corollary B.0.18. In case A is a unital strongly closed subalgebra of B(H),

A′′ = A. (B.11)
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Appendix C

Group completion

There is a standard procedure to construct an Abelian group K(M) for a commutative monoid
M . This procedure is called group completion [23].

Definition C.0.19. For M a commutative monoid the Grotendieck group K(M) is the set

M ×M (C.1)

up to the relation

(m1,m2) ∼ (m′1,m
′
2) ⇐⇒ m1 +m′2 + e = m2 +m′1 + e (C.2)

for some e ∈M . The set K(M) forms a commutative group under the operation

(m1,m2) + (m′1,m
′
2) = (m1 +m′1,m2 +m′2). (C.3)

This group satisfies the following universal property, that loosely speaking expresses that
K(M) is the Abelian group lying closest to the monoid M .

Proposition C.0.20. For each Abelian group A and homomorphism ψ : M → A there is a
unique homomorphism ψ′ : K(M)→ A, such that the following diagram commutes

M

i

��

∀ψ

""
K(M)

∃!ψ′
// A

. (C.4)

Proof. The proof is left to the reader.

We now apply this procedure to the specific case of Hilbert bundles. Write V ectC(X) and
V ectR(X) for the real and complex vector bundles, up to isomorphism, over a topological space
X up to the relation

A ∼ e iff A is trivial. (C.5)

These sets form commutative monoids under taking direct sums of the bundles. It is therefore
natural to look at the group completion in definition C.0.19 of these monoids. We call these
group completions K0(X) respectively KO0(X). In order to obtain a cohomology theory define
additional groups [24] by setting

K−n(X) = K0(ΣnX) and KO−n(X) = KO0(ΣnX), (C.6)
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where Σ is the reduced suspension defined by

ΣX =
(
X × [0, 1]

)
/
(
(X, 1) ∪ (X, 0) ∪ (x0, [0, 1])

)
for a certain x0 ∈ X. (C.7)

The topological K-groups form a cohomology theory. That is to say, the following require-
ments hold.

• Dimension:

K0({x}) = 0. (C.8)

• Homotopy:
If X and Y are homotopic

K−q(X) ∼= K−q(Y ), (C.9)

for all q ∈ N.

• Additivity:
For X = tni=0Xi

K−q(X) ∼= ⊕ni=0K
−q(Xi) (C.10)

• Exactness:
For i : Y → X the inclusion and p : X → X/Y the quotient there exists a left long exact
sequence

· · · K−1(Y )
i∗oo K0(X)

δoo K0(X/Y )
p∗

oo K0(Y ).
i∗oo (C.11)

We do not get into the proof of these properties here. A proof can be found in [24].
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Appendix D

Clifford algebras

This Appendix provides a brief outline of Clifford algebras and their modules. The material is
to supplement section 4.2.2 and section 5.4.

Definition D.0.21. Let {e1, · · · , ed} be an orthonormal basis of Rd. Define F (Rd) to be the
real algebra freely generated by

e1, · · · , ed. (D.1)

Define the real Clifford algebra Cliffp,q to be F (Rp+q) up to the relations

e2
i = −I for i ≤ p (D.2)

e2
i = I for i > p. (D.3)

The generators squaring to I are called positive generators, likewise the generators squaring to
−I are called negative generators.

Clifford algebras are involutive algebras under the ∗ operation defined by linear extension of
the map

e∗i = ei if i ≤ p (D.4)

e∗i = −ei if i > p (D.5)

(Πm
i=1ei)

∗
= Π1

i=me
∗
i . (D.6)

Optionally, equip a Clifford algebra with a grading φ via

φ(Πn
i=1ei) = 1 if n is even, (D.7)

φ(Πn
i=1ei) = −1 if n is odd. (D.8)

We refer to a Clifford algebra with this particular grading as a graded Clifford algebra.

The complex Clifford algebra Cliff q is C⊗ Cliff 0,q.

Note that the complex Clifford algebra has only one index q since multiplication by i mixes
positive and negative generators. Furthermore, note that the definition automatically implies
for l 6= k

elek = −ekel. (D.9)

Lastly notice that the positive generators are self-adjoint, whereas the negative generators are
skew-adjoint.
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Lemma D.0.22. For each (graded) algebra A and (graded) homomorphis ψ : Rp+q → A satis-
fying

ψ(ei)
2 =

{
I if i ≤ p
−I if i > p.

(D.10)

we obtain a commuting diagram

Rp+q

i

��

ψ

##

Cliff p,q

ψ′
// A,

(D.11)

for a unique (graded) homomorphism ψ′. The homomorphism ψ′ is a (graded) isomorphism iff
the basis elements of Cliff p,q are bijectively send to a basis of A. The same holds for complex
Clifford algebras.

Proof. The proof is left to the reader.

We now calculate some Clifford algebras that will turn out to be all Clifford algebras up to
so called Morita equivalence (defined in the next subsection). In order to do this we use the
following lemma.

Lemma D.0.23.
Cliff 0,p+2 ∼= Cliff p,0 ⊗R Cliff 0,2. (D.12)

Proof. Due to lemma D.0.22, the map

Cliff 0,p+2 → Cliff p,0 ⊗R Cliff 0,2 (D.13)

defined by

ei →
{
ei ⊗R e1e2 for i > 2,
I⊗R ei for i ≤ 2,

(D.14)

extends to an isomorphism.

Using

Cliff 0,1 ∼= C Cliff 1,0 ∼= R⊕ R (D.15)

Cliff 0,2 ∼= H Cliff 2,0 ∼= M2×2(R), (D.16)

and the isomorphisms [3] page 10

Mn×n(D) ∼= D⊗R Mn×n(R) (D.17)

Mn×n(R)⊗Mm×m(R) ∼= Mnm×nm(R), (D.18)

C⊗R C ∼= C⊕ C, (D.19)

H⊗R C ∼= M2×2(C), (D.20)

H⊗R H ∼= M4×4(R), (D.21)

together with iteratively applying lemma D.0.23 delivers us the following table, in which the
grading of the algebras is left implicit.
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Table D.1: Clifford algebras.

q,p Cliff 0,q Cliff p,0 Cliff q

1 C R⊕ R C⊕ C
2 H M2×2(R) M2×2(C)
3 H⊕H M2×2(C)
4 M2×2(H) M2×2(H)
5 M4×4(C) M2×2(H)⊕M2×2(H)
6 M8×8(R) M4×4(H)
7 M8×8(R)⊕M8×8(R) M8×8(C)
8 M16×16(R) M16×16(R)

The complex Clifford algebras are simply calculated through Cliffq = C⊗ Cliff0,q.

Clifford modules

In the following we are more interested in the (graded) representations of Clifford algebras in
B(H), with H some Hilbert space, than in the actual Clifford algebra itself. Such a representa-
tion is called a module.

Remark D.0.24. From now on all modules are assumed finite dimensional.

The representation theory of Clifford algebras has similarities to group representations. For
example we can define irreducible Clifford modules as modules that do not posses a non-trivial
invariant subspace under the given Clifford action.

Lemma D.0.25. Every Clifford module can be decomposed into irreducible sub-modules. The
algebra of intertwiners of an irreducible Clifford module is isomorphic to

{λI | λ ∈ D}, (D.22)

where D = R,C or H in case of real Clifford algebras and D = C in case of complex Clifford
algebras.

Proof. It is an easy check that the orthoplement of a Clifford sub-module is a Clifford sub-
module. Since the dimension is finite, this procedure of finding the smallest possible invariant
sub-modules is finite. The second part of the claim follows by the exact same reasoning applied
in the proof of proposition 2.4.5.

A graded module M of a graded Clifford algebra is a module with a decomposition M =
M1 ⊕M−1, in such a way that for each odd element e in the Clifford algebra

e : M1 →M−1 and e : M−1 →M1. (D.23)

The equation above automatically implies that even elements in the Clifford algebra respect M1

and M−1.

Example D.0.26. Let A be an algebra and Mn×n(A) the n×n matrices over this algebra. We
can equip Mn×n(A) with a m < n grading as follows

Mn×n(A) =

(
a ∅
∅ a′

)
⊕
(
∅ b
b′ ∅

)
, (D.24)
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where a ∈Mm×m(A), a′ ∈M(n−m)×(n−m)(A), b ∈Mm×(n−m)(A), b′ ∈M(n−m)×m(A). Let N be
an A-module and let Mn×n(A) act on Nn in the usual way. If we decompose

N = Nm ⊕Nn−m (D.25)

we obtain a graded Mn×n module with respect to the m-grading.

Since we are interested in the modules of the Clifford algebras and not so much in the Clifford
algebras themselves, we should look at these algebras up to Morita equivalence [46].

Definition D.0.27. For A an algebra write MA for the category of (graded) A-modules. The
objects of this category are modules of A and the morphisms are linear maps respecting the
(graded) A action. Two (graded) algebras A and A′ are (graded) Morita equivalent if there exist
functors

F : MA →MA′ (D.26)

G : MA′ →MA (D.27)

for which there exists a map η assigning to each module M in MA a (graded) isomorphism (not
just morphism) fM : M → M ′ in such a way that for each two objects N N ′ in the category
MA the following diagram commutes

FG(N)

η(N)

��

FG(f)
// FG(N ′)

η(N ′)

��

N
f

// N ′.

(D.28)

Likewise we require there to be such a map η′ for GF and M ′A.

Roughly speaking Morita equivalence expresses that we regard two algebras as equivalent if
their representation theories are equivalent. Of course two isomorphic algebras are in particular
Morita equivalent. Morita equivalence is a weakening of usual isomorphism. To illustrate the
notion of Morita equivalence we take a look at the following Lemma.

Lemma D.0.28. The n × n matrices over a certain algebra A with an m < n grading as in
example D.0.26 are Morita equivalent with the algebra A, with trivial grading.

Proof. Let F be the functor taking an A-module N to a Mn×n(A) module N ′ by setting

F (N) = (N1, · · · , Nn) (D.29)

and letting Mn×n(A) act on F (N) in the usual way. For a A module morphism f : N → N ′ we
set

F (f)F (N) = (f(N1), · · · , f(Nn)). (D.30)

On the other hand for a Mn×n(A) module N ′ set the functor G

G(N ′) = N ′0 (D.31)

and letting a ∈ A act on this space in the way m0,0 acts on N ′0.

It is easy to see that GF (N) ∼= N . Now for a Mn×n(A) module N ′ = (N ′0, · · ·N ′n) we must
have that N ′i

∼= N ′j . That is to say N ′0 fixes N ′. Therefore again FG(N ′) ∼= N ′.

If we equip Mn×n(A) with the grading in example D.0.26, then for f an A-module homo-
morphism F (f) is a graded Mn×n(A)-module homomorphism. We may hence conclude that the
respective algebras are graded Morita equivalent.
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Under Morita equivalence the Clifford algebras exhibit a periodicity, the so called Bott-
periodicity [3].

Theorem D.0.29. Up to graded Morita equivalence

Cliff p,q ∼ Cliff p mod8,q mod8 and Cliff q ∼ Cliff q mod 2. (D.32)

Proof. First consider the real case. The Cliford algebras Cliff 0,8 and Cliff 8,0 are isomorphic to
M16×16(R) with its 8-grading defined in example D.0.26. By lemma D.0.28 we find that both
of these algebras are graded-Morita equivalent to R. This means that Cliff 0,8 and Cliff 8,0 are
Morita equivalent to Cliff 0,0 concluding the 8-periodicity in both the p and q index.

Next proceed with the complex case. We have

Cliff3 ∼= C⊗R Cliff 0,3 ∼= (C⊗R H)⊕ (C⊗R H) = M2×2(C)⊕M2×2(C), (D.33)

where we used table D.1 in the second step and eq. (D.20) in the last step. The algebra M2×2(R)
is equipped with its 1 grading defined in example D.0.26. Apply lemma D.0.28 to continue the
above equation by

· · · ∼ C⊕ C ∼ Cliff 1. (D.34)

We may hence conclude the 2-periodicity.

Note that if we would be looking up to Morita equivalence, omitting the grading, the real
case would also be of period 2. This is the case since by lemma D.0.28

M2×2(R) ∼ R. (D.35)

Our interest however lies in the graded case.

108



Bibliography

[1] G. Abramovici, P. Kalugin, Clifford Modules and Symmetries of Topological Insulators
Int.J.Geom.Meth.Mod.Phys. 9 1250023, 2012. arXiv:1101.1054v2

[2] M. Atiyah, G. Segal, Twisted K-theory arXiv:math/0407054v2, 2004.

[3] M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules Elsevier Volume 3, Supplement 1, Pages
3-38, 1964.

[4] A. Bach, Indistinguishable classical particles. Springer, 1997.

[5] E.P. van den Ban, Lecture Notes on Lie groups. (Lecture notes) 2010.
http://www.staff.science.uu.nl/ ban00101/lecnot.html

[6] A.O. Barut and R. Raczka Theory of Group Representations and Applications. World Sci-
entific, 1986.

[7] J. Beaz, Division Algebras and Quantum Theory. arXiv:1101.5690v3, 2010.

[8] D. Carpentier, M. Fruchart, An Introduction to Topological Insulators. arXiv:1310.0255v2,
2013.

[9] Symmetry protected topological orders and the group cohomology of their symmetry group X.
Chen, Z. Gu, Z. Liu, X. Wen arXiv:1106.4772v6

[10] F. J. Dyson, The Threefold Way. Journal of Mathematical Physics, Vollume 3 Number 6,
1962.

[11] D. S. Freed and G. W. Moore, Twisted Equivariant Matter. Annales Henri Poincaré, Volume
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[28] G. Lüders, Über die Zustandsänderung durch den Meßprozeß. Annalen der Physik 8, 322-
328, 1951.

[29] M. Kuranishi, On Euclidean Local Groups Satisfying Certain Conditions. American Math-
ematical society Vol. 1, No. 3, pp. 372-380, 1950.

[30] G. W. Mackey. Mathematical foundations of quantum mechanics. Dover Publications, 2004.

[31] B. Magajna, Weak−∗ continuous states on Banach Algebras. Elsevier, 252-255, 2008.

[32] I. Moerdijk, lecture Notes on Algebraic Topology. (Lecture notes) 2014.
http://www.math.ru.nl/ mgroth/
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