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Chapter 1

Introduction

It is somewhat challenging to already explain the main research problem in the introduction when, in
order to fully understand the problem, several definitions, notational conventions and proven results are
needed that are perhaps not known to most mathematicians. For this reason we have decided to formulate
our research problem here simply by using all these needed results and terminology without any further
explanation. In the chapters following this introduction we will precisely state everything we need, so the
reader is not expected to already understand everything that is mentioned in this introduction. Since this
research project was motivated by a problem in algebraic quantum field theory, which is mathematical
formalization of a physical theory, we will begin with a brief discussion of quantum physics.

1.1 Physical background

In both classical physics and quantum physics, a physical system is described in terms of observables and
states. Observables are the physical quantities of the system that can be measured by an observer. Typical
examples of observables are the energy of the physical system or the position and velocity coordinates of the
particles that constitute the system. Roughly speaking, the state of a system is a characterization of the
condition of the physical system and is often expressed in terms of the values of certain observables. In the
most standard mathematical description of quantum theory, one assigns to each physical system a Hilbert
space H. The observables corresponding to the system are then represented by self-adjoint linear operators
acting on H and the states corresponding to the system are represented by density operators on H, i.e.
positive trace-class operators with trace equal to 1. Suppose that at a certain time the system is in a state
that is described by a density operator ρ and suppose that we are interested in the probability of finding
a number in the interval [a, b] when we measure a certain observable that is represented by the self-adjoint
operator A. The procedure of calculating this probability is as follows. Because A is a self-adjoint operator
on H, the spectral theorem allows us to write it as A =

∫
R xdEA(x), where EA is the spectral measure of A.

Then the probability p(ρ,A; [a, b]) of finding a number in the interval [a, b] when measuring the observable
A while the state of the system is ρ is given by p(ρ,A; [a, b]) = Tr(ρEA([a, b])).

For example, if the system consists of a single non-relativistic particle with spin 0 moving through 3-
dimensional space R3, the corresponding Hilbert space (in the so-called position representation) is H =
L2(R3) and the operators Xj and Pj corresponding to the position and momentum coordinates of the
particle, respectively, are given by

(Xjψ)(x) = xjψ(x) and (Pjψ)(x) =
~
i

∂ψ

∂xj
(x)

for ψ ∈ L2(R3), x = (x1, x2, x3) ∈ R3 and j ∈ {1, 2, 3}. Other observables such as energy and angular
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2 CHAPTER 1. INTRODUCTION

momentum can be expressed in terms of the observables Xj and Pj . The operators Xj and Pj satisfy the
commutation relations

[Xj , Xk] = 0, [Pj , Pk] = 0, [Xj , Pk] = i~δjk · 1H .

In fact, given these commutation relations, the particular choice of the Hilbert space H and of the operators
Xj and Pj is in a certain sense unique according to the Stone-von Neumann theorem; for details we refer to
Theorem 6.4 in chapter IV of [88]. In other words, in this case the algebraic properties of these operators
completely determine the Hilbert space H.

In more complicated systems, for instance those appearing in quantum field theory, there is no analogue
to the Stone-von Neumann theorem and hence there is no preferred Hilbert space corresponding to a system.
One solution to this problem, as proposed by Haag and Kastler in their famous paper [41], is to assign to
each physical system a C∗-algebra A, called the algebra of (bounded) observables, rather than a Hilbert
space with concrete operators acting on it. In order to implement the spacetime structure into this algebra
A, one assigns to each bounded region O of spacetime a subalgebra A(O) of A which is interpreted as the
algebra of observables that can be measured in the region O. In this way we obtain an assignment O 7→ A(O)
that assigns to each bounded region O of spacetime an algebra A(O). This approach to quantum theory is
called algebraic quantum field theory (AQFT).

1.2 Motivation for the project

Despite the rather physical motivation for algebraic quantum field theory, one may consider it as an area
of mathematics rather than as an area of physics, because it is formulated in terms of precise mathematical
axioms and was developed as an effort to make quantum field theory (as a physical theory) mathematically
rigorous. For a mathematician there is of course no reason to stick with this physical origin of AQFT and
therefore we can just as well alter the axioms and make them a bit more general. For instance, instead of
only considering assignments O 7→ A(O) where the sets O are regions in spacetime, we can consider any
assignment i 7→ A(i) where i is an element of a set with certain ordering properties. In our investigation
we will take this set to be the real line R and we will study assignments I 7→ A(I) where to each interval
I ⊂ R we assign an algebra A(I). All these algebras A(I) are subalgebras of one big algebra A.

A mathematically interesting aspect of an AQFT A is the study of its representations. From a physical
point of view, it is also very convenient to consider representations of A on some Hilbert space. Namely, after
a representation has been chosen, we are back in the situation again where we can consider density operators
and we can carry out physically meaningful computations as explained in the preceding section. In the
representation theory of an AQFT there is a special class of representations, namely the class of Doplicher-
Haag-Roberts representations, or DHR representations for short. We will not provide the defining conditions
of such representations here, nor will we explain why the class of DHR representations was considered in the
first place. For this we simply refer to the original papers [18], [19], [20] and [21]. From these papers we also
know that the DHR representations of an AQFTA can be obtained from the so-called localized transportable
endomorphisms of A, also called the DHR endomorphisms of A. The subclass of DHR endomorphisms that
have finite statistics forms a braided tensor category Locf (A) with certain additional properties. We thus
have

Algebraic quantum field theory A  Braided tensor category Locf (A).

We will also assume that there is a group G that acts on A in such a way that each A(I) is mapped
onto itself under this action.1 This G-action on A gives rise to a G-action on the braided tensor category

1Actually this group action is not just a purely mathematical extra ingredient to the framework. In algebraic quantum field
theory (without any generalizations made by mathematicians) one also considers local fields that are acted upon by a so-called
gauge group, giving rise to field algebras F(O). The algebra F(O)G of fixed points under this G-action is then considered as
the local algebra of observables corresponding to O.



1.2. MOTIVATION FOR THE PROJECT 3

Locf (A), which thus becomes a braided G-category. As shown in Müger’s paper [78], in the presence of such
a G-action we can define a class of left/right G-localized endomorphisms which is more general than the

class of DHR endomorphisms. This more general class forms a braided G-crossed category G− Loc
L/R
f (A)

that contains Locf (A) as a full braided subcategory. More precisely, Locf (A) is the full subcategory of

G − Loc
L/R
f (A) determined by the objects that have degree e, where e ∈ G denotes the identity element.

Thus

Group G acting on the AQFT A  Braided G-crossed category G− Loc
L/R
f (A)

and we have a full inclusion
Locf (A) ⊂ G− Loc

L/R
f (A)

of a braided G-category in a braided G-crossed category.
At the beginning of this research project we were particularly interested in the following example.

Suppose that we are given some AQFT A on the real line R. For any natural number N we can consider the
N -fold tensor product A⊗N , which is again an AQFT on R. The corresponding assignment is simply given
by I 7→ A(I)⊗N . The category Locf (A⊗N ) of DHR endomorphisms is equivalent to the N -fold enriched
product Locf (A)�N of the category Locf (A). On the N -fold tensor product A⊗N the symmetric group SN
acts in the obvious way, i.e. by permutation of the N factors. We are thus in the situation above where we
have an AQFT A⊗N with an SN -action. In particular, we have the full inclusion

Locf (A)�N ⊂ SN − LocL/R(A⊗N ).

In this case, the group action on the AQFT is rather special in the sense that the group SN only permutes
the N factors of A⊗N and does not involve any details about A. For this reason it seemed reasonable

to assume that SN − Loc
L/R
f (A⊗N ) is determined up to equivalence by Locf (A) and N alone. Thus we

expected that if A and B are two AQFTs, then we have the implication

Locf (A) ' Locf (B) ⇒ SN − Loc
L/R
f (A⊗N ) ' SN − LocL/R(B⊗N ) (1.2.1)

for all N . From the assumption that this implication should be true, we were led to believe that we might

be able to construct SN − Loc
L/R
f (A⊗N ) categorically (up to equivalence) from Locf (A) and the number

N , i.e. that there exists a categorical construction

(N,Locf (A))  SN − Loc
L/R
f (A⊗N ) (1.2.2)

for each N ∈ Z≥2. The search for such a construction was the original starting point for our project.
However, a more recent result of Bischoff in his note [7] implies that the implication (1.2.1) above is false,
as we will now briefly explain. In the case where A is an AQFT on R that arises from a holomorphic
completely rational chiral conformal quantum field theory, it is known that for each q ∈ SN the braided

SN -crossed category SN − Loc
L/R
f (A⊗N ) contains precisely one equivalence class of irreducible objects of

degree q and that the tensor structure of SN − Loc
L/R
f (A⊗N ) is therefore determined by a 3-cocycle ωA,N

on SN with values in the circle group S1 ⊂ C. Up to equivalence, it is determined by the cohomology class
[ωA,N ] ∈ H3(SN , S

1). If the implication (1.2.1) above is true, then the collection {[ωA,N ] : N ∈ Z≥2} has to
be independent of the chosen holomorphic model A. Hence for each N the cohomology class [ωA,N ] has to
be trivial, because in Theorem 2 of [31] it is shown that there exist holomorphic models A for which [ωA,N ]
is trivial for all N (namely those holomorphic models for which the central charge c is a multiple of 24).
In [7] Bischoff has given a counterexample to this statement, namely he has given a holomorphic model A
for which [ωA,3] is non-trivial. Knowing now that our conjectured implication (1.2.1) was actually wrong,
we also know now that the categorical construction (1.2.2) above does not exist and therefore also that our
original approach was doomed to fail. Although we were not aware of this at the beginning of the project,
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we nevertheless decided to focus on a somewhat different problem derived from this original problem, which
we will now explain.

Note that the search for the construction in (1.2.2), which unfortunately does not exist as we know
now, meant that we were trying to extend the braided SN -category Locf (A)�N to the braided SN -crossed

category SN − Loc
L/R
f (A⊗N ). Formulated somewhat more abstractly, we were trying to extend a braided

G-category C to a braided G-crossed category D ⊃ C such that the full subcategory of D determined by
the objects with degree e coincides with C. Such extensions are also called braided G-crossed extensions of
a braided G-category. A more general approach to our original problem is thus to define a construction of
a braided G-crossed extension D of a braided G-category C and at the time we hoped that we could show
that this construction gives us SN − LocL/R(A⊗N ) (up to equivalence) out of Locf (A⊗N ) ' Locf (A)�N .
The search for such an abstract categorical construction became the new starting point for our research
project. Since several of our non-trivial categorical results in Chapter 4 were strongly motivated by particular
observations from AQFT, we have also included a chapter on AQFT. Furthermore, it could be the case that
under certain more special conditions on the AQFT A it is still possible to construct SN − LocL/R(A⊗N )
categorically from Locf (A) and that our particular construction has some relevance in such cases.

1.3 Outline of the thesis

This thesis consists of five chapters, including the present introduction. Each of these chapters consists of
several sections, some of which are further subdivided into subsections. At the beginning of each chapter
we will explicitly announce which results of that chapter are new. We will now give a brief overview of the
content of each chapter.

Chapter 2 will be about category theory and has two main purposes. The first purpose is to introduce the
definitions and results that are needed in order to fully understand the problem of extending G-categories
and in order to understand the categorical aspects of AQFT. This will make the following chapters run
more smoothly in the sense that we do not need to introduce many concepts from category theory in those
chapters, which might be considered as being distracting. The second purpose of the chapter will be to
prove several lemmas that will be needed to prove some of our more involved theorems in later chapters.

Chapter 3 discusses AQFT and plays a major role in the thesis for several reasons. As explained before,
our original research problem concerned a particular categorical construction in the representation theory of
AQFTs, and our new research problem originated from generalizing the idea of such a construction. For that
reason a proper understanding of (certain aspects of) AQFT is essential in understanding the motivation for
our research project. Besides this motivational role, the content of the chapter was also the starting point
for some of our main results in Chapter 4. For instance, we would have never conjectured the content of
Theorem 4.10.7 without our considerations in Subsection 3.2.2. Chapter 3 consists of two sections. The first
section is devoted to the theory of operator algebras, because these form the main ingredient for AQFTs.
Besides the basic facts about operator algebras, this section also includes C∗-tensor categories, the crossed
product of a BTC∗ with a symmetric tensor subcategory, as well as some elements from the theory of type
III subfactors. In the second section we will introduce the axioms of an AQFT on R that also carries a
group action, as well as the notion of left/right group-localized endomorphisms of such an AQFT, and we
will consider some results2 concerning the categories that can be constructed from these endomorphisms.
At the very end of Chapter 3 we will give our motivation for the main construction that will be carried out
in Chapter 4.

2Besides our own results, we will also spend some time on reviewing the main results of Müger’s paper [78], which is a
paper that has played a prominent role in our research. Since the approach in [78] was not suited for our purposes, we decided
to reconsider the content of that paper from a somewhat different point of view. This not only meant that we had to adjust
or generalize certain statements in that paper, but also that we had to give alternative proofs for some of these statements
because the proofs in [78] did not fit within our approach. So although some results in Chapter 3 were already proven in [78],
we have included their proofs in Chapter 3 because our proofs are different from the ones in [78] and cannot be found elsewhere
in the literature.
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In Chapter 4 we will first introduce the construction of the G-crossed Drinfeld center ZG(C) of a G-
category C. Our motivation for this construction was already given at the end of Chapter 3. We will not
only construct ZG(C) for strict G-categories C, but also for non-strict ones. For the non-strict case we will
also prove that ZG(C) ' ZG(C′) whenever C ' C′.3 We will then prove that ZG(C) is equivalent to a certain
relative Drinfeld center and also that it is equivalent to a certain category of bimodule functors. Next we
will show that certain nice properties of C, such as the property of having retracts, direct sums and duals, as
well as the property of being semisimple, are inherited by ZG(C). We will then consider a concrete example
of the construction of ZG(C) that also has some relevance for AQFT. After that we will prove a result about
ZG(C) for the case where C is a G-spherical fusion category. We end the chapter by discussing the situation
where C has a braiding, in which case ZG(C) turns out to have some nice internal structure which we were
able to unravel because of our knowledge of AQFT.

Finally, in Chapter 5 we will glance back at all previous chapters and see what we have learned. We will
also give a suggestion for another possible approach to the main problem.

1.4 List of results

As indicated in the overview above, at the beginning of each chapter we will announce which results in that
chapter are new. However, we will also sum them up here.
• Theorem 2.6.10 in Subsection 2.6.3. This theorem will be used in Chapter 4 to prove the statements in

Section 4.5, but it is also interesting in its own right because it characterizes a certain class of functors
of C-bimodule categories on a tensor category C when C is also equipped with some non-trivial structure
of a C-bimodule category.

• Theorem 2.8.24 in Subsection 2.8.5. This theorem introduces the mirror image of a braided G-crossed
category and will be used to characterize the categorical relation between left and right G-localized
endomorphisms of quantum field theories on R in Subsection 3.2.2, which in turn formed the main
inspiration for our results in Subsection 4.10.1.

• The content of Section 2.9. However, the constructions in this section are straightforward generaliza-
tions of the ones in [74].

• Lemma 3.2.14 in Subsection 3.2.3. This lemma is essential in proving Theorem 3.2.20, but it can also
be a useful result in AQFT by itself.

• The proof of Theorem 3.2.20 in Subsection 3.2.3. This theorem was proven by Müger in his paper
[78], but we will provide an alternative proof, based on our Lemma 3.2.14.

• The content of Subsection 3.2.2. In this subsection we will investigate the relation between the
categories that arise from left and right G-localized endomorphisms of an AQFT. These results were
leading for our results in Subsection 4.10.1 and also formed the motivation for the introduction of the
mirror image of a braided G-crossed category in Subsection 2.8.5.

• Theorem 4.2.1 in Section 4.2. In this theorem we construct the G-crossed Drinfeld center ZG(C) of a
strict G-category. However, as also mentioned at the beginning of Chapter 4, at the final stage of our
research project we found out that this construction had already been carried out by Barvels in [6].

• Theorem 4.3.3 in Subsection 4.3.1. In this theorem we construct the G-crossed Drinfeld center ZG(C)
of a non-strict G-category. Since this construction is rather involved, we have shifted the details to
Appendix A.

• Theorem 4.3.4 in Subsection 4.3.2. This theorem states that equivalent (non-strict) G-categories C
and C′ give rise to equivalent G-crossed Drinfeld centers ZG(C) and ZG(C′). The proof is rather long
and technical and has been shifted to Appendix B.

• Theorem 4.4.7 in Section 4.4. This theorem states that the G-crossed Drinfeld center is equivalent
(in the sense of braided G-crossed categories) to a certain relative Drinfeld center.

3The proofs in the non-strict case are very long and technical. For this reason we have decided not to include them in the
main body of the thesis, but in the appendices.
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• Theorem 4.5.4 in Subsection 4.5.2. This theorem provides us with a braided G-crossed structure on
a certain category of functors of bimodule categories. This theorem is also an important result that
is needed for Theorem 4.5.5.

• Theorem 4.5.5 in Subsection 4.5.3. This theorem states that the G-crossed Drinfeld center of a G-
category is equivalent to the braided G-crossed category that was constructed in Theorem 4.5.4.

• The content of Sections 4.6 and 4.7. Here we demonstrate that ZG(C) inherits several nice proper-
ties from C. The results in these two sections are new, but certainly not original because they are
straightforward generalizations of the results in [75].

• Theorem 4.8.2 in Section 4.8. This theorem describes the structure of the G-crossed Drinfeld center
of a certain special kind of G-category.

• The content of Section 4.9. Here we eventually prove that ZG(C) has full G-spectrum if C is a G-
spherical fusion category over a quadratically closed field and satisfies dim(C) 6= 0. The methods used
in this section are straightforward generalizations of the methods used in [75].

• Proposition 4.10.3 in Subsection 4.10.1. This proposition shows that we can define an alternative
braided G-crossed structure on ZG(C) in case the G-category C is braided. When ZG(C) is equipped
with this alternative structure, we denote it by Z?G(C).

• Theorem 4.10.4 in Subsection 4.10.1. This theorem proves the equivalence between Z?G(C) and ZG(C)•
in case the G-category C is braided, where the latter denotes the mirror image of ZG(C) as introduced
in Theorem 2.8.24.

• Proposition 4.10.6 in Subsection 4.10.1. In this proposition we construct an equivalence † : Z?G(C)→
ZG(C) of braided G-crossed categories.

• Theorem 4.10.7 in Subsection 4.10.1. This is our main result concerning the internal structure of
ZG(C) in case the G-category C is braided. The content of the theorem was inspired by observation
of the categories that arise in AQFT.

• Theorem 4.10.12 in Subsection 4.10.2. This theorem provides a first step in finding braided G-crossed
extensions of a braided G-category C within ZG(C). In Corollary 4.10.13 this is applied to modular
tensor G-categories to obtain more satisfactory results.



Chapter 2

Category theory

In this chapter on category theory we will introduce most of the results on categories that will be needed
later. An exception to this is the notion of C∗-categories, which will be introduced in the next chapter, after
we have defined C∗-algebras. Much of the content of this chapter is already known, but there are some new
results. The most important of these is Theorem 2.6.10 in Subsection 2.6.3, which will be used in Chapter
4 to prove the statements in Section 4.5. Another important result in this chapter is Theorem 2.8.24, which
will be used to characterize the categorical relation between left and right G-localized endomorphisms of
quantum field theories on R in Subsection 3.2.2, but it will also be used in Subsection 4.10.1. Another result
in this chapter that is new, but certainly not original because it is a straightforward generalization of known
results1, concerns the construction of 2-categories from a collection of Frobenius algebras in Subsection
2.9.3. Perhaps Proposition 2.8.23 is also new, but it is not very deep.

There are many good texts on category theory, the standard reference being [68]. In this chapter we
have often used [28], [48] and [81].

2.1 Categories, functors and natural transformations

Although it would be reasonable to expect the reader to have some basic knowledge of category theory, we
have decided to begin our discussion by giving the definition of a category. The main reason for this is that
it allows us to properly introduce all our notation and terminology concerning categories, which might not
be standard to some readers. Our definition of a category uses the notation as in [48].

Definition 2.1.1 A category C consists of the following data:
• a class Obj(C) whose elements are called the objects of the category;
• a class Hom(C) whose elements are called the morphisms of the category;
• an identity map id : Obj(C)→ Hom(C), denoted V 7→ idV ;
• a source map s : Hom(C)→ Obj(C), denoted f 7→ s(f);
• a target map b : Hom(C)→ Obj(C), denoted f 7→ b(f);
• a composition ◦ : Hom(C)×Obj(C) Hom(C)→ Hom(C), denoted (f, g) 7→ g ◦ f , where

Hom(C)×Obj(C) Hom(C) := {(f, g) ∈ Hom(C)×Hom(C) : b(f) = s(g)}

denotes the class of composable2 morphisms.
This collection of data is required to satisfy the following three conditions:
(1) for any object V ∈ Obj(C) we have s(idV ) = b(idV ) = V ;

1Namely, in [74] this construction was carried out for one single Frobenius algebra.
2If (f, g) ∈ Hom(C)×Obj(C) Hom(C) we say that f and g are composable.

7
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(2) for any morphism f ∈ Hom(C) we have idb(f) ◦ f = f ◦ ids(f) = f ;
(3) for any morphisms f, g, h satisfying b(f) = s(g) and b(g) = s(h) we have (h ◦ g) ◦ f = h ◦ (g ◦ f).

The source and target maps are not always mentioned explicitly when defining any particular category, but
these maps can be convenient sometimes, such as in the definition of the opposite category below. Instead,
one often uses some different notation that we will introduce now. Instead of writing V ∈ Obj(C) to denote
that V is an object in the category C, we will simply write V ∈ C. When V,W ∈ C, we will use the customary
notation

HomC(V,W ) := {f ∈ Hom(C) : s(f) = V and b(f) = W}

and we will say that any f ∈ HomC(V,W ) is a morphism from V to W . We will also write EndC(V ) :=
HomC(V, V ) and any f ∈ EndC(V ) will be called an endomorphism of V . If f ∈ HomC(V,W ) and if it is
clear from the context that f is a morphism in the category C, we will sometimes simply write f : V →W .
If there exists an isomorphism f : V → W , i.e. a morphism f : V → W for which there exists a morphism
f−1 : W → V such that f−1 ◦ f = idV and f ◦ f−1 = idW , then we will write V ∼= W and we will say
that V and W are isomorphic objects, which obviously defines an equivalence relation on the objects of the
category. If V ∈ C, then a morphism f ∈ EndC(V ) is called an idempotent if it satisfies f2 := f ◦ f = f .

A category C is called discrete if the only morphisms in C are the identity morphisms. Thus, for any
V ∈ C we have EndC(V ) = {idV } and if V,W ∈ C with V 6= W then HomC(V,W ) = ∅.

Example 2.1.2 We will now show how we can use given categories to construct new ones.
(1) If C is a category, it is easy to see that we obtain a category Cop by defining Obj(Cop) := Obj(C),

HomCop(V,W ) := HomC(W,V ), idop
V := idV , sop(f) := b(f), bop(f) := s(f) and g ◦op f := f ◦g for any

V,W ∈ Obj(Cop) and f, g ∈ Hom(Cop), where of course g is such that sop(g) = bop(f). The category
Cop is called the opposite category of C.

(2) If {Ci}i=1,...,n is a collection of categories, then we obtain a category C1× . . .×Cn by defining Obj(C1×
. . . × Cn) = Obj(C1) × . . . × Obj(Cn), HomC1×...×Cn((V1, . . . , Vn), (W1, . . . ,Wn)) = HomC1(V1,W1) ×
. . .×HomCn(Vn,Wn), id(V1,...,Vn) = (idV1

, . . . , idVn) and componentwise composition.

Definition 2.1.3 A category C is called locally small if HomC(V,W ) is a set for any two objects V,W ∈ C.
A category C is called small if it is locally small and if Obj(C) is a set.

In order to prevent any potential technicalities, we will always assume in the rest of this thesis that all
our categories are small.

If {Cα}α∈A is a collection of categories, then we define the category⊔
α∈A
Cα (2.1.1)

as follows. Its set of objects is the disjoint union
⊔
α∈A Obj(Cα) of sets. If (V, α1), (W,α2) ∈

⊔
α∈A Obj(Cα),

then we define

Hom⊔
α∈A Cα((V, α1), (W,α2)) =

{
HomCα(V,W ) if α1 = α2 = α
∅ if α1 6= α2.

with the obvious composition. We will call the resulting category the disjoint union of the categories {Cα}.

Definition 2.1.4 A subcategory C of a category D consists of a subset Obj(C) ⊂ Obj(D) and of a subset
Hom(C) ⊂ Hom(D) that are stable under the identity, source, target and composition maps in D. We say
that C is a full subcategory if HomC(V,W ) = HomD(V,W ) for all V,W ∈ C. A full subcategory C of D is
called skeletal if it contains precisely one object of each equivalence class of isomorphic objects. We say
that C is a replete subcategory if V ∈ C implies that W ∈ C for all W ∈ D with W ∼= V .
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Let D be a category and let S ⊂ Obj(D) be a subset of objects. Then we get a subcategory C of D by taking
Obj(C) := S and HomC(V,W ) = HomD(V,W ) for all V,W ∈ Obj(C). Note that this is a full subcategory.
We will often refer to it by saying that it is the full subcategory of D determined by the objects in the set
S. Note that if S contains precisely one object of each equivalence class of isomorphic objects, then the full
subcategory of D determined by the objects in S is skeletal. Consequently, every category has a full skeletal
subcategory.

Definition 2.1.5 Let C and D be categories. A functor3 F : C → D consists of a map F : Obj(C)→ Obj(D)
and of a map F : Hom(C)→ Hom(D) such that
• for any V ∈ Obj(C) we have F (idV ) = idF (V );
• for any f ∈ Hom(C) we have s(F (f)) = F (s(f)) and b(F (f)) = F (b(f));
• if f, g ∈ Hom(C) with b(f) = s(g), we have F (g ◦ f) = F (g) ◦ F (f).

Example 2.1.6 There are several important examples of functors:
(1) If C is a category then we denote by idC : C → C the identity functor, which maps all objects and

morphisms onto themselves.
(2) If we have categories C, D, E and functors F : C → D and G : D → E then we write G ◦ F : C → E to

denote the composition of F and G, which is easily seen to be a functor again.
(3) If we have categories {Ci,Di}i=1,...,n and functors Fi : Ci → Di, we write

F1 × . . .× Fn : C1 × . . .× Cn → D1 × . . .×Dn

to denote the functor determined by (V1, . . . , Vn) 7→ (F1(V1), . . . , Fn(Vn)) and (f1, . . . , fn) 7→ (F1(f1), . . . , Fn(fn)).
(4) If D is a category and C ⊂ D is a subcategory, then we denote by I : C → D the inclusion functor.

Definition 2.1.7 Let C and D be categories and let F : C → D be a functor.
(1) Then F is called faithful, respectively full, if for any two objects U, V ∈ C the map

F : HomC(U, V )→ HomD(F (U), F (V ))

is injective, respectively surjective. If it is both, we say that F is fully faithful.
(2) If for each W ∈ D there exists a V ∈ C such that F (V ) ∼= W , then F is called essentially surjective.

If D is a category and C ⊂ D is a subcategory, then clearly the inclusion functor I : C → D is always
faithful. Note that the inclusion functor is full if and only if C is a full subcategory of D.

Definition 2.1.8 Let C and D be categories and let F,G : C → D be functors. A natural transformation
ϕ from F to G, denoted ϕ : F → G, is a family {ϕU : F (U)→ G(U)}U∈C of morphisms in D such that, for
any f ∈ HomC(U, V ) the square

F (U) G(U)

F (V ) G(V )

ϕU

F (f) G(f)

ϕV

commutes. If each ϕU is an isomorphism, then we say that ϕ : F → G is a natural isomorphism, and in
this case we will call F and G equivalent functors. We will write Nat(F,G) to denote the set of all natural
transformations from F to G, and we will write Aut(F ) to denote the set of all natural isomorphisms from
F to itself (i.e. the natural automorphisms of F ).

3More precisely, this is actually called a covariant functor, in contrast to the notion of contravariant functors. However, we
will not consider contravariant functors, so whenever we speak of a functor, we will always mean a covariant functor.
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Remark 2.1.9 (1) If F : C → D is a functor, we will write idF : F → F to denote the natural automorphism
given by the family {(idF )U}U∈C with (idF )U := idF (U) for all U ∈ C.
(2) If ϕ : F → G is a natural isomorphism, then the family {ϕ−1

U : G(U) → F (U)}U∈C defines a natural
isomorphism ϕ−1 : G→ F .

Let C and D be categories, let F,G,H : C → D be functors and let ϕ : F → G and ψ : G → H be natural
transformations. Then the family

{(ψ ◦ ϕ)U : F (U)→ H(U)}U∈C

defined by (ψ ◦ ϕ)U := ψU ◦ ϕU defines a natural transformation ψ ◦ ϕ : F → H. As a consequence, we
obtain a category Fun(C,D), where the objects of Fun(C,D) are the functors from C to D, the identity
morphism of F ∈ Fun(C,D) is given by idF as defined in Remark 2.1.9 above, the morphisms are given by
HomFun(C,D)(F,G) = Nat(F,G) and the composition is the composition of natural transformations as we
have just defined. We will write End(C) := Fun(C, C).

Definition 2.1.10 If C and D are categories, then a functor F : C → D is called an equivalence from C to D
if there exists a functor G : D → C together with natural isomorphisms ϕ : idD → F ◦G and ψ : G◦F → idC .
In this case we will say that C is equivalent4 to D and write C ' D. We will write Aut(C) to denote the full
subcategory of End(C) determined by the objects that are an equivalence from C to itself.

The following well-known lemma is often convenient if one wants to prove that a given functor is an
equivalence. A proof of this lemma can be found in [48].

Lemma 2.1.11 Let C and D be categories. Then a functor F : C → D is an equivalence if and only if it is
fully faithful and essentially surjective.

As a direct application of this lemma, if C is a category and if S ⊂ C is a full skeletal subcategory, then the
inclusion functor establishes an equivalence S ' C.

2.2 Tensor categories

The central concept in this chapter is the notion of a tensor category. Tensor categories are often called
monoidal categories, because they share some properties with monoids, which are sets with an associative
product operation and a unit element with respect to this product. Before we give the definition of a tensor
category we will first consider in some detail what it means to have a tensor product on a category.

Definition 2.2.1 Let C be a category. Then a functor ⊗ : C × C → C is called a tensor product.

Suppose that ⊗ is a tensor product on C. For U, V ∈ C we will write U ⊗ V rather than ⊗(U, V ); similarly,
we will write f ⊗ g for f, g ∈ Hom(C) rather than ⊗(f, g). Explicitly, the fact that ⊗ is a functor from C ×C
to C means that
• for each pair (U, V ) ∈ C × C we have an object U ⊗ V ∈ C.
• for each pair (f, g) ∈ Hom(C) × Hom(C) we have a morphism f ⊗ g ∈ Hom(C) such that s(f ⊗ g) =
s(f)⊗ s(g) and b(f ⊗ g) = b(f)⊗ b(g);

• if f, f ′, g, g′ are morphisms in C with s(f ′) = b(f) and s(g′) = b(g) then we have the interchange law

(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g);

• If U, V ∈ C then idU ⊗ idV = idU⊗V .

4This clearly defines an equivalence relation.
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Note that we did not require a tensor product to be associative, so if U, V,W ∈ C then (U ⊗ V )⊗W need
not be equal to U ⊗ (V ⊗W ). The first piece of structure in a tensor category assures that such triple
products are related to each other in a nice way in the sense of the following definition.

Definition 2.2.2 Let C be a category and let ⊗ : C × C → C be a tensor product. Then an associativity
constraint for ⊗ is a natural isomorphism a : ⊗ ◦ (⊗× idC)→ ⊗ ◦ (idC ×⊗) of functors C × C × C → C, i.e.
a family {aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )}U,V,W∈C of isomorphisms in C such that the square

(U ⊗ V )⊗W U ⊗ (V ⊗W )

(U ′ ⊗ V ′)⊗W ′ U ′ ⊗ (V ′ ⊗W ′)

aU,V,W

(f⊗g)⊗h f⊗(g⊗h)

aU′,V ′,W ′

commutes for all U,U ′, V, V ′,W,W ′ ∈ C and f : U → U ′, g : V → V ′ and h : W →W ′.

Definition 2.2.3 Let C be a category with tensor product ⊗ : C × C → C and associativity constraint
a : ⊗ ◦ (⊗× idC)→ ⊗◦ (idC ×⊗). Then the associativity constraint is said to satisfy the pentagon axiom if
the pentagonal diagram

((U ⊗ V )⊗W )⊗X

(U ⊗ (V ⊗W ))⊗X (U ⊗ V )⊗ (W ⊗X)

U ⊗ ((V ⊗W )⊗X) U ⊗ (V ⊗ (W ⊗X))

aU,V,W⊗idX aU⊗V,W,X

aU,V⊗W,X aU,V,W⊗X

idU⊗aV,W,X

commutes for all U, V,W,X ∈ C.

Thus if ⊗ is a tensor product on a category C, then an associativity constraint satisfying the pentagon
axiom controls the non-associativity of the tensor product. The next ingredient that will be needed for the
definition of a tensor category is a unit object, analogous to the unit element in a monoid. For this we first
need some notation.

Definition 2.2.4 If C is a category and if U ∈ C, then we define a functor U × idC : C → C × C by
(U × idC)(V ) := (U, V ) and (U × idC)(f) = (idU , f) for any V ∈ C and f ∈ Hom(C). Similarly, we also
define the functor idC × U : C → C × C.

Definition 2.2.5 Let C be a category with tensor product ⊗ : C × C → C and fix an object I ∈ C.
(1) A left unit constraint with respect to I is a natural isomorphism l : ⊗ ◦ (I × idC)→ idC , i.e. a family
{lV : I ⊗ V → V }V ∈C of isomorphisms in C such that the square

I ⊗ V V

I ⊗W W

lV

idI⊗f f

lW

commutes for all V,W ∈ C and f : V →W .
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(2) A right unit constraint with respect to I is a natural isomorphism r : ⊗◦ (idC × I)→ idC , i.e. a family
{rV : V ⊗ I → V }V ∈C of isomorphisms in C such that the square

V ⊗ I V

W ⊗ I W

rV

f⊗idI f

rW

commutes for all V,W ∈ C and f : V →W .

We have now defined the two basic structures that are needed for defining tensor categories: the associativity
constraint (satisfying the pentagon axiom) and unit constraints. The only thing that is still left to define is
a compatibility condition between these two structures.

Definition 2.2.6 Let C be a category with tensor product ⊗, associativity constraint a and left and right
unit constraints l and r with respect to an object I ∈ C. Then we say that ⊗, a, I, l and r satisfy the
triangle axiom if the triangle

(V ⊗ I)⊗W V ⊗ (I ⊗W )

V ⊗W

aV,I,W

rV ⊗idW idV ⊗lW

commutes for all V,W ∈ C.

Definition 2.2.7 A tensor category (C,⊗, I, a, l, r) is a category C which is equipped with a tensor product
⊗ : C × C → C, with an object I ∈ C (called the unit object of the tensor category), with an associativity
constraint a and with left and right unit constraints l and r with respect to I such that the pentagon axiom
and the triangle axiom are satisfied.

Tensor categories are often called monoidal categories in the literature, although some authors use these
two terms for different things. For instance, in [28] monoidal categories are defined as in Definition 2.2.7
above, but tensor categories are defined to be monoidal categories with some extra structure.

A subcategory of a tensor category (C,⊗, I, a, l, r) is called a tensor subcategory if it is also a tensor
category with respect to the tensor product and unit object inherited from C.

Example 2.2.8 We mention some examples of tensor categories.

(1) An easy example is given by the category Vect(F) of vector spaces over a field F. The objects of this
category are the vector spaces over F and the morphisms between them are the F-linear maps. It
becomes a (non-strict) tensor category if we define the tensor product to be the usual tensor product
of vectors spaces and linear maps. We will write Vectf (F) to denote the full tensor subcategory of
Vect(F) determined by objects of Vect(F) that are finite-dimensional.

(2) If G is a group and F is a field, then we define the representation category Rep(G;F) of G as follows.
The objects of Rep(G;F) are representations (V, πV ) of G, where V is a vector space over F and
πV : G → Aut(V ) is a group homomorphism. The morphisms from (V, πV ) to (W,πW ) are the F-
linear maps T : V →W that intertwine the two representations, i.e. for any q ∈ G we have πW (q)T =
TπV (q). The tensor product in this category is given by the tensor product of representations and of
intertwiners which are well-known from representation theory.
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A tensor category (C,⊗, I, a, l, r) is called strict if for all U, V,W ∈ C and f, g, h ∈ Hom(C) it satisfies
(U ⊗ V ) ⊗W = U ⊗ (V ⊗W ), (f ⊗ g) ⊗ h = f ⊗ (g ⊗ h), I ⊗ V = V = V ⊗ I, idI ⊗ f = f = f ⊗ idI ,
aU,V,W = idU⊗V⊗W and lV = idV = rV . Note that the pentagon and triangle axioms are trivially satisfied
in this case. Because the notion of a strict tensor category will be very important in what follows, we will
define it again explicitly, without reference to the more general definition of a (non-strict) tensor category.

Definition 2.2.9 A strict tensor category (C,⊗, I) consists of the following data:

• a category C;
• an associative tensor product ⊗, i.e. a functor C × C → C satisfying the equality ⊗ ◦ [⊗ × idC ] =
⊗ ◦ [idC ×⊗] of functors C × C × C → C;
• an object I ∈ C (called the unit object) satisfying I ⊗V = V = V ⊗ I for all V ∈ C and idI ⊗ f = f =
f ⊗ idI for all f ∈ Hom(C).

We will now discuss an example of a strict tensor category that will be very important to us. Let C be a
category and consider the category End(C). It is clear that for any F,G ∈ End(C) their composition F ◦G
is again in End(C), which allows us to define the operation

F ⊗G := F ◦G

on the objects of End(C). Now suppose that ϕ ∈ HomEnd(C)(F, F
′) and ψ ∈ HomEnd(C)(G,G

′). Then for
any V ∈ C we define a morphism (ϕ⊗ ψ)V ∈ HomC(F (G(V )), F ′(G′(V ))) by

(ϕ⊗ ψ)V := ϕG′(V ) ◦ F (ψV ) = F ′(ψV ) ◦ ϕG(V ).

It can be shown that ϕ⊗ψ is a natural transformation from F ◦G to F ′◦G′, i.e. that ϕ⊗ψ ∈ HomEnd(C)(F⊗
G,F ′⊗G′). In fact, it is straightforward to check that ⊗ defines an associative tensor product on End(C) and
that End(C) becomes a strict tensor category with unit object given by idC . Furthermore, the subcategory
Aut(C) of End(C) is a full tensor subcategory.

2.2.1 Tensor functors and natural tensor transformations

When we want to consider functors between tensor categories, it is important that these functors behave
nicely with respect to the tensor products and unit objects in both tensor categories. Even in case both
tensor categories are strict, there is no reason to demand that such a functor F : C → D is strict in the
sense that it satisfies F (V ⊗C W ) = F (V )⊗D F (W ) or F (IC) = ID. On the other hand, it is also possible
that a functor between two non-strict tensor categories does satisfy these strictness conditions5.

Definition 2.2.10 Let (C,⊗C , IC , aC , lC , rC) and (D,⊗D, ID, aD, lD, rD) be tensor categories. A tensor func-
tor from C to D is a triple (F, εF , δF ) consisting of

• a functor F : C → D;
• a natural isomorphism δF : ⊗D ◦ (F × F )→ F ◦ ⊗C of functors C × C → D, i.e. a family{

δFU,V : F (U)⊗D F (V )→ F (U ⊗C V )
}
U,V ∈C

of isomorphisms in D such that for any objects U, V, U ′, V ′ ∈ C and morphisms f ∈ HomC(U,U
′) and

g ∈ HomC(V, V
′) the square

5This is possible if and only if F (aU,V,W ) = aF (U),F (V ),F (W ), F (lU ) = lF (U) and F (rU ) = rF (U), i.e. if the associativity
constraint and unit constraints of C are mapped to those of D. This can easily be seen from the definition of a tensor functor
below.
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F (U)⊗D F (V ) F (U ⊗C V )

F (U ′)⊗D F (V ′) F (U ′ ⊗C V ′)

δFU,V

F (f)⊗DF (g) F (f⊗Cg)

δF
U′,V ′

commutes, satisfying the additional property that the diagram

(F (U)⊗D F (V ))⊗D F (W ) F (U)⊗D (F (V )⊗D F (W ))

F (U ⊗C V )⊗D F (W ) F (U)⊗D F (V ⊗C W )

F ((U ⊗C V )⊗C W ) F (U ⊗C (V ⊗C W ))

(aD)F (U),F (V ),F (W )

δFU,V ⊗DidF (W ) idF (U)⊗DδFV,W

δFU⊗CV,W
δFU,V⊗CW

F ((aC)U,V,W )

commutes for all U, V,W ∈ C;
• an isomorphism εF : ID → F (IC) such that the diagrams

ID ⊗D F (U) F (U)

F (IC)⊗D F (U) F (IC ⊗C U)

(lD)F (U)

εF⊗DidF (U)

δIC ,U

F ((lC)U ) and

F (U)⊗D ID F (U)

F (U)⊗D F (IC) F (U ⊗C IC)

(rD)F (U)

idF (U)⊗DεF

δU,IC

F ((rC)U )

commute for all U ∈ C.
The tensor functor (F, εF , δF ) is said to be a strict tensor functor if F (IC) = ID and F (U ⊗C V ) =
F (U) ⊗D F (V ) for all U, V ∈ C and if εF = idID = idF (IC) and δFU,V = idF (U)⊗DF (V ) = idF (U⊗CV ) for all
U, V ∈ C.

Remark 2.2.11 If both tensor categories are strict, then the hexagonal diagram reduces to the square

F (U)⊗D F (V )⊗D F (W ) F (U)⊗D F (V ⊗C W )

F (U ⊗C V )⊗D F (W ) F (U ⊗C V ⊗C W )

idF (U)⊗DδFV,W

δFU,V ⊗DidF (W ) δFU,V⊗CW

δFU⊗CV,W

and the two square diagrams involving εF can then be reduced to the statement that the compositions

F (U) = ID ⊗D F (U) F (IC)⊗D F (U) F (IC ⊗C U) = F (U)
εF⊗DidF (U) δFIC ,U

and

F (U) = F (U)⊗D ID F (U)⊗D F (IC) F (U ⊗C IC) = F (U)
idF (U)⊗DεF δFU,IC

are both equal to idF (U).

Let (C,⊗C , IC , aC , lC , rC), (D,⊗D, ID, aD, lD, rD) and (E ,⊗E , IE , aE , lE , rE) be tensor categories and let (G, εG, δG) :
C → D and (F, εF , δF ) : D → E be tensor functors. Then the composition F ◦G can be given the structure
of a tensor functor (F ◦G, εF◦G, δF◦G) by defining

εF◦G := F (εG) ◦ εF and δF◦GU,V := F (δGU,V ) ◦ δFG(U),G(V ) (2.2.1)
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for any U, V ∈ C.
When we have a natural transformation from one tensor functor to another tensor functor, we demand

that this natural transformation behaves nicely with respect to the tensor structure of these functors.

Definition 2.2.12 Let (C,⊗C , IC , aC , lC , rC) and (D,⊗D, ID, aD, lD, rD) be tensor categories and let

(F, εF , δF ), (G, εG, δG) : C → D

be tensor functors. Then a natural tensor transformation

ϕ : (F, εF , δF )→ (G, εG, δG)

is a natural transformation ϕ : F → G such that the following diagrams commute for each pair (U, V ) of
objects in C:

F (IC)

ID

G(IC)

ϕIC

εF

εG

and

F (U)⊗D F (V ) F (U ⊗C V )

G(U)⊗D G(V ) G(U ⊗C V ).

δFU,V

ϕU⊗DϕV ϕU⊗CV

δGU,V

A natural tensor isomorphism is a natural tensor transformation that is also a natural isomorphism. In this
case we call (F, εF , δF ) and (G, εG, δG) equivalent tensor functors.

Let (C,⊗C , IC , aC , lC , rC) and (D,⊗D, ID, aD, lD, rD) be tensor categories, let

(F, εF , δF ), (G, εG, δG), (H, εH , δH) : C → D

be tensor functors and let ϕ : (F, εF , δF )→ (G, εG, δG) and ψ : (G, εG, δG)→ (H, εH , δH) be natural tensor
transformations. Then it is straightforward to check that the natural transformation ψ ◦ ϕ : F → H is in
fact a natural tensor transformation ψ ◦ϕ : (F, εF , δF )→ (H, εH , δH). This implies that the tensor functors
from C to D form a subcategory Fun⊗(C,D) of Fun(C,D), where the morphism between two tensor functors
are defined to be those morphisms in Fun(C,D) that are natural tensor transformations.

Definition 2.2.13 Let (C,⊗C , IC , aC , lC , rC) and (D,⊗D, ID, aD, lD, rD) be tensor categories and let (F, εF , δF ) :
C → D be a tensor functor. Then (F, εF , δF ) is called a tensor equivalence if there exists a tensor functor
(G, εG, δG) : D → C together with natural tensor isomorphisms idD → F ◦ G and G ◦ F → idC . If there
exists a tensor equivalence between C and D, we will say that C and D are equivalent tensor categories.

The full subcategory of End⊗(C) determined by the tensor functors from C to itself that are also a tensor
equivalence is denoted by Aut⊗(C).

To check that a given tensor functor is a tensor equivalence, the following lemma is often convenient.

Lemma 2.2.14 A tensor functor is a tensor equivalence if and only if it is fully faithful and essentially
surjective.

Remark 2.2.15 The fundamental result in the theory of tensor categories is that any tensor category is
tensor equivalent to a strict tensor category. This is one of the several equivalent ways to formulate Mac
Lane’s famous coherence theorem. For an explicit construction of the ‘strictification’ of a tensor category
we refer to [48].
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2.2.2 The tensor category of tensor automorphisms

Let (C,⊗, I, a, l, r) be a tensor category. Using equation (2.2.1) we can define an operation ⊗ on the objects
of End⊗(C) by

(G, εG, δG)⊗ (F, εF , δF ) := (G ◦ F, εG � εF , δG � δF ),

where we define

εG � εF := G(εF ) ◦ εG,
(δG � δF )U,V := G(δFU,V ) ◦ δGF (U),F (V )

for U, V ∈ C. On the morphisms of End⊗(C) we define ⊗ in the same manner as in End(C). It turns out
that if ϕ,ψ ∈ Hom(End⊗(C)), then ϕ ⊗ ψ ∈ Hom(End⊗(C)), from which it follows that End⊗(C) becomes
a strict tensor category with ⊗ as defined above and with unit object given by (idC , ε

0, δ0), where ε0 = idI
and δ0

U,V = idU⊗V . The category Aut⊗(C) is a full tensor subcategory of End⊗(C).

2.3 Duality in strict tensor categories

In this section we will introduce the notion of duality for tensor categories, the definition of which is based
on the observation that to each vector space we can assign a dual vector space.

2.3.1 Left and right duality; two-sided duality

Definition 2.3.1 Let (C,⊗, I) be a strict tensor category and let V ∈ C. If W ∈ C and there exist
morphisms b : I → V ⊗W and d : W ⊗ V → I satisfying

(idV ⊗ d) ◦ (b⊗ idV ) = idV ,

(d⊗ idW ) ◦ (idW ⊗ b) = idW ,

then (W, b, d) is called a left dual of V . Similarly, if W ′ ∈ C and there exist morphisms b′ : I →W ′⊗V and
d′ : V ⊗W ′ → I satisfying

(d′ ⊗ idV ) ◦ (idV ⊗ b′) = idV ,

(idW ′ ⊗ d′) ◦ (b′ ⊗ idW ′) = idW ′ ,

then (W ′, b′, d′) is called a right dual of V . If (W, b, d, b′, d′) is such that (W, b, d) is a left dual of V and
(W, b′, d′) is a right dual of V , then it is called a two-sided dual of V .

The following lemma shows that duals are unique up to isomorphism and that they behave nicely with
respect to tensor products. The proof is a straightforward computation.

Lemma 2.3.2 Let C be a tensor category.
(1) Let (W1, b1, d1, b

′
1, d
′
1) be a two-sided dual for V ∈ C. If W2 ∈ C and f ∈ HomC(W1,W2) is an

isomorphism, then (W2, b2, d2, b
′
2, d
′
2) is also a two-sided dual of V , where

b2 = [idV ⊗ f ] ◦ b1 b′2 = [f ⊗ idV ] ◦ b2
d2 = d1 ◦ [f ⊗ idV ] d′2 = d2 ◦ [idV ⊗ f ].

Conversely, if (W2, b2, d2, b
′
2, d
′
2) is a two-sided dual of V , then there exists an isomorphism f ∈

HomC(W1,W2) such that (W2, b2, d2, b
′
2, d
′
2) is of the form above.
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(2) If (W1, b1, d1, b
′
1, d
′
1) and (W2, b2, d2, b

′
2, d
′
2) are two-sided duals for V1, V2 ∈ C, respectively, then (W2⊗

W1, b, d, b
′, d′) is a two-sided dual for V1 ⊗ V2, where

b = [idV1 ⊗ b2 ⊗ idW1 ] ◦ b1 b′ = [idW2 ⊗ b′1 ⊗ idV2 ] ◦ b′2
d = d2 ◦ [idW2 ⊗ d1 ⊗ idV2 ] d′ = d′1 ◦ [idV1 ⊗ d′2 ⊗ idW1 ].

Thus the full subcategory of C determined by the objects that have a two-sided dual is a tensor subcat-
egory of C.

Now that we have introduced duals of objects, we can define the notion of duality. This basically means
that for each object in C we have chosen some particular dual.

Definition 2.3.3 Let (C,⊗, I) be a strict tensor category.
(1) A left duality ((.)∨, b, d) for C is an assignment V 7→ (V ∨, bV , dV ) on the objects of C such that

(V ∨, bV , dV ) is a left dual for V .
(2) A right duality (∨(.), b′, d′) for C is an assignment V 7→ (∨V, b′V , d

′
V ) such that (∨V, b′V , d

′
V ) is a right

dual for V .
(2) A two-sided duality for C is an assignment V 7→ (V , bV , dV , b

′
V , d

′
V ) such that for each V ∈ C we have

that (V , bV , dV ) is a left dual for V and (V , b′V , d
′
V ) is a right dual for V .

Remark 2.3.4 Let (C,⊗, I) be a strict tensor category and let (I∨, bI , dI) and (∨I, b′I , d
′
I) be a left and

right dual for I, respectively. Then we have

idI = [idI ⊗ dI ] ◦ [bI ⊗ idI ] = dI ◦ bI
idI = [d′I ⊗ idI ] ◦ [idI ⊗ b′I ] = d′I ◦ b′I .

In case we choose I∨ = I = ∨I (which is always possible, for instance by choosing bI = dI = b′I = d′I = idI ;
in particular, the unit object always has a two-sided dual), the other two equations become

idI = idI∨ = [dI ⊗ idI∨ ] ◦ [idI∨ ⊗ bI ] = [dI ⊗ idI ] ◦ [idI ⊗ bI ] = dI ◦ bI
idI = id∨I = [id∨I ⊗ d′I ] ◦ [b′I ⊗ id∨I ] = [idI ⊗ d′I ] ◦ [b′I ⊗ idI ] = d′I ◦ b′I ,

which are precisely the first two equations. As a consequence, saying that (I, bI , dI) is a left dual for I (or
that (I, b′I , d

′
I) is a right dual for I) is the same as saying that it is a retract6 of the idempotent pI := bI ◦dI

(respectively of the idempotent p′I := b′I ◦ d′I).

Definition 2.3.5 Let (C,⊗, I) be a strict tensor category, let V,W ∈ C and let f ∈ HomC(V,W ).
(1) If C has a left duality ((.)∨, b, d), then we define the left transpose f∨ ∈ HomC(W,V ) of f by

f∨ := [dW ⊗ idV ∨ ] ◦ [idW∨ ⊗ f ⊗ idV ∨ ] ◦ [idW∨ ⊗ bV ].

(1) If C has a right duality (∨(.), b′, d′), then we define the right transpose ∨f ∈ HomC(W,V ) of f by

∨f := [id∨V ⊗ d′W ] ◦ [id∨V ⊗ f ⊗ id∨W ] ◦ [b′V ⊗ id∨W ].

Let (C,⊗, I) be a strict tensor category and let ((.), b, d, b′, d′) be a two-sided duality for C. If V ∈ C and
f ∈ EndC(V ), then we define the left trace TrL(f) ∈ EndC(I) and right trace TrR(f) ∈ EndC(I) of f by

TrL(f) = d′V ◦ [f ⊗ idV ] ◦ bV
TrR(f) = dV ◦ [idV ⊗ f ] ◦ b′V .

If V ∈ C, we define the left dimension of V by dL(V ) := TrL(idV ) and we define the right dimension of V
by dR(V ) := TrR(V ). We emphasize that these left/right traces and dimensions depend on the particular
choice of the two-sided duality.

6Let C be a category and let V ∈ C. If there exists a U ∈ C together with morphisms i : U → V and r : V → U satisfying
r ◦ i = idU , then the triple (U, i, r) is called a retract of V . We will come back to retracts at the beginning of Subsection 2.7.4.
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2.3.2 Pivotal and spherical categories

For some of our purposes it will not be enough that a tensor category simply has a two-sided duality and we
have to require some additional properties of the two-sided duality. The following definition can be found
in [74].

Definition 2.3.6 Let (C,⊗, I) be a strict tensor category. Then this category is called pivotal if there
exists an assignment V 7→ V on the objects of C satisfying

V = V, V ⊗W = W ⊗ V , I = I

together with morphisms εV : I → V ⊗ V and εV : V ⊗ V → I for each V ∈ C such that the following three
conditions are satisfied:

(1) For each V ∈ C the equations

[εV ⊗ idV ] ◦ [idV ⊗ εV ] = idV and [idV ⊗ εV ] ◦ [εV ⊗ idV ] = idV

hold.
(2) For all V,W ∈ C we have

εV⊗W = [idV ⊗ εW ⊗ idV ] ◦ εV and εV⊗W = εV ◦ [idV ⊗ εW ⊗ idV ].

(3) If V,W ∈ C, then for every f : V →W we have the equality

[εW ⊗ idV ] ◦ [idW ⊗ f ⊗ idV ] ◦ [idW ⊗ εV ] = [idV ⊗ εW ] ◦ [idV ⊗ f ⊗ idW ] ◦ [εV ⊗ idW ]

of morphisms W → V .

Remark 2.3.7 For future reference, we will mention the relation with two-sided duality explicitly.
(1) If we replace V by V in the two equations in part (1) of the definition, we get a total of four equations,

which (together with the fact that V = V ) state that (V , bV , dV , b
′
V , d

′
V ) is a two-sided dual for V ,

where
bV := εV , dV := εV , b′V := εV d′V := εV .

Note that b′V = εV = bV and d′V = εV = ε
V

= dV . Similarly, we also get bV = b′
V

and dV = d′
V

. So
the right duality can be expressed in terms of the left duality, and vice versa.

(2) The equations in part (2) of the definition (together with the fact that V ⊗W = W ⊗ V ) state that
this two-sided duality is very well-behaved under tensor products: the morphisms εV⊗W and εV⊗W
are completely determined by the morphisms εV and εW , respectively, εV and εW .

(3) The equations in part (3) of the definition state that the left transpose f∨ and right transpose ∨f of
any morphism f coincide. In what follows, we will denote it by f .

Lemma 2.3.8 If C is a pivotal category, then εI = εI = idI .

Proof. For any V ∈ C we have (using the b and d notation, rather than the ε and ε notation)

idV = [idV ⊗ dV ] ◦ [bV ⊗ idV ] = [idV ⊗ dV ] ◦ [bV⊗I ⊗ idV ]

= [idV⊗I⊗I ⊗ dV ] ◦ [idV ⊗ bI ⊗ idV⊗V ] ◦ [bV ⊗ idV ]

= [idV ⊗ bI ] ◦ [idV ⊗ dV ] ◦ [bV ⊗ idV ] = idV ⊗ bI .

Taking V = I, we get idI = bI = εI . Using Remark 2.3.4, this in turn gives us idI = dI ◦ bI = dI = εI = εI .
�

Since every pivotal category has a two-sided duality, we always have left and right traces on a pivotal
category. An interesting class of tensor categories is obtained by demanding that these left and right traces
coincide.
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Definition 2.3.9 A pivotal category for which TrL = TrR is called a spherical category.

In a spherical category we can thus simply write Tr to denote the trace, and if V ∈ C we define the dimension
of V by d(V ) := Tr(V ). Note that d(V ) = dL(V ) = dR(V ) in this case.

2.4 Braided tensor categories

If C and D are categories, we will write τC,D : C×D → D×C to denote the flip functor, i.e. the functor defined
by τC,D((V,W )) := (W,V ) and τC,D((f, g)) := (g, f) for V ∈ C, W ∈ D, f ∈ Hom(C) and g ∈ Hom(D).

Definition 2.4.1 Let C be a category with a tensor product ⊗ : C × C → C.
(1) A commutativity constraint c is a natural isomorphism c : ⊗ → ⊗◦τC,C , i.e. a family {cV,W : V ⊗W →

W ⊗ V }V,W∈C of isomorphisms in C such that the square

V ⊗W W ⊗ V

V ′ ⊗W ′ W ′ ⊗ V ′

cV,W

f⊗g g⊗f
cV ′,W ′

commutes for all f : V → V ′ and g : W →W ′.
(1) If C has an associativity constraint a and if c is a commutativity constraint, then c is said to satisfy

the hexagon axiom if the two hexagonal diagrams

(U ⊗ V )⊗W

(V ⊗ U)⊗W U ⊗ (V ⊗W )

V ⊗ (U ⊗W ) (V ⊗W )⊗ U

V ⊗ (W ⊗ U)

cU,V ⊗idW aU,V,W

aV,U,W cU,V⊗W

idV ⊗cU,W aV,W,U

and

U ⊗ (V ⊗W )

U ⊗ (W ⊗ V ) (U ⊗ V )⊗W

(U ⊗W )⊗ V W ⊗ (U ⊗ V )

(W ⊗ U)⊗ V

idU⊗cV,W a−1
U,V,W

a−1
U,W,V

cU⊗V,W

cU,W⊗idV a−1
W,U,V

commute for all U, V,W ∈ C.

Remark 2.4.2 Note that these hexagons can be reformulated as

cU,V⊗W = a−1
V,W,U ◦ [idV ⊗ cU,W ] ◦ aV,U,W ◦ [cU,V ⊗ idW ] ◦ a−1

U,V,W ,
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cU⊗V,W = aW,U,V ◦ [cU,W ⊗ idV ] ◦ a−1
U,W,V ◦ [idU ⊗ cV,W ] ◦ aU,V,W .

These equations can be convenient in some situations.

Definition 2.4.3 Let (C,⊗, I, a, l, r) be a tensor category.

(1) A braiding in C is a commutativity constraint satisfying the hexagon axiom.
(2) A braided tensor category (C,⊗, I, a, l, r, c) is a tensor category with a choice of braiding.

Remark 2.4.4 If C is a strict tensor category, the hexagonal diagrams become the triangles

U ⊗ V ⊗W

V ⊗ U ⊗W V ⊗W ⊗ U

cU,V ⊗idW cU,V⊗W

idV ⊗cU,W

and

U ⊗ V ⊗W

U ⊗W ⊗ V W ⊗ U ⊗ V

idU⊗cV,W cU⊗V,W

cU,W⊗idV

i.e.

cU,V⊗W = [idV ⊗ cU,W ] ◦ [cU,V ⊗ idW ],

cU⊗V,W = [cU,W ⊗ idV ] ◦ [idU ⊗ cV,W ].

These equations will be used very often in what follows.

If c is a braiding in C, then so is c̃, where we define

c̃V,W := c−1
W,V (2.4.1)

for V,W ∈ C. If C is a braided tensor category with braiding c, then we will write C̃ to denote the
tensor category C with braiding c̃. The notations c̃ and C̃ will be used very often in later chapters without
explanation, so it is important to remember them.

If C is a braided tensor category with braiding c and if V,W ∈ C, then we write

cMV,W := cW,V ◦ cV,W (2.4.2)

and call this the monodromy of V and W . An object V ∈ C is called degenerate if cMV,W = idV⊗W for all
W ∈ C. A braided tensor category is called a symmetric tensor category if all its objects are degenerate and
in this case the braiding is also called a symmetry.

Definition 2.4.5 Let (C,⊗, I, a, l, r, c) and (C′,⊗′, I ′, a′, l′, r′, c′) be braided tensor categories and let (F, εF , δF ) :
C → C′ be a tensor functor. Then (F, εF , δF ) is called a braided tensor functor if the square

F (V )⊗′ F (W ) F (W )⊗′ F (V )

F (V ⊗W ) F (W ⊗ V )

c′F (V ),F (W )

δFV,W δFW,V

F (cV,W )

commutes for all V,W ∈ C.
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2.4.1 Ribbon categories

Suppose that (C,⊗, I, c) is a braided strict tensor category. If C has a left duality ((.)∨, b, d), then we can
easily obtain a right duality (∨(.), b′, d′) on C by defining ∨V := V ∨ and

b′V := cV,V ∨ ◦ bV (2.4.3)

d′V := dV ◦ c−1
V ∨,V . (2.4.4)

Similarly, if C has a right duality (∨(.), b′, d′), then we obtain a left duality ((.)∨, b, d) by defining V ∨ := ∨V
and

bV := c∨V,V ◦ b′V (2.4.5)

dV := d′V ◦ c−1
V,∨V . (2.4.6)

Thus a braided tensor category with a one-sided duality can always be equipped with a two-sided duality.
However, it is not true that this two-sided duality automatically leads to a spherical structure. In order to
assure that we obtain a spherical structure, we need to introduce the notion of a twist in a braided tensor
category with a one-sided duality. We will choose this one-sided duality to be a left duality, since this is the
convention that is found most often in the literature.

Definition 2.4.6 Let (C,⊗, I, c) be a braided strict tensor category with left duality ((.)∨, b, d). A twist is
a natural isomorphism θ : idC → idC , i.e. a family {θV : V → V } of isomorphisms in C such that for any
V,W ∈ C and f ∈ HomC(V,W ) we have θW ◦ f = f ◦ θV , satisfying the additional properties that

θV⊗W = [θV ⊗ θW ] ◦ cMV,W
θV ∨ = (θV )∨

for all V,W ∈ C. A braided strict tensor category equipped with a left duality and a twist is called a ribbon
category.

If C is a ribbon category, then we can obtain a right duality (∨(.), b′, d′) by defining ∨V := V ∨, b′V :=
[idV ∨ ⊗ θV ] ◦ cV,V ∨ ◦ bV and d′V := dV ◦ cV,V ∨ ◦ [θV ⊗ idV ∨ ]. Because ∨V = V ∨ we thus obtain a two-sided

duality ((.), b, d, b′, d′) on C and it can be shown that C becomes spherical with respect to this two-sided
duality.7 Furthermore, the twist can now be expressed in terms of the two-sided duality as

θV = [dV ⊗ idV ] ◦ [idV ⊗ cV,V ] ◦ [b′V ⊗ idV ]. (2.4.7)

Later we will encounter a particular situation where we are given a two-sided duality on a braided tensor
category C and where equation (2.4.7) can be used to define a twist. This will then equip C with the
structure of a ribbon category (and using the left duality, braiding and twist to define a right duality as
above, we obtain the original right duality again).

2.4.2 The (relative) Drinfeld center

In this subsection we will introduce the (relative) Drinfeld center of a tensor category. This will be very
important to us, because we will later extend the construction of the Drinfeld center to tensor categories
with a group action and we will study this construction in great detail. The definition of the (relative)
Drinfeld center makes use of the notion of a half braiding (relative to a tensor subcategory).

7However, the underlying pivotal structure is not as strict as defined in Subsection 2.3.2, but this will be of no importance
to us. We only introduce the notion of ribbon categories as a motivation for the formula (2.4.7), which will be used later in
another setting.
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Definition 2.4.7 Let (C,⊗, I) be a strict tensor category, let D ⊂ C be a tensor subcategory with inclusion
functor I : D → C and let V ∈ C. A half braiding for V relative to D is a natural isomorphism ΦV :
⊗ ◦ [V ×I ]→ ⊗ ◦ [I × V ] of functors D → C, i.e. a family {ΦV (X) : V ⊗I (X)→ I (X)⊗ V }X∈D such
that the square

V ⊗I (X) I (X)⊗ V

V ⊗I (Y ) I (Y )⊗ V

ΦV (X)

idV ⊗I (f) I (f)⊗idV

ΦV (Y )

commutes for all X,Y ∈ D and f ∈ HomD(X,Y ), satisfying the additional property that for any X,Y ∈ D
we have

ΦV (X ⊗ Y ) = [idI (X) ⊗ ΦV (Y )] ◦ [ΦV (X)⊗ idI (Y )].

In case D = C, ΦV is called a half braiding for V .

Let C be a braided tensor category with braiding c, let D ⊂ C be a tensor subcategory and let V ∈ C. If for
each X ∈ D we define ΦV (X) := cV,X , then ΦV is a half braiding for V relative to D. Thus, half braidings
can be obtained by fixing the first argument of a braiding in a braided tensor category. Fixing the second
argument does not give a half braiding according to the definition above. This observation motivates the
following alternative definition of a half braiding, which will be needed in Section 4.4.

Definition 2.4.8 Let (C,⊗, I) be a strict tensor category, let D ⊂ C be a tensor subcategory with inclusion
functor I : D → C and let V ∈ C. A half braiding of the second kind for V relative to D is a natural
isomorphism ΨV : ⊗ ◦ [I × V ] → ⊗ ◦ [V × I ] of functors D → C, i.e. a family {ΨV (X) : I (X) ⊗ V →
V ⊗I (X)}X∈D such that the square

I (X)⊗ V V ⊗I (X)

I (Y )⊗ V V ⊗I (Y )

ΨV (X)

I (f)⊗idV idV ⊗I (f)

ΨV (Y )

commutes for all X,Y ∈ D and f ∈ HomD(X,Y ), satisfying the additional property that for any X,Y ∈ D
we have

ΨV (X ⊗ Y ) = [ΨV (X)⊗ idI (Y )] ◦ [idI (X) ⊗ΨV (Y )].

In case D = C, ΨV is called a half braiding of the second kind for V .

With the terminology in this definition we already anticipate for the terminology that will be introduced
in a more general setting in Chapter 4. Note that fixing the second argument of the braiding in a braided
tensor category will indeed give rise to a half braiding of the second kind.

If C is a tensor category and D ⊂ C is a tensor subcategory, then we define a category Z(C;D) as follows.
Its objects are given by

Obj(Z(C;D)) := {(V,ΦV ) : V ∈ C and ΦV is a half braiding for V relative to D}

and for (V,ΦV ), (W,ΦW ) ∈ Obj(Z(C;D)) we define HomZ(C;D)((V,ΦV ), (W,ΦW )) to be

{f ∈ HomC(V,W ) : [idI (X) ⊗ f ] ◦ ΦV (X) = ΦW (X) ◦ [f ⊗ idI (X)] ∀X ∈ D}.
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The composition of morphisms in Z(C;D) is defined to be the same as in C. The category Z(C;D) can be
equipped with the structure of a strict tensor category by defining the tensor product on objects by

(V,ΦV )⊗ (W,ΦW ) := (V ⊗W,ΦV ⊗ ΦW ),

where
(ΦV ⊗ ΦW )(X) := [ΦV (X)⊗ idW ] ◦ [idV ⊗ ΦW (X)]

and by letting the tensor product on morphisms be the one inherited from C. The unit object of Z(C;D)
is (I,Φ0

I), where Φ0
I(X) = idI (X) for all X ∈ D. The tensor category Z(C;D) is called the Drinfeld center

of C relative to D. If we write8 Z(D) to denote the full tensor subcategory of Z(C;D) determined by the
objects of the form (U,ΦU ) with U ∈ D, then for any (V,ΦV ) ∈ Z(C;D) and (W,ΦW ) ∈ Z(D) we can define

C(V,ΦV ),(W,ΦW ) := ΦV (W ). (2.4.8)

The restriction of this C to Z(D) defines a braiding on Z(D). In particular, if we choose D to be equal to
C then we obtain a braided tensor category Z(C) := Z(C; C) which is called the Drinfeld center of C.

Although the restriction of C in (2.4.8) to objects in Z(D) gives us a braiding on Z(D), it is clear that
C does not give us a braiding on Z(C;D) because we cannot take the second argument of C to be an object
in Z(C;D). To describe what C is on Z(C;D) we introduce the notion of a partial braiding relative to a
tensor subcategory.

Definition 2.4.9 Let (C,⊗, I) be a strict tensor category, let D be a tensor subcategory of C and denote
the inclusion functor by I : D → C. A partial braiding on C relative to D is a natural isomorphism
c : ⊗ ◦ [idC × I ] → ⊗ ◦ [I × idC ] ◦ τC,D of functors C × D → C, i.e. a family {cV,X : V ⊗ I (X) →
I (X) ⊗ V }V ∈C,X∈D of isomorphisms in C such that for any f ∈ HomC(V, V

′) and g ∈ HomD(X,X ′) we
have

cV ′,X′ ◦ [f ⊗I (g)] = [I (g)⊗ f ] ◦ cV,X ,
satisfying the additional property that

cV,X⊗Y = [idI (X) ⊗ cV,Y ] ◦ [cV,X ⊗ idI (Y )]

cV⊗W,X = [cV,X ⊗ idW ] ◦ [idV ⊗ cW,X ]

for all V,W ∈ C and X,Y ∈ D. If C has a partial braiding relative to D, then C will be called partially
braided relative to D.

Remark 2.4.10 Similarly, by using half braidings of the second kind relative to D in the construction of
the relative Drinfeld center above, we obtain an alternative relative Drinfeld center that we will denote by
Z(2)(C;D). The tensor product on Z(2)(C;D) is given by

(V,ΨV )⊗ (W,ΨW ) = (V ⊗W,ΨV ⊗ΨW ),

where
(ΨV ⊗ΨW )(X) = [idV ⊗ΨW (X)] ◦ [ΨV (X)⊗ idW ].

It has a partial braiding of the second kind relative to D, the definition of which should be obvious now. If
D = C, then we will write Z(2)(C).

2.5 Algebra in a strict tensor category

In this section we will give a categorical definition of algebras and coalgebras in the context of strict tensor
categories. When one generalizes these definitions to non-strict tensor categories and applies them to the
category of vector spaces, the usual definition of algebras and coalgebras is obtained. We will also consider
modules and comodules in this categorical setting.

8The reason for this choice of notation will become clear in a moment, when we define the Drinfeld center Z(C).
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2.5.1 Algebras and coalgebras

The categorical version of the definitions of an algebra and a coalgebra are as follows.

Definition 2.5.1 Let (C,⊗, I) be a strict tensor category.
(1) An algebra A in C is a triple A = (A,µ, η) consisting of an object A ∈ C and morphisms µ : A⊗A→ A

and η : I → A such that

µ ◦ [idA ⊗ µ] = µ ◦ [µ⊗ idA] and µ ◦ [η ⊗ idA] = idA = µ ◦ [idA ⊗ η].

If A = (A,µ, η) and A′ = (A′, µ′, η′) are algebras in C, then a morphism f : A → A′ is called a
morphism of algebras if µ′ ◦ [f ⊗ f ] = f ◦ µ and f ◦ η = η′.

(2) A coalgebra C in C is a triple C = (C,∆, ε) consisting of an object C ∈ C and morphisms ∆ : C → C⊗C
and ε : C → I such that

[idC ⊗∆] ◦∆ = [∆⊗ idC ] ◦∆ and [ε⊗ idC ] ◦∆ = idC = [idC ⊗ ε] ◦∆.

If C = (C,∆, ε) and C′ = (C ′,∆′, ε′) are coalgebras in C, then a morphism f : C → C ′ is called a
morphism of coalgebras if [f ⊗ f ] ◦∆ = ∆′ ◦ f and ε′ ◦ f = ε.

Remark 2.5.2 More generally, one can define algebras and coalgebras in non-strict tensor categories by
inserting the associativity constraint and the unit constraints in the appropriate places in the equations of
the definition above.

As a trivial example, the unit object obtains the structure of an algebra (I, µ, η) if we define µ = η = idI
and it obtains the structure of a coalgebra (I,∆, ε) if we define ∆ = ε = idI .

If A = (A,µ, η) is an algebra in a braided strict tensor category C, then its opposite algebra is the algebra
Aop = (A,µop, η), where µop = µ ◦ cA,A. We say that A is commutative if Aop = A. Similarly, one also
defines Cop for a coalgebra C in a braided tensor category by setting ∆op = cC,C ◦∆. Then C will be called
cocommutative if Cop = C. Note that a (co)algebra is (co)commutative with respect to the braiding c if and
only if it is with respect to the braiding c̃, where c̃ is as in (2.4.1).

2.5.2 Modules over an algebra

Now that we have introduced a categorical version of the definition of (co)algebras, we will do the same
with the definition of a module over an algebra.

Definition 2.5.3 Let (C,⊗, I) be a strict tensor category, let A = (A,µ, η) be an algebra in C and let
C = (C,∆, ε) be a coalgebra in C. A left A-module in C is a pair (V, πV ), where V ∈ C and πV : A⊗V → V
is a morphism satisfying

πV ◦ [µ⊗ idV ] = πV ◦ [idA ⊗ πV ] and πV ◦ [η ⊗ idV ] = idV .

If (V, πV ) and (V ′, πV ′) are left A-modules, then a morphism f : V → V ′ is called a morphism of left
A-modules if it satisfies πV ′ ◦ [idA ⊗ f ] = f ◦ πV .

The notion of a right module is obtained by making the obvious adjustments to the previous definition.

Example 2.5.4 An easy example of a module over an algebra is given by the algebra itself. Namely, if
A = (A,µ, η) is an algebra in a tensor category C, then (A,µ) is a both a left and right A-module in C.

The following proposition states that the modules over an algebra in a strict tensor category form a category.
The proof is easy.

Proposition 2.5.5 Let (C,⊗, I) be a strict tensor category and let A = (A,µ, η) be an algebra in C. Then
the left A-modules form a category ModC(A), where the objects are left A-modules and the morphisms are
morphisms of left A-modules in the sense of the definition above, with the composition in ModC(A) given by
the composition in C. Similarly, the right A-modules form a category ModRC (A).
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2.6 Module categories

Analogously to monoids acting on sets, a tensor category can act on a category. Categories that are acted
upon by a tensor category are called module categories and will be important to us in Section 4.5.

2.6.1 Left and right module categories; bimodule categories

Let X be a set and let G be a group. Recall from elementary algebra that a (left) G-action on X is
a homomorphism ψ : G → S(X), where S(X) denotes the group of bijections of X. In the following
definition, the action of a tensor category on a category is defined analogously.

Definition 2.6.1 Let (C,⊗, I) and (D,⊗, I) be two strict tensor categories.
(1) A left C-module category is a pair (M, (F, εF , δF )), where M is a category and (F, εF , δF ) : C →

End(M) is a tensor functor.
(2) A right D-module category is a pair (M, (G, εG, δG)), whereM is a category and (G, εG, δG) : Drev →

End(M) is a tensor functor.
(3) A (C,D)-bimodule category is a pair (M, (H, εH , δH)), where M is a category and (H, εH , δH) :
C × Drev → End(M) is a tensor functor.

In part (3) the category C × Drev is equipped with the structure of a strict tensor category by defining the
tensor product componentwise and by choosing (IC , ID) as unit object.

Consider again the case of a group G acting (from the left) on a set X. Such an action can also be
defined as a map G ×X → X, denoted by (q, x) 7→ q.x, that satisfies e.x = x and (qr).x = q.(r.x) for all
q, r ∈ G and x ∈ X. The equivalence of the two definitions can be seen immediately by considering the
correspondence q.x = ψ(q)(x) for all q ∈ G and x ∈ X. Analogously to this alternative definition of a group
acting on a set, there is also an alternative definition of module categories. The alternative definition below
can be found in [28], although some of our conditions concerning the unit object of the tensor category seem
to be missing there.

Definition 2.6.2 Let (C,⊗, I) and (D,⊗, I) be two strict tensor categories.
(1) A left C-module category (M,B, α, λ) consists of
• a category M;
• a functor B : C ×M→M;
• a natural isomorphism α : B ◦ (⊗× idM)→ B ◦ (idC ×B) of functors C × C ×M→M, i.e. a family
{αM (X,Y ) : (X ⊗ Y )BM → X B (Y BM)}X,Y ∈C,M∈M of isomorphisms in M such that the square

(X ⊗ Y )BM X B (Y BM)

(X ′ ⊗ Y ′)BM ′ X ′ B (Y ′ BM ′)

αM (X,Y )

(f⊗g)Bm fB(gBm)

αM′ (X
′,Y ′)

(2.6.1)

commutes for all X,X ′, Y, Y ′ ∈ C, M,M ′ ∈ M, f ∈ HomC(X,X
′), g ∈ HomC(Y, Y

′) and m ∈
HomM(M,M ′), satisfying the additional property that the square

(X ⊗ Y ⊗ Z)BM (X ⊗ Y )B (Z BM)

X B ((Y ⊗ Z)BM) X B (Y B (Z BM))

αM (X⊗Y,Z)

αM (X,Y⊗Z) αZBM (X,Y )

idXBαM (Y,Z)

(2.6.2)

commutes for all X,Y, Z ∈ C and M ∈M;
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• a natural isomorphism λ : B ◦ (I × idM) → idM of functors M→M, i.e. a family {λM : I BM →
M}M∈M of isomorphisms in M such that the square

I BM M

I BM ′ M ′

λM

idIBm m

λM′

(2.6.3)

commutes for all M,M ′ ∈M and m ∈ HomM(M,M ′), satisfying the additional property that

αM (X, I)−1 = idX B λM and αM (I,X)−1 = λXBM

for all X ∈ C and M ∈M.
(2) A right D-module category (M,C, β, ρ) consists of
• a category M;
• a functor C :M×D →M;
• a natural isomorphism β : C ◦ (idM ×⊗)→ C ◦ (C× idD) of functorsM×D×D →M, i.e. a family
{βM (X,Y ) : M C (U ⊗ V )→ (M C U)C V }U,V ∈D,M∈M of isomorphisms in M such that the square

M C (U ⊗ V ) (M C U)C V

M ′ C (U ′ ⊗ V ′) (M ′ C U ′)C V ′

βM (U,V )

mC(f⊗g) (mCf)Cg

βM′ (U
′,V ′)

(2.6.4)

commutes for all U,U ′, V, V ′ ∈ D, M,M ′ ∈ M, f ∈ HomD(U,U ′), g ∈ HomD(V, V ′) and m ∈
HomM(M,M ′), satisfying the additional property that the square

M C (U ⊗ V ⊗W ) (M C U)C (V ⊗W )

(M C (U ⊗ V ))CW ((M C U)C V )CW

βM (U,V⊗W )

βM (U⊗V,W ) βMCU (V,W )

βM (U,V )CidW

(2.6.5)

commutes for all U, V,W ∈ D and M ∈M;
• a natural isomorphism ρ : C ◦ (idM × I) → idM of functors M→M, i.e. a family {ρM : I CM →
M}M∈M of isomorphisms in M such that the square

M C I M

M ′ C I M ′

ρM

mCidI m

ρM′

(2.6.6)

commutes for all M,M ′ ∈M and m ∈ HomM(M,M ′), satisfying the additional property that

βM (I, U)−1 = ρM C idU and βM (U, I)−1 = ρMCU

for all U ∈ D and M ∈M.
(3) A (C,D)-bimodule category (M,B, α, λ,C, β, ρ, γ) consists of
• a left C-module category (M,B, α, λ);
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• a right D-module category category (M,C, β, ρ);
• a natural isomorphism γ : C ◦ (B× idD)→ B ◦ (idC ×C) of functors C ×M×D →M, i.e. a family
{γM (X,U) : (XBM)CU → XB(MCU)}X∈C,U∈D,M∈M of isomorphisms inM such that the square

(X BM)C U X B (M C U)

(X ′ BM ′)C U ′ X ′ B (M ′ C U ′)

γM (X,U)

(fBm)Cg fB(mCg)

γM′ (X
′,U ′)

(2.6.7)

commutes for all X,X ′ ∈ C, U,U ′ ∈ D, M,M ′ ∈ M, f ∈ HomC(X,X
′), g ∈ HomD(U,U ′) and

m ∈ HomM(M,M ′), with the additional property that the diagrams

((X ⊗ Y )BM)C U

(X B (Y BM))C U (X ⊗ Y )B (M C U)

X B ((Y BM)C U) X B (Y B (M C U))

αM (X,Y )CidU γM (X⊗Y,U)

γYBM (X,U) αMCU (X,Y )

idXBγM (Y,U)

(2.6.8)

and

X B (M C (V ⊗W ))

X B ((M C V )CW ) (X BM)C (V ⊗W )

(X B (M C V ))CW ((X BM)C V )CW

idXBβM (V,W ) γM (X,V⊗W )

βXBM (V,W )γMCV (X,W )

γM (X,V )CidW

(2.6.9)

commute for all X,Y ∈ C, V,W ∈ D and M ∈M, as well as the triangles

(I BM)C Y I B (M C Y )

M C Y

γM (I,Y )

λMCidY λMCY

and

(X BM)C I X B (M C I)

X BM

γM (X,I)

ρXBM idXBρM

for all X ∈ C, Y ∈ D and M ∈ M. If C = D, then we will call (M,B, α, λ,C, β, ρ, γ) a C-bimodule
category, rather than a (C, C)-bimodule category.
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IfM is a left C-module category for which B◦[I×idM] = idM and λM = idM for all M ∈M, then we will say
thatM is a semi-strict left C-module category. If, in addition, we also have that B◦ [⊗× idM] = B◦ [idC×B]
and αM (X,Y ) = id(X⊗Y )BM = idXB(YBM) for all X,Y ∈ C and M ∈ M, we will say that M is a strict
left C-module category. Similarly, ones defines (semi-)strict right D-module categories and (semi-)strict
(C,D)-bimodule categories.

Example 2.6.3 The following examples of module categories will be important to us.
(1) If C is a strict tensor category, then C obviously is a C-bimodule category if we define B = ⊗ and
C = ⊗. In fact, a similar statement can be made for non-strict tensor categories, but then one first
has to define module categories over non-strict tensor categories.

(2) Let C be a strict tensor category and let A = (A,µ, η) be an algebra in C. Then the category ModC(A)
of left A-modules can be equipped with the structure of a strict right C-module category as follows.
The functor C : ModC(A) × C → ModC(A) is defined by (V, πV ) C X := (V ⊗ X,πV ⊗ idX) and
f C g = f ⊗ g. It is easy to check that (V, πV ) CX ∈ ModC(A) and that f C g ∈ HomModC(A)((V ⊗
X,πV ⊗ idX), (W ⊗ Y, πW ⊗ idY )) if f ∈ HomModC(A)((V, πV ), (W,πW )) and g ∈ HomC(X,Y ), and
that ModC(A) is indeed a strict right C-module category.

We will now show that if C is braided, then left C-module categories give rise to right C-module categories
and vice versa. This result will be needed in Subsection 2.8.4.

Lemma 2.6.4 Let (C,⊗, I, c) be a braided strict tensor category.
(1) If (M,B, α, λ) is a left C-module category, then we can equip M with the structure (M,C, β, ρ) of a

right C-module category by defining M C X := X BM , m C f := f Bm, βM (X,Y ) := αM (Y,X) ◦
[cX,Y B idM ] and ρM := λM for all X,Y ∈ C, M ∈M, f ∈ Hom(C) and m ∈ Hom(M). In fact, if we
define γM (X,U) = αM (X,U) ◦ [cU,X B idM ] ◦ αM (U,X)−1, then M becomes a C-bimodule category.

(2) If (M,C, β, ρ) is a right C-module category, then we can equip M with the structure (M,B, α, λ) of
a left C-module category by defining X BM := M CX, f Bm := m C f , αM (X,Y ) := βM (Y,X) ◦
[idM C cX,Y ] and λM := ρM for all X,Y ∈ C, M ∈M, f ∈ Hom(C) and m ∈ Hom(M). In fact, if we
define γM (X,U) = βM (U,X) ◦ [idM C cX,U ] ◦ βM (X,U)−1, then M becomes a C-bimodule category.

Proof. We will only prove (2); the proof of (1) proceeds similarly. It is clear that B is a functor. To
check naturality of α, let X,X ′, Y, Y ′ ∈ C, M,M ′ ∈ M, f ∈ HomC(X,X

′), g ∈ HomC(Y, Y
′) and m ∈

HomM(M,M ′), and consider the diagram

M C (X ⊗ Y ) M C (Y ⊗X) (M C Y )CX

M ′ C (X ′ ⊗ Y ′) M ′ C (Y ′ ⊗X ′) (M ′ C Y ′)CX ′.

idMCcX,Y

mC(f⊗g)

βM (Y,X)

mC(g⊗f) (mCg)Cf

idM′CcX′,Y ′ βM′ (Y
′,X′)

The left square commutes by naturality of c and the right square commutes by naturality of β. Hence the
big outer rectangle commutes as well. But this means that the square (2.6.1) commutes for our choice of
α. Now let X,Y, Z ∈ C, let M ∈M and consider the diagram

M C (X ⊗ Y ⊗ Z) M C (Z ⊗X ⊗ Y ) (M C Z)C (X ⊗ Y )

M C (Y ⊗ Z ⊗X) M C (Z ⊗ Y ⊗X) (M C Z)C (Y ⊗X)

(M C (Y ⊗ Z))CX (M C (Z ⊗ Y ))CX ((M C Z)C Y )CX.

idMCcX⊗Y,Z

idMCcX,Y⊗Z

βM (Z,X⊗Y )

idMC(idZ⊗cX,Y ) idMCZCcX,Y

idMC(cY,Z⊗idX)

βM (Y⊗Z,X)

βM (Z,Y⊗X)

βM (Z⊗Y,X) βMCZ(Y,X)

(idMCcY,Z)CidX βM (Z,Y )CidX
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The upper left square commutes by compatibility of the braiding with the tensor product, the upper right
and lower left squares commute by naturality of β and the lower right square commutes by the additional
property (2.6.5) of β. Hence the big outer square commutes as well, which means that the square (2.6.2)
commutes for our choice of α.

Naturality of λ follows immediately from naturality of ρ, since we have defined λM = ρM for all M ∈M.
For any X ∈ C and M ∈M we have the equations

αM (X, I)−1 = [βM (I,X) ◦ (idM C cX,I)]
−1 = βM (I,X)−1 = ρM C idX = idX B λM ,

αM (I,X)−1 = [βM (X, I) ◦ (idM C cI,X)]−1 = βM (X, I)−1 = ρMCX = λXBM ,

showing that we have indeed a left C-module category.
We will now show that we actually get a C-bimodule category. Naturality of γ follows from naturality

of β and c (the proof proceeds in a similar manner as the proof of naturality of α above, i.e. by splitting
the diagram into smaller subdiagrams). To check commutativity of (2.6.8), we compute

[idX B γM (Y,U)] ◦ γYBM (X,U) ◦ [αM (X,Y )C idU ]

= [γM (Y, U)C idX ] ◦ γMCY (X,U) ◦ [αM (X,Y )C idU ]

= [βM (U, Y )C idX ] ◦ [(idM C cY,U )C idX ] ◦ [βM (Y,U)−1 C idX ] ◦ βMCY (U,X)

◦ [idMCY C cX,U ] ◦ βMCY (X,U)−1 ◦ [βM (Y,X)C idU ] ◦ [(idM C cX,Y )C idU ]

= [βM (U, Y )C idX ] ◦ [(idM C cY,U )C idX ] ◦ βM (Y ⊗ U,X) ◦ βM (Y,U ⊗X)−1

◦ [idMCY C cX,U ] ◦ βM (Y,X ⊗ U) ◦ βM (Y ⊗X,U)−1 ◦ [(idM C cX,Y )C idU ]

= [βM (U, Y )C idX ] ◦ βM (U ⊗ Y,X) ◦ [idM C (cY,U ⊗ idX)] ◦ [idM C (idY ⊗ cX,U )]

◦ [idM C (cX,Y ⊗ idU )] ◦ βM (X ⊗ Y, U)−1

= βMCU (Y,X) ◦ βM (U, Y ⊗X) ◦ [idM C (idU ⊗ cX,Y )] ◦ [idM C cX⊗Y,U ] ◦ βM (X ⊗ Y,U)−1

= βMCU (Y,X) ◦ [idMCU C cX,Y ] ◦ βM (U,X ⊗ Y ) ◦ [idM C cX⊗Y,U ] ◦ βM (X ⊗ Y,U)−1

= αMCU (X,Y ) ◦ γM (X ⊗ Y,U),

and commutativity of (2.6.9) follows from

γMCV (X,W ) ◦ [γM (X,V )C idW ] ◦ βXBM (V,W )

= βMCV (W,X) ◦ [idMCV C cX,W ] ◦ βMCV (X,W )−1 ◦ [βM (V,X)C idW ]

◦ [(idM C cX,V )C idW ] ◦ [βM (X,V )−1 C idW ] ◦ βMCX(V,W )

= βMCV (W,X) ◦ [idMCV C cX,W ] ◦ βM (V,X ⊗W ) ◦ βM (V ⊗X,W )−1

◦ [(idM C cX,V )C idW ] ◦ βM (X ⊗ V,W ) ◦ βM (X,V ⊗W )−1

= βMCV (W,X) ◦ βM (V,W ⊗X) ◦ [idM C (idV ⊗ cX,W )] ◦ [idM C (cX,V ⊗ idW )]

◦ βM (X ⊗ V,W )−1 ◦ βM (X ⊗ V,W ) ◦ βM (X,V ⊗W )−1

= [βM (V,W )C idX ] ◦ βM (V ⊗W,X) ◦ [idM C cX,V⊗W ] ◦ βM (X,V ⊗W )−1

= [idX B βM (V,W )] ◦ γM (X,V ⊗W ).

�

2.6.2 Functors of module categories; module natural transformations

In the previous subsection we defined (bi)module categories over a tensor category and we proved a lemma
concerning the case where the tensor category is braided. The present subsection only contains two defini-
tions, but these definitions are quite involved. We begin by defining the correct notion of functors between
module categories.
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Definition 2.6.5 Let C and D be strict tensor categories.
(1) If (M,B, α, λ) and (M′,I, α′, λ′) are left C-module categories, then a functor of left C-module cat-

egories (H, s) from M to M′ consists of a functor H : M → M′ and a natural isomorphism
s : H ◦B→I ◦[idC ×H] of functors C ×M→M′, i.e. a family

{sM (X) : H(X BM)→ X I H(M)}X∈C, M∈M

of isomorphisms in M′ such that the square

H(X BM) X I H(M)

H(Y BN) Y I H(N)

sM (X)

H(fBm) fIH(m)

sN (Y )

commutes for all X,Y ∈ C, M,N ∈ M, f ∈ HomC(X,Y ) and m ∈ HomM(M,N), satisfying the
additional property that the diagrams

H((X ⊗ Y )BM)

H(X B (Y BM)) (X ⊗ Y ) I H(M)

X I H(Y BM) X I (Y I H(M))

H(αM (X,Y )) sM (X⊗Y )

sYBM (X) α′H(M)(X,Y )

idXIsM (Y )

and

H(I BM) I I H(M)

H(M)

sM (I)

H(λM ) λ′H(M)

commute for all X,Y ∈ C and M ∈M.
(2) If (M,C, β, ρ) and (M′,J, β′, ρ′) are right D-module categories, then a functor of right D-module

categories (H, t) from M to M′ consists of a functor H : M → M′ and a natural isomorphism
t : H ◦C→J ◦[H × idC ] of functors M×D →M′, i.e. a family

{tM (X) : H(M CX)→ H(M) J X}X∈D, M∈M

of isomorphisms in M′ such that the square

H(M CX) H(M) J X

H(N C Y ) H(N) J Y

tM (X)

H(mCf) H(M)Jf

tN (Y )

commutes for all X,Y ∈ D, M,N ∈ M, f ∈ HomD(X,Y ) and m ∈ HomM(M,N), satisfying the
additional property that the diagrams
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H(M C (X ⊗ Y ))

H((M CX)C Y ) H(M) J (X ⊗ Y )

H(M CX) J Y (H(M) J X) J Y

H(βM (X,Y )) tM (X⊗Y )

tMCX(Y ) β′H(M)(X,Y )

tM (X)JidY

and

H(M C I) H(M) J I

H(M)

tM (I)

H(ρM ) ρ′H(M)

commute for all X,Y ∈ D and M ∈M.
(3) If (M,B, α, λ,C, β, ρ, γ) and (M′,I, α′, λ′,J, β′, ρ′, γ′) are (C,D)-bimodule categories, then a functor

of (C,D)-bimodule categories (H, s, t) from M to M′ consists of a functor (H, s) of left C-module
categories and a functor (H, t) of right D-module categories such that the diagram

H((X BM)C Y ) H(X BM) J Y

H(X B (M C Y )) (X I H(M)) J Y

X I H(M C Y ) X I (H(M) J Y )

tXBM (Y )

H(γM (X,Y )) sM (X)JidY

sMCY (X) γ′H(M)(X,Y )

idXItM (Y )

commutes for all X ∈ C, Y ∈ D and M ∈M.

Now that we have introduced functors between module categories, we will define natural transformations
between such functors.

Definition 2.6.6 Let (C,⊗, I) and (D,⊗, I) be strict tensor categories.
(1) If (H1, s

1), (H2, s
2) : (M,B, α, λ)→ (N ,I, α′, λ′) are functors of left C-module categories, then a left

module natural transformation ϕ : (H1, s
1)→ (H2, s

2) is a natural transformation ϕ : H1 → H2 such
that the diagram

H1(X BM) H2(X BM)

X I H1(M) X I H2(M)

ϕXBM

s1M (X) s2M (X)

idXIϕM

commutes for all X ∈ C and M ∈M.
(2) If (H1, t

1), (H2, t
2) : (M,C, β, ρ) → (N ,J, β′, ρ′) are functors of right D-module categories, then a

right module natural transformation ϕ : (H1, t
1) → (H2, t

2) is a natural transformation ϕ : H1 → H2

such that the diagram
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H1(M CX) H2(M CX)

H1(M) J X H2(M) J X

ϕMCX

t1M (X) t2M (X)

ϕMJidX

commutes for all X ∈ D and M ∈M.
(3) If (H1, s

1, t1), (H2, s
2, t2) : (M,B, α, λ,C, β, ρ, γ) → (N ,I, α′, λ′,J, β′, ρ′, γ′) are functors of (C,D)-

bimodule categories, then a bimodule natural transformation ϕ : (H1, s
1, t1)→ (H2, s

2, t2) is a natural
transformation ϕ : H1 → H2 that is both a left module natural transformation (H1, s

1) → (H2, s
2)

and a right module natural transformation (H1, t
1)→ (H2, t

2).

If (H1, s
1), (H2, s

2), (H3, s
3) : (M,B, α, λ) → (N ,I, α′, λ′) are functors of left C-module categories and if

ϕ : (H1, s
1) → (H2, s

2) and ψ : (H2, s
2) → (H3, s

3) are left module natural transformations, then the
natural transformation ψ ◦ ϕ : H1 → H3 is a left module natural transformation. To see this, consider the
diagram

H1(X BM) H2(X BM) H3(X BM)

X I H1(M) X I H2(M) X I H3(M)

ϕXBM

s1M (X)

ψXBM

s2M (X) s3M (X)

idXIϕM idXIψM

for X ∈ C and M ∈ M. The left and right square commute because ϕ and ψ are left module natural
transformations, so the big outer rectangle commutes as well, showing that the natural transformation ψ ◦ϕ
is indeed a left module natural transformation. Similarly, the composition of two right module natural
transformations is again a right module natural transformation, and consequently the composition of two
bimodule natural transformations is also again a bimodule natural transformation. This implies that if
we have two tensor categories C and D, as well as two (C,D)-bimodule categories M and N , then the
(C,D)-bimodule functors from M to N form a subcategory Fun(C,D)(M,N ) of Fun(M,N ).

2.6.3 Structures of a bimodule category on a tensor category

Our results of this subsection will be essential for our discussion in Section 4.5. Let C be a strict tensor
category. It is obvious that C can be considered as a strict C-bimodule category (C,⊗,⊗); we will simply
refer to it as C. Now suppose that we are also given another C-bimodule structure (C,B, α, λ,C, β, ρ, γ) on
C. In this subsection we will refer to this C-bimodule category as C′, for simplicity. We will investigate the
C-bimodule functors from C to C′ in some detail.

In what follows, for any V ∈ C we will write LV to denote the functor C◦ [V × idC ], i.e. LV (M) = V CM
and LV (m) = idV Cm for M ∈ C and m ∈ Hom(C). Note that if C would be equal to ⊗, then this functor
LV would correspond to tensoring from the left with V .

Lemma 2.6.7 Let (H, s, t) : C → C′ be a functor of C-bimodule categories. Then we obtain another functor
(LH , s′, t′) : C → C′ of C-bimodule categories by defining the functor LH by LH := LH(I) and by defining

s′M (X) : LH(X ⊗M)︸ ︷︷ ︸
=H(I)C(X⊗M)

→ X B LH(M)︸ ︷︷ ︸
=XB(H(I)CM)

t′M (X) : LH(M ⊗X)︸ ︷︷ ︸
=H(I)C(M⊗X)

→ LH(M)CX︸ ︷︷ ︸
=(H(I)CM)CX
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by

s′M (X) := γH(I)(X,M) ◦ [sI(X)C idM ] ◦ [tI(X)−1 C idM ] ◦ βH(I)(X,M)

t′M (X) := βH(I)(M,X).

Furthermore, if for each M ∈ C we define an isomorphism

ϕ
(H,s,t)
M : H(M)︸ ︷︷ ︸

=H(I⊗M)

→ LH(M)︸ ︷︷ ︸
=H(I)CM

by ϕ
(H,s,t)
M := tI(M), then this defines a natural bimodule isomorphism

ϕ(H,s,t) : (H, s, t)→ (LH , s′, t′).

Proof. Naturality of s′ follows from naturality of β, t, s and γ. We now have to show that the square

H(I)C (X ⊗ Y ⊗M) (X ⊗ Y )B (H(I)CM)

X B (H(I)C (Y ⊗M)) X B (Y B (H(I)CM))

s′M (X⊗Y )

s′Y⊗M (X) αH(I)CM (X,Y )

idXBs
′
M (Y )

commutes for all X,Y,M ∈ C. This follows from the computation

αH(I)CM (X,Y ) ◦ s′M (X ⊗ Y )

= αH(I)CM (X,Y ) ◦ γH(I)(X ⊗ Y,M) ◦ [sI(X ⊗ Y )C idM ]

◦ [tI(X ⊗ Y )−1 C idM ] ◦ βH(I)(X ⊗ Y,M)

= [idX B γH(I)(Y,M)] ◦ γYBH(I)(X,M) ◦ [αH(I)(X,Y )C idM ] ◦ [sI(X ⊗ Y )C idM ]

◦ [tI(X ⊗ Y )−1 C idM ] ◦ [βH(I)(X,Y )−1 C idM ] ◦ βH(I)CX(Y,M) ◦ βH(I)(X,Y ⊗M)

= [idX B γH(I)(Y,M)] ◦ γYBH(I)(X,M) ◦ [(idX B sI(Y ))C idM ] ◦ [sY⊗I(X)C idM ]

◦ [tI⊗X(Y )−1 C idM ] ◦ [(tI(X)−1 C idY )C idM ] ◦ βH(I)CX(Y,M) ◦ βH(I)(X,Y ⊗M)

= [idX B γH(I)(Y,M)] ◦ [idX B (sI(Y )C idM )] ◦ γH(Y )(X,M) ◦ [sY (X)C idM ]

◦ [tX(Y )−1 C idM ] ◦ βH(X)(Y,M) ◦ [tI(X)−1 C idY⊗M ] ◦ βH(I)(X,Y ⊗M)

= [idX B γH(I)(Y,M)] ◦ [idX B (sI(Y )C idM )] ◦ [idX B tY (M)] ◦ sY⊗M (X) ◦ tX⊗Y (M)−1

◦ [tX(Y )−1 C idM ] ◦ βH(X)(Y,M) ◦ [tI(X)−1 C idY⊗M ] ◦ βH(I)(X,Y ⊗M)
∗
= [idX B γH(I)(Y,M)] ◦ [idX B (sI(Y )C idM )] ◦ [idX B (tI(Y )−1 C idM )] ◦ [idX B βH(I)(Y,M)]

◦ γH(I)(X,Y ⊗M) ◦ [sI(X)C idY⊗M ] ◦ [tI(X)−1 C idY⊗M ] ◦ βH(I)(X,Y ⊗M)

= [idX B s
′
M (Y )] ◦ s′Y⊗M (X).

The equality
∗
= can be understood by considering the diagram
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H(X)C (Y ⊗M)

(H(X)C Y )CM (X BH(I))B (Y ⊗M)

H(X ⊗ Y )CM X B (H(I)C (Y ⊗M))

H(X ⊗ Y ⊗M) X B ((H(I)C Y )CM)

X BH(Y ⊗M) X B (H(Y )CM).

βH(X)(Y,M) sI(X)CidY⊗M

tX(Y⊗M)−1
tX(Y )−1CidM γH(I)(X,Y⊗M)

tX⊗Y (M)−1 idXBβH(I)(Y,M)

sY⊗M (X) idXB(tI(Y )−1CidM )

idXBtI(Y⊗M)

idXBtY (M)

The upper left and lower right subdiagrams commute because (H, t) is a functor of right C-module categories
and the middle subdiagram commutes by the compatibility condition between (H, s) and (H, t). Thus the

big outer diagram commutes as well, proving the equality
∗
=. We also have

s′M (I) = γH(I)(I,M) ◦ [sI(I)C idM ] ◦ [tI(I)−1 C idM ] ◦ βH(I)(I,M)

= γH(I)(I,M) ◦ [λ−1
H(I) C idM ] ◦ [ρH(I) C idM ] ◦ βH(I)(I,M)

= γH(I)(I,M) ◦ [λ−1
H(I) C idM ]

= λH(I)CM .

This proves that (LH , s′) is a functor of left C-module categories. Naturality of t′ follows directly from
naturality of β. Also, we have

βLH(M)(X,Y ) ◦ t′M (X ⊗ Y ) = βH(I)CM (X,Y ) ◦ βH(I)(M,X ⊗ Y )

= [βH(I)(M,X)C idY ] ◦ βH(I)(M ⊗X,Y )

= [t′M (X)C idY ] ◦ t′M⊗X

for all X,Y,M ∈ C, and
t′M (I) = βH(I)(M, I) = ρ−1

H(I)CM = ρ−1
LH(M),

showing that (LH , t′) is a functor of right C-module categories. Finally, we have to show the diagram

H(I)C (X ⊗M ⊗ Y )

(H(I)C (X ⊗M))C Y X B (H(I)C (M ⊗ Y ))

(X B (H(I)CM))C Y X B ((H(I)CM)C Y )

tX⊗M (Y ) s′M⊗Y (X)

s′M (X)CidY idXBt
′
M (Y )

γH(I)CM (X,Y )

commutes for all X,Y,M ∈ C. This follows from

[idX B t
′
M (Y )] ◦ s′M⊗Y (X) = [idX B βH(I)(M,Y )] ◦ γH(I)(X,M ⊗ Y ) ◦ [sI(X)C idM⊗Y ]
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◦ [tI(X)−1 C idM⊗Y ] ◦ βH(I)(X,M ⊗ Y )

= γH(I)CM (X,Y ) ◦ [γH(I)(X,M)C idY ] ◦ βXBH(I)(M,Y )

◦ [sI(X)C idM⊗Y ] ◦ [tI(X)−1 C idM⊗Y ] ◦ βH(I)(X,M ⊗ Y )

= γH(I)CM (X,Y ) ◦ [γH(I)(X,M)C idY ] ◦ [(sI(X)C idM )C idY ]

◦ [(tI(X)−1 C idM )C idY ] ◦ βH(I)CX(M,Y ) ◦ βH(I)(X,M ⊗ Y )

= γH(I)CM (X,Y ) ◦ [γH(I)(X,M)C idY ] ◦ [(sI(X)C idM )C idY ]

◦ [(tI(X)−1 C idM )C idY ] ◦ [βH(I)(X,M)C idY ] ◦ βH(I)(X ⊗M,Y )

= γH(I)CM (X,Y ) ◦ [s′M (X)C idY ] ◦ t′X⊗M (Y ).

We will now prove the second statement in the lemma. Naturality of ϕ(H,s,t) follows directly from naturality

of tI(−), and we also know that ϕ
(H,s,t)
M is an isomorphism for each M ∈ C, so ϕ(H,s,t) : H → LH is a natural

isomorphism. To see that the diagram

H(X ⊗M) H(I)C (X ⊗M)

X BH(M) X B (H(I)CM)

ϕ
(H,s,t)
X⊗M =tI(X⊗M)

sM (X) s′M (X)

idXBϕ
(H,s,t)
M =idXBtI(M)

(2.6.10)

commutes for all X,M ∈ C, we compute

s′M (X) ◦ ϕ(H,s,t)
X⊗M

= γH(I)(X,M) ◦ [sI(X)C idM ] ◦ [tI(X)−1 C idM ] ◦ βH(I)(X,M) ◦ tI(X ⊗M)

= γH(I)(X,M) ◦ [sI(X)C idM ] ◦ tX(M) = [idX B tI(M)] ◦ sI⊗M (X)

= [idX B ϕ
(H,s,t)
M ] ◦ sM (X).

We will now show that the diagram

H(M ⊗X) H(I)C (M ⊗X)

H(M)CX (H(I)CM)CX

ϕ
(H,s,t)
M⊗X =tI(M⊗X)

tM (X) t′M (X)=βH(I)(M,X)

ϕ
(H,s,t)
M CidX=tI(M)CidX

(2.6.11)

commutes for all X,M ∈ C. This follows from

t′M (X) ◦ ϕ(H,s,t)
M⊗X = βH(I)(M,X) ◦ tI(M ⊗X) = [tI(M)C idX ] ◦ tI⊗M (X) = [ϕ

(H,s,t)
M C idX ] ◦ tM (X).

This finishes the proof of the lemma.
�

The essence of the lemma is that we can replace any bimodule functor (H, s, t) : C → C′ by the bimodule
functor (LH , s′, t′), up to a natural bimodule isomorphism. The next lemma shows that the assignment
(H, s, t) 7→ (LH , s′, t′) can be made into a functor from the category of bimodule functors C → C′ to itself.

Lemma 2.6.8 We obtain a functor T : Fun(C,C)(C, C′)→ Fun(C,C)(C, C′) by defining

T [(H, s, t)] := (LH , s′, t′)
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on the objects and by defining for σ : (H1, s
1, t1) → (H2, s

2, t2) the morphism T (σ) : (LH1
, (s1)′, (t1)′) →

(LH2
, (s2)′, (t2)′) by

T (σ)M := (t2)I(M) ◦ σM ◦ (t1)I(M)−1.

Proof. Let σ : (H1, s
1, t1)→ (H2, s

2, t2). We will first show that

T (σ) ∈ HomFun(C,C)(C,C′)((LH1
, (s1)′, (t1)′), (LH2

, (s2)′, (t2)′)). (2.6.12)

To prove naturality of T (σ) : LH1 → LH2 , let M,N ∈ C and f ∈ HomC(M,N) and consider the diagram

H1(I)CM H1(M) H2(M) H2(I)CM

H1(I)CN H1(N) H2(N) H2(I)CN.

t1I(M)−1

idH1(I)Cf

σM

H1(f)

t2I(M)

H2(f) idH2(I)Cf

t1I(N)−1
σN t2I(N)

The left and right squares commute by naturality of t, and the middle square commutes by naturality of σ.
Hence the outer rectangle commutes as well, showing naturality of T (σ). Now consider the diagrams

H1(I)C (X ⊗M) H1(X ⊗M) H2(X ⊗M) H2(I)C (X ⊗M)

X B (H1(I)CM) X BH1(M) X BH2(M) X B (H2(I)CM)

t1I(X⊗M)−1

(s1)′M (X)

σX⊗M

s1M (X)

t2I(X⊗M)

s2M (X) (s2)′M (X)

idXBt
1
I(M)−1

idXBσM idXBt
2
I(M)

and

H1(I)C (M ⊗X) H1(M ⊗X) H2(M ⊗X) H2(I)C (M ⊗X)

(H(I)CM)CX H1(M)CX H2(M)CX (H2(I)CM).

t1I(M⊗X)−1

(t1)′M (X)

σM⊗X

t1M (X)

t2I(M⊗X)

t2M (X) (t2)′M (X)

t1I(M)−1CidX σMCidX t2I(M)CidX

In both diagrams, the middle square commutes because σ is a bimodule natural transformation and the
other small squares commute by (2.6.10) and (2.6.11). Thus in both diagrams the big outer rectangles
commute as well, showing that T (σ) is a bimodule natural transformation, i.e. that we have (2.6.12).

Now suppose that σ : (H1, s
1, t1) → (H2, s

2, t2) and τ : (H2, s
2, t2) → (H3, s

3, t3). Then τ ◦ σ :
(H1, s

1, t1)→ (H3, s
3, t3) and hence

T (τ ◦ σ)M = (t3)I(M) ◦ (τ ◦ σ)M ◦ (t1)I(M)−1 = (t3)I(M) ◦ τM ◦ σM ◦ (t1)I(M)−1

= (t3)I(M) ◦ τM ◦ (t2)I(M)−1 ◦ (t2)I(M) ◦ σM ◦ (t1)I(M)−1

= T (τ)M ◦ T (σ)M = [T (τ) ◦ T (σ)]M ,

so T is indeed a functor.
�

Now that we have seen that we have a functor T : Fun(C,C)(C, C′) → Fun(C,C)(C, C′), we will show that
this functor is naturally isomorphic to the identity functor on Fun(C,C)(C, C′). Fortunately, the proof is easy
and short.
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Lemma 2.6.9 We have a natural isomorphism ϕ : idFun(C,C)(C,C′) → T of functors Fun(C,C)(C, C′) →
Fun(C,C)(C, C′), where

ϕ(H,s,t) : (H, s, t)→ T [(H, s, t)] = (LH , s′, t′)

is as defined in Lemma 2.6.7 above9.

Proof. Let (H1, s
1, t1), (H2, s

2, t2) ∈ Fun(C,C)(C, C′) and let σ ∈ HomFun(C,C)(C,C′)((H1, s
1, t1), (H2, s

2, t2)).
We must show that the square

(H1, s
1, t1) T [(H1, s

1, t1)]

(H2, s
2, t2) T [(H2, s

2, t2)]

ϕ(H1,s
1,t1)

σ T (σ)

ϕ(H2,s
2,t2)

commutes. But this follows from the fact that for each M ∈ C we have

T (σ)M ◦ ϕ(H1,s
1,t1)

M = t2I(M) ◦ σM ◦ t1I(M)−1 ◦ t1I(M) = t2I(M) ◦ σM = ϕ
(H2,s

2,t2)
M ◦ σM .

�

For future reference, we will now summarize our results in the following theorem, specialized to the case
where the C-bimodule structure is strict.

Theorem 2.6.10 Let (C,⊗, I) be a strict tensor category, also considered as a strict C-bimodule category
(C,⊗,⊗) which will be denoted by ⊗C⊗ for simplicity, and suppose that we have some structure (C,B,C) of
a strict C-bimodule category on C; we will refer to this C-bimodule category as BCC.

(1) We obtain a functor T : Fun(C,C)(
⊗C⊗,BCC)→ Fun(C,C)(

⊗C⊗,BCC) by defining

T [(H, s, t)] := (LH , s′, t′)

for (H, s, t) ∈ Fun(C,C)(
⊗C⊗,BCC), where

s′M (X) := [sI(X)C idM ] ◦ [tI(X)−1 C idM ]

t′M (X) := id

and by defining T (σ) by

T (σ)M := t2I(M) ◦ σM ◦ t1I(M)−1

for σ : (H1, s
1, t1)→ (H2, s

2, t2).
(2) We have a natural isomorphism

ϕ : idFun(C,C)(⊗C⊗,BCC) → T,

where ϕ(H,s,t) : (H, s, t)→ T [(H, s, t)] = (LH , s′, t′) is given by

ϕ
(H,s,t)
M := tI(M) : H(M)→ H(I)CM.

9Usually our convention is to write lower indices for natural transformations. However, in our computations above it was
very convenient to use an upper index for ϕ rather than a lower index, because otherwise we would have to write expressions

like
(
ϕ(H,s,t)

)
M

instead of ϕ
(H,s,t)
M .
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2.7 Linear categories

A category C is called an Ab-category (or pre-additive category) if HomC(V,W ) is an abelian group for all
V,W ∈ C and if the composition is bi-additive. We use the term ’bi-additive’ here because we will always
write the abelian groups HomC(V,W ) additively and we will denote the neutral elements in these groups
by 0.

Remark 2.7.1 Recall the definition of the disjoint union
⊔
α∈A Cα of categories {Cα}α∈A as introduced in

(2.1.1). In case all Cα are Ab-categories, we replace the empty set ∅ in the definition of the disjoint union
with {0}. This assures that the disjoint union is also an Ab-category in this case. The reader should keep
this convention in mind, especially in Chapter 4 where we will define the category ZG(C) as a disjoint union.

If V, V1, V2 ∈ C are objects in an Ab-category, then V is called a direct sum of V1 and V2, written V ∼= V1⊕V2,
if there exist morphisms fj : Vj → V and f ′j : V → Vj such that f ′j ◦ fj = idVj and f1 ◦ f ′1 + f2 ◦ f ′2 = idV ,
where j ∈ {1, 2}. Consequently, f ′j ◦ fk = 0 if j 6= k. An Ab-category C is said to have direct sums if for
any V1, V2 ∈ C there exists a direct sum V ∼= V1 ⊕ V2.

The following lemma shows that direct sums in a tensor category behave nicely with respect to duals.
The proof is a straightforward computation.

Lemma 2.7.2 Let C be a tensor category that has direct sums. Suppose that V1, V2 ∈ C have two-sided duals
(V1, b1, d1, b

′
1, d
′
1) and (V2, b2, d2, b

′
2, d
′
2), respectively, and let V ∼= V1 ⊕ V2 and V ∼= V1 ⊕ V2 be direct sums

implemented by morphisms fj ∈ HomC(Vj , V ), f ′j ∈ HomC(V, Vj) and gj ∈ HomC(Vj , V ), g′j ∈ HomC(V , Vj),

respectively. Then (V , b, d, b′, d′) is a two-sided dual for V with

b = [f1 ⊗ g1] ◦ b1 + [f2 ⊗ g2] ◦ b2
d = d1 ◦ [g1 ⊗ f1] + d2 ◦ [g2 ⊗ f2]

b′ = [g1 ⊗ f1] ◦ b′1 + [g2 ⊗ f2] ◦ b′2
d′ = d′1 ◦ [f1 ⊗ g1] + d′2 ◦ [f2 ⊗ g2].

If F is a field, then a category C is called F-linear if HomC(V,W ) is an F-vector space for all V,W ∈ C and
if the composition is F-bilinear. If V is an object in an F-linear category C then V is called irreducible if
EndC(V ) = F · idV . Note that if I is irreducible and C is spherical, then the dimension d(V ) ∈ EndC(I) =
F · idI of any object can be considered as an element in F. An F-linear category is called rational if it has
finitely many isomorphism classes of irreducible objects.

Definition 2.7.3 An F-linear category C is called semisimple if
• it has direct sums;
• idempotents split10;
• any object is a finite direct sum of irreducible objects.

Definition 2.7.4 An F-linear tensor category11 C is called a fusion category (over the field F) if
• it is semisimple;
• it is rational;
• every object has a two-sided dual;
• HomC(V,W ) is finite-dimensional for every V,W ∈ C;
• its unit object is irreducible.

10A category is said to have split idempotents if for any idempotent p ∈ EndC(V ) in the category C there exists an object
U ∈ C together with morphisms i : U → V and r : V → U with r ◦ i = idU and p = i ◦ r. In Subsection 2.7.4 we will consider
this concept in detail.

11This means that C is a F-linear category that is also a tensor category, satisfying the additional property that the tensor
product is F-bilinear on the morphisms.
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If C is a fusion category over the field F and if X ∈ C is irreducible, then we can define the square dimension
d2(X) of X by

d2(X) := dL(X) · dR(X) = (d′X ◦ bX) · (dX ◦ b′X).

It is easily checked that the square dimension of an irreducible object is independent of the choice of the
two-sided dual and is therefore well-defined. If two irreducible objects are isomorphic, then their square
dimensions are equal. Thus for each fusion category C we can define its dimension by

dim(C) :=
∑
i

d2(Xi),

where {Xi}i is a complete set of representatives of isomorphism classes of irreducible objects of C. In case C is
a spherical fusion category and X ∈ C is irreducible, we have d2(X) = d(X)2 and hence dim(C) =

∑
i d(Xi)

2.
A braided fusion category (over a field F) that is a ribbon category is called a pre-modular tensor category.

If C is a pre-modular category and if V,W ∈ C, then we define

S(V,W ) := [dV ⊗ d′W ] ◦ [idV ⊗ c
M
V,W ⊗ idW ] ◦ [b′V ⊗ bW ],

which is an element in EndC(I) = F · idI that only depends on the equivalence classes of V and W . If {Vi}i is
a complete set of representatives of equivalence classes of irreducible objects in C, then we define the matrix
Sij := S(Vi, Vj). If this matrix is invertible, then C is called a modular tensor category. It can be shown
that a pre-modular tensor category is modular if and only if its only degenerate objects are isomorphic to
I⊕n for some n.

2.7.1 ∗-categories

Definition 2.7.5 Let C be a C-linear category. Then a positive ∗-operation on C is a family of conjugate-
linear maps {∗ : HomC(V,W )→ HomC(W,V )}V,W∈C , denoted by f 7→ f∗, satisfying
• f∗∗ := (f∗)∗ = f for any f ∈ HomC(V,W ) and V,W ∈ C;
• (g ◦ f)∗ = f∗ ◦ g∗ for any composable f, g ∈ Hom(C);
• f∗ ◦ f = 0 implies f = 0 if f ∈ Hom(C).

A category equipped with a positive ∗-operation is called a ∗-category.

Let C be a ∗-category and let f ∈ HomC(V,W ) with V,W ∈ C. Then f is called an isometry if f∗ ◦ f = idV ,
f is called a co-isometry if f ◦ f∗ = idW and f is called unitary if it is both an isometry and a co-isometry.
In case V = W , then f is called self-adjoint if f = f∗ and f is called a projection if f = f∗ = f2. A
∗-category C is said to have subobjects if for any V ∈ C and any projection p ∈ EndC(V ) there exists a
U ∈ C together with an isometry u ∈ HomC(U, V ) such that u ◦ u∗ = p. Direct sums in ∗-categories are
defined in the same way as in the more general F-linear categories, except that we now demand that the fj
are isometries uj and that f ′j is replaced by u∗j . We say that a ∗-category has direct sums if for every two
objects V1 and V2 there exists a direct sum V ∼= V1 ⊕ V2.

If V is an irreducible object in a ∗-category C, then for any W ∈ C the vector space HomC(V,W ) is an
inner product space with inner product defined by 〈f, g〉 · idV = g∗ ◦ f .

A tensor category C that is also a ∗-category is called a tensor ∗-category if (f ⊗ g)∗ = f∗ ⊗ g∗ for all
f, g ∈ Hom(C). If V is an object in a tensor ∗-category and if (W, b, d) is a left dual of V , then (W,d∗, b∗) is
a right dual of V ; similarly, if (W, b′, d′) is a right dual of V , then (W,d′

∗
, b′
∗
) is a left dual of V . Thus, any

one-sided duality in a tensor ∗-category is automatically a two-sided duality. For this reason, the notion of
duality is defined somewhat more symmetrically in a tensor ∗-category:

Definition 2.7.6 Let C be a tensor ∗-category and let V ∈ C. Then a conjugate of V is a triple (V , r, r),
where V ∈ C and r : I → V ⊗ V and r : I → V ⊗ V are morphisms satisfying

[idV ⊗ r∗] ◦ [r ⊗ idV ] = idV
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[idV ⊗ r
∗] ◦ [r ⊗ idV ] = idV .

We say that C has conjugates if every object has a conjugate.

The following lemma demonstrates that conjugates are uniquely determined up to isomorphism. This result
will be important to us later.

Lemma 2.7.7 Let C be a tensor ∗-category and let (W1, r1, r1) be a conjugate for V ∈ C.
(1) If W2 ∈ C and f : W1 → W2 is an isomorphism, then (W2, r2, r2) is also a conjugate for V , where

r2 := [f ⊗ idV ] ◦ r1 and r2 := [idV ⊗ (f−1)∗] ◦ r1.
(2) If (W2, r2, r2) is a conjugate for V , then there exists an isomorphism f : W1 → W2 such that r2 :=

[f ⊗ idV ] ◦ r1 and r2 := [idV ⊗ (f−1)∗] ◦ r1.
In fact, (W2, f) 7→ (W2, [f ⊗ idV ] ◦ r1, [idV ⊗ (f−1)∗] ◦ r1) is a bijection with inverse given by (W2, r2, r2) 7→
(W2, [r

∗
1 ⊗ idV ] ◦ [idW1

⊗ r2]).

Proof. The proof of part (1) is a straightforward computation. For part (2) we note that f : W1 → W2

is defined by f := [r∗1 ⊗ idV ] ◦ [idW1
⊗ r2], which is indeed an isomorphism with inverse given by f−1 =

[idW1
⊗ r∗2] ◦ [r1 ⊗ idW2

]. Indeed,

r2 = [idW2 ⊗ r∗1 ⊗ idV ] ◦ [idW2⊗V ⊗ r1] ◦ r2 = [idW2 ⊗ r∗1 ⊗ idV ] ◦ [r2 ⊗ idW1⊗V ] ◦ r1

= [f ⊗ idV ] ◦ r1

r2 = [idV ⊗ r∗1 ⊗ idW2 ] ◦ [r1 ⊗ idV⊗W2 ] ◦ r2 = [idV ⊗ r∗1 ⊗ idW2 ] ◦ [idV⊗W1 ⊗ r2] ◦ r1

= [idV ⊗ (f−1)∗].

�

We now introduce a class of categories that is extremely important in algebraic quantum field theory,
because the category of the so-called DHR endomorphisms of a quantum field theory belongs automatically
to this class.

Definition 2.7.8 A tensor ∗-category is called a TC∗ if
• it has direct sums, subobjects and conjugates;
• HomC(V,W ) is finite-dimensional for all V,W ∈ C;
• its unit object is irreducible.

A TC∗ will be called a BTC∗ if it has a unitary braiding and a BTC∗ is called an STC∗ if the braiding is
a symmetry.

We mention that a TC∗ is automatically semisimple. Consequently, a rational (B)TC∗ is a (braided) fusion
category.

2.7.2 Completion with respect to direct sums

We now wish to extend an Ab-category in such a way that it has direct sums. To motivate this exten-
sion, we first make the following observation. Suppose that C is an Ab-category and that we are given
a direct sum V ∼= V1 ⊕ V2 with corresponding morphisms fj and f ′j . If U ∈ C then we will write
HomC(U, V1) ⊕ HomC(U, V2) to denote the direct product of the two groups HomC(U, Vj), i.e. the set
of elements in HomC(U, V1)× HomC(U, V2) with componentwise addition. Similarly, if W ∈ C then we also
define HomC(V1,W )⊕HomC(V2,W ). Now fix some U,W ∈ C. Then it is easy to check that the assignment

HomC(U, V )→ HomC(U, V1)⊕HomC(U, V2)

g 7→ (f ′1 ◦ g, f ′2 ◦ g)
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is an additive bijection with inverse given by (g1, g2) 7→ f1 ◦ g1 + f2 ◦ g2. Similarly, the assignment

HomC(V,W )→ HomC(V1,W )⊕HomC(V2,W )

h 7→ (h ◦ f1, h ◦ f2)

is also an additive bijection with inverse given by (h1, h2) 7→ h1 ◦ f ′1 + h2 ◦ f ′2.

V1

U V W

V2 .

f1
h1

g

g1

g2

f ′1

f ′2

h

f2
h2

These two bijections show how the morphisms to and from a direct sum V ∼= V1 ⊕ V2 are related to the
morphisms to and from V1 and V2. This will now be used to extend an Ab-category in such a way that it
has direct sums.

Let C be an Ab-category. We then define a new category C⊕ as follows. The objects of C⊕ are finite
sequences of objects in C, i.e. Obj(C⊕) = {(U1, . . . , Un) ∈ C×n, n ∈ Z≥1}. The morphisms in C⊕ are
matrices with entries that are morphisms in C. More precisely, if (U1, . . . , Ul), (V1, . . . , Vm) ∈ C⊕ then we
define

HomC⊕((U1, . . . , Ul), (V1, . . . , Vm)) = {F = (Fij) : Fij ∈ HomC(Uj , Vi)},

where of course 1 ≤ i ≤ m and 1 ≤ j ≤ l, so F is an m× l-matrix. If F ∈ HomC⊕((U1, . . . , Ul), (V1, . . . , Vm))
and G ∈ HomC⊕((V1, . . . , Vm), (W1, . . . ,Wn)), then we define the composition G ◦ F by

(G ◦ F )ij :=

m∑
k=1

Gik ◦ Fkj .

Because both ◦ and matrix multiplication are associative, the composition in C⊕ is associative. If (U1, . . . , Ul) ∈
C⊕ then we define id(U1,...,Ul) to be the diagonal matrix

id(U1,...,Ul) = diag(idU1 , . . . , idUl),

which obviously serves as the identity morphism of (U1, . . . , Ul). Thus C⊕ is a category and we can identify
C with the full subcategory of C⊕ determined by the objects that are 1-tuples. It is clear that C⊕ is again an
Ab-category with addition of morphisms defined by matrix addition. We will now show that C⊕ has direct
sums. Let U = (U1, . . . , Ul), V = (V1, . . . , Vm) ∈ C⊕ and consider W := (U1, . . . , Ul, V1, . . . , Vm) ∈ C⊕. We
then define morphisms F ∈ HomC⊕(U,W ), F ′ ∈ HomC⊕(W,U), G ∈ HomC⊕(V,W ) and G′ ∈ HomC⊕(W,V )
by

F :=

(
id(U1,...,Ul)

0m×l

)
, F ′ :=

(
id(U1,...,Ul) 0l×m

)
, G :=

(
0l×m

id(V1,...,Vm)

)
, G′ :=

(
0m×l id(V1,...,Vm)

)
.

Then F ′ ◦ F = id(U1,...,Ul), G
′ ◦G = id(V1,...,Vm) and

F ◦ F ′ +G ◦G′ =

(
id(U1,...,Ul) 0l×m

0m×l 0m×m

)
+

(
0l×l 0l×m
0m×l id(V1,...,Vm)

)
= idW ,

showing that these morphisms make W into a direct sum of U and V . Thus C⊕ indeed has direct sums.
Note that we can now interpret any object U = (U1, . . . , Ul) ∈ C⊕ as a direct sum U ∼= U1 ⊕ . . .⊕ Ul of the
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Uj ∈ C. It is clear that if C is F-linear, then so is C⊕. In case C is a strict tensor category, C⊕ can be made
into a strict tensor category as follows. On the objects we define

(U1, . . . , Ul)⊗ (V1, . . . , Vm) = (U1 ⊗ V1, . . . , U1 ⊗ Vm, U2 ⊗ V1, . . . , Ul ⊗ Vm),

i.e. we use the lexicographic ordering of the indices i and j in order to determine the order of the Ui ⊗ Vj .
We can rewrite this equation as

((U1, . . . , Ul)⊗ (V1, . . . , Vm))(i,j) = Ui ⊗ Vj ,

where the set of double indices (i, j) is ordered (so the left-hand side describes a well-defined object of C⊕,
i.e. it describes an ordered l×m-tuple of objects in C). Now let F ∈ HomC⊕((U1, . . . , Ul), (U

′
1, . . . , U

′
l′)) and

G ∈ HomC⊕((V1, . . . , Vm), (V ′1 , . . . , V
′
m′)). Then we define their tensor product by

(F ⊗G)(i′,j′),(i,j) = Fi′i ⊗Gj′j .

The unit object is simply the 1-tuple (I). If C also has a ∗-operation making it a tensor ∗-category, we can
define a ∗-operation on C⊕ by (F ∗)ij := F ∗ji. In this way C⊕ also becomes a tensor ∗-category.

2.7.3 The enriched product of linear categories

Let C and D be F-linear categories. We then define an F-linear category C �0 D as follows. Its objects are
pairs (V,W ) ∈ C × D, denoted by V �W , and the morphisms are given by

HomC�0D(V �W,V ′ �W ′) := HomC(V, V
′)�HomD(W,W ′), (2.7.1)

where � on the right-hand side is the tensor product of vector spaces.
Before we define the composition (and later also the tensor product in case C and D are tensor categories)

in C�0D, it is good to briefly recall the definition of a tensor product of vector spaces. If (V1, . . . , Vn) is an
ordered n-tuple of F-linear vector spaces, then a tensor product of (V1, . . . , Vn) is a pair (V, ϕ) consisting of
an F-linear vector space V together with a multilinear map ϕ : V1× . . .×Vn → V such that for any F-linear
vector space X and any multilinear map T : V1× . . .×Vn → X there exists a unique linear map T ′ : V → X
such that T = T ′ ◦ ϕ, i.e. any multilinear map from V1 × . . .× Vn factors uniquely through V .

V1 × . . .× Vn X

V

T

ϕ T ′

It can be shown that tensor products exist and are unique up to isomorphism. Once some tensor product
(V, ϕ) has been chosen, it is convenient to denote the vector space V by V1 ⊗ . . . ⊗ Vn and to write v1 ⊗
. . .⊗ vn := ϕ(v1, . . . , vn) when vj ∈ Vj . The vector space V1⊗ . . .⊗Vn is spanned by the vectors of the form
v1 ⊗ . . . ⊗ vn (these vectors are often called homogeneous). If all Vj are finite-dimensional and if for each

j we choose a basis (e
(j)
α )

dim(Vj)
α=1 for Vj , then the vectors e

(1)
α1 ⊗ . . .⊗ e

(n)
αn form a basis for V1 ⊗ . . .⊗ Vn. In

particular, dim(V1 ⊗ . . .⊗ Vn) = dim(V1) dim(V2) . . . dim(Vn).
The composition in the category C �0 D is now defined by

(f2 � g2) ◦ (f1 � g1) := (f2 ◦ f1)� (g2 ◦ g1)

on homogeneous elements and this definition is then extended by linearity to arbitrary elements. This
composition is associative and for any V �W ∈ C �0 D the morphism idV � idW is the identity morphism
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idV�W , so C�0 C is a category that is obviously F-linear. Note that an object in this category is irreducible
if and only if it is of the form V �W with both V and W irreducible.

If C and D are F-linear strict tensor categories, then we can define a tensor product

(V1 �W1)⊗ (V2 �W2) := (V1 ⊗ V2)� (W1 ⊗W2)

on the objects of C �0 D and similarly on the morphisms. This makes C �0 D into a strict tensor category
with unit object I = IC � ID. Completing this category with respect to direct sums, we obtain a new
category

C �D := (C �0 D)⊕,

which will be called12 the enriched product of C and D from now on. Many authors call C �D the Deligne
product of C and D, but we will not use this terminology.

2.7.4 Splitting idempotents and the Karoubi envelope

Let C be a category and let V ∈ C. If there exists a U ∈ C together with morphisms i : U → V and
r : V → U satisfying r ◦ i = idU , then the triple (U, i, r) is called a retract of V . Note that i ◦ r ∈ EndC(V )
is automatically an idempotent, since (i ◦ r) ◦ (i ◦ r) = i ◦ (r ◦ i) ◦ r = i ◦ r. Not every idempotent in a
category comes necessarily from a retract in this way, but when it does we will give it a special name:

Definition 2.7.9 If C is a category, if V ∈ C and if f ∈ EndC(V ), then f is called a split idempotent if
there exists a retract (U, i, r) of V with f = i◦r. A category in which each idempotent is a split idempotent
is said to have splitting idempotents or is called a Karoubian category.

Now suppose that C is a Karoubian tensor category, let p ∈ EndC(V ) be an idempotent and let (U, i, r) be
a retract corresponding to p. The following lemma demonstrates that if V has a left or right dual, then so
has U . The proof is a straighforward computation.

Lemma 2.7.10 Let C be a Karoubian tensor category, let (W, b, d, b′, d′) be a two-sided dual for V ∈ C and
let (U, i, r) be a retract of V corresponding to some idempotent p ∈ EndC(V ). If (W1, i1, r1) and (W2, i2, r2)
are retracts of W corresponding to the idempotents

p1 = [d⊗ idW ] ◦ [idW ⊗ p⊗ idW ] ◦ [idW ⊗ b] ∈ EndC(W )

p2 = [idW ⊗ d′] ◦ [idW ⊗ p⊗ idW ] ◦ [b′ ⊗ idW ] ∈ EndC(W ),

respectively, then (W1, b, d) is a left dual for U and (W2, b
′, d′) is a right dual for U with

b = [r ⊗ r1] ◦ b
d = d ◦ [i1 ⊗ i]
b′ = [r2 ⊗ r] ◦ b′

d′ = d′ ◦ [i⊗ i2].

If p1 = p2 then we can choose (W1, i1, r1) = (W2, i2, r2) ≡ (W, i, r) and in that case (W, b, d, b′, d′) is a
two-sided dual for U .

There is a canonical way to make a category Karoubian. If C is a category, then we define its Karoubi
envelope C to be the category with objects given by

Obj(C) = {(V, e) : V ∈ C, e ∈ EndC(V ), e ◦ e = e},
12More precisely, one should call this the product of C and D enriched over the category of F-vector spaces. However, since

we will not be considering any other types of enriched products, there will be no confusion. See also [53] for more details.
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with morphisms given by

HomC((V1, e1), (V2, e2)) = {f ∈ HomC(V1, V2) : e2 ◦ f = f = f ◦ e1}
= {f ∈ HomC(V1, V2) : f = e2 ◦ f ◦ e1}
= e2 ◦HomC(V1, V2) ◦ e1.

and with composition given by the composition in C. To see that g ◦ f ∈ HomC((V1, e1), (V3, e3)) whenever
f ∈ HomC((V1, e1), (V2, e2)) and g ∈ HomC((V2, e2), (V3, e3)), we notice that

e3 ◦ (g ◦ f) ◦ e1 = e3 ◦ (e3 ◦ g ◦ e2) ◦ (e2 ◦ f ◦ e1) ◦ e1 = (e3 ◦ g ◦ e2) ◦ (e2 ◦ f ◦ e1) = g ◦ f.

The identity morphism on (V, e) is id(V,e) = e. It is straightforward to check that C has splitting idempotents.

In fact, if (V, e) ∈ C and if p ∈ EndC((V, e)) is an idempotent, then ((V, p), p, p) is a retract of (V, e) that
splits the idempotent p. The functor IK : C → C defined by IK(V ) = (V, idV ) and IK(f) = f is fully
faithful and is also injective on the objects.

In case C is a strict tensor category, the Karoubi envelope can also be equipped with the structure of a
strict tensor category. Namely, if (V1, e1), (V2, e2) ∈ C, then we define

(V1, e1)⊗(V2, e2) := (V1 ⊗ V2, e1 ⊗ e2),

where we have used that (e1⊗e2)2 = e1
2⊗e2

2 = e1⊗e2 by the interchange law. On the morphisms we simply
define f1⊗f2 := f1⊗f2 for f1, f2 ∈ Hom(C). To see that f1⊗f2 ∈ HomC((V1⊗V2, e1⊗e2), (V ′1⊗V ′2 , e′1⊗e′2))
whenever fj ∈ HomC((Vj , ej), (V

′
j , e
′
j)) for j ∈ {1, 2}, we note that

[f1 ⊗ f2] ◦ [e1 ⊗ e2] = [f1 ◦ e1]⊗ [f2 ◦ e2] = f1 ⊗ f2

[e′1 ⊗ e′2] ◦ [f1 ⊗ f2] = [e′1 ◦ f1]⊗ [e′2 ◦ f2] = f1 ⊗ f2.

Finally, if we define I := (I, idI), then for any (V, e) ∈ C we have I⊗(V, e) = (V, e) = (V, e)⊗I, and for any
f ∈ Hom(C) we obviously have idI⊗f = f = f⊗idI . Thus C is indeed a strict tensor category. Also, the
functor IK : C → C defined above is a strict tensor functor.

Now let (V, e) ∈ C and suppose that (V ∨, bV , dV ) is a left dual for V ∈ C. We can then make (V ∨, e∨) ∈ C
into a left dual for (V, e) as follows. We define b(V,e) ∈ HomC(I, V ⊗ V ∨) and d(V,e) ∈ HomC(V

∨ ⊗ V, I) by

b(V,e) = [e⊗ idV ∨ ] ◦ bV
d(V,e) = dV ◦ [idV ∨ ⊗ e].

These morphisms satisfy

[e⊗ e∨] ◦ b(V,e) = [e⊗ e∨] ◦ [e⊗ idV ∨ ] ◦ bV = [e⊗ e∨] ◦ bV = [e2 ⊗ idV ∨ ] ◦ bV = b(V,e)

d(V,e) ◦ [e∨ ⊗ e] = dV ◦ [idV ∨ ⊗ e] ◦ [e∨ ⊗ e] = dV ◦ [e∨ ⊗ e] = dV ◦ [idV ∨ ⊗ e2] = d(V,e)

and of course b(V,e) ◦ idI = b(V,e) and idI ◦ d(V,e) = d(V,e), which means that b(V,e) ∈ HomC((I, idI), (V ⊗
V ∨, e⊗ e∨)) and d(V,e) ∈ HomC((V

∨ ⊗ V, e∨ ⊗ e), (I, idI)). Also,

[d(V,e)⊗id(V ∨,e∨)]◦[id(V ∨,e∨)⊗b(V,e)] = [dV ⊗ e∨] ◦ [idV ∨ ⊗ e2 ⊗ idV ∨ ] ◦ [e∨ ⊗ bV ]

= e∨ ◦ [dV ⊗ idV ∨ ] ◦ [idV ∨ ⊗ e⊗ idV ∨ ] ◦ [idV ∨ ⊗ bV ] ◦ e∨

= (e∨)3 = e∨ = id(V ∨,e∨)

[id(V,e)⊗d(V,e)]◦[b(V,e)⊗id(V,e)] = [e⊗ dV ] ◦ [idV⊗V ∨ ⊗ e] ◦ [e⊗ idV ∨⊗V ] ◦ [bV ⊗ e]
= e2 ◦ [idV ⊗ dV ] ◦ [bV ⊗ idV ] ◦ e2 = e4 = e = id(V,e),



2.8. GROUP ACTIONS ON TENSOR CATEGORIES 45

so we conclude that ((V ∨, e∨), b(V,e), d(V,e)) is a left dual for (V, e). Thus, if C has left duals, then C also
has left duals. The same statement is also true for right duals. Namely, if (∨V, b′V , d

′
V ) is a right dual

for V ∈ C, then ((∨V, ∨e), b′(V,e), d
′
(V,e)) is a right dual for (V, e) ∈ C, where b′(V,e) := [id∨V ⊗ e] ◦ b′V and

d′(V,e) := d′V ◦ [e⊗ id∨V ]. The proof goes almost the same as for left duals.

Let C be an Ab-category that has direct sums and let (V1, p1), (V2, p2) ∈ C. Because C has direct sums,
there exists an object V ∈ C together with morphisms fj ∈ HomC(Vj , V ) and f ′j ∈ HomC(V, Vj) such

that f ′j ◦ fj = idUj and f1 ◦ f ′1 + f2 ◦ f ′2 = idV for j ∈ {1, 2}. Define f j := fj ◦ pj , f
′
j := pj ◦ f ′j and

p := f1 ◦p1 ◦f ′1 +f2 ◦p2 ◦f ′2. Then p2 = p, so (V, p) ∈ C, and we also have p◦f j ◦pj = f j and pj ◦f
′
j ◦p = f

′
j ,

i.e. f j ∈ HomC((Vj , pj), (V, p)) and f
′
j ∈ HomC((V, p), (Vj , pj)). It is a straightforward computation to show

that (V, p) is a direct sum (V, p) ∼= (V1, p1) ⊕ (V2, p2) implemented by the morphisms f j and f
′
j . Thus we

conclude that if C has direct sums, then so has C.
Now suppose that C is a ∗-category. Then the objects of C are also defined to be pairs (V, p) as above,

but we also require that p∗ = p (i.e. that p is a projection rather than just an idempotent). Then C also
becomes a ∗-category, where we define the ∗-operation to be the same as in C.

2.8 Group actions on tensor categories

If G is a group, let G be the category with Obj(G) = G, with EndG(q) = {idq} for q ∈ G and with
HomG(q, r) = ∅ if q, r ∈ G with q 6= r. It becomes a strict tensor category with tensor product q ⊗ r = qr
and idq ⊗ idr = idqr and with unit object e.

Definition 2.8.1 If G is a group, then a G-action on a tensor category (C,⊗, I, a, l, r) is a tensor functor
(F, εF , δF ) : G → Aut⊗(C). A tensor category that is equipped with a G-action is called a G-category.

Since the objects of Aut⊗(C) are again tensor functors, the functor F assigns to each object q ∈ G a triple
(Fq, ε

Fq , δFq ), which we will simply denote by (Fq, ε
q, δq). In the following two remarks we will unfold the

definition of a G-action in great detail, mainly in order to introduce the notation.

Remark 2.8.2 Let q ∈ G be fixed. The fact that (Fq, ε
q, δq) is a tensor functor means that

• Fq : C → C is a functor.
• δq : ⊗ ◦ (Fq × Fq)→ Fq ◦ ⊗ is a natural isomorphism of functors C × C → C, i.e. a family

{δqU,V : Fq(U)⊗ Fq(V )→ Fq(U ⊗ V )}U,V ∈C
of isomorphisms in C such that the following square commutes

Fq(U)⊗ Fq(V ) Fq(U ⊗ V )

Fq(U
′)⊗ Fq(V ′) Fq(U

′ ⊗ V ′)

δqU,V

Fq(f)⊗Fq(g) Fq(f⊗g)
δq
U′,V ′

for any objects U, V, U ′, V ′ ∈ C and morphisms f ∈ HomC(U,U
′) and g ∈ HomC(V, V

′), satisfying the
additional property that the diagram

(Fq(U)⊗ Fq(V ))⊗ Fq(W ) Fq(U)⊗ (Fq(V )⊗ Fq(W ))

Fq(U ⊗ V )⊗ Fq(W ) Fq(U)⊗ Fq(V ⊗W )

Fq((U ⊗ V )⊗W ) Fq(U ⊗ (V ⊗W ))

aFq(U),Fq(V ),Fq(W )

δqU,V ⊗idFq(W ) idFq(U)⊗δqV,W

δqU⊗V,W δqU,V⊗W

Fq(aU,V,W )

(2.8.1)
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commutes any U, V,W ∈ C. In case C is a strict tensor category, this diagram reduces to

Fq(U)⊗ Fq(V )⊗ Fq(W ) Fq(U)⊗ Fq(V ⊗W )

Fq(U ⊗ V )⊗ Fq(W ) Fq(U ⊗ V ⊗W ).

idFq(U)⊗δqV,W

δqU,V ⊗idFq(W ) δqU,V⊗W

δqU⊗V,W

• εq : I → Fq(I) is an isomorphism such that the diagrams

I ⊗ Fq(U) Fq(U)

Fq(I)⊗ Fq(U) Fq(I ⊗ U)

lFq(U)

εq⊗idFq(U)

δqI,U

Fq(lU ) and

Fq(U)⊗ I Fq(U)

Fq(U)⊗ Fq(I) Fq(U ⊗ I)

rFq(U)

idFq(U)⊗εq

δqU,I

Fq(rU )

commute for all U ∈ C. In case C is a strict tensor category, these diagrams become the identities

δqI,U ◦ (εq ⊗ idFq(U)) = idFq(U)

δqU,I ◦ (idFq(U) ⊗ εq) = idFq(U)

which hold for all U ∈ C.

Remark 2.8.3 The fact that (F, εF , δF ) is a tensor functor means that
• F : G → Aut⊗(C) is a functor. Note that the functor F is quite trivial on the morphisms since the

only morphisms in the category G are the identity morphisms.
• δF : ⊗Aut⊗(C) ◦ (F × F ) → F ◦ ⊗G is a natural13 isomorphism of functors G × G → Aut⊗(C), i.e. a

family
{δFq,r : (Fq ◦ Fr, εq � εr, δq � δr)→ (Fqr, ε

qr, δqr)}q,r∈G
of isomorphisms in the category Aut⊗(C). Thus each δFq,r is in fact a family

{(δFq,r)V : (Fq ◦ Fr)(V )→ Fqr(V )}V ∈C

of isomorphisms in C such that the following square commutes

(Fq ◦ Fr)(V ) Fqr(V )

(Fq ◦ Fr)(V ′) Fqr(V
′)

(δFq,r)V

(Fq◦Fr)(f) Fqr(f)

(δFq,r)V ′

for all V, V ′ ∈ C and f ∈ HomC(V, V
′), and such that the diagrams

Fq(Fr(I))

I

Fqr(I)

(δFq,r)I

Fq(ε
r)◦εq

εqr

13The naturality gives no extra conditions here because G is discrete.



2.8. GROUP ACTIONS ON TENSOR CATEGORIES 47

and

Fq(Fr(U))⊗ Fq(Fr(V )) Fq(Fr(U ⊗ V ))

Fqr(U)⊗ Fqr(V ) Fqr(U ⊗ V )

Fq(δ
r
U,V )◦δq

Fr(U),Fr(V )

(δFq,r)U⊗(δFq,r)V (δFq,r)U⊗V

δqrU,V

commute. The δFq,r are required to satisfy the additional property that the square

(Fq ◦ Fr ◦ Fs)(V ) (Fq ◦ Frs)(V )

(Fqr ◦ Fs)(V ) (Fqrs)(V )

Fq((δFr,s)V )

(δFq,r)Fs(V ) (δFq,rs)V

(δFqr,s)V

commutes for all V ∈ C and q, r, s ∈ G.
• εF : idC → Fe is an isomorphism in the category Aut⊗(C), i.e. a family

{εFV : V → Fe(V )}V ∈C

of isomorphisms such that the following square commutes

V Fe(V )

V ′ Fe(V
′)

εFV

f Fe(f)

εF
V ′

for all V, V ′ ∈ C and f ∈ HomC(V, V
′) and because it is also a tensor natural isomorphism, it must

also satisfy the equalities

εFI = εe

εFU⊗V = δeU,V ◦ [εFU ⊗ εFV ].

Also, εF satisfies the additional property that

idFq(V ) = (idFq )V = (δFe,q)V ◦ εFFq(V )

idFq(V ) = (idFq )V = (δFq,e)V ◦ Fq(εFV )

for all V ∈ C, where idFq denotes the identity natural tensor isomorphism from Fq to itself.

Definition 2.8.4 A G-action F on a strict tensor category (C,⊗, I) is called strict if

• Fq(V ⊗W ) = Fq(V )⊗ Fq(W ) and Fq(I) = I for all q ∈ G and V,W ∈ C;
• Fqr = Fq ◦ Fr for all q, r ∈ G and Fe = idC ;
• for all q, r ∈ G and V,W ∈ C we have εFV = idV = idFe(V ), (δFq,r)V = idFq(Fr(V )) = idFqr(V ),
εq = idI = idFq(I) and δqV,W = idFq(V )⊗Fq(W ) = idFq(V⊗W ).

A strict tensor category with a strict G-action is called a strict G-category.
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If C is a strict tensor category with a strict G-action F , then we define the fixpoint subcategory CG of C as
follows. The objects of CG are the objects V ∈ C for which Fq(V ) = V for all q ∈ G and the morphisms
from V ∈ CG to W ∈ CG are the morphisms in f in HomC(V,W ) for which Fq(f) = f for all q ∈ G. Thus

Obj(CG) := {V ∈ C : Fq(V ) = V for all q ∈ G}
HomCG(V,W ) := {f ∈ HomC(V,W ) : Fq(f) = f for all q ∈ G}

It follows from functoriality of Fq for each q ∈ G that CG is a subcategory of C. Because each Fq is a tensor
functor, it is also easy to see that CG is a tensor subcategory of C.

2.8.1 G-functors and natural G-transformations

We will now consider the extra conditions that a tensor functor between G-categories has to satisfy in order
to respect the G-actions of both categories.

Definition 2.8.5 Let G be a group and let (C,⊗, I, a, l, r) and (C′,⊗′, I ′, a′, l′, r′) be tensor categories with
G-actions F and F ′, respectively. Then a G-functor from C to C′ is a tensor functor (K, εK , δK) from C to
C′ together with a natural isomorphism ξK(q) : K ◦ Fq → F ′q ◦K for each q ∈ G, i.e. a family

{ξK(q)X : K(Fq(X))→ F ′q(K(X))}X∈C

of isomorphism in C′ such that for any X,Y ∈ C and f ∈ HomC(X,Y ) the diagram

K(Fq(X)) F ′q(K(X))

K(Fq(Y )) F ′q(K(Y ))

ξK(q)X

K(Fq(f)) F ′q(K(f))

ξK(q)Y

commutes, satisfying the following additional properties:

• for each X ∈ C and q, r ∈ G the diagram

K(Fq(Fr(X))) F ′q(K(Fr(X))) F ′q(F
′
r(K(X)))

K(Fqr(X)) F ′qr(K(X))

ξK(q)Fr(X)

K((δFq,r)X)

F ′q(ξ
K(r)X)

(δF
′

q,r)K(X)

ξK(qr)X

commutes;
• for each X ∈ C the diagram

K(X)

K(Fe(X)) F ′e(K(X))

εF
′

K(X)
K(εFX)

ξK(e)X

commutes;
• for any X,Y ∈ C and q ∈ G the diagram
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K(Fq(X ⊗ Y )) K(Fq(X)⊗ Fq(Y )) K(Fq(X))⊗′ K(Fq(Y ))

F ′q(K(X ⊗ Y )) F ′q(K(X)⊗′ K(Y )) F ′q(K(X))⊗′ F ′q(K(Y ))

ξK(q)X⊗Y

K(δ
Fq
X,Y ) δKFq(X),Fq(Y )

ξK(q)X⊗′ξK(q)Y

F ′q(δ
K
X,Y ) δ

F ′q
K(X),K(Y )

commutes.

Let (K, εK , δK , ξK) : C → C′ and (L, εL, δL, ξL) : C′ → C′′ be two G-functors. We have already seen that
the functor L ◦K can be equipped with the structure of a tensor functor. In addition, it also becomes a
G-functor by using the composition

L(K(Fq(X))) L(F ′q(K(X))) F ′′q (L(K(X)))
L(ξK(q)X) ξL(q)K(X)

for q ∈ G and X ∈ C. Thus we conclude that the composition of two G-functors can again be equipped
with the structure of a G-functor.

Definition 2.8.6 Let G be a group and let (C,⊗, I, a, l, r) and (C′,⊗′, I ′, a′, l′, r′) be tensor categories
with G-actions F and F ′, respectively. If (K, εK , δK , ξK) and (L, εL, δL, ξL) are G-functors from C to C′
then a natural G-transformation ϕ : (K, εK , δK , ξK) → (L, εL, δL, ξL) is a natural tensor transformation
ϕ : (K, εK , δK)→ (L, εL, δL) such that for each X ∈ C and q ∈ G the diagram

K(Fq(X)) L(Fq(X))

F ′q(K(X)) F ′q(L(X))

ϕFq(X)

ξK(q)X ξL(q)X

F ′q(ϕX)

commutes.

Now that we have introduced G-functors and natural G-transformations, we can use these notions to define
an equivalence between G-categories.

Definition 2.8.7 Let G be a group and let (C,⊗, I, a, l, r) and (C′,⊗′, I ′, a′, l′, r′) be tensor categories with
G-actions F and F ′, respectively. A G-equivalence (or equivalence of G-categories) from C to C′ is a G-
functor (K, εK , δK , ξK) : C → C′ such that there exists a G-functor (L, εL, δL, ξL) : C′ → C together with
natural G-isomorphisms ϕ : idC′ → K ◦ L and ψ : L ◦K → idC . If there exists such a G-equivalence then C
and C′ will be called equivalent G-categories.

2.8.2 Braiding and duality in G-categories; modular tensor G-categories

We have already defined braidings and duality for tensor categories, and these definitions remain unchanged
when a tensor category is also equipped with a group action. However, in the presence of a group action it
would be nice if these notions are compatible with the group action. We will now define the corresponding
compatibility conditions, beginning with the braiding.

Definition 2.8.8 If G is a group and if C is a G-category, then a braiding c on C is called compatible with
the G-action (or G-compatible) if for any V,W ∈ C and q ∈ G the square
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Fq(V )⊗ Fq(W ) Fq(W )⊗ Fq(V )

Fq(V ⊗W ) Fq(W ⊗ V )

cFq(V ),Fq(W )

δqV,W δqW,V

Fq(cV,W )

commutes. If C is a strict G-category, then this diagram reduces to the equation Fq(cV,W ) = cFq(V ),Fq(W ).

When we compare the square diagram in this definition with the square diagram in Definition 2.4.5, we see
that c is G-compatible if and only if (Fq, ε

q, δq) is a braided tensor functor for each q ∈ G.

Definition 2.8.9 Let C be a strict tensor category with strict G-action F .
(1) If C has a left duality ((.)∨, b, d), then we call this a left G-duality if it has the property that for all

q ∈ G and V ∈ C we have Fq(V
∨) = Fq(V )∨, Fq(bV ) = bFq(V ) and Fq(dV ) = dFq(V ).

(2) If C has a right duality (∨(.), b′, d′), then we call this a right G-duality if it has the property that for
all q ∈ G and V ∈ C we have Fq(

∨V ) = ∨Fq(V ), Fq(b
′
V ) = b′Fq(V ) and Fq(d

′
V ) = d′Fq(V ).

(3) If C has a two-sided duality ((.), b, d, b′, d′), then we will call this a two-sided G-duality if ((.), b, d) is
a left G-duality and ((.), b′, d′) is a right G-duality.

(4) If C admits a two-sided G-duality and is pivotal or spherical with respect to some given two-sided
G-duality, then C will be called G-pivotal or G-spherical, respectively.

Remark 2.8.10 Note that for the definition in part (4) it is actually enough to assume that C admits a left
G-duality, since this implies automatically that C admits a two-sided G-duality. Namely, because C is pivotal
we have Fq(b

′
V ) = Fq(bV ) = bFq(V ) = b

Fq(V )
= b′Fq(V ) and Fq(d

′
V ) = Fq(dV ) = dFq(V ) = d

Fq(V )
= d′Fq(V ).

The following definition will be very important for us when we discuss algebraic quantum field theory in
Chapter 3.

Definition 2.8.11 If C is a modular tensor category with a strict G-action F , then we will call C a modular
tensor G-category if its braiding is G-compatible and if its duality is a G-duality.

2.8.3 Braided G-crossed categories

In this subsection we will introduce the class of categories that will be most important to us, namely the
class of braided G-crossed categories. Besides having a G-action, these categories also have a G-grading.

Definition 2.8.12 If G is a group and (C,⊗, I, a, l, r) is a tensor category, then a G-grading on C consists of
a full tensor subcategory Chom ⊂ C (the objects of which are called the homogeneous objects of C) together
with a map ∂ : Chom → G on the objects of Chom that is constant on isomorphism classes and satisfies
∂(V ⊗W ) = ∂(V )∂(W ) for all V,W ∈ Chom. If V ∈ Chom, we will call ∂(V ) the degree of V . A tensor
category with a G-grading is called a G-graded category. The set ∂(Chom) ⊂ G is called the G-spectrum of C
and for each q ∈ G we will write Cq to denote the full subcategory of C determined by the objects of degree
q.

Note that Obj(Chom) =
⊔
q∈∂(C) Obj(Cq). If V,W ∈ Cq for some q ∈ G and if f ∈ HomC(V,W ), then it will

sometimes be convenient to write that ∂(f) = q.

Remark 2.8.13 In later chapters we will mainly encounter situations where Chom = C. The only two ex-
ceptions to this are the crossed product defined in Subsection 3.1.3 and Theorem 3.2.20. In these exceptional
cases we are always in the situation where any object in the G-crossed category is a finite direct sum of
homogeneous objects. See also [78] and [80].
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Now suppose that we have two groups G1 and G2 together with a tensor category C which has a G1-action
F and a G2-grading ∂ : Chom → G. If there is also a group action α (written q 7→ αq) of G1 on G2, then
we can use α to define a compatibility condition between F and ∂. Namely, we can say that F and ∂ are
compatible if

∂(Fq(V )) = αq(∂(V )) (2.8.2)

for all V ∈ Chom. As a special case, we can consider the case when G1 = G2 = G and where α is the action of
G on itself given by conjugation, i.e. αq(r) = qrq−1. Then equation (2.8.2) becomes ∂(Fq(V )) = q∂(V )q−1.
As indicated in the following definition, such categories have a special name.

Definition 2.8.14 Let G be a group and let (C,⊗, I, a, l, r) be a tensor category with G-action F . Suppose
that C has a full tensor subcategory Chom ⊂ C that has a G-grading ∂ : Chom → G. Then C is called a
G-crossed category if the G-grading is compatible with the G-action in the sense that ∂(Fq(V )) = q∂(V )q−1

for all q ∈ G and V ∈ Chom.

The slightly more general setting sketched above the definition will be encountered by us in one place.
Namely, in Chapter 3 we will define a G-category that is G×G-graded. The action of G on G×G is then
given by αq((r, s)) = (qrq−1, qsq−1) and the compatibility condition (2.8.2) is satisfied in this case.

Definition 2.8.15 A G-crossed category that is also a TC∗ will be called a G-crossed TC∗.

The functors and natural transformations between G-crossed categories are defined as follows.

Definition 2.8.16 Let G be a group and let (C,⊗, I, a, l, r, F, ∂) and (C′,⊗′, I ′, a′, l′, r′, F ′, ∂′) be G-crossed
categories. Then a G-crossed functor from C to C′ is a G-functor (K, εK , δK , ξK) : C → C′ that satisfies
∂′(K(V )) = ∂(V ) for all V ∈ Chom. A natural G-crossed transformation from one G-crossed functor to
another is just a natural G-transformation of the underlying G-functors.

Definition 2.8.17 A braiding (of the first kind 14) on a G-crossed category (C,⊗, I, a, l, r, F, ∂) is a family
of isomorphisms {cV,W : V ⊗W → F∂(V )(W )⊗ V }V ∈Chom,W∈C satisfying naturality in the sense that

V ⊗W F∂(V )(W )⊗ V

V ′ ⊗W ′ F∂(V ′)(W
′)⊗ V ′

cV,W

f⊗g F∂(V )(g)⊗f
cV ′,W ′

commutes for all f ∈ HomC(V, V
′) and g ∈ HomC(W,W

′) with ∂(V ) = ∂(V ′), as well as commutativity of
the diagrams

(U ⊗ V )⊗W

(F∂(U)(V )⊗ U)⊗W U ⊗ (V ⊗W )

F∂(U)(V )⊗ (U ⊗W ) F∂(U)(V ⊗W )⊗ U

F∂(U)(V )⊗ (F∂(U)(W )⊗ U) (F∂(U)(V )⊗ F∂(U)(W ))⊗ U

cU,V ⊗idW aU,V,W

aF∂(U)(V ),U,W cU,V⊗W

idF∂(U)(V )⊗cU,W (δ
∂(U)
V,W )−1⊗idU

a−1
F∂(U)(V ),F∂(U)(W ),U

14We will only write ’of the first kind’ if we want to distinguish it explicitly from a braiding of the second kind. Braidings
of the second kind will be defined later.
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for all U ∈ Chom and V,W ∈ C;

U ⊗ (V ⊗W )

U ⊗ (F∂(V )(W )⊗ V ) (U ⊗ V )⊗W

(U ⊗ F∂(V )(W ))⊗ V F∂(U)∂(V )(W )⊗ (U ⊗ V )

(F∂(U)(F∂(V )(W ))⊗ U)⊗ V F∂(U)(F∂(V )(W ))⊗ (U ⊗ V )

idU⊗cV,W a−1
U,V,W

a−1
U,F∂(V )(W ),V

cU⊗V,W

cU,F∂(V )(W )⊗idV (δF∂(U),∂(V ))
−1
W ⊗idU⊗V

a
F∂(U)(F∂(V )(W )),U,V

for all U, V ∈ Chom and W ∈ C;

Fq(V )⊗ Fq(W ) Fq∂(V )q−1(Fq(W ))⊗ Fq(V )

Fq(V ⊗W ) Fq∂(V )(W )⊗ Fq(V )

Fq(F∂(V )(W )⊗ V ) Fq(F∂(V )(W ))⊗ Fq(V )

cFq(V ),Fq(W )

δqV,W (δF
q∂(V )q−1,q

)W⊗idFq(V )

Fq(cV,W ) (δFq,∂(V ))
−1
W ⊗idFq(V )

(δq
F∂(V )(W ),V

)−1

for all V ∈ Chom, W ∈ C and q ∈ G.

Remark 2.8.18 Note that the heptagonal diagrams are equivalent to the equations

cU,V⊗W = [(δ
∂(U)
V,W )⊗ idU ] ◦ a−1

F∂(U)(V ),F∂(U)(W ),U ◦ [idF∂(U)(V ) ⊗ cU,W ]

◦ aF∂(U)(V ),U,W ◦ [cU,V ⊗ idW ] ◦ a−1
U,V,W

cU⊗V,W = [(δF∂(U),∂(V ))W ⊗ idU⊗V ] ◦ aF∂(U)(F∂(V )(W )),U,V ◦ [cU,F∂(V )(W ) ⊗ idV ]

◦ a−1
U,F∂(V )(W ),V ◦ [idU ⊗ cV,W ] ◦ aU,V,W .

In case the G-crossed category is strict, these equations reduce to

cU,V⊗W = [idF∂(U)(V ) ⊗ cU,W ] ◦ [cU,V ⊗ idW ]

cU⊗V,W = [cU,F∂(V )(W ) ⊗ idV ] ◦ [idU ⊗ cV,W ].

The hexagonal diagram is equivalent to the equation

cFq(V ),Fq(W )

= [(δFq∂(V )q−1,q)
−1
W ⊗ idFq(V )] ◦ [(δFq,∂(V ))W ⊗ idFq(V )] ◦ (δqF∂(V )(W ),V )−1 ◦ Fq(cV,W ) ◦ δqV,W ,

which in the strict case reduces to cFq(V ),Fq(W ) = Fq(cV,W ).
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Now suppose that C is a (non-strict) G-category. Recall that in Subsection 2.8.2 a braiding on C was defined
in the same way as for tensor categories without a group action, and in Definition 2.8.8 we introduced the
notion of G-compatibility for a braiding on a G-category. However, we can also consider C as a G-crossed
category with trivial G-spectrum ∂(C) = {e} by defining ∂(V ) := e for all V ∈ C. Thus we can also use
Definition 2.8.17 to define the notion of a braiding on C, which we will now temporarily call a G-crossed
braiding in order to distinguish it from ordinary braidings. These two definitions are not the same. Namely,
a (G-compatible) braiding on C is a family {cV,W : V ⊗W →W⊗V }V,W∈C , whereas a G-crossed braiding on
C is a family {cV,W : V ⊗W → Fe(W )⊗ V }V,W∈C . Fortunately, there is a nice correspondence between G-
compatible braidings and G-crossed braidings on a G-category, as we will now explain. If c is a G-compatible
braiding, then for each V,W ∈ C we define an isomorphism ĉV,W : V ⊗W → Fe(W )→ V by

ĉV,W := [εFW ⊗ idV ] ◦ cV,W .

A straightforward computation shows that this defines a G-crossed braiding ĉ on C. Conversely, if ĉ is a
G-crossed braiding on C then for each V,W ∈ C we define an isomorphism cV,W : V ⊗W →W ⊗ V by

cV,W := [(εFW )−1 ⊗ idV ] ◦ ĉV,W .

This defines a G-compatible braiding c on C. The two assignments c 7→ ĉ and ĉ 7→ c are clearly inverse
to each other and establish a one-to-one correspondence between G-compatible braidings and G-crossed
braidings on C. This correspondence allows one to be a bit sloppy about braidings on a G-category. For
instance, given a braided G-crossed category D with braiding c, one often says that its full G-subcategory
De determined by the objects of degree e has a G-compatible braiding, although the restriction of c to De
is actually a G-crossed braiding on De. Note that these subtleties do not arise at all in strict G-categories,
because in the strict case G-compatible braidings and G-crossed braidings are the same.

Definition 2.8.19 Let G be a group and let (C,⊗, I, a, l, r, F, ∂, c) and (C′,⊗′, I ′, a′, l′, r′, F ′, ∂′, c′) be
braidedG-crossed categories. A braided G-crossed functor from C to C′ is aG-crossed functor (K, εK , δK , ξK) :
C → C′ such that the diagram

K(V )⊗′ K(W ) K(V ⊗W ) K(F∂(V )(W )⊗ V )

F ′∂(V )(K(W ))⊗′ K(V ) K(F∂(V )(W ))⊗′ K(V )

δKV,W

c′K(V ),K(W )

K(cV,W )

(δKF∂(V )(W ),V )−1

ξK(∂(V ))W⊗′idK(V )

commutes for all V ∈ Chom and W ∈ C. A natural braided G-crossed transformation from one braided G-
crossed functor to another is just a natural G-crossed transformation of the underlying G-crossed functors.

Definition 2.8.20 Let G be a group and let (C,⊗, I, a, l, r, F, ∂, c) and (C′,⊗′, I ′, a′, l′, r′, F ′, ∂′, c′) be
braided G-crossed categories. A braided G-crossed equivalence (or equivalence of braided G-crossed cat-
egories) from C to C′ is a braided G-crossed functor (K, εK , δK , ξK) : C → C′ such that there exists a
braided G-crossed functor (L, εL, δL, ξL) : C′ → C together with natural braided G-crossed isomorphisms
ϕ : idC′ → K ◦ L and ψ : L ◦K → idC . If there exists such a braided G-crossed equivalence, then C and C′
will be called equivalent braided G-crossed categories.

Note that the definition of a braiding for a crossed G-category is quite asymmetrical in the two objects.
It should come as no surprise that there is also another possible definition for a braiding in a G-crossed
category:

Definition 2.8.21 A braiding of the second kind on a G-crossed category (C,⊗, I, a, l, r, F, ∂) is a family
of isomorphisms {cV,W : V ⊗W →W ⊗ F∂(W )−1(V )}V ∈C,W∈Chom

satisfying naturality in the sense that
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V ⊗W W ⊗ F∂(W )−1(V )

V ′ ⊗W ′ W ′ ⊗ F∂(W ′)−1(V ′)

cV,W

f⊗g g⊗F∂(W )−1 (f)

cV ′,W ′

commutes for all V ∈ C, W ∈ Chom, f ∈ HomC(V, V
′) and g ∈ HomC(W,W

′) with ∂(W ) = ∂(W ′), as well
as commutativity of the diagrams

(U ⊗ V )⊗W

(V ⊗ F∂(V )−1(U))⊗W U ⊗ (V ⊗W )

V ⊗ (F∂(V )−1(U)⊗W ) (V ⊗W )⊗ F∂(W )−1∂(V )−1(U)

V ⊗ (W ⊗ F∂(W )−1(F∂(V )−1(U))) (V ⊗W )⊗ F∂(W )−1(F∂(V )−1(U))

cU,V ⊗idW aU,V,W

aV,F
∂(V )−1 (U),W cU,V⊗W

idV ⊗cF
∂(V )−1 (U),W idV⊗W⊗(δF

∂(W )−1,∂(V )−1 )−1
U

a−1
V,W,F

∂(W )−1 (F
∂(V )−1 (U))

for all U ∈ C, V,W ∈ Chom;

U ⊗ (V ⊗W )

U ⊗ (W ⊗ F∂(W )−1(V )) (U ⊗ V )⊗W

(U ⊗W )⊗ F∂(W )−1(V ) W ⊗ F∂(W )−1(U ⊗ V )

(W ⊗ F∂(W )−1(U))⊗ F∂(W )−1(V ) W ⊗ (F∂(W )−1(U)⊗ F∂(W )−1(V ))

idU⊗cV,W a−1
U,V,W

a−1
U,W,F

∂(W )−1 (V )
cU⊗V,W

cU,W⊗idF
∂(W )−1 (V ) idW⊗(δ

∂(W )−1

U,V )−1

aW,F
∂(W )−1 (U),F

∂(W )−1 (V )

for all U, V ∈ C and W ∈ Chom;

Fq(V )⊗ Fq(W ) Fq(W )⊗ Fq∂(W )−1q−1(Fq(V ))

Fq(V ⊗W ) Fq(W )⊗ Fq∂(W )−1(V )

Fq(W ⊗ F∂(W )−1(V )) Fq(W )⊗ Fq(F∂(W )−1(V ))

cFq(V ),Fq(W )

δqV,W idFq(W )⊗(δF
q∂(W )−1q−1,q

)V

Fq(cV,W ) idFq(W )⊗(δF
q,∂(W )−1 )−1

V

(δq
W,F

∂(W )−1 (V )
)−1

for all V ∈ C, W ∈ Chom and q ∈ G.
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Remark 2.8.22 We have two remarks concerning braidings of the second kind, which will be important
to us later.

(1) In case the G-crossed category is strict, the two heptagonal diagrams reduce to the two equations

cU,V⊗W = [idV ⊗ cF∂(V )−1 (U),W ] ◦ [cU,V ⊗ idW ]

cU⊗V,W = [cU,W ⊗ idF∂(W )−1 (V )] ◦ [idU ⊗ cV,W ].

(2) Suppose that C is a strict G-crossed category. If c is a braiding of the first kind, then c̃U,V =
c−1
V,F∂(V )−1 (U) defines a braiding of the second kind. Conversely, if c is a braiding of the second kind,

then c̃U,V = c−1
F∂(U)(V ),U defines a braiding of the first kind. These two operations on braidings are

inverse to each other and define a bijective correspondence between braidings of the first and second
kind.

2.8.4 Braided G-crossed categories as a collection of module categories

This subsection is somewhat independent of the content of the rest of this thesis. We will only come back
to the content of this subsection in Section 5.2 of our final chapter.

Let (C,⊗, I, F, ∂, c) be a braided strict G-crossed category. Then for each q ∈ G the full subcategory
Cq determined by the objects of degree q is a strict Ce-bimodule category, where both the left and right Ce
actions B and C on Cq are defined to be the tensor product ⊗. Because C is braided, we expect that it
should be possible to somehow describe this Ce-bimodule structure of Cq in terms of either B alone or C
alone. We will now make this more precise. For this we will for the moment consider Cq as a strict right
Ce-module category (Cq,⊗). Because Ce is braided, we can apply Lemma 2.6.4 to equip Cq with the structure
of a (non-strict) Ce-bimodule category (Cq,⊗op, α,⊗, γ), where the isomorphisms

αM (X,Y ) : (X ⊗ Y )⊗op M︸ ︷︷ ︸
=M⊗X⊗Y

→ X ⊗op (Y ⊗op M)︸ ︷︷ ︸
=M⊗Y⊗X

γM (X,U) : (X ⊗op M)⊗ U︸ ︷︷ ︸
=M⊗X⊗U

→ X ⊗op (M ⊗ U)︸ ︷︷ ︸
=M⊗U⊗X

are defined by αM (X,Y ) := idM ⊗ cX,Y and γM (X,U) = idM ⊗ cX,U for M ∈ Cq and X,Y, U ∈ Ce.

Proposition 2.8.23 Let (C,⊗, I, F, ∂, c) be a braided G-crossed category and let (Cq,⊗op, α,⊗, γ) be the
Ce-bimodule category defined above. Then we have an equivalence

(H, s, t) : (Cq,⊗,⊗)→ (Cq,⊗op, α,⊗, γ)

of Ce-bimodule categories, where H = idCq , sM (X) = cX,M and tM (X) = idM⊗X for all X ∈ Ce and
M ∈ Cq.

Proof. It is obvious that H is an equivalence of categories, so we only need to show that (H, s, t) is a
functor of Ce-bimodule categories. That (H, t) is a functor of right Ce-module catories is trivial. To see that
(H, s) is a functor of left Ce-module categories, we note that naturality of s follows from naturality of c and
that

[idX ⊗op sM (Y )] ◦ sY⊗M (X) = [sM (Y )⊗ idX ] ◦ sY⊗M (X) = [cY,M ⊗ idX ] ◦ cX,Y⊗M
= [idM ⊗ cX,Y ] ◦ cX⊗Y,M = αH(M)(X,Y ) ◦ sM (X ⊗ Y ).

Finally, (H, s, t) is also a functor of Ce-bimodule categories, since

sM⊗Y (X) = cX,M⊗Y = [idM ⊗ cX,Y ] ◦ [cX,M ⊗ idY ] = γM (X,Y ) ◦ [sM (X)⊗ idY ].

�
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2.8.5 The mirror image of a braided G-crossed category

Our next goal is to show that if we are given a braided G-crossed category C, then we can alter the tensor
product, G-grading and braiding in such a way that we again obtain a braided G-crossed category C• which
we will call the mirror image of C. The reason for this terminology is that when we will study the relationship
between left and right G-localized endomorphisms of a quantum field theory in Chapter 3, we will find that
the categories of these left and right G-localized endomorphisms are related to each other in exactly the
same way as C and C• are related to each other.

Theorem 2.8.24 Let (D,⊗, I, G, F, ∂, C) be a braided15 G-crossed category. Then we obtain a braided
G-crossed category (D, •, I, G, F, ∂•, C•), where the tensor product • is defined by

U • V := U ⊗ Fq−1(V )

f • g := f ⊗ Fr−1(g)

for U, V ∈ D, q = ∂(U), f, g ∈ Hom(D) and r = ∂(f), the degree map ∂• is defined by ∂•(U) := ∂(U)−1 for
U ∈ D and the braiding is defined by

C•U,V = C−1
F∂(U)−1 (V ),F∂(U)−1∂(V )−1∂(U)(U)

for any U, V ∈ D.

Proof. To see that • : D × D → D is a functor, let f ∈ HomD(U,U ′) and g ∈ HomD(V, V ′) with
∂(U) = ∂(U ′) =: q. Then

f • g = f ⊗ Fq−1(g) ∈ HomD(U ⊗ Fq−1(V ), U ′ ⊗ Fq−1(V ′)) = HomD(U • V,U ′ • V ′).

The interchange law for • is a consequence of the interchange law for ⊗ and of the fact that Fr is a functor
for each r ∈ G as we will show now16. If f1, f2, g1, g2 ∈ Hom(D) are such that f2 ◦ f1 and g2 ◦ g1 are
well-defined, then

(f2 ◦ f1) • (g2 ◦ g1) = (f2 ◦ f1)⊗ Fq−1(g2 ◦ g1) = (f2 ◦ f1)⊗ (Fq−1(g2) ◦ Fq−1(g1))

= (f2 ⊗ Fq−1(g2)) ◦ (f1 ⊗ Fq−1(g1)) = (f2 • g2) ◦ (f1 • g1),

where q = ∂(f), proving the interchange law for •. If U, V ∈ D and q = ∂(U), then

idU • idV = idU ⊗ Fq−1(idV ) = idU⊗Fq−1 (V ) = idU•V ,

showing that • is indeed a functor. If U, V,W ∈ D with q = ∂(U) and r = ∂(V ), then

(U • V ) •W = (U ⊗ Fq−1(V )) •W = (U ⊗ Fq−1(V ))⊗ F(qq−1rq)−1(W )

= U ⊗ Fq−1(V )⊗ Fq−1r−1(W )

= U ⊗ Fq−1(V ⊗ Fr−1(W )) = U • (V ⊗ Fr−1(W ))

= U • (V •W )

and if f, g, h ∈ Hom(D) with q = ∂(f) and r = ∂(g) then a similar computation gives us

(f • g) • h = (f ⊗ Fq−1(g)) • h = (f ⊗ Fq−1(g))⊗ F(qq−1rq)−1(h)

15In this proposition we will use a capital letter C to denote the braiding, because this looks better than a small letter c
when large subindices are involved.

16In fact, the fact that • is a functor actually follows from the fact that • can be written as a composition • = ⊗◦ (idD×Fr)
of functors, for a certain r depending on the particular objects or morphisms involved.
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= f ⊗ Fq−1(g)⊗ Fq−1r−1(h)

= f ⊗ Fq−1(g ⊗ Fr−1(h)) = f • (g ⊗ Fr−1(h))

= f • (g • h),

showing that • is associative. For the unit object we find that for any U ∈ D with q = ∂(U)

U • I = U ⊗ Fq−1(I) = U ⊗ I = U

I • U = I ⊗ Fe−1(U) = I ⊗ U = U

and for any f ∈ Hom(D) with q = ∂(f) we have

f • idI = f ⊗ Fq−1(idI) = f ⊗ idI = f

idI • f = idI ⊗ Fe−1(f) = idI ⊗ f = f,

showing that (D, •, I) is a strict tensor category. If U, V ∈ D with q = ∂(U) and if t ∈ G, then

Ft(U • V ) = Ft(U ⊗ Fq−1(V )) = Ft(U)⊗ Ftq−1(V ) = Ft(U)⊗ F(tqt−1)−1(Ft(V ))

= Ft(U) • Ft(V ).

If f, g ∈ Hom(D) with q = ∂(f), then a similar computation gives

Ft(f • g) = Ft(f ⊗ Fq−1(g)) = Ft(f)⊗ Ftq−1(g) = Ft(f)⊗ F(tqt−1)−1(Ft(g))

= Ft(f) • Ft(g).

Together with the fact that Fut = Fu ◦ Ft, this shows that F defines a G-action on (D, •, I). The map ∂•
satisfies

∂•(U • V ) = ∂(U ⊗ F∂(U)−1(V ))−1 = [∂(U)∂(F∂(U)−1(V ))]−1 = [∂(U)∂(U)−1∂(V )∂(U)]−1

= ∂(U)−1∂(V )−1 = ∂•(U)∂•(V ),

so it is indeed a degree map. Also, for any U ∈ D and t ∈ G we have

∂•(Ft(U)) = ∂(Ft(U))−1 = [t∂(U)t−1]−1 = t∂(U)−1t−1 = t∂•(U)t−1,

which shows that (D, •, I, G, F, ∂•) is G-crossed.
Finally, we will show that C• is indeed a braiding. Let U, V ∈ D and consider the braiding isomorphism

CF∂(U)−1 (V ),F∂(U)−1∂(V )−1∂(U)(U). This is a an isomorphism

F∂(U)−1(V )⊗ F∂(U)−1∂(V )−1∂(U)(U)→ F∂(U)−1∂(V )∂(U)[F∂(U)−1∂(V )−1∂(U)(U)]⊗ F∂(U)−1(V ).

The object on the left equals F∂(U)−1(V ) • U = F∂•(U)(V ) • U and the object on the right equals U ⊗
F∂(U)−1(V ) = U • V , so C•U,V is indeed an isomorphism from U • V to F∂•(U)(V ) • U , as it should. To
show naturality, let U,U ′, V, V ′ ∈ C with ∂•(U) = ∂•(U

′) and ∂•(V ) = ∂•(V
′), and let f : U → U ′ and

g : V → V ′. In what follows, we will write q := ∂(U) = ∂•(U)−1 and r := ∂(V ) = ∂•(V )−1. Because C is a
braiding, we have

[f ⊗ Fq−1(g)] ◦ CFq−1 (V ),Fq−1r−1q(U) = CFq−1 (V ′),Fq−1r−1q(U
′) ◦ [Fq−1(g)⊗ Fq−1r−1q(f)]

by naturality. Composing this equation from the left with C−1
Fq−1 (V ′),Fq−1r−1q(U

′) and from the right with

C−1
Fq−1 (V ),Fq−1r−1q(U), we get

C−1
Fq−1 (V ′),Fq−1r−1q(U

′) ◦ [f ⊗ Fq−1(g)] = [Fq−1(g)⊗ Fq−1r−1q(f)] ◦ C−1
Fq−1 (V ),Fq−1r−1q(U),
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which is precisely

C•U ′,V ′ ◦ [f • g] = [F∂•(U)(g) • f ] ◦ C•U,V ,

showing naturality of C•. Now let U, V,W ∈ D. Then

C•U•V,W
−1

= CF∂(U•V )−1 (W ),F(U•V )−1∂(W )−1∂(U•V )(U•V )

= CF∂(U)−1∂(V )−1 (W ),F∂(U)−1∂(V )−1∂(W )−1∂(V )∂(U)(U⊗F∂(U)−1 (V ))

= CF∂(U)−1∂(V )−1 (W ),F∂(U)−1∂(V )−1∂(W )−1∂(V )∂(U)(U)⊗F∂(U)−1∂(V )−1∂(W )−1∂(V )(V )

= F∂(U)−1∂(V )−1

(
CW,F∂(W )−1∂(V )∂(U)(U)⊗F∂(W )−1∂(V )(V )

)
= F∂(U)−1∂(V )−1

{
[idF∂(V )∂(U)(U) ⊗ CW,F∂(W )−1∂(V )(V )] ◦ [CW,F∂(W )−1∂(V )∂(U)(U) ⊗ idF∂(W )−1∂(V )(V )]

}
= [idU ⊗ CF∂(U)−1∂(V )−1 (W ),F∂(U)−1∂(V )−1∂(W )−1∂(V )(V )]

◦ [CF∂(U)−1∂(V )−1 (W ),F∂(U)−1∂(V )−1∂(W )−1∂(V )∂(U)(U) ⊗ idF∂(U)−1∂(V )−1∂(W )−1∂(V )(V )]

= [idU ⊗ F∂(U)−1(CF∂(V )−1 (W ),F∂(V )−1∂(W )−1∂(V )(V ))]

◦ [CF∂(U)−1∂(V )−1 (W ),F∂(U)−1∂(V )−1∂(W )−1∂(V )∂(U)(U) ⊗ F∂(U)−1∂(V )−1∂(W )−1∂(V )(idV )]

= [idU • C•V,W
−1] ◦ [C•U,F∂•(V )(W )

−1 • idV ]

and similarly

C•U,V •W
−1 = CF∂(U)−1 (V •W ),F∂(U)−1∂(V •W )−1∂(U)(U)

= CF∂(U)−1 (V⊗F∂(V )−1 (W )),F∂(U)−1∂(V )−1∂(W )−1∂(U)(U)

= CF∂(U)−1 (V )⊗F∂(U)−1∂(V )−1 (W ),F∂(U)−1∂(V )−1∂(W )−1∂(U)(U)

= F∂(U)−1

(
CV⊗F∂(V )−1 (W ),F∂(V )−1∂(W )−1∂(U)(U)

)
= F∂(U)−1

{
[CV,F∂(V )−1∂(U)(U) ⊗ idF∂(V )−1 (W )] ◦ [idV ⊗ CF∂(V )−1 (W ),F∂(V )−1∂(W )−1∂(U)(U)]

}
= [CF∂(U)−1 (V ),F∂(U)−1∂(V )−1∂(U)(U) ⊗ idF∂(U)−1∂(V )−1 (W )]

◦ [idF∂(U)−1 (V ) ⊗ CF∂(U)−1∂(V )−1 (W ),F∂(U)−1∂(V )−1∂(W )−1∂(U)(U)]

= [CF∂(U)−1 (V ),F∂(U)−1∂(V )−1∂(U)(U) ⊗ F∂(U)−1∂(V )−1(idW )]

◦ [idF∂(U)−1 (V ) ⊗ F∂(U)−1∂(V )−1∂(U)

(
CF∂(U)−1 (W ),F∂(U)−1∂(W )−1∂(U)(U)

)
]

= [C•U,V
−1 • idW ] ◦ [idF∂•(U)(V ) • C•U,W

−1].

Taking the inverse on both sides in these two equations gives

C•U•V,W = [C•U,F∂•(V )(W ) • idV ] ◦ [idU • C•V,W ]

C•U,V •W = [idF∂•(U)(V ) • C•U,W ] ◦ [C•U,V • idW ].

�

In what follows, if D is a G-crossed category then we will simply write D• to denote the G-crossed category
that is obtained as in the previous proposition.
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2.9 Constructions from Frobenius algebras

We will now consider several important constructions that arise from Frobenius algebras in a tensor category.
Of course, we have to begin by providing the definition of a Frobenius algebra in tensor category.

Definition 2.9.1 Let (D,⊗, I) be a strict tensor category. A Frobenius algebra in D is a quintuple Q =
(Q,µ, η,∆, ε), where Q ∈ D and (Q,µ, η) is an algebra in C and (Q,∆, ε) is a coalgebra in C, satisfying the
additional property that

[µ⊗ idQ] ◦ [idQ ⊗∆] = ∆ ◦ µ = [idQ ⊗ µ] ◦ [∆⊗ idQ]. (2.9.1)

The property in (2.9.1) is also called the Frobenius property. In case D is F-linear for some field F, the
Frobenius algebra is called strongly separable (or special) if

µ ◦∆ = (κQ)1idQ (2.9.2)

ε ◦ η = (κQ)2idI (2.9.3)

with (κQ)1, (κQ)2 ∈ F∗. A strongly separable Frobenius algebra is called normalized if (κQ)1 = (κQ)2,
in which case we simply write κQ to denote both (κQ)1 and (κQ)2 and we will call κQ the normalization
constant of Q.

Example 2.9.2 If (D,⊗, I) is a strict tensor category, then (I, µ0, η0,∆0, ε0) is a Frobenius algebra if we
take µ0 = η0 = ∆0 = ε0 = idI . We will call this the trivial Frobenius algebra from now on and we will
denote it by Q0. If D is F-linear it is obvious that Q0 is normalized17 with κQ0

= 1.

Remark 2.9.3 As a direct consequence of the axioms for a Frobenius algebra, any Frobenius algebra
Q = (Q,µ, η,∆, ε) is a two-sided dual of itself, where we can take bQ = b′Q = ∆ ◦ η and dQ = d′Q = ε ◦ µ.

Example 2.9.4 If D is a strict tensor category and (V , b, d, b′, d′) is a two-sided dual for V ∈ D, then we
can make Q := V ⊗ V into a Frobenius algebra by defining

µ := idV ⊗ d
′ ⊗ idV , η := b′, ∆ := idV ⊗ b⊗ idV , ε := d.

Similarly, we can also make Q′ = V ⊗ V into a Frobenius algebra by defining

µ′ := idV ⊗ d⊗ idV , η′ := b, ∆′ := idV ⊗ b′ ⊗ idV , ε′ := d′.

In Subsection 2.9.3 we will slightly generalize this.

If Q = (Q,µ, η,∆, ε) is a Frobenius algebra, then we will often write µ2 and ∆2 to denote the morphisms

µ2 := µ ◦ [µ⊗ idQ] = µ ◦ [idQ ⊗ µ]

∆2 := [∆⊗ idQ] ◦∆ = [idQ ⊗∆] ◦∆,

since this can save space significantly. The following easy lemma can be convenient sometimes.

Lemma 2.9.5 Let (D,⊗, I) be a strict tensor category and let Q = (Q,µ, η,∆, ε) be a Frobenius algebra in
D. Then

[idQ⊗Q ⊗ µ2] ◦ [∆2 ⊗ idQ⊗Q] = [idQ⊗Q ⊗ µ] ◦ [idQ ⊗ (∆ ◦ µ)⊗ idQ] ◦ [∆⊗ idQ⊗Q].

17This can also be established by choosing the morphisms to be scalar multiples of idI satisfying some restriction, but we
will not be needing this.
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Proof. We have

[idQ⊗Q ⊗ µ2] ◦ [∆2 ⊗ idQ⊗Q]

= [idQ⊗Q ⊗ µ] ◦ [idQ⊗Q ⊗ µ⊗ idQ] ◦ [idQ ⊗∆⊗ idQ⊗Q] ◦ [∆⊗ idQ⊗Q]

= [idQ⊗Q ⊗ µ] ◦ [idQ ⊗ ((idQ ⊗ µ) ◦ (∆⊗ idQ))⊗ idQ] ◦ [∆⊗ idQ⊗Q]

= [idQ⊗Q ⊗ µ] ◦ [idQ ⊗ (∆ ◦ µ)⊗ idQ] ◦ [∆⊗ idQ⊗Q],

where in the second step we used the Frobenius property (2.9.1).
�

2.9.1 Example: Frobenius algebras in C � Cop

We will now consider an important example of a Frobenius algebra, which is a slight generalization of the
Frobenius algebra that appears in Proposition 4.1 of [75]. For us it is important because we will need it
to prove our statements in Section 4.9, but we would like to mention that it also has some implications for
subfactor theory as indicated in Subsection 8.3 of [75].

In this subsection F is a quadratically closed field and C will be a spherical fusion category over F. In
particular, to each irreducible object X ∈ C we can assign its dimension d(X) ∈ F and from now on we will
assume that for each irreducible X we have chosen a square root d(X)1/2 of its dimension. We will always
assume that dim(C) 6= 0 and that we have chosen a square root κ := dim(C)1/2, together with a square root
κ1/2. Also, we will assume that we have chosen some fixed complete set {Xi : i ∈ Γ} of representatives of
equivalence classes of irreducible objects, and we will also assume that for each triple (i, j, k) ∈ Γ×3 we have
chosen a basis

{(tkij)α : α = 1, . . . , Nk
ij}

for HomC(Xk, Xi ⊗Xj) = HomCop(Xop
i ⊗X

op
j , Xop

k ), together with a dual basis

{(tijk )α : α = 1, . . . , Nk
ij}

for HomC(Xi⊗Xj , Xk) = HomC(X
op
k , Xop

i ⊗X
op
j ). For Γ we will take a finite subset of the form {0, 1, . . . , n},

where X0 = I. Furthermore, we will write D := C � Cop and we will denote the tensor product in D by ⊗2

to distinguish it from the tensor product ⊗ in C.

Proposition 2.9.6 Let F : C → C be a strict tensor equivalence. Then there exists a normalized strongly
separable Frobenius algebra QF = (QF , µ

F , ηF ,∆F , εF ) in D = C � Cop such that

QF ∼=
⊕
i∈Γ

F (Xi)�X
op
i

and with normalization constant κQF = κ.

We will only sketch how the Frobenius structure is defined. The verification of the axioms is done in the
same way as in [75]. Let QF ∈ D be a direct sum

⊕
i∈Γ F (Xi)�X

op
i , i.e. we choose morphisms

ui ∈ HomD(F (Xi)�X
op
i , QF )

vi ∈ HomD(QF , F (Xi)�X
op
i )

such that vi ◦ ui = idF (Xi)�X
op
i

and
∑
i∈Γ ui ◦ vi = idQF . We then define

ηF := κ1/2u0

εF := κ1/2v0.
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Next for each triple (i, j, k) ∈ Γ×3 we define

T (F )kij :=
∑
α

F ((tkij)α)� (tijk )α ∈ HomD(F (Xk)�Xop
k , (F (Xi)�X

op
i )⊗2 (F (Xj)�X

op
j ))

T (F )ijk :=
∑
α

F ((tijk )α)� (tkij)α ∈ HomD((F (Xi)�X
op
i )⊗2 (F (Xj)�X

op
j ), F (Xk)�Xop

k ).

These are both independent of the choice of bases, as can be checked easily. The multiplication and
comultiplication are defined by

µF :=
∑
i,j,k

βijk uk ◦ T (F )ijk ◦ [vi ⊗2 vj ]

∆F :=
∑
i,j,k

βkij [ui ⊗2 uj ] ◦ T (F )kij ◦ vk

where βkij , β
ij
k ∈ F are given by

βkij = βijk = κ−1/2

√
d(Xi)d(Xj)

d(Xk)
.

Here κ−1/2 := (κ1/2)−1 and
√

d(Xi)d(Xj)
d(Xk) := (d(Xk)1/2)−1d(Xi)

1/2d(Xj)
1/2.

2.9.2 A category constructed from a pair of Frobenius algebras

In this subsection we will show how to construct a category D(Q1,Q2) from a pair (Q1,Q2) of Frobenius
algebras in a tensor category D. This construction is a small generalization of the construction in [74]
where one Frobenius algebra Q was given and three categories were constructed. In our setting, these three
categories would be called D(Q0,Q), D(Q,Q0) and D(Q,Q). The category D(Q1,Q2) will be used later for
two different purposes. The first is the same as in [74], i.e. to construct a 2-category. This construction
of a 2-category will take place immediately in the next subsection. Secondly, D(Q1,Q2) will be used to
construct a crossed product of D with a symmetric subcategory, which will be done in Subsection 3.1.3. For
this second application we have to assume that D is braided, as we will do in the second part of the present
subsection.

Theorem 2.9.7 Let (D,⊗, I) be a strict tensor category and let Q1 = (Q1, µ
1, η1,∆1, ε1) and Q2 =

(Q2, µ
2, η2,∆2, ε2) be two Frobenius algebras in D. We will write18

Obj(D(Q1,Q2)) := {J2V J1 : V ∈ D}
HomD(Q1,Q2)(J2V J1, J2WJ1) := HomD(V ⊗Q1, Q2 ⊗W ).

Then D(Q1,Q2) becomes a category if we define the composition of f ∈ HomD(Q1,Q2)(J2UJ1, J2V J1) and

g ∈ HomD(Q1,Q2)(J2V J1, J2WJ1) by

g • f := [µ2 ⊗ idW ] ◦ [idQ2
⊗ g] ◦ [f ⊗ idQ1

] ◦ [idU ⊗∆1]

and if we define the identity morphisms idJ2V J1
∈ EndD(Q1,Q2)(J2V J1) = HomD(V ⊗Q1, Q2 ⊗ V ) by

idJ2V J1
:= η2 ⊗ idV ⊗ ε1.

18At this stage J2 and J1 have no other purpose (yet) but to distinguish manifestly the objects of D(Q1,Q2) from those of
D. Later we will see that J2 and J1 will obtain a particular meaning.
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Furthermore, we obtain a functor I0 : D → D(Q1,Q2) by defining

I0(V ) := J2V J1

I0(f) := η2 ⊗ f ⊗ ε1

and this functor is bijective on the objects. If D is F-linear and if ε1 ◦ η1 = α1idI and ε2 ◦ η2 = α2idI for
some α1, α2 ∈ F∗, then I0 is faithful.

Proof. For the proof that D(Q1,Q2) is a category we refer to [74]. If f ∈ HomD(U, V ) then

I0(f) = η2 ⊗ f ⊗ ε1 ∈HomD(U ⊗Q1, Q2 ⊗ V ) = HomD(Q1,Q2)(J2UJ1, J2V J1)

= HomD(Q1,Q2)(I0(U),I0(V ))

and if we also have g ∈ HomD(V,W ) then

I0(g ◦ f) = η2 ⊗ (g ◦ f)⊗ ε1 = [µ2 ⊗ idW ] ◦ [idQ2
⊗ η2 ⊗ g ⊗ ε1] ◦ [η2 ⊗ f ⊗ ε2 ⊗ idQ1

] ◦ [idU ⊗∆1]

= [µ2 ⊗ idW ] ◦ [idQ2
⊗I (g)] ◦ [I (f)⊗ idQ1

] ◦ [idU ⊗∆1] = I0(g) •I0(f).

Also, for any V ∈ D we have I0(idV ) = η2 ⊗ idV ⊗ ε1 = idJ2V J1
. This finishes the proof that I0 is a

functor. Bijectivity of I0 on the objects is trivial. Now assume the additional assumptions at the end of
the theorem and suppose that f, g ∈ HomD(V,W ) with I0(f) = I0(g). Then

f = α−1
1 α−1

2 [ε2 ⊗ idW ] ◦ [η2 ⊗ f ⊗ ε1] ◦ [idV ⊗ η1] = α−1
1 α−1

2 [ε2 ⊗ idW ] ◦I0(f) ◦ [idV ⊗ η1]

= α−1
1 α−1

2 [ε2 ⊗ idW ] ◦I0(g) ◦ [idV ⊗ η1] = α−1
1 α−1

2 [ε2 ⊗ idW ] ◦ [η2 ⊗ g ⊗ ε1] ◦ [idV ⊗ η1]

= g

showing that I0 is faithful.
�

In the next subsection we will use D(Q1,Q2) to construct a 2-category from a collection of Frobenius
algebras. As already mentioned at the beginning of this subsection, we will also need D(Q1,Q2) later to
construct a certain crossed product of a braided tensor category with a symmetric tensor subcategory. As
a preparation for this second purpose of D(Q1,Q2) we will prove that D(Q1,Q2) can be made into a tensor
category if D is braided.

Theorem 2.9.8 Let (D,⊗, I, c) be a braided strict tensor category and let Q1 and Q2 be two Frobenius
algebras in D, both of which are commutative and cocommutative.

(1) The category D(Q1,Q2) can be equipped with the structure of a strict tensor category by defining the
tensor product on the objects by

J2V J1 ~ J2WJ1 := J2(V ⊗W )J1

and on the morphisms by19

f1 ~ f2 := [µ2 ⊗ idW1⊗W2
] ◦ [idQ2

⊗ cW1,Q2
⊗ idW2

] ◦ [f1 ⊗ f2]

◦ [idV1 ⊗ c̃V2,Q1 ⊗ idQ1 ] ◦ [idV1⊗V2 ⊗∆1],

where fj ∈ HomD(Q1,Q2)(J2VjJ1, J2WjJ1) = HomD(Vj ⊗ Q1, Q2 ⊗ Wj), and by defining the unit

object to be J2IJ1. To emphasize the dependence on c, we will write Dc(Q1,Q2) to denote this tensor
category.

19The braiding c̃ was defined in equation (2.4.1) in Section 2.4.
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(2) The functor I0 : D → Dc(Q1,Q2) is a tensor functor.
(3) If D has left or right duals, then so has Dc(Q1,Q2).

Proof. (1) If fj ∈ HomD(Q1,Q2)(J2VjJ1, J2WjJ1) = HomD(Vj ⊗Q1, Q2 ⊗Wj) for j ∈ {1, 2}, then

f1 ~ f2 ∈HomD(V1 ⊗ V2 ⊗Q1, Q2 ⊗W1 ⊗W2) = HomD(Q1,Q2)(J2(V1 ⊗ V2)J1, J2(W1 ⊗W2)J1)

= HomD(Q1,Q2)(J2V1J1 ~ J2V2J1, J2W1J1 ~ J2W2J1)

and

idJ2V J1
~ idJ2WJ1

= [µ2 ⊗ idV⊗W ] ◦ [idQ2
⊗ cV,Q2

⊗ idW ] ◦ [η2 ⊗ idV ⊗ ε1 ⊗ η2 ⊗ idW ⊗ ε1]

◦ [idV ⊗ c̃W,Q1 ⊗ idQ1 ] ◦ [idV⊗W ⊗∆1]

= η2 ⊗ idV⊗W ⊗ ε1 = idJ2V J1~J2WJ1
.

To prove the interchange law, we consider morphisms f1, f2, g1 and g2 with

fj ∈ HomD(Q1,Q2)(J2UjJ1, J2VjJ1)

gj ∈ HomD(Q1,Q2)(J2VjJ1, J2WjJ1)

with j ∈ {1, 2}. We first note that

[µ2 ⊗ idW1⊗V2 ] ◦ [idQ2 ⊗ g1 ⊗ idV2 ] ◦ [cV1,Q2 ⊗ c̃V2,Q1 ] ◦ [idV1 ⊗ f2 ⊗ idQ1 ] ◦ [idV1⊗U2 ⊗∆1]

= [µ2 ⊗ idW1⊗V2
] ◦ [idQ2

⊗ g1 ⊗ idV2
] ◦ [cV1,Q2

⊗ idQ1⊗V2
] ◦ [idV1

⊗ (cQ1,Q2
◦ c̃Q2,Q1

)⊗ idV2
]

◦ [idV1⊗Q2
⊗ c̃V2,Q1

] ◦ [idV1
⊗ f2 ⊗ idQ1

] ◦ [idV1⊗U2
⊗∆1]

= [µ2 ⊗ idW1⊗V2 ] ◦ [cQ2,Q2 ⊗ idW1⊗V2 ] ◦ [idQ2 ⊗ cW1,Q2 ⊗ idV2 ] ◦ [g1 ⊗ f2]

◦ [idV1
⊗ c̃U2,Q1

⊗ idQ1
] ◦ [idV1⊗U2

⊗ c̃Q1,Q1
] ◦ [idV1⊗U2

⊗∆1]

= [(µ2)op ⊗ idW1⊗V2 ] ◦ [idQ2 ⊗ cW1,Q2 ⊗ idV2 ] ◦ [g1 ⊗ f2] ◦ [idV1 ⊗ c̃U2,Q1 ⊗ idQ1 ] ◦ [idV1⊗U2 ⊗ (∆1)op]

= [µ2 ⊗ idW1⊗V2
] ◦ [idQ2

⊗ cW1,Q2
⊗ idV2

] ◦ [g1 ⊗ f2] ◦ [idV1
⊗ c̃U2,Q1

⊗ idQ1
] ◦ [idV1⊗U2

⊗∆1].

Here (∆1)op refers to c̃ in this case, but as we have mentioned before, cocommutativity with respect to c is

equivalent to cocommutativity with respect to c̃. Using this in the equality
∗
= below, we get that

(g1 ~ g2) • (f1 ~ f2)

= [µ2
2 ⊗ idW1⊗W2 ] ◦ [idQ2⊗Q2 ⊗ cW1,Q2 ⊗ idW2 ] ◦ [idQ2 ⊗ g1 ⊗ g2] ◦ [µ2 ⊗ idV1 ⊗ c̃V2,Q1 ⊗ idQ1 ]

◦ [idQ2
⊗ cV1,Q2

⊗ idV2
⊗∆1] ◦ [f1 ⊗ f2 ⊗ idQ1

] ◦ [idU1
⊗ c̃U2,Q1

⊗ idQ1⊗Q1
] ◦ [idU1⊗U2

⊗∆1
2]

= [µ2
2 ⊗ idW1⊗W2

] ◦ [idQ2⊗Q2
⊗ cW1,Q2

⊗ idW2
] ◦ [idQ2⊗Q2⊗W1

⊗ g2]

◦ [idQ2 ⊗ µ2 ⊗ idW1⊗V2⊗Q1 ] ◦ [idQ2⊗Q2 ⊗ g1 ⊗ idV2⊗Q1 ] ◦ [idQ2 ⊗ cV1,Q2 ⊗ c̃V2,Q1 ⊗ idQ1 ]

◦ [idQ2⊗V1
⊗ f2 ⊗ idQ1⊗Q1

] ◦ [idQ2⊗V1⊗U2
⊗∆1 ⊗ idQ1

]

◦ [f1 ⊗ idU2⊗Q1⊗Q1
] ◦ [idU1

⊗ c̃U2,Q1
⊗ idQ1⊗Q1

] ◦ [idU1⊗U2
⊗∆1

2]
∗
= [µ2

2 ⊗ idW1⊗W2 ] ◦ [idQ2⊗Q2 ⊗ cW1,Q2 ⊗ idW2 ] ◦ [idQ2⊗Q2⊗W1 ⊗ g2]

◦ [idQ2
⊗ µ2 ⊗ idW1⊗V2⊗Q1

] ◦ [idQ2⊗Q2
⊗ cW1,Q2

⊗ idV2⊗Q1
] ◦ [idQ2

⊗ g1 ⊗ f2 ⊗ idQ1
]

◦ [idQ2⊗V1
⊗ c̃U2,Q1

⊗ idQ1⊗Q1
] ◦ [idQ2⊗V1⊗U2

⊗∆1 ⊗ idQ1
]

◦ [f1 ⊗ idU2⊗Q1⊗Q1 ] ◦ [idU1 ⊗ c̃U2,Q1 ⊗ idQ1⊗Q1 ] ◦ [idU1⊗U2 ⊗∆1
2]

= [µ2 ⊗ idW1⊗W2
] ◦ [idQ2

⊗ cW1,Q2
⊗ idW2

] ◦ [µ2 ⊗ idW1
⊗ µ2 ⊗ idW2

] ◦ [idQ2
⊗ g1 ⊗ idQ2

⊗ g2]
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◦ [f1 ⊗ idQ1
⊗ f2 ⊗ idQ1

] ◦ [idU1
⊗∆1 ⊗ idU2

⊗∆1] ◦ [idU1
⊗ c̃U2,Q1

⊗ idQ1
] ◦ [idU1⊗U2

⊗∆1]

= (g1 • f1)~ (g2 • f2).

Associativity of ~ on the objects is obvious. If fj ∈ HomD(Q1,Q2)(J2VjJ1, J2WjJ1) = HomD(Vj ⊗Q1, Q2 ⊗
Wj) for j ∈ {1, 2, 3} then

(f1 ~ f2)~ f3

= [µ2 ⊗ idW1⊗W2⊗W3
] ◦ [idQ2

⊗ cW1⊗W2,Q2
⊗ idW3

] ◦ [(f1 ~ f2)⊗ f3]

◦ [idV1⊗V2 ⊗ c̃V3,Q1 ⊗ idQ1 ] ◦ [idV1⊗V2⊗V3 ⊗∆1]

= [µ2
2 ⊗ idW1⊗W2⊗W3

] ◦ [idQ2⊗Q2
⊗ cW1⊗W2,Q2

⊗ idW3
] ◦ [idQ2

⊗ cW1,Q2
⊗ idW2⊗Q2⊗W3

] ◦ [f1 ⊗ f2 ⊗ f3]

◦ [idV1 ⊗ c̃V2,Q1 ⊗ idQ1⊗V3⊗Q1 ] ◦ [idV1⊗V2 ⊗ c̃V3,Q1⊗Q1 ⊗ idQ1 ] ◦ [idV1⊗V2⊗V3 ⊗∆1
2]

= [µ2
2 ⊗ idW1⊗W2⊗W3

] ◦ [idQ2
⊗ cW1,Q2⊗Q2

⊗ idW2⊗W3
] ◦ [idQ2⊗W1⊗Q2

⊗ cW2,Q2
⊗ idW3

] ◦ [f1 ⊗ f2 ⊗ f3]

◦ [idV1⊗Q1⊗V2
⊗ c̃V3,Q1

⊗ idQ1
] ◦ [idV1

⊗ c̃V2⊗V3,Q1
⊗ idQ1⊗Q1

] ◦ [idV1⊗V2⊗V3
⊗∆1

2]

= [µ2 ⊗ idW1⊗W2⊗W3 ] ◦ [idQ2 ⊗ cW1,Q2 ⊗ idW2⊗W3 ] ◦ [f1 ⊗ (f2 ~ f3)]

◦ [idV1
⊗ c̃V2⊗V3,Q1

⊗ idQ1
] ◦ [idV1⊗V2⊗V3

⊗∆1]

= f1 ~ (f2 ~ f3).

For any V ∈ D we have J2IJ1 ~ J2V J1 = J2V J1 = J2V J1 ~ J2IJ1 and for any f : J2V J1 → J2WJ1 we
have

idJ2IJ1
~ f

= [µ2 ⊗ idI⊗W ] ◦ [idQ2 ⊗ cI,Q2 ⊗ idW ] ◦ [η2 ⊗ ε1 ⊗ f ] ◦ [idI ⊗ c̃V,Q1 ⊗ idQ1 ] ◦ [idI⊗V ⊗∆1] = f

and

f ~ idJ2IJ1

= [µ2 ⊗ idW⊗I ] ◦ [idQ2
⊗ cW,Q2

⊗ idI ] ◦ [f ⊗ η2 ⊗ ε1] ◦ [idV ⊗ c̃I,Q1
⊗ idQ1

] ◦ [idV⊗I ⊗∆1] = f.

(2) We will now show that I0 is a strict tensor functor. On the objects we have

I0(V )~I0(W ) = J2V J1 ~ J2WJ1 = J2(V ⊗W )J1 = I0(V ⊗W ).

If fj ∈ HomD(Vj ,Wj) for j ∈ {1, 2}, then

I0(f1)~I0(f2)

= [µ2 ⊗ idW1⊗W2 ] ◦ [idQ2 ⊗ cW1,Q2 ⊗ idW2 ] ◦ [I0(f1)⊗I0(f2)] ◦ [idV1 ⊗ c̃V2,Q1 ⊗ idQ2 ]

◦ [idV1⊗V2
⊗∆1]

= [µ2 ⊗ idW1⊗W2
] ◦ [idQ2

⊗ cW1,Q2
⊗ idW2

] ◦ [η2 ⊗ f1 ⊗ ε1 ⊗ η2 ⊗ f2 ⊗ ε1]

◦ [idV1 ⊗ c̃V2,Q1 ⊗ idQ2 ] ◦ [idV1⊗V2 ⊗∆1]

= η2 ⊗ f1 ⊗ f2 ⊗ ε1 = I0(f1 ⊗ f2).

Also, I0(I) = J2IJ1, which is the unit object in Dc(Q1,Q2).
(3) If (V ∨, bV , dV ) is a left dual for V in the category D, then (J2V

∨J1, bJ2V J1
, dJ2V J1

) is a left dual for

J2V J1 in the category Dc(Q1,Q2), where bJ2V J1
:= I0(bV ) and dJ2V J1

:= I0(dV ). This follows directly
from the fact that I0 is a tensor functor. Because I0 is bijective on the objects, it follows that if D has
left duals, then so has Dc(Q1,Q2). The same reasoning can also be applied to right duals.
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�

The last thing we will check about the tensor category Dc(Q1,Q2) in this subsection is whether the image
of the braiding of D under the functor I0 is natural in case either Q1 or Q2 is equal to Q0. This result will
be essential later.

Lemma 2.9.9 Let D, Q1 and Q2 be as in the theorem above and let f ∈ HomDc(Q1,Q2)(J2XJ1, J2Y J1).
Then for any V ∈ D we have the following four equations:

I0(cY,V ) • [f ~ idJ2V J1
] = [idQ2

⊗ cY,V ] ◦ [f ⊗ idV ] ◦ [idX ⊗ c̃V,Q1
] (2.9.4)

I0(cV,Y ) • [idJ2V J1
~ f ] = [idQ2 ⊗ cV,Y ] ◦ [cV,Q2 ⊗ idY ] ◦ [idV ⊗ f ] (2.9.5)

[idJ2V J1
~ f ] •I0(cX,V ) = [cV,Q2

⊗ idY ] ◦ [idV ⊗ f ] ◦ [cX,V ⊗ idQ1
] (2.9.6)

[f ~ idJ2V J1
] •I0(cV,X) = [f ⊗ idV ] ◦ [idX ⊗ c̃V,Q1

] ◦ [cV,X ⊗ idQ1
]. (2.9.7)

As a consequence of these equations, we can make the following statements.
(1) In case Q2 = Q0, we have that

I0(cY,V ) • [f ~ idJ0V J1
] = [idJ0V J1

~ f ] •I0(cX,V )

for all f ∈ HomDc(Q1,Q0)(J0XJ1, J0Y J1) and V ∈ D. Furthermore, if cV,Q1 ◦ cQ1,V = idQ1⊗V then
we also have

I0(cV,Y ) • [idJ0V J1
~ f ] = [f ~ idJ0V J1

] •I0(cV,X)

for all f ∈ HomDc(Q1,Q0)(J0XJ1, J0Y J1).
(2) In case Q1 = Q0, we have that

I0(cV,Y ) • [idJ2V J0
~ f ] = [f ~ idJ2V J0

] •I0(cV,X)

for all f ∈ HomDc(Q0,Q2)(J2XJ0, J2Y J0) and V ∈ D. Furthermore, if cV,Q2 ◦ cQ2,V = idQ2⊗V then
we also have

I0(cY,V ) • [f ~ idJ2V J0
] = [idJ2V J0

~ f ] •I0(cX,V )

for all f ∈ HomDc(Q0,Q2)(J2XJ0, J2Y J0).

Proof. Let X, Y and f be as given and fix some V ∈ D. We first observe that

f ~ idJ2V J1
= [f ⊗ idV ] ◦ [idX ⊗ c̃V,Q1

]

idJ2V J1
~ f = [cV,Q2 ⊗ idY ] ◦ [idV ⊗ f ].

A simple computation shows that for any g ∈ HomD(X ⊗ V ⊗ Q1, Q2 ⊗ Y ⊗ V ) and h ∈ HomD(V ⊗X ⊗
Q1, Q2 ⊗ V ⊗ Y ) we have

I0(cY,V ) • g = [idQ2
⊗ cY,V ] ◦ g

I0(cV,Y ) • h = [idQ2
⊗ cV,Y ] ◦ h

h •I0(cX,V ) = h ◦ [cX,V ⊗ idQ1
]

g •I0(cV,X) = g ◦ [cV,X ⊗ idQ1
].

If we substitute g = f ~ idJ2V J1
and h = idJ2V J1

~ f , the four equations follow immediately.
(1) Now suppose that Q2 = Q0 and note that f ∈ HomD(X⊗Q1, Y ) in this case. Then the right-hand sides
of (2.9.4) and (2.9.6) are equal to cY,V ◦ [f ⊗ idV ] ◦ [idX ⊗ c̃V,Q1

] and [idV ⊗ f ] ◦ [cX,V ⊗ idQ1
], respectively.

By naturality of c, these two coincide.
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The right-hand sides of (2.9.5) and (2.9.7) are equal to cV,Y ◦ [idV ⊗ f ] = [f ⊗ idV ] ◦ cV,X⊗Q1
and

[f ⊗ idV ]◦ [idX ⊗ c̃V,Q1
]◦ [cV,X ⊗ idQ1

], respectively. When we compose both expressions from the right with
the isomorphism [c−1

V,X ⊗ idQ1
], they become equal to [f ⊗ idV ] ◦ [idX ⊗ cV,Q1

] and [f ⊗ idV ] ◦ [idX ⊗ c̃V,Q1
].

Hence, if cV,Q1 ◦ cQ1,V = idQ1⊗V , the two are equal.
(2) Now suppose that Q1 = Q0 and note that f ∈ HomD(X,Q2⊗Y ) in this case. Then the right-hand sides
of (2.9.5) and (2.9.7) are equal to cV,Q2⊗Y ◦ [idV ⊗ f ] and [f ⊗ idV ] ◦ cV,X , respectively. Hence by naturality
of c these two are equal to each other.

The right-hand sides of (2.9.4) and (2.9.6) are equal to [idQ2
⊗ cY,V ]◦ [f ⊗ idV ] and [cV,Q2

⊗ idY ]◦ [idV ⊗
f ] ◦ cX,V = [(cV,Q2 ◦ cQ2,V )⊗ idY ] ◦ [idQ2 ⊗ cY,V ] ◦ [f ⊗ idV ], respectively. Hence, if cV,Q2 ◦ cQ2,V = idQ2⊗V ,
these are two are equal.
�

Thus in both cases (1) and (2) of the lemma, the image of the braiding is only natural in one of its
arguments. Naturality in the other argument holds if the monodromy of the Frobenius algebra with any
other object is trivial. We will come back to this in Subsection 3.1.3.

2.9.3 2-categories from a collection of Frobenius algebras

We will now introduce 2-categories. Very similar to the case of tensor categories, there are both strict and
non-strict versions of 2-categories. For our purposes, we will need some kind of intermediate version (similar
to the case of a tensor category where the associativity constraint is trivial, but the unit constraints are
not). For this reason we will use the intermediate version as our definition of a 2-category.

Definition 2.9.10 A 2-category E consists of the following data:
• a class of 0-cells;
• a category C(A1,A2) for any two 0-cells A1 and A2, the objects of which are called 1-cells, the

morphisms of which are called 2-cells and the composition of which is called vertical composition;
• a functor � : C(A2,A3) × C(A1,A2) → C(A1,A3) for any three 0-cells A1, A2 and A3 called the

horizontal composition;
• a distinguished 1-cell IA ∈ C(A,A) for each 0-cell A, together with natural isomorphisms l : � ◦ [IA ×

idC(A′,A)]→ idC(A′,A) and r : � ◦ [idC(A,A′) × IA]→ idC(A,A′) for any 0-cell A′.
These data are required to satisfy the following conditions:

(1) the horizontal composition is associative;
(2) if A1, A2 and A3 are 0-cells, then for any two 1-cells V ∈ C(A2,A3) and W ∈ C(A1,A2) we have

idV � lW = rV � idW .

Remark 2.9.11 As mentioned before the definition, this is not the most general definition of a 2-category
since we have chosen the horizontal composition to be associative. It is straightforward to obtain the more
general version of a 2-category by introducing the analogue of an associativity constraint. When this is
done, the definition of a tensor category coincides with the definition of a 2-category that has precisely
one 0-cell. Consequently, for each 0-cell A in a 2-category we see that C(A,A) is a tensor category. With
our somewhat restricted definition of a 2-category above, the tensor categories C(A,A) have an associative
tensor product, but they might have non-trivial unit constraints.

Definition 2.9.12 Let E be a 2-category, let A1 and A2 be 0-cells and let V ∈ C(A1,A2) be a 1-cell.
(1) A left dual of V is a 1-cell W ∈ C(A2,A1) together with 2-cells bV ∈ HomC(A2,A2)(IA2

, V �W ) and
dV ∈ HomC(A1,A1)(W � V, IA1

) satisfying

[idV � dV ] ◦ [bV � idV ] = idV

[dV � idW ] ◦ [idW � bV ] = idW ,

where in the first equation the composition is in C(A1,A2) and in the second equation it is in C(A2,A1).
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(2) A right dual of V is a 1-cell W ∈ C(A2,A1) together with 2-cells b′V ∈ HomC(A1,A1)(IA1
,W � V ) and

d′V ∈ HomC(A2,A2)(V �W, IA2
) satisfying

[d′V � idV ] ◦ [idV � b′V ] = idV

[idW � d′V ] ◦ [b′V � idW ] = idW ,

where in the first equation the composition is in C(A1,A2) and in the second equation it is in C(A2,A1).

Let E be a 2-category and let V ∈ C(A1,A2) and V ∈ C(A2,A1) be 1-cells such that (V , b, d, b′, d′) is a
two-sided dual for V . We can then construct a Frobenius algebra Q = (Q,µ, η,∆, ε) in the tensor category
C(A1,A1) by defining

Q = V � V, µ = idV � d
′
V � idV , η = b′V , ∆ = idV � bV � idV , ε = dV .

Similarly, we can also construct a Frobenius algebra Q′ = (Q′, µ′, η′,∆′, ε′) in the tensor category C(A2,A2)
by defining

Q′ = V � V , µ′ = idV � dV � idV , η′ = bV , ∆′ = idV � b′V � idV , ε′ = d′V .

Note that this is a generalization of the situation in Example 2.9.4.
We will now consider the situation where we are given several Frobenius algebras {Qq}q in a tensor

category D. For any such pair (Qq,Qr) we define D(Qq,Qr) as in the previous subsection. However, we will
now simply write Dqr rather than D(Qq,Qr). In order to construct a 2 category with 0-cells {Qq}, we will
first introduce a horizontal composition in the following lemma.

Lemma 2.9.13 Let (D,⊗, I) be a strict tensor category, let Qq, Qr and Qs be three Frobenius algebras in
D.

(1) We obtain a functor � : Drs ×Dqr → Dqs by

JsV Jr � JrWJq := Js(V ⊗Qr ⊗W )Jq

f2 � f1 := [idQs⊗W2 ⊗ µr ⊗ idW1 ] ◦ [f2 ⊗ idQr ⊗ f1] ◦ [idV2 ⊗∆r ⊗ idV1⊗Qq ],

where f1 ∈ HomDqr (JrV1Jq, JrW1Jq) and f2 ∈ HomDrs (JsV2Jr, JsW2Jr).
(2) If Qt is a fourth Frobenius algebra in D, then the functors

� ◦ (� × idDqr ) : Dst ×Drs ×Dqr → D
q
t

� ◦ (idDst × �) : Dst ×Drs ×Dqr → D
q
t

are equal.

Proof. The only part of the proof that is not a very short computation is the interchange law, so this is the
only part we will prove. If fj ∈ HomDqr (JrUjJq, JrVjJq) and gj ∈ HomDqr (JrVjJq, JrWjJq) for j ∈ {1, 2}
then we have

(g2 • f2) � (g1 • f1)

= [idQs⊗W2 ⊗ µr ⊗ idW1 ] ◦ [µs ⊗ idW2⊗Qr ⊗ µr ⊗ idW1 ] ◦ [idQs ⊗ g2 ⊗ idQr⊗Qr ⊗ g1]

◦ [f2 ⊗ idQr⊗Qr ⊗ f1 ⊗ idQq ] ◦ [idU2 ⊗∆r ⊗ idQr⊗U1 ⊗∆q] ◦ [idU2 ⊗∆r ⊗ idU1⊗Qq ]

= [µs ⊗ idW2⊗Qr⊗W1 ] ◦ [idQs ⊗ g2 ⊗ idQr⊗W1 ] ◦ [f2 ⊗ idQr⊗Qr⊗W1 ]

◦ [idU2⊗Qr⊗Qr ⊗ µr2 ⊗ idW1 ] ◦ [idU2 ⊗∆r
2 ⊗ idQr⊗Qr⊗W1 ]

◦ [idU2⊗Qr⊗Qr ⊗ g1] ◦ [idU2⊗Qr ⊗ f1 ⊗ idQq ] ◦ [idU2⊗Qr⊗U1 ⊗∆q]
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= [µs ⊗ idW2⊗Qr⊗W1
] ◦ [idQs ⊗ g2 ⊗ idQr⊗W1

] ◦ [f2 ⊗ idQr⊗Qr⊗W1
]

◦ [idU2⊗Qr⊗Qr ⊗ µr ⊗ idW1
] ◦ [idU2⊗Qr ⊗ (∆r ◦ µr)⊗ idQr⊗W1

] ◦ [idU2
⊗∆r ⊗ idQr⊗Qr⊗W1

]

◦ [idU2⊗Qr⊗Qr ⊗ g1] ◦ [idU2⊗Qr ⊗ f1 ⊗ idQq ] ◦ [idU2⊗Qr⊗U1
⊗∆q]

= [µs ⊗ idW2⊗Qr⊗W1
] ◦ [idQs⊗Qs⊗W2

⊗ µr ⊗ idW1
] ◦ [idQs ⊗ g2 ⊗ idQr ⊗ g1]

◦ [idQs⊗V2
⊗∆r ⊗ idV1⊗Qq ] ◦ [idQs⊗V2

⊗ µr ⊗ idV1⊗Qq ] ◦ [f2 ⊗ idQr ⊗ f1 ⊗ idQq ]

◦ [idU2
⊗∆r ⊗ idU1⊗Qq⊗Qq ] ◦ [idU2⊗Qr⊗U1

⊗∆q]

= (g2 � g1) • (f2 � f1)

where in the third equality we used Lemma 2.9.5.
�

Recall that if D is a category, then we write D to denote its Karoubian envelope. If D is a strict tensor
category and if Qq, Qr and Qs are Frobenius algebras in D, then we can extend the functor � : Drs×Dqr → Dqs
to a functor

−�: Drs ×D
q
r → Dqs by defining

(JsV
′Jr, p

′)
−� (JrV Jq, p) := (JsV

′Jr � JrV Jq, p′ � p) (2.9.8)

and
f ′
−� f := f ′ � f. (2.9.9)

To see that
−� is indeed a functor, let

f ∈ HomDqr ((JrV Jq, p1), (JrWJq, p2))

f ′ ∈ HomDrs
((JsV

′Jr, p
′
1), (JsW

′Jr, p
′
2)).

Then f ′
−� f = f ′ � f ∈ HomDqs (JsV

′Jr � JrV Jq, JsW ′Jr � JrWJq), since � is a functor. Also,

[p′2 � p2] • [f ′
−� f ] • [p′1 � p1] = [p′2 � p2] • [f ′ � f ] • [p′1 � p1] = (p′2 • f ′ • p′1) � (p2 • f • p1)

= f ′ � f = f ′
−� f,

so indeed we have that

f ′
−� f ∈ HomDqs

(
(JsV

′Jr � JrV Jq, p′1 � p1), (JsW
′Jr � JrWJq, p

′
2 � p2)

)
= HomDqs

(
(JsV

′Jr, p
′
1)
−� (JrV Jq, p1), (JsW

′Jr, p
′
2)
−� (JrWJq, p2)

)
.

Furthermore,

(g2 • f2)
−� (g1 • f1) = (g2 • f2) � (g1 • f1) = (g2 � g1) • (f2 � f1) = (g2

−� g1) • (f2
−� f1),

so
−� is indeed a functor.

Lemma 2.9.14 Let (D,⊗, I) be an F-linear strict tensor category and let Qq, Qr and Qs be three Frobenius
algebras in D of which Qr is normalized with κr := κQr . Then there exists an object Ir ∈ Drr such that

(1) there is a natural isomorphism l :
−� ◦[Ir × idDqr ]→ idDqr , i.e. a family

{l(JrV Jq,p) : Ir
−� (JrV Jq, p)→ (JrV Jq, p)}(JrV Jq,p)∈Dqr

of isomorphisms satisfying

l(JrV ′Jq,p′) • [idIr
−� f ] = f • l(JrV Jq,p)

for all f ∈ HomDqr ((JrV Jq, p), (JrV
′Jq, p

′));
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(2) there is a natural isomorphism r :
−� ◦[idDrs × Ir]→ idDrs

, i.e, a family

{r(JsWJr,u) : (JsWJr, u)
−� Ir → (JsWJr, u)}(JsWJr,u)∈Drs

satisfying

r(JsW ′Jr,u′)
• [g

−� idIr ] = g • r(JsWJr,u)

for all g ∈ HomDqr ((JsWJr, u), (JsW
′Jr, u

′));

(3) for all (JrV Jq, p) ∈ Dqr and (JsWJr, u) ∈ Drs we have

id(JsWJr,u)

−� l(JrV Jq,p) = r(JsWJr,u)

−� id(JrV Jq,p)
.

Proof. For the details of the proof we refer to [74]. Here we will only mention how the Ir, l and r are
defined. We first define pr ∈ EndDrr (JrIJr) = EndD(Qr) by pr := κ−1

r idQr , which can easily be seen to be
an idempotent. The object Ir is then defined by

Ir := (JrIJr, pr).

We then define l(JrV Jq,p) : Ir
−� (JrV Jq, p)→ (JrV Jq, p) by

l(JrV Jq,p) := [µr ⊗ idV ] ◦ [idQr ⊗ p],

which is an isomorphism with inverse l−1

(JrV Jq,p)
:= [∆r ⊗ idV ] ◦ p and r(JsWJr,p)

: (JsWJr, p)
−� Ir →

(JsWJr, p) is defined by
r(JsWJr,p)

:= p ◦ [idW ⊗ µr]

which is an isomorphism with inverse r−1

(JsWJr,p)
= [p⊗ idQr ] ◦ [idW ⊗∆r].

�

We will now combine all our results in the following theorem, which states that a collection of normal-
ized Frobenius algebras gives rise to a 2-category.

Theorem 2.9.15 Let (D,⊗, I) be an F-linear strict tensor category and let {Qq : q ∈ S} be a collection of
normalized Frobenius algebras in D. Then we obtain a 2-category E as follows:
• the 0-cells are the Frobenius algebras Qq;

• the category C(Qq,Qr) is defined to be Dqr , i.e the Karoubi envelope of the category D(Qq,Qr) as defined
in Theorem 2.9.7;

• the horizontal composition is given by
−� as defined in Lemma 2.9.13 and equations (2.9.8) and (2.9.9);

• for each q ∈ S the unit object is defined by Iq = (JqIJq, pq), where pq = κ−1
q idQq and l and r are

defined as in Lemma 2.9.14.
Furthermore, for any q ∈ S we can give J0IJq ∈ Dq0 the structure of a two-sided dual for JqIJ0 ∈ D0

q such
that the Frobenius algebra Qq can be reconstructed from this structure by the procedure that is described after
Definition 2.9.12.

For the final statement in this theorem we refer to parts 4 and 5 of Theorem 3.11 in [74]. In fact, if we take
the index set S to be {0, 1} in our theorem above (so that {Qq : q ∈ S} consists of the trivial Frobenius
algebra Q0 together with one other Frobenius algebra Q1 =: Q), we are precisely in the setting of Theorem
3.11 of [74]. Note that our notation here is slightly more efficient than the one in [74]. Namely, in [74] the
three categories D(Q0,Q), D(Q,Q0) and D(Q,Q) were constructed independently of each other20, whereas
in our notation these three categories are just examples of one single category D(Qq,Qr).

20In [74] they were denoted by HOME(A,B), HOME(B,A) and HOME(B,B), respectively.
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Chapter 3

Algebraic quantum field theory

In this chapter we will provide the reader with a short introduction to certain concepts in algebraic quantum
field theory (AQFT). Our exposition here should not be considered as a general introduction to AQFT,
but rather as an efficient way to quickly understand those aspects of AQFT that will be relevant to us.
The relevance of AQFT to our research is twofold. Firstly, our original research problem concerned a
categorical construction in the representation theory of AQFTs and our new research problem arose from
generalizing the original problem to a more abstract categorical setting, see also Subsection 3.2.5 below.
In this sense, AQFT formed the main motivation for our research. Secondly (and more importantly),
certain observations about the braided G-crossed categories that arise in AQFT inspired us to introduce
new categorical definitions and to formulate certain statements about the braided G-crossed category ZG(C)
that we will define in Chapter 4. As we will explain in Subsection 3.2.5, certain properties of the categories
that arise in AQFT gave us the idea to construct a group-crossed generalization of the Drinfeld center. Also,
our results concerning left and right G-localized endomorphisms in Subsection 3.2.2 of the present chapter
inspired us to define the mirror image of a braided G-crossed category, as we did in Subsection 2.8.5, and
it also inspired us to carry out the constructions in Subsection 4.10.1 and to formulate Theorem 4.10.7.

The selection of topics in AQFT that occur in this chapter is very similar to that in Müger’s paper [78],
but the particular manner in which we display the material here is quite different from [78]. Namely, we
have chosen to rewrite the content of [78] in the language of [65], i.e. in the language of subfactor theory. As
a consequence, some of the proofs of statements in [78] had to be adjusted considerably. For example, our
proof of part (1) of Theorem 3.2.20 in Subsection 3.2.3 is different from the proof in [78]. Also, in [78] there is
no analogue of our Lemma 3.2.14, which forms an important part of our proof of Theorem 3.2.20, but which
can also by itself be considered as an interesting result in AQFT. Also, our more symmetrical approach to
left/right G-localized endomorphisms in Subsection 3.2.1 is also quite different from the literature. Besides
Lemma 3.2.14 and the alternative proof of Theorem 3.2.20, the complete content of Subsection 3.2.2 is also
new.

3.1 Operator algebras

Since AQFT is formulated in the language of operator algebras, we will begin this chapter with a section
on operator algebras. In the first subsection we will start our discussion of operator algebras from the very
beginning by giving the definitions of C∗-algebras and von Neumann algebras. In the subsequent subsections
we will discuss some more advanced topics such as C∗-tensor categories, crossed products of a BTC∗ with
a symmetric subcategory, C∗-2-categories and type III subfactors.
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3.1.1 C∗-algebras, W ∗-algebras and von Neumann algebras

We now give a brief overview of the basic facts from the theory of operator algebras that will be relevant to
us when we will discuss AQFT, without going into any details or proofs here. We assume that the reader is
familiar with the basic notions from functional analysis, although we will recall some of these notions again
here because of their importance for AQFT. For a detailed discussion on operator algebras we refer to the
standard textbooks [46]-[47], [83], [93] and [101]-[103].

An associative algebra A over C is a complex vector space together with a bilinear map (a, b) 7→ ab from
A ×A to A (called the multiplication in A) that satisfies (ab)c = a(bc) for all a, b, c ∈ A. In this chapter,
whenever we speak of an algebra we will always mean an associative algebra over C. An algebra A will be
called unital if there is an element 1 ∈ A (called the unit element of A) such that 1a = a = a1 for all a ∈ A.
If A1 and A2 are algebras, then an algebra homomorphism ϕ from A1 to A2 is a linear map ϕ : A1 → A2

such that ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ A1. If both algebras are unital, then ϕ is called a unital algebra
homomorphism if ϕ(1) = 1.

If A is an algebra, then an involution on A is a conjugate-linear map ∗ : A → A, denoted by a 7→ a∗,
that satisfies (ab)∗ = b∗a∗ and a∗∗ := (a∗)∗ = a for all a, b ∈ A. An algebra with an involution will be called
a ∗-algebra. A ∗-algebra is called unital if it has a unit element. In that case we automatically have 1∗ = 1.
If A1 and A2 are (unital) ∗-algebras, then a (unital) ∗-homomorphism is a (unital) algebra homomorphism
ϕ : A1 → A2 such that ϕ(a∗) = ϕ(a)∗ for all a ∈ A1.

If A is an algebra and has a norm ‖ · ‖ with respect to which A is complete, i.e. if (A, ‖ · ‖) becomes a
Banach space, then A is called a Banach algebra if the norm is submultiplicative: ‖ab‖ ≤ ‖a‖ · ‖b‖ for all
a, b ∈ A. If A also has a unit, then it is called a unital Banach algebra if ‖1‖ = 1.

A triple (A, ∗, ‖ · ‖) consisting of an (unital) algebra A, an involution ∗ on A and a norm ‖ · ‖ on A such
that (A, ∗) is a (unital) ∗-algebra and such that (A, ‖ · ‖) is a (unital) Banach algebra is called a (unital)
Banach ∗-algebra if ‖a∗‖ = ‖a‖ for all a ∈ A. A (unital) Banach ∗-algebra A is called a C∗-algebra if it
satisfies the extra condition that1 ‖a∗a‖ = ‖a‖2 for all a ∈ A. In a C∗-algebra A an element n ∈ A is called
normal if n∗n = nn∗, an element a ∈ A is called self-adjoint if a∗ = a and an element e ∈ A is called a
projection if e∗ = e = e2 (i.e. a projection is a self-adjoint idempotent). If A is unital, an element u ∈ A is
called an isometry if u∗u = 1 (in which case we automatically have that uu∗ is a projection) and it is called
unitary if u∗u = 1 = uu∗ (i.e. a unitary element is a normal isometry). In any unital C∗-algebra we define
the spectrum σ(a) ⊂ C of an element a ∈ A by

σ(a) := {λ ∈ C : a− λ1 is not invertible},

which is automatically a compact subset of C. For a self-adjoint element a ∈ A we have σ(a) ⊂ R and we
say that a is positive if σ(a) ⊂ R≥0. Equivalently, positive elements can be characterized by the property
that they can be written in the form x∗x for some x ∈ A. The set of positive elements of A is denoted
by A+ and is closed under sums and scalar multiplication with non-negative real numbers. If a ∈ A+,
then we will also write a ≥ 0. If we write Asa to denote the set of self-adjoint elements of A, then for any
a, b ∈ Asa we will write a ≤ b if b− a ≥ 0. A linear map ϕ : A1 → A2 between C∗-algebras is called positive
if ϕ((A1)+) ⊂ (A2)+, and in that case ϕ will be called faithful if ϕ(a) 6= 0 for all non-zero a ∈ (A1)+. A
stronger condition than positivity is complete positivity. If A1 and A2 are C∗-algebras and n ∈ Z≥1, then
a linear map ϕ : A1 → A2 is called n-positive if

∑n
i=1,j=1 y

∗
i ϕ(x∗i xj)yj ≥ 0 for all x1, . . . , xn ∈ A1 and

y1, . . . , yn ∈ A2. If ϕ : A1 → A2 is n-positive for every n ∈ Z≥1 then it is called completely positive. We
will now define two important kinds of positive linear maps in the theory of C∗-algebras.

Definition 3.1.1 Let A be a unital C∗-algebra. Then a state on A is a positive linear map ω : A → C
with ω(1) = 1. If B ⊂ A is a unital C∗-subalgebra, then a positive linear map ε : A → B with ε(1) = 1 is
called a conditional expectation from A onto B if it satisfies the property that

ε(b∗ab) = b∗ε(a)b (3.1.1)

1This extra condition automatically ensures that the earlier conditions ‖a∗‖ = ‖a‖ and ‖1‖ = 1 are satisfied.
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for all a ∈ A and b ∈ B. The condition in (3.1.1) is called the bimodule property.

Note that the bimodule property automatically ensures that a conditional expectation is completely positive.
Because every positive element in a C∗-algebra is of the form x∗x, a ∗-homomorphism ρ : A1 → A2 of

C∗-algebras is automatically positive, since ρ(x∗x) = ρ(x∗)ρ(x) = ρ(x)∗ρ(x) ∈ (A2)+ and it can also be
shown that it is automatically continuous with respect to the topologies induced by the norms on A1 and
A2. If ρ : A → A is a ∗-endomorphism of a C∗-algebra A, then a left inverse for ρ is a positive linear map
ϕ : A → A such that ϕ(1) = 1 and ϕ(aρ(b)) = ϕ(a)b for all a, b ∈ A. The composition ε := ρ ◦ ϕ is then a
conditional expectation from A onto ρ(A).

Example 3.1.2 Let H be a complex Hilbert space. Then a linear map T : H → H is called bounded if
there exists a C ≥ 0 such that2 ‖Th‖ ≤ C‖h‖ for all h ∈ H. The infimum of all C for which this inequality
holds (for all h ∈ H) is called the operator norm of T and is denoted by ‖T‖. The set of all bounded
operators on H is denoted by B(H). If T ∈ B(H), then there exists a unique operator T ∗ ∈ B(H), called
the adjoint of T , such that 〈Th1, h2〉 = 〈h1, T

∗h2〉 for all h1, h2. It is straightforward to check that ‖.‖ is
indeed a norm on B(H), that T 7→ T ∗ defines an involution on B(H) and that B(H) becomes a unital
C∗-algebra in this way; the topology on B(H) induced by the operator norm is called the norm topology
on B(H). Any ∗-subalgebra A ⊂ B(H) that is closed with respect to the norm topology on B(H) is a
C∗-algebra. If A ⊂ B(H) is such a C∗-algebra acting on the Hilbert space H, then a vector Ω ∈ H is called
cyclic for A if AΩ is dense in H and it is called separating for A if AΩ 6= 0 for all non-zero A ∈ A.

The example above shows that closed ∗-subalgebras of B(H) for some Hilbert space H provide us with
concrete examples of C∗-algebras. In analogy with group theory, this observation leads us to the definition
of a representation of a C∗-algebra.

Definition 3.1.3 Let A be a C∗-algebra. A representation (H,π) of A consists of a Hilbert space H
together with a ∗-homomorphism π : A → B(H). If π is injective, then (H,π) is called a faithful represen-
tation of A. A vector Ω ∈ H is called cyclic for (H,π) if π(A)Ω is dense in H. If such a cyclic vector exists,
then (H,π) is called a cyclic representation.

If (H,π) is a cyclic representation of A and if Ω ∈ H is a unit vector that is cyclic for (H,π), then the map
a 7→ 〈π(a)Ω,Ω〉 is a state on A.

An important example of a representation of a C∗-algebra is the so-called GNS representation corre-
sponding to a state. We will now briefly mention how the construction of this representation is carried out,
without proving any details.

Example 3.1.4 Let A be a C∗-algebra and let ω : A → C be a state. Then Nω := {a ∈ A : ω(a∗a) = 0} is
a closed left ideal in A and we can define an inner product on the vector space A/Nω by 〈a+Nω, b+Nω〉 :=
ω(b∗a). Thus A/Nω becomes an inner product space and we will denote its Hilbert space completion by Hω.
Next we define a ∗-homomorphism πω : A → B(Hω) by first defining πω(a) on A/Nω by πω(a)(b+Nω) :=
ab + Nω and then extending this bounded operator on A/Nω uniquely to a bounded operator on Hω. We
thus obtain a representation (Hω, πω), which is known as the Gelfand-Naimark-Segal representation (or GNS
representation for short) corresponding to the state ω. It has the property that faithfulness of ω (in the sense
of positive linear maps) implies faithfulness of πω (in the sense of representations). Note that if A is unital,
then Ωω := 1 + Nω ∈ Hω is a cyclic vector for (Hω, πω) that has the property that 〈πω(a)Ωω,Ωω〉 = ω(a)
for all a ∈ A. In the non-unital case there also exists a vector Ωω with these properties, but this is not
directly relevant to our discussion of AQFT, where we will always be given a unital C∗-algebra. The details
of the GNS construction can be found in any textbook on operator algebras, such as the ones mentioned at
the beginning of this subsection.

2It is very convenient to write Th rather than T (h).
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Let H be a Hilbert space. An operator T ∈ B(H) is called trace-class if for every orthonormal basis E
of H the series

∑
e∈E |〈Te, e〉| converges. The set of trace-class operators on H is denoted by B1(H). If

T ∈ B1(H), then its trace is defined by

Tr(T ) :=
∑
e∈E
〈Te, e〉

and is independent of the choice of the orthonormal basis E . On B1(H) we define a norm ‖.‖1 by3

‖T‖1 := Tr(|T |),

which is called the trace norm. It can be shown that (B1(H), ‖.‖1) is a Banach space. Furthermore, B1(H)
is a two-sided ideal of B(H), so for any T ∈ B1(H) and A ∈ B(H) we can define Tr(TA) ∈ C. Thus for
each T ∈ B1(H) we can define a seminorm pT : B(H) → R≥0 by pT (A) := |Tr(TA)|. The locally convex
topology on B(H) generated by the collection4 {pT : T ∈ B1(H)} of seminorms is called the σ-weak topology
or ultraweak topology on B(H). This topology is weaker than the norm topology on B(H). As a consequence,
any ∗-subalgebra of B(H) that is ultraweakly closed, is automatically closed in the norm topology and is
therefore a C∗-subalgebra of B(H). If M ⊂ B(H) is such an ultraweakly closed ∗-subalgebra of B(H), then
we define M⊥ := {T ∈ B1(H) : Tr(TA) = 0 for all A ∈M}, which is a closed linear subspace of the Banach
space (B1(H), ‖.‖1). Hence the quotient space M∗ := B1(H)/M⊥ becomes a Banach space when equipped
with the quotient norm. For any A ∈ M we now define a bounded linear functional ψA : M∗ → C on the
Banach space M∗ by ψA(T ) := Tr(TA). In this way we obtain a map

ψ : M → (M∗)
∗

T 7→ ψT

which turns out to be an isometric linear isomorphism of Banach spaces. We thus conclude that each
ultraweakly closed ∗-subalgebra M of B(H) is isomorphic as a Banach space to the dual of a Banach space
M∗. The weak*-topology σ(M,M∗) on M is precisely the ultraweak topology inherited from B(H) by
the inclusion M ⊂ B(H). This last fact indicates that the ultraweak topology on an ultraweakly closed
∗-subalgebra of B(H) is particularly important.

Motivated by the observations above, there is also the notion of a W ∗-algebra, which is defined to be a
C∗-algebra M that is isomorphic as a Banach space to the dual of a Banach space M∗, called the predual of
M , which can be shown to be unique up to isometric isomorphism. It follows directly from our discussion
above that if H is a Hilbert space, then any ultraweakly closed ∗-subalgebra of B(H) is a W ∗-algebra.
Conversely, any W ∗-algebra is ∗-isomorphic to an ultraweakly closed ∗-subalgebra of B(H) for some Hilbert
space H. See Section 1.16 of [93] for details on this representation theorem for W ∗-algebras.

If H is a Hilbert space and if S ⊂ B(H) is a subset, then we define its commutant S′ to be the set
S′ := {T ∈ B(H) : TA = AT for all A ∈ S}. A ∗-subalgebra M of B(H) is called a von Neumann algebra
on H if M ′′ := (M ′)′ = M . Any von Neumann algebra on H is in particular a C∗-subalgebra of B(H)
containing the unit operator 1H . A deep theorem in the theory of operator algebras states that the von
Neumann algebras on H are precisely the W ∗-subalgebras of B(H) that contain the unit operator 1H . We
have already mentioned that ∗-homomorphisms between C∗-algebras are automatically continuous. Because
the ultraweak topology is an important part of the structure of a von Neumann algebra, we also introduce
the notion of a normal ∗-homomorphism between von Neumann algebras, which is a ∗-homomorphism that
is continuous with respect to the ultraweak topologies of the von Neumann algebras.

If {Mα}α is a family of von Neumann algebras on H, then we will write
∨
αMα to denote the smallest

von Neumann algebra on H that contains all Mα, and it will be called the von Neumann algebra generated
by {Mα}α.

3Here |T | :=
√
T ∗T , where the square root of the positive operator T ∗T is defined using the so-called functional calculus.

4We refer to chapter IV of [15] for the definition of the locally convex topology generated by a collection of seminorms.
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If M is a von Neumann algebra on H, then its center Z(M) consists of those elements in M that
commute with every element of M , so we can write Z(M) = M ′ ∩M . A von Neumann algebra M is called
a factor if Z(M) = C1. A factor M on a separable Hilbert space H is said to be of type III if for every
P = P ∗ = P 2 ∈ M there exists a U ∈ M with U∗U = 1H and UU∗ = P . Endomorphisms of such type III
factors are automatically injective. There is a more general definition of type III factors that also holds on
non-separable Hilbert spaces, but we will only be concerned with separable Hilbert spaces when we come
to discuss AQFT.

We will end this subsection with the definition of a group action on an operator algebra. If A is a
C∗-algebra then we will write Aut(A) to denote the group of ∗-automorphisms of A.

Definition 3.1.5 Let A be a C∗-algebra and let G be a group. Then a G-action on A is a homomorphism

β : G→ Aut(A)

q 7→ βq.

We write AG to denote the algebra of G-invariant elements in A, i.e.

AG = {A ∈ A : βq(A) = A for all q ∈ G}.

In case A is a von Neumann algebra on a Hilbert space H, we will say that the G-action β is unitarily
implemented if there exists a unitary representation5 V : G→ B(H) of G such that for any q ∈ G we have
βq(A) = V (q)AV (q)∗ for all A ∈ A.

Let G be a group and let β be a G-action on the unital6 C∗-algebra A. Suppose that ω : A → C is a state
that is invariant under the G-action β on A, i.e. that ω ◦ βq = ω for all q ∈ G. Then for each q ∈ G we
define a bounded operator V (q) : πω(A)Ω→ Hω by

V (q)πω(a)Ωω := πω(βq(a))Ωω,

where we write Ωω = 1 + Nω ∈ Hω as in Example 3.1.4. Then the unique bounded extension of V (q) to
Hω is a unitary operator, which we also denote by V (q), and this gives rise to a unitary representation
V : G→ B(Hω) of G that satisfies

V (q)Ωω = Ωω and V (q)πω(a)V (q)∗ = πω(βq(a))

for all q ∈ G and a ∈ A. For the proof of these statements we refer to Theorem 2.33 of [1].

3.1.2 C∗-tensor categories

The categories that we will encounter in AQFT all have the property that the set of morphisms between
any two objects is a Banach space. The set of endomorphisms of one particular object is even a C∗-algebra
in these categories. For this reason the following definition will be of great importance to us.

Definition 3.1.6 A ∗-category C is called a C∗-category if:
• for all V,W ∈ C the C-vector space HomC(V,W ) is a Banach space with norm ‖.‖V,W ;
• ‖g ◦ f‖U,W ≤ ‖g‖V,W · ‖f‖U,V for all f ∈ HomC(U, V ) and g ∈ HomC(V,W );
• for any V ∈ C and f ∈ EndC(V ) we have ‖f∗ ◦ f‖V,V = ‖f‖2V,V .

5In the situation of a unitarily implemented group action we will also refer to the representation V as being the G-action,
because β is completely determined by V .

6This also works for a non-unital A, but for our purposes it is enough to consider the unital case.
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If C is a C∗-category and if V ∈ C is irreducible, then HomC(V,W ) is a Hilbert space with respect to the
inner product defined in Subsection 2.7.1. This follows from the fact that the norm ‖.‖ induced by the
inner product coincides with the norm ‖.‖V,W , namely ‖f‖2 = 〈f, f〉 = 〈f, f〉‖idV ‖EndC(V ) = ‖f∗ ◦ f‖V,V =
‖f‖2V,W . An orthonormal basis for HomC(V,W ) is precisely a maximal collection of isometries {uα}α
satisfying u∗α ◦ uβ = δα,β idV .

A C∗-tensor category is a C∗-category that is also a tensor category and satisfies

‖f1 ⊗ f2‖V1⊗V2,W1⊗W2
≤ ‖f1‖V1,W1

‖f2‖V2,W2

for fj ∈ HomC(Vj ,Wj). In the rest of this subsection, C will always denote a C∗-tensor-category with
irreducible unit object (i.e. EndC(I) = CidI) that has subobjects and direct sums.

Lemma 3.1.7 If V,W ∈ C have conjugates, then HomC(V,W ) is finite-dimensional. As a consequence,
any object that has a conjugate is a finite direct sum of irreducible objects.

Proof. It is shown in Lemma 3.2 of [66] that EndC(V ) and EndC(W ) are finite-dimensional. We will now
use the argument in Proposition A.47 of [79]. Let X ∼= V ⊕W be a direct sum implemented by isometries
u ∈ HomC(V,X) and v ∈ HomC(W,X). Then X has a conjugate, so EndC(X) is finite-dimensional. But
the linear map HomC(V,W ) → EndC(X) given by f 7→ v ◦ f ◦ u is injective, so HomC(V,W ) must be
finite-dimensional.
�

If (V, r, r) is a conjugate of V ∈ C, then (V, r, r) is called normalized if ‖r‖ = ‖r‖. Note that this con-
dition is equivalent to the condition r∗ ◦ r = r∗ ◦ r, because r∗r = ‖r∗ ◦ r‖idI = ‖r‖2idI and r∗ ◦ r =
‖r∗ ◦ r‖idI = ‖r‖2idI . If (V , r, r) is any conjugate of V , then (V , α · r, α−1r) is also a conjugate of V for any
non-zero value of α ∈ C (note that α and α−1 have the same phase but inverse modulus). In particular, we
can make any conjugate into a normalized conjugate by rescaling it with the appropriate value of α. In case
V is irreducible, HomC(I, V ⊗ V ) and HomC(I, V ⊗ V ) are one-dimensional, so up to a phase factor there
are unique r and r such that (V , r, r) is normalized. In the following two lemmas we will show that direct
sums and tensor products of normalized conjugates are normalized conjugates again.

Lemma 3.1.8 Let (Vj , rj , rj) be normalized conjugates of Vj ∈ C for j ∈ {1, . . . , n} and let V ∼=
⊕n

j=1 Vj

and V ∼=
⊕n

j=1 Vj be direct sums implemented by isometries uj ∈ HomC(Vj , V ) and uj ∈ HomC(Vj , V ).

Then (V , r, r) is a normalized conjugate of V , where r =
∑n
j=1[uj ⊗ uj ] ◦ rj and r =

∑n
j=1[uj ⊗ uj ] ◦ rj.

Proof. First of all we notice that r∗ ◦ r is equal to

{
∑
i

[ui ⊗ ui] ◦ ri}∗ ◦ {
∑
j

[uj ⊗ uj ] ◦ rj} =
∑
i,j

r∗i ◦ [(u∗i ◦ uj)⊗ (u∗i ◦ uj)] ◦ rj =
∑
i

r∗i ◦ ri

and similarly r∗◦r =
∑
i r
∗
i ◦ri. So normalization of the (Vj , rj , rj) gives r∗◦r =

∑
i r
∗
i ◦ri =

∑
i r
∗
i ◦ri = r∗◦r,

showing that (V , r, r) is normalized.
�

The proof of the following lemma is an easy computation that we omit here.

Lemma 3.1.9 Let (V1, r1, r1) and (V2, r2, r2) be normalized conjugates of V1 and V2, respectively. Then
(V2⊗V1, r, r) is a normalized conjugate of V1⊗V2, where r = [idV2

⊗r1⊗idV2 ]◦r2 and r = [idV1⊗r2⊗idV1
]◦r1.

In Subsection 3.1.1 we gave the definition of a left inverse for an endomorphism of a C∗-algebra. We will
now define the notion of a left inverse for an object in a C∗-tensor category, which will be used very often
in what follows. At the end of Subsection 3.1.5 we will see that the operator algebraic definition of a left
inverse is related to the categorical definition of a left inverse.
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Definition 3.1.10 If V ∈ C, then a left inverse for V is a family {LX,Y : HomC(V ⊗ X,V ⊗ Y ) →
HomC(X,Y )}X,Y ∈C of linear maps such that
• for any f ∈ HomC(X,X

′) and g ∈ HomC(Y, Y
′) we have

LX′,Y ′{[idV ⊗ g] ◦ h ◦ [idV ⊗ f∗]} = g ◦ LX,Y (h) ◦ f∗

whenever h ∈ HomC(V ⊗X,V ⊗ Y );
• for any h ∈ HomC(V ⊗X,V ⊗ Y ) we have LX⊗Z,Y⊗Z(h⊗ idZ) = LX,Y (h)⊗ idZ whenever Z ∈ C.

If L is a left inverse for V ∈ C, then it is called normalized if LI,I(idV ) = idI , it is called positive if LX,X is
positive for all X ∈ C and it is called faithful if LX,X is faithful for all X ∈ C.

In a similar way, one also defines the notion of a right inverse of an object in a C∗-tensor category.

If V ∈ C and if (V , r, r) is a conjugate for V , then we obtain a left inverse L(V ,r,r) for V by defining

L
(V ,r,r)
X,Y (h) := [r∗ ⊗ idY ] ◦ [idV ⊗ h] ◦ [r ⊗ idX ]

for h ∈ HomC(V ⊗X,V ⊗Y ). We will call this the left inverse determined by (V , r, r). The following lemma
can be found as Lemma 2.7 in [66].

Lemma 3.1.11 Let (V , r, r) be a conjugate for V ∈ C and let L be the left inverse determined by (V , r, r).
Then for any X,Y ∈ C and f ∈ HomC(V ⊗X,V ⊗ Y ) we have

f∗ ◦ f ≤ [(r∗ ◦ r)⊗ idV⊗X ] ◦ [idV ⊗ LX,X(f∗ ◦ f)] (3.1.2)

and equality holds for f∗ ◦ f = r ◦ r∗. Hence r∗ ◦ r is the smallest element g ∈ EndC(I) such that the
inequality f∗ ◦ f ≤ [g ⊗ idV⊗X ] ◦ [idV ⊗ LX,X(f∗ ◦ f)] holds.

If (V , r1, r1) and (V , r2, r2) are two conjugates for V , then they determine the same left inverse if and only
if there exists a unitary u ∈ EndC(V ) such that r2 = [u ⊗ idV ] ◦ r1 and r2 = [idV ⊗ u] ◦ r1, see Lemma
3.3 of [65]. As mentioned above, for irreducible V and a given conjugate object V , there are r and r that
are unique up to a phase such that (V , r, r) is a normalized conjugate (i.e. (V , r, r) is unique up to unitary
equivalence). Hence there is a unique normalized left inverse for irreducible objects.

Now let L be a left inverse for V ∈ C and suppose that V has a conjugate. If h ∈ HomC(V ⊗X,V ⊗ Y )
and if we choose a conjugate (V, r, r) for V , then we can rewrite h as

h = [idV ⊗ r∗ ⊗ idY ] ◦ [(r ◦ r∗)⊗ idV⊗Y ] ◦ [idV⊗V ⊗ h] ◦ [idV ⊗ r ⊗ idX ].

Using this, the action of LX,Y on h is given by

LX,Y (h) = LX,Y {[idV ⊗ r∗ ⊗ idY ] ◦ [(r ◦ r∗)⊗ idV⊗Y ] ◦ [idV⊗V ⊗ h] ◦ [idV ⊗ r ⊗ idX ]}
= [r∗ ⊗ idY ] ◦ {LV⊗V⊗Y,V⊗V⊗Y [(r ◦ r∗)⊗ idV⊗Y ]} ◦ [idV ⊗ h] ◦ [r ⊗ idX ]

= [r∗ ⊗ idY ] ◦ [LV ,V (r ◦ r∗)⊗ idV⊗Y ] ◦ [idV ⊗ h] ◦ [r ⊗ idX ]

= [r∗ ⊗ idY ] ◦ [LV ,V (r ◦ r∗)⊗ h] ◦ [r ⊗ idX ],

which shows that (in case V has a conjugate) L is completely determined by LV ,V (r ◦ r∗), where (V , r, r) is
an arbitrary conjugate for V . In particular, considering different conjugate objects of V would not add any
new left inverses for V , so we can just as well choose one particular conjugate object V and express all left
inverses for V in terms of this conjugate, where different left inverses are obtained by taking different values
of LV ,V (r ◦ r∗). The left inverse L is positive if and only if LV ,V (r ◦ r∗) is positive, which is equivalent to



78 CHAPTER 3. ALGEBRAIC QUANTUM FIELD THEORY

the statement that LV ,V (r ◦ r∗) = x∗x for some x ∈ EndC(V ). Thus if L is a positive left inverse of V , then
we can express it as

LX,Y (h) = {[r∗ ◦ (x∗ ⊗ idV )]⊗ idY } ◦ [idV ⊗ h] ◦ {[(x⊗ idV ) ◦ r]⊗ idX}

for any h ∈ HomC(V ⊗X,V ⊗Y ). Furthermore, the left inverse L is faithful if and only if x is an isomorphism.
Once we have chosen some particular conjugate object V of V , the faithful left inverses for V are in

bijective correspondence with unitary equivalent classes of conjugates for V . Because for any two conjugates
within such a unitary equivalence class we have that the quantity ‖r‖ · ‖r‖ is the same, the following notion
of a dimension of a left inverse is well-defined.

Definition 3.1.12 Let L be a faithful left inverse for V and suppose that V has a conjugate. Then we
define the dimension of L by d(L) := ‖r‖ · ‖r‖, where (V , r, r) is any conjugate implementing L.

The dimension of a left inverse is always ≥ 1, since

1 = ‖idV ‖ = ‖(r∗ ⊗ idV ) ◦ (idV ⊗ r)‖ ≤ ‖r‖ · ‖r‖ = d(L).

In case L comes from a normalized conjugate (V , r, r), the dimension can be written as d(L) = ‖r‖2 =
‖r∗ ◦ r‖ = ‖r∗ ◦ r‖ and d(L) = 1 if and only if r is unitary, see Lemma 3.5 of [66].

It follows directly from the computation in the proof of Lemma 3.1.8 that if V , Vj , V j and V are as in
the lemma and if we write Lj to denote the left inverse determined by (V j , rj , rj), we have that

d(L) = r∗ ◦ r =

n∑
j=1

r∗j ◦ rj =

n∑
j=1

d(Lj),

where in the first equality we used that (V , r, r) is normalized. Also, in the situation of Lemma 3.1.9 we
have that

d(L) = d(L1)d(L2).

As we have already seen, for irreducible objects that have a conjugate there exists a unique normalized
left inverse. We now wish to define a special class of left inverses for objects that have conjugates but are
not irreducible. If V ∈ C is an arbitrary object that has a conjugate, then it is a direct sum of finitely many
irreducible objects V1, . . . , Vn. For each of these objects we can take a normalized conjugate (V j , rj , rj)
(uniquely determined up to unitary equivalence) and we can form a direct sum V ∼=

⊕n
j=1 V j implemented

by isometries uj ∈ HomC(V j , V ). As in Lemma 3.1.8 above we can then take the direct sum (V , r, r) of
the (V j , rj , rj) to obtain a normalized conjugate for V . The unitary equivalence class of (V , r, r) does not
depend on the choice of isometries, nor on the choice of the (V j , rj , rj) within their unitary equivalence
classes. Hence in this way we obtain a well-defined priviledged unitary equivalence class of conjugates for
V , called standard conjugates.

Definition 3.1.13 If V ∈ C has a conjugate then we define its standard left inverse to be the left inverse
that is determined by a standard conjugate for V . The dimension d(V ) of V is defined to be the dimension
of its standard left inverse.

In other words, if (V , r, r) is a standard conjugate for V , then d(V ) = r∗◦r = r∗◦r. Note that for irreducible
objects, standard conjugates coincide with normalized conjugates. If V ∈ C has a conjugate, we will denote
its standard left inverse by L(V ). The following theorem is now immediate.

Theorem 3.1.14 Let C be a C∗-tensor category with direct sums and conjugates. Then its full subcategory
Cf determined by the objects that have conjugates is a TC∗ and each object in Cf has a well-defined dimension
that is additive with respect to direct sums and multiplicative with respect to tensor products.
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In particular, it is possible to define a notion of dimension in any TC∗ (just take C to be a TC∗ in the
theorem, so that Cf = C) in the abscence of a spherical structure. As shown in [112] any TC∗ can be
equipped with a spherical structure.

As explained in [72] (proposition 2.1), any TC∗ can be equipped with a unique norm on the sets of
morphisms that makes it into a C∗-tensor category. In particular, we can define standard conjugates for
the objects in a TC∗. Now if C is a BTC∗, then for any V ∈ C we define θV ∈ EndC(V ) by

θV := L
(V )
V,V (cV,V ) = [r∗V ⊗ idV ] ◦ [idV ⊗ cV,V ] ◦ [rV ⊗ idV ],

where (V , r, r) is a standard conjugate for V and we call θV the twist of V because it can be shown to
be a twist in the sense of Definition 2.4.6. Thus if C is a rational BTC∗ then it can be considered as a
pre-modular category.

The next theorem, which is also known as Doplicher-Roberts duality, characterizes so-called even STC∗s
and will be very important to us in the next subsection. An STC∗ C is called even if θV = idV for all
V ∈ C. If G is a compact group, then the category Repf (G) of finite-dimensional unitary representations
gives us an example of an even STC∗. Doplicher-Roberts duality states that all STC∗s arise in this way.

Theorem 3.1.15 (Doplicher-Roberts duality) If C is an even STC∗, then there exists a compact group
G, unique up to isomorphism, such that there exists an equivalence C ' Repf (G) of STC∗s.

For a proof of this theorem we refer to the paper [25] by Doplicher and Roberts. An alternative proof was
given by Müger in [79].

3.1.3 The crossed product of a BTC∗ with a symmetric subcategory

When we come to discuss group actions on a quantum field theory in Subsection 3.2.3, we would like to
consider a theorem by Müger which states that the braided G-crossed category of left or right G-localized
endomorphisms of the quantum field theory is equivalent to a crossed product of the category of localized
endomorphisms of the corresponding orbifold quantum field theory with a certain symmetric subcategory
thereof. As a preparation for this, we will now discuss in some detail the general construction of such
crossed products. This construction uses as a starting point our construction of the category Dc(Q1,Q2)
in Subsection 2.9.2 where D was a braided tensor category with braiding c and Q1 and Q2 were Frobenius
algebras in D. However, this time we will further restrict ourselves to a much smaller class of situations
than in Subsection 2.9.2 because we will not need the full generality for our discussion of group actions on
a quantum field theory. The first restriction that we will make is the assumption that our categories have
a ∗-operation.

If D is a tensor ∗-category, then any algebra (Q,µ, η) gives rise to a coalgebra (Q,µ∗, η∗) and similarly
every coalgebra gives rise to an algebra. Because Frobenius algebras are both algebras and coalgebras, we
can thus consider the special class of Frobenius algebras in a tensor ∗-category for which the algebra and
coalgebra structures are related by the ∗-operation in this way. Because we also want to consider dimensions
of Frobenius algebras, we restrict ourselves to C∗-tensor categories.

Definition 3.1.16 Let D be a C∗-tensor category. Then a ∗-Frobenius algebra is an algebra Q = (Q,µ, η)
that satisfies

[µ⊗ idQ] ◦ [idQ ⊗ µ∗] = µ∗ ◦ µ = [idQ ⊗ µ] ◦ [µ∗ ⊗ idQ]. (3.1.3)

It is called strongly separable (or special) if µ ◦ µ∗ = κ1 · idQ and η∗ ◦ η = κ2 · idI for some κ1, κ2 ∈ C. In
this case, if κ1 = κ2 then it is called normalized. If in addition D has an irreducible unit and if Q has a
conjugate, then Q will be called standard if κ1 = κ2 =

√
d(Q) .
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Equivalently, a ∗-Frobenius algebra is a coalgebra Q = (Q,∆, ε) satisfying

[∆∗ ⊗ idQ] ◦ [idQ ⊗∆] = ∆ ◦∆∗ = [idQ ⊗∆∗] ◦ [∆⊗ idQ].

When we are working with ∗-Frobenius algebras, we will often use both of the symbols µ and ∆ (and also
both η and ε), although we could of course choose to replace every ∆ by a µ∗, etcetera.

Example 3.1.17 If D is a C∗-tensor category and (V , r, r) is a conjugate for V ∈ D, then Q := V ⊗ V
becomes a ∗-Frobenius algebra Q = (Q,µ, η) if we define µ := idV ⊗ r

∗ ⊗ idV and η := r. Now suppose
that D has an irreducible unit and that (V , r, r) is normalized, i.e. r∗ ◦ r = r∗ ◦ r ≡ κ · idI . Then
µ ◦ µ∗ = idV ⊗ (r∗ ◦ r) ⊗ idV = κ · idV⊗V = κ · idQ and η∗ ◦ η = r∗ ◦ r = κ · idI , so Q is normalized. If

(V , r, r) is also standard, then κ = d(V ) = d(V ) and hence κ2 = d(V )d(V ) = d(Q), so Q is standard.

If Q = (Q,µ, η) is a ∗-Frobenius algebra in a tensor ∗-category D, then we will write Aut∗(Q,µ, η) (re-
spectively Aut∗(Q,∆, ε)) to denote the set of all unitary algebra (respectively coalgebra) automorphisms
of Q. Both Aut∗(Q,µ, η) and Aut∗(Q,∆, ε) are obviously groups with respect to the composition in
EndD(Q). Because the algebra structure and coalgebra structure on Q are related by the ∗-operation,
the sets Aut∗(Q,µ, η) and Aut∗(Q,∆, ε) coincide. Namely, if u ∈ Aut∗(Q,µ, η) then it is easy to see that
u∗ ∈ Aut∗(Q,∆, ε) (and the other way around), so unitarity u∗ = u−1 implies that the two groups are
indeed the same as sets, and hence also as groups because the multiplication is the same. We will therefore
simply write Aut∗(Q) to denote both.

Before we will start our discussion of the crossed product, we will make one important observation.
Suppose that we are given two ∗-Frobenius algebras Q1 and Q2 in a braided tensor ∗-category D with
braiding c. Then we can equip the tensor category Dc(Q1,Q2) with a ∗-operation as follows. If f ∈
HomDc(Q1,Q2)(J2UJ1, J2V J1) = HomD(U⊗Q1, Q2⊗V ), then we define f× ∈ HomDc(Q1,Q2)(J2V J1, J2UJ1) =
HomD(V ⊗Q1, Q2 ⊗ U) by

f× := [idQ2⊗U ⊗ (η1∗ ◦ µ1)] ◦ [idQ2
⊗ f∗ ⊗ idQ1

] ◦ [(µ2∗ ◦ η2)⊗ idV⊗Q1
].

It is an easy computation to check that this defines a ∗-operation on Dc(Q1,Q2).
We are now ready to consider the crossed product of a BTC∗ with an even symmetric subcategory.

Recall that, by Doplicher-Roberts duality, every even STC∗ is equivalent to Repf (G) for some compact
group G (which is uniquely determined up to isomorphism). In case it is also rational, more can be said.
The following proposition can be found in [77].

Proposition 3.1.18 If S is an even STC∗ that is rational, then there exists a commutative ∗-Frobenius
algebra QS = (Q,µ, η) in S with the following properties:

(1) there is an equivalence S ' Repf (GS) of STC∗s, where GS is the finite group GS = Aut∗(QS);
(2) the image of QS under the equivalence S ' Repf (GS) is isomorphic to the left regular representation

of GS ;
(3) QS is strongly separable and κ1 · κ2 = |GS |;
(4) QS is absorbing, i.e. for any X ∈ S we have Q⊗X ∼= Q⊕d(X);
(5) dim(HomS(I,Q)) = 1.

The setting for the rest of this subsection will be as follows. We will always assume that we are given a
category D which is a BTC∗ (with braiding denoted by c). Whenever we are working with conjugates in
D, we will always implicitly assume that they are standard. In particular, these conjugates give rise to
standard left inverses L and standard right inverses R and to a well-defined dimension of the objects in
D. We also assume there is a full subcategory S ⊂ D which is a rational even STC∗ and we will write
QS = (Q,µ, η) to denote the corresponding ∗-Frobenius algebra in S given by Proposition 3.1.18 above and
we will write GS to denote the corresponding group Aut∗(QS). We scale the morphisms µ and η such that



3.1. OPERATOR ALGEBRAS 81

κ1 = |G| and κ2 = 1. In the rest of this subsection we will use the notation7 (D o0 S, c)1 := Dc(QS ,Q0)
and (D o0 S, c)2 := Dc(Q0,QS) and

(D o S, c)1 := Dc(QS ,Q0)

(D o S, c)2 := Dc(Q0,QS).

The next lemma, the content of which can be found in Proposition 3.3 of [77], shows that these tensor
categories can be equipped with a GS -action.

Lemma 3.1.19 Both (DoS, c)1 and (DoS, c)2 can be equipped with the structure of a strict GS-category
as follows.

(1) For any f ∈ Hom(Do0S,c)1
(J0V JS , J0WJS) = HomD(V ⊗Q,W ) and q ∈ G we first define

F 1
q (f) := f ◦ [idV ⊗ q−1] ∈ HomD(V ⊗Q,W ) = Hom(Do0S,c)1

(J0V JS , J0WJS). (3.1.4)

If (J0XJS , e) ∈ (D o S, c)1, then we define the action of q ∈ GS on (J0XJS , e) by

F 1
q [(J0XJS , e)] := (J0XJS , F

1
q (e)).

If f ∈ Hom(DoS,c)1
((J0V JS , e), (J0WJS , p)), then we define F 1

q (f) by the same formula as in (3.1.4).

(2) For any f ∈ Hom(Do0S,c)2
(JSV J0, JSWJ0) = HomD(V,Q⊗W ) and q ∈ GS we first define

F 2
q (f) := [q ⊗ idW ] ◦ f ∈ HomD(V,Q⊗W ) = Hom(Do0S,c)2

(JSV J0, JSWJ0). (3.1.5)

If (JSXJ0, e) ∈ (D o S, c)2, then we define the action of q ∈ GS on (JSXJ0, e) by

F 2
q [(JSXJ0, e)] := (JSXJ0, F

2
q (e)).

If f ∈ Hom(DoS,c)2
((JSV J0, e), (JSWJ0, p)), then we define F 2

q (f) by the same formula as in (3.1.5).

Furthermore, we have (D o S, c)GS1 ' D and (D o S, c)GS2 ' D as tensor categories.

Now that we know that both categories are GS -categories, we will focus on defining a GS -grading on them.
This is a difficult procedure, the details of which can be found in Section 3.2 of [77]. However, because we
have chosen some different conventions than the ones in [77] which will cause our formulas for the GS -degree
of objects to be different, we will give a sketch of the proof of the next lemma. In this way the reader can
check that our formulas are correct.

Lemma 3.1.20 Let X̃ = (J0XJS , e) ∈ (D o S, c)1 and Ỹ = (JSY J0, p) ∈ (D o S, c)2 be irreducible.

(1) There exists a unique morphism ∂1(X̃) ∈ EndD(Q) such that

c̃Q,X ◦ c̃X,Q ◦ [e⊗ idQ] ◦ [idX ⊗∆] = [e⊗ ∂1(X̃)] ◦ [idX ⊗∆]. (3.1.6)

Explicitly, this morphism ∂1(X̃) is given by

∂1(X̃) =
(
L

(X)
Q,I (e) ◦ η

)−1

·
{
L

(X)
Q⊗Q,Q [c̃Q,X ◦ c̃X,Q ◦ (e⊗ idQ)]

}
◦∆

and we have ∂1(X̃) ∈ GS .

7Perhaps we have to say some words about this choice of notation. The notation Do0S and DoS is chosen simply because
it also occurs in [77], although a slightly different convention was chosen there (concerning the place of the Frobenius algebra
in the definition of the sets of morphisms). The explicit appearance of the braiding c in our notation was already explained
when we introduced the notation Dc(Q1,Q2). Finally, the subindices 1 and 2 refer to the fact that, when these categories will
be equipped with the structure of a GS -crossed category, the one with the subindex 1 (respectively 2) will have a braiding of
the first (respectively second) kind extending c.
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(2) There exists a unique morphism ∂2(Ỹ ) ∈ EndD(Q) such that

[µ⊗ idY ] ◦ [idQ ⊗ p] ◦ cY,Q ◦ cQ,Y = [µ⊗ idY ] ◦ [∂2(Ỹ )⊗ p]. (3.1.7)

Explicitly, this morphism ∂2(Ỹ ) is given by

∂2(Ỹ ) =
(
ε ◦ R(Y )

I,Q(p)
)−1

· µ ◦
{
R

(Y )
Q,Q⊗Q [(idQ ⊗ p) ◦ cY,Q ◦ cQ,Y ]

}
and we have ∂2(Ỹ ) ∈ GS .

Proof. The proofs of (1) and (2) are very similar; we will only give the proof of (2) here. We will proceed

in the same way as in the discussion after Lemma 3.10 of [77]. Let v ∈ Hom(DoS,c)2
(Ỹ ,I (Y )) be such that

v× • v = idỸ and v • v× = p. We define ∂′′2 Ỹ ∈ End(DoS,c)2
(I (Q)~ Ỹ ) by

∂′′2 (Ỹ ) := [idI (Q) ~ v] •I (cY,Q ◦ cQ,Y ) • [idI (Q) ~ v
×].

This morphism is invertible, with inverse given by the same expression but with c replaced by c̃. Thus
∂′′2 (Ỹ ) ∈ Aut(DoS,c)2

(I (Q)~ Ỹ ). Because Ỹ is irreducible and I (Q) ∼= I (I)⊕|G| (which follows from the

absorbing property), there exists ∂′2(Ỹ ) ∈ Aut(DoS,c)2
(I (Q)) such that

∂′′2 (Ỹ ) = ∂′2(Ỹ )~ idỸ . (3.1.8)

In the category (D o0 S, c)2 this equation corresponds to8

[idI0(Q) ~ p] •I0(cY,Q ◦ cQ,Y ) = ∂′2(Ỹ )~ p,

which corresponds in the category D to

[cQ,Q ⊗ idY ] ◦ [idQ ⊗ p] ◦ cY,Q ◦ cQ,Y = [µ⊗ idQ⊗Y ] ◦ [idQ ⊗ cQ,Q ⊗ idY ] ◦ [∂′2(Ỹ )⊗ p].

If we compose both sides from the left with µ⊗ idY and use commutativity of QS , we obtain

[µ⊗ idY ] ◦ [idQ ⊗ p] ◦ cY,Q ◦ cQ,Y = [µ2 ⊗ idY ] ◦ [∂′2(Ỹ )⊗ p] =: [µ⊗ idY ] ◦ [∂2(Ỹ )⊗ p],

where we have defined ∂2(Ỹ ) := µ ◦ ∂′2(Ỹ ) ∈ EndD(Q). Applying the standard right inverse of Ỹ on both
sides of (3.1.8) gives

∂′2(Ỹ ) = d(Ỹ )−1 · R(Ỹ )
I (Q),I (Q)(∂

′′
2 (Ỹ )),

which in D corresponds to

∂′2(Ỹ ) =
(
ε ◦ R(Y )

I,Q(p)
)−1

· R(Y )
Q,Q⊗Q [(idQ ⊗ p) ◦ cY,Q ◦ cQ,Y ]

and hence we have

∂2(Ỹ ) =
(
ε ◦ R(Y )

I,Q(p)
)−1

µ ◦
{
R

(Y )
Q,Q⊗Q [(idQ ⊗ p) ◦ cY,Q ◦ cQ,Y ]

}
Now that we have an explicit expression for ∂2(Ỹ ) ∈ EndD(Q) we can prove that it is in GS . Because

dim(HomD(I,Q)) = 1, we must have that ∂2(Ỹ ) ◦ η is a multiple of η. Using naturality of the braiding in

8Here we use Lemma 2.9.9.
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D and the fact that cI,Q = cQ,I = idQ, we easily see that this multiple is 1, i.e. ∂2(Ỹ ) ◦ η = η. Analogous
to the computation in [77], one can now show that

[µ⊗ idY ] ◦ [idQ ⊗ p] ◦ [∂2(Ỹ )⊗ idY ] ◦ [µ⊗ idY ] = [µ2 ⊗ idY ] ◦ [idQ⊗Q ⊗ p] ◦ [∂2(Ỹ )⊗ ∂2(Ỹ )⊗ idY ].

Letting the right inverse R
(Y )
Q⊗Q,Q act on both sides and noting that R

(Y )
I,Q(p) ∈ HomD(I,Q) must be a scalar

multiple of η, we find that

∂2(Ỹ ) ◦ µ = µ ◦ [∂2(Ỹ )⊗ ∂2(Ỹ )],

so ∂2(Ỹ ) is indeed an algebra morphism.
�

Thus to each irreducible object in these two categories we have assigned an element in the group GS .
We can now use this to define a GS -grading on these categories. If q ∈ G then an object X̃ in either
of these categories will be called homogeneous of degree q if it is a finite direct sum of irreducible objects
X̃j with ∂1/2(X̃j) = q for all j. It is easy to see that if some (not necessarily irreducible) object in these
categories is homogeneous of degree q, then the formulas for ∂1/2 in the lemma also correctly give q. So for
any homogeneous object in these categories its degree is given by these formulas. Also, if two homogeneous
objects are isomorphic to each other, then their degrees must be the same. These facts can be found in
Lemma 3.13 of [77]. Furthermore, if X̃ and Ỹ are two homogeneous objects in either (but the same) of these

two categories, then ∂1/2(X̃ ~ Ỹ ) = ∂1/2(X̃)∂1/2(Ỹ ). For the proof we refer to Proposition 3.17 of [77].
In the same way as in the proof of Proposition 3.14 of [77], one can show that both categories are

GS -crossed. In fact, they are both braided GS -crossed TC∗s. We will now define a braiding on both
categories.

Lemma 3.1.21 We will write I0 to denote both inclusion functors D → (Do0S, c)1 and D → (Do0S, c)2.

(1) If X̃ = (J0XJS , e) ∈ (D o S, c)1 is homogeneous and if f ∈ Hom(Do0S,c)1
(J0Y JS , J0ZJS), then

I0(c̃Z,X) • [f ~ e] = [idJ0XJS
~ F∂(X̃)−1(f)] •I0(c̃Y,X) • [idJ0Y JS

~ e].

As a consequence, if Ỹ = (J0Y JS , p) is homogeneous, then

I0(c̃Y,X) • [p~ e] = [e~ F∂(X̃)−1(p)] •I0(c̃Y,X)

and this morphism is in Hom(DoS,c)1
(Ỹ ~ X̃, X̃ ~ F∂1(X̃)−1(Ỹ )).

(2) If X̃ = (JSXJ0, e) ∈ (D o S, c)2 is homogeneous and if f ∈ Hom(Do0S,c)2
(JSY J0, JSZJ0), then

[e~ F∂2(X̃)−1(f)] •I0(cY,X) = [e~ idJSZJ0
] •I0(cZ,X) • [f ~ idJSXJ0

].

As a consequence, if Ỹ = (JSY J0, p) is homogeneous, then

I0(cY,X) • [p~ e] = [e~ F∂2(X̃)−1(p)] •I0(cY,X)

and this morphism is in Hom(DoS,c)2
(F∂2(X̃)(Ỹ )~ X̃, X̃ ~ (Ỹ )).

The proof of this lemma makes use of Lemma 2.9.9 and proceeds in the same way as in [77], so we will not
provide it here. An immediate consequence of the lemma is the following corollary.

Corollary 3.1.22 The GS-crossed categories can be equipped with a braiding as follows.
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(1) If X̃ = (J0XJS , e), Ỹ = (J0Y JS , p) ∈ (D o S, c)1 are homogeneous, then

c̃1
X̃,Ỹ

:= I0(c̃X,Y ) • [e~ p]

defines a braiding of the second kind on (D o S, c)1 which extends the braiding c̃ on D.

(2) If X̃ = (JSXJ0, e), Ỹ = (JSY J0, p) ∈ (D o S, c)2 are homogeneous, then

c2
X̃,Ỹ

:= I0(cX,Y ) • [e~ p]

defines a braiding of the second kind on (D o S, c)2 which extends the braiding c on D.

If we define c1
X̃,Ỹ

:= (c̃1
F 1

∂1(X̃)
(Ỹ ),X̃

)−1, we obtain a braiding of the first kind on (Do S, c)1 that extends the

braiding c. Thus we have constructed two braided GS -crossed TC∗s (D o S, c)1 and (D o S, c)2, the first
of which has a braiding of the first kind extending c and the second of which has a braiding of the second
kind extending c.

3.1.4 C∗-2-categories from pairs of operator algebras

Let A1 and A2 be two unital C∗-algebras. We will write Hom(A1,A2) to denote the set of all unital
∗-homomorphisms from A1 to A2. If ρ, σ ∈ Hom(A1,A2), then we define the set

(ρ, σ) := {R ∈ A2 : Rρ(A) = σ(A)R for all A ∈ A1}.

If R ∈ (ρ, σ) and S ∈ (σ, τ) for ρ, σ, τ ∈ Hom(A1,A2), then for any A ∈ A1 we have

SRρ(A) = Sσ(A)R = τ(A)SR,

so SR ∈ (ρ, τ). For any ρ ∈ Hom(A1,A2) we obviously have that 1 ∈ (ρ, ρ); whenever we want to emphasize
that we are considering 1 ∈ A2 as an element in (ρ, ρ), we will write it as 1ρ. If ρ, σ ∈ Hom(A1,A2) and
if R ∈ (ρ, σ), then we obviously have R1ρ = R = 1σR. This shows that we obtain a category, where the
objects are defined to be elements in Hom(A1,A2), the set of morphisms from ρ to σ is defined to be (ρ, σ),
the composition of morphisms is given by the multiplication in A2 and the identity morphism 1ρ in (ρ, ρ)
is the unit element 1 ∈ A2. We will denote this category by Hom(A1,A2). In case A1 = A2 ≡ A, we will
write End(A) rather than Hom(A,A). It is straightforward to check that for any ρ, σ ∈ Hom(A1,A2) the
set (ρ, σ) is a Banach subspace of A2, and if R ∈ (ρ, σ) then for any A ∈ A1 we have

R∗σ(A) = R∗σ(A∗)∗ = (σ(A∗)R)∗ = (Rρ(A∗))∗ = ρ(A∗)∗R∗ = ρ(A)R∗,

so R∗ ∈ (σ, ρ). One easily shows that Hom(A1,A2) is in fact a C∗-category.
If σ ∈ Hom(Ai,Aj) and ρ ∈ Hom(Aj ,Ak) for i, j, k ∈ {1, 2}, then of course ρ⊗σ := ρ◦σ ∈ Hom(Ai,Ak).

Now suppose that σ, σ′ ∈ Hom(Ai,Aj), ρ, ρ′ ∈ Hom(Aj ,Ak) for i, j, k ∈ {1, 2} and that R ∈ (ρ, ρ′) and
S ∈ (σ, σ′). Define

R× S := Rρ(S) = ρ′(S)R. (3.1.9)

Then for any A ∈ Ai we have

(R× S)[(ρ⊗ σ)(A)] = Rρ(S)ρ(σ(A)) = Rρ(Sσ(A)) = ρ′(Sσ(A))R

= ρ′(σ′(A)S)R = ρ′(σ′(A))ρ′(S)R

= [(ρ′ ⊗ σ′)(A)](R× s),

showing that R × S ∈ (ρ⊗ σ, ρ′ ⊗ σ′). Now let ιj ∈ End(Aj) denote the identity endomorphism of Aj and
let ρ ∈ Hom(Ai,Aj) and σ ∈ Hom(Aj ,Ak) for i, j, k ∈ {1, 2}. Then ιj⊗ρ = ρ and σ⊗ ιj = σ. Furthermore,
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if R ∈ Hom(Hom(Ai,Aj)) and S ∈ Hom(Hom(Aj ,Ak)), then 1ιj × R = R and S × 1ιj = S. Hence we
conclude that we obtain a 2-category with two 0-cells A1 and A2, where (in the notation of Definition
2.9.10) C(Ai,Aj) = Hom(Ai,Aj) is a C∗-category, the horizontal composition � is given by ⊗ on the 1-cells
and by × on the 2-cells, and the unit objects are given by ι1 ∈ End(A1) and ι2 ∈ End(A2) with trivial unit
constraints. As a consequence, End(A) is a C∗-tensor category for any C∗-algebra A.

Now suppose that A is a type III factor on a separable Hilbert space H. If ρ ∈ End(A) and if E ∈ (ρ, ρ)
is a projection, then there exists an isometry U ∈ A such that UU∗ = E. If we define the linear map
ρE : A → A by

ρE(A) := U∗ρ(A)U

for each A ∈ A, then ρE(1) = U∗ρ(1)U = U∗U = 1 and for any A,B ∈ A we have

ρE(AB) = U∗ρ(AB)U = U∗ρ(A)ρ(B)U = U∗Eρ(A)ρ(B)U = U∗ρ(A)Eρ(B)U = ρE(A)ρE(B)

and ρE(A∗) = U∗ρ(A)∗U = (U∗ρ(A)U)∗ = ρE(A)∗. We thus have ρE ∈ End(A). Also, UρE(A) =
Eρ(A)U = ρ(A)EU = ρ(A)U , so U ∈ (ρE , ρ). This shows that End(A) has subobjects. Now let ρ1, ρ2 ∈
End(A). Because von Neumann algebras are the norm-closures of the linear spans of their projections and
because type III factors cannot be finite-dimensional as vector spaces, there exists a non-zero projection
E ∈ A with E 6= 1. Then 1 − E ∈ A is also a non-zero projection with 1 − E 6= 1 and hence there exist
isometries V1, V2 ∈ A such that V1V

∗
1 = E and V2V

∗
2 = 1 − E. For each A ∈ A we then define the linear

map ρ : A → A by
ρ(A) := V1ρ1(A)V ∗1 + V2ρ2(A)V ∗2 .

It is easy to see that ρ(A∗) = ρ(A)∗ for all A ∈ A and that ρ(1) = 1. For j 6= k the computation
V ∗j Vk = V ∗j (VjV

∗
j + VkV

∗
k )Vk = 2V ∗j Vk shows that V ∗1 V2 = 0 = V ∗2 V1. Using this it is easy to check that

ρ(AB) = ρ(A)ρ(B) for all A,B ∈ A. Thus End(A) has direct sums. We thus conclude that if A is a type
III factor, then End(A) has subobjects and direct sums.

If G is a group and β : G→ Aut(A) is a G-action on a C∗-algebra A and q ∈ G, then for any ρ ∈ End(A)
we define βq(ρ) ∈ End(A) by βq(ρ) := βq ◦ρ◦βq−1 . It is straightforward to check that in this way we obtain
a G-action β on the category End(A).

3.1.5 Subfactors of type III

In this subsection we will briefly mention the main facts about type III subfactors, as can be found in
Section 2 of [65]. We will not provide any proofs here.

Definition 3.1.23 Two von Neumann algebras M and N on some common Hilbert space H with N ⊂M
are called an inclusion of von Neumann algebras. We will write i : N →M to denote the inclusion map. If
both M and N are factors, then the inclusion N ⊂M is called a subfactor. A subfactor is called irreducible
if N ′ ∩M = C1.

Note that if N ⊂M is an inclusion of von Neumann algebras, then so is M ′ ⊂ N ′.
In the rest of this subsection, we will always assume that we are given a subfactor N ⊂M , where both

N and M are factors of type III acting on a separable Hilbert space H. In this situation there exists a
vector Φ ∈ H that is cyclic and separating for both N and M . We will write ϕ to denote the state on
N determined by Φ, i.e. ϕ(n) = 〈nΦ,Φ〉 for all n ∈ N , which is a faithful normal state on N . Let JN
and JM be the modular conjugation operators9 with respect to Φ for N and M , respectively, and write
jN := Ad(JN ) and jM := Ad(JM ). It is a standard result that jN (N) = N ′ and jN (N ′) = N and the same
equations also hold when we replace N with M , of course. Then the canonical endomorphism γ ∈ End(M)
(with respect to Φ) is defined by

γ := jN ◦ jM .
9For the definition of these modular conjugation operators we refer to theorem 9.2.9 of [47] (Tomita’s theorem).
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A different choice of Φ only changes γ by conjugation with a unitary in N . If we write

N1 := γ(M) = jN (jM (M))

M1 := jM (jN (N))

then N1 = jN (jM (M)) = jN (M ′) ⊂ jN (N ′) = N and M1 = jM (jN (N)) = jM (N ′) ⊃ jM (M ′) = M , so
we obtain two new subfactors N1 ⊂ N and M ⊂ M1. The subfactor N1 ⊂ N has canonical endomorphism
λ = jN1 ◦ jN , which is also called the dual canonical endomorphism. Because JNJM = JN1JN , the dual
canonical endomorphism is the restriction of the canonical endomorphism to N , i.e. λ = γ|N . Because
γ(M) ⊂ N , we can also interpret γ ∈ End(M) as a map M → N , which we will denote by i. Thus γ = i ◦ i
and we can write λ ∈ End(N) as λ = γ|N = i ◦ i. The canonical endomorphism for the subfactor M ⊂M1

will be denoted by γ1, so γ1 = jM ◦ jM1
. Because JNJM = JMJM1

, we have γ1|M = γ.

Definition 3.1.24 The set of all faithful normal conditional expectations from M onto N is denoted by
C(M,N). If ε ∈ C(M,N), then its index Ind(ε) ∈ [1,∞] is defined by

Ind(ε)−1 := sup{λ ≥ 0 : ε(m) ≥ λm for all m ∈M+}, (3.1.10)

where we set Ind(ε) =∞ if the right-hand side is 0.

Suppose from now on that there exists an ε ∈ C(M,N) and that we have chosen such a fixed ε. Then
ω := ϕ ◦ ε is a faithful normal state on M , so we can choose a unit vector Ω ∈ H that represents it in the
sense that ω(m) = 〈mΩ,Ω〉 for all m ∈ M . The projection eN onto the closure of NΩ lies in N ′ and is
called the Jones projection with respect to ω = ϕ ◦ ε and we have Ω ∈ eNH. The von Neumann algebra
generated by M and the projection eN coincides with M1 defined above. Because for any two n1, n2 ∈ N
we have

〈n1Ω, n2Ω〉 = ω(n∗2n1) = ϕ(ε(n∗2n1)) = ϕ(n∗2n1) = 〈n1Φ, n2Φ〉

and because Φ is separating for N , the assignment nΦ 7→ nΩ defines an isometry v′ ∈ N ′ with v′H = eNH.
This isometry satisfies JMv

′ = v′JN and v′v′
∗

= eN . Using v′, we introduce a second isometry v1 := jM (v′)
which lies in M1 (by definition of M1) and satisfies

v1v
∗
1 = JMv

′JMJMv
′∗JM = JMv

′v′
∗
JM = jM (eN ) = eN

v′
∗
v1 = v′

∗
JMv

′JM = v′
∗
v′JNJM = JNJM

v1JM1
= JMv

′JMJM1
= JMv

′JNJM = JMv
′v′
∗
v1 = JMv1v

∗
1v1 = JMv1.

As a consequence of the second equation we get γ = Ad(v′
∗
v1) and as a consequence of the third equality

we have for all m1 ∈M1 and n ∈ N that

v1m1 = γ1(m1)v1

wn = λ(n)w,

where we have defined w := γ1(v1). Note that these equations mean that v1 ∈ (ιM1 , γ1) in the category
End(M1) and that w ∈ (ιN , λ) in the category End(N). A useful fact is that the isometry w ∈ N induces
the conditional expectation according to ε(m) = w∗γ(m)w for any m ∈ M . The content of the following
lemma can be found in Subsection 2.7 of [65].

Lemma 3.1.25 The following two statements are equivalent:
(1) the index Ind(ε) is finite;
(2) there exists ν ∈ R>0 together with an isometry v ∈ M with vm = γ(m)v for all m ∈ M that satisfies

w∗v = ν−1/21 = w∗γ(v).
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In case one (and hence both) of these statements holds, we have ν = Ind(ε).

The isometry v ∈M in part (2) has the property that for any m ∈M we have

m = Ind(ε) · ε(mv∗)v = Ind(ε) · v∗ε(vm). (3.1.11)

This equality means that we can write each element m ∈M of the form m = nv and in fact this n is unique.
This can in turn be used to obtain the formula

γ(m) = Ind(ε) · ε(vmv∗) (3.1.12)

for any m ∈ M . These facts can be restated in more categorical terms as follows. If ε ∈ C(M,N), then
there always exists a w ∈ (ιN , i ◦ i) in the category End(N). The index of ε is finite if and only if there also
exists a v ∈ (ιM , i ◦ i) in the category End(M) such that

[1i ⊗ w∗] ◦ [v ⊗ 1i] = ν−1/21i

[w∗ ⊗ 1i] ◦ [1i ⊗ v] = ν−1/21i

in which case we have ν = Ind(ε). These two equations imply that the 1-cell i can be given the structure
of a conjugate (i, r, r) for the 1-cell i in the C∗-2-category determined by N and M if we choose r =

√
κ2w

and r =
√
κ1v with κ1, κ2 ∈ R>0 satisfying κ1κ2 = ν. By using the procedure described after Definition

2.9.12, the canonical endomorphism γ becomes a special ∗-Frobenius algebra in End(M) with unit and
comultiplication

ηγ =
√
κ1v : ιM → γ

∆γ =
√
κ2w : γ → γ ⊗ γ

and the dual canonical endomorphism λ is a special ∗-Frobenius algebra in End(N) with unit and comulti-
plication

ηλ =
√
κ2w : ιN → λ

∆λ =
√
κ1γ(v) : λ→ λ⊗ λ.

The subfactor N ⊂M can be obtained from the Frobenius algebra γ by using that N = ε(M) = w∗γ(M)w.
It is also possible to reconstruct the subfactor N ⊂M from this Frobenius algebra λ as shown in [65] (after
Corollary 4.8) and [8] (Theorem 3.11).

We now turn to the important notion of the index of a subfactor.

Definition 3.1.26 If there exists an ε ∈ C(M,N) with Ind(ε) <∞, then the index [M : N ] of N in M is
defined as

[M : N ] = inf{Ind(ε) : ε ∈ C(M,N)}.

If such ε does not exist, we set [M : N ] =∞.

If [M : N ] < ∞ then there exists a unique ε0 ∈ C(M,N) with Ind(ε0) = [M : N ], called the minimal
conditional expectation.

We end this subsection with an important application. Let M be a type III factor and let (ρ, r, r)
be a conjugate for ρ ∈ End(M). If L denotes the corresponding categorical left inverse, then for any
a ∈ (ρ⊗ σ, ρ⊗ τ) we have Lσ,τ (a) = r∗ρ(a)r. If for each m ∈M we now define

ϕ(m) := (r∗r)−1r∗ρ(m)r,

it is easy to see that ϕ defines a(n operator algebraic) left inverse for ρ and hence ε := ρ ◦ϕ is a conditional
expectation from M onto ρ(M). The corresponding categorical left inverse L′ that is obtained by letting L′σ,τ
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be the restriction of ϕ to (ρ⊗σ, ρ⊗τ) is related to L by L′σ,τ = (r∗r)−1Lσ,τ . Note that d(L′) = d(L) = ‖r‖·‖r‖
because the dimension is invariant under scaling of categorical left inverses. Now if τ, σ ∈ End(M) and
a ∈ (ρ⊗ σ, ρ⊗ τ), then according to Lemma 3.1.11 we have the inequality

a∗a ≤ r∗rρ(Lσ,σ(a∗a)) = r∗rr∗r︸ ︷︷ ︸
=‖r‖2‖r‖2

ρ(L′σ,σ(a∗a)) = d(L)2ρ(L′σ,σ(a∗a)) = d(L)2ε(a∗a)

or

ε(a∗a) ≥ d(L)−2a∗a

and this is the best bound possible. In fact this inequality holds if we replace a∗a by any m ∈ M+,
so Ind(ε) = d(L)2. By Theorem 3.11 of [65] the value of d(L) is minimal if L is determined by a standard
conjugate of ρ, i.e. Ind(ε) ≥ d(ρ)2 for any ε that comes from a left inverse for ρ as above10, and equality holds
when ε comes from the standard left inverse. We now want to conclude that [M : ρ(M)] = d(ρ)2, but for
this we need to show that the minimal conditional expectation comes from a left inverse. If ε′ ∈ C(M,ρ(M))
is arbitrary, then φ := ρ−1 ◦ ε′ is a left inverse for ρ, where ρ−1 denotes the inverse of the ∗-homomorphism
ρ : M → ρ(M) (note that ρ is injective). But then ε′ = ρ ◦ φ, so ε′ comes from a left inverse. In particular
this is true for the minimal conditional expectation ε0, so we conclude that

[M : ρ(M)] = Ind(ε0) = d(ρ)2.

As a corollary, we find that if (ρ, r0, r0) is a standard conjugate for ρ, then the minimal conditional expec-
tation ε0 is given by ε0(m) = (r∗0r0)−1ρ(r∗0ρ(m)r0).

3.2 Nets of von Neumann algebras

Now that we have discussed all relevant results from category theory and operator algebras, we can consider
AQFT. We begin by stating some elementary definitions, which can be found in [78].

We will write K to denote the set of all bounded open intervals in R, so K is the set of all subsets I ⊂ R
of the form I = (a, b) with a, b ∈ R. If I = (a, b), J = (c, d) ∈ K then the notation I < J (also written
J > I) will mean that b ≤ c, i.e. that I and J are disjoint and that I lies to the left of J . We will say that
two intervals I, J ∈ K are adjacent, if I ∩ J = {p} for some p ∈ R. Finally, for any open subset O ⊂ R
we will use the notation O⊥ to denote the interior of the complement of O, so O⊥ = R\O. Note that if
I, J ∈ K are adjacent with I < J , then we can write I = (a, b) and J = (b, c) for certain a, b, c ∈ R and we
have (I ∪ J)⊥⊥ = (a, c) = I ∪ {b} ∪ J . Unbounded intervals of the form (−∞, a) or (b,∞) with a, b ∈ R
are called left half-lines and right half-lines, respectively. If I is a left/right half-line, then I⊥ is clearly a
right/left half line.

Definition 3.2.1 A net of von Neumann algebras on R is a pair (H,A) consisting of a separable Hilbert
space H and an assignment

K 3 I 7→ A(I) ⊂ B(H)

where each A(I) is a von Neumann algebra, satisfying the property that A(I) ⊂ A(J) whenever I ⊂ J ; this
property of A is called isotony.

If (H,A) is a net of von Neumann algebras, then for each open subset O ⊂ R we define

A(O) :=
∨

I∈K,I⊂O
A(I).

10Note that it is not necessary to demand that this left inverse is determined by a conjugate, since this is always the case.
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If O happens to be in K, then A(O) was already defined by the assignment I 7→ A(I) itself, but by isotony
the two different definitions of A(O) will then coincide. This shows that the notation is consistent.

We will also introduce the ∗-algebra A∞ :=
⋃
I∈KA(I). With some abuse of notation, we will denote

the norm closure of A∞ by A, so

A := A∞
‖.‖

=
⋃
I∈K
A(I)

‖.‖
.

The C∗-algebra A is called the quasi-local algebra corresponding to the net (H,A).

Definition 3.2.2 A net (H,A) of von Neumann algebras on R is said to satisfy:
• irreducibility if

∨
I∈KA(I) = B(H);

• locality if A(I) ⊂ A(J)′ whenever I, J ∈ K and I ⊂ J⊥;
• half-line duality if A(I⊥)′ = A(I) for all half-lines I ⊂ R;
• Haag duality if A(I⊥)′ = A(I) for all I ∈ K;
• additivity if for any open set O ⊂ R and for any collection {Iα}α with Iα ∈ K for all α and O =

⋃
α Iα

we have that A(O) =
∨
αA(Iα);

• strong additivity if it satisfies additivity and if for any two adjacent I, J ∈ K we have A((I ∪ J)⊥⊥) =
A(I) ∨ A(J);

• the split property if for any I, J ∈ K with I∩J = ∅ the map A(I)⊗algA(J)→ A(I)∨A(J), x⊗y 7→ xy
extends to an isomorphism of von Neumann algebras.

Definition 3.2.3 Let (H,A) be a net of von Neumann algebras and let G be a group. Then a G-action on
(H,A) is a G-action β : G→ Aut(A) on the quasi-local algebra A satisfying the following two properties:
• βq(A(I)) = A(I) for all q ∈ G and I ∈ K;
• if for some I ∈ K the restriction of βq to A(I) is the identity map on A(I), then q = e.

A G-net of von Neumann algebras is a triple (H,A, β), where (H,A) is a net of von Neumann algebras and
β is a G-action on it.

As mentioned before, a G-action β on a C∗-algebra induces a G-action on its tensor category of endomor-
phisms. This means that we have a G-action on the tensor category End(A) of endomorphisms of the
quasi-local algebra of a G-net of von Neumann algebras.

3.2.1 G-localized endomorphisms

In [78] an endomorphism ρ ∈ End(A) of the quasi-local algebra of a G-net (H,A, β) of von Neumann
algebras was called q-localized (where q ∈ G) in some interval I ∈ K if ρ(A) = A for all A ∈ A(J) with
J < I and if ρ(A) = βq(A) for all A ∈ A(J) with J > I. Here we will introduce a more symmetrical
definition, because this will be needed later.

Definition 3.2.4 Let (H,A, β) be a G-net of von Neumann algebras on R.
(1) If q, r ∈ G and I ∈ K, then ρ ∈ End(A) is called (q, r)-localized in I if

• for any J < I and A ∈ A(J) we have ρ(A) = βq(A);
• for any J > I and A ∈ A(J) we have ρ(A) = βr(A).

An endomorphism ρ ∈ End(A) is called (q, r)-localized if it is (q, r)-localized in some I ∈ K.
(2) If ρ is (q, r)-localized, then ρ is called transportable if for any J ∈ K there exists an endomorphism

ρ′ that is (q, r)-localized in J together with a unitary W ∈ (ρ, ρ′). We will denote the set of all
transportable (q, r)-localized endomorphisms by G− Loc(A)q,r.

The unitary operator W in the definition of transportability of ρ is often called a charge transporter for ρ
in the literature on AQFT; we will also use this term occasionally. If ρ ∈ G − Loc(A)q,r is (q, r)-localized
in I ∈ K, then we will write this simply as ρ ∈ G− Loc(A)q,r(I).
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For any q, r ∈ G, the full subcategory of End(A) determined by the endomorphisms in ρ ∈ G−Loc(A)q,r
will be denoted by G− Loc(A)q,r. We then define the category11

G− Loc(A) :=
⊔

q,r∈G
G− Loc(A)q,r.

If ρ ∈ G − Loc(A)q,r and ρ′ ∈ G − Loc(A)q′,r′ , then their tensor product ρ ⊗ ρ′ in End(A) is easily
seen to be in G − Loc(A)qq′,rr′ , which implies that G − Loc(A) is a G × G-graded tensor subcategory
of End(A). Furthermore, the G-action on End(A) restricts to a G-action on G − Loc(A) and it satisfies
βq(G−Loc(A)r,s) ⊂ G−Loc(A)qrq−1,qsq−1 . As already announced after Definition 2.8.14, this G−Loc(A)
gives a slightly more general notion of a G-crossed category, where there is a G-action, a G×G-grading and
an action of G on G×G given by αq(r, s) = (qrq−1, qsq−1). The following lemma is a slight generalization
of (a part of) Lemmas 2.12 and 2.13 in [78].

Lemma 3.2.5 Let (H,A, β) be a G-net of von Neumann algebras satisfying Haag duality.
(1) If ρ is (q, r)-localized in I ∈ K, then ρ(A(I)) ⊂ A(I).
(2) If ρ and σ are both (q, r)-localized in I ∈ K, then (ρ, σ) ⊂ A(I).

Proof. (1) If J ∈ K with J ⊂ I⊥, then the restriction of ρ to A(J) is either βq or βr, so we have
ρ(A(J)) = A(J). This implies that ρ(A(I⊥)) = A(I⊥). Thus we have

ρ(A(I)) ⊂ A(I⊥)′ = A(I),

where the inclusion follows from the fact that ρ(A(I)) commutes with ρ(A(I⊥)) = A(I⊥) by locality.
(2) Suppose that R ∈ (ρ, σ). Let J ∈ K with J < I. If A ∈ A(J), then

Rβq(A) = Rρ(A) = σ(A)R = βq(A)R,

so R ∈ A(J)′. With the same reasoning, the same holds when J > I. Hence we conclude that R ∈ A(I⊥)′ =
A(I).
�

Later we will consider two subcategories of G− Loc(A) that are G-crossed, see also Definition 3.2.8 below,
and in order to define a braiding on these two G-crossed categories we will need the following lemma, which
is a generalization of Lemma 2.14 in [78].

Lemma 3.2.6 Assume that (H,A, β) is a G-net of von Neumann algebras satisfying Haag duality and
strong additivity. Let I, J ∈ K with I < J , let ρ be (q, r)-localized in I and let ρ′ be (q′, r′)-localized in J . If
rq′ = q′r, then

ρ⊗ ρ′ = βr(ρ
′)⊗ βq′−1(ρ) (3.2.1)

ρ′ ⊗ ρ = βq′(ρ)⊗ βr−1(ρ′). (3.2.2)

Proof. Write I = (a, b) and J = (c, d). Choose m < a and M > d and write K := (m, c) and L := (b,M).
It is enough to show that the equations hold on both A(K) and A(L), which is what we will do now.
(1) If A ∈ A(K), then

(ρ⊗ ρ′)(A) = ρ(ρ′(A)) = ρ(βq′(A)) = (βq′ ◦ βq′−1 ◦ ρ ◦ βρ′)(A)

= βq′ [βq′−1(ρ)(A)] = (βr ◦ βq′ ◦ βr−1)[βq′−1(ρ)(A)]

11Note that this is different from the category G−Loc(A) as defined in [78]. The G−Loc(A) in [78] is equal to (
⊔
q∈GG−

Loc(A)e,q)⊕.
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= (βr ◦ ρ′ ◦ βr−1)(βq′−1(ρ)(A)) = (βr(ρ
′)⊗ βq′−1(ρ))(A)

and if A ∈ A(L), then

(ρ⊗ ρ′)(A) = ρ(ρ′(A)) = βr(ρ
′(A)) = (βr ◦ ρ′ ◦ βr−1 ◦ βr)(A)

= βr(ρ
′)[βr(A)] = βr(ρ

′)[(βq′−1 ◦ βr ◦ βq′)(A)]

= βr(ρ
′)[(βq′−1 ◦ ρ ◦ βq′)(A)] = βr(ρ

′)[βq′−1(ρ)(A)]

= (βr(ρ
′)⊗ βq′−1(ρ))(A).

(2) If A ∈ A(K), then

(ρ′ ⊗ ρ)(A) = ρ′(ρ(A)) = βq′(ρ(A)) = (βq′ ◦ ρ ◦ βq′−1 ◦ βq′)(A)

= βq′(ρ)[βq′(A)] = βq′(ρ)[(βr−1 ◦ βq′ ◦ βr)(A)]

= βq′(ρ)[(βr−1 ◦ ρ′ ◦ βr)(A)] = βq′(ρ)[βr−1(ρ′)(A)]

= (βq′(ρ)⊗ βr−1(ρ′))(A)

and if A ∈ A(L), then

(ρ′ ⊗ ρ)(A) = ρ′(ρ(A)) = ρ′(βr(A)) = (βr ◦ βr−1 ◦ ρ′ ◦ βr)(A)

= βr[βr−1(ρ′)(A)] = (βq′ ◦ βr ◦ βq′−1)[βr−1(ρ)(A)]

= (βq′ ◦ ρ ◦ βq′−1)[βr−1(ρ′)(A)] = (βq′(ρ)⊗ βr−1(ρ′))(A).

�

Definition 3.2.7 Let (H,A, β) be a G-net of von Neumann algebras satisfying Haag duality and strong
additivity. Suppose that ρ1 ∈ G− Loc(A)q1,r1 , ρ2 ∈ G− Loc(A)q2,r2 and let I, J ∈ K with I < J .

(1) Let ρ̃1 ∈ G − Loc(A)q1,r1(I) and ρ̃2 ∈ G − Loc(A)q2,r2(J), together with unitaries Uj ∈ (ρj , ρ̃j) for
j ∈ {1, 2}. If r1q2 = q2r1, then we define the isomorphism Clρ1,ρ2

: ρ1 ⊗ ρ2 → βr1(ρ2)⊗ βq−1
2

(ρ1) to be

the composition

ρ1 ⊗ ρ2 ρ̃1 ⊗ ρ̃2 = βr1(ρ̃2)⊗ βq−1
2

(ρ̃1) βr1(ρ2)⊗ βq−1
2

(ρ1),
U1×U2

βr1 (U2)∗×β
q
−1
2

(U1)∗

i.e. Clρ1,ρ2
= [βr1(U2)∗ × βq−1

2
(U1)∗] ◦ [U1 × U2].

(2) Let ρ̂1 ∈ G − Loc(A)q1,r1(J) and ρ̂2 ∈ G − Loc(A)q2,r2(I), together with unitaries Vj ∈ (ρj , ρ̂j) for
j ∈ {1, 2}. If q1r2 = r2q1, then we define the isomorphism Crρ1,ρ2

: ρ1 ⊗ ρ2 → βq1(ρ2)⊗ βr−1
2

(ρ1) to be

the composition

ρ1 ⊗ ρ2 ρ̂1 ⊗ ρ̂2 = βq1(ρ̂2)⊗ βr−1
2

(ρ̂1) βq1(ρ2)⊗ βr−1
2

(ρ1),
V1×V2

βq1 (V2)∗×β
r
−1
2

(V1)∗

i.e. Crρ1,ρ2
= [βq1(V2)∗ × βr−1

2
(V1)∗] ◦ [V1 × V2].

Actually, we should have written these isomorphisms as Clρ1,ρ2
(I, J, ρ̃j , Uj) and Crρ1,ρ2

(I, J, ρ̂j , Vj), showing
that there were some choices involved. However, by using some standard arguments it can be shown that
these isomorphisms do not depend on these particular choices. This justifies our notation.

Definition 3.2.8 If (H,A, β) is a G-net of von Neumann algebras, then for each q ∈ G we define the
categories G− LocL(A)q := G− Loc(A)q,e and G− LocR(A)q := G− Loc(A)e,q and

G− LocL(A) :=
⊔
q∈G

G− LocL(A)q
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G− LocR(A) :=
⊔
q∈G

G− LocR(A)q.

We also write Loc(A) to denote G − Loc(A)e,e = G − LocL(A)e = G − LocR(A)e. The objects in Loc(A)
are also called DHR endomorphisms12.

The categories G − LocL(A) and G − LocR(A) are obviously G-crossed. We will now use the expressions
Cl and Cr to define braidings on these two G-crossed categories.

Theorem 3.2.9 Let (H,A) be a G-net of von Neumann algebras satisfying Haag duality and strong addi-
tivity. Then G− LocL(A) and G− LocR(A) are G-crossed categories. Furthermore, both categories can be
equipped with a braiding in the following way.

(1) On G− LocL(A) we can define a braiding cL,r and a braiding of the second kind cL,l by

cL,rρ,σ := Crρ,σ

cL,lρ,σ := Clρ,σ

(2) On G− LocR(A) we can define a braiding cR,l and a braiding of the second kind cR,r by

cR,lρ,σ = Clρ,σ

cR,rρ,σ = Crρ,σ.

We will write G−Loc(L,r)(A) to denote the category G−LocL(A) equipped with the braiding cL,r. Likewise

we also introduce the notation G − Loc(L,l)(A), G − Loc(R,l)(A) and G − Loc(R,r)(A). Note that G −
Loc(L,r)(A)e and G − Loc(R,r)(A)e are both equal to Loc(A) equipped with the same braiding, which we

will denote by cr. Similarly, G − Loc(L,l)(A)e and G − Loc(R,l)(A)e are both equal to Loc(A) equipped
with the same braiding, which will be denoted by cl. These two braidings on Loc(A) are related by

clρ,σ = (crσ,ρ)
−1. We will often write Locl/r(A) if we want to emphasize which of these two braidings on

Loc(A) we are considering. It thus follows that G−Loc(L,r)(A) and G−Loc(R,r)(A) are braided G-crossed

extensions of Locr(A) and that G − Loc(L,l)(A) and G − Loc(R,l)(A) are braided G-crossed extensions of
Locl(A).

3.2.2 The categorical relation between G− Loc(L,r)(A) and G− Loc(R,l)(A)

In this subsection we will show that the braided G-crossed structures of the categories G − Loc(L,r)(A)

and G− Loc(R,l)(A) can be transported to one another. When comparing the two structures on the same
category, we find that they are the mirror image of one another. In fact, the results in this subsection
motivated us to define the notion of a mirror image of a braided G-crossed category, as we did in Subsection
2.8.5.

Let (H,A, β) be a G-net of von Neumann algebras satisfying Haag duality and strong additivity. If
q ∈ G and ρ ∈ G − LocL(A)q, then it is clear that Sq(ρ) := ρ ◦ βq−1 ∈ G − LocR(A)q−1 , and the same

is true if we interchange L and R. Similarly, if ρ, σ ∈ G − LocL(A)q and S ∈ (ρ, σ), then Sq(S) := S ∈
(Sq(ρ),Sq(σ)), and again the same is true if we interchange L and R. This obviously defines functors Sq

between G− LocL(A)q and G− LocR(A)q−1 for each q ∈ G, and together all {Sq}q∈G constitute a functor

S between G − LocL(A) and G − LocR(A). We can use these functors S to transport the G-crossed
structure from one of these two categories to the other. We will only show how to transport the G-crossed
structure of G− LocL(A) to G− LocR(A); the opposite direction goes similarly.

12Here DHR stands for Doplicher-Haag-Roberts. These endomorphisms were first studied in the series of papers [18], [19],
[20] and [21].
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We start with the G-grading. It is clear that if ρ ∈ G−LocR(A)q, then the degree of Sq(ρ) is q−1. Hence

if we transport the degree ∂ of G− LocL(A) to G− LocR(A) we obtain a new degree ∂• on G− LocR(A)
by defining

∂•(ρ) := ∂(ρ)−1. (3.2.3)

We will now consider the tensor product. Note that both the tensor product and group action on the
categories G − LocL(A) and G − LocR(A) are restrictions of the tensor product and group action on
End(A), so there is no need to label them by ⊗L/R or βL/R. If ρ ∈ G− LocR(A)q and σ ∈ G− LocR(A)r,

then their images in G−LocL(A) under the functor S are ρ ◦βq−1 and σ ◦βr−1 . We then take their tensor

product in G− LocL(A) to obtain

ρ ◦ βq−1 ◦ σ ◦ βr−1 = ρ ◦ βq−1 ◦ σ ◦ βr−1 ◦ βrq ◦ β(rq)−1 = ρ ◦ βq−1 ◦ σ ◦ βq−1 ◦ β(rq)−1

= Srq(ρ⊗ βq(σ))

and then we transport this result back to G− LocR(A) to obtain a new tensor product

ρ • σ := ρ⊗ βq(σ) (3.2.4)

on the objects of G − LocR(A). If S ∈ (ρ1, ρ2) and T ∈ (σ1, σ2) with ρj ∈ G − LocR(A)q and σj ∈
G− LocR(A), then

S (S)×S (T ) = S(ρ1 ◦ βq−1)(T ) = Sρ1(βq−1(T )) = S (S × βq−1(T )),

so when we transport back to G− LocR(A) we obtain the new tensor product

S • T := S × βq−1(T ) (3.2.5)

on the morphisms of G−LocR(A). This is the tensor product of G−LocL(A) transported to G−LocR(A).
If q ∈ G and ρ ∈ G− LocR(A)r, then for the group action on the objects we find

βq(Sr(ρ)) = βq ◦ ρ ◦ βr−1 ◦ βq−1 = βq ◦ ρ ◦ βq−1 ◦ β(qrq−1)−1 = Sqrq−1(βq(ρ)),

and if q ∈ G and S is a morphism in G− LocR(A)r, then

βq(Sr(S)) = βq(S) = Sqrq−1(βq(S)),

so the group action of G − LocL(A) transported to G − LocR(A) is just the original group action on

G − LocR(A). Finally, we will consider the braiding. Let ρ ∈ G − Loc(R,l)(A)q and σ ∈ G − Loc(R,l)(A)r.

Then the braiding of S (ρ) and S (σ) in G− Loc(L,r)(A) is given by

cL,rS (ρ),S (σ) = CrS (ρ),S (σ) = Crρ◦βq−1 ,σ◦βr−1
= Crρ,βq−1 (σ) = cR,rρ,βq−1 (σ)

= (cR,lβq−1 (σ),βq−1r−1q(ρ)
)−1.

We will explain the third step in some detail, because it is non-trivial. Choose ρ̃ ∈ G− LocR(A)q localized

in J and σ̃ ∈ G − LocR(A)r localized in I with I < J , together with unitaries V1 ∈ (ρ, ρ̃) and V2 ∈ (σ, σ̃).
Then ρ̃◦βq−1 ∈ G−LocL(A)q−1 and σ̃ ◦βr−1 ∈ G−LocL(A)r−1 are localized in J and I, respectively. Also,
for any A ∈ A we then have ρ̃(βq−1(A)) = V1ρ(βq−1(A))V ∗1 , so V1 ∈ (ρ ◦ βq−1 , ρ̃ ◦ βq−1). Similarly, we also
have V2 ∈ (σ ◦ βr−1 , σ̃ ◦ βr−1). Thus we can use V1 and V2 to compute Crρ◦βq−1 ,σ◦βr−1

. Namely,

Crρ◦βq−1 ,σ◦βr−1
= [βq−1(V2)× βe−1(V1)]∗ ◦ [V1 × V2]
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= {βq−1(V2)[βq−1(σ ◦ βr−1)](V1)}∗V1(ρ ◦ βq−1)(V2)

= [(βq−1 ◦ σ ◦ βr−1 ◦ βq)(V1)]∗βq−1(V2)∗V1ρ(βq−1(V2)).

On the other hand, since βq−1(V2) ∈ (βq−1(σ), βq−1(σ̃)), we can use V1 and W2 := βq−1(V2) to compute

Crρ,βq−1 (σ) = [βe(W2)× β(qrq−1)−1(V1)]∗ ◦ [V1 ×W2]

= [βq−1(V2)× βqr−1q−1(V1)]∗ ◦ [V1 × βq−1(V2)]

= {βq−1(V2)βq−1(σ)(βqr−1q−1(V1))}∗V1ρ(βq−1(V2))

= [(βq−1 ◦ σ ◦ βr−1 ◦ βq)(V1)]∗βq−1(V2)∗V1ρ(βq−1(V2)).

So the two expressions are indeed equal. Thus we conclude that the braiding of G− LocL(A) transported
to G− LocR(A) is

(cR,lρ,σ)• = (cR,lβq−1 (σ),βq−1r−1q(ρ)
)−1. (3.2.6)

We have thus defined a new braided G-crossed structure on G − LocR(A) by transporting the braided
G-crossed category from G− LocL(A) to G− LocR(A). The tensor product is given by (3.2.4) and (3.2.5),
the G-grading is given by (3.2.3), the braiding is given by (3.2.6) and the G-action remains unchanged.
Comparing this with our discussion in Subsection 2.8.5 we see that this new braided G-crossed structure on
G− LocR(A) gives us precisely the mirror image of G− LocR(A).

3.2.3 Group actions on quantum field theories

Originally, the purpose of this subsection was to only state Theorem 3.2.20 below (together with the needed
definitions), which was proven in Müger’s paper [78]. One of the statements in this theorem is that the
braided G-crossed category of G-localized endomorphisms of an AQFT with a G-action is equivalent to the
crossed product of the category of DHR endomorphisms of the orbifold theory with a certain symmetric
subcategory thereof. This equivalence could be useful in relating the categories in AQFT to our abstract
categorical results in Chapter 4. Unfortunately, we were not able to accomplish such a relation based on
this equivalence (although we did find some other relations that were not related to this equivalence), so
in this sense the current subsection is somewhat independent of the rest of the thesis. However, we have
decided to include this subsection because an important part of the content can be considered as being new.
Namely, while studying [78] we decided to reformulate it in the language of [65], which led us to new proofs
of some of the results in [78]. In fact, our proof of Theorem 3.2.20 strongly relies on our Lemma 3.2.14,
which is not found in [78] (or elsewhere, as far as we know).

So far we have only constructed the categories G − LocL(A) and G − LocR(A) as braided G-crossed
categories. For this we did not need much more than the assumption that (H,A, β) is a G-net of von Neu-
mann algebras satisfying Haag duality and strong additivity. To obtain further results on these categories,
we need to make some additional assumptions.

Definition 3.2.10 A quantum field theory (QFT for short) on R is a triple (H,A,Ω), whereH is a separable
Hilbert space, (H,A) is a net of von Neumann algebras and Ω ∈ H is a unit vector, satisfying the following
additional properties:

• for each I ∈ K the von Neumann algebra A(I) is a type III factor;
• for each I ∈ K the vector Ω ∈ H is both cyclic and separating for A(I);
• the net (H,A) satisfies locality, irreducibility, strong additivity and Haag duality.

If G is a topological group, then a G-action on a QFT (H,A,Ω) on R is a strongly continuous unitary
representation V : G→ B(H) that induces a G-action β on the net (H,A) as in Definition 3.1.5, satisfying
V (q)Ω = Ω for all q ∈ G.
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If (H,A,Ω, V ) is a QFT with G-action and if ρ ∈ G − Loc(A)q,r is (q, r)-localized in I ∈ K, then we have
already seen that ρ(A(I)) ⊂ A(I). Because we now also have that A(I) is a type III factor on a separable
Hilbert space and because unital ∗-endomorphisms thereof are automatically normal, the restriction of ρ
to A(I) is a normal ∗-endomorphism of A(I), see Lemma 2.12 of [78]. Hence we can consider the index
[A(I) : ρ(A(I))] ∈ [1,∞] of the subfactor ρ(A(I)) ⊂ A(I). This index is independent of the choice of I ∈ K
as long as I is chosen such that ρ is (q, r)-localized in A(I). Hence we can define

Ind(ρ) := [A(I) : ρ(A(I))]

where I ∈ K is chosen so that ρ is localized in I. The following useful lemma can be found as Lemma 2.4
in [9].

Lemma 3.2.11 Let (H,A,Ω) be a QFT on R and let ρ, σ ∈ Loc(A)(I). Then13

HomA(ρ, σ) = HomA(I)(ρ|A(I), σ|A(I)).

As can be seen in [9], the proof of this lemma is based on strong additivity and on the fact that the
restrictions of ρ and σ to A(I) are normal. The content of the lemma is often formulated informally as the
statement that local intertwiners coincide with global intertwiners.

The full subcategory of G−Loc(A) determined by the objects with finite index is denoted by G−Locf (A).

Similarly, we also define G − LocLf (A) and G − LocRf (A). The following important result can be found as
Proposition 2.19 in [78], which also includes a detailed proof.

Proposition 3.2.12 Let (H,A,Ω, V ) be a QFT with G-action. Then G − Loc
(L,l)/(L,r)
f (A) and G −

Loc
(R,l)/(R,r)
f (A) are braided G-crossed TC∗s. Furthermore, for any ρ ∈ G − LocL/R(A) we have d(ρ) =

Ind(ρ)2.

In order to assure that this rather large subsection is actually readable, we have subdivided it into smaller
subsubsections. In this way the reader will have a better overview of the content.

Application of subfactor theory to QFT

We will now begin our discussion on how the results on type III subfactors can be applied to group actions
on a QFT. If (H,A,Ω, V ) is a QFT with G-action, then we define

HG := {Ψ ∈ H : V (q)Ψ = Ψ for all q ∈ G}

and for each I ∈ K we define

A(I)G := {A ∈ A(I) : βq(A) = A for all q ∈ G}.

We then introduce two new nets (H,AG) and (HG,B) of von Neumann algebras by defining

AG(I) := A(I)G

B(I) := A(I)G|HG

for all I ∈ K. Observe that the operators in B(I) indeed map HG into itself and that Ω ∈ HG. It is not
necessarily true that (HG,B,Ω) is automatically again a QFT on R. Therefore, in the sequel we will simply
assume that this is the case. Furthermore, we will always assume that G is compact. Thus:

13To prevent any possible confusion in this subsection, we will often replace our earlier simplistic notation (ρ, σ) with notation
such as HomA(ρ, σ) to indicate that we are considering the set of intertwiners from ρ to σ in the category End(A). An even
more precise notation would be HomEnd(A)(ρ, σ), but we think that this is a bit exaggerative.
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From now on we assume that we are given a QFT (H,A,Ω, V ) on R with action V of a compact group
G such that (HG,B,Ω) is again a QFT on R.

Although our assumption concerns the net B, we will be mainly interested in the net AG because we want
to apply the results of Subsection 3.1.5 on type III subfactors to the present setting (and only AG gives rise
to a type III subfactor). We thus want to translate our assumption on B to certain properties of AG, which
will be done by introducing the ∗-homomorphism

π0 : AG → B
A 7→ A|HG ,

Considered as a representation of AG on HG, π0 is unitarily equivalent to the GNS representation of AG
corresponding to the state ω determined by the unit vector Ω. Because Ω is separating for AG, it follows
that π0 is faithful and can therefore be interpreted as a ∗-isomorphism from AG to B. In particular, we have
B(I) = π0(AG(I)) and AG(I) = π−1

0 (B(I)) for all I ∈ K and each AG(I) is a type III factor. The strong
additivity of B implies that the net AG also satisfies strong additivity and Haag duality of B implies that
AG(I) = AG(I⊥)′∩AG for all I ∈ K. To each endomorphism ρ ∈ End(AG) we can assign the endomorphism
π0 ◦ ρ ◦ π−1

0 ∈ End(B). In fact, the assignments A 7→ π0(A) and ρ 7→ π0 ◦ ρ ◦ π−1
0 establish a strict tensor

equivalence
Π0 : End(AG)→ End(B)

that is bijective on the objects (and thus invertible). Now suppose that ρ ∈ Loc(AG)(I) for some I ∈ K.
Then it is clear that Π0(ρ) ∈ End(B) is also localized in I, i.e. that it acts trivially on B(I⊥). If J ∈ K,
then by transportability of ρ we can find a unitary u ∈ AG such that ρ̃ := Ad(u) ◦ ρ is localized in J and
if we define U := Π0(u) ∈ B then Ad(U) ◦ Π0(ρ) is localized in J . This shows that Π0 restricts to a (strict
tensor) functor Loc(AG)→ Loc(B). We can thus use the inverse of the functor Π0 to transport the braiding
of Loc(B) to Loc(AG) and it can be shown (see the discussion in [9], after corollary 2.7) that this braiding
on Loc(AG) can be obtained in the same way from unitary charge transporters as the braiding in End(B),
despite the fact that AG does not satisfy Haag duality. These facts will be used implicitly in Proposition
3.2.16 below.

Now that the precise setting has been made clear, we will apply the theory of type III subfactors as
discussed in Subsection 3.1.5. For each I ∈ K we have an irreducible type III subfactor AG(I) ⊂ A(I) and
the vector Ω ∈ HG is cyclic and separating for both A(I) and AG(I), where in the first case cyclicity refers
to H and in the second case it refers to HG. In particular, the Jones projection is the same for every I ∈ K,
namely the projection EG onto HG. If ε : I 7→ εI is a mapping that assigns to each I ∈ K an element
εI ∈ C(A(I),AG(I)), then ε is called consistent if εJ |A(I) = εI whenever I ⊂ J , in which case we will write
ε ∈ C(A,AG). If ε ∈ C(A,AG), then it is called standard if ω ◦ εI = ω for every I ∈ K, where ω denotes
the state determined by Ω. An example of a standard ε ∈ C(A,AG) is given by

εI(A) :=

∫
G

βq(A)dµ(q)

for A ∈ A(I), where µ denotes the normalized Haar measure on G. Note that this εI must be the unique
conditional expectation in C(A(I),AG(I)) by irreducibility of AG(I) ⊂ A(I) and is therefore minimal. In
case G is finite, this formula for ε simplifies to

εI(A) =
1

|G|
∑
q∈G

βq(A) (3.2.7)

for A ∈ A(I). For any I ∈ K we also have Ind(εI) = |G|, which in particular implies that the index
[A(I) : AG(I)] equals |G| for all I ∈ K and is thus independent of the choice of I.
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From now on we will always assume that the group G is finite.

Thus, ε will always refer to (3.2.7). The next theorem, which can be found in [65], shows that we can extend
canonical endomorphisms. The intertwiners w and v in this theorem (and in the rest of this subsection)
refer to the ones in Lemma 3.1.25.

Theorem 3.2.13 Fix some interval I ∈ K.
(1) If γ is a canonical endomorphism for AG(I) ⊂ A(I), then for any J ∈ K with J ⊃ I there exists an

extension γ̃ of γ to A(J) that is a canonical endomorphism for AG(J) ⊂ A(J) and it satisfies

γ̃|A(I)′∩AG(J) = id.

We will write λ̃ = γ̃|AG(J) and λ = γ|AG(I) = λ̃|AG(I).

(2) The isometry w : ιAG(I) → λ in AG(I) which induces εI is also an isometry w : ιAG(J) → λ̃ that
induces εJ .

(3) The isometry v : ιA(I) → γ in A(I) is also an intertwiner v : ιA(J) → γ̃.14

Consequently, for each I ∈ K there exists an endomorphism γ(I) ∈ End(A) of the quasi-local algebra such
that γ(I)|A(I)′∩AG = id and such that for any J ∈ K with J ⊃ I the restriction of γ(I) to A(J) is a canonical

endomorphism for the subfactor AG(J) ⊂ A(J). In particular we have that

γ(I)|AG(I⊥) = id.

If I1, I2 ∈ K, then γ(I1) and γ(I2) are related by conjugation by a unitary that can be chosen in AG(K) for
any K ∈ K with K ⊃ I1 ∪ I2. If for I ∈ K we define λ(I) ∈ End(AG) by

λ(I) := γ(I)|AG ,

then λ(I) ∈ Loc(AG) is localized in I and there is an isometry w : ιAG(I) → λ(I) in AG(I) which induces ε

according to εJ(A) = w∗γ(I)(A)w for any J ⊃ I. We also have an isometry v : ιA(I) → γ(I) in A(I) which

satisfies w∗v = |G|−1/21 = w∗γ(I)(v). Hence ε(vv∗) = w∗γ(I)(vv∗)w = |G|−11. According to equation
(3.1.11), if J ∈ K with J ⊃ I, then any A ∈ A(J) can be written uniquely as a product of an element in
AG(J) and v, namely

A = |G|ε(Av∗)v.
In other words, if J ∈ K with J ⊃ I then the local algebra A(J) is generated by AG(J) and the element
v ∈ A(I), where I ∈ K was chosen to define γ(I) ∈ End(A) and v : ιA(I) → γ(I)|A(I) is the intertwiner in
A(I) that comes with the finiteness of Ind(ε) as discussed before.

Charged intertwiners and the categories S and H

Given any ρ ∈ Loc(AG) we say that ψ ∈ A is a charged intertwiner for ρ if

ψA = ρ(A)ψ (3.2.8)

for all A ∈ AG. In case ρ is localized in I, we have ψ ∈ A(I). The set of all charged intertwiners for ρ is
denoted by Hρ, which is obviously a C-vector space. By irreducibility of AG(I) ⊂ A(I), for any ψ1, ψ2 ∈Hρ

we have ψ∗2ψ1 ∈ C1 and we can therefore define a sesquilinear map on Hρ by 〈ψ′, ψ〉1 = ψ∗ψ′, which is an
inner product that makes Hρ into a Hilbert space. We mention that not every ρ ∈ Loc(AG) has non-zero
charged intertwiners, but those ρ ∈ Locf (AG) for which Hρ is non-trivial will be very important to us.

14In the more general setting of [65], where ε is any standard element in C(M,N) for a ’quantum field theoretical net of
subfactors’ N ⊂M , this part of the theorem implies that Ind(εI) = Ind(εJ ) by Lemma 3.1.25 (in case Ind(εI) <∞), showing
that [A(I) : AG(I)] = [A(J) : AG(J)].
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From now on we will write S to denote the full subcategory of Locf (AG) determined by all objects
σ ∈ Locf (AG) for which Hσ is non-trivial.

It can be shown that S is a symmetric tensor ∗-subcategory of the BTC∗ Locf (AG), so S is an STC∗.
We now define a category H as follows. The set of objects of H is defined to be {Hσ : σ ∈ S} and if

Hσ,Hσ′ ∈ H, then we define

HomH(Hσ,Hσ′) := {T ∈ AG : THσ ⊂Hσ′}

and the composition of morphisms is simply defined as multiplication in AG. The Hilbert spaces Hσ are
all finite-dimensional with dimension dim(Hσ) = d(σ). Thus, if σ ∈ S and if {ψiσ}i is an orthonormal basis
for Hσ then

∑
i ψ

i
σψ

i
σ
∗

= 1 and it follows from (3.2.8) that σ can be written as

σ(A) =
∑
i

σ(A)ψiσψ
i
σ

∗
=
∑
i

ψiσAψ
i
σ

∗

for A ∈ AG. We now claim that HomH(Hσ,Hσ′) = HomAG(σ, σ′). Namely, if T ∈ HomH(Hσ,Hσ′), then
for any B ∈ AG and ψ ∈ Hσ we have σ′(B)Tψ = TψB = Tσ(B)ψ, where in the first step we used that
Tψ ∈Hσ′ . So if we take an orthonormal basis {ψiσ}i of Hσ we get

σ′(B)T =
∑
i

σ′(B)Tψiσψ
i
σ

∗
=
∑
i

Tσ(B)ψiσψ
i
σ

∗
= Tσ(B).

Conversely, if S ∈ HomAG(σ, σ′), then for for any B ∈ AG and ψ ∈Hσ we have SψB = Sσ(B)ψ = σ′(B)Sψ.
This proves our claim and implies that there exists a fully faithful functor15

S → H

given on the objects by σ 7→ Hσ and on the morphisms by the identity map T 7→ T . The category
H becomes a strict tensor category with unit object Hι = C1 and with tensor product on the objects
given by Hσ1 ⊗ Hσ2 := Hσ1⊗σ2 and on the morphisms given by the tensor product of morphisms in
End(AG). It is trivial to see that the functor S → H is a tensor functor. An easy computation shows that
Hσ1

Hσ2
⊂Hσ1⊗σ2

and that if {ψiσ1
}i and {ψiσ2

}i are orthonormal bases then the elements {ψiσ1
ψjσ2
}i,j are

mutually orthonormal and hence form an orthonormal basis for Hσ1⊗σ2
because d(σ1 ⊗ σ2) = d(σ1)d(σ2).

Thus Hσ1⊗σ2
can really be interpreted as the tensor product of Hσ1

and Hσ2
in the sense of Hilbert spaces.

The crucial fact about these Hilbert spaces Hσ is that they carry a representations of G. If q ∈ G and
ψ ∈ Hσ with σ ∈ S, then for any A ∈ AG we have βq(ψ)A = βq(ψA) = βq(σ(A)ψ) = σ(A)βq(ψ), so
βq(ψ) ∈Hρ. By linearity of βq, we thus have a representation Vσ of G on Hσ given by

Vσ(q)ψ := βq(ψ).

For any q ∈ G and ψ1, ψ2 ∈Hσ we have 〈Vσ(q)ψ1, Vσ(q)ψ2〉 = βq(ψ
∗
2ψ1) = 〈ψ1, ψ2〉, so Vσ(q) is an invertible

isometry on the Hilbert space Hσ for any q ∈ G, and hence (Hσ, Vσ) is a unitary representation of G. Also,
if T ∈ HomS(Hσ,Hσ′), then for any q ∈ G and ψ ∈Hσ we have

TVσ(q)ψ = Tβq(ψ) = βq(Tψ) = Vσ′(q)Tψ,

which implies that TVσ(q) = Vσ′(q)T . Thus if we interpret T as a map Hσ →Hσ′ given by ψ 7→ Tψ, then
T ∈ HomRepf (G)((Hσ, Vσ), (Hσ′ , Vσ′)). In this way we obtain a fully faithful tensor functor S → Repf (G),
which can be shown to be essentially surjective and even an equivalence of STC∗s.

15We would like to emphasize that H is not a full subcategory of the category of finite-dimensional Hilbert spaces, because
it has less morphisms. This will become clear later on.
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The Frobenius algebra λ

According to equation (3.1.12) the canonical endomorphism γ(I) ∈ End(A) obtained from an interval I ∈ K
can be expressed as

γ(I)(A) =
∑
q∈G

βq(vAv
∗) =

∑
q∈G

vqβq(A)v∗q ,

where we have introduced the notation vq := βq(v) ∈ A(I). The equation holds for all A ∈ A(J) with J ∈ K
and J ⊃ I, and hence for all A ∈ A. Because v∗qvq = 1βq ∈ EndA(βq) and because 1 = γ(I)(1) =

∑
q∈G vqv

∗
q ,

this formula for γ(I) shows that

γ(I) ∼=
⊕
q∈G

βq

in the category End(A). Restricting to AG we obtain the formula

λ(I)(B) =
∑
q∈G

vqBv
∗
q

for the dual canonical endomorphism, which immediately implies that {vq}q∈G forms an orthonormal basis
for Hλ. To simplify the expressions, we will now write λ rather than λ(I). The representation Vλ of G on
Hλ is given by Vλ(q)vr = βq(vr) = vqr, which is precisely the regular representation of G. We can give
the regular representation (Hλ, Vλ) the structure of a commutative ∗-Frobenius algebra by defining its unit
η : (Hι, Vι)→ (Hλ, Vλ) by

1 7→
√
κ2√
|G|

∑
q∈G

vq

and its multiplication µ : (Hλ, Vλ)⊗ (Hλ, Vλ)→ (Hλ, Vλ) by

vqvr 7→
√
κ1δq,rvq

for some κ1, κ2 ∈ R>0 with κ1κ2 = |G|. The group Aut∗((Hλ, Vλ), µ, η) of unitary Frobenius automorphisms
can be identified with G. Namely, these unitaries are of the form φq : vr 7→ vqr. Under the functor
S → Repf (G) the Frobenius structure on λ, with unit

√
κ2w and multiplication

√
κ1γ(v)∗, corresponds

precisely to the Frobenius structure of (Hλ, Vλ) because we have

√
κ2w1 =

√
κ2Ind(ε)1/2ε(v) =

√
κ2|G|1/2

1

|G|
∑
q∈G

βq(v) =

√
κ2√
|G|

∑
q∈G

vq

and √
κ1γ(v)∗vqvr =

√
κ1βq(γ(v∗)v)vr =

√
κ1βq(vv

∗)vr =
√
κ1vqv

∗
qvr =

√
κ1vqδq,r.

This implies in particular that we can identify Aut∗(λ,
√
κ1γ(v)∗,

√
κ2w) with G, but we will be a bit

more explicit about this. Of course we can identify any unitary Frobenius automorphism of the regular
representation of G (as characterized above) with a unitary Frobenius automorphism of λ, but as we will
see in the following lemma there is also a more direct way to obtain them, which will be necessary later.
In what follows we will always choose the normalization κ1 = |G| and κ2 = 1, so the ∗-Frobenius structure
(λ, µλ, ηλ) will always be given by µλ =

√
|G|γ(v)∗ and ηλ = w.

Lemma 3.2.14 Let I ∈ K and let γ(I) and λ(I) be as before. There exists a group isomorphism

G→ Aut∗(λ(I))op

q 7→ Dq

such that the G-action on A ∈ A(J) with J ⊃ I can be expressed as βq(A) = BDqv, where B = |G|ε(Av∗)v ∈
AG(J) is the unique element such that A = Bv.
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Proof. Recall that each A ∈ A(I) can be written as Bv for some uniquely determined B ∈ AG(I). In
particular this means that for each q ∈ G there exists a unique Dq ∈ AG(I) such that

βq(v) = Dqv.

Obviously, we have De = 1. For q, r ∈ G we have Dqrv = βqr(v) = βq(Drv) = Drβq(v) = DrDqv, so
Dqr = DrDq. Thus q 7→ Dq is a homomorphism G→ AG(I)op. In particular we have Dq−1 = D−1

q . Before

we can prove that Dq ∈ Aut∗(λ(I)) for all q ∈ G, we first have to calculate some expressions involving the
Dq and v. The intertwining property of v gives vDq = γ(Dq)v = λ(Dq)v and thus

vrDq = βr(vDq) = λ(Dq)vr.

To see how the Dq act on v∗ we note that Dqv
∗v = v∗vDq = v∗γ(Dq)v = v∗λ(Dq)v, which implies that

Dqv
∗ = v∗λ(Dq) and hence

Dqv
∗
r = v∗rλ(Dq).

Also, βq(v
∗)Dqv = βq(v

∗v) = 1 = v∗v, which implies that βq(v
∗)Dq = v∗. Letting βq−1 act on both sides,

we get v∗Dq = βq−1(v∗) and hence
v∗rDq = βrq−1(v∗).

Using this, we find that D∗qv = (v∗Dq)
∗ = βq−1(v∗)∗ = Dq−1v = D−1

q v, showing that D∗q = D−1
q , i.e. that

the Dq are unitary.
We are now ready to show that these unitaries Dq are automorphisms of the Frobenius algebra λ. For

any B ∈ AG(I) we have

λ(B)Dq =
∑
r∈G

vrBv
∗
rDq =

∑
r∈G

vrBβrq−1(v∗) =
∑
r∈G

βr(v)Bβrq−1(v∗)

=
∑
r∈G

βrq(v)Bβr(v
∗) =

∑
r∈G

βrq(v)Bv∗r =
∑
r∈G

DqvrBv
∗
r = Dqλ(B),

so the Dq are indeed self-intertwiners of λ. Next, we have

v∗Dqw = βq−1(v∗)w = βq−1(v∗w) = Ind(ε)−1/21 = Ind(ε)−1/2v∗ε(v) = v∗w,

which shows that Dqw = w, i.e. the Dq preserve the unit. Finally, we have

Dqλ(Dq)γ(v)v = Dqλ(Dq)vv = DqvDqv = βq(vv) = βq(γ(v)v) = γ(v)βq(v) = γ(v)Dqv,

so we also have Dqλ(Dq)γ(v) = γ(v)Dq, which means precisely that the Dq are comultiplicative. We
have thus proved that the Dq are unitary Frobenius automorphisms of λ. In fact, these are all of them,
because they are all different and we have seen before that the group of unitary Frobenius automorphisms
is isomorphic to G. The relation between these Dq ∈ Aut∗(λ(I)) and the G-action on A(I) is now evident.
Namely, the G-action on an element A = Bv ∈ A(I) can be expressed in terms of these Dq as

βq(A) = Bβq(v) = BDqv.

�

Observe that we have just shown that unitary Frobenius automorphisms of λ completely characterize the
G-action on A, which will be used later. Of course, any A ∈ A(J) can also be written uniquely as v∗B for
some B ∈ AG(J). The G-action can thus also be expressed as

βq(A) = βq(v)∗B = v∗D∗qB = v∗D−1
q B,

but we will not need this. The lemma above will be used later to define a G-crossed structure on the
category (Locf (AG) o S, cl/r)2, rather than a GS -crossed structure with GS = Aut∗(λ).
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α-induction

We now want to extend objects in Loc(AG) to endomorphisms of A by a procedure that is known by the
name of α-induction. Before we do this, we first state the following useful lemma:

Lemma 3.2.15 Let I ∈ K and write γ = γ(I) and λ = λ(I). We have the identities

c
l/r
λ,λv

2 = c
l/r
λ,λ

−1
v2 = v2, (3.2.9)

c
l/r
λ,λγ(v) = c

l/r
λ,λ

−1
γ(v) = γ(v). (3.2.10)

Also, if ρ ∈ Loc(AG) then

[Ad(c
l/r
ρ,λ) ◦ ρ ◦ γ](v) = λ(c

l/r
ρ,λ

−1
)γ(v). (3.2.11)

For the easy proof of (3.2.9) and (3.2.10) we refer to either [65] (Corollary 4.4) or [9] (Lemma 3.4). The
equation (3.2.11) is proven in Lemma 3.1 of [9], but can also be obtained by noticing that it can be restated

categorically as [c
l/r
ρ,λ × idλ] ◦ [idρ × γ(v)] ◦ cl/rρ,λ

−1
= [idλ × cl/rρ,λ

−1
] ◦ [γ(v) × idρ] and by using the fact that

γ(v) ∈ HomEnd(AG)(λ, λ⊗ λ).

Proposition 3.2.16 (α-induction) Let ρ ∈ Loc(AG) be localized in J = (a, b) ∈ K.
(1) The endomorphisms El(ρ), Er(ρ) ∈ End(A) given by16

El/r(ρ) := γ(J)−1
◦Ad(c

l/r

ρ,λ(J)) ◦ ρ ◦ γ(J)

are extensions of ρ and we have El/r(ρ) ∈ End(A)G.
(2) El(ρ) acts trivially on A((b,∞)) and Er(ρ) acts trivially on A((−∞, a)).
(3) If ρ1, ρ2 ∈ Loc(AG) and S ∈ HomLoc(AG)(ρ1, ρ2) then also S ∈ HomEnd(A)(E

l/r(ρ1), El/r(ρ2)) and

hence S ∈ HomEnd(A)G(El/r(ρ1), El/r(ρ2)).

Proof. (1) Let J1 ∈ K and A ∈ A(J1). We will show that El/r(ρ)(A) is well-defined. Choose J2 ∈ K
such that J2 ⊃ J ∪ J1; in particular, A ∈ A(J2). By transportability of ρ we can choose Kl,Kr ∈ K
with Kl < J2 < Kr together with ρl ∈ End(AG)(Kl), ρr ∈ End(AG)(Kr) and unitaries Ul ∈ (ρ, ρl) and

Ur ∈ (ρ, ρr) in AG. With these unitaries we can write the braiding as c
l/r

ρ,λ(J) = λ(J)(Ul/r)
∗Ul/r. But then(

Ad(c
l/r

ρ,λ(J)) ◦ ρ ◦ γ(J)
)

(A)

=
(

Ad(λ(J)(U∗l/r)Ul/r) ◦ ρ ◦ γ
(J)
)

(A) =
(

Ad(λ(J)(U∗l/r)) ◦ ρl/r ◦ γ
(J)
)

(A)

= λ(J)(U∗l/r)ρl/r(γ
(J)(A))λ(J)(Ul/r) = λ(J)(U∗l/r)γ

(J)(A)λ(J)(Ul/r)

= γ(J)(U∗l/rAUl/r) =
(
γ(J) ◦Ad(U∗l/r)

)
(A)

∈ γ(J)(A),

which shows that El/r(ρ)(A) is well-defined17 and that El/r(ρ)(A) = U∗l/rAUl/r. Because A ∈ A(J1) and J1

were arbitrary, we conclude that El/r(ρ) is well-defined on
⋃
K∈KA(K) and it is clearly a ∗-homomorphism.

By continuity, El/r(ρ) ∈ End(A). Because γ(J)|AG = λ(J), we get

El/r(ρ)|AG = γ(J)−1
◦Ad(c

l/r

ρ,λ(J)) ◦ ρ ◦ λ(J) = γ(J)−1
◦ λ(J) ◦ ρ = ρ,

16Because γ(J) is injective, we can consider it as a bijection onto its image. The inverse of this bijection is denoted by

γ(J)
−1

.
17This can also be derived from equation (3.2.11) by using the fact that any A ∈ A can be written as the product Bv of an

element B ∈ AG with v.
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so El/r(ρ) is indeed an extension of ρ. Note that the formula El/r(ρ)(A) = U∗l/rAUl/r implies that for each
q ∈ G we have

[βq ◦ El/r(ρ) ◦ βq−1 ](A) = βq(U
∗
l/rβq−1(A)Ul/r) = U∗l/rAUl/r = El/r(ρ)(A),

where we have used that Ul/r ∈ AG. Thus El/r(ρ) ∈ End(A)G.
(2) Now suppose that J1 ∈ K with J < J1 and let A ∈ A(J1). We thus have J = (a, b) and J1 = (c, d)

for some c, d ∈ R with b < c < d, and we define J2 = (a, d); in particular, J2 ⊃ J ∪J1. This is a special case
of the situation in part (1) of this proof, so we still have the formula El(ρ)(A) = U∗l AUl, where Ul ∈ (ρ, ρl)
is a unitary in AG(K), where K ∈ K can now be chosen such that K ⊃ Kl ∪ J and K < J1. But then
Ul and A commute with each other by locality, so El(ρ)(A) = U∗l AUl = A. This shows that El(ρ) acts
trivially on A((b,∞)). Similarly, one can show that Er(ρ) acts trivially on A((−∞, a)).

(3) Now suppose that ρ1, ρ2 ∈ Loc(AG) and S ∈ HomLoc(AG)(ρ1, ρ2). We then choose J ∈ K such that

ρ1 and ρ2 are both localized in J , so that we can use one and the same γ(J) in the expressions for El/r(ρj)
for j ∈ {1, 2}, which we will simply denote by γ in the rest of this proof (and we denote its restriction by
λ). We thus have γ(S) ∈ HomEnd(AG)(λ⊗ ρ1, λ⊗ ρ2) and hence

[γ(S)× idλ] ◦ [idλ × cl/rρ1,λ

−1
] = c

l/r
λ⊗ρ2,λ

−1
◦ [idλ × γ(S)] ◦ [c

l/r
λ,λ × idρ1

],

which can be rewritten as

γ(S)λ(c
l/r
ρ1,λ

−1
) = λ(c

l/r
ρ2,λ

−1
)c
l/r
λ,λ

−1
λ(γ(S))c

l/r
λ,λ. (3.2.12)

We now get

γ(S)[Ad(c
l/r
ρ1,λ

) ◦ ρ1 ◦ γ](v) = γ(S)λ(c
l/r
ρ1,λ

−1
)γ(v) = λ(c

l/r
ρ2,λ

−1
)c
l/r
λ,λ

−1
λ(γ(S))c

l/r
λ,λγ(v)

= λ(c
l/r
ρ2,λ

−1
)c
l/r
λ,λ

−1
λ(γ(S))γ(v) = λ(c

l/r
ρ2,λ

−1
)c
l/r
λ,λ

−1
γ(v)γ(S)

= λ(c
l/r
ρ2,λ

−1
)γ(v)γ(S) = [Ad(c

l/r
ρ2,λ

) ◦ ρ2 ◦ γ](v)γ(S),

where in the first and last step we used (3.2.11), in the second step we used (3.2.12), in the third and fifth
step we used (3.2.10) and in the fourth step we used that λ(γ(S))γ(v) = γ2(S)γ(v) = γ(γ(S)v) = γ(vS) =
γ(v)γ(S). If we now apply γ−1 to both sides, we get

S[El/r(ρ1)](v) = [El/r(ρ2)](v)S.

Together with the fact that any A ∈ A can be written as Bv for some B ∈ AG and the fact that S ∈
HomEnd(AG)(ρ1, ρ2), we obtain S ∈ HomEnd(A)G(El/r(ρ1), El/r(ρ2)).
�

Remark 3.2.17 In Theorem 3.8 of [78], for each ρ ∈ Loc(AG) an endomorphism E(ρ) was defined on
(elements like) v as E(ρ)(v) = cλ,ρv, where c refers to the left braiding cl. To understand this expression,
we observe that it follows from (3.2.11) that

El/r(ρ)(v) = c
l/r
ρ,λ

−1
v = c

r/l
λ,ρv, (3.2.13)

so we conclude that we must read the equation in [78] as Er(ρ)(v) = clλ,ρv (where we have substituted v
for the x in the equation in [78]). Indeed, the extension of ρ that is considered in [78] is supposed to act
trivially on left half-lines, which is a second indication that the extension E(ρ) in [78] is our Er(ρ) and not
El(ρ), despite the fact that cl is used in [78].
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It follows from the proposition that we obtain functors

E l/r : Loc(AG)→ End(A)G, (3.2.14)

given on the objects by El/r and on the morphisms by the inclusion AG → A. It is shown in [9] that this
is in fact a strict tensor functor. It is also clear that it is faithful and that it is injective on the objects,
since El/r(ρ) coincides with ρ on AG. Furthermore, if ρ ∈ Loc(AG) is a conjugate for ρ ∈ Loc(AG), then
El/r(ρ) ∈ End(A)G is a conjugate for El/r(ρ) ∈ End(A)G.

The next lemma and the remark following it will be essential when we want to construct the functor
K l/r in the proof of Theorem 3.2.20. The content of the lemma was inspired by the proof of Theorem 3.9
of [9].

Lemma 3.2.18 If ρ1, ρ2 ∈ Loc(AG)(I), then we have linear maps

K : HomA(I)(E
l/r(ρ1), El/r(ρ2))→ HomAG(I)(λ⊗ ρ1, ρ2)

S 7→ w∗γ(S)

and

L : HomAG(I)(λ⊗ ρ1, ρ2)→ HomA(I)(E
l/r(ρ1), El/r(ρ2))

R 7→ Rv

that satisfy K(L(R)) = |G|−1/2R and L(K(S)) = |G|−1/2S.

Proof. Let S ∈ HomA(I)(E
l/r(ρ1), El/r(ρ2)). Then w∗γ(S) ∈ AG(I) and by assumption we have S[El/r(ρ1)](A) =

[El/r(ρ2)](A)S for all A ∈ A(I). Restricting to AG(I) gives us Sρ1(B) = ρ2(B)S for all B ∈ AG(I). When
we apply γ to both sides of this equation, we get that γ(S)γ(ρ1(B)) = γ(ρ2(B))γ(S) for all B ∈ AG(I),
which can be rewritten as

γ(S)λ(ρ1(B)) = λ(ρ2(B))γ(S)

for all B ∈ AG(I). This means that γ(S) ∈ HomAG(I)(λ⊗ ρ1, λ⊗ ρ2). Using this, we now find that for each

B ∈ AG(I) we have

w∗γ(S)λ(ρ1(B)) = w∗λ(ρ2(B))γ(S) = ιAG(I)(ρ2(B))w∗γ(S) = ρ2(B)w∗γ(S),

i.e. w∗γ(S) ∈ HomAG(I)(λ⊗ ρ1, ρ2), showing that the first map is well-defined; its linearity is obvious. We

will now consider the map L. If R ∈ HomAG(I)(λ⊗ ρ1, ρ2) then Rv ∈ A(I) and for all B ∈ AG(I) we have

Rvρ1(B) = RvιA(I)(ρ1(B)) = Rγ(ρ1(B))v = Rλ(ρ1(B))v = ρ2(B)Rv,

so Rv ∈ HomAG(I)(ρ1, ρ2) and hence Rv ∈ HomA(I)(E
l/r(ρ1), El/r(ρ2)) by Proposition 3.2.16; linearity is

again obvious. Finally, if S ∈ HomA(I)(E
l/r(ρ1), El/r(ρ2)) and R ∈ HomAG(I)(λ⊗ ρ1, ρ2) then

L(K(S)) = L(w∗γ(S)) = w∗γ(S)v = w∗vS = |G|−1/2S

K(L(R)) = K(Rv) = w∗γ(Rv) = w∗γ(R)γ(v) = w∗λ(R)γ(v) = Rw∗γ(v) = |G|−1/2R.

�

Remark 3.2.19 (1) If we scale L with a factor of |G|1/2 then it becomes the inverse of K. Under this
bijective correspondence, the elements of HomA(I)(E

l/r(ρ1), El/r(ρ2)) ∩ AG(I) correspond to the elements



104 CHAPTER 3. ALGEBRAIC QUANTUM FIELD THEORY

in HomA(I)(E
l/r(ρ1), El/r(ρ2)) of the form w∗λ(S) = Sw∗ = w∗ × S.

(2) Analogous to K and L, we can also define linear maps

K ′ : HomA(I)(E
l/r(ρ1), El/r(ρ2))→ HomAG(I)(ρ1, λ⊗ ρ2)

S 7→ γ(S)w

and

L′ : HomAG(I)(ρ1, λ⊗ ρ2)→ HomA(I)(E
l/r(ρ1), El/r(ρ2))

R 7→ v∗R.

that satisfy K ′(L′(S)) = |G|−1/2S and L′(K ′(R)) = |G|−1/2R. The details are almost the same as in the
proof of the lemma above.

Müger’s theorem

We will now consider the category

(Loc
l/r
f (AG) o S)2 := (Locf (AG) o S, cl/r)2

as constructed in Subsection 3.1.3. This category was shown to be a GS -crossed category with a braiding
of the second kind, where GS = Aut∗(λ) ∼= G in the present case. However, this GS -crossed structure with
GS ∼= G will not be good enough for our present purposes. Namely, we want to show that this category

is equivalent as a group-crossed category to G − Loc
(L,l)/(R,r)
f (A) and for this we really need a concrete

correspondence between GS and G, so that we can make (Loc
l/r
f (AG) o S)2 into a G-crossed category and

we can construct a functor between these two categories that is G-crossed. This can be done by using
Lemma 3.2.14, which provided us with a group isomorphism φ : G→ Gop

S , where φ was given by φ(q) = Dq.
We can use this φ to define a group isomorphism Γ : G→ GS by

Γ(q) = φ(q)−1 = D−1
q .

The GS -action F 2 and the GS -grading ∂2 on (Loc
l/r
f (AG) o S)2 as defined in Subsection 3.1.3 can now be

turned into a G-action F and a G-grading ∂ by defining

Fq := F 2
Γ(q)

∂ := Γ−1 ◦ ∂2.

Because (Loc
l/r
f (AG) o S)2 is GS -crossed, we have for any (ρ, p) ∈ (Loc

l/r
f (AG) o S)2 and q ∈ G that

∂(Fq(ρ, p)) = Γ−1(∂2(F 2
Γ(q)(ρ, p))) = Γ−1(Γ(q)∂2(ρ, p)Γ(q)−1) = q∂(ρ, p)q−1,

showing that (Loc
l/r
f (AG) o S)2 is G-crossed. Note also that for any (ρ, p) ∈ (Loc

l/r
f (AG) o S)2 we

have F∂(ρ,p) = F 2
Γ(Γ−1(∂2(ρ,p))) = F 2

∂2(ρ,p), which implies that the braiding on the GS -crossed category

(Loc
l/r
f (AG) o S)2 remains a braiding on the corresponding G-crossed category. In what follows, we will

always consider (Loc
l/r
f (AG) o S)2 as a G-crossed category.

The following theorem summarizes the main results of [78]. Since our approach to α-induction has been
different from [78], we have included a proof of this theorem which agrees more with our perspective than
the one in [78]. However, some parts of the proof can still be copied from [78] and are therefore not included

here. In contrast to our conventions before, in this theorem we assume that the categories G− Loc
L/R
f (A)

also contain all finite direct sums of homogeneous objects, because this was also the case for the crossed
product category. Finally, it should be obvious that similar statements as in this theorem can also be made
when the categories are equipped with a braiding of the first kind.
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Theorem 3.2.20 Let (H,A,Ω, V ) be a QFT on R with G-action, where G is a finite group, and suppose
that (HG,B,Ω) is a QFT on R.

(1) There exist equivalences

K l/r : (Loc
l/r
f (AG) o S)2 → G− Loc

(L,l)/(R,r)
f (A)

of braided G-crossed categories.
(2) There exist strict braided tensor functors

E l/r : Loc
l/r
f (AG)→ (G− Loc

(L,l)/(R,r)
f (A))G

Rl/r : (G− Loc
(L,l)/(R,r)
f (A))G → Loc

l/r
f (AG)

that are inverse to each other.
(3) If I : Loc

l/r
f (AG)→ Loc

(L,l)/(R,r)
f (AG)oS denotes the inclusion functor, then E l/r = K l/r ◦I , i.e.

the diagram

Loc
l/r
f (AG) (Loc

l/r
f (AG) o S)2

G− Loc
(L,l)/(R,r)
f (A)

I

E l/r
K l/r

commutes. In other words, E l/r factors through (Loc
l/r
f (AG) o S)2.

Proof. By restriction of the functors in (3.2.14) to Loc
l/r
f (AG), we obtain functors E l/r : Loc

l/r
f (AG) →

End(A)G. We will now define a functor K
l/r

0 : (Loc
l/r
f (AG) o0 S)2 → End(A) that will later be extended

to the functor K l/r that appears in part (1) of the theorem. It follows from the diagram in part (3) that

we have to define K
l/r

0 on the objects of (Loc
l/r
f (AG) o0 S)2 as

K
l/r

0 (JSρJ0) := E l/r(ρ).

Concerning the morphisms of (Loc
l/r
f (AG) o0 S)2, part (2) of Remark 3.2.19 indicates that we have to

choose
K

l/r
0 (R) :=

√
|G|v∗R,

where the normalization constant
√
|G| ensures that K

l/r
0 (idJSρJ0

) =
√
|G|v∗w = 1

K
l/r

0 (ρ)
. This indeed

defines a functor, since

K
l/r

0 (R • S) = K
l/r

0 (
√
|G|γ(v)∗λ(R)S) = |G|v∗γ(v)∗λ(R)S = |G|v∗v∗λ(R)S

=
√
|G|
√
|G|v∗Rv∗S = K

l/r
0 (R)K

l/r
0 (S),

where we have used that vv = γ(v)v by the intertwining property of v. It is easy to see that K
l/r

0 is C-linear.

Note that K
l/r

0 is fully faithful by part (2) of Remark 3.2.19. It is clear that we have E l/r = K
l/r

0 ◦I on

the objects. On the morphisms we have K
l/r

0 (I (R)) = K
l/r

0 (wR) =
√
|G|v∗wR = R = E l/r(R).

Because E l/r is a strict tensor functor, we have for any objects JSρ1J0 and JSρ2J0

K
l/r

0 (JSρ1J0 ~ JSρ2J0) = K
l/r

0 (JS(ρ1 ⊗ ρ2)J0) = E l/r(ρ1 ⊗ ρ2) = E l/r(ρ1)⊗ E l/r(ρ2)

= K
l/r

0 (JSρ1J0)⊗K
l/r

0 (JSρ2J0).
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To see that K
l/r

0 respects the tensor product on the morphisms, we calculate for morphisms R and S with
R ∈ HomAG(ρ1, λ⊗ ρ2)

K
l/r

0 (R~ S) =
√
|G|
√
|G|v∗γ(v)∗λ(c

l/r
ρ2,λ

)Rρ1(S) = |G|v∗v∗λ(c
l/r
ρ2,λ

)Rρ1(S)

= |G|v∗v∗cl/rλ,λλ(c
l/r
ρ2,λ

)Rρ1(S) = |G|v∗v∗λ(R)c
l/r
ρ1,λ

ρ1(S)

= |G|v∗Rv∗cl/rρ1,λ
ρ1(S) = |G|v∗R

(
c
l/r
ρ1,λ

−1
v
)∗
El/r(ρ1)(S)

=
√
|G|
√
|G|v∗REl/r(ρ1)(v∗S) = K

l/r
0 (R)×K

l/r
0 (S),

where we used (3.2.9) in the third step, naturality of the braiding in the fourth step and (3.2.13) in the
seventh step. The functor is also a ∗-functor, since

K
l/r

0 (S×) =
√
|G|
√
|G|v∗λ(S∗)γ(v)w = |G|v∗γ(S∗v)w = |G|S∗vv∗w =

√
|G|S∗v = K

l/r
0 (S)∗.

We thus conclude that we have a fully faithful strict tensor ∗-functor K
l/r

0 : (Loc
l/r
f (AG)o0 S)2 → End(A)

that satisfies E l/r = K
l/r

0 ◦I .

This functor K
l/r

0 will now be extended to a functor K l/r : (Loc
l/r
f (AG)oS)2 → End(A) as follows. Let

(JSρJ0, p) ∈ (Loc
l/r
f (AG)oS)2. Then functoriality of K

l/r
0 implies that K

l/r
0 (p) =

√
|G|v∗p is a projection

in A(I). We can thus choose an isometry18 u(ρ,p) ∈ A(I) such that u(ρ,p)u
∗
(ρ,p) = K

l/r
0 (p) =

√
|G|v∗p. In

case p is the identity morphism of JSρJ0, i.e. p = w (in which case K
l/r

0 (p) = 1), we will always choose
u(ρ,p) = 1. In this way, we have an isometry u(ρ,p) for each object (JSρJ0, p). We then define the functor

K l/r on the objects by

K l/r(JSρJ0, p)(A) := u∗(ρ,p)E
l/r(ρ)(A)u(ρ,p) = u∗(ρ,p)K

l/r
0 (JSρJ0)(A)u(ρ,p)

and we notice that u(ρ,p) ∈ HomA(K l/r(JSρJ0, p),K
l/r

0 (JSρJ0)), since

u(ρ,p)K
l/r(JSρJ0, p)(A) = K

l/r
0 (p)K

l/r
0 (JSρJ0)(A)u(ρ,p) = K

l/r
0 (JSρJ0)(A)K

l/r
0 (p)u(ρ,p)

= K
l/r

0 (JSρJ0)(A)u(ρ,p).

On the morphisms it is defined as

K l/r(R) := u∗(ρ2,p2)K
l/r

0 (R)u(ρ1,p1)

if R : (JSρ1J0, p1) → (JSρ2J0, p2). To see that K l/r(R) is indeed a morphism from K l/r(JSρ1J0, p1) to
K l/r(JSρ2J0, p2) in the category End(A), we note that for A ∈ A we have

K l/r(JSρ2J0, p2)(A)K l/r(R)

= u∗(ρ2,p2)K
l/r

0 (JSρ2J0)(A)u(ρ2,p2)u
∗
(ρ2,p2)K

l/r
0 (R)u(ρ1,p1) = u∗(ρ2,p2)K

l/r
0 (JSρ2J0)(A)K

l/r
0 (p2 •R)u(ρ1,p1)

= u∗(ρ2,p2)K
l/r

0 (JSρ2J0)(A)K
l/r

0 (R • p1)u(ρ1,p1) = u∗(ρ2,p2)K
l/r

0 (R • p1)K
l/r

0 (JSρ1J0)(A)u(ρ1,p1)

= u∗(ρ2,p2)K
l/r

0 (R)u(ρ1,p1)u
∗
(ρ1,p1)K

l/r
0 (JSρ1J0)(A)u(ρ1,p1)

= K l/r(R)K l/r(JSρ1J0, p1)(A)

18We will simply write u(ρ,p), rather than the more cumbersome u(JSρJ0,p)
.
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where we have used that p2 • R = R • p1, as well as functoriality of K
l/r

0 . That K l/r is a functor follows
from

K l/r(S •R) = u∗(ρ3,p3)K
l/r

0 (S •R)u(ρ1,p1) = u∗(ρ3,p3)K
l/r

0 (S •R • p1)u(ρ1,p1)

= u∗(ρ3,p3)K
l/r

0 (S • p2 •R)u(ρ1,p1) = K l/r(S)K l/r(R).

if S : (JSρ2J0, p2)→ (JSρ3J0, p3). It is useful to observe that

u(ρ2,p2)K
l/r(R)u∗(ρ1,p1) = K

l/r
0 (p)K

l/r
0 (R)K

l/r
0 (p) = K

l/r
0 (p •R • p),

which implies that K l/r is fully faithful because K
l/r

0 is fully faithful. Our choice u(ρ,p) = 1 for the case

where p is the identity morphism of JSρJ0 guarantees that K l/r is indeed an extension of K
l/r

0 . We thus
conclude that K l/r is a fully faithful ∗-functor.

To see that it can be made into a tensor functor, we first observe that K l/r(JSιAGJ0, 1) = ιA and that
for any A ∈ A we have on the one hand

[K l/r(JSρ1J0, p1)⊗K l/r(JSρ2J0, p2)](A)

= u∗1K
l/r

0 (JSρ1J0)(u2)∗K
l/r

0 (JS(ρ1 ⊗ ρ2)J0)K
l/r

0 (JSρ1J0)(u2)u1

and on the other

K l/r[(JSρ1J0, p1)~ (JSρ2J0, p2)](A) = u∗12K
l/r

0 (JS(ρ1 ⊗ ρ2)J0)(A)u12,

where we write uj := u(ρj ,pj) and u12 := u(ρ1⊗ρ2,p1⊗p2). Because we have both u12u
∗
12 = K

l/r
0 (p1 ~ p2) =

K l/r(p1)×K l/r(p2) and

K
l/r

0 (JSρ1J0)(u2)u1u
∗
1K

l/r
0 (JSρ1J0)(u2)∗ = K

l/r
0 (JSρ1J0)(u2)K

l/r
0 (p1)K

l/r
0 (JSρ1J0)(u2)∗

= K l/r(p1)×K l/r(p2)

(where we used the interchange law in the tensor category End(A)), we see that the isometries u12 and

K
l/r

0 (ρ1)(u2)u1 have the same range projections. Hence we obtain a unitary

u∗12K
l/r

0 (u2)u1 ∈ HomA

(
K l/r[(JSρ1J0, p1)~ (JSρ2J0, p2)],K l/r(JSρ1J0, p1)⊗K l/r(JSρ2J0, p2)

)
.

A straightforward computation shows that this gives K l/r the structure of a tensor functor.

Next we will show that K l/r(JSρJ0, p) ∈ G−Loc
(L,l)/(R,r)
f (A) for any object (JSρJ0, p). It is enough to

prove this for irreducible objects, so suppose that (JSρJ0, p) ∈ (Loc
l/r
f (AG)o0S)2 is irreducible with degree

∂2(JSρJ0, p). Assume that ρ is localized in I ∈ K; we may also assume that p ∈ AG(I) and hence also that
u(ρ,p) ∈ A(I). Consequently, K l/r(JSρJ0, p) acts trivially on intervals that are to the right/left of I. Now

suppose that Il, Ir ∈ K with Il < I < Ir and let γl/r ∈ End(A) be constructed from an interval in Il/r with

corresponding restriction λl/r and isometries wl/r and vl/r. Our task is to calculate K l/r(JSρJ0, p)(v
l/r)

because any A ∈ A(Il/r) can be written as Bvl/r for some B ∈ AG(Il/r). We proceed in the same way as in
[78]. To keep the expressions readable, we will suppress the indices l/r and we will simply write u := u(ρ,p)

all the time. We have

K (JSρJ0, p)(v) = u∗K0(JSρJ0)(v)u = u∗c−1
ρ,λvu = u∗c−1

λ,ρc
−1
ρ,λvu = E(λ)(u∗)c−1

λ,ρc
−1
ρ,λE(λ)(u)v

=
[
K0(JSλJ0)(u∗)c−1

λ,ρc
−1
ρ,λK0(JSλJ0)(u)

]
v,
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where we have used that u and v commute by locality of the net A, that cλ,ρ = 1 and that E(λ) acts
trivially on A(I) and hence on u. Since c−1

λ,ρc
−1
ρ,λ ∈ EndAG(λ⊗ ρ), it follows from the tensor functoriality of

E that we also have

c−1
λ,ρc

−1
ρ,λ ∈EndA(K0(JS(λ⊗ ρ)J0)) = EndA(K0(JSλJ0)⊗K0(JSρJ0)).

Thus the expression in the square brackets above can be written as a morphism in the category End(A),
namely

[1K0(JSλJ0) × u
∗]c−1

λ,ρc
−1
ρ,λ[1K0(JSλJ0) × u] ∈ EndA(K0(JSλJ0)⊗K (JSρJ0, p))

and noticing that K0(JSλJ0)(A) = E(λ)(A) = λ(A) =
∑
q∈G vqAv

∗
q and hence that vq is in HomA(ιA,K0(JSλJ0)),

we find that v∗qK (JSρJ0, p)(v) ∈ EndA(K (JSρJ0, p)) = C1K (JSρJ0,p)
by irreducibility of (JSρJ0, p). Thus

it can be calculated as19

v∗qK (JSρJ0, p)(v) = d(K (JSρJ0, p))
−1TrK (JSρJ0,p)

[
v∗qK (JSρJ0, p)(v)

]
= d(JSρJ0, p)

−1TrK (JSρJ0,p)

[
v∗qu
∗c−1
λ,ρc

−1
ρ,λuv

]
= d(JSρJ0, p)

−1TrK (JSρJ0,p)

[
u∗v∗qc

−1
λ,ρc

−1
ρ,λvu

]
= d(JSρJ0, p)

−1TrK (JSρJ0,p)
[u∗ (v∗q × 1K (ρ,1ρ))c

−1
λ,ρc

−1
ρ,λ(v × 1K (ρ,1ρ))︸ ︷︷ ︸

=:Zq

u]

= d(JSρJ0, p)
−1TrK (JSρJ0,p)

(u∗Zqu) = d(JSρJ0, p)
−1TrK (JSρJ0,1JSρJ0

)(u
∗uZq)

= d(JSρJ0, p)
−1TrK0(JSρJ0)(K0(p)Zq),

where at the end we used the cyclic property of the trace. This expression is useful because it allows us to
calculate

K (JSρJ0, p)(v) =
∑
q∈G

vqv
∗
qK (JSρJ0, p)(v) = d(JSρJ0, p)

−1
∑
q∈G

vqTrK0(JSρJ0)(K0(p)Zq).

Note that this already shows that K (JSρJ0, p)(v) ∈ span{vq : q ∈ G} = span{βq(v) : q ∈ G}, but we want
to be more precise by calculating the trace. We have

TrK0(JSρJ0)(K0(p)Zq) = R(K0(JSρJ0))
ι,ι (K0(p)Zq) = v∗q

{
R(K0(JSρJ0))
ι,ι

(
[1K0(JSλJ0) ×K0(p)]c−1

λ,ρc
−1
ρ,λ

)}
v

=: v∗qY v = v∗qK0(K −1
0 (Y ))v = v∗qv

∗K −1
0 (Y )v,

where we have used that K0 is fully faithful. Substitution of this into the expression for K (JSρJ0, p)(v)
above, we obtain

K (JSρJ0, p)(v) = d(JSρJ0, p)
−1
∑
q∈G

vqv
∗
qv
∗K0

−1(Y )v

= d(JSρJ0, p)
−1
√
|G|
∑
q∈G

vqv
∗
qγ(v)∗K0

−1(Y )v

= d(JSρJ0, p)
−1
√
|G|γ(v)∗K0

−1(Y )v.

19Actually we should multiply all expressions on the right with 1K (JSρJ0,p)
to be precise, but we will not do this in order

to save space.
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A straightforward calculation shows that the morphism K0
−1(Y ) corresponds to the element

cλ,λ

{
R

(ρ)
λ,λ⊗λ

(
[1λ × p]c−1

λ,ρc
−1
ρ,λ

)}
of HomAG(λ, λ⊗ λ). When we compose this expression from the left with

√
|G|γ(v)∗ and use the fact that

λ is a commutative ∗-Frobenius algebra, we obtain precisely d(JSρJ0, p) ·∂2(JSρJ0, p)
−1. Thus we conclude

that

K (JSρJ0, p)(v) = ∂2(JSρJ0, p)
−1v = Γ(∂(JSρJ0, p))

−1v = D∂(JSρJ0,p)
v = β∂(JSρJ0,p)

(v),

which proves that K (JSρJ0, p) is indeed ∂(JSρJ0, p)-localized. So we have shown that K l/r is a fully

faithful tensor ∗-functor (Loc
l/r
f (AG)oS)2 → G−Loc

(L,l)/(R,r)
f (A). Consequently, it now follows from part

(3) that E l/r is a functor Loc
l/r
f (AG)→ (G− Loc

(L,l)/(R,r)
f (A))G.

We next show that it is a G-functor. If q ∈ G then for any A ∈ A we have

K l/r(Fq(JSρJ0, p))(A) = K l/r(JSρJ0, Fq(p))(A) = u∗(ρ,Fq(p))E
l/r(ρ)(A)u(ρ,Fq(p))

and
[βq(K

l/r(JSρJ0, p))(A)] = βq(u(ρ,p))
∗El/r(ρ)(A)βq(u(ρ,p)),

where we have used that El/r(ρ) is G-invariant. In view of βq(u(ρ,p))βq(u(ρ,p))
∗ = βq(u(ρ,p)u

∗
(ρ,p)) =

βq(K
l/r

0 (p)) and

u(ρ,Fq(p))u
∗
(ρ,Fq(p))

= K
l/r

0 (Fq(p)) = K
l/r

0 (D−1
q p) =

√
|G|v∗D∗qp =

√
|G|βq(v)∗p

=
√
|G|βq(v∗p) = βq(K

l/r
0 (p)),

the isometries βq(u(ρ,p)) and u((ρ,Fq(p))) have the same range projection. Hence we obtain a unitary

βq(u(ρ,p))
∗u(ρ,Fq(p)) ∈ HomA

(
K l/r(Fq(JSρJ0, p)), βq(K

l/r(JSρJ0, p))
)

and a straightforward calculation shows that this gives K l/r the structure of a G-functor. We also need
to prove that K l/r is essentially surjective, but this is precisely Proposition 3.14 of [78], which includes a
very clear proof. Checking that K l/r is braided is just a computation and does not involve any subtleties;
we leave this to the reader. The functor Rl/r is defined on the objects by Rl/r(ρ) = ρ|AG and on the
morphisms simply as Rl/r(R) = R. It is clear that Rl/r(ρ) is localized in I ∈ K if ρ was G-localized in
I, but transportability requires a little work, see Proposition 3.5 of [78]. The statement in part (2) can be
found as Theorem 3.12 in [78].
�

Thus the category G − LocRf (A) can be constructed up to equivalence from Locf (AG) and its subcate-

gory S by taking the crossed product, and conversely Locf (AG) can be constructed from G− LocRf (A) by
considering the fixed-point subcategory.

3.2.4 The relation with conformal field theory

In this subsection we will briefly introduce the notion of a chiral conformal field theory. We will explain
that such theories automatically give rise to the QFTs on R that we discussed in the preceding subsection.
We will use this fact to make our discussion in Subsection 3.2.5 somewhat more natural.

If S1 denotes the unit circle, we will write I to denote the collection of all non-empty and non-dense
connected open subsets of S1. A set I ∈ I can thus be interpreted as an open interval in S1 and can be
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written as I = (a, b) for a, b ∈ S1 with a 6= b, where we use the convention that moving from a to b along I
is in the counterclockwise direction on S1. If I ⊂ S1, then we write I ′ to denote the interior of S1\I. Note
that if I ∈ I then I ′ ∈ I and that if I = (a, b), then I ′ = (b, a). A subset E ⊂ S1 is called an n-interval if it
can be written as E = I1 ∪ . . . ∪ In for some Ij ∈ I with Ij ∩ Ik = ∅ for all j 6= k. The set of all n-intervals
is denoted by In; in particular I1 = I.

Analogous to Definition 3.2.1 we can also define nets of von Neumann algebras on S1, where the role of
K is now taken by I. The notions of locality, Haag duality, irreducibility, strong additivity and the split
property are also defined in an anologous way for these nets, simply by replacing K by I and by replacing
I⊥ by I ′. If A is a net of von Neumann algebras on S1, then A is called n-regular if for any n points
ζ1, . . . , ζn ∈ S1 we have A(S1\{ζ1, . . . , ζn}) = B(H). If G is a group, then a G-action on net (H,A) of von
Neumann algebras is defined in a similar way as for nets of von Neumann algebras on R.

Definition 3.2.21 A chiral conformal field theory (or chiral CFT for short) is a quadruple (H,A, U,Ω)
consisting of a net (H,A) of von Neumann algebras on S1, a strongly continuous unitary representation
U : PSU(1, 1) = SU(1, 1)/{1,−1} → B(H) of the Möbius group on H and a unit vector Ω ∈ H satisfying
the following conditions:
• the net (H,A) satisfies locality and irreducibility;
• for any a ∈ PSU(1, 1) and I ∈ I we have U(a)A(I)U(a)∗ = A(aI);
• if L0 denotes the generator of the rotation subgroup of PSU(1, 1), then L0 ≥ 0;
• the subspace of PSU(1, 1)-invariant vectors in H equals CΩ.

If G is a topological group, then a G-action on a chiral CFT (H,A, U,Ω) is a strongly continuous unitary
representation V : G→ B(H) that induces a G-action β on the net (H,A) satisfying V Ω = Ω.

We briefly mention some consequences of these axioms. Let (H,A, U,Ω) be a chiral CFT. Then it automat-
ically satisfies additivity and Haag duality and for each I ∈ I the von Neumann algebra A(I) is a type III
factor for which the vector Ω is both cyclic and separating. If I ∈ I, then Haag duality gives

A(I) ∨ A(I ′) = (A(I)′ ∩ A(I ′)′)′ = (A(I)′ ∩ A(I))′ = Z(A(I))′ = B(H),

so A is 2-regular. In fact, this calculation shows that 2-regularity is equivalent to the statement that A(I) is
a factor for all I ∈ I. If A satisfies strong additivity, then it is n-regular for every n ∈ Z≥1. It then follows
from proposition 1 in [52] that the inclusion A(E) ⊂ A(E′)′ is irreducible for any n-interval E ∈ In.

A representation (Hπ, {πI}I∈I) of a chiral CFT (H,A, U,Ω) consists of a Hilbert space Hπ together with
a collection of unital representations πI : A(I) → B(Hπ) satisfying the condition that πJ |A(I) = πI for all
I, J ∈ I with I ⊂ J . It is easy to see that the category Rep(A) of representations of A (with morphisms
given by the intertwiners between representations) is a C∗-category. As stated in [78], if A satisfies strong
additivity then the index [πI(A(I ′))′ : πI(A(I))] is independent of I ∈ I and we can therefore define the
dimension

d(π) := [πI(A(I ′))′ : πI(A(I))]1/2 ∈ [1,∞].

The full subcategory of Rep(A) determined by the representations with finite dimension is denoted by
Repf (A).

If (H,A, U,Ω) is a chiral CFT satisfying strong additivity and the split property, then for any E ∈ I2 the
index [A(E′)′ : A(E)] is independent of the choice of E, as shown in proposition 5 of [52]. So if (H,A, U,Ω)
is a chiral CFT satisfying strong additivity and the split property, then we can define the quantity

µ(A) := [A(E′)′ : A(E)] ∈ [1,∞],

where E ∈ I2 is an arbitrarily chosen 2-interval. This quantity is called the µ-index of A. A chiral
CFT satisfying strong additivity and the split property is called completely rational if its µ-index is finite.
If G is a finite group acting on a completely rational chiral CFT (H,A, U,Ω), then the orbifold theory
(HG,B, U |HG ,Ω) is again a completely rational chiral CFT, as shown in proposition 4.2 of [109].
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We will now discuss the relation between chiral CFTs on S1 and QFTs on R. Let (H,A, U,Ω) be a
chiral CFT. If ζ ∈ S1, then we can identify S1\{ζ} with R by the use of a stereographic projection. Recall
that on R we denoted the collection of bounded open intervals by K; the corresponding collection of subsets
of S1\{ζ} will be denoted by Kζ . Note that Kζ ⊂ I, so we obtain a net (H,Aζ) of von Neumann algebras
on R (or rather S1\{ζ}) by defining Aζ(I) := A(I) for all I ∈ Kζ . It follows directly that for each I ∈ Kζ
the von Neumann algebra Aζ(I) is a type III factor for which the vector Ω is cyclic and separating and it is
also clear that the net Aζ satisfies half-line duality. Now suppose that A is also strongly additive. Then A
is in particular 1-regular, so it follows from irreducibility of A that Aζ is also irreducible. It is also obvious
that Aζ satisfies strong additivity. Now suppose that I ∈ Kζ . Then

Aζ(I⊥)′ = A(I⊥)′ = A(I⊥ ∪ {ζ})′ = A(I ′)′ = A(I) = Aζ(I),

where in the second step we used strong additivity of the net A and in the fourth step we used Haag duality
of the net A. This shows that the net Aζ satisfies Haag duality as well, and hence that (H,Aζ ,Ω) is a QFT
on R. As shown in theorem 2.31 of [78], we have equivalences

Rep(A) ' Loc(Aζ)
Repf (A) ' Locf (Aζ)

of ∗-categories, which allow us to transport the braided tensor structure from Loc(f)(Aζ) to Rep(f)(A).

If (H,A, U,Ω, V ) is completely rational with action V of a finite group G, then (HG,B, U |HG ,Ω) is
again completely rational, as mentioned above. So in this case it follows that (H,Aζ ,Ω, V ) is a QFT on
R with G-action V and that (HG,Bζ ,Ω) is automatically a QFT on R, where Bζ(I) := AGζ (I)|HG . This
is precisely the setting that we assumed in the previous subsection, showing that it was not an artificial
situation. Furthermore, the categories Locf (Aζ) and Locf (Bζ) are modular and µ(A) = dim(Locf (Aζ)). If
for any q ∈ G we choose a complete set of representatives ρq,1, . . . , ρq,Nq of equivalence classes of irreducible

objects in G− Loc
L/R
f (Aζ)q, then we have

µ(A) =

Nq∑
i=1

d(ρq,i)
2, (3.2.15)

see also theorem 4.2 of [78]. Since d(ρ) ≥ 1, a special case occurs when µ(A) = 1. Namely, if µ(A) = 1, then
for every q ∈ G there is precisely one equivalence class of irreducible objects of degree q and any irreducible
object is invertible. These special kind of completely rational chiral CFTs A are called holomorphic.

3.2.5 Our main problem and the idea of a G-crossed Drinfeld center

Let G be a finite group and let (H,A, U,Ω, V ) be a completely rational chiral CFT with a G-action. If

ζ ∈ S1, then (H,Aζ ,Ω, V ) is a QFT on R with a G-action and Loc
l/r
f (Aζ) is a modular tensor category. This

modular tensor category has G-crossed extensions G−Loc
L/R
f (Aζ) of left/right G-localized endomorphisms

and these have full G-spectrum. More precisely, Loclf (Aζ) has braided G-crossed extensions G−Loc
(L,l)
f (Aζ)

and G − Loc
(R,l)
f (Aζ), the first of which has a braiding of the second kind and the second of which has a

braiding of the first kind,
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G− Loc
(L,l)
f (Aζ) (left G-localization; braiding of the second kind)

Loclf (Aζ)

G− Loc
(R,l)
f (Aζ) (right G-localization; braiding of the first kind)

and Locrf (Aζ) has braided G-crossed extensions G− Loc
(L,r)
f (Aζ) and G− Loc

(R,r)
f (Aζ), the first of which

has a braiding of the first kind and the second of which has a braiding of the second kind,

G− Loc
(L,r)
f (Aζ) (left G-localization; braiding of the first kind)

Locrf (Aζ)

G− Loc
(R,r)
f (Aζ) (right G-localization; braiding of the second kind).

The orbifold net (HG,Bζ ,Ω) is automatically a QFT on R and Loc
l/r
f (Bζ) ' Loc

l/r
f (AGζ ) is also a modular

tensor category, where Bζ(I) = Aζ(I)G|HG . In particular, we are in the situation of Subsection 3.2.3. In

Theorem 3.2.20 we have seen that G−Loc
(L/R, l/r)
f (Aζ) can be constructed up to equivalence as the crossed

product of Loc
l/r
f (AGζ ) with a certain symmetric tensor subcategory S which satisfied S ' Repf (G).

As already mentioned in Section 1.2 of the introduction, at the beginning of this project we wondered

whether it was possible to construct G − Loc
(L/R, l/r)
f (Aζ) already from Loc

l/r
f (Aζ) in the special case of

the permutation action of SN on A⊗N . We explained in Section 1.2 that more recent results imply that
such a construction does not exist, or at least not without any further assumptions on A. Since we were
not aware of this at the time, in the rest of this subsection we will briefly display our reasoning at the time
of our ignorance, mainly because it will motivate our more abstract construction in the following chapter.
As this construction goes beyond permutation groups, we will continue our discussion of AQFT here in a
more general setting than the setting of permutation actions on the N -fold tensor product of an AQFT,
although this more general setting was never motivated by our expectations concerning AQFT.

Suppose that the chiral CFT that we started with has the property that it is possible to construct

G − Loc
(L/R, l/r)
f (Aζ) categorically from Loc

l/r
f (Aζ) together with its G-action20. For simplicity, we will

write C = Loclf (Aζ) and C̃ = Locrf (Aζ). Then C has braided G-crossed extensions D1 := G − Loc
(R,l)
f (Aζ)

(with a braiding of the first kind) and D2 := G − Loc
(L,l)
f (Aζ) (with a braiding of the second kind).

Similarly, C̃ has braided G-crossed extensions D̃1 := G−Loc
(L,r)
f (Aζ) (with a braiding of the first kind) and

D̃2 := G − Loc
(R,r)
f (Aζ) (with a braiding of the second kind). Note that the notation C̃ is consistent with

the one introduced after equation (2.4.1) in Section 2.4. Furthermore, D̃1 and D̃2 can be obtained from
D2 and D1, respectively, by using the procedure in part (2) of Remark 2.8.22. We thus see that there is
some redundancy here and we can continue by considering only C, D1 and D2. Note that the equivalence
Locf (Aζ) ' Repf (A) mentioned in the preceding subsection means that we are looking for a G-crossed

20Note that this G-action on Loc
l/r
f (Aζ) is completely determined by N in the case of the SN action on the N -fold product

of an AQFT. In the general setting the information analogous to the number N seems to be the G-action on Loc
l/r
f (Aζ).
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extension of a category of representations in AQFT. Hence also the title of this thesis. Forgetting about
AQFT for the moment, we are thus in the situation where we are given a modular tensor category C with
a G-action and we want to find two categorical constructions that give us the categories D1 and D2 out of
C, where D1 and D2 are G-crossed extensions of C with braidings of the first and second kind, respectively,
that both extend the braiding of C.21 Finding such constructions has become our main problem.

The first question one might ask is how these two constructions differ from one another. In AQFT the
main the difference between D1 and D2 is that D1 consists of right G-localized endomorphisms and that D2

consists of left G-localized endomorphisms. However, categorically we do not have a notion of left and right
G-localization and the only structural difference between D1 and D2 is the type of braiding. This leads
us to believe that the braiding might play a leading role in both constructions of G-extensions. Namely,
the definition of the extra objects that are added to C in the construction of D1 should be such that it
is somehow obvious from the beginning that we will end up with a braiding of the first kind.22 A typical
example of a known construction of a braided tensor category where the definition of the objects is such
that the existence of the braiding is almost obvious, is the construction of the Drinfeld center. Indeed, the
objects of the Drinfeld center of a tensor category are pairs (V,ΦV ), where V is an object in the given
tensor category and ΦV is a half braiding for V , see also Subsection 2.4.2. In case a tensor category is
already braided, it is contained in its Drinfeld center as a braided tensor subcategory. Now recall that a
half braiding behaves in the same way as a braiding for which one of the arguments is kept fixed. This gave
us the idea to consider the construction of the Drinfeld center for a G-category, but with half braidings of
the type that arise when one of the arguments is held fixed in the braiding of a braided G-crossed category.
This construction of a more general Drinfeld center will be the subject of the next chapter.

21We cannot expect that such extensions will always have full G-spectra, because it is known that not every G-modular
tensor category has a braided G-crossed extension with full G-spectrum.

22Note that in AQFT the categories D1 and D2 have different objects. In fact, in AQFT it is impossible to define a braiding
of the second kind on D1 that extends cl (rather than cr).
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Chapter 4

A G-crossed generalization of the
Drinfeld center

As we explained at the very end of the preceding chapter, the situation of a completely rational chiral CFT
with a group action motivated us to look for a G-crossed version of the Drinfeld center. The starting point
in this chapter will be the construction of such a G-crossed Drinfeld center ZG(C) of a strict G-category
C. We will then repeat this construction also for the non-strict case and we will show that if C and C′ are
(non-strict) G-categories with C ' C′, then ZG(C) ' ZG(C′). The detailed proofs in the non-strict case are
extremely involved and are therefore not included here; the interested reader is referred to Appendices A
and B. Next, we will prove an equivalence between ZG(C) and a certain relative Drinfeld center and we
will show that ZG(C) is equivalent to a category of functors of bimodule categories. After that we will
show that some properties of C carry over to ZG(C), such as having direct sums and subobjects, being
spherical and being semisimple. To make things a little less abstract we will also consider a concrete
example of the construction of ZG(C) for some particular class of G-categories. This example turns out to
have some relevance for completely rational chiral CFTs that are holomorphic. Finally, we will consider
some remarkable properties of ZG(C) in case C has a braiding.

Nearly everything in this chapter is new1, but some results are not that impressive. For instance, the
statements in Sections 4.1, 4.6, 4.7 and 4.9 are just straightforward generalizations of the ones in [75]. Our
deeper results in this chapter are Theorem 4.3.4, Theorem 4.4.7, Theorem 4.5.4, Theorem 4.5.5, Theorem
4.8.2, Proposition 4.10.3, Theorem 4.10.4, Proposition 4.10.6, Theorem 4.10.7 and Theorem 4.10.12.

4.1 Half braidings in G-categories

We have seen that for a strict tensor category C the Drinfeld center Z(C) is constructed by considering pairs
(V,ΦV ), where V ∈ C and ΦV is a half braiding for V . In case C has a strict G-action, it is easy to see that
if ΦV is a half-braiding for V ∈ C, then so is FqΦV , where we define

FqΦV (X) := Fq(ΦV (Fq−1(X)))

for X ∈ C. This implies that we can define a G-action F on Z(C) by

Fq[(V,ΦV )] := (Fq(V ),FqΦV )

1At the final stage of this research project we learned that our construction of ZG(C) was already carried out by Barvels
in [6]. However, the only overlap between [6] and the present chapter is the construction of ZG(C) (in the strict case). What
surprised the author was that the exact same notation ZG(C) was used in [6]. Apparently, this notation is very natural to
choose, although one could of course argue that the notation ZG,F (C) would be more precise, where F denotes the group
action F : G→ Aut⊗(C).
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and
Fq(f) = Fq(f)

for any (V,ΦV ) ∈ Z(C) and f ∈ Hom(Z(C)). Hence Z(C) becomes a G-category in case C was a G-category.
Now recall that in a braided G-crossed category D the degree q = ∂(V ) of an object V ∈ D occurs in the
target object of the braiding cV,X : V ⊗X → Fq(X)⊗V for any X ∈ D. This suggests that we can perhaps
define a G-grading on a more rich version of Z(C) by allowing more exotic kinds of half braidings in the
G-category C, namely the half braidings of the type that arise when one of the arguments of a braiding
in a braided G-crossed category is held fixed. Indeed, such exotic half braidings can indeed be defined in
G-categories, as we will see in the next definition. The fact that there are two possible kinds of braidings
in G-crossed categories, as we have seen in Subsection 2.8.3, is reflected by the fact that we can also define
two kinds of half braidings2, which for obvious reasons will be called half braidings of the first and second
kind.

Definition 4.1.1 Let (C,⊗, I) be a strict tensor category with strict G-action F .
(1) If V ∈ C and q ∈ G, then a half q-braiding (of the first kind 3) for V is a natural isomorphism

ΦV : ⊗ ◦ (V × idC) → ⊗ ◦ (Fq × V )

of functors C → C, i.e. a family {ΦV (X) : V ⊗X → Fq(X)⊗ V }X∈C of isomorphisms in C such that
for all X,Y ∈ C and f ∈ HomC(X,Y ) the square

V ⊗X Fq(X)⊗ V

V ⊗ Y Fq(Y )⊗ V

ΦV (X)

idV ⊗f Fq(f)⊗idV

ΦV (Y )

commutes, satisfying the additional property that for all X,Y ∈ C we have

ΦV (X ⊗ Y ) = [idFq(X) ⊗ ΦV (Y )] ◦ [ΦV (X)⊗ idY ]. (4.1.1)

(2) If V ∈ C and q ∈ G, then a half q-braiding4 of the second kind for V is a natural isomorphism

ΨV : ⊗ ◦ (idC × V ) → ⊗ ◦ (V × Fq−1)

of functors C → C, i.e. a family {ΨV (X) : X⊗V → V ⊗Fq−1(X)}X∈C of isomorphisms in C such that
for all X,Y ∈ C and f ∈ HomC(X,Y ) the square

X ⊗ V V ⊗ Fq−1(X)

Y ⊗ V V ⊗ Fq−1(Y )

ΨV (X)

f⊗idV idV ⊗Fq−1 (f)

ΨV (Y )

2Of course, in the construction of the Drinfeld center Z(C) from a tensor category C we could also define two kinds of half
braidings on C, depending on whether we fix the left or right argument in the definition of a braiding. However, although there
were already two possible definitions of a half braiding here, there is only one definition of a braiding, so both kinds of half
braidings lead to the same kind of braiding for Z(C). In the case where there is a G-action, choosing half braidings of the first
(or second) kind, will lead to a G-crossed category ZG(C) with a braiding of the first (respectively second) kind.

3As for braidings in a G-crossed category, we will only write “of the first kind” when we want to distinguish it explicitly
from a half q-braiding of the second kind; otherwise we will just call it a half q-braiding for V .

4Despite the fact that q−1 occurs here (rather than q), we will not call this a half q−1-braiding of the second kind for V .
This is because in a G-crossed category that has a braiding of the second kind, the object V would have degree q and not q−1.
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commutes, satisfying the additional property that for all X,Y ∈ C we have

ΨV (X ⊗ Y ) = [ΨV (X)⊗ idFq−1 (Y )] ◦ [idX ⊗ΨV (Y )]. (4.1.2)

Remark 4.1.2 (1) Note that if ΦV is a half q-braiding for V , then ΦV (I) = ΦV (I⊗I) = [idFq(I)⊗ΦV (I)]◦
[ΦV (I)⊗ idI ] = ΦV (I) ◦ ΦV (I), which implies that

ΦV (I) = idV . (4.1.3)

We will often use this simple result in our calculations. For half q-braidings of the second kind a similar
reasoning leads to ΨV (I) = idV .
(2) The unit object always has half e-braidings Φ0

I and Ψ0
I of the first and second kind, respectively, where

Φ0
I(X) = ΨI(X) = idX for all X ∈ C. The notation Φ0

I and Ψ0
I will be used in the sequel.

As the following proposition shows, there is an operation that assigns half braidings of the second kind to
half braidings of the first kind, and vice versa. The proof is a simple calculation that we omit here.

Proposition 4.1.3 Let (C,⊗, I) be a strict tensor category with strict G-action F and let V ∈ C and q ∈ G.
(1) If ΦV is a half q-braiding for V , then ΨV (−) := ΦV (Fq−1(−))−1 is a half q-braiding of the second kind

for V .
(2) If ΨV is a half q-braiding of the second kind for V , then ΦV (−) := ΨV (Fq(−))−1 is a half q-braiding

for V .
The two operations above are inverse to each other and thus establish a one-to-one correspondence between
the two kinds of half braidings.

One might wonder what happens when C already is a braided G-crossed category and thus all its objects
have a degree. Is it possible for an object of degree q to have a half r-braiding with q 6= r? The following
proposition shows that this is certainly impossible if the center of the group G is trivial and if the G-spectrum
∂(C) ⊂ G is all of G.

Proposition 4.1.4 Let (C,⊗, I, G, F, ∂) be a G-crossed category and let V ∈ C with ∂(V ) = q. If ΦV is
a half r-braiding for V , then r−1q commutes with ∂(C). In particular, if ∂(C) = G and Z(G) = {e}, then
q = r.

Proof. For all X ∈ C we have an isomorphism ΦV (X) : V ⊗ X → Fr(X) ⊗ V . Since ∂ is constant on
isomorphism classes, we must have ∂(V ⊗ X) = ∂(Fr(X) ⊗ V ), or q∂(X) = r∂(X)r−1q, or r−1q∂(X) =
∂(X)r−1q.
�

4.1.1 Tensor products and group actions

The following lemma will be crucial in Section 4.2 when we want to define a tensor product and a G-action
on our category ZG(C). In this lemma we will write down all statements for both kinds of half braidings.
However, we will only prove these statements for half braidings of the first kind, since the proofs for half
braidings of the second kind are completely analogous.

Lemma 4.1.5 Let (C,⊗, I) be a strict tensor category with strict action F of the group G. Let V ∈ C and
let ΦV and ΨV be a half q-braiding and a half q-braiding of the second kind for V , respectively.

(1) Let W ∈ C and r ∈ G. If ΦW is a half r-braiding for W and if ΨW is a half r-braiding of the second
kind for W , then we obtain a half qr-braiding ΦV ⊗ΦW for V ⊗W and a half qr-braiding of the second
kind ΨV ⊗ΨW for V ⊗W by defining

(ΦV ⊗ ΦW )(X) := [ΦV (Fr(X))⊗ idW ] ◦ [idV ⊗ ΦW (X)]

(ΨV ⊗ΨW )(X) := [idV ⊗ΨW (Fq−1(X))] ◦ [ΨV (X)⊗ idW ].
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(2) If r ∈ G, we obtain a half rqr−1-braiding FrΦV for Fr(V ) and a half rqr−1-braiding of the second
kind FrΨV for Fr(V ) by defining

(FrΦV )(X) := Fr(ΦV (Fr−1(X)))

(FrΨV )(X) := Fr(ΨV (Fr−1(X)))

Proof. (1) For each X ∈ C the morphism (ΦV ⊗ ΦW )(X) ∈ HomC(V ⊗ W ⊗ X,Fqr(X) ⊗ V ⊗ W ) is
an isomorphism, because ΦV (−) and ΦW (−) are isomorphisms. To check naturality of ΦV ⊗ ΦW , let
f ∈ HomC(X,Y ) and consider the diagram

V ⊗W ⊗X V ⊗ Fr(X)⊗W Fqr(X)⊗ V ⊗W

V ⊗W ⊗ Y V ⊗ Fr(Y )⊗W Fqr(Y )⊗ V ⊗W.

idV ⊗ΦW (X)

idV⊗W⊗f

ΦV (Fr(X))⊗idW

idV ⊗Fr(f)⊗idW Fqr(f)⊗idV⊗W

idV ⊗ΦW (Y ) ΦV (Fr(Y ))⊗idW

The left square commutes by naturality of ΦW and the right square commutes by naturality of ΦV , hence
the big outer rectangle commutes as well, showing that ΦV ⊗ΦW is natural. We will now show that ΦV ⊗ΦW
satisfies equation (4.1.1):

(ΦV ⊗ ΦW )(X ⊗ Y ) = [ΦV (Fr(X ⊗ Y ))⊗ idW ] ◦ [idV ⊗ ΦW (X ⊗ Y )]

= [idFq(Fr(X)) ⊗ ΦV (Fr(Y ))⊗ idW ] ◦ [ΦV (Fr(X))⊗ idFr(Y ) ⊗ idW ]

◦[idV ⊗ idFr(X) ⊗ ΦW (Y )] ◦ [idV ⊗ ΦW (X)⊗ idY ]

= [idFqr(X) ⊗ ΦV (Fr(Y ))⊗ idW ] ◦ [idFqr(X) ⊗ idV ⊗ ΦW (Y )]

◦[ΦV (Fr(X))⊗ idW ⊗ idY ] ◦ [idV ⊗ ΦW (X)⊗ idY ]

= [idFqr(X) ⊗ (ΦV ⊗ ΦW )(Y )] ◦ [(ΦV ⊗ ΦW )(X)⊗ idY ]

where the third equality follows from the interchange law. We thus conclude that ΦV ⊗ΦW is indeed a half
qr-braiding for V ⊗W .
(2) By assumption, ΦV (Fr−1(X)) : V ⊗Fr−1(X)→ Fqr−1(X)⊗V is an isomorphism, so Fr(ΦV (Fr−1(X))) :
Fr(V )⊗X → Frqr−1(X)⊗ Fr(V ) is also an isomorphism. To check naturality, let f ∈ HomC(X,Y ). Then

[Frqr−1(f)⊗ idFr(V )] ◦ FrΦV (X) = [Frqr−1(f)⊗ idFr(V )] ◦ Fr(ΦV (Fr−1(X)))

= Fr{[Fq(Fr−1(f))⊗ idV ] ◦ ΦV (Fr−1(X))}
= Fr{ΦV (Fr−1(Y )) ◦ [idV ⊗ Fr−1(f)]}
= Fr(ΦV (Fr−1(Y ))) ◦ [idFr(V ) ⊗ f ]

= FrΦV (Y ) ◦ [idFr(V ) ⊗ f ],

so FrΦV is indeed natural. Furthermore, if X,Y ∈ C, then

FrΦV (X ⊗ Y ) = Fr(ΦV (Fr−1(X ⊗ Y ))) = Fr(ΦV (Fr−1(X)⊗ Fr−1(Y )))

= Fr{[idFqr−1 (X) ⊗ ΦV (Fr−1(Y ))] ◦ [ΦV (Fr−1(X))⊗ idFr−1 (Y )]}
= [idFrqr−1 (X) ⊗ Fr(ΦV (Fr−1(Y )))] ◦ [Fr(ΦV (Fr−1(X)))⊗ idY ]

= [idFrqr−1 (X) ⊗FrΦV (Y )] ◦ [FrΦV (X)⊗ idY ],

so FrΦV is indeed a half rqr−1-braiding for Fr(V ).
�
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4.1.2 Retracts and direct sums

The following lemma will not be of importance in defining ZG(C) as a braided G-crossed category, but it
will be used in Section 4.6 to show that if C has retracts or direct sums, then so has ZG(C). The proof is a
straightforward generalization of the corresponding one in [75].

Lemma 4.1.6 Let (C,⊗, I) be a strict tensor category with strict action F of the group G. Let V ∈ C and
let ΦV be a half q-braiding.

(1) If U ∈ C is a subobject of V with corresponding morphisms i : U → V and r : V → U satisfying
r ◦ i = idU , then for each X ∈ C we define ΦU (X) : U ⊗X → Fq(X)⊗ U by

ΦU (X) := [idFq(X) ⊗ r] ◦ ΦV (X) ◦ [i⊗ idX ]

If the idempotent p := i ◦ r ∈ EndC(V ) satisfies the equation

[idFq(X) ⊗ p] ◦ ΦV (X) = ΦV (X) ◦ [p⊗ idX ]

then ΦU is a half q-braiding for U .
(2) Suppose that C is an Ab-category and let ΦW be a half q-braiding for W ∈ C. If Z is a direct sum of V

and W with corresponding morphisms f : V → Z, f ′ : Z → V , g : W → Z and g′ : Z →W satisfying
f ′ ◦ f = idV , g′ ◦ g = idW and f ◦ f ′ + g ◦ g′ = idZ , then we obtain a half q-braidings ΦZ for Z by

ΦZ(X) := [idFq(X) ⊗ f ] ◦ ΦV (X) ◦ [f ′ ⊗ idX ] + [idFq(X) ⊗ g] ◦ ΦW (X) ◦ [g′ ⊗ idX ]

Proof. (1) It is easy to check that each ΦU (X) is invertible with inverse

ΦU (X)−1 := [r ⊗ idX ] ◦ ΦV (X)−1 ◦ [idFq(X) ⊗ i] ∈ HomC(Fq(X)⊗ U,U ⊗X).

Naturality of ΦU follows directly from the naturality of ΦV . It also satisfies

ΦU (X ⊗ Y )

= [idFq(X⊗Y ) ⊗ r] ◦ [idFq(X) ⊗ ΦV (Y )] ◦ [ΦV (X)⊗ idY ] ◦ [(i ◦ r ◦ i)⊗ idX⊗Y ]

= [idFq(X⊗Y ) ⊗ r] ◦ [idFq(X) ⊗ ΦV (Y )] ◦ [idFq(X) ⊗ (i ◦ r)⊗ idY ] ◦ [ΦV (X)⊗ idY ] ◦ [i⊗ idX⊗Y ]

= [idFq(X) ⊗ ΦU (Y )] ◦ [ΦU (X)⊗ idY ],

where in the first step we used that i = i ◦ r ◦ i and in the second step we used the given assumption on the
idempotent p = i ◦ r. So we conclude that ΦU is a half q-braiding.
(2) For each X ∈ C, ΦZ(X) is invertible with inverse ΦZ(X)−1 ∈ HomC(Fq(X)⊗ Z,Z ⊗X) given by

ΦZ(X)−1 := [f ⊗ idX ] ◦ ΦV (X)−1 ◦ [idFq(X) ⊗ f ′] + [g ⊗ idX ] ◦ ΦW (X)−1 ◦ [idFq(X) ⊗ g′],

as the reader can easily check. Naturality of ΦZ follows directly from the naturality of ΦV and ΦW . Checking
that ΦZ(X ⊗ Y ) = [idFq(X) ⊗ ΦZ(Y )] ◦ [ΦZ(X)⊗ idY ] is a straightforward computation.
�

4.1.3 Duality

Since in Section 4.6 we will also be interested in the question whether ZG(C) inherits a left or right duality
from C, in this subsection we will focus on transporting the half braiding of a certain object to its dual. The
proof of the following lemma is an easy exercise for the reader.
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Lemma 4.1.7 Let (C,⊗, I) be a strict tensor category with strict action F of the group G and let V ∈ C.
Suppose that ΦV satisfies all axioms of a half q-braiding for V , except invertiblity, and suppose that ΦV (I) =
idV . If X ∈ C has a right dual (∨X, b′X , d

′
X), then ΦV (X) is invertible with inverse

ΦV (X)−1 = [Fq(d
′
X)⊗ idV⊗X ] ◦ [idFq(X) ⊗ ΦV (∨X)⊗ idX ] ◦ [idFq(X)⊗V ⊗ b′X ].

The main application of Lemma 4.1.7 is the proof of the following important lemma, which shows that
under certain circumstances we can transport a half braiding for an object V to its left dual.

Lemma 4.1.8 Let (C,⊗, I) be a strict tensor category with strict action F of the group G, let V ∈ C, let
ΦV be a half q-braiding for V . Suppose that each object in C has a right dual. If (V ∨, bV , dV ) is a left dual
of V , then we obtain a half q−1-braiding (ΦV )∨ for V ∨ by defining

(ΦV )∨(X) := [dV ⊗ idFq−1 (X)⊗V ∨ ] ◦ [idV ∨ ⊗ ΦV (Fq−1(X))−1 ⊗ idV ∨ ] ◦ [idV ∨⊗X ⊗ bV ]

for all X ∈ C.

Proof. Since X 7→ ΦV (Fq−1(X))−1 is a half q-braiding of the second kind for V , it follows that (ΦV )∨ is
natural and that for any X,Y ∈ C we have

(ΦV )∨(X ⊗ Y ) = [idFq−1 (X) ⊗ (ΦV )∨(Y )] ◦ [(ΦV )∨(X)⊗ idY ].

In view of ΦV (Fq−1(I)) = ΦV (I) = idV , we have (ΦV )∨(I) = [dV ⊗ idV ∨ ] ◦ [idV ∨ ⊗ bV ] = idV ∨ , so it follows
from the preceding lemma that (ΦV )∨(X) is invertible for all X ∈ C, the inverse being given by

(ΦV )∨(X)−1 = [Fq−1(d′X)⊗ idV ∨⊗X ] ◦ [idFq−1 (X) ⊗ (ΦV )∨(∨X)⊗ idX ] ◦ [idFq−1 (X)⊗V ∨ ⊗ b′X ].

�

Lemma 4.1.9 Suppose that C is a G-pivotal category. Let V ∈ C, let ΦV be a half q-braiding for V . We
obtain a half q−1-braiding ΦV for V by defining

ΦV (X) = [dV ⊗ idFq−1 (X)⊗V ] ◦ [idV ⊗ ΦV (Fq−1(X))−1 ⊗ idV ] ◦ [idV⊗X ⊗ bV ]

and it satisfies ΦV (X) = ΦV (X) for all X ∈ C. If ΦW is a half r-braiding for W ∈ C, then ΦV ⊗ ΦW =

ΦW ⊗ ΦV . Furthermore, we have Φ0
I = Φ0

I .

Proof. That ΦV is a half q−1-braiding for V was proven in the preceding lemma. By using the fact that the
left and right transpose of a morphism in a pivotal category coincide, as well as the other special properties
that b, b′, d and d′ have in a pivotal category, one can verify that

ΦV (Fq(X))−1 = [idV⊗Fq(X) ⊗ dV ] ◦ [idV⊗Fq(X)⊗V ⊗ dX ⊗ idV ] ◦ [idV⊗Fq(X) ⊗ ΦV (X)−1 ⊗ idX⊗V ]

◦ [idV ⊗ bFq(X) ⊗ idV⊗X⊗V ] ◦ [bV ⊗ idX⊗V ].

Using this expression, we get

ΦV (X) = [dV ⊗ idFq(X)⊗V ] ◦ [idV ⊗ ΦV (Fq(X))−1 ⊗ idV ] ◦ [idV⊗X ⊗ bV ]

= [idFq(X)⊗V ⊗ dX ] ◦ [idFq(X) ⊗ ΦV (X)−1 ⊗ idX ] ◦ [bFq(X) ⊗ idV⊗X ].

To see that this equals ΦV (X), we compute

ΦV (X) ◦ ΦV (X)−1
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= [idFq(X)⊗V ⊗ dX ] ◦ [idFq(X) ⊗ ΦV (X)−1 ⊗ idX ] ◦ [bFq(X) ⊗ idV⊗X ] ◦ ΦV (X)−1

= [idFq(X)⊗V ⊗ dX ] ◦ [idFq(X) ⊗ ΦV (X ⊗X)−1] ◦ [Fq(bX)⊗ idFq(X)⊗V ]

= [idFq(X) ⊗ ΦV (I)−1] ◦ [idFq(X) ⊗ Fq(dX)⊗ idV ] ◦ [Fq(bX)⊗ idFq(X)⊗V ]

= idFq(X)⊗V

and similarly, one finds ΦV (X)−1 ◦ ΦV (X) = idV⊗X . Thus, we have indeed that ΦV (X) = ΦV (X).
Furthermore,

ΦV ⊗ ΦW (X)

= [dW ⊗ idFr−1q−1 (X)⊗W⊗V ] ◦ [idW ⊗ dV ⊗ idW⊗Fr−1q−1 (X)⊗W⊗V ]

◦ [idW⊗V⊗V ⊗ ΦW (Fr−1q−1(X))−1 ⊗ idW⊗V ] ◦ [idW⊗V ⊗ ΦV (Fq−1(X))−1 ⊗ idW⊗W⊗V ]

◦ [idW⊗V⊗X⊗V ⊗ bW ⊗ idV ] ◦ [idW⊗V⊗X ⊗ bV ]

= [dW ⊗ idFr−1q−1 (X)⊗W⊗V ] ◦ [idW ⊗ ΦW (Fr−1q−1(X))−1 ⊗ idW⊗V ] ◦ [idW⊗Fq−1 (X) ⊗ bW ⊗ idV ]

◦ [idW ⊗ dV ⊗ idFq−1 (X)⊗V ] ◦ [idW⊗V ⊗ ΦV (Fq−1(X))−1 ⊗ idV ] ◦ [idW⊗V⊗X ⊗ bV ]

= [ΦW (Fq−1(X))⊗ idV ] ◦ [idW ⊗ ΦV (X)]

= (ΦW ⊗ ΦV )(X).

Finally, for any X ∈ C we have

Φ0
I(X) = [dI ⊗ idX⊗I ] ◦ [idI ⊗ Φ0

I(Fe−1(X))−1 ⊗ idI ] ◦ [idI⊗X ⊗ bI ] = idX = Φ0
I(X),

where we have used that bI = dI = idI in a pivotal category, see Lemma 2.3.8.
�

4.2 Construction of ZG(C) in the strict case

After all our preparations concerning half braidings in G-categories, we are now ready to construct the
G-crossed Drinfeld center ZG(C).

Theorem 4.2.1 Let (C,⊗, I) be a strict tensor category with strict G-action F . We then define a braided
G-crossed category ZG(C) as follows:
• For each q ∈ G we first define a category ZG(C)q as follows. The class of objects is given by

Obj(ZG(C)q) := {(V,ΦV ) : V ∈ C and ΦV is a half q-braiding for V }

and we define HomZG(C)q ((V,ΦV ), (W,ΦW )) to be

{f ∈ HomC(V,W ) : [idFq(X) ⊗ f ] ◦ ΦV (X) = ΦW (X) ◦ [f ⊗ idX ] ∀X ∈ C}.

This defines a category ZG(C)q, where the composition of morphisms is the same as in C and the
identity morphisms are given by id(V,ΦV ) = idV . We then define the category ZG(C) as the disjoint
union5

ZG(C) :=
⊔
q∈G

ZG(C)q.

Thus, an object in ZG(C) is a triple (V, q,ΦV ) with q ∈ G and (V,ΦV ) ∈ ZG(C)q.
5As already announced in Remark 2.7.1, our definition of the disjoint union depends on whether we are dealing with

Ab-categories or not.
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• The category ZG(C) can be equipped with the structure of a strict tensor category by defining the tensor
product on the objects by

(V, q,ΦV )⊗ (W, r,ΦW ) := (V ⊗W, qr,ΦV ⊗ ΦW ),

where
(ΦV ⊗ ΦW )(X) := [ΦV (Fr(X))⊗ idW ] ◦ [idV ⊗ ΦW (X)]

and by letting the tensor product on the morphisms be the same as in C; the unit object is (I, e,Φ0
I),

where Φ0
I(X) = idX for all X ∈ C.

• It becomes a G-graded tensor category if we define ∂[(V, q,ΦV )] = q.
• We can define an action of the group G on the objects of ZG(C) by

Fq[(V, r,ΦV )] = (Fq(V ), qrq−1,FqΦV ),

where
(FqΦV )(X) := Fq(ΦV (Fq−1(X)))

and on the morphisms we define Fq(f) := Fq(f). This gives ZG(C) the structure of a G-crossed
category.

• Furthermore, ZG(C) becomes a braided G-crossed category if we define a braiding

C(V,q,ΦV ),(W,r,ΦV ) : (V, q,ΦV )⊗ (W, r,ΦW )→ Fq[(W, r,ΦW )]⊗ (V, q,ΦV ),

by C(V,q,ΦV ),(W,r,ΦW ) := ΦV (W ).

Proof. Let f ∈ HomZG(C)((U, q,ΦU ), (V, q,ΦV )) and g ∈ HomZG(C)((V, q,ΦV ), (W, q,ΦW )). Then for all
X ∈ C the morphism g ◦ f ∈ HomC(U,W ) satisfies

[idFq(X) ⊗ (g ◦ f)] ◦ ΦU (X) = [idFq(X) ⊗ g] ◦ ΦV (X) ◦ [f ⊗ idX ] = ΦW (X) ◦ [(g ◦ f)⊗ idX ].

So indeed g ◦ f ∈ HomZG(C)((U, q,ΦU ), (W, q,ΦW )). If (V, q,ΦV ) ∈ ZG(C), then it is easy to see that
idV ∈ EndZG(C)((V, q,ΦV )). Since the composition in ZG(C) is the same as in C, it is also clear that idV
acts as an identity morphism in ZG(C). Thus ZG(C) is a category.

We have already seen that ΦV ⊗ΦW is a half qr-braiding for V ⊗W , so the tensor product is well-defined
on the objects. Now suppose that we have two morphisms

f ∈ HomZG(C)((V, q,ΦV ), (W, q,ΦW )),

f ′ ∈ HomZG(C)((V
′, q′,ΦV ′), (W

′, q′,ΦW ′)).

Then for each X ∈ C the morphism f ⊗ f ′ ∈ HomC(V ⊗ V ′,W ⊗W ′) satisfies

[idFqq′ (X) ⊗ f ⊗ f ′] ◦ [(ΦV ⊗ ΦV ′)(X)]

= [idFqq′ (X) ⊗ idW ⊗ f ′] ◦ [idFqq′ (X) ⊗ f ⊗ idV ′ ] ◦ [ΦV (Fq′(X))⊗ idV ′ ] ◦ [idV ⊗ ΦV ′(X)]

= [idFqq′ (X) ⊗ idW ⊗ f ′] ◦ [ΦW (Fq′(X))⊗ idV ′ ] ◦ [f ⊗ idFq′ (X) ⊗ idV ′ ] ◦ [idV ⊗ ΦV ′(X)]

= [ΦW (Fq′(X))⊗ idW ′ ] ◦ [idW ⊗ idFq′ (X) ⊗ f ′] ◦ [idW ⊗ ΦV ′(X)] ◦ [f ⊗ idV ′ ⊗ idX ]

= [ΦW (Fq′(X))⊗ idW ′ ] ◦ [idW ⊗ ΦW ′(X)] ◦ [idW ⊗ f ′ ⊗ idX ] ◦ [f ⊗ idV ′ ⊗ idX ]

= [(ΦW ⊗ ΦW ′)(X)] ◦ [f ⊗ f ′ ⊗ idX ].

This shows that f ⊗ f ′ ∈ HomZG(C)((V ⊗ V ′, qq′,ΦV ⊗ΦV ′), (W ⊗W ′, qq′,ΦW ⊗ΦW ′)) and hence that the
tensor product on morphisms is well-defined. That the tensor product acts properly on identity morphisms
and satisfies the interchange law follows directly from the fact that the tensor product on morphisms in
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ZG(C) is defined to be the same as in C. The proof that (I, e,Φ0
I) ∈ ZG(C) acts as a unit object is trivial.

We thus conclude that ZG(C) is a strict tensor category.
The map ∂ has the property that

∂[(V, q,ΦV )⊗ (W, r,ΦW )] = ∂[(V ⊗W, qr,ΦV ⊗ ΦW )] = qr = ∂[(V, q,ΦV )]∂[(W, r,ΦW )],

and it is clear that if (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C) are isomorphic, then q = r. Hence it follows that ZG(C)
is a G-graded tensor category.

We will now show that each Fq is a functor ZG(C) → ZG(C) for each q ∈ G. If f is a morphism in
HomZG(C)((V, r,ΦV ), (W, r,ΦW )), then Fq(f) = Fq(f) ∈ HomC(Fq(V ), Fq(W )) and for X ∈ C we have

[idFqrq−1 (X) ⊗Fq(f)] ◦ [FqΦV (X)]

= Fq[(idFqr−1 (X) ⊗ f) ◦ ΦV (Fq−1(X))] = Fq[ΦW (Fq−1(X)) ◦ (f ⊗ idFq−1 (X))]

= [FqΦW (X)] ◦ [Fq(f)⊗ idX ],

showing that Fq(f) ∈ HomZG(C)(Fq[(V, r,ΦV )],Fq[(W, r,ΦW )]). It is also clear that we have Fq(g ◦ f) =
Fq(g)◦Fq(f) and Fq(id(V,r,ΦV )) = idFq [(V,r,ΦV )] for any morphisms f and g and any object (V, r,ΦV ) in the
category ZG(C), because the G-action on morphisms is the same in ZG(C) as in C. Thus Fq is a functor. It
also strictly preserves the tensor product on objects, since

Fq[(V, r,ΦV )⊗ (W, s,ΦW )] = Fq[(V ⊗W, rs,ΦV ⊗ ΦW )]

= (Fq(V ⊗W ), qrsq−1,Fq(ΦV ⊗ ΦW ))

= (Fq(V )⊗ Fq(W ), qrq−1qsq−1,FqΦV ⊗FqΦW )

= (Fq(V ), qrq−1,FqΦV )⊗ (Fq(W ), qsq−1,FqΦW )

= Fq[(V, r,ΦV )]⊗Fq[(W, s,ΦW )],

where we have used that Fq(ΦV ⊗ ΦW ) = FqΦV ⊗FqΦW , which follows from the computation

[Fq(ΦV ⊗ ΦW )](X) = Fq[(ΦV ⊗ ΦW )(Fq−1(X))]

= Fq
{

[ΦV (Fsq−1(X))⊗ idW ] ◦ [idV ⊗ ΦW (Fq−1(X))]
}

= [Fq(ΦV (Fsq−1(X)))⊗ idFq(W )] ◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))]

= [(FqΦV )(Fqsq−1(X))⊗ idFq(W )] ◦ [idFq(V ) ⊗ (FqΦW )(X)]

= (FqΦV ⊗FqΦW )(X).

Since Fq is defined on morphisms in the same way as in C, it is clear that Fq strictly preserves the tensor
structure on the morphisms as well. We also have

Fq[(I, e,Φ0
I)] = (Fq(I), qeq−1, Fq(idFq−1 (−))) = (I, e, id−) = (I, e,Φ0

I),

so we conclude that Fq is a strict tensor functor. The map q 7→ Fq is a homomorphism, since

Fqr[(V, s,ΦV )] = (Fqr(V ), qrs(qr)−1,FqrΦV ) = (Fq(Fr(V )), qrsr−1q−1,Fq(FrΦV ))

= Fq[(Fr(V ), rsr−1,FrΦV )] = Fq[Fr[(V, s,ΦV )]],

where we have used that FqrΦV = Fq(FrΦV ), which follows from the computation

(FqrΦV )(X) = Fqr(ΦV (F(qr)−1(X))) = Fq(Fr(ΦV (Fr−1(Fq−1(X)))))

= Fq[FrΦV (Fq−1(X))] = [Fq(FrΦV )](X).
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On the morphisms we can simply use that Fqr = Fqr = Fq ◦ Fr = Fq ◦ Fr. Thus q 7→ Fq defines a strict
G-action on ZG(C). Also,

∂{Fq[(V, r,ΦV )]} = ∂[(Fq(V ), qrq−1,FqΦV )] = qrq−1,

so ZG(C) is a G-crossed category.
Let (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C). Invertibility of C(V,q,ΦV ),(W,r,ΦW ) = ΦV (W ) is clear. For any s ∈ G

we have (in the category C)

Fs[C(V,q,ΦV ),(W,r,ΦW )] = Fs(ΦV (W )) = Fs[ΦV (Fs−1(Fs(W )))] = (FsΦV )(Fs(W ))

= CFs[(V,q,ΦV )],Fs[(W,r,ΦW )].

Observe that HomZG(C)((V ⊗W, qr,ΦV ⊗ΦW ), (Fq(W )⊗V, qr,FqΦW⊗ΦV )) consists of those f ∈ HomC(V ⊗
W,Fq(W )⊗ V ) that satisfy

[idFqr(X) ⊗ f ] ◦ [(ΦV ⊗ ΦW )(X)] = [(FqΦW ⊗ ΦV )(X)] ◦ [f ⊗ idX ],

so we must check this equality for f = ΦV (W ). We have

[idFqr(X) ⊗ ΦV (W )] ◦ [(ΦV ⊗ ΦW )(X)]

= [idFqr(X) ⊗ ΦV (W )] ◦ [ΦV (Fr(X))⊗ idW ] ◦ [idV ⊗ ΦW (X)]

= ΦV (Fr(X)⊗W ) ◦ [idV ⊗ ΦW (X)] = [Fq(ΦW (X))⊗ idV ] ◦ ΦV (W ⊗X)

= [FqΦW (Fq(X))⊗ idV ] ◦ [idFq(W ) ⊗ ΦV (X)] ◦ [ΦV (W )⊗ idX ]

= [(FqΦW ⊗ ΦV )(X)] ◦ [ΦV (W )⊗ idX ],

where in the third step we used naturality of ΦV . It follows directly from the definition of a half q-braiding
that C is natural in its second argument. But it is also natural in its first argument due to the definition
of the set of morphisms between any two objects in ZG(C). By definition of a half q-braiding, the braiding
in ZG(C) behaves properly with respect to tensor products in its second argument, and by definition of
the tensor product on objects in ZG(C) (in particular the tensor product of half braidings) it also behaves
properly with respect to tensor products in its first argument. This completes the proof that ZG(C) is a
braided G-crossed category.
�

The following corollary follows directly from the construction of ZG(C) and from the fact that the defi-
nition of a half e-braiding coincides with the definition of a half braiding in the absence of a group action.

Corollary 4.2.2 Let (C,⊗, I) be a strict tensor category with strict action F of the group G. Then ZG(C)e =
Z(C), where the expression on the right denotes the ordinary Drinfeld center (which is a braided G-category).
Consequently, we have a full inclusion Z(C) ⊂ ZG(C).

In particular, it follows that ZG(C) is a braided G-crossed extension of Z(C). If C is a strict tensor category
(without any given group action), we can consider it as a G-category with G = {e} and we get ZG(C) = Z(C).
This shows that ZG(C) is a generalization of Z(C), as was already suggested in the title of this chapter.

Finally, we would like to mention that there is of course also a construction of ZG(C) that uses half
braidings of the second kind instead. We will not consider this construction here, because it is completely
analogous to the construction above.

4.3 The case when C is a non-strict G-category

In this section we will consider the construction of ZG(C) in case C is non-strict and we will show that if C
and C′ are two equivalent (non-strict) G-categories, then ZG(C) ' ZG(C′) as braided G-crossed categories.
The detailed proofs of the statements in this section can be found in the appendices.
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4.3.1 Construction of ZG(C) for a non-strict G-category C
In order to carry out the construction of ZG(C) in the non-strict case, we first have to redefine half q-braidings
in the non-strict setting. We limit ourselves to half q-braidings of the first kind.

Definition 4.3.1 Let (C,⊗, I, a, l, r) be a tensor category with a G-action (F, εF , δF ).
If V ∈ C and q ∈ G, then a half q-braiding for V is a natural isomorphism

ΦV : ⊗ ◦ (V × idC) → ⊗ ◦ (Fq × V )

of functors C → C, i.e. a family {ΦV (X) : V ⊗X → Fq(X)⊗ V }X∈C of isomorphisms in C such that for all
X,Y ∈ C and f ∈ HomC(X,Y ) the square

V ⊗X Fq(X)⊗ V

V ⊗ Y Fq(Y )⊗ V

ΦV (X)

idV ⊗f Fq(f)⊗idV

ΦV (Y )

commutes, satisfying the additional property that for all X,Y ∈ C we have

ΦV (X ⊗ Y ) = [δqX,Y ⊗ idV ] ◦ a−1
Fq(X),Fq(Y ),V ◦ [idFq(X) ⊗ ΦV (Y )]

◦ aFq(X),V,Y ◦ [ΦV (X)⊗ idY ] ◦ a−1
V,X,Y . (4.3.1)

Now that we have a definition of half q-braidings in the non-strict setting, we have to generalize the lemmas
of the strict case that enabled us to define the tensor product and G-action on ZG(C). The proof of the
following lemma can be found in Section A.1 of Appendix A.

Lemma 4.3.2 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, ε, δ).
(1) If for each X ∈ C we define Φ0

I(X) : I⊗X → Fe(X)⊗ I by Φ0
I(X) := r−1

Fe(X) ◦ ε
F
X ◦ lX , then Φ0

I defines

a half e-braiding for I.
(2) Let ΦV be a half q-braiding for V and let ΦW be a half r-braiding for W . Then we obtain a half

qr-braiding ΦV ⊗ ΦW for V ⊗W defined by

(ΦV ⊗ ΦW )(X) : = [(δFq,r)X ⊗ idV⊗W ] ◦ aFq(Fr(X)),V,W ◦ [ΦV (Fr(X))⊗ idW ]

◦ a−1
V,Fr(X),W ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X .

(3) If r ∈ G, we obtain a half rqr−1-braiding FrΦV for Fr(V ) by defining

(FrΦV )(X) : = [(δFrq,r−1)X ⊗ idFr(V )] ◦ [(δFr,q)Fr−1 (X) ⊗ idFr(V )] ◦ (δrFq(Fr−1 (X)),V )−1

◦ Fr(ΦV (Fr−1(X))) ◦ δrV,Fr−1 (X) ◦ [idFr(V ) ⊗ (δFr,r−1)−1
X ] ◦ [idFr(V ) ⊗ εFX ].

Using this lemma, we can now construct ZG(C) in the non-strict case. The proof of the following theorem
can be found in Sections A.2 through A.5 of Appendix A.

Theorem 4.3.3 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). We then define a braided
G-crossed category ZG(C) as follows.
• For each q ∈ G we first define a category ZG(C)q as follows. The class of objects is given by

Obj(ZG(C)q) := {(V,ΦV ) : V ∈ C and ΦV is a half q-braiding for V }
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and we define HomZG(C)q ((V,ΦV ), (W,ΦW )) to be

{f ∈ HomC(V,W ) : [idFq(X) ⊗ f ] ◦ ΦV (X) = ΦW (X) ◦ [f ⊗ idX ] ∀X ∈ C}.

This defines a category ZG(C)q, where the composition of morphisms is the same as in C and the
identity morphisms are given by id(V,ΦV ) = idV . We then define the category ZG(C) as the disjoint
union6

ZG(C) :=
⊔
q∈G

ZG(C)q.

Thus, an object in ZG(C) is a triple (V, q,ΦV ) with q ∈ G and (V,ΦV ) ∈ ZG(C)q.
• The category ZG(C) can be equipped with the structure of a tensor category by defining the tensor

product on the objects by

(V, q,ΦV )⊗ (W, r,ΦW ) := (V ⊗W, qr,ΦV ⊗ ΦW ),

where

(ΦV ⊗ ΦW )(X) : = [(δFq,r)X ⊗ idV⊗W ] ◦ aFq(Fr(X)),V,W ◦ [ΦV (Fr(X))⊗ idW ]

◦ a−1
V,Fr(X),W ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X

and by letting the tensor product on the morphisms be the same as in C. The unit object is (I, e,Φ0
I),

where Φ0
I(X) = r−1

Fe(X) ◦ ε
F
X ◦ lX for all X ∈ C and the associativity constraint and the unit constraints

are the ones of C.
• It becomes a G-graded tensor category if we define ∂[(V, q,ΦV )] = q.
• We can define an action (F , e, δ) of the group G on the objects of ZG(C) by

Fq[(V, r,ΦV )] = (Fq(V ), qrq−1,FqΦV ),

where

(FrΦV )(X) : = [(δFrq,r−1)X ⊗ idFr(V )] ◦ [(δFr,q)Fr−1 (X) ⊗ idFr(V )] ◦ (δrFq(Fr−1 (X)),V )−1

◦ Fr(ΦV (Fr−1(X))) ◦ δrV,Fr−1 (X) ◦ [idFr(V ) ⊗ (δFr,r−1)−1
X ] ◦ [idFr(V ) ⊗ εFX ],

and on the morphisms we define Fq(f) := Fq(f). The ε and δ are the same as for the G-action on C.
This gives ZG(C) the structure of a G-crossed category.

• Furthermore, ZG(C) becomes a braided G-crossed category if we define a braiding

C(V,q,ΦV ),(W,r,ΦV ) : (V, q,ΦV )⊗ (W, r,ΦW )→ Fq[(W, r,ΦW )]⊗ (V, q,ΦV )

by C(V,q,ΦV ),(W,r,ΦW ) := ΦV (W ).

Apparently the construction of ZG(C) is much more involved in the non-strict case than in the strict case.
It would therefore be nice if we could somehow get rid of the non-strict case. In the next subsection we will
show that this is indeed possible in a certain sense.

4.3.2 If C ' C ′ then ZG(C) ' ZG(C ′)
The following theorem shows that if C ' C′ as G-categories, then ZG(C) ' ZG(C′) as braided G-crossed
categories. We will only give a sketch of the proof here. The detailed proof can be found in Appendix
B. Together with a coherence result of Galindo this theorem will then be used to argue that we can often
restrict ourselves to the strict case.

6See also footnote 5.
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Theorem 4.3.4 If C and C′ are equivalent G-categories, then ZG(C) and ZG(C′) are equivalent as braided
G-crossed categories.

Sketch of the proof. Suppose that we are given a group G and two tensor categories (C,⊗, I, a, l, r) and
(C′,⊗′, I ′, a′, l′, r′) with G-actions7 F and F ′, respectively, such that C and C′ are equivalent as G-categories.
We may thus assume that we are given G-functors

(K, εK , δK , ξK) : C → C′

(L, εL, δL, ξL) : C′ → C

together with natural G-isomorphisms

ϕ : idC′ → K ◦ L
ψ : L ◦K → idC .

If (V, q,ΦV ) ∈ ZG(C) then we define for each X ′ ∈ C′ the isomorphism K ΦV (X ′) ∈ HomC′(K(V ) ⊗′
X ′, F ′q(X

′)⊗′ K(V )) by

K ΦV (X ′) : = [F ′q(ϕX′)
−1 ⊗′ idK(V )] ◦ [ξK(q)L(X′) ⊗′ idK(V )] ◦ (δKFq(L(X′)),V )−1

◦K(ΦV (L(X ′))) ◦ δKV,L(X′) ◦ [idK(V ) ⊗′ ϕX′ ].

Then K ΦV can be shown to be a half q-braiding for K(V ) and we obtain a functor K : ZG(C)→ ZG(C′)
by defining K [(V, q,ΦV )] := (K(V ), q,K ΦV ) on the objects and K (f) := K(f) on the morphisms. The
next step is to make K into a G-crossed functor. This is done by defining

εK := εK , δK
(V,q,ΦV ),(W,r,ΦW ) := δKV,W , ξK (q)(V,q,ΦV ) := ξK(q)V

for any (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C) and q ∈ G. Of course it should first be proven that these morphisms
are indeed morphisms in the category ZG(C′) and then it has to be shown that (K , εK , δK , ξK ) is a
G-crossed functor. It can then be shown that this G-crossed functor is in fact braided, i.e. that

(K , εK , δK , ξK ) : ZG(C)→ ZG(C′)

is a functor of braided G-crossed categories.
By interchanging the roles of K and L and interchanging the roles of ϕ and ψ−1, it is trivial to see

that we can also construct a braided G-crossed functor L : ZG(C′)→ ZG(C) by defining the functor L on
the objects of ZG(C′) by L [(V ′, q,ΦV ′)] := (L(V ′), q,L ΦV ′), where the half q-braiding L ΦV ′ for L(V ′) is
given by

L ΦV ′(X) = [Fq(ψX)⊗ idL(V ′)] ◦ [ξL(q)K(X) ⊗ idL(V ′)] ◦ (δLF ′q(K(X)),V ′)
−1

◦ L(ΦV ′(K(X))) ◦ δLV ′,K(X) ◦ [idL(V ′) ⊗ ψ−1
X ]

for X ∈ C. On the morphisms L is defined as L (f ′) = L(f ′) and the εL , δL and ξL are given directly by
the εL, δL and ξL, in the same manner as we did for K .

The next step is to show that the functors K and L together constitute an equivalence of braided
G-crossed categories. For each (V ′, q,ΦV ′) ∈ ZG(C′) we define the isomorphism

ϕ̃(V ′,q,ΦV ′ )
∈ HomZG(C′)((V

′, q,ΦV ′),K L [(V ′, q,ΦV ′)])

7In other places we were free to write eq and δq instead of eFq and δFq , but here we cannot do this because there are two

group actions. These will be distinguished most easily by writing eFq or eF
′
q , etc.
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by ϕ̃(V ′,q,ΦV ′ )
:= ϕV ′ . It is then shown that this defines a natural braided G-crossed isomorphism from

idZG(C′) to K ◦L . In exactly the same manner one can construct a natural braided G-crossed isomorphism

ψ̃ : L ◦K → idZG(C). Thus ZG(C) ' ZG(C′) as braided G-crossed categories.
�

The following coherence theorem for G-categories can be found in Galindo’s paper [36].

Theorem 4.3.5 If G is a discrete group, then every G-category is equivalent to a strict G-category.

Together with our result above, this theorem has an interesting consequence. If G is a discrete group and C
is a G-category, then the coherence theorem states that there is a strict G-category C′ such that C ' C′ as G-
categories. Our result above then implies that ZG(C) ' ZG(C′) as braided G-crossed categories. But ZG(C′)
is a strict braided G-crossed category. Thus, if one is only interested in finding ZG(C) up to equivalence (of
braided G-crossed categories) for some G-category C with G discrete, it may be assumed that C is a strict
G-category.

4.4 ZG(C) as a relative Drinfeld center

In this section we will investigate the relationship between the G-crossed Drinfeld center ZG(C) and a certain
instance of a relative Drinfeld center as defined in Subsection 2.4.2.

If C is G-crossed, then Z(2)(C; Ce) is G-crossed

Let G be a group and let (C,⊗, I, F, ∂) be a G-crossed category. It follows from our discussion in Subsection
2.4.2 that the relative Drinfeld center Z(C; Ce) is a tensor category. The same is true for Z(2)(C; Ce), as
defined in Remark 2.4.10. We can define a G-grading on Z(2)(C; Ce) by letting ∂[(V,ΨV )] := ∂(V ), since

∂[(V,ΨV )⊗ (W,ΨW )] = ∂[(V ⊗W,ΨV ⊗ΨW )] = ∂(V ⊗W ) = ∂(V )∂(W )

= ∂[(V,ΨV )]∂[(W,ΨW )].

If ΨV is a half braiding of the second kind for V ∈ C relative to Ce and if q ∈ G then we obtain a half
braiding of the second kind FqΨV for Fq(V ) relative to Ce by defining

FqΨV (X) := Fq(ΨV (Fq−1(X)))

for all X ∈ Ce. This defines a group action F on Z(2)(C; Ce) by letting

Fq[(V,ΨV )] = (Fq(V ),FqΨV ),

Fq(f) = Fq(f)

for any (V,ΨV ) ∈ Z(2)(C; Ce) and f ∈ Hom(Z(2)(C; Ce)). In fact this equips Z(2)(C; Ce) with the structure
of a G-crossed category. Furthermore, Z(2)(C; Ce) has a partial braiding of the second kind with respect to
Z(2)(Ce) given by

C(V,ΨV ),(W,ΨW ) := ΨW (V ),

where (V,ΨV ) ∈ Z(2)(Ce) and (W,ΨW ) ∈ Z(2)(C; Ce). Now that we have seen that Z(2)(C; Ce) is a G-crossed
category with a partial braiding of the second kind with respect to Z(2)(Ce) whenever C is a G-crossed
category, we want to apply this to a particular example. But first we need to introduce the following
construction of a G-crossed category C oG from a G-category C.

The G-crossed category C oG
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Let G be a group and let (C,⊗, I) be a strict tensor category with a strict G-action F . Then we define a
category C oG as follows. The objects are pairs8 〈V, q〉 where V ∈ C and q ∈ G. We define

HomCoG(〈V, q〉, 〈W, r〉) =

{
HomC(V,W ) if q = r
∅ if q 6= r,

where the composition in C o G is the same as in C and for any 〈V, q〉 ∈ C o G we set id〈V,q〉 := idV . We
will now define a tensor product ⊗o on the objects of C oG by

〈V, q〉 ⊗o 〈W, r〉 := 〈V ⊗ Fq(W ), qr〉.

It is easy to check that ⊗o is associative on the objects and that for any 〈V, q〉 ∈ C o G we have
〈I, e〉 ⊗o 〈V, q〉 = 〈V, q〉 = 〈V, q〉 ⊗o 〈I, e〉. If 〈V, q〉, 〈V ′, q〉, 〈W, r〉, 〈W ′, r〉 ∈ C o G and if we have
f ∈ HomCoG(〈V, q〉, 〈V ′, q〉) and g ∈ HomCoG(〈W, r〉, 〈W ′, r〉), then we define

f ⊗o g := f ⊗ Fq(g).

This equips C oG with the structure of a strict tensor category. In fact, it is G-graded, with grading given
by ∂o(〈V, q〉) = q. The group action F of C can be used to define a group action Fo on C oG by

Fo
q (〈V, r〉) := 〈Fq(V ), qrq−1〉

and on the morphisms we define Fo
q (f) := Fq(f). In this way C o G becomes a G-crossed category with

G-spectrum ∂o(C oG) = G. The G-category C can be identified with the G-subcategory (C oG)e of C oG
in the obvious way. Thus C oG can be considered as a G-crossed extension of C.

The G-crossed category Crev oG

Let G be a group and let (C,⊗, I) be a strict tensor category with strict G-action F . The reversed tensor
category Crev, which is just C as a category but with ⊗ replaced by ⊗rev = ⊗◦ τ (where τ is the flip functor
as defined at the beginning of Section 2.4), is again a G-category9 with the same G-action as in C. Hence
we can construct its G-crossed extension Crev oG. On the objects its tensor product is given by

〈V, q〉⊗̂〈W, r〉 = 〈V ⊗rev Fq(W ), qr〉 = 〈Fq(W )⊗ V, qr〉

and for the tensor product on the morphisms one finds a similar expression, namely

f⊗̂g = Fq(g)⊗ f,

where q is the degree of both the domain object and target object of f . The group action is given by

F̂q(〈V, r〉) = 〈Fq(V ), qrq−1〉

F̂q(f) = Fq(f)

and the G-grading is given by ∂̂(〈V, q〉) = q.

Remark 4.4.1 Note that CrevoG is not the same as (CoG)rev. The latter is not even a G-crossed category
unless G is abelian, since the compatibility between the tensor product and the grading of C o G is lost
after reversing the tensor product (one has to invert the degrees of the objects at the same time in order to
retain this compatibility).

8We use the brackets 〈 , 〉 rather than ( , ) because this will make the more complicated expressions at the end of this
section more readable.

9This follows from Fq(V ⊗rev W ) = Fq(W ⊗ V ) = Fq(W )⊗ Fq(V ) = Fq(V )⊗rev Fq(W ).
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From now on we will write D := CrevoG for simplicity. In what follows, we will be interested in Z(2)(D,De),
which was introduced in Remark 2.4.10 in Subsection 2.4.2. Note that the objects of Z(2)(D,De) are
pairs

(
〈V, q〉,Ψ〈V,q〉

)
, where Ψ〈V,q〉 is a half braiding of the second kind for 〈V, q〉 ∈ D relative to De. If(

〈V, q〉,Ψ〈V,q〉
)

and
(
〈W, q〉,Ψ〈W,q〉

)
are objects in Z(2)(D;De), then HomZ(2)(D;De)

{(
〈V, q〉,Ψ〈V,q〉

)
,
(
〈W, q〉,Ψ〈W,q〉

)}
is equal to the set of all f ∈ HomD(〈V, q〉, 〈W, q〉) that satisfy[

f⊗̂id〈X,e〉
]
◦Ψ〈V,q〉(〈X, e〉) = Ψ〈W,q〉(〈X, e〉) ◦

[
id〈X,e〉⊗̂f

]
for all 〈X, e〉 ∈ De, which can be slightly simplified by writing

HomZ(2)(D;De)
{(
〈V, q〉,Ψ〈V,q〉

)
,
(
〈W, q〉,Ψ〈W,q〉

)}
=
{
f ∈ HomC(V,W ) :

[
f⊗̂id〈X,e〉

]
◦Ψ〈V,q〉(〈X, e〉) = Ψ〈W,q〉(〈X, e〉) ◦

[
id〈X,e〉⊗̂f

]
∀X ∈ C

}
.

On the objects the tensor product is given by(
〈V, q〉,Ψ〈V,q〉

)
⊗̂
(
〈W, r〉,Ψ〈W,r〉

)
=
(
〈V, q〉⊗̂〈W, r〉,Ψ〈V,q〉⊗̂Ψ〈W,r〉

)
=
(
〈Fq(W )⊗ V, qr〉,Ψ〈V,q〉⊗̂Ψ〈W,r〉

)
,

where Ψ〈V,q〉⊗̂Ψ〈W,r〉 is the half braiding of the second kind for 〈Fq(W )⊗ V, qr〉 given by(
Ψ〈V,q〉⊗̂Ψ〈W,r〉

)
(〈X, e〉) =

[
id〈V,q〉⊗̂Ψ〈W,r〉(〈X, e〉)

]
◦
[
Ψ〈V,q〉(〈X, e〉)⊗̂id〈W,r〉

]
for 〈X, e〉 ∈ De, and on the morphisms the tensor product is the same as in D. On the objects the group
action is given by

F̂q
[(
〈V, r〉,Ψ〈V,r〉

)]
=
(
F̂q(〈V, r〉), F̂qΨ〈V,r〉

)
=
(
〈Fq(V ), qrq−1〉, F̂qΨ〈V,r〉

)
,

where F̂qΨ〈V,r〉 is the half braiding of the second kind for 〈Fq(V ), qrq−1〉 given by

F̂qΨ〈V,r〉(〈X, e〉) = F̂q

(
Ψ〈V,r〉

(
F̂q−1(〈X, e〉)

))
= Fq

(
Ψ〈V,r〉

(
〈Fq−1(X), e〉

))
for 〈X, e〉 ∈ De, and on the morphisms the group action is the same as in D. The G-grading is simply given
by

∂̂
[(
〈V, q〉,Ψ〈V,q〉

)]
= ∂o(〈V, q〉) = q.

In this way, Z(2)(D;De) becomes a G-crossed category. It also has a partial braiding Ĉ of the second kind
relative to Z(2)(De) given by

Ĉ(〈V,e〉,Ψ〈V,e〉),(〈W,r〉,Ψ〈W,r〉) = Ψ〈W,r〉(〈V, e〉).

As we will see in Proposition 4.4.6 below, this partial braiding of the second kind relative to Z(2)(De) can
be extended to an ordinary braiding. But first we need to prove some lemmas that will also be useful in
proving Theorem 4.4.7, which will be the main result of this section.

Some useful lemmas

Now let 〈V, q〉 ∈ D and let Ψ〈V,q〉 be a half braiding of the second kind for 〈V, q〉 relative to De. Then for
any 〈X, e〉 ∈ De we have that Ψ〈V,q〉(〈X, e〉) is an isomorphism

Ψ〈V,q〉(〈X, e〉) : 〈X, e〉⊗̂〈V, q〉︸ ︷︷ ︸
=〈V⊗X,q〉

→ 〈V, q〉⊗̂〈X, e〉︸ ︷︷ ︸
=〈Fq(X)⊗V,q〉

.

In particular, we can write Ψ〈V,q〉(〈X, e〉) = ΦV (X) for some ΦV (X) ∈ HomC(V ⊗X,Fq(X) ⊗ V ). As the
following lemma shows, this gives rise to a half q-braiding for V .
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Lemma 4.4.2 Let C be a G-category and let D = Crev oG.
(1) If Ψ〈V,q〉 is a half braiding of the second kind for 〈V, q〉 ∈ D relative to De, then

ΦV (X) := Ψ〈V,q〉(〈X, e〉)

defines a half q-braiding for V ∈ C.
(2) If ΦV is a half q-braiding for V ∈ C, then

Ψ〈V,q〉(〈X, e〉) := ΦV (X)

defines a half braiding of the second kind for 〈V, q〉 ∈ D relative to De.

Proof. We can simply prove both statements at once, because in both statements ΦV and Ψ〈V,q〉 are related
in the same way. Naturality of Ψ〈V,q〉 means that for any f ∈ HomC(X,Y ) we have

Ψ〈V,q〉(〈Y, e〉) ◦
[
f⊗̂id〈V,q〉

]
=
[
id〈V,q〉⊗̂f

]
◦Ψ〈V,q〉(〈X, e〉),

which can be rewritten as
ΦV (Y ) ◦ [idV ⊗ f ] = [Fq(f)⊗ idV ] ◦ ΦV (X),

which is equivalent to naturality of ΦV . Now note that the condition

Ψ〈V,q〉(〈Y, e〉⊗̂〈X, e〉) =
[
Ψ〈V,q〉(〈Y, e〉)⊗̂id〈X,e〉

]
◦
[
id〈Y,e〉⊗̂Ψ〈V,q〉(〈X, e〉)

]
can be rewritten as

ΦV (X ⊗ Y ) = [idFq(X) ⊗ ΦV (Y )] ◦ [ΦV (X)⊗ idY ].

Note that the different order of X and Y on the left-hand sides of the last two equations is not relevant,
because these equations have to be satisfied for all X,Y ∈ C. This completes the proof.
�

As the following lemma shows, the morphisms in Z(2)(D;De) coincide in a certain sense with the mor-
phisms in ZG(C).

Lemma 4.4.3 Let C be a G-category and let D = Crev o G and q ∈ G. If Ψ〈V,q〉 and Ψ〈W,q〉 are half
braidings of the second kind for 〈V, q〉 and 〈W, q〉 relative to De, with corresponding half q-braidings ΦV and
ΦW for V and W , then for any f ∈ HomC(V,W ) the following two statements are equivalent:

(1) In the category Z(2)(D;De) we have f ∈ Hom
{(
〈V, q〉,Ψ〈V,q〉

)
,
(
〈W, q〉,Ψ〈W,q〉

)}
.

(2) In the category ZG(C) we have f ∈ Hom {(V, q,ΦV ) , (W, q,ΦW )}.

Proof. Statement (1) is equivalent to the condition that

Ψ〈W,q〉(〈X, e〉) ◦
[
id〈X,e〉⊗̂f

]
=
[
f⊗̂id〈X,e〉

]
◦Ψ〈V,q〉(〈X, e〉)

for all 〈X, e〉 ∈ De, which can be restated as the condition that

ΦW (X) ◦ [f ⊗ idX ] = [idFq(X) ⊗ f ] ◦ ΦV (X)

for all X ∈ C, which is equivalent to statement (2).
�

As shown in Lemma 4.4.2, there is a one-to-one correspondence between half braidings of the second kind
Ψ〈V,q〉 relative to De for 〈V, q〉 on the one hand, and half q-braidings ΦV for V on the other. In the following
lemma we will show that the group action behaves very nicely with respect to this correspondence.



132 CHAPTER 4. A G-CROSSED GENERALIZATION OF THE DRINFELD CENTER

Lemma 4.4.4 Let C be a G-category and let D = Crev o G and q ∈ G. If Ψ〈V,r〉 is a half braiding of the
second kind for 〈V, r〉 relative to De and if ΦV is the corresponding half r-braiding for V , then for all X ∈ C
we have the equality

F̂qΨ〈V,r〉(〈X, e〉) = FqΦV (X).

In other words, if Ψ〈V,r〉 corresponds to ΦV , then F̂qΨ〈V,r〉 corresponds to FqΦV .

Proof. This follows from the computation

F̂qΨ〈V,r〉(〈X, e〉) = F̂q

[
Ψ〈V,r〉

(
F̂q−1(〈X, e〉)

)]
= F̂q

[
Ψ〈V,r〉(〈Fq−1(X), e〉)

]
= Fq

(
ΦV (Fq−1(X))

)
= FqΦV (X).

�

Finally, we also have to investigate how the tensor product behaves with respect to the correspondence.
This will be done in the following lemma.

Lemma 4.4.5 Let C be a G-category and let D = Crev oG and q ∈ G.
(1) If Ψ〈V,q〉 and Ψ〈W,r〉 are half braidings of the second kind for 〈V, q〉 and 〈W, r〉 relative to De and if ΦV

and ΦW are the corresponding half q-braiding for V and half r-braiding for W , then for any X ∈ C
we have (

Ψ〈V,q〉⊗̂Ψ〈W,r〉
)

(〈X, e〉) = (FqΦW ⊗ ΦV )(X).

In other words, FqΦW ⊗ ΦV is the half qr-braiding for Fq(W )⊗ V corresponding to the half braiding
of the second kind Ψ〈V,q〉⊗̂Ψ〈W,r〉 relative to De for 〈Fq(W )⊗ V, qr〉.

(2) If ΦV and ΦW are a half q-braiding for V and a half r-braiding for W and if Ψ〈V,q〉 and Ψ〈W,r〉 are
the corresponding half braidings of the second kind for 〈V, q〉 and 〈W, r〉 relative to De, then for any
X ∈ C we have

(ΦV ⊗ ΦW )(X) =
(

Ψ〈W,r〉⊗̂F̂r−1Ψ〈V,q〉

)
(〈X, e〉).

In other words Ψ〈W,r〉⊗̂F̂r−1Ψ〈V,q〉 is the half braiding of the second kind relative to De for 〈V ⊗W, qr〉
corresponding to the half qr-braiding ΦV ⊗ ΦW for V ⊗W .

Proof. (1) We have(
Ψ〈V,q〉⊗̂Ψ〈W,r〉

)
(〈X, e〉) =

[
id〈V,q〉⊗̂Ψ〈W,r〉(〈X, e〉)

]
◦
[
Ψ〈V,q〉(〈X, e〉)⊗̂id〈W,r〉

]
= [Fq(ΦW (X))⊗ idV ] ◦ [idFq(W ) ⊗ ΦV (X)]

= [FqΦW (Fq(X))⊗ idV ] ◦ [idFq(W ) ⊗ ΦV (X)]

= (FqΦW ⊗ ΦV )(X).

(2) A similar calculation as in part (1), but in reverse order, gives us

(ΦV ⊗ ΦW )(X) = [ΦV (Fr(X))⊗ idW ] ◦ [idV ⊗ ΦW (X)]

=
[
id〈W,r〉⊗̂F̂r−1Ψ〈V,q〉(〈X, e〉)

]
◦
[
Ψ〈W,r〉(〈X, e〉)⊗̂idF̂r−1 (〈V,q〉)

]
=
(

Ψ〈W,r〉⊗̂F̂r−1Ψ〈V,q〉

)
(〈X, e〉).

Note that we could also have used part (1) to conclude that(
Ψ〈W,r〉⊗̂F̂r−1Ψ〈V,q〉

)
(〈X, e〉) = (FrFr−1ΦV ⊗ ΦW )(X) = (ΦV ⊗ ΦW )(X).

�
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The G-crossed category Z(2)(D;De) has a braiding

From our discussion at the beginning of this section we know that Z(2)(D;De) is a G-crossed category that

has a partial braiding Ĉ of the second kind. This statement is true for any G-crossed category D and is
not based on the fact that D = C o G. As we will now show, in the case where D = C o G we can equip
Z(2)(D;De) with a braiding that extends Ĉ, so that it becomes a braided G-crossed category.

Proposition 4.4.6 If C is a G-category and D = Crev oG, then the G-crossed category Z(2)(D;De) has a
braiding (of the first kind).

Proof. For any two objects (〈V, q〉,Ψ〈V,q〉) and (〈W, r〉,Ψ〈W,r〉) in Z(2)(D;De) we define

Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉) := FqΦW (V ),

where ΦW is the half r-braiding for W ∈ C corresponding to Ψ〈W,r〉. For Ĉ to be a braiding (of the first

kind), the domain object of Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉) has to be(
〈V, q〉,Ψ〈V,q〉

)
⊗̂
(
〈W, r〉,Ψ〈W,r〉

)
=
(
〈Fq(W )⊗ V, qr〉,Ψ〈V,q〉⊗̂Ψ〈W,r〉

)
and its target object has to be

F̂q
[(
〈W, r〉,Ψ〈W,r〉

)]
⊗̂
(
〈V, q〉,Ψ〈V,q〉

)
=
(
〈Fq(W ), qrq−1〉, F̂qΨ〈W,r〉

)
⊗̂
(
〈V, q〉,Ψ〈V,q〉

)
=
(
〈Fqrq−1(V )⊗ Fq(W ), qr〉, F̂qΨ〈W,r〉⊗̂Ψ〈V,q,〉

)
.

To check whether this is the case, we first note that FqΦW is a half qrq−1-braiding for Fq(W ), so FqΦW (V )
is an isomorphism from Fq(W )⊗ V to Fqrq−1(V )⊗ Fq(W ). Furthermore, for any 〈X, e〉 ∈ De we have[

Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)⊗̂id〈X,e〉

]
◦
(
Ψ〈V,q〉⊗̂Ψ〈W,r〉

)
(〈X, e〉)

=
[
Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)⊗̂id〈X,e〉

]
◦ [id〈V,q〉⊗̂Ψ〈W,r〉(〈X, e〉)] ◦ [Ψ〈V,q〉(〈X, e〉)⊗̂id〈W,r〉]

= [idFqr(X) ⊗FqΦW (V )] ◦ [Fq(ΦW (X))⊗ idV ] ◦ [idFq(W ) ⊗ ΦV (X)]

= Fq

{
[idFr(X) ⊗ ΦW (Fq−1(V ))] ◦ [ΦW (X)⊗ idFq−1 (V )] ◦ [idW ⊗ Fq−1(ΦV (X))]

}
= Fq

{
ΦW (X ⊗ Fq−1(V )) ◦ [idW ⊗ Fq−1(ΦV (X))]

}
= Fq

{
[Frq−1(ΦV (X))⊗ idW ] ◦ ΦW (Fq−1(V ⊗X))

}
= [Fqrq−1(ΦV (X))⊗ idFq(W )] ◦ FqΦW (V ⊗X)

= [Fqrq−1(ΦV (X))⊗ idFq(W )] ◦ [idFrqr−1 (V ) ⊗FqΦW (X)] ◦ [FqΦW (V )⊗ idX ]

=
[
id〈Fq(W ),qrq−1〉⊗̂Ψ〈V,q〉(〈X, e〉)

]
◦
[
FqΨ〈W,r〉(〈X, e〉)⊗̂id〈V,q〉

]
◦
[
id〈X,e〉⊗̂Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)

]
=
(
F̂qΨ〈W,r〉⊗̂Ψ〈V,q〉

)
(〈X, e〉) ◦

[
id〈X,e〉⊗̂Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)

]
.

This proves that Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉) has indeed the correct domain and target objects. It is also

clear that it is an isomorphism, since FqΦW (V ) is an isomorphism in the category C. To prove naturality,
consider two morphisms

f ∈ HomZ(2)(D;De)
{(
〈V, q〉,Ψ〈V,q〉

)
,
(
〈V ′, q〉,Ψ〈V ′,q〉

)}
g ∈ HomZ(2)(D;De)

{(
〈W, r〉,Ψ〈W,r〉

)
,
(
〈W ′, r〉,Ψ〈W ′,r〉

)}
.
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For these morphisms we have

Ĉ(〈V ′,q〉,Ψ〈V ′,q〉),(〈W ′,r〉,Ψ〈W ′,r〉)
◦ [f⊗̂g] = FqΦW ′(V ′) ◦ [Fq(g)⊗ f ]

= [Fqrq−1(f)⊗ idFq(W ′)] ◦ FqΦW ′(V ) ◦ [Fq(g)⊗ idV ]

= [Fqrq−1(f)⊗ Fq(g)] ◦ FqΦW (V )

= [Fq(g)⊗̂f ] ◦ Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉),

where in the second step we used naturality of FqΦW ′ and in the third step we used that

f ∈ HomZG(C){(V, q,ΦV ), (W, r,ΦW )}

by Lemma 4.4.3. Also,

Ĉ(〈U,q〉,Ψ〈U,q〉),(〈V,r〉,Ψ〈V,r〉)⊗̂(〈W,s〉,Ψ〈W,s〉) = Ĉ(〈U,q〉,Ψ〈U,q〉),(〈Fr(W )⊗V,rs〉,Ψ〈V,r〉⊗̂Ψ〈W,s〉)

= [Fq(FrΦW ⊗ ΦV )](U) = (FqrΦW ⊗FqΦV )(U)

= [FqrΦW (Fqrq−1(U))⊗ idFq(V )] ◦ [idFqr(W ) ⊗FqΦV (U)]

= [Fqr(ΦW (Fq−1(U)))⊗ idFq(V )] ◦ [idFqr(W ) ⊗FqΦV (U)]

= [Fqrq−1(FqΦW (U))⊗ idFq(V )] ◦ [idFqr(W ) ⊗FqΦV (U)]

=
[
idF̂q[(〈V,r〉,Ψ〈V,r〉)]⊗̂Ĉ(〈U,q〉,Ψ〈U,q〉),(〈W,s〉,Ψ〈W,s〉)

]
◦
[
Ĉ(〈U,q〉,Ψ〈U,q〉),(〈V,r〉,Ψ〈V,r〉)⊗̂id(〈W,s〉,Ψ〈W,s〉)

]
and

Ĉ(〈U,q〉,Ψ〈U,q〉)⊗̂(〈V,r〉,Ψ〈V,r〉),(〈W,s〉,Ψ〈W,s〉) = Ĉ(〈Fq(V )⊗U,qr〉,Ψ〈U,q〉⊗̂Ψ〈V,r〉),(〈W,s〉,Ψ〈W,s〉)

= FqrΦW (Fq(V )⊗ U)

= [idFqrsr−1q−1 (Fq(V )) ⊗FqrΦW (U)] ◦ [FqrΦW (Fq(V ))⊗ idU ]

= [idFqrsr−1 (V ) ⊗FqrΦW (U)] ◦ [Fq(FrΦW (V ))⊗ idU ]

=
[
Ĉ(〈U,q〉,Ψ〈U,q〉),F̂r[(〈W,s〉,Ψ〈W,s〉)]⊗̂id(〈V,r〉,Ψ〈V,r〉)

]
◦
[
id(〈U,q〉,Ψ〈U,q〉)⊗̂Ĉ(〈V,r〉,Ψ〈V,r〉),(〈W,s〉,Ψ〈W,s〉)

]
.

Finally, we also have

F̂q
[
Ĉ(〈V,r〉,Ψ〈V,r〉),(〈W,s〉,Ψ〈W,s〉)

]
= Fq(FrΦW (V )) = FqrΦW (Fq(V )) = Fqrq−1FqΦW (Fq(V ))

= Ĉ(〈Fq(V ),qrq−1〉,F̂qΨ〈V,r〉),(〈Fq(W ),qsq−1〉,F̂qΨ〈W,s〉)

= ĈF̂q[(〈V,r〉,Ψ〈V,r〉)],F̂q[(〈W,s〉,Ψ〈W,s〉)].

This proves that Ĉ is a braiding (of the first kind) for Z(2)(D;De).
�

The equivalence ZG(C) ' Z(2)(D;De)

We are now ready to formulate the main result of this section. It states that ZG(C) is equivalent to
Z(2)(D;De) as a braided G-crossed category.

Theorem 4.4.7 If C is a G-category, then there exists an equivalence

K : Z(2)(Crev oG; (Crev oG)e)→ ZG(C)

of braided G-crossed categories.
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Proof. In what follows we will write D = Crev oG for simplicity. We define a functor K : Z(2)(D;De) →
ZG(C) by

K
[(
〈V, q〉,Ψ〈V,q〉

)]
= (V, q,ΦV )

K(f) = f,

where ΦV is the half q-braiding for V defined by ΦV (X) = Ψ〈V,q〉(〈X, e〉). Lemmas 4.4.2 and 4.4.3 show
that K is well-defined. That K is a functor follows from the simple computation

K(g ◦ f) = g ◦ f = K(g) ◦K(f).

We will now equip K with the structure (K, εK , δK) of a tensor functor. To find δK , let
(
〈V, q〉,Ψ〈V,q〉

)
and

(
〈W, r〉,Ψ〈W,r〉

)
be objects in Z(2)(D;De) and let ΦV and ΦW be the half q-braiding for V and half

r-braiding for W corresponding to Ψ〈V,q〉 and Ψ〈W,r〉. Then on the one hand we have

K
[(
〈V, q〉,Ψ〈V,q〉

)]
⊗K

[(
〈W, r〉,Ψ〈W,r〉

)]
= (V, q,ΦV )⊗ (W, r,ΦW )

and on the other hand we have

K
[(
〈V, q〉,Ψ〈V,q〉

)
⊗̂
(
〈W, r〉,Ψ〈W,r〉

)]
= K

[(
V ⊗̂W,Ψ〈V,q〉⊗̂Ψ〈W,r〉

)]
= (Fq(W )⊗ V, qr,FqΦW ⊗ ΦV )

= Fq[(W, r,ΦW )]⊗ (V, q,ΦV ),

where in the second step we used Lemma 4.4.5. From this it follows that δK
(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)

has to

be an isomorphism

δK(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)
: (V, q,ΦV )⊗ (W, r,ΦW )→ Fq[(W, r,ΦW )]⊗ (V, q,ΦV ),

which suggests that we should choose

δK(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)
:= C(V,q,ΦV ),(W,r,ΦW ),

where C is the braiding in ZG(C). Naturality of δK follows from naturality of C. Namely, if we have
morphisms f :

(
〈V, q〉,Ψ〈V,q〉

)
→
(
〈V ′, q〉,Ψ〈V ′,q〉

)
and g :

(
〈W, r〉,Ψ〈W,r〉

)
→
(
〈W ′, r〉,Ψ〈W ′,r〉

)
then

δK(〈V ′,q〉,Ψ〈V ′,q〉),(〈W ′,r〉,Ψ〈W ′,r〉)
◦ [K(f)⊗K(g)] = C(V ′,q,ΦV ′ ),(W

′,r,ΦW ′ )
◦ [f ⊗ g]

= [Fq(g)⊗ f ] ◦ C(V,q,ΦV ),(W,r,ΦW )

= K(f⊗̂g) ◦ δK(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉).

We also have

δK(〈U,q〉,Ψ〈U,q〉)⊗̂(〈V,r〉,Ψ〈V,r〉),(〈W,s〉,Ψ〈W,s〉)
◦
[
δK(〈U,q〉,Ψ〈U,q〉),(〈V,r〉,Ψ〈V,r〉)

⊗ idK[(〈W,s〉,Ψ〈W,s〉)]

]
= CFq [(V,r,ΦV )]⊗(U,q,ΦU ),(W,s,ΦW ) ◦

[
C(U,q,ΦU ),(V,r,ΦV ) ⊗ id(W,s,ΦW )

]
= C(U,q,ΦU ),Fr[(W,s,ΦW )]⊗(V,r,ΦV ) ◦

[
id(U,q,ΦU ) ⊗ C(V,r,ΦV ),(W,s,ΦW )

]
= δK(〈U,q〉,Ψ〈U,q〉),(〈V,r〉,Ψ〈V,r〉)⊗̂(〈W,s〉,Ψ〈W,s〉)

◦
[
idK[(〈U,q〉,Ψ〈U,q〉)] ⊗ δ

K

(〈V,r〉,Ψ〈V,r〉),(〈W,s〉,Ψ〈W,s〉)

]
.

To find εK , we first observe that for any X ∈ C we have Ψ0
〈I,e〉(〈X, e〉) = id〈X,e〉 = idX = Φ0

I(X). This

implies K[(〈I, e〉,Ψ0
〈I,e〉)] = (I, e,Φ0

I), which suggests to choose εK = id(I,e,Φ0
I). For this choice of εK we

find

δK(〈I,e〉,Ψ〈I,e〉),(〈V,q〉,Ψ〈V,q〉)
◦
[
εK ⊗ idK[(〈V,q〉,Ψ〈V,q〉)]

]
= C(I,e,Φ0

I),(V,q,ΦV ) ◦
[
id(I,e,Φ0

I) ⊗ id(V,q,ΦV )

]
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= id(V,q,ΦV )

and

δK(〈V,q〉,Ψ〈V,q〉),(〈I,e〉,Ψ〈I,e〉)
◦
[
idK[(〈V,q〉,Ψ〈V,q〉)] ⊗ ε

K
]

= C(V,q,ΦV ),(I,e,Φ0
I) ◦

[
id(V,q,ΦV ) ⊗ id(I,e,Φ0

I)

]
= id(V,q,ΦV ),

which proves that (K, εK , δK) is indeed a tensor functor. We will now show that K can be equipped with
the structure of a G-functor. It follows from Lemma 4.4.4 that

(K ◦ F̂q)
[(
〈V, r〉,Ψ〈V,r〉

)]
= (Fq(V ), qrq−1,FqΦV ) = Fq[(V, r,ΦV )]

= (Fq ◦K)
[(
〈V, r〉,Ψ〈V,r〉

)]
.

Also, on the morphisms,

(K ◦ F̂q)(f) = K(Fq(f)) = Fq(f) = (Fq ◦K)(f),

so we have the equality of functors K ◦ F̂q = Fq ◦ K for any q ∈ G. This suggests that we might take

the natural isomorphisms {ξK(q) : K ◦ F̂q → Fq ◦ K}q∈G in the definition of a G-functor to be trivial.
For this choice of ξK all diagrams in the definition of a G-functor trivialize, except the last one. But the
commutativity of that diagram follows from the simple computation

δKF̂q[(〈V,r〉,Ψ〈V,r〉)],F̂q[(〈W,s〉,Ψ〈W,s〉)]
= δK

(〈Fq(V ),qrq−1〉,F̂qΨ〈V,r〉),(〈Fq(W ),qsq−1〉,F̂qΨ〈W,s〉)

= C(Fq(V ),qrq−1,FqΦV ),(Fq(W ),qsq−1,FqΦW )

= CFq [(V,r,ΦV )],Fq [(W,s,ΦW )]

= Fq
(
C(V,r,ΦV ),(W,s,ΦW )

)
= Fq

(
δK(〈V,r〉,Ψ〈V,r〉),(〈W,s〉,Ψ〈W,s〉)

)
.

This proves that (K, εK , δK , ξK) is a G-functor. It is also a G-crossed functor, since it preserves the G-
grading. Finally, this functor is also braided, because[

δKF̂q[(〈W,r〉,Ψ〈W,r〉)],(〈V,q〉,Ψ〈V,q〉)

]−1

◦K
[
Ĉ(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)

]
◦ δK(〈V,q〉,Ψ〈V,q〉),(〈W,r〉,Ψ〈W,r〉)

=
[
C(Fq(W ),qrq−1,FqΦW ),(V,q,ΦV )

]−1 ◦K[FqΦW (V )] ◦ C(V,q,ΦV ),(W,r,ΦW )

= FqΦW (V )−1 ◦ FqΦW (V ) ◦ CK[(〈V,q〉,Ψ〈V,q〉)],K[(〈W,r〉,Ψ〈W,r〉)]

= CK[(〈V,q〉,Ψ〈V,q〉)],K[(〈W,r〉,Ψ〈W,r〉)].

This proves that K is a braided G-crossed functor. To prove that it is an equivalence, we define a functor
L : ZG(C)→ Z(2)(D;De) by

L[(V, q,ΦV )] =
(
〈V, q〉,Ψ〈V,q〉

)
L(f) = f,

where Ψ〈V,q〉 is the half braiding of the second kind for 〈V, q〉 relative to De that is defined by Ψ〈V,q〉(〈X, e〉) =
ΦV (X). The same reasoning as for K can be used to show that L is a well-defined functor. It is easy to see
that K and L are inverse to each other. We can equip L with the structure (L, εL, δL) of a tensor functor
by setting

δL(V,q,ΦV ),(W,r,ΦW ) = L
(
δKL[(V,q,ΦV )],L[(W,r,ΦW )]

)−1

= L
(
C(V,q,ΦV ),(W,r,ΦW )

)−1
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= L(ΦV (W ))−1 = ΦV (W )−1 = (FrFr−1ΦV (W ))−1

= Ĉ−1

(〈W,r〉,Ψ〈V,r〉),F̂r−1 [(〈V,q〉,Ψ〈V,q〉)]

and εL = id(〈I,e〉,Ψ0
〈I,e〉)

. It becomes a G-functor if we choose the isomorphisms {ξL(q) : L◦Fq → F̂q ◦L}q∈G
to be trivial and this will in fact result in a braided G-crossed functor. The proof of these statements
proceeds analogously to the case of K. The functors K and L are also inverse to each other in the sense
of G-crossed functors, i.e. their compositions in the sense of G-crossed functors will result in the trivial
G-crossed structure on the identity functors. The existence of such a functor L proves that the braided
G-crossed functor K is an equivalence of braided G-crossed categories.
�

Remark 4.4.8 In the paper [38] by Gelaki, Naidu and Nikshych the construction of Z(D;De) is considered
for the case where D is a G-graded fusion category with full G-spectrum. They show that Z(D;De) can be
equipped with both a G-action and a braiding in a canonical way, so that it becomes a braided G-crossed
category. In Section 3D of [38] this is applied to the case D = C o G where C is a fusion category with
G-action, which results in a similar10 braided G-crossed structure on Z(D;De) as ours.

4.5 ZG(C) as a category of bimodule functors

The goal of this section is to show that ZG(C) is equivalent, as a braided G-crossed category, to a certain
category of bimodule functors. In the first subsection we will demonstrate how a group action on a tensor
category C gives rise to structures of a C-bimodule category on C. In the second subsection we will introduce
a braided G-crossed structure on a certain category D of bimodule functors and in the third subsection we
will prove that D and ZG(C) are equivalent as braided G-crossed categories. The proofs of the statements
in the second and third subsection involve many computations. In Section 4.3 we omitted all the proofs
because they involved computations that were all very long, see [96]. In contrast, the computations that we
will encounter now are all quite short and are therefore included.

4.5.1 Bimodule categories from group actions

If we are given a G-action on a tensor category C, then we can equip C with different structures of a
C-bimodule category, indexed by pairs of group elements in G.

Proposition 4.5.1 Let C be a strict tensor category with strict action F of the group G. For each q ∈ G
we define bifunctors

q
B: C × C → C and

q
C: C × C → C by

q
B := ⊗ ◦ (Fq × idC)
q
C := ⊗ ◦ (idC × Fq).

If q ∈ G, then
q
B equips C with the structure of a strict left C-module category (C,

q
B) and

q
C equips C with

the structure of a strict right C-module category (C,
q
C). In fact, for each pair (q, r) ∈ G × G, we obtain a

C-bimodule category (C,
q
B,

r
C).

10Note that we constructed a braided G-crossed structure on Z(D;De) for D = Crev o G and not for D = C o G, because
the reversal of the tensor product was needed in order to obtain the equivalence in Theorem 4.4.7 .
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Proof. It is clear that
q
B and

q
C are bifunctors for each q ∈ G. We will prove that (C,

q
B,

r
C) is a C-bimodule

category for q, r ∈ G. We have

(X ⊗ Y )
q
BM = Fq(X ⊗ Y )⊗M = Fq(X)⊗ Fq(X)⊗M = X

q
B (Fq(Y )⊗M)

= X
q
B (Y

q
BM),

M
r
C (X ⊗ Y ) = M ⊗ Fr(X ⊗ Y ) = M ⊗ Fr(X)⊗ Fr(Y ) = (M ⊗ Fr(X))

r
C Y

= (M
r
C X)

r
C Y

and

I
q
BM = Fq(I)⊗M = I ⊗M = M,

M
r
C I = M ⊗ Fr(I) = M ⊗ I = M,

so (C,
q
B) is a strict left C-module category and (C,

r
C) is a strict right C-module category. Furthermore,

(X
q
BM)

r
C Y = (Fq(X)⊗M)

r
C Y = Fq(X)⊗M ⊗ Fr(Y ) = X

q
B (M ⊗ Fr(Y ))

= X
q
B (M

r
C Y ),

showing that (C,
q
B,

r
C) is indeed a strict C-bimodule category.

�

Definition 4.5.2 Let C be a strict tensor category with strict action F of the group G and let
q
B and

r
C

be as above. Then we will write qCr to denote the C-bimodule category (C,
q
B,

r
C). We will also use the

shorthand notations qC := qCe and Cr := eCr.

Note that eCe = eC = Ce = C, where C on the right denotes the category C = (C,
e
B,

e
C) = (C,⊗,⊗) with the

C-bimodule category structure that is simply given by the tensor product.

4.5.2
⊔
q∈G Fun(C,C)(C, qC) as a braided G-crossed category

Suppose that we are given a strict tensor category C with a strict action F of the group G. For simplicity
we will write Dq := Fun(C,C)(C, qC) in the sequel, where we use the notation that was introduced at the end
of Subsection 2.6.2. We then define the category

D :=
⊔
q∈G
Dq.

For each q ∈ G we will write D0
q to denote the full subcategory of Dq determined by the objects of the form

(LV , s, id), where LV (M) = V ⊗M and LV (f) = idV ⊗ f . We also define

D0 =
⊔
q∈G
D0
q .

We will explicitly state the conditions on s for objects in D0, because this will be needed later. If (LV , s, id) ∈
D0
q , then s is a family {sM (X) : V ⊗X ⊗M → Fq(X)⊗ V ⊗M}M,X∈C of isomorphisms such that for any

X,Y,M,N ∈ C, f ∈ HomC(X,Y ) and m ∈ HomC(M,N) the diagrams

V ⊗X ⊗M Fq(X)⊗ V ⊗M

V ⊗ Y ⊗N Fq(Y )⊗ V ⊗N

sM (X)

idV ⊗f⊗m Fq(f)⊗idV ⊗m

sN (Y )

(4.5.1)
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and

V ⊗X ⊗ Y ⊗M

Fq(X)⊗ V ⊗ Y ⊗M Fq(X)⊗ Fq(Y )⊗ V ⊗M

sY⊗M (X) sM (X⊗Y )

idFq(X)⊗sM (Y )

(4.5.2)

commute and

sM (I) = idV⊗M (4.5.3)

sM⊗Y (X) = sM (X)⊗ idY . (4.5.4)

Using (4.5.4) we can restate the commutativity of the diagram (4.5.2) in two different ways:

sM (X ⊗ Y ) = [idFq(X) ⊗ sM (Y )] ◦ [sY (X)⊗ idM ] (4.5.5)

sM (X ⊗ Y ) = [idFq(X) ⊗ sM (Y )] ◦ [sI(X)⊗ idY⊗M ]. (4.5.6)

In particular, sI is a half q-braiding for V . A morphism σ ∈ HomD0
q
((LV1

, s1, id), (LV2
, s2, id)) is a natural

transformation σ : LV1
→ LV2

such that for any X,M ∈ C the square

V1 ⊗X ⊗M V2 ⊗X ⊗M

Fq(X)⊗ V1 ⊗M Fq(X)⊗ V2 ⊗M

σX⊗M

s1M (X) s2M (X)

idFq(X)⊗σM

(4.5.7)

commutes and
σM⊗X = σM ⊗ idX . (4.5.8)

Using (4.5.8) we can write restate the commutativity of the diagram (4.5.7) as

[idFq(X) ⊗ σM ] ◦ s1
M (X) = s2

M (X) ◦ [σI ⊗ idX⊗M ]. (4.5.9)

The next lemma shows that this category D0 can be made into a braided (strict) G-crossed category.

Lemma 4.5.3 Let C be a strict tensor category with strict action F of the group G. Then the category D0

can be given the structure of a braided G-crossed category as follows.
• The tensor product (LV1

, s1, id) ∗ (LV2
, s2, id) = (LV1

∗ LV2
, s1 ∗ s2, id) of (LV1

, s1, id) ∈ D0
q and

(LV2 , s
2, id) ∈ D0

r is defined by LV1 ∗ LV2 = LV1⊗V2 and

(s1 ∗ s2)M (X) = s1
V2⊗M (Fr(X)) ◦ [idV1 ⊗ s2

M (X)]. (4.5.10)

If σ ∈ HomD0
q
((LV1 , s

1, id), (LV2 , s
2, id)) and τ ∈ HomD0

r
((LV3 , s

3, id), (LV4 , s
4, id)), then σ∗τ is defined

by
(σ ∗ τ)M = σI ⊗ τI ⊗ idM .

The unit object is (LI , s0, id) ∈ D0
e , where s0

M (X) := idX⊗M .
• The group action F0

q [(LV , s, id)] = (F0
qLV ,F0

q s, id) ∈ D0
qrq−1 on an object (LV , s, id) ∈ D0

r is defined

by F0
qLV = LFq(V ) and11

F0
q sM (X) = Fq(sFq−1 (M)(Fq−1(X))).

The group action on a morphism σ ∈ Hom(D0) is defined by F0
q (σ)M = Fq(σFq−1 (M)).

11We simply write F0
q sM (X) rather than (F0

q s)M (X).
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• If (LV , s, id) ∈ D0
q , then its grading is defined to be q.

• If (LV1
, s1, id) ∈ D0

q and (LV2
, s2, id) ∈ D0

r , then their braiding is defined by

[C0
(LV1

,s1,id),(LV2
,s2,id)]M = s1

M (V2).

Proof. Let (LV1
, s1, id) ∈ D0

q and (LV2
, s2, id) ∈ D0

r . We will show that (LV1⊗V2
, s1 ∗ s2, id) ∈ D0

qr. If
f ∈ HomC(X,Y ) and m ∈ HomC(M,N), then it follows from the fact that s1 and s2 satisfy (4.5.1) that

(s1 ∗ s2)N (Y ) ◦ [idV1⊗V2 ⊗ f ⊗m] = s1
V2⊗N (Fr(Y )) ◦ [idV1 ⊗ s2

N (Y )] ◦ [idV1 ⊗ idV2 ⊗ f ⊗m]

= s1
V2⊗N (Fr(Y )) ◦ [idV1

⊗ Fr(f)⊗ idV2
⊗m] ◦ [idV1

⊗ s2
M (X)]

= [Fqr(f)⊗ idV1 ⊗ idV2 ⊗m] ◦ s1
V2⊗M (Fr(X)) ◦ [idV1 ⊗ s2

M (X)]

= [Fqr(f)⊗ idV1⊗V2
⊗m] ◦ (s1 ∗ s2)M (X),

which shows that s1 ∗ s2 satisfies (4.5.1). And if X,Y,M ∈ C, then it follows from (4.5.2) that

(s1 ∗ s2)M (X ⊗ Y ) = s1
V2⊗M (Fr(X ⊗ Y )) ◦ [idV1

⊗ s2
M (X ⊗ Y )]

= [idFqr(X) ⊗ s1
V2⊗M (Fr(Y ))] ◦ s1

Fr(Y )⊗V2⊗M (Fr(X)) ◦ [idV1
⊗ idFr(X) ⊗ s2

M (Y )] ◦ [idV1
⊗ s2

Y⊗M (X)]

= [idFqr(X) ⊗ s1
V2⊗M (Fr(Y ))] ◦ [idFqr(X) ⊗ idV1 ⊗ s2

M (Y )] ◦ s1
V2⊗Y⊗M (Fr(X)) ◦ [idV1 ⊗ s2

Y⊗M (X)]

= [idFqr(X) ⊗ (s1 ∗ s2)M (Y )] ◦ (s1 ∗ s2)Y⊗M (X),

which shows that s1 ∗ s2 satisfies (4.5.2). It follows from the fact that s1 and s2 satisfy (4.5.3) and (4.5.4)
that for any M ∈ C we have

(s1 ∗ s2)M (I) = s1
V2⊗M (Fr(I)) ◦ [idV1

⊗ s2
M (I)] = idV1⊗V2⊗M ◦ [idV1

⊗ idV2⊗M ] = idV1⊗V2⊗M

and for any M,X, Y ∈ C we have

(s1 ∗ s2)M⊗Y (X)

= s1
V2⊗M⊗Y (Fr(X)) ◦ [idV1

⊗ s2
M⊗Y ] = [s1

V2⊗M (Fr(X))⊗ idY ] ◦ [idV1
⊗ s2

M (X)⊗ idY ]

= (s1 ∗ s2)M (X)⊗ idY .

This shows that s1 ∗ s2 also satisfies (4.5.3) and (4.5.4) and hence that (LV1⊗V2
, s1 ∗ s2, id) ∈ D0

qr. Now let
σ ∈ HomD0

q
((LV1

, s1, id), (LV2
, s2, id)) and τ ∈ HomD0

r
((LV3

, s3, id), (LV4
, s4, id)). We will show that σ ∗ τ is

a module natural transformation from (LV1
∗LV3

, s1 ∗s3, id) to (LV2
∗LV4

, s2 ∗s4, id). For m ∈ HomC(M,N)
we have

(σ ∗ τ)N ◦ (idV1⊗V3
⊗m) = (σI ⊗ τI ⊗ idN ) ◦ (idV1⊗V3

⊗m) = (idV2⊗V4
⊗m) ◦ (σI ⊗ τI ⊗ idM )

= (idV2⊗V4
⊗m) ◦ (σ ∗ τ)M ,

showing naturality of σ ∗ τ . It follows from the fact that σ and τ satisfy (4.5.7) that for all X,M ∈ C we
have

(s2 ∗ s4)M (X) ◦ (σ ∗ τ)X⊗M = s2
V4⊗M (Fr(X)) ◦ [idV2

⊗ s4
M (X)] ◦ [σI ⊗ τI ⊗ idX⊗M ]

= s2
V4⊗M (Fr(X)) ◦ [idV2 ⊗ s4

M (X)] ◦ [σI ⊗ τX⊗M ]

= s2
V4⊗M (Fr(X)) ◦ [σI ⊗ idFr(X) ⊗ τM ] ◦ [idV1

⊗ s3
M (X)]

= [s2
I(Fr(X))⊗ idV4⊗M ] ◦ [σFr(X)⊗I ⊗ τI ⊗ idM ] ◦ [idV1

⊗ s3
M (X)]

= [idFqr(X) ⊗ σI ⊗ τI ⊗ idM ] ◦ [s1
I(Fr(X))⊗ idV3⊗M ] ◦ [idV1

⊗ s3
M (X)]
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= [idFqr(X) ⊗ (σ ∗ τ)M ] ◦ s1
V3⊗M (Fr(X)) ◦ [idV1

⊗ s3
M (X)]

= [idFqr(X) ⊗ (σ ∗ τ)M ] ◦ (s1 ∗ s3)M (X),

so σ ∗ τ also satisfies (4.5.7). Since σ and τ also satisfy (4.5.8), we have for all X,M ∈ C that

(σ ∗ τ)M⊗X = σI ⊗ τI ⊗ idM⊗X = (σ ∗ τ)M ⊗ idX ,

so σ ∗ τ satisfies (4.5.8) as well. Thus σ ∗ τ is a module natural transformation from (LV1
∗ LV3

, s1 ∗ s3, id)
to (LV2

∗ LV4
, s2 ∗ s4, id) in D0

qr. If σ and σ′ are composable morphisms in D0
q and τ and τ ′ are composable

morphisms in D0
r for some q, r ∈ G, then for any M ∈ C we have

[(σ′ ◦ σ) ∗ (τ ′ ◦ τ)]M = (σ′ ◦ σ)I ⊗ (τ ′ ◦ τ)I ⊗ idM = (σ′I ◦ σI)⊗ (τ ′I ◦ τI)⊗ idM

= (σ′I ⊗ τ ′I ⊗ idM ) ◦ (σI ⊗ τI ⊗ idM ) = (σ′ ∗ τ ′)M ◦ (σ ∗ τ)M

= [(σ′ ∗ τ ′) ◦ (σ ∗ τ)]M ,

so ∗ satisfies the interchange law. Furthermore, for any (LV1
, s1, id), (LV2

, s, id) ∈ D0 we have[
id(LV1

∗LV2
,s1∗s2,id)

]
M

= idV1⊗V2⊗M = [id(LV1
,s1,id)]I ⊗ [id(LV2

,s2,id)]I ⊗ idM

=
[
id(LV1

,s1,id) ∗ id(LV2
,s2,id)

]
M

for any M ∈ C. So ∗ is indeed a functor.
We will now show that ∗ is associative. If (LV1 , s

1, id) ∈ D0
q , (LV2 , s

2, id) ∈ D0
r and (LV3 , s

3, id) ∈ D0
s ,

then clearly (LV1
∗ LV2

) ∗ LV3
= LV1

∗ (LV2
∗ LV3

). Also,

((s1 ∗ s2) ∗ s3)M (X) = (s1 ∗ s2)V3⊗M (Fs(X)) ◦ [idV1⊗V2 ⊗ s3
M (X)]

= s1
V2⊗V3⊗M (Fr(Fs(X))) ◦ [idV1

⊗ s2
V3⊗M (Fs(X))] ◦ [idV1⊗V2

⊗ s3
M (X)]

= s1
V2⊗V3⊗M (Frs(X)) ◦ [idV1 ⊗ (s2 ∗ s3)M (X)]

= (s1 ∗ (s2 ∗ s3))M (X).

If ρ, σ and τ are morphisms in D0, then

((ρ ∗ σ) ∗ τ)M = (ρ ∗ σ)I ⊗ τI ⊗ idM = ρI ⊗ σI ⊗ idI ⊗ τI ⊗ idM

= ρI ⊗ σI ⊗ τI ⊗ idI ⊗ idM = ρI ⊗ (σ ∗ τ)I ⊗ idM

= (ρ ∗ (σ ∗ τ))M .

It is clear that (LI , s0, id) ∈ D0
e . To see that it acts as a unit object, we first note that LI ∗LV = LI⊗V = LV

and LV ∗ LI = LV⊗I = LV . Also, if (LV , s, id) ∈ D0
q , then

(s0 ∗ s)M (X) = s0
V⊗M (Fq(X)) ◦ [idI ⊗ sM (X)] = sM (X)

(s ∗ s0)M (X) = sI⊗M (Fe(X)) ◦ [idV ⊗ s0
M (X)] = sM (X),

so (LI , s0, id) ∗ (LV , s, id) = (LV , s, id) = (LV , s, id) ∗ (LI , s0, id). If q ∈ G and σ ∈ Hom(D0
q), then

(id(LI ,s0,id) ∗ σ)M = [id(LI ,s0,id)]I ⊗ σI ⊗ idM = idI ⊗ σI ⊗ idM = σM

(σ ∗ id(LI ,s0,id))M = σI ⊗ [id(LI ,s0,id)]I ⊗ idM = σI ⊗ idI ⊗ idM = σM .

This finishes the proof that D0 is a tensor category.
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It is clear that D0 becomes a G-graded category with the given grading. We will now turn to the G-
action. Let q ∈ G and (LV , s, id) ∈ D0

r . Since s satisfies (4.5.1), we have for any f ∈ HomC(X,Y ) and
m ∈ HomC(M,N)

F0
q sN (Y ) ◦ (idFq(V ) ⊗ f ⊗m) = Fq

{
sFq−1 (N)(Fq−1(Y )) ◦ [idV ⊗ Fq−1(f)⊗ Fq−1(m)]

}
= Fq

{
[Fr(Fq−1(f))⊗ idV ⊗ Fq−1(m)] ◦ sFq−1 (M)(Fq−1(X))

}
= [Fqrq−1(f)⊗ idFq(V ) ⊗m] ◦ F0

q sM (X),

so F0
q s satisfies (4.5.1) as well. And because s satisfies (4.5.2), we have for any X,Y,M ∈ C

F0
q sM (X ⊗ Y ) = Fq(sFq−1 (M)(Fq−1(X)⊗ Fq−1(Y )))

= Fq

{
[idFr(Fq−1 (X)) ⊗ sFq−1 (M)(Fq−1(Y ))] ◦ sFq−1 (Y )⊗Fq−1 (M)(Fq−1(X))

}
= [idFqrq−1 (X) ⊗ Fq(sFq−1 (M)(Fq−1(Y )))] ◦ Fq(sFq−1 (Y⊗M)(Fq−1(X)))

= [idFqrq−1 (X) ⊗F0
q sM (Y )] ◦ F0

q sY⊗M (X),

so F0
q s satisfies (4.5.2). Since s satisfies (4.5.3) and (4.5.4), so does F0

q , because

F0
q sM (I) = Fq(sFq−1 (M)(Fq−1(I))) = Fq(idV⊗Fq−1 (M)) = idFq(V )⊗M

and

F0
q sM⊗Y (X) = Fq

(
sFq−1 (M)⊗Fq−1 (Y )(Fq−1(X))

)
= Fq

(
sFq−1 (M)(Fq−1(X))⊗ idFq−1 (Y )

)
= F0

q sM (X)⊗ idY .

This shows that (F0
qLV ,F0

q s, id) ∈ D0
qrq−1 . Now let q, r ∈ G and σ ∈ HomD0

r
((LV1

, s1, id), (LV2
, s2, id)). If

m ∈ HomC(M,N), then it follows from naturality of σ that

F0
q (σ)N ◦ [idFq(V1) ⊗m] = Fq

{
σFq−1 (N) ◦ [idV1 ⊗ Fq−1(m)]

}
= Fq

{
[idV2 ⊗ Fq−1(m)] ◦ σFq−1 (M)

}
= [idFq(V2) ⊗m] ◦ F0

q (σ)M ,

so F0
q (σ) is natural. Since σ satisfies (4.5.7), so does F0

q (σ). Namely, for any X,M ∈ C we have

F0
q s

2
M (X) ◦ F0

q (σ)X⊗M = Fq

{
s2
Fq−1 (M)(Fq−1(X)) ◦ σFq−1 (X)⊗Fq−1 (M)

}
= Fq

{
[idFr(Fq−1 (X)) ⊗ σFq−1 (M)] ◦ s1

Fq−1 (M)(Fq−1(X))
}

= [idFqrq−1 (X) ⊗F0
q (σ)M ] ◦ F0

q s
1
M (X).

Also, for any X,M ∈ C we have

F0
q (σ)M⊗X = Fq

(
σFq−1 (M)⊗Fq−1 (X)

)
= Fq

(
σFq−1 (M) ⊗ idFq−1 (X)

)
= F0

q (σ)M ⊗ idX .

Thus F0
q (σ) is a morphism from (F0

qLV1
,F0

q s
1, id) to (F0

qLV2
,F0

q s
2, id). Hence F0

q is well-defined. If q ∈ G
and σ, τ ∈ Hom(D0) are composable, then

[F0
q (τ) ◦ F0

q (σ)]M = F0
q (τ)M ◦ F0

q (σ)M = Fq(τFq−1 (M) ◦ σFq−1 (M)) = Fq

(
(τ ◦ σ)Fq−1 (M)

)
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= F0
q (τ ◦ σ)M ,

showing that F0
q (τ ◦σ) = F0

q (τ) ◦F0
q (σ). Hence F0

q is a functor. If (LV1
, s1, id) ∈ D0

r and (LV2
, s2, id) ∈ D0

s ,
then F0

q (LV1
∗ LV2

) = F0
qLV1⊗V2

= LFq(V1)⊗Fq(V2) = F0
qLV1

∗ F0
qLV2

and

F0
q (s1 ∗ s2)M (X) = Fq

{
(s1 ∗ s2)Fq−1 (M)(Fq−1(X))

}
= Fq

{
s1
V2⊗Fq−1 (M)(Fs(Fq−1(X))) ◦ [idV1

⊗ s2
Fq−1 (M)(Fq−1(X))]

}
= Fq

(
s1
Fq−1 (Fq(V2)⊗M)(Fq−1(Fqsq−1(X)))

)
◦
[
idFq(V1) ⊗ Fq(s2

Fq−1 (M)(Fq−1(X)))
]

= F0
q s

1
Fq(V2)⊗M (Fqsq−1(X)) ◦ [idFq(V1) ⊗F0

q s
2
M (X)]

= (F0
q s

1 ∗ F0
q s

2)M (X),

showing that F0
q (s1∗s2) = F0

q s
1∗F0

q s
2. So we conclude that F0

q [(LV1
, s1, id)∗(LV2

, s2, id)] = F0
q (LV1

, s1, id)∗
F0
q (LV2

, s2, id). Also,

F0
q s

0
M (X) = Fq(s

0
Fq−1 (M)(Fq−1(X))) = Fq(idFq−1 (X)⊗Fq−1 (M)) = idX⊗M = s0

M (X),

so F0
q (LI , s0, id) = (LFq(I),F0

q s
0, id) = (LI , s0, id). This shows that F0

q is a strict tensor functor for each
q ∈ G. Now let q, r ∈ G and (LV , s, id) ∈ D0

s . Then F0
qrLV = LFqr(V ) = LFq(Fr(V )) = F0

qLFr(V ) = F0
qF0

rLV
and

F0
qrsM (X) = Fqr(sF(qr)−1 (M)(F(qr)−1(X))) = Fq(Fr(sFr−1 (Fq−1 (M))(Fr−1(Fq−1(X)))))

= Fq(F0
r sFq−1 (M)(Fq−1(X))) = F0

qF0
r sM (X).

Thus we have F0
qr(LV , s, id) = (F0

qrLV ,F0
qrs, id) = (F0

qF0
rLV ,F0

qF0
r s, id) = F0

qF0
r (LV , s, id). Together with

the fact that F0
e (LV , s, id) = (LFe(V ),F0

e s, id) = (LV , s, id), this proves that F0 defines a group action on
D0. The fact that F0

q maps objects in D0
r to objects in Dqrq−1 shows that D0 is a G-crossed category.

We will now turn to the braiding. If we have morphisms σ ∈ HomD0
q
((LV1 , s

1, id), (LV2 , s
2, id)) and

τ ∈ HomD0
r
((LV3 , s

3, id), (LV4 , s
4, id)), then

[C0
(LV2

,s2,id),(LV4
,s4,id)]M ◦ [σ ∗ τ ]M

= s2
M (V4) ◦ [σI ⊗ τI ⊗ idM ] = s2

M (V4) ◦ [σI ⊗ idV4⊗M ] ◦ [idV1
⊗ τI ⊗ idM ]

= s2
M (V4) ◦ σV4⊗M ◦ [idV1

⊗ τI ⊗ idM ] = [idFq(V4) ⊗ σM ] ◦ s1
M (V4) ◦ [idV1

⊗ τI ⊗ idM ]

= [idFq(V4) ⊗ σM ] ◦ [Fq(τI)⊗ idV1⊗M ] ◦ s1
M (V3) = [Fq(τFq−1 (I))⊗ σI ⊗ idM ] ◦ s1

M (V3)

= [F0
q (τ) ∗ σ]M ◦ [C0

(LV1
,s1,id),(LV3

,s3,id)]M ,

which proves naturality of C0. Now let (LV1
, s1, id) ∈ D0

q , (LV2
, s2, id) ∈ D0

r and (LV3
, s3, id) ∈ D0

s . Then[
C0

(LV1
,s1,id)∗(LV2

,s2,id),(LV3
,s3,id)

]
M

=
[
C0

(LV1⊗V2
,s1∗s2,id),(LV3

,s3,id)

]
M

= (s1 ∗ s2)M (V3)

= s1
V2⊗M (Fr(V3)) ◦ [idV1

⊗ s2
M (V3)] = [s1

I(Fr(V3))⊗ idV2⊗M ] ◦ [idV1
⊗ s2

I(V3)⊗ idM ]

=
{[
C0

(LV1
,s1,id),Fr(LV3

,s3,id)

]
I
⊗
[
id(LV2

,s2,id)

]
I
⊗ idM

}
◦
{[

id(LV1
,s1,id)

]
I
⊗
[
C0

(LV2
,s2,id),(LV3

,s3,id)

]
I
⊗ idM

}
=
[
C0

(LV1
,s1,id),Fr(LV3

,s3,id) ∗ id(LV2
,s2,id)

]
M
◦
[
id(LV1

,s1,id) ∗ C0
(LV2

,s2,id),(LV3
,s3,id)

]
M
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and [
C0

(LV1
,s1,id),(LV2

,s2,id)∗(LV3
,s3,id)

]
M

=
[
C0

(LV1
,s1,id),(LV2⊗V3

,s2∗s3,id)

]
M

= s1
M (V2 ⊗ V3)

= [idFq(V2) ⊗ s1
M (V3)] ◦ s1

V3⊗M (V2) = [idFq(V2) ⊗ s1
I(V3)⊗ idM ] ◦ [s1

I(V2)⊗ idV3⊗M ]

=
{[

idFq(LV2
,s2,id)

]
I
⊗
[
C0

(LV1
,s1,id),(LV3

,s3,id)

]
I
⊗ idM

}
◦
{[
C0

(LV1
,s1,id),(LV2

,s2,id)

]
I
⊗
[
id(LV3

,s3,id)

]
I
⊗ idM

}
=
[
idFq(LV2

,s2,id) ∗ C0
(LV1

,s1,id),(LV3
,s3,id)

]
M
◦
[
C0

(LV1
,s1,id),(LV2

,s2,id) ∗ id(LV3
,s3,id)

]
M
.

Finally, if q ∈ G and (LV1 , s
1, id), (LV2 , s

2, id) ∈ D0, then[
C0
F0
q (LV1

,s1,id),F0
q (LV2

,s2,id)

]
M

=
[
C0

(LFq(V1),F0
q s

1,id),(LFq(V2),F0
q s

2,id)

]
M

= F0
q s

1
M (Fq(V2)) = Fq(s

1
Fq−1 (M)(V2)) = Fq

([
C0

(LV1
,s1,id),(LV2

,s2,id)

]
Fq−1 (M)

)
=
[
F0
q (C0

(LV1
,s1,id),(LV2

,s2,id))
]
M
,

which means that C0
F0
q (LV1

,s1,id),F0
q (LV2

,s2,id) = F0
q

(
C0

(LV1
,s1,id),(LV2

,s2,id)

)
.

�

Recall that in Theorem 2.6.10 in Subsection 2.6.3 we considered the situation where we had a strict tensor
category C together with a structure (C,B,C) of a strict C-bimodule category on C and we used the nota-
tion BCC to denote C equipped with this structure. We showed that there is a functor from the category
Fun(C,C)(C,BCC) to itself that assigns to each object (H, s, t) an object (LH , s′, t′), where t′ was trivial. In
the following theorem we will apply Theorem 2.6.10 to the setting above to obtain functors Dq → D0

q and
we will use these functors to transport the braided G-crossed structure of D0 to D.

Theorem 4.5.4 Let C be a strict tensor category with strict action F of the group G.

(1) For each q ∈ G we obtain a functor Pq : Dq → D0
q by defining Pq[(H, s, t)] := (PqH,Pqs, id) for

(H, s, t) ∈ Dq, where12

PqH := LH = LH(I),

PqsM (X) := [sI(X)⊗ idM ] ◦ [tI(X)−1 ⊗ idM ],

and by defining Pq(σ) by

Pq(σ)M := t2I(M) ◦ σM ◦ t1I(M)−1

for σ : (H1, s
1, t1)→ (H2, s

2, t2).
(2) For each q ∈ G we have a natural isomorphism ψq : idDq → Pq, where ψq(H,s,t) : (H, s, t) →

(PqH,Pqs, id) is given by [ψq(H,s,t)]M := tI(M) : H(M)→ H(I)⊗M . We obtain a functor P : D → D0

by defining its restriction to any Dq to be Pq, and we have a natural isomorphism ψ : idD → P that
is defined by [ψ(H,s,t)]M = tI(M).

(3) The restriction of the functor P : D → D0 to D0 is the identity functor. As a consequence, P ◦P = P.
(4) The category D can be given the structure of a braided G-crossed category as follows.

12Analogous to the remark in the preceding footnote, we simply write PqsM (X) rather than (Pqs)M (X). Similarly, when
we define the group action we will also write FqsM (X) instead of (Fqs)M (X).
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• The tensor product (H1, s
1, t1) ? (H2, s

2, t2) = (H1 ? H2, s
1 ? s2, id) ∈ D is defined by

(H1, s
1, t1) ? (H2, s

2, t2) := P(H1, s
1, t1) ∗ P(H2, s

2, t2),

so H1 ? H2 = PH1 ∗ PH2 = LH1(I)⊗H2(I) and s1 ? s2 = Ps1 ∗ Ps2.
If σ ∈ HomD((H1, s

1, t1), (H2, s
2, t2)) and τ ∈ HomD((H3, s

3, t3), (H4, s
4, t4)), then σ?τ is defined

by
σ ? τ = P(σ) ∗ P(τ).

This tensor product is associative. The unit object is (LI , s0, id) ∈ De, where s0
M (X) := idX⊗M ,

and the left and right unit contraints l(H,s,t) : (PH,Ps, id)→ (H, s, t) and r(H,s,t) : (PH,Ps, id)→
(H, s, t) are given by [l(H,s,t)]M = tI(M)−1 = [r(H,s,t)]M .
Furthermore, P : D → D0 is a strict tensor functor and ψ : idD → P is a natural tensor
isomorphism, where P is considered as a functor D → D.

• The group action Fq[(H, s, t)] = (FqH,Fqs, id) ∈ Dqrq−1 on an object (H, s, t) ∈ Dr is defined by

Fq[(H, s, t)] := F0
qP[(H, s, t)],

so FqH = F0
qPH = LFq(H(I)) and FqsM (X) = F0

qPsM (X). The group action on a morphism
σ ∈ Hom(D) is defined by Fq(σ) = F0

q (P(σ)) and Fq is a strict tensor functor for each q ∈ G.
We also have that Fqr = FqFr for all q, r ∈ G and that Fe = P, and as part of the group action
we define εF : idD → Fe by εF = ψ.

• If (H, s, t) ∈ Dq, then its degree is defined to be q.
• If (H1, s

1, id) ∈ D and (H2, s
2, id) ∈ D, then their braiding is defined by

C(H1,s1,id),(H2,s2,id) = C0
P[(H1,s1,id)],P[(H2,s2,id)].

(5) The strict tensor functor P : D → D0 is a braided G-crossed functor and the natural tensor isomor-
phism ψ : idD → P is a natural isomorphism of braided G-crossed functors.

Proof. Parts (1) and (2) of the theorem are just a restatement of Theorem 2.6.10. For part (3), let
(LV , s, id) ∈ D0

q and note that PLV = LLV (I) = LV and

PsM (X) = [sI(X)⊗ idM ] ◦ [id−1
I⊗X ⊗ idM ] = sI(X)⊗ idM = sM (X).

If σ ∈ HomD0((LV1
, s1, id), (LV2

, s2, id)), then P(σ)M = idV2⊗M ◦ σM ◦ id−1
V1⊗M = σM , so P(σ) = σ.

We will now prove part (4) of the theorem. It follows directly from the preceding lemma that ? is a
well-defined functor D×D → D that is compatible with the degrees of objects. To prove associativity of ?,
let (H1, s

1, t1), (H2, s
2, t2), (H3, s

3, t3) ∈ D. We then have

(H1 ? H2) ? H3 = P(PH1 ∗ PH2) ∗ PH3 = (PH1 ∗ PH2) ∗ PH3

= PH1 ∗ (PH2 ∗ PH3) = PH1 ∗ P(PH2 ∗ PH3)

= H1 ? (H2 ? H3)

and

(s1 ? s2) ? s3 = P(Ps1 ∗ Ps2) ∗ Ps3 = (Ps1 ∗ Ps2) ∗ Ps3

= Ps1 ∗ (Ps2 ∗ Ps3) = Ps1 ∗ P(Ps2 ∗ Ps3)

= s1 ? (s2 ? s3),

where in both computations we have used part (3) of the theorem. A similar computation also shows that
? is associative on the morphisms.
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For any (H, s, t) ∈ D we have (LI , s0, id) ? (H, s, t) = (PH,Ps, id) = (H, s, t) ? (LI , s0, id). To prove
naturality of l and r, let σ ∈ HomD((H1, s

1, t1), (H2, s
2, t2)) and M ∈ C. Then

[l(H2,s2,t2)]M ◦ [id(LI ,s0,id) ? σ]M

= t2I(M)−1 ◦ [P(id(LI ,s0,id)) ∗ P(σ)]M = t2I(M)−1 ◦ {[id(LI ,s0,id)]I ⊗ P(σ)I ⊗ idM}
= t2I(M)−1 ◦ [P(σ)I ⊗ idM ] = t2I(M)−1 ◦ P(σ)M = t2I(M)−1 ◦ t2I(M) ◦ σM ◦ t1I(M)−1

= σM ◦ [l(H1,s1,t1)]M

and

[r(H2,s2,t2)]M ◦ [σ ? id(LI ,s0,id)]M

= t2I(M)−1 ◦ [P(σ) ∗ P(id(LI ,s0,id))]M = t2I(M)−1 ◦ {P(σ)I ⊗ [id(LI ,s0,id)]I ⊗ idM}
= t2I(M)−1 ◦ [P(σ)I ⊗ idM ] = t2I(M)−1 ◦ P(σ)M = t2I(M)−1 ◦ t2I(M) ◦ σM ◦ t1I(M)−1

= σM ◦ [r(H1,s1,t1)]M .

To check the triangle axiom, let (H1, s
1, t1), (H2, s

2, t2) ∈ D. Since for any (H, s, t) ∈ D we have P(l(H,s,t))M =

tI(M) ◦ [l(H,s,t)]M ◦ id−1
H(I)⊗M = idH(I)⊗M and similarly P(r(H,s,t)) = idH(I)⊗M , we have on the one hand

[r(H1,s1,t1) ? id(H2,s2,t2)]M

= [P(r(H1,s1,t1)) ∗ P(id(H2,s2,t2))]M = P(r(H1,s1,t1))I ⊗ [id(H2,s2,t2)]I ⊗ idM

= P(r(H1,s1,t1))I ⊗ idH2(I)⊗M = P(r(H1,s1,t1))H2(I)⊗M = idH1(I)⊗H2(I)⊗M

and on the other hand we have

[id(H1,s1,t1) ? l(H2,s2,t2)]M

= [P(id(H1,s1,t1)) ∗ P(l(H2,s2,t2))]M = [id(H1,s1,t1)]I ⊗ P(l(H2,s2,t2))I ⊗ idM

= idH1(I) ⊗ P(l(H2,s2,t2))I ⊗ idM = idH1(I) ⊗ P(l(H2,s2,t2))M = idH1(I)⊗H2(I)⊗M ,

so the two expressions are equal, i.e. r(H1,s1,t1) ? id(H2,s2,t2) = id(H1,s1,t1) ? l(H2,s2,t2). Thus D is a tensor
category.

To see that P is a strict tensor functor, we first note that for any (H1, s
1, t1), (H2, s

2, t2) ∈ D we have

P[(H1, s
1, t1) ? (H2, s

2, t2)] = P[P(H1, s
1, t1) ∗ P(H2, s

2, t2)] = P(H1, s
1, t1) ∗ P(H2, s

2, t2).

Also P(LI , s0, id) = (LI , s0, id) and for any (H, s, t) ∈ D we have P(l(H,s,t))M = idH(I)⊗M = P(r(H,s,t))M .
It is clear that ψ : idD → P is a natural isomorphism. To see that it is a natural tensor isomorphism,

we note that ψ(LI ,s0,id) = id(LI ,s0,id) and that for any (H1, s
1, t1), (H2, s

2, t2) ∈ D we have

ψ(H1,s1,t1)?(H2,s2,t2) = ψ(H1?H2,s1?s2,id) = id(H1?H2,s1?s2,id) = idP(H1,s1,t1)∗P(H2,s2,t2)

= idP(H1,s1,t1) ∗ idP(H2,s2,t2) = Pψ(H1,s1,t1) ∗ Pψ(H2,s2,t2)

= ψ(H1,s1,t1) ? ψ(H2,s2,t2).

If q ∈ G, then Fq = F0
q ◦ P is a functor D → D, and its restriction to Dr is a functor Dr → D0

qrq−1 ⊂
Dqrq−1 . To see that it is a tensor functor, let (H1, s

1, t1), (H2, s
2, t2) ∈ D. Then

Fq[(H1, s
1, t1) ? (H2, s

2, t2)]

= F0
qP[P(H1, s

1, t1) ∗ P(H2, s
2, t2)] = F0

q [P(H1, s
1, t1) ∗ P(H2, s

2, t2)]

= F0
qP(H1, s

1, t1) ∗ F0
qP(H2, s

2, t2) = PF0
qP(H1, s

1, t1) ∗ PF0
qP(H2, s

2, t2)
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= Fq(H1, s
1, t1) ? Fq(H2, s

2, t2).

Similarly, if σ, τ ∈ Hom(D), then

Fq(σ ? τ) = F0
q (P(P(σ) ∗ P(τ))) = F0

q (P(σ) ∗ P(τ))

= F0
qP(σ) ∗ F0

qP(τ) = PF0
qP(σ) ∗ PF0

qP(τ)

= Fq(σ) ? Fq(τ).

Also, Fq(LI , s0, id) = F0
q (LI , s0, id) = (LI , s0, id), so we conclude that Fq is a strict tensor functor. If

q, r ∈ G, then for any s ∈ G the functor Fqr : Ds → Dqrsr−1q−1 is given by Fqr = F0
qrP = F0

qF0
rP =

F0
qPF0

rP = FqFr. The functor Fe on D is given by Fe = F0
eP = P. We know from our results above that

εF : idD → Fe is a natural tensor isomorphism, since εF = ψ by definition. Also, εF has the property that
for any q ∈ G and (H, s, t) ∈ D we have

εFFq(H,s,t) = ψFq(H,s,t) = idFq(H,s,t)

Fq(εF(H,s,t)) = Fq(ψ(H,s,t)) = F0
qP(ψ(H,s,t)) = F0

q (idP(H,s,t)) = (idF0
qP(H,s,t)) = idFq(H,s,t).

Thus we conclude that F defines a group action on D and that D is a G-crossed category.
If σ ∈ HomDq ((H1, s

1, t1), (H2, s
2, t2)) and τ ∈ HomD((H3, s

3, t3), (H4, s
4, t4)), then

C(H2,s2,t2),(H4,s4,t4) ◦ [σ ? τ ]

= C0
P(H2,s2,t2),P(H4,s4,t4) ◦ [P(σ) ∗ P(τ)] = [F0

qP(τ) ∗ P(σ)] ◦ C0
P(H1,s1,t1),P(H3,s3,t3)

= [PF0
qP(τ) ∗ P(σ)] ◦ C0

P(H1,s1,t1),P(H3,s3,t3) = [Fq(τ) ? σ] ◦ C(H1,s1,t1),(H3,s3,t3),

showing naturality of C. Now let (H1, s
1, t1) ∈ Dq, (H2, s

2, t2) ∈ Dr and (H2, s
3, t3) ∈ Ds. Then

C(H1,s1,t1)?(H2,s2,t2),(H3,s3,t3) = C0
P(H1,s1,t1)∗P(H2,s2,t2),P(H3,s3,t3)

= [C0
P(H1,s1,t1),F0

rP(H3,s3,t3) ∗ idP(H2,s2,t2)] ◦ [idP(H1,s1,t1) ∗ C0
P(H2,s2,t2),P(H3,s3,t3)]

= [P(C0
P(H1,s1,t1),F0

rP(H3,s3,t3)) ∗ P(id(H2,s2,t2))] ◦ [P(id(H1,s1,t1)) ∗ P(C0
P(H2,s2,t2),P(H3,s3,t3))]

= [C(H1,s1,t1),Fr(H3,s3,t3) ? id(H2,s2,t2)] ◦ [id(H1,s1,t1) ? C(H2,s2,t2),(H3,s3,t3)]

and

C(H1,s1,t1),(H2,s2,t2)?(H3,s3,t3) = C0
P(H1,s1,t1),P(H2,s2,t2)∗P(H3,s3,t3)

= [idF0
qP(H2,s2,t2) ∗ C0

P(H1,s1,t1),P(H3,s3,t3)] ◦ [C0
P(H1,s1,t1),P(H2,s2,t2) ∗ idP(H3,s3,t3)]

= [P(idF0
qP(H2,s2,t2)) ∗ P(C0

P(H1,s1,t1),P(H3,s3,t3))] ◦ [P(C0
P(H1,s1,t1),P(H2,s2,t2)) ∗ P(id(H3,s3,t3))]

= [idFq(H2,s2,t2) ? C(H1,s1,t1),(H3,s3,t3)] ◦ [C(H1,s1,t1),(H2,s2,t2) ? id(H3,s3,t3)].

Finally, for any q ∈ G, (H1, s
1, t1) ∈ Dr and (H2, s

2, t2) ∈ Ds we have

CFq(H1,s1,t1),Fq(H2,s2,t2) = C0
PFq(H1,s1,t1),PFq(H2,s2,t2)

= C0
PF0

qP(H1,s1,t1),PF0
q (P(H2,s2,t2)) = C0

F0
qP(H1,s1,t1),F0

qP(H2,s2,t2)

= F0
q (C0

P(H1,s1,t1),P(H2,s2,t2)) = F0
q (C(H1,s1,t1),(H2,s2,t2))

= Fq(C(H1,s1,t1),(H2,s2,t2)).

Thus D is a braided G-crossed category.
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That P is a strict G-functor follows from P ◦ Fq = P ◦ F0
q ◦ P = F0

q ◦ P and from the fact that

P(εF(H,s,t)) = P(ψ(H,s,t)) = idP(H,s,t) for any (H, s, t) ∈ D. Also,

P(C(H1,s1,t1),(H2,t2,t2)) = P(C0
P(H1,s1,t1),P(H2,t2,t2)) = C0

P(H1,s1,t1),P(H2,t2,t2)

= CP(H1,s1,t1),P(H2,t2,t2),

so P is braided. By our earlier results on εF , we also have

Fq(ψ(H,s,t)) = Fq(εF(H,s,t)) = idFq(H,s,t) = εFFq(H,s,t) = ψFq(H,s,t)

for any (H, s, t) ∈ D. Thus ψ is a natural G-isomorphism and hence a natural isomorphism of braided
G-functors.
�

We now have a braided G-crossed structure on D and this structure will be used in the following sub-
section. Because the restriction of all structures of D to D0 are the same ones as defined in Lemma 4.5.3,
there is no need to distinguish these structures in our notation anymore. Therefore, henceforth we will no
longer use ∗, F0

q and C0 in our notation, but only ?, Fq and C.

4.5.3 ZG(C) '
⊔
q∈G Fun(C,C)(C, qC)

We are in the position to state our main theorem of this section:

Theorem 4.5.5 Let G be a group and let C be a strict tensor category with strict G-action F . Then there
exists an equivalence

K :
⊔
q∈G

Fun(C,C)(C, qC)→ ZG(C)

of braided G-crossed categories.

Proof. We will first define a functor K 0 : D0 → ZG(C). We have already seen from diagram (4.5.1) and
equation (4.5.4) that if (LV , s, id) ∈ D0

q , then sI is a half q-braiding for V , so we can define K 0 on an object
(LV , s, id) ∈ Dq as

K 0[(LV , s, id)] = (V, q,ΦsV ),

where ΦsV (X) = sI(X). If σ ∈ HomDq ((LV1 , s
1, id), (LV2 , s

2, id)), then σI ∈ HomC(V1, V2), which suggests
that we define K 0(σ) = σI . It follows directly from (4.5.8) that

[idFq(X) ⊗ σI ] ◦ s1
I(X) = s2

I(X) ◦ σX = s2
I(X) ◦ [σI ⊗ idX ],

so K 0(σ) = σI ∈ HomZG(C)((V1, q,Φ
s1

V1
), (V2, q,Φ

s2

V2
)). If τ ∈ HomD0

q
((LV2

, s2, id), (LV3
, s3, id)), then

K 0(τ ◦ σ) = (τ ◦ σ)I = τI ◦ σI = K 0(τ) ◦K 0(σ).

For any (LV , s, id) ∈ D0
q we have K 0(id(LV ,s,id)) = [id(LV ,s,id)]I = idV = id(V,q,ΦsV ) = idK 0(LV ,s,id), showing

that K 0 is indeed a functor. If (LV1
, s1, id) ∈ D0

q and (LV2
, s2, id) ∈ D0

r , then (4.5.10) gives us

Φs
1?s2

V1⊗V2
(X) = (s1 ? s2)I(X) = s1

V2
(Fr(X)) ◦ [idV1

⊗ s2
I(X)] = [s1

I(Fr(X))⊗ idV2
] ◦ [idV1

⊗ s2
I(X)]

= [Φs
1

V1
(Fr(X))⊗ idV2

] ◦ [idV1
⊗ Φs

2

V2
(X)] = (Φs

1

V1
⊗ Φs

2

V2
)(X),
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which implies that Φs
1?s2

V1⊗V2
= Φs

1

V1
⊗ Φs

2

V2
and hence

K 0[(LV1
, s1, id) ? (LV2

, s2, id)] = K 0(LV1⊗V2
, s1 ? s2, id) = (V1 ⊗ V2, qr,Φ

s1?s2

V1⊗V2
)

= (V1 ⊗ V2, qr,Φ
s1

V1
⊗ Φs

1

V2
) = (V1, q,Φ

s1

V1
)⊗ (V2, r,Φ

s2

V2
)

= K 0(LV1
, s1, id)⊗K 0(LV2

, s2, id).

Also, if σ, τ ∈ Hom(D0), then

K 0(σ ? τ) = (σ ? τ)I = σI ⊗ τI ⊗ idI = σI ⊗ τI = K 0(σ)⊗K 0(τ)

and K 0(LI , s0, id) = (I, e,Φs
0

I ) = (I, e,Φ0
I), since for any X ∈ C we have Φs

0

I (X) = s0
I(X) = idX = Φ0

I(X).
Thus K 0 is a strict tensor functor. Now let q ∈ G and (LV , s, id) ∈ D0

r . Then

Φ
Fqs
Fq(V )(X) = (Fqs)I(X) = Fq(sFq−1 (I)(Fq−1(X))) = Fq(sI(Fq−1(X)))

= Fq(Φ
s
V (Fq−1(X))) = FqΦsV (X),

from which it follows that Φ
Fqs
Fq(V ) = FqΦsV . Using this, we get

K 0[Fq(LV , s, id)] = K 0(LFq(V ),Fqs, id) = (Fq(V ), qrq−1,Φ
Fqs
Fq(V ))

= (Fq(V ), qrq−1,FqΦsV ) = Fq(V, r,ΦsV ) = FqK 0(LV , s, id).

If q ∈ G and σ ∈ Hom(D0), then

K 0(Fq(σ)) = [Fq(σ)]I = Fq(σFq−1 (I)) = Fq(σI) = Fq(σI) = Fq(K 0(σ)).

Hence K 0 is a strict G-functor as well. It is also clear that K 0 respects the G-grading. If (LV1
, s1, id) ∈ D0

q

and (LV2
, s2, id) ∈ D0

r , then

CK 0(LV1
,s1,id),K 0(LV2

,s2,id) = C
(V1,q,Φs

1
V2

),(V2,r,Φs
2
V2

)
= Φs

1

V1
(V2) = s1

I(V2)

= [C(LV1
,s1,id),(LV2

,s2,id)]I = K 0(C(LV1
,s1,id),(LV2

,s2,id)),

showing that K 0 is also braided.
We now define a functor L : ZG(C)→ D0 as follows. If (V, q,ΦV ) ∈ ZG(C), then we set L (V, q,ΦV ) =

(LV , sΦV , id), where sΦV
M (X) = ΦV (X) ⊗ idM . To check naturality of sΦV , let f ∈ HomC(X,Y ) and

m ∈ HomC(M,N). Then

[Fq(f)⊗H(m)] ◦ sΦV
M (X) = [Fq(f)⊗ idV ⊗m] ◦ [ΦV (X)⊗ idM ]

= [ΦV (Y )⊗ idN ] ◦ [idV ⊗ f ⊗m]

= sΦV
N (Y ) ◦H(f ⊗m),

where in the second step we used naturality of ΦV . For any X,Y,M ∈ C we also have

sΦV
M (X ⊗ Y ) = ΦV (X ⊗ Y )⊗ idM = [idFq(X) ⊗ ΦV (Y )⊗ idM ] ◦ [ΦV (X)⊗ idY⊗M ]

= [idFq(X) ⊗ sM (Y )] ◦ sΦV
Y⊗M (X),

and

sΦV
M⊗Y (X) = ΦV (X)⊗ idM⊗Y = sΦV

M (X)⊗ idY ,
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so (LV , sΦV , id) ∈ D0
q and hence L is well-defined on the objects. If f ∈ HomZG(C)((V1, q,ΦV1

), (V2, q,ΦV2
)),

then we set L (f) = σf with σfM := f ⊗ idM . For any X,M ∈ C we then have

[idFq(X) ⊗ σfM ] ◦ sΦV1

M (X) = [idFq(X) ⊗ f ⊗ idM ] ◦ [ΦV1
(X)⊗ idM ] = [ΦV2

(X)⊗ idM ] ◦ [f ⊗ idX⊗M ]

= s
ΦV2

M (X) ◦ [σfI ⊗ idX⊗M ]

and σfM⊗X = f ⊗ idM⊗X = σfM ⊗ idX , which are precisely equations (4.5.8) and (4.5.9). We now claim
that K 0 ◦L = idZG(C) and L ◦K0 = idD0 , i.e. that the functors K 0 and L are inverse to each other. If
(V, q,ΦV ) ∈ ZG(C) then

Φs
ΦV

V (X) = sΦV
I (X) = ΦV (X)⊗ idI = ΦV (X),

so Φs
ΦV

V = ΦV and hence

(K 0 ◦L )(V, q,ΦV ) = K 0(LV , sΦV , id) = (V, q,Φs
ΦV

V ) = (V, q,ΦV ).

If f ∈ Hom(ZG(C)), then (K 0 ◦L )(f) = K 0(σf ) = σfI = f ⊗ idI = f . So indeed K 0 ◦L = idZG(C). If
(LV , s, id) ∈ D0

q , then

s
ΦsV
M (X) = ΦsV (X)⊗ idM = sI(X)⊗ idM = sM (X).

so sΦsV = s and hence

(L ◦K 0)(LV , s, id) = L (V, q,ΦsV ) = (LV , sΦsV , id) = (LV , s, id).

If σ ∈ Hom(D0), then [(L ◦K 0)(σ)]M = [L (σI)]M = σI⊗ idM = σM , which means that (L ◦K 0)(σ) = σ.
Thus we also conclude that L ◦K 0 = idD0 . Because L is inverse to K 0, it is easy to see that L is also
a braided G-crossed functor. In particular, D0 and ZG(C) are equivalent as braided G-crossed categories.
Now define the functor K : D → ZG(C) by K := K 0 ◦ P. Because K 0 and P are braided G-crossed
functors, so is K . Furthermore, we have

K ◦L = K 0 ◦ P ◦L = K 0 ◦L = idZG(C)

L ◦K = L ◦K 0 ◦ P = P.

Because of the natural isomorphism ψ : idD → P of braided G-crossed functors, we conclude that D and
ZG(C) are equivalent braided G-crossed categories in the sense of Definition 2.8.20.
�

4.6 Retracts, direct sums and duals

We will now show that many nice properties of the category C can be carried over to ZG(C). Parts of the
proofs of these statements are generalizations of the ones in [75], so we have not included all the details
here.

Lemma 4.6.1 Let (C,⊗, I, G, F ) be a strict tensor category with strict action of the group G.
(1) If C has retracts, then so has ZG(C).
(2) If C has a left and right duality, then ZG(C) has a left duality. If in addition C admits a left G-duality,

then so does ZG(C).
(3) If C is an Ab-category and has direct sums, then all full subcategories ZG(C)q have direct sums.
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(4) If C is F-linear, then all full subcategories ZG(C)q are F-linear. If I is irreducible, then (I, e,Φ0
I) is

irreducible.

Proof. (1) Let (V, q,ΦV ) ∈ ZG(C) and let p ∈ EndZG(C)((V, q,ΦV )) be an idempotent. By construction
of ZG(C), p is also an idempotent in EndC(V ), and hence there exists an object U ∈ C together with
morphisms i ∈ HomC(U, V ) and r ∈ HomC(V,U) such that r ◦ i = idU and i ◦ r = p. For each X ∈ C we
define ΦU (X) ∈ HomC(U ⊗X,Fq(X)⊗ U) by

ΦU (X) := [idFq(X) ⊗ r] ◦ ΦV (X) ◦ [i⊗ idX ],

which defines a half q-braiding ΦU for U by part (1) of Lemma 4.1.6, so (U, q,ΦU ) ∈ ZG(C). An easy
computation shows that i ∈ HomZG(C)((U, q,ΦU ), (V, q,ΦV )) and r ∈ HomZG(C)((V, q,ΦV ), (U, q,ΦU )), from
which it follows that (U, q,ΦU ) is a retract of (V, q,ΦV ).

(2) Let (V, q,ΦV ) ∈ ZG(C) and let (V ∨, bV , dV ) be the left dual of V given by the left duality in the
category C. For each X ∈ C we define (ΦV )∨ ∈ HomC(V ⊗X,Fq−1(X)⊗ V ) by

(ΦV )∨(X) := [dV ⊗ idFq−1 (X)⊗V ∨ ] ◦ [idV ∨ ⊗ ΦV (Fq−1(X))−1 ⊗ idV ∨ ] ◦ [idV ∨⊗X ⊗ bV ].

We have already seen in Lemma 4.1.8 that (ΦV )∨ is indeed a half q−1-braiding (the fact that each X ∈ C
has a right dual was used to prove that ΦV (X) is invertible). To see that the morphisms bV and dV are in
ZG(C), we compute13

(ΦV ⊗ (ΦV )∨)(X) ◦ [bV ⊗ idX ]

= [ΦV (Fq−1(X))⊗ idV ∨ ] ◦ [idV ⊗ dV ⊗ idFq−1 (X)⊗V ∨ ]

◦ [idV⊗V ∨ ⊗ ΦV (Fq−1(X))−1 ⊗ idV ∨ ] ◦ [idV⊗V ∨⊗X ⊗ bV ] ◦ [bV ⊗ idX ]

= [ΦV (Fq−1(X))⊗ idV ∨ ] ◦ [idV ⊗ dV ⊗ idFq−1 (X)⊗V ∨ ] ◦ [bV ⊗ idV⊗Fq−1 (X)⊗V ∨ ]

◦ [ΦV (Fq−1(X))−1 ⊗ idV ∨ ] ◦ [idX ⊗ bV ]

= [ΦV (Fq−1(X))⊗ idV ∨ ] ◦ [ΦV (Fq−1(X))−1 ⊗ idV ∨ ] ◦ [idX ⊗ bV ]

= idX ⊗ bV = [idX ⊗ bV ] ◦ Φ0
I(X)

and

[idX ⊗ dV ] ◦ ((ΦV )∨ ⊗ ΦV )(X)

= [idX ⊗ dV ] ◦ [dV ⊗ idX⊗V ∨⊗V ] ◦ [idV ∨ ⊗ ΦV (X)−1 ⊗ idV ∨⊗V ]

◦ [idV ∨⊗Fq(X) ⊗ bV ⊗ idV ] ◦ [idV ∨ ⊗ ΦV (X)]

= [dV ⊗ idX ] ◦ [idV ∨ ⊗ ΦV (X)−1] ◦ [idV ∨⊗Fq(X)⊗V ⊗ dV ]

◦ [idV ∨⊗Fq(X) ⊗ bV ⊗ idV ] ◦ [idV ∨ ⊗ ΦV (X)]

= [dV ⊗ idX ] ◦ [idV ∨ ⊗ ΦV (X)−1] ◦ [idV ∨ ⊗ ΦV (X)]

= dV ⊗ idX = Φ0
I(X) ◦ [dV ⊗ idX ].

It is now easy to see that if we define b(V,q,ΦV ) := bV and d(V,q,ΦV ) := dV , then (V ∨, q−1, (ΦV )∨) is a left
dual for (V, q,ΦV ). In this way we obtain a left duality on ZG(C).

Now suppose, in addition, that the left duality on C is a left G-duality. Then for q ∈ G and (V, r,ΦV ) ∈
ZG(C) we have

(FqΦV )∨(X)

13A similar calculation for right duals will not work. See also the remark after this lemma.
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= [dFq(V ) ⊗ idFqr−1q−1 (X)⊗Fq(V )∨ ] ◦ [idFq(V )∨ ⊗FqΦV (Fqr−1q−1(X))−1 ⊗ idFq(V )∨ ]

◦ [idFq(V )∨⊗X ⊗ bFq(V )]

= Fq{[dV ⊗ idFr−1 (Fq−1 (X))⊗V ∨ ] ◦ [idV ∨ ⊗ ΦV (Fr−1(Fq−1(X)))−1 ⊗ idV ∨ ] ◦ [idV ∨⊗Fq−1 (X) ⊗ bV ]}

= Fq((ΦV )∨(Fq−1(X))) = Fq(ΦV )∨(X),

so that

Fq[(V, r,ΦV )∨] = Fq[(V ∨, r−1, (ΦV )∨)] = (Fq(V
∨), qr−1q−1,Fq(ΦV )∨)

= (Fq(V )∨, qr−1q−1, (FqΦV )∨) = (Fq(V ), qrq−1,FqΦV )∨

= Fq[(V, r,ΦV )]∨.

Furthermore, we also have

Fq(b(V,r,ΦV )) = Fq(bV ) = bFq(V ) = b(Fq(V ),qrq−1,FqΦV ) = bFq [(V,r,ΦV )]

Fq(d(V,r,ΦV )) = Fq(dV ) = dFq(V ) = d(Fq(V ),qrq−1,FqΦV ) = dFq [(V,r,ΦV )].

(3) Let (V, q,ΦV ), (W, q,ΦW ) ∈ ZG(C)q. Since C has direct sums, there exists an object Z ∈ C with
Z ∼= V ⊕W , i.e. there exists an object Z ∈ C together with morphisms f ∈ HomC(V,Z), f ′ ∈ HomC(Z, V ),
g ∈ HomC(W,Z) and g′ ∈ HomC(Z,W ) such that f ′ ◦ f = idV , g′ ◦ g = idW and f ◦ f ′ + g ◦ g′ = idZ . For
each X ∈ C we define ΦZ(X) ∈ HomC(Z ⊗X,Fq(X)⊗ Z) by

ΦZ(X) := [idFq(X) ⊗ f ] ◦ ΦV (X) ◦ [f ′ ⊗ idX ] + [idFq(X) ⊗ g] ◦ ΦW (X) ◦ [g′ ⊗ idX ].

We have already seen that ΦZ defines a half q-braiding for Z, so (Z, q,ΦZ) ∈ ZG(C). It is easy to check
that f , f ′, g and g′ are in fact morphisms in ZG(C) and that they give (Z, q,ΦZ) the structure of a direct
sum of (V, q,ΦV ) and (W, q,ΦW ).

(4) Suppose that C is F-linear and let (V, q,ΦV ), (W, q,ΦW ) ∈ ZG(C). Then a morphism f ∈ HomC(V,W )
is a morphism in HomZG(C)((V, q,ΦV ), (W, q,ΦW )) if and only if it satisfies

[idFq(X) ⊗ f ] ◦ ΦV (X) = ΦW (X) ◦ [f ⊗ idX ]

for all X ∈ C. Since this equation is linear in f , it is clear that HomZG(C)((V, q,ΦV ), (W, q,ΦW )) is an F-
linear subspace of HomC(V,W ). If EndC(I) = F · idI , then it is clear that EndZG(C)((I, e,Φ

0
I)) = F · id(I,e,Φ0

I).
�

Remark 4.6.2 That ZG(C) does not have a right duality in part (2) is due to the fact that we have
chosen to define ZG(C) in terms of half q-braidings (of the first kind). If we had defined ZG(C) in terms
of half q-braidings of the second kind, the conclusion in (2) would have been that ZG(C) only had a right
duality. However, in both cases ZG(C)e = Z(C) has a two-sided duality. This follows from the fact that
ZG(C)e = Z(C) is a braided tensor category and that any braided tensor category with either a left or
right duality automatically has a two-sided duality, as we have seen at the beginning of Subsection 2.4.1. A
similar statement does not hold for braided G-crossed categories, without any further assumptions14.

Although ZG(C) only has a left duality if C has both a left and right duality, in the case that C is G-pivotal
we will see in the following lemma that ZG(C) is G-pivotal as well (and thus has both a left and right
duality). This is because the right duality morphisms b′ and d′ in a pivotal category can be expressed
in terms of the left duality morphisms b and d, and for the latter it was possible to show that they are
morphisms in ZG(C).

14If in addition the braided G-crossed category has a so-called G-twisting, i.e. if it is a ribbon G-category, then the statement
is true. We will not need this.
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Lemma 4.6.3 Let (C,⊗, I) be a strict tensor category with strict action F of the group G. If C is G-pivotal
or G-spherical, then so is ZG(C).

Proof. If C is G-pivotal, then for any (V, q,ΦV ) ∈ ZG(C) we define the object (V, q,ΦV ) = (V , q−1,ΦV )
with ΦV as in Lemma 4.1.9. This defines a left duality on ZG(C) by the previous lemma. Since for all
V ∈ C we have that b′V = bV and d′V = dV , it follows that b′V and d′V are morphisms in the category
ZG(C) and hence that we obtain a two-sided duality on ZG(C) in this way. By Lemma 4.1.9 we have for
any (V, q,ΦV ) ∈ ZG(C)

(V, q,ΦV ) = (V , q−1,ΦV ) = (V , q,ΦV ) = (V, q,ΦV ),

and for any (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C) we have

(V, q,ΦV )⊗ (W, r,ΦW ) = (V ⊗W, qr,ΦV ⊗ ΦW ) = (V ⊗W, r−1q−1,ΦV ⊗ ΦW )

= (W ⊗ V , r−1q−1,ΦW ⊗ ΦV ) = (W, r−1,ΦW )⊗ (V , q−1,ΦV )

= (W, r,ΦW )⊗ (V, q,ΦV ).

Also, (I, e,Φ0
I) = (I, e,Φ0

I) = (I, e,Φ0
I) by Lemma 4.1.9 again. The properties of being G-pivotal or G-

spherical carry over directly to ZG(C) since the composition in ZG(C) is the one from C.
�

4.7 Semisimplicity of ZG(C)
In this section we will show that if C is a G-spherical fusion category, then ZG(C) is semisimple. We will
not yet be able to prove that ZG(C) has finitely many isomorphism classes of irreducible objects. This will
be done in Section 4.9. The following lemma is a generalization of Lemmas 3.10 and 3.12 in [75].

Lemma 4.7.1 Let C be a G-spherical fusion category over a field F and assume that dim(C) 6= 0. We
fix a complete set of representatives {Xi}i∈Γ of irreducible objects in C, and for each pair of objects
(V, q,ΦV ), (W, q,ΦW ) ∈ ZG(C) we define an F-linear map E(V,q,ΦV ),(W,q,ΦW ) : HomC(V,W )→ HomC(V,W )
by

E(V,q,ΦV ),(W,q,ΦW )(f) := dim(C)−1
∑
i∈Γ

d(Xi)εi(f),

where εi(f) ∈ HomC(V,W ) is given by

εi(f) : = [Fq(d
′
Xi)⊗ idW ] ◦ [idFq(Xi) ⊗ ΦW (Xi)] ◦ [idFq(Xi) ⊗ f ⊗ idXi ]

◦ [ΦV (Xi)⊗ idXi ] ◦ [idV ⊗ bXi ].

(1) For each f ∈ HomC(V,W ) we have

E(V,q,ΦV ),(W,q,ΦW )(f) ∈ HomZG(C)((V, q,ΦV ), (W, q,ΦW )),

so E(V,q,ΦV ),(W,q,ΦW ) : HomC(V,W )→ HomZG(C)((V, q,ΦV ), (W, q,ΦW )).
(2) For any three morphisms

f ∈ HomZG(C)((U, q,ΦU ), (V, q,ΦV ))

g ∈ HomC(V,W )

h ∈ HomZG(C)((W, q,ΦW ), (Z, q,ΦZ))

we have that E(U,q,ΦU ),(Z,q,ΦZ)(h ◦ g ◦ f) = h ◦ E(V,q,ΦV ),(W,q,ΦW )(g) ◦ f .
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(3) For every (V, q,ΦV ) ∈ ZG(C) we have the equality TrV ◦E(V,q,ΦV ),(V,q,ΦV ) = TrV of maps EndC(V )→
EndC(I).

Proof. (1) To prove that E(V,q,ΦV ),(W,q,ΦW )(f) ∈ HomZG(C)((V, q,ΦV ), (W, q,ΦW )), we must show that

[idFq(Z) ⊗ E(V,q,ΦV ),(W,q,ΦW )(f)] ◦ ΦV (Z) = ΦW (Z) ◦ [E(V,q,ΦV ),(W,q,ΦW )(f)⊗ idZ ]

for all Z ∈ C. Thus let Z ∈ C. For every i, j ∈ Γ we choose a basis {vαi,j}α=1,...,Ni,j for HomC(Xj , Z ⊗Xi)
together with a basis {wαi,j}α=1,...,Ni,j for HomC(Z ⊗Xi, Xj) such that

wαi,j ◦ v
β
i,k = δj,kδα,β idXj∑

j,α

vαi,j ◦ wαi,j = idZ⊗Xi .

Note that Ni,j = N
Xj
Z,Xi

, the multiplicity of Xj in Z ⊗Xi. Using these bases, we define

pαi,j = [idXj⊗Z ⊗ d
′
Xi ] ◦ [idXj ⊗ v

α
i,j ⊗ idXi ] ◦ [b′Xj ⊗ idXi ],

rαi,j = [dXj ⊗ idXi ] ◦ [idXj ⊗ w
α
i,j ⊗ idXi ] ◦ [idXj⊗Z ⊗ bXi ].

These form a basis for HomC(Xi, Xj ⊗ Z) and HomC(Xj ⊗ Z,Xi), respectively, and satisfy∑
i,α

d(Xi)d(Xj)
−1pαi,j ◦ rαi,j = idXj⊗Z .

Using these bases we have for any (V, q,ΦV ), (W, q,ΦW ) ∈ ZG(C) and f ∈ HomC(V,W ) that∑
i

d(Xi)[idFq(Z) ⊗ εi(f)] ◦ ΦV (Z)

=
∑
i,j,α

d(Xi)[idFq(Z) ⊗ Fq(d′Xi)⊗ idW ] ◦ [Fq(v
α
i,j)⊗ ΦW (Xi)] ◦ [Fq(w

α
i,j)⊗ f ⊗ idXi ]

◦ [idFq(Z) ⊗ ΦV (Xi)⊗ idXi ] ◦ [ΦV (Z)⊗ bXi ]

=
∑
i,j,α

d(Xi)[idFq(Z) ⊗ Fq(d′Xi)⊗ idW ] ◦ [Fq(v
α
i,j)⊗ ΦW (Xi)] ◦ [idFq(Xj) ⊗ f ⊗ idXi ]

◦ [ΦV (Xj)⊗ idXi ] ◦ [idV ⊗ wαi,j ⊗ idXi ] ◦ [idV⊗Z ⊗ bXi ]

=
∑
i,j,α

d(Xi)[Fq(d
′
Xj )⊗ idFq(Z)⊗W ] ◦ [idFq(Xj) ⊗ Fq(p

α
i,j)⊗ idW ] ◦ [idFq(Xj) ⊗ ΦW (Xi)]

◦ [idFq(Xj) ⊗ f ⊗ idXi ] ◦ [ΦV (Xj)⊗ idXi ] ◦ [idV⊗Xj ⊗ rαi,j ] ◦ [idV ⊗ bXj ⊗ idZ ]

=
∑
i,j,α

d(Xi)[Fq(d
′
Xj )⊗ ΦW (Z)] ◦ [idFq(Xj) ⊗ ΦW (Xj)⊗ idZ ] ◦ [idFq(Xj)⊗W ⊗ (pαi,j ◦ rαi,j)]

◦ [idFq(Xj) ⊗ f ⊗ idXj⊗Z ] ◦ [ΦV (Xj)⊗ idXj⊗Z ] ◦ [idV ⊗ bXj ⊗ idZ ]

=
∑
j,α

d(Xj)[Fq(d
′
Xj )⊗ ΦW (Z)] ◦ [idFq(Xj) ⊗ ΦW (Xj)⊗ idZ ]

◦

[
idFq(Xj)⊗W ⊗ (

∑
i

d(Xi)d(Xj)
−1pαi,j ◦ rαi,j)

]
◦ [idFq(Xj) ⊗ f ⊗ idXj⊗Z ]

◦ [ΦV (Xj)⊗ idXj⊗Z ] ◦ [idV ⊗ bXj ⊗ idZ ]
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=
∑
j

d(Xj)ΦW (Z) ◦ [εj(f)⊗ idZ ].

Multiplying both sides by dim(C)−1 gives the desired result.
(2) This follows directly from the fact that f and h are morphisms in ZG(C).
(3) For every i, j ∈ Γ we choose a basis {vαi,j}α=1,...,Ni,j for HomC(Xj , V ⊗Fq(Xi)) together with a basis

{wαi,j}α=1,...,Ni,j for HomC(V ⊗ Fq(Xi), Xj) such that

wαi,j ◦ v
β
i,k = δj,kδα,β idXj ,∑

j,α

vαi,j ◦ wαi,j = idV⊗Fq(Xi).

Note that Ni,j = N
Xj

V ,Fq(Xi)
, the multiplicity of Xj in V ⊗ Fq(Xi). Using these bases, we define

pαi,j = [dV ⊗ idXi⊗V ] ◦ [idV ⊗ Fq(d
′
Xi)⊗ idV⊗Xi⊗V ] ◦ [vαi,j ⊗ ΦV (Xi)⊗ idXi⊗V ]

◦ [idXj⊗V ⊗ b′Xi ⊗ idV ] ◦ [idXj ⊗ bV ]

rαi,j = [idXj ⊗ d′V ] ◦ [idXj⊗V ⊗ dXi ⊗ idV ] ◦ [wαi,j ⊗ ΦV (Xi)
−1 ⊗ idXi⊗V ]

◦ [idV ⊗ Fq(bXi)⊗ idV⊗Xi⊗V ] ◦ [b′V ⊗ idXi⊗V ].

These form a basis for HomC(Xj , Xi ⊗ V ) and HomC(Xi ⊗ V ,Xj) and satisfy∑
j,α

pαi,j ◦ rαi,j = idXi⊗V .

Using these bases, we now compute for (V, q,ΦV ) ∈ ZG(C) and f ∈ EndC(V )∑
i

d(Xi)TrV (εi(f))

=
∑
i

d(Xi) · dV ◦ [idV ⊗ Fq(d
′
Xi)⊗ idV ] ◦ [idV⊗Fq(Xi) ⊗ ΦV (Xi)] ◦ [idV⊗Fq(Xi) ⊗ f ⊗ idXi ]

◦ [idV ⊗ ΦV (Xi)⊗ idXi ] ◦ [b′V ⊗ bXi ]

=
∑
i

d(Xi) · dV ◦ [idV ⊗ Fq(d
′
Xi)⊗ idV ] ◦ [idV⊗Fq(Xi) ⊗ ΦV (Xi)] ◦ [idV⊗Fq(Xi) ⊗ f ⊗ idXi ]

◦ [idV⊗Fq(Xi) ⊗ ΦV (Xi)
−1] ◦ [idV ⊗ Fq(bXi)⊗ idV ] ◦ b′V

=
∑
i,j,α

d(Xi) · dV ◦ [idV ⊗ Fq(d
′
Xi)⊗ idV ] ◦ [vαi,j ⊗ ΦV (Xi)] ◦ [wαi,j ⊗ f ⊗ idXi ]

◦ [idV⊗Fq(Xi) ⊗ ΦV (Xi)
−1] ◦ [idV ⊗ Fq(bXi)⊗ idV ] ◦ b′V

=
∑
i,j,α

d(Xi) · d′Xi ◦ [idXi ⊗ dV ⊗ idXi ] ◦ [pαi,j ⊗ idV⊗Xi ] ◦ [idXj ⊗ f ⊗ idXi ]

◦ [rαi,j ⊗ idV⊗Xi ] ◦ [idXi ⊗ b′V ⊗ idXi ] ◦ bXi
=
∑
i

d(Xi) · d′Xi ◦ [idXi ⊗ dV ⊗ idXi ] ◦ [idXi⊗V ⊗ f ⊗ idXi ] ◦ [idXi ⊗ b′V ⊗ idXi ] ◦ bXi

=
∑
i

d(Xi)
2TrV (f) = dim(C)TrV (f).

Multiplying both sides by dim(C)−1 gives the desired result.
�
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Theorem 4.7.2 Let C be a G-spherical fusion category over an algebraically closed field F. Then ZG(C) is
G-spherical and semisimple.

Proof. The proof goes analogously to the proof of Theorem 3.16 of [75]. We have already shown that if C
is G-spherical, then so is ZG(C). Since C is semisimple, it has direct sums, subobjects and an irreducible
unit object. As seen before, these properties carry over to ZG(C).

Let (V, q,ΦV ) ∈ ZG(C). By semisimplicity of C, EndC(V ) is a finite dimensional multi matrix alge-
bra. The trace TrV : EndC(V ) → EndC(V ) is non-degenerate and we have a conditional expectation
E(V,q,ΦV ),(V,q,ΦV ) : EndC(V ) → EndZG(C)((V, q,ΦV )) that preserves the trace. By Lemma 3.14 in [75] this
implies that EndZG(C)((V, q,ΦV )) is semisimple, and hence a multi matrix algebra, because F is algebraically
closed. In turn, this implies that (V, q,ΦV ) is a finite direct sum of irreducible objects.
�

4.8 An example

In this section we will consider the construction of ZG(C) for the case where C has some special properties,
and we will see that in this case the G-spectrum ∂(ZG(C)) equals G, i.e. ZG(C)q is non-empty for each
q ∈ G. We begin by restating the definition of a half q-braiding for an object V in case V = I.

Let G be a group and let (C,⊗, I) be a strict tensor category with strict G-action F . Note that a half
q-braiding for I is a family {ΦI(X) : X → Fq(X)}X∈C of isomorphisms in C such that for all X,Y ∈ C and
f ∈ HomC(X,Y ) the square

X Fq(X)

Y Fq(Y )

ΦI(X)

f Fq(f)

ΦI(Y )

commutes, satisfying the additional property that for all X,Y ∈ C we have

ΦI(X ⊗ Y ) = [idFq(X) ⊗ ΦI(Y )] ◦ [ΦI(X)⊗ idY ] = ΦI(X)⊗ ΦI(Y )

by the interchange law. Hence a half q-braiding ΦI for I is a natural tensor isomorphism ΦI : idC → Fq. In
particular, a necessary condition for the existence of a half q-braiding for I is that Fq(V ) ∼= V for all V ∈ C.

In the next lemma we will demonstrate that in a certain situation we can construct half q-braidings for
the unit object I. This lemma can be considered as a warm-up for the theorem that follows it.

Lemma 4.8.1 Let C be a strict tensor category with strict G-action F and suppose that C has only one
isomorphism class of objects, i.e. each object is isomorphic to I. If q ∈ G and if each morphism in EndC(I)
is invariant under Fq, then there exists a half q-braiding for I.

Proof. For each V ∈ C we can choose an isomorphism ψV : I → V , so that we obtain a collection
{ψV : I → V }V ∈C of isomorphisms. Note that we have Fq(ψV ) : I → Fq(V ). For each X ∈ C we now define
ΦI(X) : X → Fq(X) by

ΦI(X) : X I Fq(X),
ψ−1
X Fq(ψX)

i.e. ΦI(X) = Fq(ψX)◦ψ−1
X . To prove naturality, let f ∈ HomC(X,Y ). Then by Fq-invariance of morphisms

in EndC(I) we have

Fq(ψY )−1 ◦ Fq(f) ◦ Fq(ψX) = Fq(ψ
−1
Y ◦ f ◦ ψX) = ψ−1

Y ◦ f ◦ ψX ,
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which can be rewritten as Fq(f) ◦ Fq(ψX) ◦ ψ−1
X = Fq(ψY ) ◦ ψ−1

Y ◦ f , i.e.

Fq(f) ◦ ΦI(X) = ΦI(Y ) ◦ f,

showing that ΦI is natural. Now let X,Y ∈ C. Then, again by Fq-invariance of the morphisms in EndC(I),

Fq(ψX ⊗ ψY )−1 ◦ Fq(ψX⊗Y ) = Fq[(ψX ⊗ ψY )−1 ◦ ψX⊗Y ] = (ψX ⊗ ψY )−1 ◦ ψX⊗Y ,

which can be used to conclude that

ΦI(X ⊗ Y ) = Fq(ψX⊗Y ) ◦ ψ−1
X⊗Y = Fq(ψX ⊗ ψY ) ◦ (ψX ⊗ ψY )−1 = ΦI(X)⊗ ΦI(Y ).

Thus ΦI is indeed a half q-braiding for I.
�

The property that EndC(I) is Fq-invariant is automatically satisfied for all q ∈ G if C is F-linear and
I is irreducible. This observation was the main motivation for the following theorem, which has some
relevance for holomorphic chiral CFTs.

Theorem 4.8.2 Let C be an F-linear fusion category with strict action F of the group G and suppose that
every irreducible object in C is isomorphic to I.

(1) For each q ∈ G and V ∈ C there exists precisely one half q-braiding ΦqV for V and we have

HomZG(C)((V, q,Φ
q
V ), (W, q,ΦqW )) = HomC(V,W ). (4.8.1)

Consequently, for each q ∈ G there exists precisely one equivalence class of irreducible objects in
ZG(C)q. Furthermore, ZG(C) is a braided G-crossed extension of C.

(2) The full subcategory ZG(C)irr of ZG(C) determined by all irreducible objects is a braided G-crossed
subcategory of ZG(C).

(3) ZG(C)irr has a skeletal braided G-crossed subcategory15 D with D ∼= ZG(C)irr as a braided G-crossed
categories.

Proof. (1) If X ∈ C, then X ∼= I⊕mX for some mX ∈ Z>0 and we can choose u1
X , . . . , u

mX
X ∈ HomC(I,X)

and v1
X , . . . , v

mX
X ∈ HomC(X, I) such that viX ◦ u

j
X = δij idI and

∑mX
i=1 u

i
X ◦ viX = idX . We will assume from

now on that for each X ∈ C we have chosen such uiX and viX .

We will first demonstrate that if V ∈ C and q ∈ G, then any half q-braiding ΦV for V is uniquely
determined. If X ∈ C and if ΦV is a half q-braiding for V , then naturality of ΦV implies that

ΦV (X) =

mX∑
i=1

ΦV (X) ◦ [idV ⊗ (uiX ◦ viX)] =

mX∑
i=1

[Fq(u
i
X)⊗ idV ] ◦ ΦV (I) ◦ [idV ⊗ viX ]

=

mX∑
i=1

[Fq(u
i
X)⊗ idV ] ◦ [idV ⊗ viX ], (4.8.2)

which shows that ΦV (X) is uniquely determined for any X ∈ C, and hence that ΦV is uniquely determined,
provided it exists.

15Any skeletal subcategory of a braided strict G-crossed category having precisely one equivalence class for each degree (like
ZG(C)irr in the present case) can be equipped with the structure of a (not necessarily strict) braided G-crossed category. The
notable fact in the present situation is that the structure on D is obtained by simply restricting all the structures of ZG(C)irr,
implying in particular that D is strict.
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Using the expression (4.8.2) with V = I we will now show that for each q ∈ G there exists a half
q-braiding for I. Let q ∈ G. For each X ∈ C we thus define ΦqI(X) ∈ HomC(X,Fq(X)) by

ΦqI(X) =

mX∑
i=1

Fq(u
i
X) ◦ viX , (4.8.3)

which is invertible with inverse ΦqI(X)−1 =
∑mX
i=1 u

i
X ◦Fq(viX), as can easily be checked. To prove naturality

of ΦqI , let f ∈ HomC(X,Y ). For i ∈ {1, . . . ,mY } and j ∈ {1, . . . ,mX} we have

Fq(v
i
Y ) ◦ Fq(f) ◦ Fq(ujX) = Fq(v

i
Y ◦ f ◦ u

j
X) = viY ◦ f ◦ u

j
X ,

where we have used that viY ◦ f ◦ u
j
X ∈ EndC(I) = F · idI and that Fq(idI) = idI . From this expression it

follows that
mY∑
i=1

Fq(u
i
Y ) ◦ Fq(viY ) ◦ Fq(f) ◦ Fq(ujX) =

mY∑
i=1

Fq(u
i
Y ) ◦ viY ◦ f ◦ u

j
X ,

which can be simplified as Fq(f) ◦ Fq(ujX) = ΦqI(Y ) ◦ f ◦ ujX , which in turn implies that

mX∑
i=1

Fq(f) ◦ Fq(ujX) ◦ vjX =

mX∑
i=1

ΦqI(Y ) ◦ f ◦ ujX ◦ v
j
X ,

i.e. Fq(f) ◦ ΦqI(X) = ΦqI(Y ) ◦ f . This proves naturality of ΦqI . Now let X,Y ∈ C. Then for any i ∈
{1. . . . ,mX}, j ∈ {1, . . . ,mY } and k ∈ {1, . . . ,mX⊗Y } we have

Fq(v
i
X ⊗ v

j
Y ) ◦ Fq(ukX⊗Y ) = Fq[(v

i
X ⊗ v

j
Y ) ◦ ukX⊗Y ] = (viX ⊗ v

j
Y ) ◦ ukX⊗Y ,

where again we have used that EndC(I) = F · idI . Using this expression we find that

mX∑
i=1

mY∑
j=1

Fq(u
i
X ⊗ u

j
Y ) ◦ Fq(viX ⊗ v

j
Y ) ◦ Fq(ukX⊗Y ) =

mX∑
i=1

mY∑
j=1

Fq(u
i
X ⊗ u

j
Y ) ◦ (viX ⊗ v

j
Y ) ◦ ukX⊗Y ,

which we can simplify as
Fq(u

k
X⊗Y ) = [ΦqI(X)⊗ ΦqI(Y )] ◦ ukX⊗Y .

Finally, we can use this to get

mX⊗Y∑
k=1

Fq(u
k
X⊗Y ) ◦ vkX⊗Y =

mX⊗Y∑
k=1

[ΦqI(X)⊗ ΦqI(Y )] ◦ ukX⊗Y ◦ vkX⊗Y ,

i.e. ΦqI(X ⊗Y ) = ΦqI(X)⊗ΦqI(Y ). This finishes the proof that ΦqI is a half q-braiding for I. Now let V ∈ C.
Then it follows from Lemma 4.1.6 that

ΦqV (X) :=

mV∑
i=1

[idFq(X) ⊗ uiV ] ◦ ΦI(X) ◦ [viV ⊗ idX ]

defines a half q-braiding for V that clearly coincides with (4.8.3) in case V = I. In fact, it follows from
uniqueness that it must coincide with (4.8.2).

Let q ∈ G. It follows from EndC(I) = F·idI that if f ∈ EndC(I), then we also have f ∈ EndZG(C)((I, q,Φ
q
I)).

So (4.8.1) is satisfied for each q ∈ G in case V = W = I. Now let f ∈ HomC(V,W ). Then

[idFq(X) ⊗ f ] ◦ ΦqV (X) =
∑
i

[idFq(X) ⊗ (f ◦ uiV )] ◦ ΦI(X) ◦ [viV ⊗ idX ]
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=
∑
i,j

[idFq(X) ⊗ (ujW ◦ v
j
W ◦ f ◦ u

i
V︸ ︷︷ ︸

∈EndC(I)

)] ◦ ΦI(X) ◦ [viV ⊗ idX ]

=
∑
i,j

[idFq(X) ⊗ ujW ] ◦ ΦI(X) ◦ [(vjW ◦ f ◦ u
i
V ◦ viV )⊗ idX ]

=
∑
i

[idFq(X) ⊗ uiW ] ◦ ΦI(X) ◦ [(viW ◦ f)⊗ idX ]

= ΦqW (X) ◦ [f ⊗ idX ],

showing that f ∈ HomZG(C)((V, q,Φ
q
V ), (W, q,ΦqW )), and hence that (4.8.1) holds. This immediately implies

that an object (V, q,ΦqV ) of ZG(C) is irreducible if and only if V ∈ C is irreducible, i.e. if and only if V ∼= I.
(2) It is clear that the unit object of ZG(C) is in ZG(C)irr. Let (V, q,ΦqV ) and (W, r,ΦrW ) be irreducible.

We have (V, q,ΦqV )⊗ (W, r,ΦrW ) = (V ⊗W, qr,ΦqV ⊗ΦrW ) = (V ⊗W, qr,ΦqrV⊗W ), where the last step follows
from uniqueness. By irreducibility we have that V ∼= I ∼= W and hence V ⊗W ∼= I ⊗ I = I. Thus V ⊗W is
irreducible in C, so (V ⊗W, qr,ΦqrV⊗W ) is irreducible in ZG(C). Since Fq is an equivalence for each q ∈ G,
it follows that each Fq maps irreducible objects to irreducible objects.

(3) Now let D be the full subcategory of ZG(C)irr determined by the set of objects {(I, q,ΦI) : q ∈ G},
which clearly contains the unit object of ZG(C). It follows directly from I ⊗ I = I that D is a full tensor
subcategory (that is strict) and it follows from Fq(I) = I for all q ∈ G that D is a G-category (of course we
are using the uniqueness of the half braidings here to conclude that the tensor product of the half braidings
is again what we want it to be). Our results above also show that for q ∈ G the G-category contains
precisely one object and that D is skeletal in ZG(C)irr. It is clear that the inclusion functor D → ZG(C)irr

is a fully faithful functor of braided G-crossed categories that is essentially surjective.
�

Remark 4.8.3 Note that the existence of such a D characterizes ZG(C)irr up to equivalence in the following
way. If C1 and C2 are categories satisfying the same assumptions as in the theorem, then there is an obvious
functor D1 → D2 between the corresponding skeletal subcategories of the ZG(Ci)irr (namely, the unique
object in D1 with degree q is mapped to the unique object in D2 with degree q; on the morphisms the
functor is uniquely determined by noticing that the Di are discrete). This functor is an equivalence of
braided G-crossed categories and hence ZG(C1)irr

∼= D1
∼= D2

∼= ZG(C2)irr as braided G-crossed categories.

The statement in the theorem is in particular true if C is a TC∗ with strict action F of the group G satisfying
the requirement that every irreducible object of C be unitarily equivalent to I. The proof is almost the same
as the proof of the theorem above, except that now the uiX are isometries and the viX are replaced with (uiX)∗.
Recall that we have seen examples of such categories before: if A is a holomorphic chiral CFT, then the
category Locf (Aζ) is precisely such a category (where ζ ∈ S1 is chosen to obtain a QFT Aζ on R). Hence,
if A is a holomorphic chiral CFT then ZG(Locf (Aζ)) is a braided G-crossed extension of Locf (Aζ) and for
each q ∈ G there exists precisely one equivalence class of irreducible objects in ZG(Locf (Aζ))q. Also, there
exists a skeletal subcategory of ZG(Locf (Aζ)) that is a braided strict G-crossed category. We have seen that

G− Loc
L/R
f (Aζ) also is a braided G-crossed extension of Locf (Aζ) that has precisely one equivalence class

of irreducible objects for each degree. It thus follows from Remark 4.8.3 above that if G − Loc
L/R
f (Aζ)irr

contains a skeletal braided (strict) G-crossed subcategory, then G− Loc
L/R
f (Aζ)irr ' ZG(Locf (Aζ))irr and

hence G− Loc
L/R
f (Aζ) ' ZG(Locf (Aζ)).

4.9 The case when C is G-spherical fusion

In the preceding sections we have constructed the G-crossed Drinfeld center ZG(C) of a G-category C and
we have shown several of its nice properties. In Section 4.8 we also considered a class of a G-categories for
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which the G-crossed Drinfeld center has full G-spectrum. However, this concerned a very restricted class of
G-categories and we wonder whether it is possible to draw similar conclusions for a more general class of
G-categories, preferably a class of G-categories that also includes the categories Locf (Aζ) for a completely
rational chiral CFT A. Indeed, in this section we will show that if C is a G-spherical fusion category, then
ZG(C) has full G-spectrum. This will be done by generalizing the results in Section 4 of [75]. Since many
of our statements here can be proven in the same way as in [75], we will not include all the proofs here.

In this section we will always assume that we are given a quadratically closed field F and a G-spherical
fusion category C over F, where G is a group and the G-action is denoted by F .

We will make similar assumptions as in Subsection 2.9.1. Thus we will assume that for each irreducible
X ∈ C we have chosen a square root d(X)1/2 of its dimension. We will always assume that dim(C) 6= 0
and that we have chosen a square root κ := dim(C)1/2, together with a square root κ1/2. Also, we will
assume that we have chosen some fixed complete set {Xi : i ∈ Γ} of representatives of equivalence classes
of irreducible objects, and we will also assume that for each triple (i, j, k) ∈ Γ×3 we have chosen a basis

{(tkij)α : α = 1, . . . , Nk
ij}

for HomC(Xk, Xi ⊗Xj) = HomCop(Xop
i ⊗X

op
j , Xop

k ), together with a dual basis

{(tijk )α : α = 1, . . . , Nk
ij}

for HomC(Xi ⊗ Xj , Xk) = HomC(X
op
k , Xop

i ⊗ X
op
j ). For Γ we will take a finite subset of Z≥0 of the form

{0, 1, . . . , n}, where X0 = I. Furthermore, we will write D := C�Cop and we will denote the tensor product
in D by ⊗2 to distinguish it from the tensor product ⊗ in C. Recall that in Subsection 2.9.1 we constructed a
normalized Frobenius algebra QF in D with normalization constant κQF = κ for any strict tensor equivalence
F : C → C. For each q ∈ G, we will write Qq = (Qq, µ

q, ηq,∆q, εq) to denote the Frobenius algebra that
corresponds to Fq, where the object Qq is a direct sum

Qq ∼=
⊕
i∈Γ

Fq(Xi)�X
op
i .

In this way we obtain a collection {Qq : q ∈ G} of normalized Frobenius algebras in D, each with normal-

ization constant κ, and in particular we can construct the categories Dqr and Dqr of Subsection 2.9.3 for each
q, r ∈ G. Finally, we will always assume that for all q ∈ G we have already chosen morphisms

uqi ∈ HomD(Fq(Xi)�X
op
i , Qq),

vqi ∈ HomD(Qq, Fq(Xi)�X
op
i )

such that vqi ◦ u
q
i = idFq(Xi)�Xop

i
and

∑
i∈Γ u

q
i ◦ v

q
i = idQq . The following lemma generalizes Lemma 4.3 in

[75]. Since it is important to understand how to define the f [i] that occur in this lemma, we have decided
to include a part of the proof.

Lemma 4.9.1 Let q, r ∈ G and let X,Y, Z ∈ C.
(1) There is a one-to-one correspondence between morphims

f ∈ HomDqr (Jr(X � I
op)Jq, Jr(Y � I

op)Jq)

and families {f [i] ∈ HomC(X ⊗ Fq(Xi), Fr(Xi)⊗ Y ) : i ∈ Γ}.
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(2) If we have two morphisms

f ∈ HomDqr (Jr(X � I
op)Jq, Jr(Y � I

op)Jq),

g ∈ HomDqr (Jr(Y � I
op)Jq, Jr(Z � I

op)Jq),

then we have

(g • f)[k] = d(Xk)−1κ−1
∑
i,j∈Γ

Nkij∑
α=1

d(Xi)d(Xj)[Fr((t
ij
k )α)⊗ idZ ] ◦ [idFr(Xi) ⊗ g[j]]

◦ [f [i]⊗ idFq(Xj)] ◦ [idX ⊗ Fq((tkij)α)],

where g • f denotes the composition in Dqr , as usual.

Proof. (1) Let f ∈ HomDqr (Jr(X � Iop)Jq, Jr(Y � Iop)Jq). Then, considering f as a morphism in
HomD((X � Iop)⊗2 Qq, Qr ⊗2 (Y � Iop)), the morphism

(vrj⊗2idY�Iop) ◦ f ◦ (idX�Iop ⊗2 u
q
i )

∈ HomD((X � Iop)⊗2 (Fq(Xi)�X
op
i ), (Fr(Xj)�X

op
j )⊗2 (Y � Iop))

= HomC(X ⊗ Fq(Xi), Fr(Xj)⊗ Y )�HomCop(Xop
i , Xop

j )

vanishes if i 6= j because Xop
i and Xop

j are inequivalent irreducible objects in Cop. Thus, if for each i ∈ Γ
we define f [i] ∈ HomC(X ⊗ Fq(Xi), Fr(Xi)⊗ Y ) by

f [i]� idXop
i

:= (vri ⊗2 idY�Iop) ◦ f ◦ (idX�Iop ⊗2 u
q
i ),

then
f =

∑
i∈Γ

(uri ⊗2 idY�Iop) ◦ (f [i]� idXop
i

) ◦ (idX�Iop ⊗2 v
q
i ). (4.9.1)

We thus obtain a one-to-one correspondence f ↔ {f [i] : i ∈ Γ}. The proof of part (2) is a computation that
proceeds in the same way as in [75].
�

The following lemma is a straightforward generalization of Lemma 4.4 in [75]. It will be needed for the
construction of the functors Hq in Proposition 4.9.3 below.

Lemma 4.9.2 Let q, r ∈ G, let X ∈ C and let

f ∈ EndDqr (Jr(X � I
op)Jq) = HomD((X � Iop)⊗2 Qq, Qr ⊗2 (X � Iop)).

Then the following two statements are equivalent:
(1) The family {f [i] : i ∈ Γ} satisfies the braiding fusion relation

[idFr(Xi) ⊗ f [j]] ◦ [f [i]⊗ idFq(Xj)] ◦ [idX ⊗ Fq(g)] = [Fr(g)⊗ idX ] ◦ f [k] (4.9.2)

for all i, j, k ∈ Γ and all g ∈ HomC(Xk, Xi ⊗Xj).
(2) The morphism f satisfies

[idQr ⊗2 f ] ◦ [f ⊗2 idQq ] ◦ [idX�Iop ⊗2 ∆q] = [∆r ⊗2 idX�Iop ] ◦ f.

Our following proposition generalizes Propositions 4.5 and 4.6 in [75]. Because we want to show how the
functors Hq in this proposition are constructed, we have decided to include a sketch of the proof here.
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Proposition 4.9.3 For each q ∈ G there is a fully faithful functor Hq : ZG(C)q → Deq.

Sketch of the proof. Let (X, q,ΦX) ∈ ZG(C)q. The half q-braiding ΦX provides us with a family
{ΦX(Xi) ∈ HomC(X ⊗ Xi, Fq(Xi) ⊗ X) : i ∈ Γ}, which in turn gives rise to a morphism p0

(X,q,ΦX) ∈
HomD((X � Iop)⊗2 Qe, Qq ⊗2 (X � Iop)) = EndDeq (Jq(X � I

op)Je) by

p0
(X,q,ΦX) =

∑
i∈Γ

[uqi ⊗2 idX�Iop ] ◦ [ΦX(Xi)� idXop
i

] ◦ [idX�Iop ⊗2 v
e
i ].

Because the family {ΦX(Xi) : i ∈ Γ} satisfies the braiding fusion relation (4.9.2), p0
(X,q,ΦX) satisfies the

equation in statement (2) of Lemma 4.9.2:

[idQq ⊗2 p
0
(X,q,ΦX)] ◦ [p0

(X,q,ΦX) ⊗2 idQe ] ◦ [idX�Iop ⊗2 ∆e] = [∆q ⊗2 idX�Iop ] ◦ p0
(X,q,ΦX).

Composing both sides of this equation from the left with µq ⊗2 idX�Iop , we get p0
(X,q,ΦX) • p

0
(X,q,ΦX) =

κp0
(X,q,ΦX). Thus, if we define

p(X,q,ΦX) := κ−1p0
(X,q,ΦX),

we have p(X,q,ΦX) • p(X,q,ΦX) = p(X,q,ΦX), i.e. p(X,q,ΦX) is an idempotent in EndDeq (Jq(X � I
op)Je). The

functor Hq is now defined by

Hq((X, q,ΦX)) := (Jq(X � I
op)Je, p(X,q,ΦX)),

Hq(f) := [idQq ⊗2 (f � idIop)] ◦ p(X,q,ΦX)

if f ∈ HomZG(C)((X, q,ΦX), (Y, q,ΦY )). For the proof that this is indeed a functor, we refer to [75]. To see
that Hq is faithful, we first note that each ΦX(Xi) is invertible in C, so that also

p(X,q,ΦX) = κ−1
∑
i∈Γ

[uqi ⊗2 idX�Iop ] ◦ [ΦX(Xi)� idXop
i

] ◦ [idX�Iop ⊗2 v
e
i ]

is invertible in D with inverse

p−1
(X,q,ΦX) = κ

∑
i∈Γ

[idX�Iop ⊗2 u
e
j ] ◦ [ΦX(Xi)

−1 � idXop
i

] ◦ [vqj ⊗2 idX�Iop ].

Now suppose that Hq(f1) = Hq(f2) for f1, f2 ∈ HomZG(C)((X, q,ΦX), (Y, q,ΦY )). Then the invertibility of
p(X,q,ΦX) in D implies that idQq ⊗2 (f1� idIop) = idQq ⊗2 (f2� idIop). Using duality in D, this implies that
f1 � idIop = f2 � idIop and hence that f1 = f2. To see that Hq is full, let (X, q,ΦX), (Y, q,ΦY ) ∈ ZG(C)q
and let

g ∈HomDeq
(Hq((X, q,ΦX)), Hq((Y, q,ΦY )))

= HomDeq
((Jq(X � I

op)Je, p(X,q,ΦX)), (Jq(Y � I
op)Je, p(Y,q,ΦY )))

= {g′ ∈ HomDeq (Jq(X � I
op)Je, Jq(Y � I

op)Je) : g′ = p(Y,q,ΦY ) • g′ • p(X,q,ΦX)}.

Then g ∈ HomDeq (Jq(X � I
op)Je, Jq(Y � Iop)Je) is of the form

g = p(Y,q,ΦY ) • g′ • p(X,q,ΦX)

for some g′ ∈ HomDeq (Jq(X � I
op)Je, Jq(Y � Iop)Je). It can then be shown that

g[m] = κ−4[idFq(Xm) ⊗ E(X,q,ΦX),(Y,q,ΦY )(h)] ◦ ΦX(Xm),
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where E(X,q,ΦX),(Y,q,ΦY ) is as in Lemma 4.7.1 and

h := [Fq(d
′
Xi)⊗ idY ] ◦ [idFq(Xi) ⊗ ΦY (Xi)] ◦ [g′[i]⊗ idXi ] ◦ [idX ⊗ bXi ].

We note that h does not depend on m. For m = 0, this gives g[0] = κ−4E(X,q,ΦX),(Y,q,ΦY )(h), showing that
g[0] ∈ HomZG(C)((X, q,ΦX), (Y, q,ΦY )). Plugging this into the equation above, we find

g[m] = [idFq(Xm) ⊗ g[0]] ◦ ΦX(Xm)

and thus

g =
∑
m∈Γ

[uqm ⊗2 idY�Iop ] ◦ [g[m]� idXop
m

] ◦ [idX�Iop ⊗2 v
e
m]

=
∑
m∈Γ

[uqm ⊗2 idY�Iop ] ◦ [idFq(Xm)�Xop
m
⊗2 (g[0]� idIop)] ◦ [ΦX(Xm)� idXop

m
] ◦ [idX�Iop ⊗2 v

e
m]

=
∑
m∈Γ

[idQq ⊗2 (g[0]� idIop)] ◦ [uqm ⊗2 idX�Iop ] ◦ [ΦX(Xm)� idXop
m

] ◦ [idX�Iop ⊗2 v
e
m]

= κ[idQq ⊗2 (g[0]� idIop)] ◦ p(X,q,ΦX) = κHq(g[0]) = Hq(κg[0]),

and as mentioned before we have g[0] ∈ HomZG(C)((X, q,ΦX), (Y, q,ΦY )). So Hq is full.
�

The following proposition, which is a generalization of Propositions 4.12 and 4.13 in [75], forms the ba-
sic ingredient for the proof that the functors Hq are essentially surjective.

Proposition 4.9.4 Let r, s ∈ G. Every object (Js(X � Y op)Jr, p) ∈ Drs is isomorphic to one of the form
(Js(Z � Iop)Jr, p

′) where p′ satisfies

[∆s ⊗2 idZ�Iop ] ◦ p′ = κ · [idQs ⊗2 p
′] ◦ [p′ ⊗2 idQr ] ◦ [idZ�Iop ⊗∆r] (4.9.3)

and p′[0] = κ−1idZ .

Now let q ∈ G and consider this proposition for the case that the pair (r, s) is equal to (e, q). We claim that
the object (Jq(Z � Iop)Je, p

′) is the image of an object in ZG(C)q under the functor Hq. To see this, we
define for each i ∈ Γ the morphism ΦZ(Xi) ∈ HomC(Z⊗Xi, Fq(Xi)⊗Z) by ΦZ(Xi) := κp′[i]; in particular,
ΦZ(I) = idZ . Because p′ satisfies

[∆q ⊗2 idZ�Iop ] ◦ p′ = κ · [idQq ⊗2 p
′] ◦ [p′ ⊗2 idQe ] ◦ [idZ�Iop ⊗∆e],

it follows from Lemma 4.9.2 that for any i, j, k ∈ Γ and any g ∈ HomC(Xk, Xi ⊗Xj) we have

[idFq(Xi) ⊗ κp
′[j]] ◦ [κp′[i]⊗ idXj ] ◦ [idZ ⊗ g] = [Fq(g)⊗ idZ ] ◦ κp′[k],

which can be written in terms of the ΦZ(Xi) as

[idFq(Xi) ⊗ ΦZ(Xj)] ◦ [ΦZ(Xi)⊗ idXj ] ◦ [idZ ⊗ g] = [Fq(g)⊗ idZ ] ◦ ΦZ(Xk). (4.9.4)

Now let Y ∈ C. We define ΦZ(Y ) as follows. Write Ni ∈ Z≥0 for the multiplicity of Xi in Y , so Y ∼=⊕
i∈ΓX

⊕Ni
i . Thus for each i ∈ Γ we can choose f i1, . . . , f

i
Ni
∈ HomC(Xi, Y ) and gi1, . . . , g

i
Ni
∈ HomC(Y,Xi)

such that giα ◦ f
j
β = δi,jδα,β idXi and

∑
i∈Γ

∑Ni
α=1 f

i
α ◦ giα = idY , where the α-summation is of course empty

if Ni = 0. We then define

ΦZ(Y ) :=
∑
i∈Γ

Ni∑
α=1

[Fq(f
i
α)⊗ idZ ] ◦ ΦZ(Xi) ◦ [idZ ⊗ giα].
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It can now be shown that this defines a half q-braiding ΦZ for Z ∈ C by using equation (4.9.4) above. For
instance, naturality of ΦZ follows by considering the case where j = 0 and k = i in (4.9.4); we leave the
details to the reader. Thus (Z, q,ΦZ) ∈ ZG(C). Now

p(Z,q,ΦZ) = κ−1
∑
i∈Γ

[uqi ⊗2 idZ�Iop ] ◦ [ΦZ(Xi)� idXop
i

] ◦ [vqj ⊗2 idZ�Iop ]

=
∑
i∈Γ

[uqi ⊗2 idZ�Iop ] ◦ [p′[i]� idXop
i

] ◦ [vqj ⊗2 idZ�Iop ],

which equals p′ by equation (4.9.1). This shows that Hq(Z, q,ΦZ) = (Jq(Z�Iop)Je, p
′) and therefore proves

our claim.
Finally, we can state the main theorem of this section, the proof of which now follows directly from our

discussion in the preceding paragraph together with the first part of the proof of Theorem 4.14 in [75].

Theorem 4.9.5 The fully faithful functors Hq : ZG(C)q → Deq are essentially surjective and thus equiva-
lences.

Because the category Deq contains D as a subcategory, this theorem implies that for any q ∈ G we have
that ZG(C)q cannot be empty (i.e. it must have some objects). We thus conclude that the theorem has the
following important corollary.

Corollary 4.9.6 If C is a G-spherical fusion category over a quadratically closed field F with dim(C) 6= 0,
then ZG(C) has full G-spectrum.

Now suppose, in addition to the assumptions in the corollary, that F is algebraically closed. Then it follows
from Theorem 1.2 in [75] that the Drinfeld center Z(C) = ZG(C)e is a modular tensor category. Hence the
corollary states that the modular tensor G-category ZG(C)e has a braided G-crossed extension with full G-
spectrum. It is known that not every modular tensor G-category has such a braided G-crossed extension, so
Z(C) is rather special in this sense. Now let q ∈ G and let {Vi : i ∈ Γq} be a complete set of representatives
of irreducible objects in ZG(C)q and let d(Vi) be their dimensions. It then follows from Proposition 3.23 of
[77] that16 ∑

i∈Γq

d(Vi)
2 = dim(ZG(C)e) = dim(Z(C)),

the latter of which is equal to dim(C)2 by Theorem 4.14 of [75]. This implies that Γq must be a finite set,
since d(Vi) ≥ 1 for all i ∈ Γq. So under the additional assumption that G is a finite group, we can thus
conclude that ZG(C) has finitely many isomorphism classes of irreducible objects.

4.10 The case when C is braided

In the preceding sections we have constructed theG-crossed Drinfeld center ZG(C) and we have demonstrated
several of its nice properties. Our original motivation for the construction of ZG(C) was our search for braided
G-crossed extensions of C in case C is a braided G-category, or perhaps even a modular tensor G-category.
In case C = Locf (Aζ) with A a chiral CFT with a G-action (and ζ ∈ S1), we have seen that C is a modular

tensor G-category and that it has braided G-crossed extensions G − Loc
L/R,l/r
f (A) with full G-spectrum.

However, it is known that not every modular tensor G-category has a braided G-crossed extension with full
G-spectrum, so there is no hope that we can find braided G-crossed extensions of C with full G-spectrum
inside of ZG(C) for a general modular tensor G-category C.

16This same proposition also underlies the equation (3.2.15).
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But suppose now that C happens to be a braided G-category such that ZG(C) does contain a braided

G-crossed extension of C. It follows from Proposition 4.10.1 below that both C and C̃ are contained in
ZG(C)e = Z(C), so the assumption that ZG(C) contains a braided G-crossed extension of C immediately

raises the question whether this automatically implies that ZG(C) also contains such an extension of C̃. This
question will be considered in the first subsection of this section. In the second subsection we will show how
to construct a certain braided G-crossed category inside of ZG(C).

In this section we will always assume that we are given a strict tensor category (C,⊗, I) with a strict
action F of the group G and that C has a braiding c that is compatible with the G-action.

Proposition 4.10.1 We have two fully faithful braided tensor functors

H1 : C → Z(C) ⊂ ZG(C),
H2 : C̃ → Z(C) ⊂ ZG(C)

defined by H1(V ) = (V, e, cV,−), H2(V ) = (V, e, c̃V,−) and H1(f) = H2(f) = f . Furthermore, the compati-
bility of c with the G-action implies that the functors H1 and H2 are functors of G-categories.

Proof. The proof of the first statement is analogous to that in [75]. Note that the compatibility of c with
the G-action F , i.e. Fq(cV,W ) = cFq(V ),Fq(W ) for all V,W ∈ C, implies that c̃ is also compatible with the
G-action. We have

Fq(H1(V )) = Fq[(V, e, cV,−)] = (Fq(V ), e,FqcV,−) = (Fq(V ), e, Fq(cV,Fq−1 (−)))

= (Fq(V ), e, cFq(V ),−) = H1(Fq(V )),

and similarly for H2. On the morphisms things are even simpler.
�

4.10.1 The internal structure of ZG(C)
The goal of this subsection is to prove an important theorem about braided G-crossed extensions of C inside
of ZG(C). As shown in Proposition 4.10.1, ZG(C)e contains both C and C̃. At the end of this subsection we
will prove a theorem which states that if ZG(C) contains a braided G-crossed extension of C, then it also

contains such an extension of C̃. The road towards this theorem is rather long, so we have decided to split
it up into smaller steps.

Step 1: Construction of the category Z?G(C)

Our first step will be to use of the braiding c on C in order to define a new product ? of half braidings.
If ΦU is a half q-braiding for U ∈ C and if ΦV is a half r-braiding for V ∈ C, then the main difference
between ΦU ⊗ ΦV and ΦU ? ΦV is that the former is a half qr-braiding for U ⊗ V , whereas the latter is a
half rq-braiding for U ⊗ V .

Lemma 4.10.2 Let t ∈ G and let (U, q,ΦU ), (V, r,ΦV ), (W, s,ΦW ) ∈ ZG(C).
(1) For each X ∈ C we define (ΦU ? ΦV )(X) : U ⊗ V ⊗X → Frq(X)⊗ U ⊗ V by

(ΦU ? ΦV )(X) := [idFrq(X) ⊗ c−1
U,V ] ◦ [(ΦV ⊗ ΦU )(X)] ◦ [cU,V ⊗ idX ]

= [idFrq(X) ⊗ c−1
U,V ] ◦ [ΦV (Fq(X))⊗ idU ] ◦ [idV ⊗ ΦU (X)] ◦ [cU,V ⊗ idX ].

This defines a half rq-braiding for U ⊗ V , so (U ⊗ V, rq,ΦU ? ΦV ) ∈ ZG(C).
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(2) We have the equality
(ΦU ? ΦV ) ? ΦW = ΦU ? (ΦV ? ΦW )

of half srq-braidings for U ⊗ V ⊗W . Also,

ΦU ? Φ0
I = ΦU = Φ0

I ? ΦU .

(3) The group action F on ZG(C) satisfies Ft(ΦU ? ΦV ) = FtΦU ? FtΦV .

Proof. (1) Naturality of ΦU ? ΦV is clear. If X,Y ∈ C, then

[idFrq(X) ⊗ (ΦU ? ΦV )(Y )] ◦ [(ΦU ? ΦV )(X)⊗ idY ]

= [idFrq(X⊗Y ) ⊗ c−1
U,V ] ◦ [idFrq(X) ⊗ (ΦV ⊗ ΦU )(Y )] ◦ [(ΦV ⊗ ΦU )(X)⊗ idY ] ◦ [cU,V ⊗ idX⊗Y ]

= [idFrq(X⊗Y ) ⊗ c−1
U,V ] ◦ [(ΦV ⊗ ΦU )(X ⊗ Y )] ◦ [cU,V ⊗ idX⊗Y ]

= (ΦU ? ΦV )(X ⊗ Y ),

where in the first step we already left out the combination cU,V ◦ c−1
U,V .

(2) If X ∈ C, then

[(ΦU ? ΦV ) ? ΦW ](X)

= [idFsrq(X) ⊗ c−1
U⊗V,W ] ◦ [idFsrq(X)⊗W ⊗ c−1

U,V ] ◦ [ΦW (Frq(X))⊗ idV⊗U ]

◦ [idW ⊗ ΦV (Fq(X))⊗ idU ] ◦ [idW⊗V ⊗ ΦU (X)] ◦ [idW ⊗ cU,V ⊗ idX ] ◦ [cU⊗V,W ⊗ idX ]

= [idFsrq(X) ⊗ c−1
U,V⊗W ] ◦ [idFsrq(X) ⊗ c−1

V,W ⊗ idU ] ◦ [ΦW (Frq(X))⊗ idV⊗U ]

◦ [idW ⊗ ΦV (Fq(X))⊗ idU ] ◦ [idW⊗V ⊗ ΦU (X)] ◦ [cV,W ⊗ idU⊗X ] ◦ [cU,V⊗W ⊗ idX ]

= [ΦU ? (ΦV ? ΦW )](X),

where the first and last step follow from the interchange law and the middle step follows from the properties
of the braiding. The equalities concerning Φ0

I follow directly from Φ0
I ⊗ΦU = ΦU = ΦU ⊗Φ0

I and from the
fact that cI,U = idU = cU,I .
(3) This follows from the fact that for any X ∈ C we have

[Ft(ΦU ? ΦV )](X) = Ft((ΦU ? ΦV )(Ft−1(X)))

= [idFtrqt−1 (X) ⊗ c−1
Ft(U),Ft(V )] ◦ [Ft(ΦV (Fqt−1(X)))⊗ idFt(U)]

◦ [idFt(V ) ⊗ Ft(ΦU (Ft−1(X)))] ◦ [cFt(U),Ft(V ) ⊗ idX ]

= [idFtrqt−1 (X) ⊗ c−1
Ft(U),Ft(V )] ◦ [FtΦV (Ftqt−1(X))⊗ idFt(U)]

◦ [idFt(V ) ⊗FtΦU (X)] ◦ [cFt(U),Ft(V ) ⊗ idX ]

= [(FtΦU ) ? (FtΦV )](X).

�

Now that we have defined the new product ? of half braidings, we will use it to define a new braided
G-crossed structure on ZG(C).

Proposition 4.10.3 We can define a braided G-crossed category Z?G(C) as follows:
• As a category Z?G(C) is simply ZG(C).
• The tensor product ? : Z?G(C)× Z?G(C)→ Z?G(C) is defined by

(U, q,ΦU ) ? (V, r,ΦV ) := (U ⊗ V, rq,ΦU ? ΦV )

f ? g := f ⊗ g

for (U, q,ΦU ), (V, r,ΦV ) ∈ Z?G(C) and f, g ∈ Hom(Z?G(C)).
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• The G-grading ∂? is defined by

∂?((U, q,ΦU )) := ∂((U, q,ΦU ))−1

for any (U, q,ΦU ) ∈ Z?G(C).
• The G-action on Z?G(C) coincides with the G-action on ZG(C).
• For (U, q,ΦU ), (V, r,ΦV ) ∈ Z?G(C) the braiding is defined by

C?(U,q,ΦU ),(V,r,ΦV ) := c−1
Fq−1 (V ),U ◦ C

−1
(U,q,ΦU ),Fq [(V,r,ΦV )] ◦ cU,V .

Equivalently, C?(U,q,ΦU ),(V,r,ΦV ) = c−1
Fq−1 (V ),U ◦ ΦU (Fq−1(V ))−1 ◦ cU,V .

Proof. Let f ∈ HomZG(C)((U, q,ΦU ), (U ′, q,ΦU ′)) and g ∈ HomZG(C)((V, r,ΦV ), (V ′, r,ΦV ′)). To see that
f ? g ∈ HomZG(C)((U ⊗ V, rq,ΦU ? ΦV ), (U ′ ⊗ V ′, rq,ΦU ′ ? ΦV ′)), we compute

[idFrq(X) ⊗ (f ? g)] ◦ (ΦU ? ΦV )(X)

= [idFrq(X) ⊗ f ⊗ g] ◦ [idFrq(X) ⊗ c−1
U,V ] ◦ [ΦV (Fq(X))⊗ idU ] ◦ [idV ⊗ ΦU (X)] ◦ [cU,V ⊗ idX ]

= [idFrq(X) ⊗ c−1
U ′,V ′ ] ◦ [idFrq(X) ⊗ g ⊗ idU ′ ] ◦ [ΦV (Fq(X))⊗ idU ′ ] ◦ [idV⊗Fq(X) ⊗ f ]

◦ [idV ⊗ ΦU (X)] ◦ [cU,V ⊗ idX ]

= [idFrq(X) ⊗ c−1
U ′,V ′ ] ◦ [ΦV ′(Fq(X))⊗ idU ′ ] ◦ [g ⊗ idFq(X)⊗U ′ ] ◦ [idV ⊗ ΦU ′(X)]

◦ [idV ⊗ f ⊗ idX ] ◦ [cU,V ⊗ idX ]

= [idFrq(X) ⊗ c−1
U ′,V ′ ] ◦ [ΦV ′(Fq(X))⊗ idU ′ ] ◦ [idV ′ ⊗ ΦU ′(X)] ◦ [cU ′,V ′ ⊗ idX ] ◦ [f ⊗ g ⊗ idX ]

= (ΦU ′ ? ΦV ′)(X) ◦ [(f ? g)⊗ idX ].

The interchange law in Z?G(C) follows directly from the interchange law in ZG(C) because ? coincides with
⊗ on the morphisms. For the same reason we also have id(U,q,ΦU ) ? id(V,r,ΦV ) = id(U,q,ΦU )?(V,r,ΦV ), as well
as associativity of ? on the morphisms and f ? id(I,e,Φ0

I) = f = id(I,e,Φ0
I) ? f for any morphism f in Z?G(C).

It follows from part (2) of the lemma that ? is associative on the objects and that (I, e,Φ0
I) acts as a unit

object. This proves that (ZG(C), ?, (I, e,Φ0
I)) is a strict tensor category. From part (3) of the lemma we get

that

Ft((U, q,ΦU ) ? (V, r,ΦV )) = (Ft(U ⊗ V ), trqt−1,Ft(ΦU ? ΦV ))

= (Ft(U), tqt−1,ΦU ) ? (Ft(V ), trt−1,ΦV )

= Ft((U, q,ΦU )) ? Ft((V, r,ΦV )).

Together with the fact that the group action on Z?G(C) is the same as on ZG(C), this shows that F defines
a G-action on the strict tensor category Z?G(C). If (U, q,ΦU ), (V, r,ΦV ) ∈ Z?G(C), then

∂?[(U, q,ΦU ) ? (V, r,ΦV )] = (rq)−1 = q−1r−1 = ∂?[(U, q,ΦU )]∂?[(V, r,ΦV )],

so ∂? defines a G-grading on Z?G(C). To see that Z?G(C) is G-crossed, we note that

∂?{Ft[(U, q,ΦU )]} = (tqt−1)−1 = tq−1t−1 = t∂?[(U, q,ΦU )]t−1.

Let (U, q,ΦU ), (V, r,ΦV ) ∈ Z?G(C). We will first show that C?(U,q,ΦU ),(V,r,ΦV ) is a morphism in the category

Z?G(C). In the category ZG(C) we have that

C(U,q,ΦU ),Fq−1 (V,r,ΦV ) ∈ HomZG(C)((U ⊗ Fq−1(V ), rq,ΦU ⊗Fq−1ΦV ), (V ⊗ U, rq,ΦV ⊗ ΦU )),
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which means that

[(ΦV ⊗ ΦU )(X)] ◦ [ΦU (Fq−1(V ))⊗ idX ] = [idFrq(X) ⊗ ΦU (Fq−1(V ))] ◦ [(ΦU ⊗Fq−1ΦV )(X)].

This equation can be rewritten as

[idFrq(X) ⊗ ΦU (Fq−1(V ))−1] ◦ [(ΦV ⊗ ΦU )(X)] = [(ΦU ⊗Fq−1ΦV )(X)] ◦ [ΦU (Fq−1(V ))−1 ⊗ idX ].

Using this equality, we now find that

[idFrq(X) ⊗ C?(U,q,ΦU ),(V,r,ΦV )] ◦ [(ΦU ? ΦV )(X)]

= [idFrq(X) ⊗ c−1
Fq−1 (V ),U ] ◦ [idFrq(X) ⊗ ΦU (Fq−1(V ))−1] ◦ [(ΦV ⊗ ΦU )(X)] ◦ [cU,V ⊗ idX ]

= [idFrq(X) ⊗ c−1
Fq−1 (V ),U ] ◦ [(ΦU ⊗Fq−1ΦV )(X)] ◦ [ΦU (Fq−1(V ))−1 ⊗ idX ] ◦ [cU,V ⊗ idX ]

= [(Fq−1ΦV ? ΦU )(X)] ◦ [C?(U,q,ΦU ),(V,r,ΦV ) ⊗ idX ].

Naturality of C? follows directly from the naturality of C and c. Now let (U, q,ΦU ), (V, r,ΦV ) and (W, s,ΦW )
be objects in Z?G(C). Then

C?(U,q,ΦU ),(V,r,ΦV )?(W,s,ΦW ) = C?(U,q,ΦU ),(V⊗W,sr,ΦV ?ΦW )

= c−1
Fq−1 (V⊗W ),U ◦ ΦU (Fq−1(V ⊗W ))−1 ◦ cU,V⊗W

= c−1
Fq−1 (V⊗W ),U ◦ [idU ⊗ c−1

Fq−1 (V ),Fq−1 (W )] ◦ ΦU (Fq−1(W ⊗ V ))−1 ◦ [cV,W ⊗ idU ] ◦ cU,V⊗W

= [idFq−1 (V ) ⊗ c−1
Fq−1 (W ),U ] ◦ c−1

Fq−1 (V ),U⊗Fq−1 (W ) ◦ [ΦU (Fq−1(W ))−1 ⊗ idFq−1 (V )]

◦ [idW ⊗ ΦU (Fq−1(V ))−1] ◦ cV⊗U,W ◦ [cU,V ⊗ idW ]

= [idFq−1 (V ) ⊗ c−1
Fq−1 (W ),U ] ◦ [idFq−1 (V ) ⊗ ΦU (Fq−1(W ))−1] ◦ c−1

Fq−1 (V ),W⊗U

◦ cU⊗Fq−1 (V ),W ◦ [ΦU (Fq−1(V ))−1 ⊗ idW ] ◦ [cU,V ⊗ idW ]

= [idFq−1 (V ) ⊗ c−1
Fq−1 (W ),U ] ◦ [idFq−1 (V ) ⊗ ΦU (Fq−1(W ))−1] ◦ [idFq−1 (V ) ⊗ cU,W ]

◦ [c−1
Fq−1 (V ),U ⊗ idW ] ◦ [ΦU (Fq−1(V ))−1 ⊗ idW ] ◦ [cU,V ⊗ idW ]

= [idF∂?[(U,q,ΦU )][(V,r,ΦV )] ? C
?
(U,q,ΦU ),(W,s,ΦW )] ◦ [C?(U,q,ΦU ),(V,r,ΦV ) ? id(W,s,ΦW )],

where the step from the second to the third line follows from naturality of ΦU . We also have

C?(U,q,ΦU )?(V,r,ΦV ),(W,s,ΦW ) = C?(U⊗V,rq,ΦU?ΦV ),(W,s,ΦW )

= c−1
F(rq)−1 (W ),U⊗V ◦ (ΦU ? ΦV )(F(rq)−1(W ))−1 ◦ cU⊗V,W

= c−1
F(rq)−1 (W ),U⊗V ◦ [c−1

U,V ⊗ idF(rq)−1 (W )] ◦ (ΦV ⊗ ΦU )(F(rq)−1(W ))−1 ◦ [idW ⊗ cU,V ] ◦ cU⊗V,W

= [c−1
F(rq)−1 (W ),U ⊗ idV ] ◦ c−1

U⊗F(rq)−1 (W ),V ◦ [idV ⊗ ΦU (F(rq)−1(W ))−1]

◦ [ΦV (Fr−1(W ))−1 ⊗ idU ] ◦ cU,W⊗V ◦ [idU ⊗ cV,W ]

= [c−1
F(rq)−1 (W ),U ⊗ idV ] ◦ [ΦU (F(rq)−1(W ))−1 ⊗ idV ] ◦ c−1

Fr−1 (W )⊗U,V

◦ cU,V⊗Fr−1 (W ) ◦ [idU ⊗ ΦV (Fr−1(W ))−1] ◦ [idU ⊗ cV,W ]

= [c−1
F(rq)−1 (W ),U ⊗ idV ] ◦ [ΦU (F(rq)−1(W ))−1 ⊗ idV ] ◦ [cU,Fr−1 (W ) ⊗ idV ]

◦ [idU ⊗ c−1
Fr−1 (W ),V ] ◦ [idU ⊗ ΦV (Fr−1(W ))−1] ◦ [idU ⊗ cV,W ]
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= [C?(U,q,ΦU ),F∂?[(V,r,ΦV )][(W,s,ΦW )] ? id(V,r,ΦV )] ◦ [id(U,q,ΦU ) ? C
?
(V,r,ΦV ),(W,s,ΦW )].

This completes the proof that C? is a braiding. Finally suppose that s ∈ G and let (U, q,ΦU ), (V, rΦV ) ∈
Z?G(C). Then

C?Fs[(U,q,ΦU )],Fs[(V,r,ΦV )] = C?(Fs(U),sqs−1,FsΦU ),(Fs(V ),srs−1,FsΦV )

= c−1
Fsq−1s−1 (Fs(V )),Fs(U) ◦ CFs[(U,q,ΦU )],Fsqs−1Fs[(V,r,ΦV )] ◦ cFs(U),Fs(V )

= c−1
Fsq−1 (V ),Fs(U) ◦ CFs[(U,q,ΦU )],FsFq [(V,r,ΦV )] ◦ cFs(U),Fs(V )

= Fs

{
c−1
Fq−1 (V ),U ◦ C(U,q,ΦU ),Fq [(V,r,ΦV )] ◦ cU,V

}
= Fs(C?(U,q,ΦU ),(V,r,ΦV )),

showing that C? is compatible with the G-action and hence that Z?G(C) is a braided G-crossed category.
�

Step 2: Equivalence of Z?G(C) and ZG(C)•

Recall from Subsection 2.8.5 that for any braided G-crossed category D we defined its mirror image D•. Our
next step is to show that the braided G-crossed category Z?G(C) defined above is equivalent to the mirror
image ZG(C)• of ZG(C).

Theorem 4.10.4 The identity functor on ZG(C) can be given the structure of an equivalence

(idZG(C), ε, δ) : Z?G(C)→ ZG(C)•

of braided G-crossed categories.

Proof. In this proof we will write H := idZG(C) for short. We can simply choose ε = id(I.e.Φ0
I). For any

two objects (U, q,ΦU ), (V, r,ΦV ) in ZG(C) we define δ(U,q,ΦU ),(V,r,ΦV ) ∈ HomC(U ⊗ Fq−1(V ), U ⊗ V ) by

δ(U,q,ΦU ),(V,r,ΦV ) = c−1
U,V ◦ ΦU (Fq−1(V )).

Fix (U, q,ΦU ), (V, rΦV ) ∈ ZG(C) and write δU,V := δ(U,q,ΦU ),(V,r,ΦV ). We will first show that

δ(U,q,ΦU ),(V,r,ΦV ) ∈HomZG(C)(H[(U, q,ΦU )] •H[(V, r,ΦV )], H[(U, q,ΦU ) ? (V, r,ΦV )])

= HomZG(C)((U ⊗ Fq−1(V ), rq,ΦU ⊗Fq−1ΦV ), (U ⊗ V, rq,ΦU ? ΦV ))

i.e. that δ(U,q,ΦU ),(V,r,ΦV ) satisfies

[idFrq(X) ⊗ δ(U,q,ΦU ),(V,r,ΦV )] ◦ (ΦU ⊗Fq−1ΦV )(X) = (ΦU ? ΦV )(X) ◦ [δ(U,q,ΦU ),(V,r,ΦV ) ⊗ idX ]

for all X ∈ C. This follows from the computation

[idFrq(X) ⊗ δ(U,q,ΦU ),(V,r,ΦV )] ◦ (ΦU ⊗Fq−1ΦV )(X)

= [idFrq(X) ⊗ c−1
U,V ] ◦ [idFrq(X) ⊗ ΦU (Fq−1(V ))] ◦ [ΦU (Fq−1rq(X))⊗ idFq−1 (V )] ◦ [idU ⊗ (Fq−1ΦV )(X)]

= [idFrq(X) ⊗ c−1
U,V ] ◦ ΦU (Fq−1rq(X)⊗ Fq−1(V )) ◦ [idU ⊗ Fq−1(ΦV (Fq(X)))]

= [idFrq(X) ⊗ c−1
U,V ] ◦ [ΦV (Fq(X))⊗ idU ] ◦ ΦU (Fq−1(V )⊗X)

= [idFrq(X) ⊗ c−1
U,V ] ◦ [ΦV (Fq(X))⊗ idU ] ◦ [idV ⊗ ΦU (X)]

◦ [cU,V ⊗ idX ] ◦ [c−1
U,V ⊗ idX ] ◦ [ΦU (Fq−1(V ))⊗ idX ]
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= (ΦU ? ΦV )(X) ◦ [δ(U,q,ΦU ),(V,r,ΦV ) ⊗ idX ].

Now let f ∈ HomZG(C)((U, q,ΦU ), (U ′, q,ΦU ′)) and g ∈ HomZG(C)((V, r,ΦV ), (V ′, r,ΦV ′)). Then

δ(U ′,q,ΦU′ ),(V ′,r,ΦV ′ ) ◦ [f • g] = c−1
U ′,V ′ ◦ ΦU ′(Fq−1(V ′)) ◦ [f ⊗ Fq−1(g)] = [f ⊗ g] ◦ c−1

U,V ◦ ΦU (Fq−1(V ))

= [f ? g] ◦ δ(U,q,ΦU ),(V,r,ΦV ),

showing naturality. If (U, q,ΦU ), (V, r,ΦV ), (W, s,ΦW ) ∈ ZG(C), then

δ(U,q,ΦU )?(V,r,ΦV ),(W,s,ΦW ) ◦ [δ(U,q,ΦU ),(V,r,ΦV ) • idW ]

= c−1
U⊗V,W ◦ (ΦU ? ΦV )(Fq−1r−1(W )) ◦ [c−1

U,V ⊗ idFq−1r−1 (W )] ◦ [ΦU (Fq−1(V ))⊗ idFq−1r−1 (W )]

= [idU ⊗ c−1
V,W ] ◦ [c−1

U,W ⊗ idV ] ◦ [idW ⊗ c−1
U,V ] ◦ [ΦV (Fr−1(W ))⊗ idU ] ◦ [idV ⊗ ΦU (Fq−1r−1(W ))]

◦ [cU,V ⊗ idFq−1r−1 (W )] ◦ [c−1
U,V ⊗ idFq−1r−1 (W )] ◦ [ΦU (Fq−1(V ))⊗ idFq−1r−1 (W )]

= [idU ⊗ c−1
V,W ] ◦ [c−1

U,W ⊗ idV ] ◦ [idW ⊗ c−1
U,V ] ◦ [ΦV (Fr−1(W ))⊗ idU ] ◦ ΦU (Fq−1(V )⊗ Fq−1r−1(W ))

= [c−1
U,V ⊗ idW ] ◦ [idV ⊗ c−1

U,W ] ◦ [c−1
V,W ⊗ idU ]

◦ [ΦV (Fr−1(W ))⊗ idU ] ◦ ΦU (Fq−1(V ⊗ Fr−1(W )))

= [c−1
U,V ⊗ idW ] ◦ [idV ⊗ c−1

U,W ] ◦ [c−1
V,W ⊗ idU ]

◦ [ΦU (Fq−1(W ⊗ V ))] ◦ [idU ⊗ Fq−1(ΦV (Fr−1(W )))]

= [c−1
U,V ⊗ idW ] ◦ [idV ⊗ c−1

U,W ] ◦ ΦU (Fq−1(V ⊗W ))

◦ [idU ⊗ c−1
Fq−1 (V ),Fq−1 (W )] ◦ [idU ⊗ Fq−1(ΦV (Fr−1(W )))]

= c−1
U,V⊗W ◦ ΦU (Fq−1(V ⊗W )) ◦ [idU ⊗ Fq−1(c−1

V,W )] ◦ [idU ⊗ Fq−1(ΦV (Fr−1(W )))]

= δ(U,q,ΦU ),(V,r,ΦV )?(W,s,ΦW ) ◦ [idU • δV,W ].

We also note that for any (U, q,ΦU ) ∈ ZG(C) we have

δ(U,q,ΦU ),(I,e,Φ0
I) = c−1

U,I ◦ ΦU (Fq−1(I)) = ΦU (I) = idU

δ(I,e,Φ0
I),(U,q,ΦU ) = c−1

I,U ◦ Φ0
I(Fe−1(U)) = Φ0

I(U) = idU ,

showing that H can be equipped with the structure of a tensor functor. That H is an equivalence of G-
crossed categories is obvious, because H is the identity functor and the G-actions and G-gradingss are the
same for Z?G(C) and ZG(C)•. To see that H is braided, we compute

H[C?(U,q,ΦU ),(V,r,ΦV )] ◦ δ(U,q,ΦU ),(V,r,ΦV )

= C?(U,q,ΦU ),(V,r,ΦV ) ◦ δ(U,q,ΦU ),(V,r,ΦV ) = c−1
Fq−1 (V ),U ◦ ΦU (Fq−1(V ))−1 ◦ cU,V ◦ c−1

U,V ◦ ΦU (Fq−1(V ))

= c−1
Fq−1 (V ),U = c−1

Fq−1 (V ),U ◦ Fq−1ΦV (Fq−1r−1q(U)) ◦ Fq−1ΦV (Fq−1r−1q(U))−1

= δFq−1 [(V,r,ΦV )],(U,q,ΦU ) ◦ C•(U,q,ΦU ),(V,r,ΦV ).

�

Step 3: The functor † : Z?G(C)→ ZG(C)

In the next lemma we will use the braiding c to assign to each half q-braiding ΦV for V ∈ C a half q−1-
braiding Φ†V . This will be used later to define a functor Z?G(C)→ ZG(C).

Lemma 4.10.5 If (V, q,ΦV ) ∈ ZG(C), then for each X ∈ C we define Φ†V (X) : V ⊗X → Fq−1(X)⊗ V by

Φ†V (X) := c−1
Fq−1 (X),V ◦ ΦV (Fq−1(X))−1 ◦ cV,X . (4.10.1)
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(1) If (V, q,ΦV ) ∈ ZG(C), then Φ†V is a half q−1-braiding for V . As a special case, we have the equations

c†V,− = c̃V,− and c̃†V,− = cV,− of half e-braidings for V .
(2) If (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C), then

HomZG(C)[(V, q
−1,Φ†V ), (W, r−1,Φ†W )] = HomZG(C)[(V, q,ΦV ), (W, r,ΦW )].

(3) For the unit object (I, e,Φ0
I) ∈ ZG(C) we have

(Φ0
I)
† = Φ0

I .

Also, if (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C), then we have the relation

Φ†V ⊗ Φ†W = (ΦV ? ΦW )†.

(4) If (V, q,ΦV ) ∈ ZG(C) and if s ∈ G, then

FsΦ†V = (FsΦV )†.

Proof. (1) The naturality of Φ†V follows directly from the naturality of c and ΦV . To see that Φ†V is indeed
a half q−1-braiding, we first compute

[c−1
Fq−1 (X),V ⊗ idFq−1 (Y )] ◦ ΦV (Fq−1(X ⊗ Y ))−1 ◦ [idX ⊗ cV,Y ]

= [c−1
Fq−1 (X),V ⊗ idFq−1 (Y )] ◦ [idV ⊗ Fq−1(c−1

X,Y )] ◦ ΦV (Fq−1(X ⊗ Y ))−1 ◦ [cX,Y ⊗ idV ] ◦ [idX ⊗ cV,Y ]

= c−1
Fq−1 (X),V⊗Fq−1 (Y ) ◦ [ΦV (Fq−1(Y ))−1 ⊗ idFq−1 (X)] ◦ [idY ⊗ ΦV (Fq−1(X))−1] ◦ cX⊗V,Y

= [idFq−1 (X) ⊗ ΦV (Fq−1(Y ))−1] ◦ c−1
Fq−1 (X),Y⊗V ◦ cV⊗Fq−1 (X),Y ◦ [ΦV (Fq−1(X))−1 ⊗ idY ]

= [idFq−1 (X) ⊗ ΦV (Fq−1(Y ))−1] ◦ [idFq−1 (X) ⊗ cV,Y ] ◦ [c−1
Fq−1 (X),V ⊗ idY ] ◦ [ΦV (Fq−1(X))−1 ⊗ idY ].

Using this equation, we get

Φ†V (X ⊗ Y ) = c−1
Fq−1 (X⊗Y ),V ◦ ΦV (Fq−1(X ⊗ Y ))−1 ◦ cV,X⊗Y

= [idFq−1 (X) ⊗ c−1
Fq−1 (Y ),V ] ◦ [c−1

Fq−1 (X),V ⊗ idFq−1 (Y )] ◦ ΦV (Fq−1(X ⊗ Y ))−1

◦ [idX ⊗ cV,Y ] ◦ [cV,X ⊗ idY ]

= [idFq−1 (X) ⊗ c−1
Fq−1 (Y ),V ] ◦ [idFq−1 (X) ⊗ ΦV (Fq−1(Y ))−1] ◦ [idFq−1 (X) ⊗ cV,Y ]

◦ [c−1
Fq−1 (X),V ⊗ idY ] ◦ [ΦV (Fq−1(X))−1 ⊗ idY ] ◦ [cV,X ⊗ idY ]

= [idFq−1 (X) ⊗ Φ†V (Y )] ◦ [Φ†V (X)⊗ idY ],

showing that Φ†V is indeed a half q−1-braiding for V .
(2) Let f ∈ HomC(V,W ). Then f ∈ HomZG(C)[(V, q,ΦV ), (W, r,ΦW )] if and only if

[idFq(X) ⊗ f ] ◦ ΦV (X) = ΦW (X) ◦ [f ⊗ idX ] ∀X ∈ C

if and only if

[f ⊗ idFq−1 (X)] ◦ ΦV (Fq−1(X))−1 = ΦW (Fq−1(X))−1 ◦ [idX ⊗ f ] ∀X ∈ C

if and only if

c−1
Fq−1 (X),W ◦ [f ⊗ idFq−1 (X)] ◦ ΦV (Fq−1(X))−1 ◦ cV,X
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= c−1
Fq−1 (X),W ◦ ΦW (Fq−1(X))−1 ◦ [idX ⊗ f ] ◦ cV,X ∀X ∈ C.

But, by using naturality of c, this last equation can be rewritten as

[idFq−1 (X) ⊗ f ] ◦ Φ†V (X) = Φ†W (X) ◦ [f ⊗ idX ] ∀X ∈ C.

(3) The invariance of Φ0
I under † is trivial. The other equality follows from the computation

(Φ†V ⊗ Φ†W )(X) = [Φ†V (Fr−1(X))⊗ idW ] ◦ [idV ⊗ Φ†W (X)]

= [c−1
Fq−1r−1 (X),V ⊗ idW ] ◦ [ΦV (Fq−1r−1(X))−1 ⊗ idW ] ◦ [cV,Fr−1 (X) ⊗ idW ]

◦ [idV ⊗ c−1
Fr−1 (X),W ] ◦ [idV ⊗ ΦW (Fr−1(X))−1] ◦ [idV ⊗ cW,X ]

= c−1
Fq−1r−1 (X)⊗V,W ◦ [idW ⊗ c−1

Fq−1r−1 (X),V ] ◦ [idW ⊗ ΦV (Fq−1r−1(X))−1]

◦ cV,W⊗Fr−1 (X) ◦ [idV ⊗ ΦW (Fr−1(X))−1] ◦ [idV ⊗ cW,X ]

= c−1
Fq−1r−1 (X),V⊗W ◦ [c−1

V,W ⊗ idFq−1r−1 (X)] ◦ [idW ⊗ ΦV (Fq−1r−1(X))−1]

◦ [ΦW (Fr−1(X))−1 ⊗ idV ] ◦ [idX ⊗ cV,W ] ◦ cV⊗W,X
= c−1

Fq−1r−1 (X),V⊗W ◦ (ΦV ? ΦW )(Fq−1r−1(X))−1 ◦ cV⊗W,X

= (ΦV ? ΦW )†(X).

(4) We have

FsΦ†V (X) = Fs[Φ
†
V (Fs−1(X))] = Fs[c

−1
Fq−1s−1 (X),V ◦ ΦV (Fq−1s−1(X)) ◦ cV,Fs−1 (X)]

= c−1
Fsq−1s−1 (X),Fs(V ) ◦ Fs(ΦV (Fs−1(Fsq−1s−1(X))))−1 ◦ cFs(V ),X

= c−1
F(sqs−1)−1 (X),Fs(V ) ◦ FsΦV (F(sqs−1)−1(X))−1 ◦ cFs(V ),X

= (FsΦV )†(X).

�

Using the assignment ΦV 7→ Φ†V , we will now define a braided G-crossed equivalence from Z?G(C) to ZG(C).

Proposition 4.10.6 We obtain a functor † : ZG(C)→ ZG(C) by defining

(U, q,ΦU )† := (U, q−1,Φ†U ),

f† := f

for (U, q,ΦU ) ∈ ZG(C) and f ∈ Hom(ZG(C)). It is a strict equivalence † : Z?G(C) → ZG(C) of braided
G-crossed categories.

Proof. It follows from part (2) of the previous lemma that for (U, q,ΦU ), (V, r,ΦV ) ∈ ZG(C) we have

HomZG(C)((U, q,ΦU ), (V, q,ΦV )) = HomZG(C)((U, q,ΦU )†, (V, q,ΦV )†),

which directly implies that † is a functor. For the unit object we have (I, e,Φ0
I)
† = (I, e, (Φ0

I)
†) = (I, e,Φ0

I).
If (U, q,ΦU ), (V, r,ΦV ) ∈ Z?G(C), then

[(U, q,ΦU ) ? (V, r,ΦV )]† = (U ⊗ V, rq,ΦU ? ΦV )† = (U ⊗ V, (rq)−1, (ΦU ? ΦV )†)
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= (U ⊗ V, q−1r−1,Φ†U ⊗ Φ†V ) = (U, q−1,Φ†U )⊗ (V, r−1,Φ†V )

= (U, q,ΦU )† ⊗ (V, r,ΦV )†.

On the morphisms we have (f ? g)† = f ? g = f ⊗ g = f† ⊗ g†, so † is a strict tensor functor. If
(U, q,ΦU ) ∈ ZG(C) and r ∈ G then it follows from part (4) of the previous lemma that

{Fr[(U, q,ΦU )]}† = (Fr(U), rqr−1,FrΦU )† = (Fr(U), rq−1r−1, (FrΦU )†)

= (Fr(U), rq−1r−1,Fr(Φ†U )) = Fr[(U, q−1,Φ†U )]

= Fr[(U, q,ΦU )†],

showing that † is a functor of G-categories. If (U, q,ΦU ) ∈ ZG(C), then

∂[(U, q,ΦU )†] = ∂[(U, q−1,Φ†U )] = q−1 = ∂[(U, q,ΦU )]−1 = ∂?[(U, q,ΦU )],

so † respects the grading. Finally, if (U, q,ΦU ), (V, r,ΦV ) ∈ ZG(C) then(
C?(U,q,ΦU ),(V,r,ΦV )

)†
= C?(U,q,ΦU ),(V,r,ΦV ) = c−1

Fq−1 (V ),U ◦ ΦU (Fq−1(V ))−1 ◦ cU,V = Φ†U (V )

= C(U,q−1,Φ†U ),(V,r−1,Φ†V ) = C(U,q,ΦU )†,(V,r,ΦV )†

so † is also braided. We now claim that applying the functor † twice will result in the identity functor.
Considering formula (4.10.1) for Φ†V , it is clear that (Φ†V )† will contain monodromies and is therefore not

equal to ΦV . However, one should realize that there are actually two possible definitions of Φ†V : one in
terms of c (as in formula (4.10.1)) and one in terms of c̃. One could choose to write (†, c) and (†, c̃) for
these two functors. Since there is no preference for either c or c̃ in the construction of ZG(C) (in fact, both

are irrelevant), these two definitions of Φ†V should actually be treated on equal footing. It is not difficult
to see that (†, c) and (†, c̃) are inverse to one another. This proves that † is an equivalence (and that † is
involutive, in a certain sense).
�

Step 4: The main result on G-extensions of C inside of ZG(C)

We are now ready to prove the main theorem of this subsection. This theorem states that if ZG(C) contains
a replete full subcategory D that is a braided G-crossed extension of C, then ZG(C) also contains a braided

G-crossed extension D̃ of C̃. Furthermore, the braided G-crossed categories D and D̃ are the mirror images
of one another.

Theorem 4.10.7 Suppose that ZG(C) contains a replete full subcategory D that is a braided G-crossed
extension of C.

(1) D is also a braided G-crossed category when it is equipped with the structures inherited from Z?G(C).
We will denote D, equipped with these structures, by D?.

(2) The image (D?)† of D? under the functor † : Z?G(C) → ZG(C) is a G-crossed extension of C̃ with
G-spectrum ∂((D?)†) = ∂(D)−1, where all structures on (D?)† are the ones inherited from ZG(C).

(3) We have an equivalence (D?)† ' D? ' D• of braided G-crossed categories.

Proof. (1) Let (U, q,ΦU ), (V, r,ΦV ) ∈ D. Since D is a tensor subcategory of ZG(C) we have that (V, r,ΦV )⊗
(U, q,ΦU ) = (V ⊗ U, rq,ΦV ⊗ ΦU ) ∈ D. The isomorphism cU,V ∈ HomC(U, V ) is also an isomorphism in
HomZG(C)((U, q,ΦU ) ? (V, r,ΦV ), (V, r,ΦV )⊗ (U, q,ΦU )), since for each X ∈ C we have

[idFrq(X) ⊗ cU,V ] ◦ [(ΦU ? ΦV )(X)]
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= [idFrq(X) ⊗ cU,V ] ◦ [idFrq(X) ⊗ c−1
U,V ] ◦ [(ΦV ⊗ ΦU )(X)] ◦ [cU,V ⊗ idX ]

= [(ΦV ⊗ ΦU )(X)] ◦ [cU,V ⊗ idX ].

In particular, the objects (U, q,ΦU ) ? (V, r,ΦV ) and (V, r,ΦV ) ⊗ (U, q,ΦU ) are isomorphic in ZG(C), so
combined with the fact that the latter object is in D and the fact that D is replete, we conclude that
(U, q,ΦU )?(V, r,ΦV ) ∈ D, which implies that D is a tensor subcategory of Z?G(C). That D is a G-subcategory
of Z?G(C) is now immediate, since the group action of Z?G(C) coincides with the one of ZG(C) and D is a
G-subcategory of ZG(C) by assumption. Together with the restriction of ∂? to D, D obviously becomes a
G-crossed subcategory of Z?G(C). Since D is full, it follows that D is a braided G-crossed subcategory of
Z?G(C).

(2) It is clear that (D?)† is a tensor subcategory of ZG(C), because it is the image of the tensor subcategory
D? of Z?G(C) under the strict tensor functor † : Z?G(C) → ZG(C). Since † is also a strict functor of G-
categories, it follows that the group action of ZG(C) restricts to (D?)†. This completes the proof that (D?)†
is a braided G-crossed subcategory of ZG(C). By assumption we have De = C, i.e. De consists of all objects of

the form (V, e, cV,−). This implies that ((D?)†)e consists of all objects of the form (V, e−1, c†V,−) = (V, e, c̃V,−).

Hence ((D?)†)e = C̃ and (D?)† is a braided G-crossed extension of C̃.
(3) The first equivalence is just given by the restriction † : D? → (D?)† of † : Z?G(C) → ZG(C). The

identity functor idZG(C) : Z?G(C) → ZG(C)• is a functor of braided G-crossed categories. Hence, so is its
restriction to D?. The image of D? is precisely D•.
�

By writing D̃ := (D?)† in the theorem above, we thus obtain the following corollary, which is precisely
the result we were looking for.

Corollary 4.10.8 If ZG(C) contains a braided G-crossed extension D of C that is replete, then ZG(C) also

contains a braided G-crossed extension D̃ of C̃ that is equivalent to the mirror image of D.

4.10.2 Construction of the category of c-related objects inside of ZG(C)
In this subsection we will demonstrate how to explicitly construct a certain braided G-crossed category inside
of ZG(C). For this we will need to assume the existence of a G-spherical structure on C. The idea behind this
construction is as follows. Let C be G-spherical (in addition to the properties assumed at the beginning of
this section), so that ZG(C) is also automatically G-spherical by Lemma 4.6.3. Now suppose that we already
have a braided G-crossed extension D of C inside of ZG(C) that has the property that it is closed under the
two-sided duality on ZG(C) that is induced by the G-spherical structure on C, i.e. if (V, q,ΦV ) ∈ D then also
(V, q,ΦV ) = (V , q−1,ΦV ) ∈ D. Then the tensor product (V, q,ΦV ) ⊗ (V , q−1,ΦV ) = (V ⊗ V , e,ΦV ⊗ ΦV )
is an object in De, because D is a tensor category. Since D is a G-extension of C, this means that we must
have

(V ⊗ V , e,ΦV ⊗ ΦV ) = (V ⊗ V , e, cV⊗V ,−).

This observation leads us to the following definition.

Definition 4.10.9 Let C be an F-linear G-spherical category with braiding c, let (V, q,ΦV ) ∈ ZG(C) and
let (V , q−1,ΦV ) be its dual as given by the G-spherical structure. Then we say that (V, q,ΦV ) is c-related
if for each X ∈ C we have

(ΦV ⊗ ΦV )(X) = cV⊗V ,X .

Similarly, we can also define objects that are c̃-related.

The condition of being c-related can be rewritten as [ΦV (Fq−1(X))⊗ idV ] ◦ [idV ⊗ΦV (X)] = [cV,X ⊗ idV ] ◦
[idV ⊗ cV ,X ], or

[c−1
V,X ⊗ idV ] ◦ [ΦV (Fq−1(X))⊗ idV ] = [idV ⊗ cV ,X ] ◦ [idV ⊗ ΦV (X)−1]. (4.10.2)
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Using the fact that (see the proof of Lemma 4.1.8 for the second equation)

cV ,X = [dV ⊗ idX⊗V ] ◦ [idV ⊗ c
−1
V,X ⊗ idV ] ◦ [idV⊗X ⊗ bV ],

ΦV (X)−1 = [idV⊗X ⊗ d
′
V ] ◦ [idV ⊗ ΦV (Fq−1(X))⊗ idV ] ◦ [b′V ⊗ idFq−1 (X)⊗V ],

we can rewrite (4.10.2) as

[c−1
V,X ⊗ idV ] ◦ [ΦV (Fq−1(X))⊗ idV ]

= idV ⊗ L
(V )

Fq−1 (X)⊗V ,X⊗V

{
[c−1
V,X ⊗ idV ] ◦ [idX ⊗ (bV ◦ d′V )] ◦ [ΦV (Fq−1(X))⊗ idV ]

}
=: idV ⊗N(V,q,ΦV )(X), (4.10.3)

where we have introduced the shorthand notation N(V,q,ΦV )(X) for the morphism F∂(V )−1(X)⊗V → X⊗V
on the right-hand side. Applying the left inverse of V to (4.10.3), we obtain

d(V ) ·N(V,q,ΦV )(X) = L
(V )
Fq−1 (X),X [c−1

V,X ◦ ΦV (Fq−1(X))]⊗ idV =: M(V,q,ΦV )(X)⊗ idV (4.10.4)

where we have introduced the shorthand notation M(V,q,ΦV )(X) for the morphism F∂(V )−1(X)→ X occuring

here. Applying the right inverse of V to (4.10.3) we obtain

d(V ) · c−1
V,X ◦ ΦV (Fq−1(X)) = idV ⊗ R

(V )
Fq−1 (X),X [N(V,q,ΦV )(X)] = idV ⊗M(V,q,ΦV )(X). (4.10.5)

Using these equations, we will demonstrate in the following two lemmas that the set of c-related objects is
closed under tensor products and that the G-action of ZG(C) restricts to a G-action on the set of c-related
objects.

Lemma 4.10.10 If (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C) are both c-related, then so is their tensor product (V ⊗
W, qr,ΦV ⊗ ΦW ).

Proof. We first note that

N(V⊗W,qr,ΦV ⊗ΦW )(X)

= L
(V⊗W )

F(qr)−1 (X)⊗V⊗W,X⊗V⊗W

{
[c−1
V⊗W,X ⊗ idV⊗W ] ◦ [idX ⊗ (bV⊗W ◦ d′V⊗W )]

◦ [(ΦV ⊗ ΦW )(F(qr)−1(X))⊗ idV⊗W ]
}

= L
(W )

Fr−1q−1 (X)⊗W⊗V ,X⊗W⊗V

{
[c−1
W,X ⊗ idW⊗V ] ◦ [idX ⊗ bW ⊗ idV ] ◦N(V,q,ΦV )(X)

◦ [idFq−1 (X) ⊗ d′W ⊗ idV ] ◦ [ΦW (Fr−1q−1(X))⊗ idW⊗V ]
}

= d(V )−1L
(W )

Fr−1q−1 (X)⊗W⊗V ,X⊗W⊗V

{
[c−1
W,X ⊗ idW⊗V ] ◦ [idX ⊗ bW ⊗ idV ] ◦ [M(V,q,ΦV ) ⊗ idV ]

◦ [idFq−1 (X) ⊗ d′W ⊗ idV ] ◦ [ΦW (Fr−1q−1(X))⊗ idW⊗V ]
}

= d(V )−1[M(V,q,ΦV ) ⊗ idW⊗V ] ◦ [N(W,r,ΦW )(Fq−1(X))⊗ idV ].

We will now check that equation (4.10.3) is satisfied for (V ⊗W, qr,ΦV ⊗ ΦW ).

idV⊗W ⊗N(V⊗W,qr,ΦV ⊗ΦW )(X)

= d(V )−1[idV⊗W ⊗M(V,q,ΦV ) ⊗ idW⊗V ] ◦ [idV⊗W ⊗N(W,r,ΦW )(Fq−1(X))⊗ idV ]
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= d(V )−1[idV⊗W ⊗M(V,q,ΦV ) ⊗ idW⊗V ] ◦ [idV ⊗ (c−1
W,Fq−1 (X) ◦ ΦW (Fr−1q−1(X)))⊗ idW⊗V ]

= d(V )−1[idV ⊗ c−1
W,X ⊗ idW⊗V ] ◦ [idV ⊗N(V,q,ΦV )(X)⊗ idW⊗W⊗V ] ◦ [idV ⊗ ΦW (Fr−1q−1(X))⊗ idW⊗V ]

= [(idV ⊗ c−1
W,X) ◦ (c−1

V,X ⊗ idW ) ◦ (ΦV (Fq−1(X))⊗ idW ) ◦ (idV ⊗ ΦW (Fr−1q−1(X)))]⊗ idW⊗V

= [c−1
V⊗W,X ◦ (ΦV ⊗ ΦW )(Fr−1q−1(X))]⊗ idV⊗W .

�

Lemma 4.10.11 If q ∈ G and if (V, r,ΦV ) ∈ ZG(C) is c-related, then so is Fq[(V, r,ΦV )].

Proof. Because (V, r,ΦV ) ∈ ZG(C) is c-related, we have the equality

[c−1
V,X ⊗ idV ] ◦ [ΦV (Fr−1(X))⊗ idV ] = [idV ⊗ cV ,X ] ◦ [idV ⊗ ΦV (X)−1]

for all X ∈ C. Since C is G-spherical, we have also FqΦV = FqΦV . Using these facts, we find that

[c−1
Fq(V ),X ⊗ id

Fq(V )
] ◦ [FqΦV (Fqr−1q−1(X))⊗ id

Fq(V )
]

= [c−1
Fq(V ),X ⊗ id

Fq(V )
] ◦ [Fq(ΦV (Fr−1q−1(X)))⊗ id

Fq(V )
]

= Fq

{
[c−1
V,Fq−1 (X) ⊗ idV ] ◦ [ΦV (Fr−1(Fq−1(X)))⊗ idV ]

}
= Fq

{
[idV ⊗ cV ,Fq−1 (X)] ◦ [idV ⊗ ΦV (Fq−1(X))−1]

}
= [idFq(V ) ⊗ cFq(V ),X ] ◦ [idFq(V ) ⊗ Fq(ΦV (Fq−1(X)))−1]

= [idFq(V ) ⊗ cFq(V ),X
] ◦ [idFq(V ) ⊗FqΦV (X)−1]

= [idFq(V ) ⊗ cFq(V ),X
] ◦ [idFq(V ) ⊗FqΦV (X)−1],

which is precisely (4.10.2) for Fq[(V, r,ΦV )].
�

Theorem 4.10.12 The full subcategory D determined by the c-related objects in ZG(C) is a G-spherical

braided G-crossed subcategory of ZG(C) and satisfies De ⊃ C. Similarly, the full subcategory D̃ determined
by the c̃-related objects in ZG(C) is a G-spherical braided G-crossed subcategory of ZG(C) and satisfies

D̃e ⊃ C̃.

Proof. The preceding two lemmas, together with the fact that (I, e,Φ0
I) = (I, e, cI,−) is c-related, show that

the full subcategory of c-related objects forms a G-subcategory of ZG(C). The G-grading restricts to this
G-subcategory and gives it the structure of a G-crossed category, and of course the braiding also restricts
to a braiding on this G-crossed subcategory. For any X ∈ C we have

cV,−(X) = [dV ⊗ idFe−1 (X)⊗V ] ◦ [idV ⊗ cV,−(Fe−1(X))−1 ⊗ idV ] ◦ [idV⊗X ⊗ bV ]

= [dV ⊗ idX⊗V ] ◦ [idV ⊗ c
−1
V,X ⊗ idV ] ◦ [idV⊗X ⊗ bV ]

= cV ,X

and hence also

(cV,− ⊗ cV,−)(X) = [cV,−(X)⊗ idV ] ◦ [idV ⊗ cV.−(X)] = [cV,X ⊗ idV ] ◦ [idV ⊗ cV ,X ]

= cV⊗V ,X .
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This shows that (V, e, cV,−) is c-related and thus that De ⊃ C.
�

Now suppose, as a special case of our previous assumptions, that C is a modular tensor G-category. It
then follows from the results in [75] that in this case we have ZG(C)e = Z(C) ' C � C̃ as braided tensor

categories. Here an object V ∈ C is identified with V � I and an object W ∈ C̃ is identified with I � V .
In this situation an object in ZG(C)e is c-related if and only if it is of the form V � I, i.e. if it is in C.
Similarly, an object in ZG(C)e is c̃-related if and only if it is in C̃. Hence the categories D and D̃ in the

theorem above are braided G-crossed extensions of C and C̃, respectively. This proves the first part of the
following corollary.

Corollary 4.10.13 If C is a modular tensor G-category, then D and D̃ of Theorem 4.10.12 are G-spherical
braided G-crossed extensions of C and C̃, respectively. Furthermore, any G-spherical braided G-crossed
extension of C (respectively C̃) inside of ZG(C) is contained in D (respectively D̃).

Proof. To prove the second statement, let D′ be a G-spherical braided G-crossed subcategory of ZG(C)
that is a G-extension of C, i.e. D′e = C. If (V, q,ΦV ) ∈ D′, then also (V, q,ΦV ) = (V , q−1,ΦV ) ∈ D′, because
D′ is a G-spherical subcategory of ZG(C). But then

(V, q,ΦV )⊗ (V , q−1,ΦV ) = (V ⊗ V , e,ΦV ⊗ ΦV ) ∈ D′e = C,

so we must have ΦV ⊗ ΦV = cV⊗V ,−. Thus (V, q,ΦV ) ∈ D, which implies that D′ ⊂ D. The statement

about D̃ is proven in the same way.
�
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Chapter 5

Conclusions and some suggestions for
further research

After having presented our results in the preceding chapters, it is time to see where these results have
brought us. The main input for our results was the construction of ZG(C) and we have proved several nice
properties of ZG(C). However, our motivation for constructing ZG(C) came from the generalization of a
specific problem in algebraic quantum field theory, so it seems appropriate to reconsider this problem here
and to see what we have learned about it. This is precisely what we will do in the first section of this
chapter. In the second section we will briefly mention some alternative approaches to our problem.

5.1 Back to the main problem

Suppose that we are given a completely rational chiral CFT (H,A, U,Ω, V ) with an action V of a finite
group G. For ζ ∈ S1 we considered in Subsection 3.2.5 the full embedding

Loc
l/r
f (Aζ) ⊂ G− Loc

L/R,l/r
f (Aζ)

of a braided G-category in a braided G-crossed category, where the first is given as the degree e part of the
second, and we were initially interested in whether it is possible (at least in certain specific models, such as
the one described in Section 1.2) to construct the second from the first by some extension procedure.

In purely categorical terms, forgetting about AQFT altogether, we generalized this problem to the
question whether there is some kind of canonical construction to extend a braided G-category C to braided
G-crossed categories D1 and D2 with braidings of the first and second kind, respectively, such that (D1)e =
(D2)e = C,

D1 (braiding of the first kind; (D1)e = C)

C

D2 (braiding of the second kind; (D2)e = C).

As a possible candidate we constructed ZG(C), which is a generalization of the ordinary Drinfeld center
Z(C) that satisfies ZG(C)e = Z(C). However, the implication of this last equality is not quite what we

wanted. Namely, in the case where C is a modular tensor category it was shown in [75] that Z(C) ' C � C̃
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as braided tensor categories, so the requirement that the degree e part ZG(C)e equals C is certainly not
satisfied. From now on we will restrict ourselves to the situation where C is a modular tensor G-category,
since this is the situation that is obtained from completely rational chiral CFTs with a G-action. Thus we
are in the situation where

ZG(C)e ' C � C̃.
Loosely speaking, we have some kind of ‘doubling’ going on in the degree e part of ZG(C): it is generated

(as braided tensor category) by both C and C̃ and is therefore ‘twice as big’ as we want.
However, we believe that this doubling in the degree e part might not be so bad at all, in view of the

fact that we were actually looking for two braided G-crossed extensions

D1 ⊃ C,
D2 ⊃ C.

If c(2) denotes the braiding (of the second kind) on D2, then c̃
(1)
V,W :=

(
c
(2)
F∂(V )(W ),V

)−1

defines a braiding of

the first kind on this same G-crossed category and this braiding c̃(1) of the first kind extends the braided
G-category C̃. In fact, what we obtain in this way is precisely what we called D̃1 in Subsection 3.2.5. Thus,
rather than looking for the braided G-crossed extensions D1 and D2, we can, equivalently, search for braided
G-crossed extensions

D1 ⊃ C,

D̃1 ⊃ C̃.

In this sense, the ‘doubling’ in the degree e part of ZG(C) might actually agree with the doubling that was

inherent to our problem. Namely, perhaps we should look for both D1 and D̃1 inside of ZG(C), rather than

looking for two independent constructions of D1 and D̃1. This also makes more sense in view of the fact
that not every modular tensor G-category has a braided G-crossed extension with full G-spectrum, whereas
Z(C) always has such an extension by Corollary 4.9.6. So although C might not have any braided G-crossed

extensions with full G-spectrum, Z(C) ' C� C̃ does have such an extension, and perhaps we can manage to

find braided G-crossed extensions of C and C̃ inside of ZG(C) in certain special cases where braided G-crossed

extensions of C and C̃ do exist. In Subsection 4.10.2 we demonstrated how this can be done. In Theorem
4.10.7 we have seen that if ZG(C) contains braided G-crossed extensions of C, then it also contains braided

G-crossed extensions of C̃ and these extensions of C and C̃ are equivalent to the mirror image of one another.
Coming back to our initial problem in AQFT, this last fact is very remarkable, especially when consid-

ering the chronological order in which we actually obtained these results during the course of this project.
This chronological order was as follows. First we investigated the categorical relation between the categories

G− Loc
(L,r)
f (A) and G− Loc

(R,l)
f (A) of left and right G-localized endomorphisms in AQFT and we found

out that these two categories are equivalent to the mirror image of one another; in fact, this was actually
our motivation for defining the notion of a mirror image of a braided G-crossed category. Afterwards we
discovered that if ZG(C) contains a braided G-crossed extension D of C, then it also contains a braided

G-crossed extension (D?)† of C̃. It was only after obtaining this result that we wondered whether D and

(D?)† happened to be related to each other in the same way as G − Loc
(L,r)
f (A) and G − Loc

(R,l)
f (A) are.

This indeed turned out to be the case and is almost too coincidental if one believes that ZG(C) has no
relevance at all to AQFT. Furthermore, we should not forget that we have already seen that in the case A is

holomorphic1 and has a skeletal braided G-crossed subcategory2, we have ZG(Locf (Aζ)) ' G−Loc
L/R
f (Aζ)

as braided G-crossed categories. Hopefully, more results will be obtained concerning any relations between
the G-crossed Drinfeld center and AQFT in the future.

1In this case we have Loclf (Aζ) = Locrf (Aζ) (which agrees with the statement C = C̃ in the general case) and

ZG(Locf (Aζ))e = Locf (Aζ) (which agrees with ZG(C)e = C in the general case).
2This can be viewed as a cohomological condition, see also [78].
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5.2 Another possible approach

Besides our own approach to the main problem of constructing braided G-crossed extensions of modular
tensor G-categories, which involved the construction of the G-crossed Drinfeld center ZG(C), we mention
another possible approach that could lead to some results in the future.

The first of these uses a theorem proven in [86] which implies that if M is an indecomposable (left or
right) D-module category with D a fusion category, thenM' ModD(A) for some algebra A = (A,µ, η) ∈ D.
Now suppose that C is a braided G-crossed category. Then for each q ∈ G the full subcategory Cq is a Ce-
bimodule category, as mentioned in Subsection 2.8.4, where we also proved that the braiding of Ce allows us
to forget about either the left or the right Ce-module category structure of Cq. In case Ce is a fusion category,
the theorem in [86] implies that for each q ∈ G the full subcategory Cq is equivalent to ModCe(Aq) for some
algebra Aq = (Aq, µq, ηq) ∈ Ce. This means that the full subcategories {Cq}q∈G are determined up to
equivalence by a collection of algebras {Aq}q∈G in Ce. This seems to provide us with a way of reconstructing
the braided G-crossed category C up to equivalence in terms of Ce alone:

(Ce, {Aq}q∈G)  
⊔
q∈G

ModCe(Aq).

However, there are quite some difficulties in this approach. In the first place, one needs to know what
algebras Aq to choose for each q ∈ G. Secondly, in order to obtain C as a braided G-crossed category we
must also somehow define a tensor product, a G-action and a braiding on

⊔
q∈G Mod(Aq). We will now show

that this second problem can be overcome by imposing some extra conditions on the collection of algebras
{Aq}q∈G which will ensure that

⊔
q∈G ModCe(Aq) can be equipped with the structure of a braided G-crossed

category3. First observe that if q, r ∈ G then we can equip the object Aq ⊗ Ar ∈ Ce with the structure of
an algebra by defining its multiplication to be µq ∗ µr := [µq ⊗ µr] ◦ [idAq ⊗ cAr,Aq ⊗ idAr ] and its unit to
be ηq ⊗ ηr, and we will write

Aq ⊗ Ar := (Aq ⊗Ar, µq ∗ µr, ηq ⊗ ηr).

We can also equip the object Fq(Ar) with the structure of an algebra by defining its multiplication to be
Fq(µr) and its unit to be Fq(ηr), and we will write

Fq(Ar) := (Fq(Ar), Fq(µr), Fq(ηr)).

Now suppose that for any two group elements q, r ∈ G we are given an algebra morphism

∆q,r : Aqr → Aq ⊗ Ar

that satisfies the condition that
∆q,r ◦ ηqr = ηq ⊗ ηr (5.2.1)

for all q, r ∈ G. For (V, πV ) ∈ ModCe(Aq) and (W,πW ) ∈ ModCe(Ar) we then define

πV � πW : = [πV ⊗ πW ] ◦ [idAq ⊗ cAr,V ⊗ idW ] ◦ [∆q,r ⊗ idV⊗W ].

It is easy to check that (V ⊗ W,πV � πW ) ∈ ModCe(Aqr) and that we obtain a tensor product � on⊔
q∈G ModCe(Aq) by defining

(V, πV ) � (W,πW ) := (V ⊗W,πV � πW )

3We do not know whether or not every braided G-crossed category for which Ce is a fusion category arises from such extra
conditions, i.e. if C is a braided G-crossed category with Ce a fusion category and if {Aq}q∈G is a collection of algebras such
that Cq ' ModCe (Aq) for all q ∈ G, we do not know whether or not there is always a way to implement this specific set of
extra conditions on the collection {Aq}q∈G and, if so, whether or not C can be reconstructed as a braided G-crossed category
(up to equivalence) in this way.
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f � g := f ⊗ g.

If the ∆q,r also satisfy the condition

[∆q,r ⊗ idAs ] ◦∆qr,s = [idAq ⊗∆r,s] ◦∆q,rs, (5.2.2)

then � is associative. If there also exists a morphism ε ∈ HomCe(Ae, I) that satisfies

[ε⊗ idAq ] ◦∆e,q = idAq = [idAq ⊗ ε] ◦∆q,e (5.2.3)

for all q ∈ G, then
⊔
q∈G ModCe(Aq) becomes a strict tensor category with tensor product � and unit object

(I, ε) ∈ ModCe(Ae). Note that (Ae,∆e,e, ε) is a coalgebra. To also obtain a G-action, we assume that for
any two q, r ∈ G there exists an isomorphism

ϕqr : Aqrq−1 → Fq(Ar)

of algebras. If q, r ∈ G and (V, πV ) ∈ ModCe(Ar), we define

FqπV = Fq(πV ) ◦ [ϕqr ⊗ idFq(V )].

It is straightforward to check that (Fq(V ),FqπV ) ∈ ModCe(Aqrq−1). In fact, we obtain a functor Fq :
ModCe(Ar)→ ModCe(Aqrq−1) by defining

Fq[(V, πV )] := (Fq(V ),FqπV ),

Fq(f) := Fq(f).

In case we also impose the conditions
ϕqrs = Fq(ϕ

r
s) ◦ ϕ

q
rsr−1 (5.2.4)

for all q, r, s ∈ G, then these functors will automatically satisfy Fqr = Fq ◦ Fr. Finally, if the {∆q,r} and
{ϕqr} are also compatible with each other in the sense that

Fq(∆r,s) ◦ ϕqrs = [ϕqr ⊗ ϕqs] ◦∆qrq−1,qsq−1 (5.2.5)

for all q, r, s ∈ G, then each Fq becomes a tensor functor and we thus obtain a group action F on⊔
q∈G ModCe(Aq), which makes it into a G-crossed category.

Remark 5.2.1 There is a remarkable similarity between our discussion here and the one in [105]. In
section VIII.1 of [105] the notion of a G-coalgebra is defined (in a non-categorical setting) as a collection
of vector spaces {Aq}q∈G together with linear maps ∆q,r : Aqr → Aq ⊗ Ar and ε : Ae → I that satisfy our
conditions (5.2.2) and (5.2.3) above. Next a Hopf G-coalgebra is defined as a G-coalgebra for which all the
Aq are algebras and for which ε and the {∆q,r} are algebra homomorphisms and for which (5.2.1) above is
satisfied, but the definition also implies the existence of an antipode (which we did not need). A crossed
Hopf G-coalgebra is then defined by introducing isomorphisms ϕq : Ar → Aqrq−1 , which is not quite the
same as our ϕqr.

By making some additional assumptions on the underlying category Ce it is also possible to obtain a braiding
for
⊔
q∈G ModCe(Aq) by introducing morphisms Rq,r : I → Aq ⊗ Aqrq−1 analogous to R-matrices for Hopf

algebras, but we will not go into the details here.



Appendix A

Construction of ZG(C) in the
non-strict case

In this appendix we will provide a detailed proof of Theorem 4.3.3, which describes the construction of
ZG(C) in case C is a non-strict G-category. We will first prove some necessary results about half braidings
in Section A.1. Then we will prove the different parts of Theorem 4.3.3 in Sections A.2 through A.5.

A.1 Half braidings in non-strict G-categories

We will first recall the definition of a half q-braiding in a non-strict G-category. In contrast to Definition
4.3.1, we will also include the definition of half q-braidings of the second kind here.

Definition A.1.1 Let (C,⊗, I, a, l, r) be a tensor category with a G-action (F, εF , δF ).
(1) If V ∈ C and q ∈ G, then a half q-braiding (of the first kind) for V is a natural isomorphism

ΦV : ⊗ ◦ (V × idC)→ ⊗ ◦ (Fq × V )

of functors C → C, i.e. a family {ΦV (X) : V ⊗X → Fq(X)⊗ V }X∈C of isomorphisms in C such that
for all X,Y ∈ C and f ∈ HomC(X,Y ) the square

V ⊗X Fq(X)⊗ V

V ⊗ Y Fq(Y )⊗ V

ΦV (X)

idV ⊗f Fq(f)⊗idV

ΦV (Y )

commutes, satisfying the additional property that for all X,Y ∈ C we have

ΦV (X ⊗ Y ) = [δqX,Y ⊗ idV ] ◦ a−1
Fq(X),Fq(Y ),V ◦ [idFq(X) ⊗ ΦV (Y )]

◦ aFq(X),V,Y ◦ [ΦV (X)⊗ idY ] ◦ a−1
V,X,Y . (A.1.1)

(2) If V ∈ C and q ∈ G, then a half q-braiding of the second kind for V is a natural isomorphism

ΨV : ⊗ ◦ (idC × V )→ ⊗ ◦ (V × Fq−1)

of functors C → C, i.e. a family {ΨV (X) : X⊗V → V ⊗Fq−1(X)}X∈C of isomorphisms in C such that
for all X,Y ∈ C and f ∈ HomC(X,Y ) the square

183
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X ⊗ V V ⊗ Fq−1(X)

Y ⊗ V V ⊗ Fq−1(Y )

ΨV (X)

f⊗idV idV ⊗Fq−1 (f)

ΨV (Y )

commutes, satisfying the additional property that for all X,Y ∈ C we have

ΨV (X ⊗ Y ) = [idV ⊗ δq
−1

X,Y ] ◦ aV,Fq−1 (X),Fq−1 (Y ) ◦ [ΨV (X)⊗ idFq−1 (Y )]

◦ a−1
X,V,Fq−1 (Y ) ◦ [idX ⊗ΨV (Y )] ◦ aX,Y,V . (A.1.2)

If C is a strict G-category, then Φ0
I(X) = idX defines a half e-braiding for I. The following lemma shows

that we can generalize this to the case where C is a non-strict G-category.

Lemma A.1.2 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). If for each X ∈ C we
define Φ0

I : I ⊗X → Fe(X)⊗ I by
Φ0
I(X) := r−1

Fe(X) ◦ ε
F
X ◦ lX ,

then Φ0
I defines a half e-braiding for I. Furthermore, we have

Φ0
I(X) = r−1

Fe(X) ◦ lFe(X) ◦ [idI ⊗ εFX ]

= [εFX ⊗ idI ] ◦ r−1
X ◦ lX .

Proof. Naturality follows from commutativity of the diagram

I ⊗X X Fe(X) Fe(X)⊗ I

I ⊗ Y Y Fe(Y ) Fe(Y )⊗ I

lX

idI⊗f

εFX

f Fe(f)

r−1
Fe(X)

Fe(f)⊗idI

lY εFY
r−1
Fe(Y )

for any X,Y ∈ C and f : X → Y . Now let X,Y ∈ C. Then we can use the compatibility of εe with the
right unit constraint to rewrite rFe(X⊗Y ) as

rFe(X⊗Y ) = Fe(rX⊗Y ) ◦ δeX⊗Y,I ◦ [idFe(X⊗Y ) ⊗ εe]
= Fe(idX ⊗ rY ) ◦ Fe(aX,Y,I) ◦ δeX⊗Y,I ◦ [idFe(X⊗Y ) ⊗ εe]
= δeX,Y ◦ [Fe(idX)⊗ Fe(rY )] ◦ (δeX,Y⊗I)

−1 ◦ Fe(aX,Y,I) ◦ δeX⊗Y,I ◦ [idFe(X⊗Y ) ⊗ εe]
= δeX,Y ◦ [idFe(X) ⊗ Fe(rY )] ◦ [idFe(X) ⊗ δeY,I ] ◦ aFe(X),Fe(Y ),Fe(I)

◦ [(δeX,Y )−1 ⊗ idFe(I)] ◦ [idFe(X⊗Y ) ⊗ εe],

where in the second step we used Lemma XI.2.2 of [48], in the third step we used naturality of δe and in
the fourth step we used the hexagonal diagram (2.8.1) for δe. We also have the two equations

εFX⊗Y = δeX,Y ◦ [εFX ⊗ εFY ]

lX⊗Y = [lX ⊗ idY ] ◦ a−1
I,X,Y .

Using these expressions, together with the fact that

idFe(X)⊗Y = [idFe(X) ⊗ lY ] ◦ aFe(X),I,Y ◦ [r−1
Fe(X) ⊗ idY ]
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by the triangle axiom, we find that

Φ0
I(X ⊗ Y )

= r−1
Fe(X⊗Y ) ◦ ε

F
X⊗Y ◦ lX⊗Y

= [idFe(X⊗Y ) ⊗ (εe)−1] ◦ [δeX,Y ⊗ idFe(I)] ◦ a
−1
Fe(X),Fe(Y ),Fe(I)

◦ [idFe(X) ⊗ (δeY,I)
−1]

◦ [idFe(X) ⊗ Fe(rY )−1] ◦ (δeX,Y )−1 ◦ δeX,Y ◦ [εFX ⊗ εFY ] ◦ [lX ⊗ idY ] ◦ a−1
I,X,Y

= [δeX,Y ⊗ idI ] ◦ a−1
Fe(X),Fe(Y ),I ◦ [idFe(X) ⊗ (idFe(Y ) ⊗ (εe)−1)] ◦ [idFe(X) ⊗ (δeY,I)

−1]︸ ︷︷ ︸
=[idFe(X)⊗r−1

Fe(Y )
]◦[idFe(X)⊗Fe(rY )]

◦ [idFe(X) ⊗ Fe(rY )−1] ◦ [idFe(X) ⊗ εFY ] ◦ idFe(X)⊗Y ◦ [εFX ⊗ idY ] ◦ [lX ⊗ idY ] ◦ a−1
I,X,Y

= [δeX,Y ⊗ idI ] ◦ a−1
Fe(X),Fe(Y ),I ◦ [idFe(X) ⊗ r−1

Fe(Y )] ◦ [idFe(X) ⊗ εFY ] ◦ [idFe(X) ⊗ lY ]

◦ aFe(X),I,Y ◦ [r−1
Fe(X) ⊗ idY ] ◦ [εFX ⊗ idY ] ◦ [lX ⊗ idY ] ◦ a−1

I,X,Y

= [δeX,Y ⊗ idI ] ◦ a−1
Fe(X),Fe(Y ),I ◦ [idFe(X) ⊗ Φ0

I(Y )] ◦ aFe(X),I,Y ◦ [Φ0
I(X)⊗ idY ] ◦ a−1

I,X,Y .

This proves that Φ0
I is a half e-braiding for I. Finally, the equalities follow from the fact that the diagram

I ⊗ Fe(X)

I ⊗X X Fe(X) Fe(X)⊗ I

X ⊗ I

lFe(X)idI⊗εFX

lX εFX

r−1
X

r−1
Fe(X)

εFX⊗idI

commutes by naturality of l and r.
�
In what follows, the following lemma will be useful.

Lemma A.1.3 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ).
(1) For X ∈ C and q, r, s ∈ G we define a morphism αq,r,s(X) : (Fq ◦ Fr ◦ Fs)(X)→ Fqrs(X) by

αq,r,s(X) := (δFqr,s)X ◦ (δFq,r)Fs(X) = (δFq,rs)X ◦ Fq((δFr,s)X).

This defines a natural tensor isomorphism1

αq,r,s : (Fq ◦ Fr ◦ Fs, εq � εr � εs, δq � δr � δs)→ (Fqrs, ε
qrs, δqrs).

As a consequence, for any X,Y ∈ C we have

αq,r,s(X ⊗ Y ) = δqrsX,Y ◦ [αq,r,s(X)⊗ αq,r,s(Y )] ◦ (δqFr(Fs(X)),Fr(Fs(Y )))
−1

◦ Fq(δrFs(X),Fs(Y ))
−1 ◦ Fq(Fr(δsX,Y ))−1. (A.1.3)

(2) For X ∈ C and q ∈ G we define a morphism ∆q(X) : (Fq ◦ Fq−1)(X)→ X by

∆q(X) := (εFX)−1 ◦ (δFq,q−1)X .

1See Subsection 2.2.2 for the definition of the � operation.



186 APPENDIX A. CONSTRUCTION OF ZG(C) IN THE NON-STRICT CASE

This defines a natural tensor isomorphism

∆q : (Fq ◦ Fq−1 , εq � εq
−1

, δq � δq
−1

)→ (idC , ε
0, δ0),

where ε0 = idI and δ0
X,Y = idX⊗Y . As a consequence, for any X,Y ∈ C we have

∆q(X ⊗ Y ) = [∆q(X)⊗∆q(Y )] ◦ (δqFq−1 (X),Fq−1 (Y ))
−1 ◦ Fq(δq

−1

X,Y )−1. (A.1.4)

(3) For all q ∈ G and X ∈ C we have the equality

∆q(Fq(X)) = αq,q−1,q(X) = Fq(∆q−1(X)). (A.1.5)

Proof. (1) The naturality of αq,r,s follows from the naturality of δF . Now let X,Y ∈ C and consider the
two diagrams

Fq(Fr(I)) Fq(Fr(Fs(I)))

Fq(I)

I Fqr(I) Fqr(Fs(I))

Fqrs(I).

Fq(Fr(εs))

(δFq,r)I (δFq,r)Fs(I)

Fq(ε
r)

εq

εqr

εqrs

Fqr(εs)

(δFqr,s)I

and

Fq(Fr(Fs(X)))⊗ Fq(Fr(Fs(Y ))) Fqr(Fs(X))⊗ Fqr(Fs(Y )) Fqrs(X)⊗ Fqrs(Y )

Fq(Fr(Fs(X))⊗ Fr(Fs(Y )))

Fq(Fr(Fs(X)⊗ Fs(Y ))) Fqr(Fs(X)⊗ Fs(Y ))

Fq(Fr(Fs(X ⊗ Y ))) Fqr(Fs(X ⊗ Y )) Fqrs(X ⊗ Y ).

(δFq,r)Fs(X)⊗(δFq,r)Fs(Y )

δq
Fr(Fs(X)),Fr(Fs(Y ))

(δFqr,s)X⊗(δFqr,s)Y

δqr
Fs(X),Fs(Y )

δqrsX,Y
Fq(δ

r
Fs(X),Fs(Y ))

(δFq,r)Fs(X)⊗Fs(Y )

Fq(Fr(δsX,Y )) Fqr(δsX,Y )

(δFq,r)Fs(X⊗Y ) (δFqr,s)X⊗Y

For both diagrams it is easy to see that all their subdiagrams commute, so in both cases the big outer
diagram commutes as well. Using the equations

εq � εr � εs = Fq(Fr(ε
s)) ◦ Fq(εr) ◦ εq

(δq � δr � δr)X,Y = Fq(Fr(δ
s
X,Y )) ◦ Fq(δrFs(X),Fs(Y )) ◦ δ

q
Fr(Fs(X)),Fr(Fs(Y )),

these outer diagrams can be rewritten as
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Fq(Fr(Fs(I)))

I

Fqrs(I)

αq,r,s(I)

εq�εr�εs

εqrs

and

Fq(Fr(Fs(X)))⊗ Fq(Fr(Fs(Y ))) Fqrs(X)⊗ Fqrs(Y )

Fq(Fr(Fs(X ⊗ Y ))) Fqrs(X ⊗ Y ),

αq,r,s(X)⊗αq,r,s(Y )

(δq�δr�δs)X,Y δqrsX,Y

αq,r,s(X⊗Y )

respectively. These show that αq,r,s is a natural tensor isomorphism. The latter diagram also gives us

αq,r,s(X ⊗ Y ) = δqrsX,Y ◦ [αq,r,s(X)⊗ αq,r,s(Y )] ◦ (δq � δr � δs)−1
X,Y

= δqrsX,Y ◦ [αq,r,s(X)⊗ αq,r,s(Y )] ◦ (δqFr(Fs(X)),Fr(Fs(Y )))
−1

◦ Fq(δrFs(X),Fs(Y ))
−1 ◦ Fq(Fr(δsX,Y ))−1.

(2) The naturality of ∆q follows from the naturality of εF and δF . Now let X,Y ∈ C and consider the two
diagrams

Fq(Fq−1(I))

Fq(I) Fe(I)

I I

(δF
q,q−1 )I

Fq(ε
q−1

)

(εqq
−1

)−1=(εe)−1εq

idI

and

Fq(Fq−1(X))⊗ Fq(Fq−1(Y )) Fq(Fq−1(X)⊗ Fq−1(Y )) Fq(Fq−1(X ⊗ Y ))

Fe(X)⊗ Fe(Y ) Fe(X ⊗ Y )

X ⊗ Y X ⊗ Y.

δq
F
q−1 (X),F

q−1 (Y )

(δF
q,q−1 )X⊗(δF

q,q−1 )Y

Fq(δ
q−1

X,Y )

(δF
q,q−1 )X⊗Y

δqq
−1

X,Y =δeX,Y

(εFX)−1⊗(εFY )−1 (εFX⊗Y )−1

idX⊗Y

For both diagrams it is easy to see that all their subdiagrams commute, so in both cases the big outer
diagram commutes as well. Using that εe = εFI , these outer diagrams can be written as



188 APPENDIX A. CONSTRUCTION OF ZG(C) IN THE NON-STRICT CASE

Fq(Fq−1(I))

I

I

∆q(I)

εq�εq
−1

ε0

and

Fq(Fq−1(X))⊗ Fq(Fq−1(Y )) Fq(Fq−1(X ⊗ Y ))

X ⊗ Y X ⊗ Y.

(δq�δq
−1

)X,Y

∆q(X)⊗∆q(Y ) ∆q(X⊗Y )

δ0
X,Y

The latter diagram also gives

∆q(X ⊗ Y ) = [∆q(X)⊗∆q(Y )] ◦ (δq � δq
−1

)−1
X,Y

= [∆q(X)⊗∆q(Y )] ◦ (δqFq−1 (X),Fq−1 (Y ))
−1 ◦ Fq(δq

−1

X,Y )−1.

(3) If X ∈ C, then

∆q(Fq(X)) = (εFFq(X))
−1 ◦ (δFq,q−1)Fq(X) = (δFe,q)X ◦ (δFq,q−1)Fq(X)

= αq,q−1,q(X)

= (δFq,e)X ◦ Fq((δFq−1,q)X) = Fq((ε
F
X)−1) ◦ Fq((δFq−1,q)X)

= Fq(∆q−1(X)).

�

In what follows, we will sometimes encounter expressions of the form ΦV (Fr(X ⊗ Y )) that have to be
written out. For that reason, the following lemma will be convenient.

Lemma A.1.4 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). If ΦV is a half q-braiding
for V ∈ C and if r ∈ G, then for any X,Y ∈ C we have

ΦV (Fr(X ⊗ Y ))

= [Fq(δ
r
X,Y )⊗ idV ] ◦ ΦV (Fr(X)⊗ Fr(Y )) ◦ [idV ⊗ (δrX,Y )−1]

= [Fq(δ
r
X,Y )⊗ idV ] ◦ [δqFr(X),Fr(Y ) ⊗ idV ] ◦ a−1

Fq(Fr(X)),Fq(Fr(Y )),V ◦ [idFq(Fr(X)) ⊗ ΦV (Fr(Y ))]

◦ aFq(Fr(X)),V,Fr(Y ) ◦ [ΦV (Fr(X))⊗ idFr(Y )] ◦ a−1
V,Fr(X),Fr(Y ) ◦ [idV ⊗ (δrX,Y )−1] (A.1.6)

Proof. By naturality of ΦV the square

V ⊗ (Fr(X)⊗ Fr(Y )) Fq(Fr(X)⊗ Fr(Y ))⊗ V

V ⊗ Fr(X ⊗ Y ) Fq(Fr(X ⊗ Y ))⊗ V

ΦV (Fr(X)⊗Fr(Y ))

idV ⊗δrX,Y Fq(δ
r
X,Y )⊗idV

ΦV (Fr(X⊗Y ))
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commutes. But this is equivalent to the first equality that we have to prove. The second follows directly
from the fact that ΦV satisfies (A.1.1).
�

The following proposition demonstrates that there is a one-to-one correspondence between half braidings of
the first kind and half braidings of the second kind.

Proposition A.1.5 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ) and let V ∈ C.
(1) If ΦV is a half q-braiding for V , then

ΨV (X) := ΦV (Fq−1(X))−1 ◦ [∆q(X)−1 ⊗ idV ]

defines a half q-braiding of the second kind for V .
(2) If ΨV is a half q-braiding of the second kind for V , then

ΦV (X) := ΨV (Fq(X))−1 ◦ [idV ⊗∆q(X)−1]

defines a half q-braiding for V .
(3) The assignment ΦV 7→ ΨV in part (1) and the assignment ΨV 7→ ΦV in part (2) are inverse to one

another.

Proof. (1) The naturality of ΨV follows directly from the naturality of ∆q and ΦV , as can be seen by
taking X,Y ∈ C, f ∈ HomC(X,Y ) and by considering the diagram

X ⊗ V Fq(Fq−1(X))⊗ V V ⊗ Fq−1(X)

Y ⊗ V Fq(Fq−1(Y ))⊗ V V ⊗ Fq−1(Y ).

∆q(X)−1⊗idV

f⊗idV

ΦV (Fq−1 (X))−1

Fq(Fq−1 (f))⊗idV idV ⊗Fq−1 (f)

∆q(Y )−1⊗idV ΦV (Fq−1 (Y ))−1

To prove that ΨV satisfies (A.1.2), let X,Y ∈ C. Equation (A.1.6) allows us to rewrite ΦV (Fq−1(X⊗Y )) as

ΦV (Fq−1(X ⊗ Y )) = [Fq((δ
q−1

X,Y ))⊗ idV ] ◦ [δqFq−1 (X),Fq−1 (Y ) ⊗ idV ] ◦ a−1
Fq(Fq−1 (X)),Fq(Fq−1 (Y )),V

◦ [idFq(Fq−1 (X)) ⊗ ΦV (Fq−1(Y ))] ◦ aFq(Fq−1 (X)),V,Fq−1 (Y )

◦ [ΦV (Fq−1(X))⊗ idFq−1 (Y )] ◦ a−1
V,Fq−1 (X),Fq−1 (Y ) ◦ [idV ⊗ (δq

−1

X,Y )−1].

Together with equation (A.1.4), this gives

ΨV (X ⊗ Y )−1

= [∆q(X ⊗ Y )⊗ idV ] ◦ ΦV (Fq−1(X ⊗ Y ))

= [(∆q(X)⊗∆q(Y ))⊗ idV ] ◦ [(δqFq−1 (X),Fq−1 (Y ))
−1 ⊗ idV ] ◦ [Fq(δ

q−1

X,Y )−1 ⊗ idV ]

◦ [Fq((δ
q−1

X,Y ))⊗ idV ] ◦ [δqFq−1 (X),Fq−1 (Y ) ⊗ idV ]

◦ a−1
Fq(Fq−1 (X)),Fq(Fq−1 (Y )),V ◦ [idFq(Fq−1 (X)) ⊗ ΦV (Fq−1(Y ))] ◦ aFq(Fq−1 (X)),V,Fq−1 (Y )

◦ [ΦV (Fq−1(X))⊗ idFq−1 (Y )] ◦ a−1
V,Fq−1 (X),Fq−1 (Y ) ◦ [idV ⊗ (δq

−1

X,Y )−1]

= [(∆q(X)⊗∆q(Y ))⊗ idV ] ◦ a−1
Fq(Fq−1 (X)),Fq(Fq−1 (Y )),V ◦ [idFq(Fq−1 (X)) ⊗ ΦV (Fq−1(Y ))]

◦ aFq(Fq−1 (X)),V,Fq−1 (Y ) ◦ [ΦV (Fq−1(X))⊗ idFq−1 (Y )] ◦ a−1
V,Fq−1 (X),Fq−1 (Y ) ◦ [idV ⊗ (δq

−1

X,Y )−1]
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= a−1
X,Y,V ◦ [idX ⊗ (∆q(Y )⊗ idV )] ◦ [idX ⊗ ΦV (Fq−1(Y ))]

◦ aX,V,Fq−1 (Y ) ◦ [(∆q(X)⊗ idV )⊗ idFq−1 (Y )] ◦ [ΦV (Fq−1(X))⊗ idFq−1 (Y )]

◦ a−1
V,Fq−1 (X),Fq−1 (Y ) ◦ [idV ⊗ (δq

−1

X,Y )−1]

= a−1
X,Y,V ◦ [idX ⊗ΨV (Y )−1] ◦ aX,V,Fq−1 (Y ) ◦ [ΨV (X)−1 ⊗ idFq−1 (Y )]

◦ a−1
V,Fq−1 (X),Fq−1 (Y ) ◦ [idV ⊗ (δq

−1

X,Y )−1].

Taking the inverse on both sides, we see that ΨV satisfies (A.1.2).
(3) This follows directly from equation (A.1.5).
�

We will now generalize our results of Subsection 4.1.1 to the case of non-strict G-categories.

Lemma A.1.6 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). Let V,W ∈ C and let
q, r ∈ G.

(1) If ΦV is a half q-braiding for V and ΦW is a half r-braiding for W , then we obtain a half qr-braiding
ΦV ⊗ ΦW for V ⊗W defined by

(ΦV ⊗ ΦW )(X) : = [(δFq,r)X ⊗ idV⊗W ] ◦ aFq(Fr(X)),V,W ◦ [ΦV (Fr(X))⊗ idW ]

◦ a−1
V,Fr(X),W ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X .

(2) If ΦV is a half q-braiding for V , then we obtain a half rqr−1-braiding FrΦV for Fr(V ) by defining

(FrΦV )(X) : = [αr,q,r−1(X)⊗ idFr(V )] ◦ (δrFq(Fr−1 (X)),V )−1 ◦ Fr(ΦV (Fr−1(X)))

◦ δrV,Fr−1 (X) ◦ [idFr(V ) ⊗∆r(X)−1].

Proof. (1) The naturality of ΦV ⊗ ΦW is obvious. To prove that ΦV ⊗ ΦW satisfies (A.1.1), let X,Y ∈ C.
Then

(ΦV ⊗ ΦW )(X ⊗ Y )

= [(δFq,r)X⊗Y ⊗ idV⊗W ] ◦ aFq(Fr(X⊗Y )),V,W ◦ [ΦV (Fr(X ⊗ Y ))⊗ idW ]

◦ a−1
V,Fr(X⊗Y ),W ◦ [idV ⊗ ΦW (X ⊗ Y )] ◦ aV,W,X⊗Y

= [(δFq,r)X⊗Y ⊗ idV⊗W ] ◦ {aFq(Fr(X⊗Y )),V,W ◦ [(Fq(δ
r
X,Y )⊗ idV )⊗ idW ]

◦ [(δqFr(X),Fr(Y ) ⊗ idV )⊗ idW ]} ◦ [a−1
Fq(Fr(X)),Fq(Fr(Y )),V ⊗ idW ] ◦ [(idFq(Fr(X)) ⊗ ΦV (Fr(Y )))⊗ idW ]

◦ [aFq(Fr(X)),V,Fr(Y ) ⊗ idW ] ◦ [(ΦV (Fr(X))⊗ idFr(Y ))⊗ idW ] ◦ {[a−1
V,Fr(X),Fr(Y ) ⊗ idW ]

◦ [(idV ⊗ (δrX,Y )−1)⊗ idW ] ◦ a−1
V,Fr(X⊗Y ),W ◦ [idV ⊗ (δrX,Y ⊗ idW )]

◦ [idV ⊗ a−1
Fr(X),Fr(Y ),W ]} ◦ [idV ⊗ (idFr(X) ⊗ ΦW (Y ))] ◦ [idV ⊗ aFr(X),W,Y ]

◦ [idV ⊗ (ΦW (X)⊗ idY )] ◦ [idV ⊗ a−1
W,X,Y ] ◦ aV,W,X⊗Y

= {[(δFq,r)X⊗Y ⊗ idV⊗W ] ◦ [Fq(δ
r
X,Y )⊗ idV⊗W ] ◦ [δqFr(X),Fr(Y ) ⊗ idV⊗W ]}

◦ aFq(Fr(X))⊗Fq(Fr(Y )),V,W ◦ [a−1
Fq(Fr(X)),Fq(Fr(Y )),V ⊗ idW ] ◦ [(idFq(Fr(X)) ⊗ ΦV (Fr(Y )))⊗ idW ]

◦ [aFq(Fr(X)),V,Fr(Y ) ⊗ idW ] ◦ [(ΦV (Fr(X))⊗ idFr(Y ))⊗ idW ] ◦ a−1
V⊗Fr(X),Fr(Y ),W

◦ a−1
V,Fr(X),Fr(Y )⊗W ◦ [idV ⊗ (idFr(X) ⊗ ΦW (Y ))] ◦ {[idV ⊗ aFr(X),W,Y ]

◦ [idV ⊗ (ΦW (X)⊗ idY )] ◦ [idV ⊗ a−1
W,X,Y ] ◦ aV,W,X⊗Y }
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= [δqrX,Y ⊗ idV⊗W ] ◦ [((δFq,r)X ⊗ (δFq,r)Y )⊗ idV⊗W ] ◦ aFq(Fr(X))⊗Fq(Fr(Y )),V,W

◦ [a−1
Fq(Fr(X)),Fq(Fr(Y )),V ⊗ idW ] ◦ [(idFq(Fr(X)) ⊗ ΦV (Fr(Y )))⊗ idW ] ◦ [aFq(Fr(X)),V,Fr(Y ) ⊗ idW ]

◦ [(ΦV (Fr(X))⊗ idFr(Y ))⊗ idW ] ◦ a−1
V⊗Fr(X),Fr(Y ),W ◦ {a

−1
V,Fr(X),Fr(Y )⊗W

◦ [idV ⊗ (idFr(X) ⊗ ΦW (Y ))] ◦ aV,Fr(X),W⊗Y } ◦ aV⊗Fr(X),W,Y

◦ [a−1
V,Fr(X),W ⊗ idY ] ◦ [(idV ⊗ ΦW (X))⊗ idY ] ◦ [aV,W,X ⊗ idY ]

◦ a−1
V⊗W,X,Y

= [δqrX,Y ⊗ idV⊗W ] ◦ [((δFq,r)X ⊗ (δFq,r)Y )⊗ idV⊗W ] ◦ aFq(Fr(X))⊗Fq(Fr(Y )),V,W

◦ [a−1
Fq(Fr(X)),Fq(Fr(Y )),V ⊗ idW ] ◦ [(idFq(Fr(X)) ⊗ ΦV (Fr(Y )))⊗ idW ] ◦ {[aFq(Fr(X)),V,Fr(Y ) ⊗ idW ]

◦ [(ΦV (Fr(X))⊗ idFr(Y ))⊗ idW ] ◦ a−1
V⊗Fr(X),Fr(Y ),W ◦ [idV⊗Fr(X) ⊗ ΦW (Y )]

◦ aV⊗Fr(X),W,Y } ◦ [a−1
V,Fr(X),W ⊗ idY ] ◦ [(idV ⊗ ΦW (X))⊗ idY ]

◦ [aV,W,X ⊗ idY ] ◦ a−1
V⊗W,X,Y

= [δqrX,Y ⊗ idV⊗W ] ◦ [((δFq,r)X ⊗ (δFq,r)Y )⊗ idV⊗W ] ◦ {aFq(Fr(X))⊗Fq(Fr(Y )),V,W

◦ [a−1
Fq(Fr(X)),Fq(Fr(Y )),V ⊗ idW ] ◦ [(idFq(Fr(X)) ⊗ ΦV (Fr(Y )))⊗ idW ] ◦ a−1

Fq(Fr(X)),V⊗Fr(Y ),W

◦ [(δFq,r)
−1
X ⊗ id(V⊗Fr(Y ))⊗W ]} ◦ [idFqr(X) ⊗ a−1

V,Fr(Y ),W ] ◦ [idFqr(X) ⊗ (idV ⊗ ΦW (Y ))]

◦ [idFqr(X) ⊗ aV,W,Y ] ◦ aFqr(X),V⊗W,Y ◦ {[((δFq,r)X ⊗ idV⊗W )⊗ idY ]

◦ [aFq(Fr(X)),V,W ⊗ idY ] ◦ [(ΦV (Fr(X))⊗ idW )⊗ idY ] ◦ [a−1
V,Fr(X),W ⊗ idY ]

◦ [(idV ⊗ ΦW (X))⊗ idY ] ◦ [aV,W,X ⊗ idY ]} ◦ a−1
V⊗W,X,Y

= [δqrX,Y ⊗ idV⊗W ] ◦ {[((δFq,r)X ⊗ (δFq,r)Y )⊗ idV⊗W ] ◦ [((δFq,r)
−1
X ⊗ idFq(Fr(Y )))⊗ idV⊗W ]}

◦ {aFqr(X)⊗Fq(Fr(Y )),V,W ◦ [a−1
Fqr(X),Fq(Fr(Y )),V ⊗ idW ] ◦ [(idFqr(X) ⊗ ΦV (Fr(Y )))⊗ idW ]

◦ a−1
Fqr(X),V⊗Fr(Y ),W } ◦ [idFqr(X) ⊗ a−1

V,Fr(Y ),W ] ◦ [idFqr(X) ⊗ (idV ⊗ ΦW (Y ))]

◦ [idFqr(X) ⊗ aV,W,Y ] ◦ aFqr(X),V⊗W,Y ◦ [(ΦV ⊗ ΦW )(X)⊗ idY ]

◦ a−1
V⊗W,X,Y

= [δqrX,Y ⊗ idV⊗W ] ◦ {[(idFqr(X) ⊗ (δFq,r)Y )⊗ idV⊗W ] ◦ a−1
Fqr(X),Fq(Fr(Y )),V⊗W }

◦ [idFqr(X) ⊗ aFq(Fr(X)),V,W ] ◦ [idFqr(X) ⊗ (ΦV (Fr(Y ))⊗ idW )] ◦ [idFqr(X) ⊗ a−1
V,Fr(Y ),W ]

◦ [idFqr(X) ⊗ (idV ⊗ ΦW (Y ))] ◦ [idFqr(X) ⊗ aV,W,Y ] ◦ aFqr(X),V⊗W,Y

◦ [(ΦV ⊗ ΦW )(X)⊗ idY ] ◦ a−1
V⊗W,X,Y

= [δqrX,Y ⊗ idV⊗W ] ◦ a−1
Fqr(X),Fqr(Y ),V⊗W ◦ {[idFqr(X) ⊗ ((δFq,r)Y ⊗ idV⊗W )]

◦ [idFqr(X) ⊗ aFq(Fr(X)),V,W ] ◦ [idFqr(X) ⊗ (ΦV (Fr(Y ))⊗ idW )] ◦ [idFqr(X) ⊗ a−1
V,Fr(Y ),W ]

◦ [idFqr(X) ⊗ (idV ⊗ ΦW (Y ))] ◦ [idFqr(X) ⊗ aV,W,Y ]} ◦ aFqr(X),V⊗W,Y

◦ [(ΦV ⊗ ΦW )(X)⊗ idY ] ◦ a−1
V⊗W,X,Y

= [δqrX,Y ⊗ idV⊗W ] ◦ a−1
Fqr(X),Fqr(Y ),V⊗W ◦ [idFqr(X) ⊗ (ΦV ⊗ ΦW )(Y )]

◦ aFqr(X),V⊗W,Y ◦ [(ΦV ⊗ ΦW )(X)⊗ idY ] ◦ a−1
V⊗W,X,Y ,

showing that ΦV ⊗ ΦW is indeed a half qr-braiding for V ⊗W .
(2) Naturality of FrΦV is obvious. We also have

(FrΦV )(X ⊗ Y )
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= [αr,q,r−1(X ⊗ Y )⊗ idFr(V )] ◦ (δrFq(Fr−1 (X⊗Y )),V )−1 ◦ Fr(ΦV (Fr−1(X ⊗ Y )))

◦ δrV,Fr−1 (X⊗Y ) ◦ [idFr(V ) ⊗∆r(X ⊗ Y )−1]

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ {[(αr,q,r−1(X)⊗ αr,q,r−1(Y ))⊗ idFr(V )]}
◦ {[(δrFq(Fr−1 (X)),Fq(Fr−1 (Y )))

−1 ⊗ idFr(V )] ◦ [Fr(δ
q
Fr−1 (X),Fr−1 (Y ))

−1 ⊗ idFr(V )]

◦ [Fr(Fq(δ
r−1

X,Y ))−1 ⊗ idFr(V )] ◦ (δrFq(Fr−1 (X⊗Y )),V )−1 ◦ Fr(Fq(δr
−1

X,Y )⊗ idV )

◦ Fr(δqFr−1 (X),Fr−1 (Y ) ⊗ idV )} ◦ Fr(aFq(Fr−1 (X)),Fq(Fr−1 (Y )),V )−1

◦ Fr(idFq(Fr−1 (X)) ⊗ ΦV (Fr−1(Y ))) ◦ Fr(aFq(Fr−1 (X)),V,Fr−1 (Y )) ◦ Fr(ΦV (Fr−1(X))⊗ idFr−1 (Y ))

◦ Fr(aV,Fr−1 (X),Fr−1 (Y ))
−1 ◦ Fr(idV ⊗ (δr

−1

X,Y )−1) ◦ δrV,Fr−1 (X⊗Y )

◦ [idFr(V ) ⊗ Fr(δr
−1

X,Y )] ◦ [idFr(V ) ⊗ δrFr−1 (X),Fr−1 (Y )] ◦ {[idFr(V ) ⊗ (∆r(X)−1 ⊗∆r(Y )−1)]}

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ a−1
Frqr−1 (X),Frqr−1 (Y ),Fr(V ) ◦ {[αr,q,r−1(X)⊗ (αr,q,r−1(Y )⊗ idFr(V ))]}

◦ {aFr(Fq(Fr−1 (X))),Fr(Fq(Fr−1 (Y ))),Fr(V ) ◦ [(δrFq(Fr−1 (X)),Fq(Fr−1 (Y )))
−1 ⊗ idFr(V )]

◦ (δrFq(Fr−1 (X))⊗Fq(Fr−1 (Y )),V )−1 ◦ Fr(aFq(Fr−1 (X)),Fq(Fr−1 (Y )),V )−1}

◦ Fr(idFq(Fr−1 (X)) ⊗ ΦV (Fr−1(Y ))) ◦ Fr(aFq(Fr−1 (X)),V,Fr−1 (Y ))

◦ Fr(ΦV (Fr−1(X))⊗ idFr−1 (Y )) ◦ Fr(aV,Fr−1 (X),Fr−1 (Y ))
−1 ◦ {Fr(idV ⊗ (δr

−1

X,Y )−1)

◦ δrV,Fr−1 (X⊗Y ) ◦ [idFr(V ) ⊗ Fr(δr
−1

X,Y )]} ◦ [idFr(V ) ⊗ δrFr−1 (X),Fr−1 (Y )]

◦ aFr(V ),Fr(Fr−1 (X)),Fr(Fr−1 (Y )) ◦ {[(idFr(V ) ⊗∆r(X)−1)⊗∆r(Y )−1]} ◦ a−1
Fr(V ),X,Y

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ a−1
Frqr−1 (X),Frqr−1 (Y ),Fr(V ) ◦ [idFrqr−1 (X) ⊗ (αr,q,r−1(Y )⊗ idFr(V ))]

◦ {[αr,q,r−1(X)⊗ idFr(Fq(Fr−1 (Y )))⊗Fr(V )] ◦ [idFr(Fq(Fr−1 (X))) ⊗ (δrFq(Fr−1 (Y )),V )−1]}

◦ {(δrFq(Fr−1 (X)),Fq(Fr−1 (Y ))⊗V )−1 ◦ Fr(idFq(Fr−1 (X)) ⊗ ΦV (Fr−1(Y )))} ◦ Fr(aFq(Fr−1 (X)),V,Fr−1 (Y ))

◦ {Fr(ΦV (Fr−1(X))⊗ idFr−1 (Y ))} ◦ Fr(aV,Fr−1 (X),Fr−1 (Y ))
−1 ◦ δrV,Fr−1 (X)⊗Fr−1 (Y )

◦ [idFr(V ) ⊗ δrFr−1 (X),Fr−1 (Y )] ◦ {aFr(V ),Fr(Fr−1 (X)),Fr(Fr−1 (Y )) ◦ [idFr(V )⊗Fr(Fr−1 (X)) ⊗∆r(Y )−1]}

◦ [(idFr(V ) ⊗∆r(X)−1)⊗ idY ] ◦ a−1
Fr(V ),X,Y

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ a−1
Frqr−1 (X),Frqr−1 (Y ),Fr(V ) ◦ [idFrqr−1 (X) ⊗ (αr,q,r−1(Y )⊗ idFr(V ))]

◦ [idFrqr−1 (X) ⊗ (δrFq(Fr−1 (Y )),V )−1] ◦ {[αr,q,r−1(X)⊗ idFr(Fq(Fr−1 (Y ))⊗V )]

◦ [idFr(Fq(Fr−1 (X))) ⊗ Fr(ΦV (Fr−1(Y )))]} ◦ {(δrFq(Fr−1 (X)),V⊗Fr−1 (Y ))
−1 ◦ Fr(aFq(Fr−1 (X)),V,Fr−1 (Y ))

◦ δrFq(Fr−1 (X))⊗V,Fr−1 (Y )} ◦ [Fr(ΦV (Fr−1(X)))⊗ idFr(Fr−1 (Y ))] ◦ {(δrV⊗Fr−1 (X),Fr−1 (Y ))
−1

◦ Fr(aV,Fr−1 (X),Fr−1 (Y ))
−1 ◦ δrV,Fr−1 (X)⊗Fr−1 (Y ) ◦ [idFr(V ) ⊗ δrFr−1 (X),Fr−1 (Y )]}

◦ [idFr(V ) ⊗ (idFr(Fr−1 (X)) ⊗∆r(Y )−1)] ◦ aFr(V ),Fr(Fr−1 (X)),Y ◦ [(idFr(V ) ⊗∆r(X)−1)⊗ idY ]

◦ a−1
Fr(V ),X,Y

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ a−1
Frqr−1 (X),Frqr−1 (Y ),Fr(V ) ◦ [idFrqr−1 (X) ⊗ (αr,q,r−1(Y )⊗ idFr(V ))]

◦ [idFrqr−1 (X) ⊗ (δrFq(Fr−1 (Y )),V )−1] ◦ [idFrqr−1 (X) ⊗ Fr(ΦV (Fr−1(Y )))]

◦ {[αr,q,r−1(X)⊗ idFr(V⊗Fr−1 (Y ))] ◦ [idFr(Fq(Fr−1 (X))) ⊗ δrV,Fr−1 (Y )]}
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◦ aFr(Fq(Fr−1 (X))),Fr(V ),Fr(Fr−1 (Y )) ◦ [(δrFq(Fr−1 (X)),V )−1 ⊗ idFr(Fr−1 (Y ))]

◦ [Fr(ΦV (Fr−1(X)))⊗ idFr(Fr−1 (Y ))] ◦ {[δrV,Fr−1 (X) ⊗ idFr(Fr−1 (Y ))] ◦ a−1
Fr(V ),Fr(Fr−1 (X)),Fr(Fr−1 (Y ))

◦ [idFr(V ) ⊗ (idFr(Fr−1 (X)) ⊗∆r(Y )−1)] ◦ aFr(V ),Fr(Fr−1 (X)),Y } ◦ [(idFr(V ) ⊗∆r(X)−1)⊗ idY ]

◦ a−1
Fr(V ),X,Y

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ a−1
Frqr−1 (X),Frqr−1 (Y ),Fr(V ) ◦ [idFrqr−1 (X) ⊗ (αr,q,r−1(Y )⊗ idFr(V ))]

◦ [idFrqr−1 (X) ⊗ (δrFq(Fr−1 (Y )),V )−1] ◦ [idFrqr−1 (X) ⊗ Fr(ΦV (Fr−1(Y )))] ◦ [idFrqr−1 (X) ⊗ δrV,Fr−1 (Y )]

◦ {[αr,q,r−1(X)⊗ idFr(V )⊗Fr(Fr−1 (Y ))] ◦ aFr(Fq(Fr−1 (X))),Fr(V ),Fr(Fr−1 (Y ))

◦ [(δrFq(Fr−1 (X)),V )−1 ⊗ idFr(Fr−1 (Y ))] ◦ [Fr(ΦV (Fr−1(X)))⊗ idFr(Fr−1 (Y ))]

◦ [idFr(V⊗Fr−1 (X)) ⊗∆r(Y )−1]} ◦ [δrV,Fr(X) ⊗ idY ] ◦ [(idFr(V ) ⊗∆r(X)−1)⊗ idY ] ◦ a−1
Fr(V ),X,Y

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ a−1
Frqr−1 (X),Frqr−1 (Y ),Fr(V ) ◦ {[idFrqr−1 (X) ⊗ (αr,q,r−1(Y )⊗ idFr(V ))]

◦ [idFrqr−1 (X) ⊗ (δrFq(Fr−1 (Y )),V )−1] ◦ [idFrqr−1 (X) ⊗ Fr(ΦV (Fr−1(Y )))] ◦ [idFrqr−1 (X) ⊗ δrV,Fr−1 (Y )]

◦ [idFrqr−1 (X) ⊗ (idFr(V ) ⊗∆r(Y )−1)]} ◦ aFrqr−1 (X),Fr(V ),Y ◦ {[(αr,q,r−1(X)⊗ idFr(V ))⊗ idY ]

◦ [(δrFq(Fr−1 (X)),V )−1 ⊗ idY ] ◦ [Fr(ΦV (Fr−1(X)))⊗ idY ] ◦ [δrV,Fr(X) ⊗ idY ]

◦ [(idFr(V ) ⊗∆r(X)−1)⊗ idY ]} ◦ a−1
Fr(V ),X,Y

= [δrqr
−1

X,Y ⊗ idFr(V )] ◦ a−1
Frqr−1 (X),Frqr−1 (Y ),Fr(V ) ◦ [idFrqr−1 (X) ⊗FrΦV (Y )]

◦ aFrqr−1 (X),Fr(V ),Y ◦ [FrΦV (X)⊗ idV ] ◦ a−1
Fr(V ),X,Y ,

which shows that FrΦV satisfies the condition (A.1.1).
�

Remark A.1.7 The analogous statements for half braidings of the second kind are as follows. If ΨV is a
half q-braiding of the second kind for V and ΨW is a half r-braiding of the second kind for W , then

(ΨV ⊗ΨW )(X) : = [idV⊗W ⊗ (δFr−1,q−1)X ] ◦ a−1
V,W,Fr−1 (Fq−1 (X)) ◦ [idV ⊗ΨW (Fq−1(X))]

◦ aV,Fq−1 (X),W ◦ [ΨV (X)⊗ idW ] ◦ a−1
X,V,W

defines a half qr-braiding ΨV ⊗ΨW of the second kind for V ⊗W . If ΨV is a half q-braiding of the second
kind for V and if r ∈ G, then

(FrΨV )(X) : = [idFr(V ) ⊗ αr,q−1,r−1(X)] ◦ (δrV,Fq−1 (Fr−1 (X)))
−1 ◦ Fr(ΨV (Fr−1(X)))

◦ δrFr−1 (X),V ◦ [∆r(X)−1 ⊗ idFr(V )]

defines a half rqr−1-braiding FrΨV of the second kind for Fr(V ).

A.2 ZG(C) as a category

Lemma A.2.1 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). For each q ∈ G we define
a category ZG(C)q as follows. The class of objects is given by

Obj(ZG(C)q) := {(V,ΦV ) : V ∈ C and ΦV is a half q-braiding for V }
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and we define HomZG(C)q ((V,ΦV ), (W,ΦW )) to be

{f ∈ HomC(V,W ) : [idFq(X) ⊗ f ] ◦ ΦV (X) = ΦW (X) ◦ [f ⊗ idX ] ∀X ∈ C}.

This defines a category ZG(C)q, where the composition of morphisms is the same as in C and the identity
morphisms are given by id(V,ΦV ) = idV . We then define the category ZG(C) as the disjoint union

ZG(C) :=
⊔
q∈G

ZG(C)q.

Thus, an object in ZG(C) is a triple (V, q,ΦV ) with q ∈ G and (V,ΦV ) ∈ ZG(C)q.

Proof. In order to show that ZG(C) is a category, it is enough to prove that ZG(C)q is a category for each
q ∈ G. We thus fix q ∈ G. Let f ∈ HomZG(C)q ((U,ΦU ), (V,ΦV )) and g ∈ HomZG(C)q ((V,ΦV ), (W,ΦW )).
Then for all X ∈ C the morphism g ◦ f ∈ HomC(U,W ) satisfies

[idFq(X) ⊗ (g ◦ f)] ◦ ΦU (X)

= [idFq(X) ⊗ g] ◦ [idFq(X) ⊗ f ] ◦ ΦU (X) = [idFq(X) ⊗ g] ◦ ΦV (X) ◦ [f ⊗ idX ]

= ΦW (X) ◦ [g ⊗ idX ] ◦ [f ⊗ idX ] = ΦW (X) ◦ [(g ◦ f)⊗ idX ].

This shows that g ◦ f ∈ HomZG(C)q ((U,ΦU ), (W,ΦW )), so the composition map in ZG(C)q is well-defined. If
(V,ΦV ) ∈ ZG(C)q, then the morphism idV ∈ EndC(V ) satisfies [idFq(X)⊗idV ]◦ΦV (X) = ΦV (X)◦[idV ⊗idX ]
for all X ∈ C, so idV ∈ EndZG(C)q ((V,ΦV )). Because the composition in ZG(C)q is defined to be the same
as in C, it is clear that the composition in ZG(C)q is associative and that idV acts as an identity morphism
in ZG(C)q. This completes the proof that ZG(C)q is a category for each q ∈ G, and hence that ZG(C) is a
category.
�

The following simple lemma will turn out to be very useful.

Lemma A.2.2 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ), let q ∈ G, let (V,ΦV ), (W,ΦW ) ∈
ZG(C)q and let f ∈ HomC(V,W ) be an isomorphism with inverse f−1 ∈ HomC(W,V ). If f ∈ HomZG(C)q ((V,ΦV ), (W,ΦW )),
then f−1 ∈ HomZG(C)q ((W,ΦW ), (V,ΦV )).

Proof. For any X ∈ C we have

ΦV (X) ◦ [f−1 ⊗ idX ] = [idFq(X) ⊗ (f−1 ◦ f)] ◦ ΦV (X) ◦ [f−1 ⊗ idX ]

= [idFq(X) ⊗ f−1] ◦ ΦW (X) ◦ [(f ◦ f−1)⊗ idX ]

= [idFq(X) ⊗ f−1] ◦ ΦW (X),

so indeed f−1 ∈ HomZG(C)q ((W,ΦW ), (V,ΦV )).
�

As a consequence, any morphism in ZG(C) that was invertible in C is also invertible in ZG(C) because
the composition of morphisms in ZG(C) is the same as in C. In what follows, this fact will be used very
often.

A.3 The tensor structure on ZG(C)
Lemma A.3.1 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). The category ZG(C) can
be equipped with the structure of a tensor category by defining the tensor product on the objects by

(V, q,ΦV )⊗ (W, r,ΦW ) := (V ⊗W, qr,ΦV ⊗ ΦW ),
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where

(ΦV ⊗ ΦW )(X) = [(δFq,r)X ⊗ idV⊗W ] ◦ aFq(Fr(X)),V,W ◦ [ΦV (Fr(X))⊗ idW ]

◦ a−1
V,Fr(X),W ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X

and by letting the tensor product on the morphisms be the same as in C; the unit object is (I, e,Φ0
I), where

Φ0
I(X) = r−1

Fe(X) ◦ε
F
X ◦ lX for all X ∈ C and the associativity constraint and the unit constraints are the ones

of C.

Proof. We have already proved in part (1) of Lemma A.1.6 that if (V, q,ΦV ), (W, r,ΦV ) ∈ ZG(C), then
ΦV ⊗ΦW is a half qr-braiding for V ⊗W . So the tensor product of ZG(C) is well-defined on the objects. To
show that the tensor product on morphisms is also well-defined, let f ∈ HomZG(C)((V, q,ΦV ), (W, q,ΦW ))
and f ′ ∈ HomZG(C)((V

′, q′,ΦV ′), (W
′, q′,ΦW ′)). Then for each X ∈ C the morphism f ⊗ f ′ ∈ HomC(V ⊗

V ′,W ⊗W ′) satisfies

[idFqq′ (X) ⊗ (f ⊗ f ′)] ◦ [(ΦV ⊗ ΦV ′)(X)]

= [idFqq′ (X) ⊗ (idW ⊗ f ′)] ◦ [idFqq′ (X) ⊗ (f ⊗ idV ′)] ◦ [(δFq,q′)X ⊗ idV⊗V ′ ] ◦ aFq(Fq′ (X)),V,V ′

◦ [ΦV (Fq′(X))⊗ idV ′ ] ◦ a−1
V,Fq′ (X),V ′ ◦ [idV ⊗ ΦV ′(X)] ◦ aV,V ′,X

= [idFqq′ (X) ⊗ (idW ⊗ f ′)] ◦ [(δFq,q′)X ⊗ idW⊗V ′ ] ◦ aFq(Fq′ (X)),W,V ′ ◦ [(idFq(Fq′ (X)) ⊗ f)⊗ idV ′ ]

◦ [ΦV (Fq′(X))⊗ idV ′ ] ◦ a−1
V,Fq′ (X),V ′ ◦ [idV ⊗ ΦV ′(X)] ◦ aV,V ′,X

= [(δFq,q′)X ⊗ idW⊗W ′ ] ◦ aFq(Fq′ (X)),W,W ′ ◦ [idFq(Fq′ (X))⊗W ⊗ f ′] ◦ [ΦW (Fq′(X))⊗ idV ′ ]

◦ [(f ⊗ idFq′ (X))⊗ idV ′ ] ◦ a−1
V,Fq′ (X),V ′ ◦ [idV ⊗ ΦV ′(X)] ◦ aV,V ′,X

= [(δFq,q′)X ⊗ idW⊗W ′ ] ◦ aFq(Fq′ (X)),W,W ′ ◦ [ΦW (Fq′(X))⊗ idW ′ ] ◦ a−1
W,Fq′ (X),W ′

◦ [f ⊗ (idFq′ (X) ⊗ f)] ◦ [idV ⊗ ΦV ′(X)] ◦ aV,V ′,X
= [(δFq,q′)X ⊗ idW⊗W ′ ] ◦ aFq(Fq′ (X)),W,W ′ ◦ [ΦW (Fq′(X))⊗ idW ′ ] ◦ a−1

W,Fq′ (X),W ′

◦ [idW ⊗ ΦW ′(X)] ◦ aW,W ′,X ◦ [(f ⊗ f ′)⊗ idX ]

= [(ΦW ⊗ ΦW ′)(X)] ◦ [(f ⊗ f ′)⊗ idX ].

This shows that f ⊗ f ′ ∈ HomZG(C)((V ⊗ V ′, qq′,ΦV ⊗ΦV ′), (W ⊗W ′, qq′,ΦW ⊗ΦW ′)) and hence that the
tensor product on morphisms is indeed well-defined.

The interchange law in ZG(C) follows directly from the fact that both the composition and the tensor
product on morphisms in ZG(C) are defined to be the same as in C. The fact that the identity morphism
of an object (V, q,ΦV ) ∈ ZG(C) is given by the identity morphism idV in C immediately implies that
id(V,q,ΦV )⊗(W,r,ΦW ) = id(V,q,ΦV ) ⊗ id(W,r,ΦW ) for any (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C).

We now claim that if (U, q,ΦU ), (V, r,ΦV ), (W, s,ΦW ) ∈ ZG(C), then

a(U,q,ΦU ),(V,r,ΦV ),(W,s,ΦW ) := aU,V,W

defines an associativity constraint for the tensor product in ZG(C). We have

[ΦU ⊗ (ΦV ⊗ ΦW )](X) ◦ [aU,V,W ⊗ idX ]

= [(δFq,rs)X ⊗ idU⊗(V⊗W )] ◦ aFq(Frs(X)),U,V⊗W ◦ [ΦU (Frs(X))⊗ idV⊗W ] ◦ a−1
U,Frs(X),V⊗W

◦ [idU ⊗ (ΦV ⊗ ΦW )(X)] ◦ aU,V⊗W,X ◦ [aU,V,W ⊗ idX ]

= [(δFq,rs)X ⊗ idU⊗(V⊗W )] ◦ aFq(Frs(X)),U,V⊗W ◦ [ΦU (Frs(X))⊗ idV⊗W ] ◦ {a−1
U,Frs(X),V⊗W
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◦ [idU ⊗ ((δFr,s)X ⊗ idV⊗W )]} ◦ {[idU ⊗ aFr(Fs(X)),V,W ] ◦ [idU ⊗ (ΦV (Fs(X))⊗ idW )]

◦ [idU ⊗ a−1
V,Fs(X),W ] ◦ [idU ⊗ (idV ⊗ ΦW (X))] ◦ [idU ⊗ aV,W,X ] ◦ aU,V⊗W,X ◦ [aU,V,W ⊗ idX ]}

(∗)
= [(δFq,rs)X ⊗ idU⊗(V⊗W )] ◦ aFq(Frs(X)),U,V⊗W ◦ {[ΦU (Frs(X))⊗ idV⊗W ]

◦ [(idU ⊗ (δFr,s)X)⊗ idV⊗W ]} ◦ {a−1
U,Fr(Fs(X)),V⊗W ◦ aU,Fr(Fs(X)),V⊗W } ◦ aU⊗Fr(Fs(X)),V,W

◦ [a−1
U,Fr(Fs(X)),V ⊗ idW ] ◦ [(idU ⊗ ΦV (Fs(X)))⊗ idW ] ◦ [aU,V,Fs(X) ⊗ idW ] ◦ a−1

U⊗V,Fs(X),W

◦ [idU⊗V ⊗ ΦW (X)] ◦ aU⊗V,W,X
= [(δFq,rs)X ⊗ idU⊗(V⊗W )] ◦ {aFq(Frs(X)),U,V⊗W ◦ [(Fq((δ

F
r,s)X)⊗ idU )⊗ idV⊗W ]}

◦ {[ΦU (Fr(Fs(X)))⊗ idV⊗W ] ◦ aU⊗Fr(Fs(X)),V,W } ◦ [a−1
U,Fr(Fs(X)),V ⊗ idW ]

◦ [(idU ⊗ ΦV (Fs(X)))⊗ idW ] ◦ [aU,V,Fs(X) ⊗ idW ] ◦ a−1
U⊗V,Fs(X),W

◦ [idU⊗V ⊗ ΦW (X)] ◦ aU⊗V,W,X
= {[(δFq,rs)X ⊗ idU⊗(V⊗W )] ◦ [Fq((δ

F
r,s)X)⊗ idU⊗(V⊗W )]} ◦ {aFq(Fr(Fs(X))),U,V⊗W

◦ aFq(Fr(Fs(X)))⊗U,V,W } ◦ [(ΦU (Fr(Fs(X)))⊗ idV )⊗ idW ] ◦ [a−1
U,Fr(Fs(X)),V ⊗ idW ]

◦ [(idU ⊗ ΦV (Fs(X)))⊗ idW ] ◦ [aU,V,Fs(X) ⊗ idW ] ◦ a−1
U⊗V,Fs(X),W

◦ [idU⊗V ⊗ ΦW (X)] ◦ aU⊗V,W,X
= {[(δFqr,s)X ⊗ idU⊗(V⊗W )] ◦ [(δFq,r)Fs(X) ⊗ idU⊗(V⊗W )] ◦ [idFq(Fr(Fs(X))) ⊗ aU,V,W ]

◦ aFq(Fr(Fs(X))),U⊗V,W } ◦ [aFq(Fr(Fs(X))),U,V ⊗ idW ] ◦ [(ΦU (Fr(Fs(X)))⊗ idV )⊗ idW ]

◦ [a−1
U,Fr(Fs(X)),V ⊗ idW ] ◦ [(idU ⊗ ΦV (Fs(X)))⊗ idW ] ◦ [aU,V,Fs(X) ⊗ idW ]

◦ a−1
U⊗V,Fs(X),W ◦ [idU⊗V ⊗ ΦW (X)] ◦ aU⊗V,W,X

= [idFqrs(X) ⊗ aU,V,W ] ◦ [(δFqr,s)X ⊗ id(U⊗V )⊗W ] ◦ aFqr(Fs(X)),U⊗V,W

◦ {[((δFq,r)Fs(X) ⊗ idU⊗V )⊗ idW ] ◦ [aFq(Fr(Fs(X))),U,V ⊗ idW ] ◦ [(ΦU (Fr(Fs(X)))⊗ idV )⊗ idW ]

◦ [a−1
U,Fr(Fs(X)),V ⊗ idW ] ◦ [(idU ⊗ ΦV (Fs(X)))⊗ idW ] ◦ [aU,V,Fs(X) ⊗ idW ]}

◦ a−1
U⊗V,Fs(X),W ◦ [idU⊗V ⊗ ΦW (X)] ◦ aU⊗V,W,X

= [idFqrs(X) ⊗ aU,V,W ] ◦ [(δFqr,s)X ⊗ id(U⊗V )⊗W ] ◦ aFqr(Fs(X)),U⊗V,W

◦ [(ΦU ⊗ ΦV )(Fs(X))⊗ idW ] ◦ a−1
U⊗V,Fs(X),W ◦ [idU⊗V ⊗ ΦW (X)] ◦ aU⊗V,W,X

= [idFqrs(X) ⊗ aU,V,W ] ◦ [(ΦU ⊗ ΦV )⊗ ΦW ](X),

where the equality
(∗)
= follows from the commutativity of the diagram
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(U ⊗ (V ⊗W ))⊗X

U ⊗ ((V ⊗W )⊗X) ((U ⊗ V )⊗W )⊗X

U ⊗ (V ⊗ (W ⊗X)) (U ⊗ V )⊗ (W ⊗X)

U ⊗ (V ⊗ (Fs(X)⊗W )) (U ⊗ V )⊗ (Fs(X)⊗W )

((U ⊗ V )⊗ Fs(X))⊗W

U ⊗ ((V ⊗ Fs(X))⊗W ) (U ⊗ (V ⊗ Fs(X)))⊗W

U ⊗ ((Fr(Fs(X))⊗ V )⊗W ) (U ⊗ (Fr(Fs(X))⊗ V ))⊗W

U ⊗ (Fr(Fs(X))⊗ (V ⊗W )) ((U ⊗ Fr(Fs(X)))⊗ V )⊗W

(U ⊗ Fr(Fs(X)))⊗ (V ⊗W ).

aU,V⊗W,X

idU⊗aV,W,X aU⊗V,W,X

aU,V,W⊗idX

idU⊗(idV ⊗ΦW (X))

aU,V,W⊗X

idU⊗V ⊗ΦW (X)

idU⊗a−1
V,Fs(X),W

aU,V,Fs(X)⊗W

a−1
U⊗V,Fs(X),W

aU,V,Fs(X)⊗idW

idU⊗(ΦV (Fs(X))⊗idW )

aU,V⊗Fs(X),W

(idU⊗ΦV (Fs(X)))⊗idW

idU⊗aFr(Fs(X)),V,W

aU,Fr(Fs(X))⊗V,W

a−1
U,Fr(Fs(X)),V

⊗idW

aU⊗Fr(Fs(X)),V,WaU,Fr(Fs(X)),V⊗W

We thus conclude that indeed a(U,q,ΦU ),(V,r,ΦV ),(W,s,ΦW ) is an isomorphism in ZG(C) from [(U, q,ΦU ) ⊗
(V, r,ΦV )]⊗ (W, s,ΦW ) to (U, q,ΦU )⊗ [(V, r,ΦV )⊗ (W, s,ΦW )]. Naturality of the associativity constraint in
ZG(C) and the pentagon axiom for the associativity constraint in ZG(C) both follow from the corresponding
properties in C, since both the composition and tensor product of morphisms in ZG(C) is the same as in C.

We now claim that (I, e,Φ0
I) ∈ ZG(C) acts as a unit object in ZG(C) with the left and right unit

constraint in ZG(C) given by l(V,q,ΦV ) := lV and r(V,q,ΦV ) := rV for all (V, q,ΦV ) ∈ ZG(C), respectively. Let
(V, q,ΦV ) ∈ ZG(C). We will first show that l(V,q,ΦV ) and r(V,q,ΦV ) are morphisms in ZG(C). Because for
each X ∈ C we have

(Φ0
I ⊗ ΦV )(X) = [(δFe,q)X ⊗ idI⊗V ] ◦ aFe(Fq(X)),I,V ◦ [Φ0

I(Fq(X))⊗ idV ]

◦ a−1
I,Fq(X),V ◦ [idI ⊗ ΦV (X)] ◦ aI,V,X

= [(δFe,q)X ⊗ idI⊗V ] ◦ aFe(Fq(X)),I,V ◦ [r−1
Fe(Fq(X)) ⊗ idV ] ◦ [εFFq(X) ⊗ idV ]

◦ [lFq(X) ⊗ idV ] ◦ a−1
I,Fq(X),V ◦ [idI ⊗ ΦV (X)] ◦ aI,V,X ,

we find that

[idFq(X) ⊗ lV ] ◦ [(Φ0
I ⊗ ΦV )(X)]

= [idFq(X) ⊗ lV ] ◦ [(δFe,q)X ⊗ idI⊗V ] ◦ aFe(Fq(X)),I,V ◦ [r−1
Fe(Fq(X)) ⊗ idV ] ◦ [εFFq(X) ⊗ idV ]

◦ [lFq(X) ⊗ idV ] ◦ a−1
I,Fq(X),V ◦ [idI ⊗ ΦV (X)] ◦ aI,V,X

= [(δFe,q)X ⊗ idV ] ◦ [idFe(Fq(X)) ⊗ lV ] ◦ aFe(Fq(X)),I,V ◦ [r−1
Fe(Fq(X)) ⊗ idV ]︸ ︷︷ ︸

=idFe(Fq(X))⊗V

◦[εFFq(X) ⊗ idV ]
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◦ [lFq(X) ⊗ idV ] ◦ a−1
I,Fq(X),V ◦ [idI ⊗ ΦV (X)] ◦ aI,V,X

= [((δFe,q)X ◦ εFFq(X))⊗ idV ]︸ ︷︷ ︸
=idFq(X)⊗V

◦ [lFq(X) ⊗ idV ] ◦ a−1
I,Fq(X),V︸ ︷︷ ︸

=lFq(X)⊗V

◦[idI ⊗ ΦV (X)] ◦ aI,V,X

= lFq(X)⊗V ◦ [idI ⊗ ΦV (X)] ◦ aI,V,X = ΦV (X) ◦ lV⊗X ◦ aI,V,X
= ΦV (X) ◦ [lV ⊗ idX ]

for all X ∈ C. This shows that lV ∈ HomZG(C)((I, e,Φ
0
I)⊗ (V, q,ΦV ), (V, q,ΦV )). Similarly, because for each

X ∈ C we have

(ΦV ⊗ Φ0
I)(X) = [(δFq,e)X ⊗ idV⊗I ] ◦ aFq(Fe(X)),V,I ◦ [ΦV (Fe(X))⊗ idI ]

◦ a−1
V,Fe(X),I ◦ [idV ⊗ Φ0

I(X)] ◦ aV,I,X
= [(δFq,e)X ⊗ idV⊗I ] ◦ aFq(Fe(X)),V,I ◦ [ΦV (Fe(X))⊗ idI ]

◦ a−1
V,Fe(X),I ◦ [idV ⊗ r−1

Fe(X)] ◦ [idV ⊗ εFX ] ◦ [idV ⊗ lX ] ◦ aV,I,X

we find that

[idFq(X) ⊗ rV ] ◦ [(ΦV ⊗ Φ0
I)(X)]

= [idFq(X) ⊗ rV ] ◦ [(δFq,e)X ⊗ idV⊗I ] ◦ aFq(Fe(X)),V,I ◦ [ΦV (Fe(X))⊗ idI ]

◦ a−1
V,Fe(X),I ◦ [idV ⊗ r−1

Fe(X)] ◦ [idV ⊗ εFX ] ◦ [idV ⊗ lX ] ◦ aV,I,X
= [(δFq,e)X ⊗ idV ] ◦ [idFq(Fe(X)) ⊗ rV ] ◦ aFq(Fe(X)),V,I︸ ︷︷ ︸

=rFq(Fe(X))⊗V

◦[ΦV (Fe(X))⊗ idI ]

◦ a−1
V,Fe(X),I ◦ [idV ⊗ r−1

Fe(X)] ◦ [idV ⊗ εFX ] ◦ [idV ⊗ lX ] ◦ aV,I,X
= [(δFq,e)X ⊗ idV ] ◦ rFq(Fe(X))⊗V ◦ [ΦV (Fe(X))⊗ idI ]

◦ a−1
V,Fe(X),I ◦ [idV ⊗ r−1

Fe(X)] ◦ [idV ⊗ εFX ] ◦ [idV ⊗ lX ] ◦ aV,I,X
= [(δFq,e)X ⊗ idV ] ◦ ΦV (Fe(X)) ◦ rV⊗Fe(X) ◦ a−1

V,Fe(X),I︸ ︷︷ ︸
=idV ⊗rFe(X)

◦ [idV ⊗ r−1
Fe(X)] ◦ [idV ⊗ εFX ] ◦ [idV ⊗ lX ] ◦ aV,I,X

= [(δFq,e)X ⊗ idV ] ◦ ΦV (Fe(X)) ◦ [idV ⊗ εFX ] ◦ [idV ⊗ lX ] ◦ aV,I,X︸ ︷︷ ︸
=rV ⊗idX

= [(δFq,e)X ⊗ idV ] ◦ [Fq(ε
F
X)⊗ idV ]︸ ︷︷ ︸

=idFq(X)⊗V

◦ΦV (X) ◦ [rV ⊗ idX ]

= ΦV (X) ◦ [rV ⊗ idX ]

for all X ∈ C. This shows that rV ∈ HomZG(C)((V, q,ΦV ) ⊗ (I, e,Φ0
I), (V, q,ΦV )). Naturality of l and r in

ZG(C) and the triangle axiom in ZG(C) follow from the corresponding properties in C, since the composition
and tensor product of morphisms in ZG(C) is the same as in C. We thus conclude that ZG(C) is a tensor
category.
�
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A.4 The G-grading and G-action

Lemma A.4.1 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). Then ZG(C) becomes a
G-graded tensor category if we define

∂[(V, q,ΦV )] = q.

We can define an action (F , e, δ) of the group G on the objects of ZG(C) by

Fq[(V, r,ΦV )] = (Fq(V ), qrq−1,FqΦV ),

where

(FrΦV )(X) = [αr,q,r−1(X)⊗ idFr(V )] ◦ (δrFq(Fr−1 (X)),V )−1 ◦ Fr(ΦV (Fr−1(X)))

◦ δrV,Fr−1 (X) ◦ [idFr(V ) ⊗∆r(X)−1]

= [(δFrq,r−1)X ⊗ idFr(V )] ◦ [(δFr,q)Fr−1 (X) ⊗ idFr(V )] ◦ (δrFq(Fr−1 (X)),V )−1

◦ Fr(ΦV (Fr−1(X))) ◦ δrV,Fr−1 (X) ◦ [idFr(V ) ⊗ (δFr,r−1)−1
X ] ◦ [idFr(V ) ⊗ εFX ]

and on the morphisms we define Fq(f) := Fq(f); the ε and δ are the same as for the G-action on C. This
gives ZG(C) the structure of a G-crossed category.

Proof. Let (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C). The map ∂ has the property that

∂[(V, q,ΦV )⊗ (W, r,ΦW )] = ∂[(V ⊗W, qr,ΦV ⊗ ΦW )] = qr = ∂[(V, q,ΦV )]∂[(W, r,ΦW )].

It is also clear that if (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C) are isomorphic, then q = r, i.e. ∂[(V, q,ΦV )] =
∂[(W, r,ΦW )]. Hence it follows that ZG(C) is a G-graded tensor category.

We will now show that Fq is a functor ZG(C)→ ZG(C) for each q ∈ G. If f ∈ HomZG(C)((V, r,ΦV ), (W, r,ΦW )),
then Fq(f) = Fq(f) ∈ HomC(Fq(V ), Fq(W )) because Fq is a functor from C to C, and for all X ∈ C we have

[idFqrq−1 (X) ⊗Fq(f)] ◦ [FqΦV (X)]

= {[idFqrq−1 (X) ⊗ Fq(f)] ◦ [αq,r,q−1(X)⊗ idFq(V )]} ◦ (δqFr(Fq−1 (X)),V )−1

◦ Fq(ΦV (Fq−1(X))) ◦ δqV,Fq−1 (X) ◦ [idFq(V ) ⊗∆q(X)−1]

= [αq,r,q−1(X)⊗ idFq(W )] ◦ {[idFq(Fr(Fq−1 (X)))︸ ︷︷ ︸
=Fq(idFr(F

q−1 (X)))

⊗Fq(f)] ◦ (δqFr(Fq−1 (X)),V )−1}

◦ Fq(ΦV (Fq−1(X))) ◦ δqV,Fq−1 (X) ◦ [idFq(V ) ⊗∆q(X)−1]

= [αq,r,q−1(X)⊗ idFq(W )] ◦ (δqFr(Fq−1 (X)),W )−1 ◦ {Fq(idFr(Fq−1 (X)) ⊗ f)

◦ Fq(ΦV (Fq−1(X)))} ◦ δqV,Fq−1 (X) ◦ [idFq(V ) ⊗∆q(X)−1]

= [αq,r,q−1(X)⊗ idFq(W )] ◦ (δqFr(Fq−1 (X)),W )−1 ◦ Fq(ΦW (Fq−1(X)))

◦ {Fq(f ⊗ idFq−1 (X)) ◦ δqV,Fq−1 (X)} ◦ [idFq(V ) ⊗∆q(X)−1]

= [αq,r,q−1(X)⊗ idFq(W )] ◦ (δqFr(Fq−1 (X)),W )−1 ◦ Fq(ΦW (Fq−1(X)))

◦ δqW,Fq−1 (X) ◦ {[Fq(f)⊗ Fq(idFq−1 (X))︸ ︷︷ ︸
=idFq(F

q−1 (X))

] ◦ [idFq(V ) ⊗∆q(X)−1]}

= [αq,r,q−1(X)⊗ idFq(W )] ◦ (δqFr(Fq−1 (X)),W )−1 ◦ Fq(ΦW (Fq−1(X)))
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◦ δqW,Fq−1 (X) ◦ [idFq(W ) ⊗∆q(X)−1] ◦ [Fq(f)⊗ idX ]

= [FqΦW (X)] ◦ [Fq(f)⊗ idX ].

This shows that Fq(f) ∈ HomZG(C)(Fq[(V, r,ΦV )],Fq[(W, r,ΦW )]). If f and g are composable morphisms
in ZG(C), then Fq(g ◦ f) = Fq(g ◦ f) = Fq(g) ◦ Fq(f) = Fq(g) ◦ Fq(f). Also, if (V, q,ΦV ) ∈ ZG(C), then
Fq(id(V,r,ΦV )) = Fq(idV ) = idFq(V ) = id(Fq(V ),qrq−1,FqΦV ) = idFq [(V,r,ΦV )]. Thus Fq is indeed a functor.

The next thing we will prove is that (Fq, εFq , δFq ) is a tensor functor for each q ∈ G, where εFq = εq

and δ
Fq
(V,r,ΦV ),(W,s,ΦW ) = δqV,W . If (V, r,ΦV ), (W, s,ΦW ) ∈ ZG(C) and X ∈ C, then

[idFqrsq−1 (X) ⊗ (δqV,W )−1] ◦ [Fq(ΦV ⊗ ΦW )(X)] ◦ [δqV,W ⊗ idX ]

= [idFqrsq−1 (X) ⊗ (δqV,W )−1] ◦ [αq,rs,q−1(X)⊗ idFq(V⊗W )] ◦ (δqFrs(Fq−1 (X)),V⊗W )−1

◦ Fq((ΦV ⊗ ΦW )(Fq−1(X))) ◦ δqV⊗W,Fq−1 (X) ◦ [idFq(V⊗W ) ⊗∆q(X)−1] ◦ [δqV,W ⊗ idX ]

= {[idFqrsq−1 (X) ⊗ (δqV,W )−1] ◦ [αq,rs,q−1(X)⊗ idFq(V⊗W )]} ◦ {(δqFrs(Fq−1 (X)),V⊗W )−1

◦ Fq((δFr,s)Fq−1 (X) ⊗ idV⊗W )} ◦ Fq(aFr(Fs(Fq−1 (X))),V,W ) ◦ Fq(ΦV (Fs(Fq−1(X)))⊗ idW )

◦ Fq(aV,Fs(Fq−1 (X)),W )−1 ◦ Fq(idV ⊗ ΦW (Fq−1(X))) ◦ Fq(aV,W,Fq−1 (X))

◦ δqV⊗W,Fq−1 (X) ◦ {[idFq(V⊗W ) ⊗∆q(X)−1] ◦ [δqV,W ⊗ idX ]}

= [αq,rs,q−1(X)⊗ idFq(V )⊗Fq(W )] ◦ {[idFq(Frs(Fq−1 (X))) ⊗ (δqV,W )−1]

◦ [Fq((δ
F
r,s)Fq−1 (X))⊗ idFq(V⊗W )]} ◦ (δqFr(Fs(Fq−1 (X))),V⊗W )−1 ◦ Fq(aFr(Fs(Fq−1 (X))),V,W )

◦ Fq(ΦV (Fs(Fq−1(X)))⊗ idW ) ◦ Fq(aV,Fs(Fq−1 (X)),W )−1 ◦ Fq(idV ⊗ ΦW (Fq−1(X)))

◦ {Fq(aV,W,Fq−1 (X)) ◦ δqV⊗W,Fq−1 (X) ◦ [δqV,W ⊗ idFq(Fq−1 (X))]} ◦ [idFq(V )⊗Fq(W ) ⊗∆q(X)−1]

= [αq,rs,q−1(X)⊗ idFq(V )⊗Fq(W )] ◦ [Fq((δ
F
r,s)Fq−1 (X))⊗ idFq(V )⊗Fq(W )]

◦ {[idFq(Fr(Fs(Fq−1 (X)))) ⊗ (δqV,W )−1] ◦ (δqFr(Fs(Fq−1 (X))),V⊗W )−1 ◦ Fq(aFr(Fs(Fq−1 (X))),V,W )}

◦ Fq(ΦV (Fs(Fq−1(X)))⊗ idW ) ◦ Fq(aV,Fs(Fq−1 (X)),W )−1 ◦ {Fq(idV ⊗ ΦW (Fq−1(X)))

◦ δqV,W⊗Fq−1 (X)} ◦ [idFq(V ) ⊗ δqW,Fq−1 (X)] ◦ {aFq(V ),Fq(W ),Fq(Fq−1 (X))

◦ [idFq(V )⊗Fq(W ) ⊗∆q(X)−1]}
= [αq,rs,q−1(X)⊗ idFq(V )⊗Fq(W )] ◦ [Fq((δ

F
r,s)Fq−1 (X))⊗ idFq(V )⊗Fq(W )]

◦ aFq(Fr(Fs(Fq−1 (X)))),Fq(V ),Fq(W ) ◦ [(δqFr(Fs(Fq−1 (X))),V )−1 ⊗ idFq(W )]

◦ {(δqFr(Fs(Fq−1 (X)))⊗V,W )−1 ◦ Fq(ΦV (Fs(Fq−1(X)))⊗ idW )}

◦ Fq(aV,Fs(Fq−1 (X)),W )−1 ◦ δqV,Fs(Fq−1 (X))⊗W ◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))]

◦ [idFq(V ) ⊗ δqW,Fq−1 (X)] ◦ [idFq(V ) ⊗ (idFq(W ) ⊗∆q(X)−1)] ◦ aFq(V ),Fq(W ),X

= [αq,rs,q−1(X)⊗ idFq(V )⊗Fq(W )] ◦ [Fq((δ
F
r,s)Fq−1 (X))⊗ idFq(V )⊗Fq(W )]

◦ aFq(Fr(Fs(Fq−1 (X)))),Fq(V ),Fq(W ) ◦ [(δqFr(Fs(Fq−1 (X))),V )−1 ⊗ idFq(W )]

◦ [Fq(ΦV (Fs(Fq−1(X))))⊗ idFq(W )] ◦ {(δqV⊗Fs(Fq−1 (X)),W )−1 ◦ Fq(aV,Fs(Fq−1 (X)),W )−1

◦ δqV,Fs(Fq−1 (X))⊗W } ◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))] ◦ [idFq(V ) ⊗ δqW,Fq−1 (X)]

◦ [idFq(V ) ⊗ (idFq(W ) ⊗∆q(X)−1)] ◦ aFq(V ),Fq(W ),X
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= [αq,rs,q−1(X)⊗ idFq(V )⊗Fq(W )] ◦ [Fq((δ
F
r,s)Fq−1 (X))⊗ idFq(V )⊗Fq(W )]

◦ aFq(Fr(Fs(Fq−1 (X)))),Fq(V ),Fq(W ) ◦ [(δqFr(Fs(Fq−1 (X))),V )−1 ⊗ idFq(W )]

◦ [Fq(ΦV (Fs(Fq−1(X))))⊗ idFq(W )] ◦ {[δqV,Fs(Fq−1 (X)) ⊗ idFq(W )]}

◦ a−1
Fq(V ),Fq(Fs(Fq−1 (X))),Fq(W ) ◦ [idFq(V ) ⊗ (δqFs(Fq−1 (X)),W )−1] ◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))]

◦ [idFq(V ) ⊗ δqW,Fq−1 (X)] ◦ [idFq(V ) ⊗ (idFq(W ) ⊗∆q(X)−1)] ◦ aFq(V ),Fq(W ),X

= [αq,rs,q−1(X)⊗ idFq(V )⊗Fq(W )] ◦ [Fq((δ
F
r,s)Fq−1 (X))⊗ idFq(V )⊗Fq(W )]

◦ {aFq(Fr(Fs(Fq−1 (X)))),Fq(V ),Fq(W ) ◦ [(δqFr(Fs(Fq−1 (X))),V )−1 ⊗ idFq(W )]

◦ [Fq(ΦV (Fs(Fq−1(X))))⊗ idFq(W )] ◦ [Fq(idV ⊗ ((δFs,q−1)−1
X ◦ (δFq−1,qsq−1)X))⊗ idFq(W )]}

◦ [δqV,Fq−1 (Fqsq−1 (X)) ⊗ idFq(W )] ◦ [(idFq(V ) ⊗∆q(Fqsq−1(X))−1)⊗ idFq(W )]

◦ [(idFq(V ) ⊗ αq,s,q−1(X))⊗ idFq(W )] ◦ a−1
Fq(V ),Fq(Fs(Fq−1 (X))),Fq(W )

◦ [idFq(V ) ⊗ (δqFs(Fq−1 (X)),W )−1] ◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))]

◦ [idFq(V ) ⊗ δqW,Fq−1 (X)] ◦ [idFq(V ) ⊗ (idFq(W ) ⊗∆q(X)−1)] ◦ aFq(V ),Fq(W ),X

= {[αq,rs,q−1(X)⊗ idFq(V )⊗Fq(W )] ◦ [Fq((δ
F
r,s)Fq−1 (X))⊗ idFq(V )⊗Fq(W )]

◦ [Fq(Fr((δ
F
s,q−1)−1

X ◦ (δFq−1,qsq−1)X))⊗ idFq(V )⊗Fq(W )]} ◦ aFq(Fr(Fq−1 (Fqsq−1 (X)))),Fq(V ),Fq(W )

◦ [(δqFr(Fq−1 (Fqsq−1 (X))),V )−1 ⊗ idFq(W )] ◦ [Fq(ΦV (Fq−1(Fqsq−1(X))))⊗ idFq(W )]

◦ [δqV,Fq−1 (Fqsq−1 (X)) ⊗ idFq(W )] ◦ [(idFq(V ) ⊗∆q(Fqsq−1(X))−1)⊗ idFq(W )]

◦ [(idFq(V ) ⊗ αq,s,q−1(X))⊗ idFq(W )] ◦ a−1
Fq(V ),Fq(Fs(Fq−1 (X))),Fq(W )

◦ [idFq(V ) ⊗ (δqFs(Fq−1 (X)),W )−1] ◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))]

◦ [idFq(V ) ⊗ δqW,Fq−1 (X)] ◦ [idFq(V ) ⊗ (idFq(W ) ⊗∆q(X)−1)] ◦ aFq(V ),Fq(W ),X

= [(δFqrq−1,qsq−1)X ⊗ idFq(V )⊗Fq(W )] ◦ {[αq,r,q−1(Fqsq−1(X))⊗ idFq(V )⊗Fq(W )]

◦ aFq(Fr(Fq−1 (Fqsq−1 (X)))),Fq(V ),Fq(W )} ◦ [(δqFr(Fq−1 (Fqsq−1 (X))),V )−1 ⊗ idFq(W )]

◦ [Fq(ΦV (Fq−1(Fqsq−1(X))))⊗ idFq(W )] ◦ [δqV,Fq−1 (Fqsq−1 (X)) ⊗ idFq(W )]

◦ [(idFq(V ) ⊗∆q(Fqsq−1(X))−1)⊗ idFq(W )] ◦ {[(idFq(V ) ⊗ αq,s,q−1(X))⊗ idFq(W )]

◦ a−1
Fq(V ),Fq(Fs(Fq−1 (X))),Fq(W )} ◦ [idFq(V ) ⊗ (δqFs(Fq−1 (X)),W )−1] ◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))]

◦ [idFq(V ) ⊗ δqW,Fq−1 (X)] ◦ [idFq(V ) ⊗ (idFq(W ) ⊗∆q(X)−1)] ◦ aFq(V ),Fq(W ),X

= [(δFqrq−1,qsq−1)X ⊗ idFq(V )⊗Fq(W )] ◦ aFqrq−1 (Fqsq−1 (X)),Fq(V ),Fq(W )

◦ {[(αq,r,q−1(Fqsq−1(X))⊗ idFq(V ))⊗ idFq(W )] ◦ [(δqFr(Fq−1 (Fqsq−1 (X))),V )−1 ⊗ idFq(W )]

◦ [Fq(ΦV (Fq−1(Fqsq−1(X))))⊗ idFq(W )] ◦ [δqV,Fq−1 (Fqsq−1 (X)) ⊗ idFq(W )]

◦ [(idFq(V ) ⊗∆q(Fqsq−1(X))−1)⊗ idFq(W )]} ◦ a−1
Fq(V ),Fqsq−1 (X),Fq(W )

◦ {[idFq(V ) ⊗ (αq,s,q−1(X)⊗ idFq(W ))] ◦ [idFq(V ) ⊗ (δqFs(Fq−1 (X)),W )−1]

◦ [idFq(V ) ⊗ Fq(ΦW (Fq−1(X)))] ◦ [idFq(V ) ⊗ δqW,Fq−1 (X)]

◦ [idFq(V ) ⊗ (idFq(W ) ⊗∆q(X)−1)]} ◦ aFq(V ),Fq(W ),X
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= [(δFqrq−1,qsq−1)X ⊗ idFq(V )⊗Fq(W )] ◦ aFqrq−1 (Fqsq−1 (X)),Fq(V ),Fq(W )

◦ [FqΦV (Fqsq−1(X))⊗ idFq(W )] ◦ a−1
Fq(V ),Fqsq−1 (X),Fq(W )

◦ [idFq(V ) ⊗FqΦW (X)] ◦ aFq(V ),Fq(W ),X

= (FqΦV ⊗FqΦW )(X),

which can be rewritten as

[Fq(ΦV ⊗ ΦW )(X)] ◦ [δqV,W ⊗ idX ] = [idFqrsq−1 (X) ⊗ (δqV,W )] ◦ (FqΦV ⊗FqΦW )(X),

which proves that δqV,W ∈ HomZG(C)(Fq[(V, r,ΦV )]⊗ Fq[(W, s,ΦW )],Fq[(V ⊗W, qr,ΦV ⊗ ΦW )]). Also, for
each X ∈ C we have

[(FqΦ0
I)(X)] ◦ [εq ⊗ idX ]

= [αq,e,q−1(X)⊗ idFq(I)] ◦ {(δ
q
Fe(Fq−1 (X)),I)

−1 ◦ Fq(rFe(Fq−1 (X)))
−1} ◦ Fq(εFFq−1 (X))

◦ Fq(lFq−1 (X)) ◦ δqI,Fq−1 (X) ◦ {[idFq(I) ⊗∆q(X)−1] ◦ [εq ⊗ idX ]}

= {[αq,e,q−1(X)⊗ idFq(I)] ◦ [idFq(Fe(Fq−1 (X))) ⊗ εq]} ◦ r−1
Fq(Fe(Fq−1 (X))) ◦ Fq(ε

F
Fq−1 (X))

◦ {Fq(lFq−1 (X)) ◦ δqI,Fq−1 (X) ◦ [εq ⊗ idFq(Fq−1 (X))]} ◦ [idI ⊗∆q(X)−1]

= [idFe(X) ⊗ εq] ◦ {[αq,e,q−1(X)⊗ idI ] ◦ r−1
Fq(Fe(Fq−1 (X)))}

◦ Fq(εFFq−1 (X)) ◦ {lFq(Fq−1 (X)) ◦ [idI ⊗∆q(X)−1]}

= [idFe(X) ⊗ εq] ◦ r−1
Fe(X) ◦ {αq,e,q−1(X) ◦ Fq(εFFq−1 (X))︸ ︷︷ ︸

=(δFq,e)
−1
F
q−1 (X)

◦∆q(X)−1} ◦ lX

= [idFe(X) ⊗ εq] ◦ r−1
Fe(X) ◦ (δFqe,q−1)X ◦ (δFq,e)Fq−1 (X) ◦ (δFq,e)

−1
Fq−1 (X) ◦ (δFq,q−1)−1

X ◦ ε
F
X ◦ lX

= [idFe(X) ⊗ εq] ◦ r−1
Fe(X) ◦ ε

F
X ◦ lX = [idFe(X) ⊗ εq] ◦ Φ0

I(X).

This proves that εq ∈ HomZG(C)((I, e,Φ
0
I),Fq[(I, e,Φ0

I)]). Because (Fq, ε
q, δq) is a tensor functor from C to

itself and because the composition and tensor product of morphisms in ZG(C) are the same as in C, it is
clear that δFq and εFq satisfy all conditions to make (Fq, εFq , δFq ) a tensor functor.

We will now prove that (F , εF , δF ) defines aG-action on ZG(C), where εF(V,q,ΦV ) = εFV and (δFq,r)(V,s,ΦV ) =

(δFq,r)V . To show that the δF are morphisms in ZG(C), let (V, s,ΦV ) ∈ ZG(C) and q, r ∈ G. Using the
equality

(FrΦV )(Fq−1(X))

= [αr,s,r−1(Fq−1(X))⊗ idFr(V )] ◦ (δrFs(Fr−1 (Fq−1 (X))),V )−1 ◦ Fr(ΦV (Fr−1(Fq−1(X))))

◦ δrV,Fr−1 (Fq−1 (X)) ◦ [idFr(V ) ⊗∆r(Fq−1(X))−1],

we obtain

(Fq(FrΦV ))(X)

= [αq,rsr−1,q−1(X)⊗ idFq(Fr(V ))] ◦ (δqFrsr−1 (Fq−1 (X)),Fr(V ))
−1 ◦ Fq(FrΦV (Fq−1(X)))

◦ δqFr(V ),Fq−1 (X) ◦ [idFq(Fr(V )) ⊗∆q(X)−1]

= [αq,rsr−1,q−1(X)⊗ idFq(Fr(V ))] ◦ {(δqFrsr−1 (Fq−1 (X)),Fr(V ))
−1 ◦ Fq(αr,s,r−1(Fq−1(X))⊗ idFr(V ))}
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◦ Fq((δrFs(Fr−1 (Fq−1 (X))),V )−1) ◦ Fq(Fr(ΦV (Fr−1(Fq−1(X))))) ◦ Fq(δrV,Fr−1 (Fq−1 (X)))

◦ {Fq(idFr(V ) ⊗∆r(Fq−1(X))−1) ◦ δqFr(V ),Fq−1 (X)} ◦ [idFq(Fr(V )) ⊗∆q(X)−1]

= {[αq,rsr−1,q−1(X)⊗ idFq(Fr(V ))] ◦ [Fq(αr,s,r−1(Fq−1(X)))⊗ idFq(Fr(V ))]}
◦ (δqFr(Fs(Fr−1 (Fq−1 (X)))),Fr(V ))

−1 ◦ Fq((δrFs(Fr−1 (Fq−1 (X))),V )−1) ◦ Fq(Fr(ΦV (Fr−1(Fq−1(X)))))

◦ Fq(δrV,Fr−1 (Fq−1 (X))) ◦ δ
q
Fr(V ),Fr(Fr−1 (Fq−1 (X))) ◦ {[idFq(Fr(V )) ⊗ Fq(∆r(Fq−1(X)))−1]

◦ [idFq(Fr(V )) ⊗∆q(X)−1]}
(∗)
= [αqr,s,r−1q−1(X)⊗ idFq(Fr(V ))] ◦ [Fqr(Fs((δ

F
r−1,q−1)X))⊗ idFq(Fr(V ))]

◦ [(δFq,r)Fs(Fr−1 (Fq−1 (X))) ⊗ idFq(Fr(V ))] ◦ {(δqFr(Fs(Fr−1 (Fq−1 (X)))),Fr(V ))
−1

◦ Fq((δrFs(Fr−1 (Fq−1 (X))),V )−1)} ◦ Fq(Fr(ΦV (Fr−1(Fq−1(X))))) ◦ {Fq(δrV,Fr−1 (Fq−1 (X)))

◦ δqFr(V ),Fr(Fr−1 (Fq−1 (X)))} ◦ [idFq(Fr(V )) ⊗ (δFq,r)
−1
Fr−1 (Fq−1 (X))]

◦ [idFq(Fr(V )) ⊗ Fqr((δFr−1,q−1)X)−1] ◦ [idFq(Fr(V )) ⊗∆qr(X)−1]

= {[αqr,s,r−1q−1(X)⊗ idFq(Fr(V ))] ◦ [Fqr(Fs((δ
F
r−1,q−1)X))⊗ idFq(Fr(V ))]

◦ [(δFq,r)Fs(Fr−1 (Fq−1 (X))) ⊗ idFq(Fr(V ))] ◦ [(δFq,r)
−1
Fs(Fr−1 (Fq−1 (X))) ⊗ (δFq,r)

−1
V ]}

◦ (δqrFs(Fr−1 (Fq−1 (X))),V )−1 ◦ {(δFq,r)Fs(Fr−1 (Fq−1 (X)))⊗V ◦ Fq(Fr(ΦV (Fr−1(Fq−1(X)))))

◦ (δFq,r)
−1
V⊗Fr−1 (Fq−1 (X))} ◦ δ

qr
V,Fr−1 (Fq−1 (X)) ◦ {[(δ

F
q,r)V ⊗ (δFq,r)Fr−1 (Fq−1 (X))]

◦ [idFq(Fr(V )) ⊗ (δFq,r)
−1
Fr−1 (Fq−1 (X))] ◦ [idFq(Fr(V )) ⊗ Fqr((δFr−1,q−1)X)−1]

◦ [idFq(Fr(V )) ⊗∆qr(X)−1]}
= [idFqrsr−1q−1 (X) ⊗ (δFq,r)

−1
V ] ◦ [αqr,s,r−1q−1(X)⊗ idFqr(V )] ◦ {[Fqr(Fs((δFr−1,q−1)X))⊗ idFqr(V )]

◦ (δqrFs(Fr−1 (Fq−1 (X))),V )−1} ◦ Fqr(ΦV (Fr−1(Fq−1(X)))) ◦ {δqrV,Fr−1 (Fq−1 (X))

◦ [idFqr(V ) ⊗ Fqr((δFr−1,q−1)X)−1]} ◦ [idFqr(V ) ⊗∆qr(X)−1] ◦ [(δFq,r)V ⊗ idX ]

= [idFqrsr−1q−1 (X) ⊗ (δFq,r)
−1
V ] ◦ [αqr,s,r−1q−1(X)⊗ idFqr(V )] ◦ (δqrFs(Fr−1q−1 (X)),V )−1

◦ {Fqr(Fs((δFr−1,q−1)X)⊗ idV ) ◦ Fqr(ΦV (Fr−1(Fq−1(X)))) ◦ Fqr(idV ⊗ (δFr−1,q−1)−1
X )}

◦ δqrV,Fr−1q−1 (X) ◦ [idFqr(V ) ⊗∆qr(X)−1] ◦ [(δFq,r)V ⊗ idX ]

= [idFqrsr−1q−1 (X) ⊗ (δFq,r)
−1
V ] ◦ [αqr,s,r−1q−1(X)⊗ idFqr(V )] ◦ (δqrFs(Fr−1q−1 (X)),V )−1

◦ Fqr(ΦV (Fr−1q−1(X))) ◦ δqrV,Fr−1q−1 (X) ◦ [idFqr(V ) ⊗∆qr(X)−1]

◦ [(δFq,r)V ⊗ idX ]

= [idFqrsr−1q−1 (X) ⊗ (δFq,r)
−1
V ] ◦ FqrΦV (X) ◦ [(δFq,r)V ⊗ idX ],

which can be rewritten as

[idFqrsr−1q−1 (X) ⊗ (δFq,r)V ] ◦ (Fq(FrΦV ))(X) = FqrΦV (X) ◦ [(δFq,r)V ⊗ idX ],

implying that (δFq,r)V ∈ HomZG(C)(Fq[Fr[(V, s,ΦV )],Fqr[(V, s,ΦV )]). We will now explain the equality
(∗)
=

above in some detail. We have

αq,rsr−1,q−1(X) ◦ Fq(αr,s,r−1(Fq−1(X)))
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= (δFqrsr−1,q−1)X ◦ (δFq,rsr−1)Fq−1 (X) ◦ Fq((δFrs,r−1)Fq−1 (X))︸ ︷︷ ︸
=(δF

qrs,r−1 )F
q−1 (X)◦(δFq,rs)Fr−1 (F

q−1 (X))

◦Fq((δFr,s)Fr−1 (Fq−1 (X)))

= (δFqrsr−1,q−1)X ◦ (δFqrs,r−1)Fq−1 (X)︸ ︷︷ ︸
=(δF

qrs,r−1q−1 )X◦Fqrs((δF
r−1,q−1 )X)

◦ (δFq,rs)Fr−1 (Fq−1 (X)) ◦ Fq((δFr,s)Fr−1 (Fq−1 (X)))︸ ︷︷ ︸
=(δFqr,s)Fr−1 (F

q−1 (X))◦(δFq,r)Fs(F
r−1 (F

q−1 (X)))

= (δFqrs,r−1q−1)X ◦ Fqrs((δFr−1,q−1)X) ◦ (δFqr,s)Fr−1 (Fq−1 (X))︸ ︷︷ ︸
=(δFqr,s)Fr−1q−1 (X)◦Fqr(Fs(δF

r−1,q−1 )X)

◦(δFq,r)Fs(Fr−1 (Fq−1 (X)))

= (δFqrs,r−1q−1)X ◦ (δFqr,s)Fr−1q−1 (X) ◦ Fqr(Fs(δFr−1,q−1)X) ◦ (δFq,r)Fs(Fr−1 (Fq−1 (X)))

= αqr,s,r−1q−1(X) ◦ Fqr(Fs(δFr−1,q−1)X) ◦ (δFq,r)Fs(Fr−1 (Fq−1 (X)))

and

Fq(∆r(Fq−1(X)))−1 ◦∆q(X)−1 = Fq((δ
F
r,r−1)−1

Fq−1 (X) ◦ ε
F
Fq−1 (X)) ◦ (δFq,q−1)−1

X ◦ ε
F
X

= Fq((δ
F
r,r−1)Fq−1 (X))

−1 ◦ Fq(εFFq−1 (X))︸ ︷︷ ︸
=(δFq,e)

−1
F
q−1 (X)

◦(δFq,q−1)−1 ◦ εFX

(∗∗)
= (δFq,r)

−1
Fr−1 (Fq−1 (X)) ◦ Fqr((δ

F
r−1,q−1)X)−1 ◦ (δFqr,r−1q−1)−1

X ◦ ε
F
X

= (δFq,r)
−1
Fr−1 (Fq−1 (X)) ◦ Fqr((δ

F
r−1,q−1)X)−1 ◦∆qr(X)−1,

where
(∗∗)
= follows from commutativity of the diagram

Fe(X) Fq(Fq−1(X)) Fq(Fe(Fq−1(X)))

Fqr(Fr−1q−1(X)) Fqr(Fr−1(Fq−1(X))) Fq(Fr(Fr−1(Fq−1(X)))).

(δF
q,q−1 )−1

X

(δF
qr,r−1q−1 )X

(δFq,e)
−1
F
q−1 (X)

(δF
qr,r−1 )F

q−1 (X) Fq((δ
F
r,r−1 )F

q−1 (X))
−1

Fqr((δF
r−1,q−1 )−1

X ) (δFq,r)−1
F
r−1 (F

q−1 (X))

Let (V, q,ΦV ) ∈ ZG(C). Then

(FeΦV )(X)

= [αe,q,e(X)⊗ idFe(V )] ◦ (δeFq(Fe(X)),V )−1 ◦ Fe(ΦV (Fe(X))) ◦ δeV,Fe(X) ◦ [idFe(V ) ⊗∆e(X)−1]

= [(δFe,q)X ⊗ idFe(V )] ◦ [Fe((δ
F
q,e)X)⊗ idFe(V )] ◦ (δeFq(Fe(X)),V )−1 ◦ Fe(ΦV (Fe(X)))

◦ δeV,Fe(X) ◦ [idFe(V ) ⊗ (δFe,e)
−1] ◦ [idFe(V ) ⊗ εFX ]

= [(εFFq(X))
−1 ⊗ idFe(V )] ◦ [Fe(Fq(ε

F
X))−1 ⊗ idFe(V )] ◦ (δeFq(Fe(X)),V )−1 ◦ Fe(ΦV (Fe(X)))

◦ δeV,Fe(X) ◦ [idFe(V ) ⊗ Fe(εFX)] ◦ [idFe(V ) ⊗ εFX ]

= [(εFFq(X))
−1 ⊗ idFe(V )] ◦ (δeFq(X),V )−1 ◦ Fe(Fq(εFX)−1 ⊗ idV ) ◦ Fe(ΦV (Fe(X)))

◦ Fe(idV ⊗ εFX) ◦ δeV,X ◦ [idFe(V ) ⊗ εFX ]

= [(εFFq(X))
−1 ⊗ idFe(V )] ◦ (δeFq(X),V )−1 ◦ Fe(ΦV (X)) ◦ δeV,X ◦ [idFe(V ) ⊗ εFX ]

= [idFq(X) ⊗ εFV ] ◦ [(εFFq(X))
−1 ⊗ (εFV )−1] ◦ (δeFq(X),V )−1 ◦ Fe(ΦV (X))
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◦ δeV,X ◦ [εFV ⊗ εFX ] ◦ [(εFV )−1 ⊗ idX ]

= [idFq(X) ⊗ εFV ] ◦ (εFFq(X)⊗V )−1 ◦ Fe(ΦV (X)) ◦ εFV⊗X ◦ [(εFV )−1 ⊗ idX ]

= [idFq(X) ⊗ εFV ] ◦ ΦV (X) ◦ [(εFV )−1 ⊗ idX ],

which can be rewritten as

(FeΦV )(X) ◦ [εFV ⊗ idX ] = [idFq(X) ⊗ εFV ] ◦ ΦV (X),

which shows that εFV ∈ HomZG(C)((V, q,ΦV ),Fe[(V, q,ΦV )]). Because (F, εF , δF ) is a G-action on C and
because the composition and tensor product of morphisms in ZG(C) is the same as in C, it follows directly
that (F , εF , δF ) satisfies all conditions for a G-action on ZG(C). It is also clear that

∂[Fq[(V, r,ΦV )]] = ∂[(Fq(V ), qrq−1,FqΦV )] = qrq−1 = q∂[(V, r,ΦV )]q−1

for all q ∈ G and (V, r,ΦV ) ∈ ZG(C), so ZG(C) is indeed a G-crossed category.
�

A.5 The braiding

Lemma A.5.1 Let (C,⊗, I, a, l, r) be a tensor category with G-action (F, εF , δF ). Then ZG(C) becomes a
braided G-crossed category if we define a braiding

C(V,q,ΦV ),(W,r,ΦV ) : (V, q,ΦV )⊗ (W, r,ΦW )→ Fq[(W, r,ΦW )]⊗ (V, q,ΦV ),

by C(V,q,ΦV ),(W,r,ΦW ) := ΦV (W ).

Proof. Let (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C). Then C(V,q,ΦV ),(W,r,ΦW ) = ΦV (W ) ∈ HomC(V ⊗W,Fq(W )⊗V )
and

[(FqΦW ⊗ ΦV )(X)] ◦ [C(V,q,ΦV ),(W,r,ΦW ) ⊗ idX ] = [(FqΦW ⊗ ΦV )(X)] ◦ [ΦV (W )⊗ idX ]

= [(δFqrq−1,q)X ⊗ idFq(W )⊗V ] ◦ aFqrq−1 (Fq(X)),Fq(W ),V ◦ [FqΦW (Fq(X))⊗ idV ]

◦ a−1
Fq(W ),Fq(X),V ◦ [idFq(W ) ⊗ ΦV (X)] ◦ aFq(W ),V,X ◦ [ΦV (W )⊗ idX ]

= [(δFqrq−1,q)X ⊗ idFq(W )⊗V ] ◦ aFqrq−1 (Fq(X)),Fq(W ),V ◦ [(αq,r,q−1(Fq(X))⊗ idFq(W ))⊗ idV ]

◦ [(δqFr(Fq−1 (Fq(X))),W )−1 ⊗ idV ] ◦ [Fq(ΦW (Fq−1(Fq(X))))⊗ idV ] ◦ {[δqW,Fq−1 (Fq(X)) ⊗ idV ]

◦ [(idFq(W ) ⊗∆q(Fq(X))−1)⊗ idV ]} ◦ a−1
Fq(W ),Fq(X),V ◦ [idFq(W ) ⊗ ΦV (X)] ◦ aFq(W ),V,X

◦ [ΦV (W )⊗ idX ]

(∗)
= [(δFqrq−1,q)X ⊗ idFq(W )⊗V ] ◦ aFqrq−1 (Fq(X)),Fq(W ),V ◦ [(αq,r,q−1(Fq(X))⊗ idFq(W ))⊗ idV ]

◦ [(δqFr(Fq−1 (Fq(X))),W )−1 ⊗ idV ] ◦ {[Fq(ΦW (Fq−1(Fq(X))))⊗ idV ]

◦ [Fq(idW ⊗ (δFq−1,q)
−1
X )⊗ idV ] ◦ [Fq(idW ⊗ εFX)⊗ idV ]} ◦ {[δqW,X ⊗ idV ] ◦ a−1

Fq(W ),Fq(X),V

◦ [idFq(W ) ⊗ ΦV (X)] ◦ aFq(W ),V,X ◦ [ΦV (W )⊗ idX ] ◦ a−1
V,W,X} ◦ aV,W,X

= [(δFqrq−1,q)X ⊗ idFq(W )⊗V ] ◦ [αq,r,q−1(Fq(X))⊗ idFq(W )⊗V ] ◦ {aFq(Fr(Fq−1 (Fq(X)))),Fq(W ),V

◦ [(δqFr(Fq−1 (Fq(X))),W )−1 ⊗ idV ] ◦ [Fq(Fr((δ
F
q−1,q)X)−1 ⊗ idW )⊗ idV ]

◦ [Fq(Fr(ε
F
X)⊗ idW )⊗ idV ]} ◦ {[Fq(ΦW (X))⊗ idV ] ◦ ΦV (W ⊗X)} ◦ aV,W,X
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= {[(δFqrq−1,q)X ⊗ idFq(W )⊗V ] ◦ [αq,r,q−1(Fq(X))⊗ idFq(W )⊗V ]

◦ [Fq(Fr((δ
F
q−1,q)X))−1 ⊗ idFq(W )⊗V ] ◦ [Fq(Fr(ε

F
X))⊗ idFq(W )⊗V ]} ◦ aFq(Fr(X)),Fq(W ),V

◦ [(δqFr(X),W )−1 ⊗ idV ] ◦ ΦV (Fr(X)⊗W ) ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X
(∗∗)
= [(δFq,r)X ⊗ idFq(W )⊗V ] ◦ aFq(Fr(X)),Fq(W ),V ◦ [(δqFr(X),W )−1 ⊗ idV ]

◦ ΦV (Fr(X)⊗W ) ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X
= [(δFq,r)X ⊗ idFq(W )⊗V ] ◦ aFq(Fr(X)),Fq(W ),V ◦ [(δqFr(X),W )−1 ⊗ idV ] ◦ [(δqFr(X),W )⊗ idV ]

◦ a−1
Fq(Fr(X)),Fq(W ),V ◦ [idFq(Fr(X)) ⊗ ΦV (W )] ◦ aFq(Fr(X)),V,W ◦ [ΦV (Fr(X))⊗ idW ]

◦ aV,Fr(X),W ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X
= {[(δFq,r)X ⊗ idFq(W )⊗V ] ◦ [idFq(Fr(X)) ⊗ ΦV (W )]} ◦ aFq(Fr(X)),V,W ◦ [ΦV (Fr(X))⊗ idW ]

◦ a−1
V,Fr(X),W ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X

= [idFqr(X) ⊗ ΦV (W )] ◦ [(δFq,r)X ⊗ idV⊗W ] ◦ aFq(Fr(X)),V,W ◦ [ΦV (Fr(X))⊗ idW ]

◦ a−1
V,Fr(X),W ◦ [idV ⊗ ΦW (X)] ◦ aV,W,X

= [idFqr(X) ⊗ ΦV (W )] ◦ [(ΦV ⊗ ΦW )(X)] = [idFqr(X) ⊗ C(V,q,ΦV ),(W,r,ΦW )] ◦ [(ΦV ⊗ ΦW )(X)],

where in
(∗)
= we used that

∆q(Fq(X)) = (εFFq(X))
−1︸ ︷︷ ︸

=(δFe,q)X

◦(δFq,q−1)Fq(X) = (δFqq−1,q)X ◦ (δFq,q−1)Fq(X)

= (δFq,q−1q)X ◦ Fq((δ
F
q−1,q)X) = Fq(ε

F
X)−1 ◦ Fq((δFq−1,q)X),

so that ∆q(Fq(X))−1 = Fq((δ
F
q−1,q)X)−1 ◦ Fq(εFX), and

(∗∗)
= follows from

(δFqrq−1,q)X ◦ αq,r,q−1(Fq(X)) ◦ Fq(Fr((δFq−1,q)X))−1 ◦ Fq(Fr(εFX))

= (δFqrq−1,q)X ◦ (δFq,rq−1)Fq(X) ◦ Fq((δFr,q−1)Fq(X)) ◦ Fq(Fr((δFq−1,q)X))−1 ◦ Fq((δFr,e)X)−1

= (δFq,r)X ◦ Fq((δFrq−1,q)X) ◦ Fq((δFr,q−1)Fq(X)) ◦ Fq(Fr((δFq−1,q)X))−1 ◦ Fq((δFr,e)X)−1

= (δFq,r)X ◦ Fq((δFr,e)X) ◦ Fq(Fr((δFq−1,q)X)) ◦ Fq(Fr((δFq−1,q)X))−1 ◦ Fq((δFr,e)X)−1

= (δFq,r)X .

Thus we have proved that C(V,q,ΦV ),(W,r,ΦV ) ∈ HomZG(C)((V, q,ΦV )⊗(W, r,ΦW ),Fq[(W, r,ΦW )]⊗(V, q,ΦV )).
The naturality of half braidings implies that C is natural in its second argument. But it is also nat-
ural in its first argument due to the definition of the morphisms in ZG(C), so C is natural. Now let
(U, q,ΦU ), (V, r,ΦV ), (W, s,ΦW ) ∈ ZG(C). Then

C(U,q,ΦU ),(V,r,ΦV )⊗(W,s,ΦW ) = C(U,q,ΦU ),(V⊗W,rs,ΦV ⊗ΦW ) = ΦU (V ⊗W )

= [δqV,W ⊗ idU ] ◦ a−1
Fq(V ),Fq(W ),U ◦ [idFq(V ) ⊗ ΦU (W )] ◦ aFq(V ),U,W ◦ [ΦU (V )⊗ idW ] ◦ a−1

U,V,W

= [δq(V,r,ΦV ),(W,s,ΦW ) ⊗ id(U,q,ΦU )] ◦ a−1
Fq [(V,r,ΦV )],Fq [(W,s,ΦW )],(U,q,ΦU )

◦ [idFq [(V,r,ΦV )] ⊗ C(U,q,ΦU ),(W,s,ΦW )] ◦ aFq [(V,r,ΦV )],(U,q,ΦU ),(W,s,ΦW )

◦ [C(U,q,ΦU ),(V,r,ΦV ) ⊗ id(W,s,ΦW )] ◦ a−1
(U,q,ΦU ),(V,r,ΦV ),(W,s,ΦW )

and

C(U,q,ΦU )⊗(V,r,ΦV ),(W,s,ΦW ) = C(U⊗V,qr,ΦU⊗ΦV ),(W,s,ΦW ) = (ΦU ⊗ ΦV )(W )
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= [(δFq,r)W ⊗ idU⊗V ] ◦ aFq(Fr(W )),U,V ◦ [ΦU (Fr(W ))⊗ idV ] ◦ a−1
U,Fr(W ),V ◦ [idU ⊗ ΦV (W )] ◦ aU,V,W

= [(δFq,r)(W,s,ΦW ) ⊗ id(U,q,ΦU )⊗(V,r,ΦV )] ◦ aFq(Fr[(W,s,ΦW )]),(U,q,ΦU ),(V,r,ΦV )

◦ [C(U,q,ΦU ),Fr[(W,s,ΦW )] ⊗ id(V,r,ΦV )] ◦ a−1
(U,q,ΦU ),Fr[(W,s,ΦW )],(V,r,ΦV )

◦ [id(U,q,ΦU ) ⊗ C(V,r,ΦV ),(W,s,ΦW )] ◦ a(U,q,ΦU ),(V,r,ΦV ),(W,sΦW )

Finally, if (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C) and s ∈ G then

CFs[(V,q,ΦV )],Fs[(W,r,ΦW )] = C(Fs(V ),sqs−1,FsΦV ),(Fs(W ),srs−1,FsΦW ) = (FsΦV )(Fs(W ))

= [αs,q,s−1(Fs(W ))⊗ idFs(V )] ◦ (δsFq(Fs−1 (Fs(W ))),V )−1 ◦ Fs(ΦV (Fs−1(Fs(W ))))

◦ δsV,Fs−1 (Fs(W )) ◦ [idFs(V ) ⊗∆s(Fs(W ))−1]

= [(δFs,qs−1)Fs(W ) ⊗ idFs(V )] ◦ {[Fs((δFq,s−1)Fs(W ))⊗ idFs(V )] ◦ (δsFq(Fs−1 (Fs(W ))),V )−1}

◦ Fs(ΦV (Fs−1(Fs(W )))) ◦ δsV,Fs−1 (Fs(W )) ◦ {[idFs(V ) ⊗ (δFs,s−1)−1
Fs(W )] ◦ [idFs(V ) ⊗ εFFs(W )︸ ︷︷ ︸

=(δFe,s)
−1
W

]}

(∗)
= [(δFs,qs−1)Fs(W ) ⊗ idFs(V )] ◦ (δsFqs−1 (Fs(W )),V )−1 ◦ Fs((δFq.s−1)Fs(W ) ⊗ idV )

◦ Fs(ΦV (Fs−1(Fs(W )))) ◦ {δsV,Fs−1 (Fs(W )) ◦ [idFs(V ) ⊗ Fs((δFs−1,s)W )−1]} ◦ [idFs(V ) ⊗ (δFs,e)
−1
W︸ ︷︷ ︸

=Fs(εFW )

]

= [(δFs,qs−1)Fs(W ) ⊗ idFs(V )] ◦ (δsFqs−1 (Fs(W )),V )−1 ◦ Fs((δFq.s−1)Fs(W ) ⊗ idV )

◦ {Fs(ΦV (Fs−1(Fs(W )))) ◦ Fs(idV ⊗ (δFs−1,s)
−1
W )} ◦ {δsV,Fe(W ) ◦ [idFs(V ) ⊗ Fs(εFW )]}

= [(δFs,qs−1)Fs(W ) ⊗ idFs(V )] ◦ (δsFqs−1 (Fs(W )),V )−1 ◦ {Fs((δFq.s−1)Fs(W ) ⊗ idV )

◦ Fs(Fq((δFs−1,s)W )−1 ⊗ idV )} ◦ {Fs(ΦV (Fe(W ))) ◦ Fs(idV ⊗ εFW )} ◦ δsV,W
= [(δFs,qs−1)Fs(W ) ⊗ idFs(V )] ◦ {(δsFqs−1 (Fs(W )),V )−1 ◦ Fs((δFqs−1,s)

−1
W ⊗ idV )}

◦ Fs((δFq,e)W ⊗ idV ) ◦ Fs(Fq(εFW )⊗ idV ) ◦ Fs(ΦV (W )) ◦ δsV,W
= {[(δFs,qs−1)Fs(W ) ⊗ idFs(V )] ◦ [Fs((δ

F
qs−1,s)W )−1 ⊗ idFs(V )]} ◦ (δsFq(W ),V )−1 ◦ Fs(ΦV (W )) ◦ δsV,W

= [(δFsqs−1,s)
−1 ⊗ idFs(V )] ◦ [(δFs,q)W ⊗ idFs(V )] ◦ (δsFq(W ),V )−1 ◦ Fs(C(V,q,ΦV ),(W,r,ΦW )) ◦ δsV,W ,

where in
(∗)
= we used that

(δFs,s−1)−1
Fs(W ) ◦ (δFe,s)

−1
W = Fs((δ

F
s−1,s)W )−1 ◦ (δFs,e)

−1
W .

This completes the proof that ZG(C) is a braided G-crossed category.
�
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Appendix B

Proof of ZG(C) ' ZG(C′) when C ' C′

In this Appendix we will give a detailed proof of Theorem 4.3.4, which states that if C and C′ are equivalent
G-categories, then ZG(C) and ZG(C′) are equivalent as braided G-crossed categories.

B.1 The given data

Throughout this appendix we assume that we are given a group G and two tensor categories (C,⊗, I, a, l, r)
and (C′,⊗′, I ′, a′, l′, r′) with G-actions1 (F, εF , δF ) and (F ′, εF

′
, δF

′
), respectively, such that C and C′ are

equivalent as G-categories. This means that there are G-functors

(K, εK , δK , ξK) : C → C′

(L, εL, δL, ξL) : C′ → C

together with natural G-isomorphisms

ϕ : idC′ → K ◦ L
ψ : L ◦K → idC .

For ϕ this means that ϕ : idC′ → K ◦ L is a natural isomorphism that satisfies the equation

ϕI′ = εK � εL = K(εL) ◦ εK (B.1.1)

as well as the equations

ϕX′⊗′Y ′ = (δK � δL)X′,Y ′ ◦ [ϕX′ ⊗′ ϕY ′ ] = K(δLX′,Y ′) ◦ δKL(X′),L(Y ′) ◦ [ϕX′ ⊗′ ϕY ′ ] (B.1.2)

and
F ′q(ϕX′) = (ξK � ξL)(q)X′ ◦ ϕF ′q(X′) = ξK(q)L(X′) ◦K(ξL(q)X′) ◦ ϕF ′q(X′) (B.1.3)

for all X ′, Y ′ ∈ C′. Similarly, ψ is a natural isomorphism that satisfies

ψI = (εL � εK)−1 = (εL)−1 ◦ L(εK)−1 (B.1.4)

as well as
ψX⊗Y = [ψX ⊗ ψY ] ◦ (δL � δK)−1

X,Y = [ψX ⊗ ψY ] ◦ (δLK(X),K(Y ))
−1 ◦ L(δKX,Y )−1 (B.1.5)

1In other places we were free to write εq and δq instead of εFq and δFq , but in this appendix we cannot do this because

there are two G-categories C and C′. Their G-actions will be distinguished most easily by writing either εFq or εF
′
q , etc.

209
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and
Fq(ψX) = ψFq(X) ◦ (ξL � ξK)(q)−1

X = ψFq(X) ◦ L(ξK(q)X)−1 ◦ ξL(q)−1
K(X). (B.1.6)

In the following sections we will give an explicit construction of the equivalence ZG(C) ' ZG(C′), i.e. we
will construct braided G-crossed functors K : ZG(C) → ZG(C′) and L : ZG(C′) → ZG(C) together with
natural braided G-crossed isomorphisms ϕ : idC′ → K ◦ L and ψ : L ◦K → idC .

B.2 Construction of the functor K : ZG(C)→ ZG(C ′)
In this section we will construct a functor K : ZG(C)→ ZG(C′). On the objects we will denote its action by
K [(V, q,ΦV )] = (K(V ), q,K ΦV ), where K ΦV is a half q-braiding for K(V ). The construction of K ΦV
will be given in Proposition B.2.2 below, but first we need the following lemma.

Lemma B.2.1 Let (V, q,ΦV ) ∈ ZG(C) and define for each X ∈ C the isomorphism Φ′V (X) ∈ HomC′(K(V )⊗′
K(X), F ′q(K(X))⊗′ K(V )) by

Φ′V (X) := [ξK(q)X ⊗′ idK(V )] ◦ (δKFq(X),V )−1 ◦K(ΦV (X)) ◦ δKV,X .

Then Φ′V has the following properties:
(1) If X,Y ∈ C and f ∈ HomC(X,Y ), then

Φ′V (Y ) ◦ [idK(V ) ⊗′ K(f)] = [F ′q(K(f))⊗′ idK(V )] ◦ Φ′V (X).

(2) If X,Y ∈ C, then

Φ′V (X ⊗ Y ) = [F ′q(δ
K
X,Y )⊗′ idK(V )] ◦ [δ

F ′q
K(X),K(Y ) ⊗

′ idK(V )] ◦ a′
−1

F ′q(K(X)),F ′q(K(Y )),K(V )

◦ [idF ′q(K(X)) ⊗′ Φ′V (Y )] ◦ a′F ′q(K(X)),K(V ),K(Y ) ◦ [Φ′V (X)⊗′ idK(Y )]

◦ a′
−1

K(V ),K(X),K(Y ) ◦ [idK(V ) ⊗′ (δKX,Y )−1]

Proof. (1) Using naturality several times, we get

Φ′V (Y ) ◦ [idK(V ) ⊗′ K(f)]

= [ξK(q)Y ⊗′ idK(V )] ◦ (δKFq(Y ),V )−1 ◦K(ΦV (Y )) ◦ δKV,Y ◦ [idK(V ) ⊗′ K(f)]

= [ξK(q)Y ⊗′ idK(V )] ◦ (δKFq(Y ),V )−1 ◦K(ΦV (Y )) ◦K(idV ⊗ f) ◦ δKV,X
= [ξK(q)Y ⊗′ idK(V )] ◦ (δKFq(Y ),V )−1 ◦K(Fq(f)⊗ idV ) ◦K(ΦV (X)) ◦ δKV,X
= [ξK(q)Y ⊗′ idK(V )] ◦ [K(Fq(f))⊗′ idK(V )] ◦ (δKFq(X),V )−1 ◦K(ΦV (X)) ◦ δKV,X
= [F ′q(K(f))⊗′ idK(V )] ◦ [ξK(q)X ⊗′ idK(V )] ◦ (δKFq(X),V )−1 ◦K(ΦV (X)) ◦ δKV,X
= [F ′q(K(f))⊗′ idK(V )] ◦ Φ′V (X).

(2) We have

Φ′V (X ⊗ Y )

= [ξK(q)X⊗Y ⊗′ idK(V )] ◦ (δKFq(X⊗Y ),V )−1 ◦K(ΦV (X ⊗ Y )) ◦ δKV,X⊗Y
= [ξK(q)X⊗Y ⊗′ idK(V )] ◦ (δKFq(X⊗Y ),V )−1 ◦K(δ

Fq
X,Y ⊗ idV ) ◦K(aFq(X),Fq(Y ),V )−1

◦K(idFq(X) ⊗ ΦV (Y )) ◦K(aFq(X),V,Y ) ◦K(ΦV (X)⊗ idY ) ◦K(aV,X,Y )−1 ◦ δKV,X⊗Y
= [ξK(q)X⊗Y ⊗′ idK(V )] ◦ [K(δ

Fq
X,Y )⊗′ idK(V )] ◦ (δKFq(X)⊗Fq(Y ),V )−1 ◦K(aFq(X),Fq(Y ),V )−1
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◦K(idFq(X) ⊗ ΦV (Y )) ◦K(aFq(X),V,Y ) ◦K(ΦV (X)⊗ idY ) ◦ δKV⊗X,Y
◦ [δKV,X ⊗′ idK(Y )] ◦ a′

−1

K(V ),K(X),K(Y ) ◦ [idK(V ) ⊗′ (δKX,Y )−1]

= [F ′q(δ
K
X,Y )⊗′ idK(V )] ◦ [δ

F ′q
K(X),K(Y ) ⊗

′ idK(V )] ◦ [(ξK(q)X ⊗′ ξK(q)Y )⊗′ idK(V )]

◦ [(δKFq(X),Fq(Y ))
−1 ⊗′ idK(V )] ◦ (δKFq(X)⊗Fq(Y ),V )−1 ◦K(aFq(X),Fq(Y ),V )−1

◦K(idFq(X) ⊗ ΦV (Y )) ◦K(aFq(X),V,Y ) ◦ δKFq(X)⊗V,Y ◦ [K(ΦV (X))⊗′ idY ]

◦ [δKV,X ⊗′ idK(Y )] ◦ a′
−1

K(V ),K(X),K(Y ) ◦ [idK(V ) ⊗′ (δKX,Y )−1]

= [F ′q(δ
K
X,Y )⊗′ idK(V )] ◦ [δ

F ′q
K(X),K(Y ) ⊗

′ idK(V )] ◦ [(ξK(q)X ⊗′ ξK(q)Y )⊗′ idK(V )]

◦ a′
−1

K(Fq(X)),K(Fq(Y )),K(V ) ◦ [idK(Fq(X)) ⊗′ (δKFq(Y ),V )−1] ◦ (δKFq(X),Fq(Y )⊗V )−1

◦K(idFq(X) ⊗ ΦV (Y )) ◦K(aFq(X),V,Y ) ◦ δKFq(X)⊗V,Y ◦ [K(ΦV (X))⊗′ idY ]

◦ [δKV,X ⊗′ idK(Y )] ◦ a′
−1

K(V ),K(X),K(Y ) ◦ [idK(V ) ⊗′ (δKX,Y )−1]

= [F ′q(δ
K
X,Y )⊗′ idK(V )] ◦ [δ

F ′q
K(X),K(Y ) ⊗

′ idK(V )] ◦ a′
−1

F ′q(K(X)),F ′q(K(Y )),K(V )

◦ [ξK(q)X ⊗′ (ξK(q)Y ⊗′ idK(V ))] ◦ [idK(Fq(X)) ⊗′ (δKFq(Y ),V )−1] ◦ [idK(Fq(X)) ⊗′ K(ΦV (Y ))]

◦ (δKFq(X),V⊗Y )−1 ◦K(aFq(X),V,Y ) ◦ δKFq(X)⊗V,Y ◦ [K(ΦV (X))⊗′ idY ]

◦ [δKV,X ⊗′ idK(Y )] ◦ a′
−1

K(V ),K(X),K(Y ) ◦ [idK(V ) ⊗′ (δKX,Y )−1]

= [F ′q(δ
K
X,Y )⊗′ idK(V )] ◦ [δ

F ′q
K(X),K(Y ) ⊗

′ idK(V )] ◦ a′
−1

F ′q(K(X)),F ′q(K(Y )),K(V )

◦ [idF ′q(K(X)) ⊗′ (ξK(q)Y ⊗′ idK(V ))] ◦ [idF ′q(K(X)) ⊗′ (δKFq(Y ),V )−1] ◦ [idF ′q(K(X)) ⊗′ K(ΦV (Y ))]

◦ [ξK(q)X ⊗′ idK(V⊗Y )] ◦ [idK(Fq(X)) ⊗′ δKV,Y ] ◦ a′K(Fq(X)),K(V ),K(Y ) ◦ [(δKFq(X),V )−1 ⊗′ idK(Y )]

◦ [K(ΦV (X))⊗′ idY ] ◦ [δKV,X ⊗′ idK(Y )] ◦ a′
−1

K(V ),K(X),K(Y ) ◦ [idK(V ) ⊗′ (δKX,Y )−1]

= [F ′q(δ
K
X,Y )⊗′ idK(V )] ◦ [δ

F ′q
K(X),K(Y ) ⊗

′ idK(V )] ◦ a′
−1

F ′q(K(X)),F ′q(K(Y )),K(V )

◦ [idF ′q(K(X)) ⊗′ (ξK(q)Y ⊗′ idK(V ))] ◦ [idF ′q(K(X)) ⊗′ (δKFq(Y ),V )−1] ◦ [idF ′q(K(X)) ⊗′ K(ΦV (Y ))]

◦ [idF ′q(K(X)) ⊗′ δKV,Y ] ◦ a′F ′q(K(X)),K(V ),K(Y ) ◦ [(ξK(q)X ⊗′ idK(V ))⊗′ idK(Y )]

◦ [(δKFq(X),V )−1 ⊗′ idK(Y )] ◦ [K(ΦV (X))⊗′ idY ] ◦ [δKV,X ⊗′ idK(Y )] ◦ a′
−1

K(V ),K(X),K(Y )

◦ [idK(V ) ⊗′ (δKX,Y )−1]

= [F ′q(δ
K
X,Y )⊗′ idK(V )] ◦ [δ

F ′q
K(X),K(Y ) ⊗

′ idK(V )] ◦ a′
−1

F ′q(K(X)),F ′q(K(Y )),K(V )

◦ [idF ′q(K(X)) ⊗′ Φ′V (Y )] ◦ a′F ′q(K(X)),K(V ),K(Y ) ◦ [Φ′V (X)⊗′ idK(Y )]

◦ a′
−1

K(V ),K(X),K(Y ) ◦ [idK(V ) ⊗′ (δKX,Y )−1].

�

We are now ready to construct half braidings in ZG(C′) from half braidings in ZG(C). This will be used to
define a functor K : ZG(C)→ ZG(C′).

Proposition B.2.2 Let (V, q,ΦV ) ∈ ZG(C) and define for each X ′ ∈ C′ the isomorphism K ΦV (X ′) ∈
HomC′(K(V )⊗′ X ′, F ′q(X ′)⊗′ K(V )) by

K ΦV (X ′) : = [F ′q(ϕX′)
−1 ⊗′ idK(V )] ◦ Φ′V (L(X ′)) ◦ [idK(V ) ⊗′ ϕX′ ]
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= [F ′q(ϕX′)
−1 ⊗′ idK(V )] ◦ [ξK(q)L(X′) ⊗′ idK(V )] ◦ (δKFq(L(X′)),V )−1

◦K(ΦV (L(X ′))) ◦ δKV,L(X′) ◦ [idK(V ) ⊗′ ϕX′ ].

Then K ΦV is a half q-braiding for K(V ) and we obtain a functor K : ZG(C) → ZG(C′) by defining
K [(V, q,ΦV )] := (K(V ), q,K ΦV ) on the objects and K (f) := K(f) on the morphisms.

Proof. If X ′, Y ′ ∈ C′ and f ′ ∈ HomC′(X
′, Y ′), then

K ΦV (Y ′) ◦ [idK(V ) ⊗′ f ′]
= [F ′q(ϕY ′)

−1 ⊗′ idK(V )] ◦ Φ′V (L(Y ′)) ◦ [idK(V ) ⊗′ ϕY ′ ] ◦ [idK(V ) ⊗′ f ′]
= [F ′q(ϕY ′)

−1 ⊗′ idK(V )] ◦ Φ′V (L(Y ′)) ◦ [idK(V ) ⊗′ K(L(f ′))] ◦ [idK(V ) ⊗′ ϕX′ ]
= [F ′q(ϕY ′)

−1 ⊗′ idK(V )] ◦ [F ′q(K(L(f ′)))⊗′ idK(V )] ◦ Φ′V (L(X ′)) ◦ [idK(V ) ⊗′ ϕX′ ]
= [F ′q(f

′)⊗′ idK(V )] ◦ [F ′q(ϕX′)
−1 ⊗′ idK(V )] ◦ Φ′V (L(X ′)) ◦ [idK(V ) ⊗′ ϕX′ ]

= [F ′q(f
′)⊗′ idK(V )] ◦K ΦV (X ′).

For X ′, Y ′ ∈ C′ we also have

K ΦV (X ′ ⊗′ Y ′)
= [F ′q(ϕX′⊗′Y ′)

−1 ⊗′ idK(V )] ◦ Φ′V (L(X ′ ⊗′ Y ′)) ◦ [idK(V ) ⊗′ ϕX′⊗′Y ′ ]
= [F ′q(ϕX′⊗′Y ′)

−1 ⊗′ idK(V )] ◦ [F ′q(K(δLX′,Y ′))⊗′ idK(V )] ◦ Φ′V (L(X ′)⊗ L(Y ′))

◦ [idK(V ) ⊗′ K(δLX′,Y ′)
−1] ◦ [idK(V ) ⊗′ ϕX′⊗′Y ′ ]

= [F ′q(ϕX′⊗′Y ′)
−1 ⊗′ idK(V )] ◦ [F ′q(K(δLX′,Y ′))⊗′ idK(V )] ◦ [F ′q(δ

K
L(X′),L(Y ′))⊗

′ idK(V )]

◦ [δ
F ′q
K(L(X′)),K(L(Y ′)) ⊗

′ idK(V )] ◦ a′
−1

F ′q(K(L(X′))),F ′q(K(L(Y ′))),K(V ) ◦ [idF ′q(K(L(X′))) ⊗′ Φ′V (L(Y ′))]

◦ a′F ′q(K(L(X′))),K(V ),K(L(Y ′)) ◦ [Φ′V (L(X ′))⊗′ idK(L(Y ′))] ◦ a′
−1

K(V ),K(L(X′)),K(L(Y ′))

◦ [idK(V ) ⊗′ (δKL(X′),L(Y ′))
−1] ◦ [idK(V ) ⊗′ K(δLX′,Y ′)

−1] ◦ [idK(V ) ⊗′ ϕX′⊗′Y ′ ]

= [F ′q(ϕX′ ⊗′ ϕY ′)−1 ⊗′ idK(V )] ◦ [F ′q(δ
K
L(X′),L(Y ′))

−1 ⊗′ idK(V )] ◦ [F ′q(K(δLX′,Y ′))
−1 ⊗′ idK(V )]

◦ [F ′q(K(δLX′,Y ′))⊗′ idK(V )] ◦ [F ′q(δ
K
L(X′),L(Y ′))⊗

′ idK(V )]

◦ [δ
F ′q
K(L(X′)),K(L(Y ′)) ⊗

′ idK(V )] ◦ a′
−1

F ′q(K(L(X′))),F ′q(K(L(Y ′))),K(V ) ◦ [idF ′q(K(L(X′))) ⊗′ Φ′V (L(Y ′))]

◦ a′F ′q(K(L(X′))),K(V ),K(L(Y ′)) ◦ [Φ′V (L(X ′))⊗′ idK(L(Y ′))] ◦ a′
−1

K(V ),K(L(X′)),K(L(Y ′))

◦ [idK(V ) ⊗′ (δKL(X′),L(Y ′))
−1] ◦ [idK(V ) ⊗′ K(δLX′,Y ′)

−1] ◦ [idK(V ) ⊗′ K(δLX′,Y ′)]

◦ [idK(V ) ⊗′ δKL(X′),L(Y ′)] ◦ [idK(V ) ⊗′ (ϕX′ ⊗′ ϕY ′)]

= [F ′q(ϕX′ ⊗′ ϕY ′)−1 ⊗′ idK(V )] ◦ [δ
F ′q
K(L(X′)),K(L(Y ′)) ⊗

′ idK(V )]

◦ a′
−1

F ′q(K(L(X′))),F ′q(K(L(Y ′))),K(V ) ◦ [idF ′q(K(L(X′))) ⊗′ Φ′V (L(Y ′))] ◦ a′F ′q(K(L(X′))),K(V ),K(L(Y ′))

◦ [Φ′V (L(X ′))⊗′ idK(L(Y ′))] ◦ a′
−1

K(V ),K(L(X′)),K(L(Y ′)) ◦ [idK(V ) ⊗′ (ϕX′ ⊗′ ϕY ′)]

= [δ
F ′q
X′,Y ′ ⊗

′ idK(V )] ◦ a′
−1

F ′q(X
′),F ′q(Y

′),K(V ) ◦ [idF ′q(X′) ⊗
′ (F ′q(ϕY ′)

−1 ⊗′ idK(V ))]

◦ [idF ′q(X′) ⊗
′ Φ′V (L(Y ′))] ◦ [idF ′q(X′) ⊗

′ (idK(V ) ⊗′ ϕY ′)] ◦ a′F ′q(X′),K(V ),Y ′

◦ [(F ′q(ϕX′)
−1 ⊗′ idK(V ))⊗′ idY ′ ] ◦ [Φ′V (L(X ′))⊗′ idY ′ ] ◦ [(idK(V ) ⊗′ ϕX′)⊗′ idY ′ ]

◦ a′
−1

K(V ),X′,Y ′
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= [δ
F ′q
X′,Y ′ ⊗

′ idK(V )] ◦ a′
−1

F ′q(X
′),F ′q(Y

′),K(V ) ◦ [idF ′q(X′) ⊗
′K ΦV (Y ′)]

◦ aF ′q(X′),K(V ),Y ′ ◦ [K ΦV (X ′)⊗′ idY ′ ] ◦ a′
−1

K(V ),X′,Y ′ ,

so K ΦV is indeed a half q-braiding for K(V ). As a consequence, (K(V ), q,K ΦV ) is an object in ZG(C′)
and hence K is well-defined on the objects of ZG(C).

Now let (V, q,ΦV ), (W, q,ΦW ) ∈ ZG(C) and f ∈ HomZG(C)((V, q,ΦV ), (W, q,ΦW )). Then for any X ′ ∈ C′
we have

K ΦW (X ′) ◦ [K (f)⊗′ idX′ ]
= [F ′q(ϕX′)

−1 ⊗′ idK(W )] ◦ [ξK(q)L(X′) ⊗′ idK(W )] ◦ (δKFq(L(X′)),W )−1

◦K(ΦW (L(X ′))) ◦ δKW,L(X′) ◦ [idK(W ) ⊗′ ϕX′ ] ◦ [K(f)⊗′ idX′ ]

= [F ′q(ϕX′)
−1 ⊗′ idK(W )] ◦ [ξK(q)L(X′) ⊗′ idK(W )] ◦ (δKFq(L(X′)),W )−1

◦K(ΦW (L(X ′))) ◦K(f ⊗ idL(X′)) ◦ δKV,L(X′) ◦ [idK(V ) ⊗′ ϕX′ ]

= [F ′q(ϕX′)
−1 ⊗′ idK(W )] ◦ [ξK(q)L(X′) ⊗′ idK(W )] ◦ (δKFq(L(X′)),W )−1

◦K(idFq(L(X′)) ⊗ f) ◦K(ΦV (L(X ′))) ◦ δKV,L(X′) ◦ [idK(V ) ⊗′ ϕX′ ]

= [F ′q(ϕX′)
−1 ⊗′ idK(W )] ◦ [ξK(q)L(X′) ⊗′ idK(W )] ◦ [idK(Fq(L(X′))) ⊗′ K(f)]

◦ (δKFq(L(X′)),V )−1 ◦K(ΦV (L(X ′))) ◦ δKV,L(X′) ◦ [idK(V ) ⊗′ ϕX′ ]

= [idF ′q(X′) ⊗
′ K(f)] ◦ [F ′q(ϕX′)

−1 ⊗′ idK(V )] ◦ [ξq(q)L(X′) ⊗′ idK(V )]

◦ (δKFq(L(X′)),V )−1 ◦K(ΦV (L(X ′))) ◦ δKV,L(X′) ◦ [idK(V ) ⊗′ ϕX′ ]

= [idF ′q(X′) ⊗
′ K(f)] ◦K ΦV (X ′),

so K (f) ∈ HomZG(C′)((K(V ), q,K ΦV ), (K(W ), q,K ΦW )). If f and g are composable morphisms in
ZG(C), then K (g ◦ f) = K(g ◦ f) = K(g) ◦ K(f) = K (g) ◦ K (f). Also K (id(V,q,ΦV )) = K(idV ) =
idK(V ) = idK [(V,q,ΦV )]. Thus we conclude that K is a functor.
�

B.3 The functor K can be made into a tensor functor

We will now give the functor K : ZG(C) → ZG(C′) the structure (K , εK , δK ) of a tensor functor. For
this we first define δK

(V,q,ΦV ),(W,r,ΦW ) := δKV,W for any (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C). To see that these are

indeed morphisms in the category ZG(C′), let (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C). Then for any X ′ ∈ C we have

[idF ′qr(X′) ⊗′ (δKV,W )−1] ◦ [K (ΦV ⊗ ΦW )(X ′)] ◦ [δKV,W ⊗′ idX′ ]

= [idF ′qr(X′) ⊗′ (δKV,W )−1] ◦ [F ′qr(ϕX′)
−1 ⊗′ idK(V⊗W )] ◦ [ξK(qr)L(X′) ⊗′ idK(V⊗W )]

◦ (δKFqr(L(X′)),V⊗W )−1 ◦K((δFq,r)L(X′) ⊗ idV⊗W ) ◦K(aFq(Fr(L(X′))),V,W )

◦K(ΦV (Fr(L(X ′)))⊗ idW ) ◦K(aV,Fr(L(X′)),W )−1 ◦K(idV ⊗ ΦW (L(X ′)))

◦K(aV,W,L(X′)) ◦ δKV⊗W,L(X′) ◦ [idK(V⊗W ) ⊗′ ϕX′ ] ◦ [δKV,W ⊗′ idX′ ]

= [F ′qr(ϕX′)
−1 ⊗′ (δKV,W )−1] ◦ [(δF

′

q,r)K(L(X′)) ⊗′ idK(V⊗W )] ◦ [F ′q(ξ
K(r)L(X′))⊗′ idK(V⊗W )]

◦ [ξK(q)Fr(L(X′)) ⊗′ idK(V⊗W )] ◦ [K((δFq,r)L(X′))
−1 ⊗′ idK(V⊗W )] ◦ [K((δFq,r)L(X′))⊗′ idK(V⊗W )]

◦ (δKFq(Fr(L(X′))),V⊗W )−1 ◦K(aFq(Fr(L(X′))),V,W ) ◦K(ΦV (Fr(L(X ′)))⊗ idW )

◦K(aV,Fr(L(X′)),W )−1 ◦K(idV ⊗ ΦW (L(X ′))) ◦K(aV,W,L(X′))
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◦ δKV⊗W,L(X′) ◦ [δKV,W ⊗′ idK(L(X′))] ◦ [idK(V )⊗′K(W ) ⊗′ ϕX′ ]

= [(δF
′

q,r)X′ ⊗′ idK(V )⊗′K(W )] ◦ [F ′q(F
′
r(ϕX′))

−1 ⊗′ (δKV,W )−1] ◦ [F ′q(ξ
K(r)L(X′))⊗′ idK(V⊗W )]

◦ [ξK(q)Fr(L(X′)) ⊗′ idK(V⊗W )] ◦ [idK(Fq(Fr(L(X′)))) ⊗′ δKV,W ] ◦ a′K(Fq(Fr(L(X′)))),K(V ),K(W )

◦ [(δKFq(Fr(L(X′))),V )−1 ⊗′ idK(W )] ◦ (δKFq(Fr(L(X′)))⊗V,W )−1 ◦K(ΦV (Fr(L(X ′)))⊗ idW )

◦K(aV,Fr(L(X′)),W )−1 ◦K(idV ⊗ ΦW (L(X ′))) ◦ δKV,W⊗L(X′)

◦ [idK(V ) ⊗′ δKW,L(X′)] ◦ a
′
K(V ),K(W ),K(L(X′)) ◦ [idK(V )⊗′K(W ) ⊗′ ϕX′ ]

= [(δF
′

q,r)X′ ⊗′ idK(V )⊗′K(W )] ◦ [F ′q(F
′
r(ϕX′))

−1 ⊗′ idK(V )⊗′K(W )]

◦ [F ′q(ξ
K(r)L(X′))⊗′ idK(V )⊗′K(W )] ◦ [ξK(q)Fr(L(X′)) ⊗′ idK(V )⊗′K(W )]

◦ a′K(Fq(Fr(L(X′)))),K(V ),K(W ) ◦ [(δKFq(Fr(L(X′))),V )−1 ⊗′ idK(W )] ◦ [K(ΦV (Fr(L(X ′))))⊗′ idK(W )]

◦ (δKV⊗Fr(L(X′)),W )−1 ◦K(aV,Fr(L(X′)),W )−1 ◦ δKV,Fr(L(X′))⊗W ◦ [idK(V ) ⊗′ K(ΦW (L(X ′)))]

◦ [idK(V ) ⊗′ δKW,L(X′)] ◦ [idK(V ) ⊗′ (idK(W ) ⊗′ ϕX′)] ◦ a′K(V ),K(W ),X′

(∗)
= [(δF

′

q,r)X′ ⊗′ idK(V )⊗′K(W )] ◦ a′F ′q(F ′r(X′)),K(V ),K(W ) ◦ [(F ′q(ϕF ′r(X′))
−1 ⊗′ idK(V ))⊗′ idK(W )]

◦ [(ξK(q)L(F ′r(X′)) ⊗′ idK(V ))⊗′ idK(W )] ◦ [(K(Fq(ξ
L(r)X′))

−1 ⊗′ idK(V ))⊗′ idK(W )]

◦ [(δKFq(Fr(L(X′))),V )−1 ⊗′ idK(W )] ◦ [K(ΦV (Fr(L(X ′))))⊗′ idK(W )] ◦ [δKV,Fr(L(X′)) ⊗
′ idK(W )]

◦ a′
−1

K(V ),K(Fr(L(X′))),K(W ) ◦ [idK(V ) ⊗′ (δKFr(L(X′)),W )−1] ◦ [idK(V ) ⊗′ K(ΦW (L(X ′)))]

◦ [idK(V ) ⊗′ δKW,L(X′)] ◦ [idK(V ) ⊗′ (idK(W ) ⊗′ ϕX′)] ◦ a′K(V ),K(W ),X′

= [(δF
′

q,r)X′ ⊗′ idK(V )⊗′K(W )] ◦ a′F ′q(F ′r(X′)),K(V ),K(W ) ◦ [(F ′q(ϕF ′r(X′))
−1 ⊗′ idK(V ))⊗′ idK(W )]

◦ [(ξK(q)L(F ′r(X′)) ⊗′ idK(V ))⊗′ idK(W )] ◦ [(δKFq(L(F ′r(X′))),V )−1 ⊗′ idK(W )]

◦ [K(ΦV (L(F ′r(X
′))))⊗′ idK(W )] ◦ [δKV,L(F ′r(X′)) ⊗

′ idK(W )] ◦ [(idK(V ) ⊗′ K(ξL(r)X′)
−1)⊗′ idK(W )]

◦ a′
−1

K(V ),K(Fr(L(X′))),K(W ) ◦ [idK(V ) ⊗′ (δKFr(L(X′)),W )−1] ◦ [idK(V ) ⊗′ K(ΦW (L(X ′)))]

◦ [idK(V ) ⊗′ δKW,L(X′)] ◦ [idK(V ) ⊗′ (idK(W ) ⊗′ ϕX′)] ◦ a′K(V ),K(W ),X′

(∗∗)
= [(δF

′

q,r)X′ ⊗′ idK(V )⊗′K(W )] ◦ a′F ′q(F ′r(X′)),K(V ),K(W ) ◦ [(F ′q(ϕF ′r(X′))
−1 ⊗′ idK(V ))⊗′ idK(W )]

◦ [(ξK(q)L(F ′r(X′)) ⊗′ idK(V ))⊗′ idK(W )] ◦ [(δKFq(L(F ′r(X′))),V )−1 ⊗′ idK(W )]

◦ [K(ΦV (L(F ′r(X
′))))⊗′ idK(W )] ◦ [δKV,L(F ′r(X′)) ⊗

′ idK(W )] ◦ [(idK(V ) ⊗′ ϕF ′r(X′))⊗′ idK(W )]

◦ a′
−1

K(V ),F ′r(X′),K(W ) ◦ [idK(V ) ⊗′ (F ′r(ϕX′)−1 ⊗′ idK(W ))] ◦ [idK(V ) ⊗′ (ξK(r)L(X′) ⊗′ idK(W ))]

◦ [idK(V ) ⊗′ (δKFr(L(X′)),W )−1] ◦ [idK(V ) ⊗′ K(ΦW (L(X ′)))] ◦ [idK(V ) ⊗′ δKW,L(X′)]

◦ [idK(V ) ⊗′ (idK(W ) ⊗′ ϕX′)] ◦ a′K(V ),K(W ),X′

= [(δF
′

q,r)X′ ⊗′ idK(V )⊗′K(W )] ◦ a′F ′q(F ′r(X′)),K(V ),K(W ) ◦ [K ΦV (F ′r(X
′))⊗′ idK(W )]

◦ a′
−1

K(V ),F ′r(X′),K(W ) ◦ [idK(V ) ⊗′K ΦW (X ′)] ◦ a′K(V ),K(W ),X′

= (K ΦV ⊗′K ΦW )(X ′),

where
(∗∗)
= follows from

F ′r(ϕX′) = ξK◦L(r)X′ ◦ ϕF ′r(X′) = ξK(r)L(X′) ◦K(ξL(r)X′) ◦ ϕF ′r(X′).
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To obtain
(∗)
= we take the inverse of the preceding equation and get

F ′r(ϕX′)
−1 ◦ ξK(r)L(X′) = ϕ−1

F ′r(X′) ◦K(ξL(r)X′)
−1,

from which we get that

F ′q(F
′
r(ϕX′))

−1 ◦ F ′q(ξK(r)L(X′)) ◦ ξK(q)Fr(L(X′))

= F ′q(ϕF ′r(X′))
−1 ◦ F ′q(K(ξL(r)X′))

−1 ◦ ξK(q)Fr(L(X′))

= F ′q(ϕF ′r(X′))
−1 ◦ ξK(q)L(F ′r(X′)) ◦K(Fq(ξ

L(r)X′))
−1.

This means that

δKV,W ∈ HomZG(C′)((K(V )⊗′ K(W ), qr,K ΦV ⊗′K ΦW ), (K(V ⊗W ), qr,K (ΦV ⊗ ΦW )))

and hence that

δK
(V,q,ΦV ),(W,r,ΦW ) ∈ HomZG(C′)(K [(V, q,ΦV )]⊗′K [(W, r,ΦW )],K [(V, qΦV )⊗ (W, r,ΦW )]).

If (V1, q,ΦV1
), (V2, q,ΦV2

), (W1, r,ΦW1
), (W2, r,ΦW2

) ∈ ZG(C) and if f ∈ HomZG(C)((V1, q,ΦV1
), (V2, q,ΦV2

))

and g ∈ HomZG(C)((W1, r,ΦW1), (W2, r,ΦW2)), then naturality of δK follows from

δK
(V2,q,ΦV2

),(W2,r,ΦW2
) ◦ [K (f)⊗′K (g)] = δKV2,W2

◦ [K(f)⊗′ K(g)]

= K(f ⊗ g) ◦ δKV1,W1

= K (f ⊗ g) ◦ δK
(V1,q,ΦV1

),(W1,r,ΦW1
),

where in the second step we used naturality of δK . To check that δK satisfies the hexagonal diagram in
the definition of a tensor functor, let (U, q,ΦU ), (V, r,ΦV ), (W, s,ΦW ) ∈ ZG(C). Then

K (a(U,q,ΦU ),(V,r,ΦV ),(W,s,ΦW )) ◦ δK
(U,q,ΦU )⊗(V,r,ΦV ),(W,s,ΦW ) ◦ [δK

(U,q,ΦU ),(V,r,ΦV ) ⊗
′ idK [(W,s,ΦW )]]

= K(aU,V,W ) ◦ δKU⊗V,W ◦ [δKU,V ⊗′ idK(V )]

= δKU,V⊗W ◦ [idK(U) ⊗′ δKV,W ] ◦ aK(U),K(V ),K(W )

= δK
(U,q,ΦU ),(V,r,ΦV )⊗(W,s,ΦW ) ◦ [idK [(U,q,ΦU )] ⊗′ δK

(V,r,ΦV ),(W,s,ΦW )] ◦ aK [(U,q,ΦU )],K [(V,r,ΦV )],K [(W,s,ΦW )],

where in the second step we used that δK satisfies the hexagonal diagram in the definition of a tensor
functor.

We now define εK := εK . For any X ′ ∈ C we then have

K Φ0
I(X

′)

= [F ′e(ϕX′)
−1 ⊗′ idK(I)] ◦ [ξK(e)L(X′) ⊗′ idK(I)] ◦ (δKFe(L(X′)),I)

−1

◦K(Φ0
I(L(X ′))) ◦ δKI,L(X′) ◦ [idK(I) ⊗′ ϕX′ ]

= [F ′e(ϕX′)
−1 ⊗′ idK(I)] ◦ [ξK(e)L(X′) ⊗′ idK(I)] ◦ (δKFe(L(X′)),I)

−1

◦K(rFe(L(X′)))
−1 ◦K(εFL(X′)) ◦K(lL(X′)) ◦ δKI,L(X′) ◦ [idK(I) ⊗′ ϕX′ ]

= [F ′e(ϕX′)
−1 ⊗′ idK(I)] ◦ [ξK(e)L(X′) ⊗′ idK(I)] ◦ [idK(Fe(L(X′))) ⊗′ εK ]

◦ r′
−1

K(Fe(L(X′))) ◦K(εFL(X′)) ◦ l
′
K(L(X′)) ◦ [(εK)−1 ⊗′ idK(L(X′))] ◦ [idK(I) ⊗′ ϕX′ ]

= [idF ′e(X′) ⊗
′ εK ] ◦ [F ′e(ϕX′)

−1 ⊗′ idI′ ] ◦ [ξK(e)L(X′) ⊗′ idI′ ] ◦ r′
−1

K(Fe(L(X′)))
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◦K(εFL(X′)) ◦ l
′
K(L(X′)) ◦ [idI′ ⊗′ ϕX′ ] ◦ [(εK)−1 ⊗′ idX′ ]

= [idF ′e(X′) ⊗
′ εK ] ◦ r′

−1

F ′e(X
′) ◦ F

′
e(ϕX′)

−1 ◦ ξK(e)L(X′) ◦K(εFL(X′)) ◦ ϕX′ ◦ l
′
X′ ◦ [(εK)−1 ⊗′ idX′ ]

= [idF ′e(X′) ⊗
′ εK ] ◦ r′

−1

F ′e(X
′) ◦ F

′
e(ϕX′)

−1 ◦ εF
′

K(L(X′)) ◦ ϕX′ ◦ l
′
X′ ◦ [(εK)−1 ⊗′ idX′ ]

= [idF ′e(X′) ⊗
′ εK ] ◦ r′

−1

F ′e(X
′) ◦ ε

F ′

X′ ◦ l′X′ ◦ [(εK)−1 ⊗′ idX′ ]

= [idF ′e(X′) ⊗
′ εK ] ◦ Φ0

I′(X
′) ◦ [(εK)−1 ⊗′ idX′ ],

which shows that εK ∈ HomZG(C′)((I
′, e,Φ0

I′), (K(I), e,K Φ0
I)) and hence that

εK ∈ HomZG(C′)((I
′, e,Φ0

I′),K [(I, e,Φ0
I)]).

For each (V, q,ΦV ) ∈ ZG(C) we have

l′K [(V,q,ΦV )] = l′K(V ) = K(lV ) ◦ δKI,V ◦ [εK ⊗′ idK(V )]

= K (l(V,q,ΦV )) ◦ δK
(I,e,Φ0

I),(V,q,ΦV ) ◦ [εK ⊗′ idK [(V,q,ΦV )]]

and

r′K [(V,q,ΦV )] = r′K(V ) = K(rV ) ◦ δKV,I ◦ [idK(V ) ⊗′ εK ]

= K (r(V,q,ΦV )) ◦ δK
(V,q,ΦV ),(I,e,Φ0

I) ◦ [idK [(V,q,ΦV )] ⊗′ εK ].

We thus conclude that (K , εK , δK ) is indeed a tensor functor.

B.4 The tensor functor K can be made into a G-crossed functor

In this section we will prove that the tensor functor (K , εK , δK ) can be equipped with the structure of a
G-crossed functor. For this we need the following lemma.

Lemma B.4.1 Let (V, r,ΦV ) ∈ ZG(C). Then for any q ∈ G we have

ξK(q)V ∈ HomZG(C′)((K(Fq(V )), qrq−1,K FqΦV ), (F ′q(K(V )), qrq−1,F ′qK ΦV )).

Proof. For any X ′ ∈ C′ we have

[idF ′
qrq−1 (X′) ⊗′ ξK(q)V ] ◦ [K FqΦV (X ′)]

= [idF ′
qrq−1 (X′) ⊗′ ξK(q)V ] ◦ [F ′qrq−1(ϕX′)

−1 ⊗′ idK(Fq(V ))] ◦ [ξK(qrq−1)L(X′) ⊗′ idK(Fq(V ))]

◦ (δKFqrq−1 (L(X′)),Fq(V ))
−1 ◦K(FqΦV (L(X ′))) ◦ δKFq(V ),L(X′) ◦ [idK(Fq(V )) ⊗′ ϕX′ ]

= [idF ′
qrq−1 (X′) ⊗′ ξK(q)V ] ◦ [F ′qrq−1(ϕX′)

−1 ⊗′ idK(Fq(V ))] ◦ [ξK(qrq−1)L(X′) ⊗′ idK(Fq(V ))]

◦ (δKFqrq−1 (L(X′)),Fq(V ))
−1 ◦K(αq,r,q−1(L(X ′))⊗ idFq(V )) ◦K(δ

Fq
Fr(Fq−1 (L(X′))),V )−1

◦K(Fq(ΦV (Fq−1(L(X ′))))) ◦K(δ
Fq
V,Fq−1 (L(X′))) ◦K(idFq(V ) ⊗∆q(L(X ′))−1)

◦ δKFq(V ),L(X′) ◦ [idK(Fq(V )) ⊗′ ϕX′ ]

= [idF ′
qrq−1 (X′) ⊗′ ξK(q)V ] ◦ [F ′qrq−1(ϕX′)

−1 ⊗′ idK(Fq(V ))] ◦ [ξK(qrq−1)L(X′) ⊗′ idK(Fq(V ))]

◦ [K(αq,r,q−1(L(X ′)))⊗′ idK(Fq(V ))] ◦ (δKFq(Fr(Fq−1 (L(X′)))),Fq(V ))
−1 ◦K(δ

Fq
Fr(Fq−1 (L(X′))),V )−1



B.4. THE TENSOR FUNCTOR K CAN BE MADE INTO A G-CROSSED FUNCTOR 217

◦K(Fq(ΦV (Fq−1(L(X ′))))) ◦K(δ
Fq
V,Fq−1 (L(X′))) ◦ δ

K
Fq(V ),Fq(Fq−1 (L(X′)))

◦ [idK(Fq(V )) ⊗′ K(∆q(L(X ′)))−1] ◦ [idK(Fq(V )) ⊗′ ϕX′ ]

= [idF ′
qrq−1 (X′) ⊗′ ξK(q)V ] ◦ [F ′qrq−1(ϕX′)

−1 ⊗′ idK(Fq(V ))] ◦ [(δF
′

q,rq−1)K(L(X′)) ⊗′ idK(Fq(V ))]

◦ [F ′q((δ
F ′

r,q−1)K(L(X′)))⊗′ idK(Fq(V ))] ◦ [F ′q(F
′
r(ξ

K(q−1)L(X′)))⊗′ idK(Fq(V ))]

◦ [F ′q(ξ
K(r)Fq−1 (L(X′)))⊗′ idK(Fq(V ))] ◦ [F ′q(K((δFr,q−1)L(X′)))

−1 ⊗′ idK(Fq(V ))]

◦ [ξK(q)Frq−1 (L(X′)) ⊗′ idK(Fq(V ))] ◦ [K((δFq,rq−1)L(X′))
−1 ⊗′ idK(Fq(V ))]

◦ [K((δFq,rq−1)L(X′))⊗′ idK(Fq(V ))] ◦ [K(Fq((δ
F
r,q−1)L(X′)))⊗′ idK(Fq(V ))]

◦ (δKFq(Fr(Fq−1 (L(X′)))),Fq(V ))
−1 ◦K(δ

Fq
Fr(Fq−1 (L(X′))),V )−1 ◦K(Fq(ΦV (Fq−1(L(X ′)))))

◦K(δ
Fq
V,Fq−1 (L(X′))) ◦ δ

K
Fq(V ),Fq(Fq−1 (L(X′))) ◦ [idK(Fq(V )) ⊗′ K((δFq,q−1)L(X′))

−1]

◦ [idK(Fq(V )) ⊗′ K(εFL(X′))] ◦ [idK(Fq(V )) ⊗′ ϕX′ ]

= [(δF
′

q,rq−1)X′ ⊗′ idF ′q(K(V ))] ◦ [F ′q((δ
F ′

r,q−1)X′)⊗′ idF ′q(K(V ))]

◦ [F ′q(F
′
r(F

′
q−1(ϕX′)))

−1 ⊗′ idF ′q(K(V ))] ◦ [F ′q(F
′
r(ξ

K(q−1)L(X′)))⊗′ idF ′q(K(V ))]

◦ [F ′q(ξ
K(r)Fq−1 (L(X′)))⊗′ idF ′q(K(V ))] ◦ [ξK(q)Fr(Fq−1 (L(X′))) ⊗′ ξK(q)V ]

◦ (δKFq(Fr(Fq−1 (L(X′)))),Fq(V ))
−1 ◦K(δ

Fq
Fr(Fq−1 (L(X′))),V )−1 ◦K(Fq(ΦV (Fq−1(L(X ′)))))

◦K(δ
Fq
V,Fq−1 (L(X′))) ◦ δ

K
Fq(V ),Fq(Fq−1 (L(X′))) ◦ [idK(Fq(V )) ⊗′ K((δFq,q−1)L(X′))

−1]

◦ [idK(Fq(V )) ⊗′ ξK(e)−1
L(X′)] ◦ [idK(Fq(V )) ⊗′ εF

′

K(L(X′))] ◦ [idK(Fq(V )) ⊗′ ϕX′ ]
(∗)
= [α′q,r,q−1(X ′)⊗′ idF ′q(K(V ))] ◦ [F ′q(F

′
r(ϕ
−1
F ′q(X

′)))⊗
′ idF ′q(K(V ))]

◦ [F ′q(F
′
r(K(ξL(q−1)X′)))

−1 ⊗′ idF ′q(K(V ))] ◦ [F ′q(ξ
K(r)Fq−1 (L(X′)))⊗′ idF ′q(K(V ))]

◦ (δ
F ′q
K(Fr(Fq−1 (L(X′)))),K(V ))

−1 ◦ F ′q(δKFr(Fq−1 (L(X′))),V )−1 ◦ ξK(q)Fr(Fq−1 (L(X′)))⊗′V

◦K(Fq(ΦV (Fq−1(L(X ′))))) ◦K(δ
Fq
V,Fq−1 (L(X′))) ◦ δ

K
Fq(V ),Fq(Fq−1 (L(X′)))

◦ [idK(Fq(V )) ⊗′ K((δFq,q−1)L(X′))
−1] ◦ [idK(Fq(V )) ⊗′ ξK(e)−1

L(X′)]

◦ [idK(Fq(V )) ⊗′ F ′e(ϕX′)] ◦ [idK(Fq(V )) ⊗′ εF
′

X′ ]

= [α′q,r,q−1(X ′)⊗′ idF ′q(K(V ))] ◦ (δ
F ′q
F ′r(F ′q(X

′)),K(V ))
−1 ◦ F ′q(F ′r(ϕF ′

q−1 (X′))
−1 ⊗′ idK(V ))

◦ F ′q(ξK(r)L(F ′q(X
′)) ⊗′ idK(V )) ◦ F ′q(K(Fr(ξ

L(q−1)X′))
−1 ⊗′ idK(V ))

◦ F ′q(δKFr(Fq−1 (L(X′))),V )−1 ◦ F ′q(K(ΦV (Fq−1(L(X ′))))) ◦ ξK(q)V⊗Fq−1 (L(X′))

◦K(δ
Fq
V,Fq−1 (L(X′))) ◦ δ

K
Fq(V ),Fq(Fq−1 (L(X′))) ◦ [idK(Fq(V )) ⊗′ K((δFq,q−1)L(X′))

−1]

◦ [idK(Fq(V )) ⊗′ ξK(e)−1
L(X′)] ◦ [idK(Fq(V )) ⊗′ F ′e(ϕX′)] ◦ [idK(Fq(V )) ⊗′ εF

′

X′ ]

= [α′q,r,q−1(X ′)⊗′ idF ′q(K(V ))] ◦ (δ
F ′q
F ′r(F ′q(X

′)),K(V ))
−1 ◦ F ′q(F ′r(ϕF ′

q−1 (X′))
−1 ⊗′ idK(V ))

◦ F ′q(ξK(r)L(F ′q(X
′)) ⊗′ idK(V )) ◦ F ′q(δKFr(L(F ′

q−1 (X′))),V )−1 ◦ F ′q(K(ΦV (L(F ′q−1(X ′)))))

◦ F ′q(K(idV ⊗′ ξL(q−1)−1
X′ )) ◦ F

′
q(δ

K
V,Fq−1 (L(X′))) ◦ δ

F ′q
K(V ),K(Fq−1 (L(X′)))
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◦ [ξK(q)V ⊗′ ξK(q)Fq−1 (L(X′))] ◦ [idK(Fq(V )) ⊗′ K((δFq,q−1)L(X′))
−1]

◦ [idK(Fq(V )) ⊗′ ξK(e)−1
L(X′)] ◦ [idK(Fq(V )) ⊗′ F ′e(ϕX′)] ◦ [idK(Fq(V )) ⊗′ εF

′

X′ ]

= [α′q,r,q−1(X ′)⊗′ idF ′q(K(V ))] ◦ (δ
F ′q
F ′r(F ′q(X

′)),K(V ))
−1 ◦ F ′q(F ′r(ϕF ′

q−1 (X′))
−1 ⊗′ idK(V ))

◦ F ′q(ξK(r)L(F ′q(X
′)) ⊗′ idK(V )) ◦ F ′q(δKFr(L(F ′

q−1 (X′))),V )−1 ◦ F ′q(K(ΦV (L(F ′q−1(X ′)))))

◦ F ′q(δKV,L(F ′
q−1 (X′))) ◦ δ

F ′q
K(V ),K(L(F ′

q−1 (X′))) ◦ [idF ′q(K(V )) ⊗′ F ′q(K(ξL(q−1)X′))
−1]

◦ [idF ′q(K(V )) ⊗′ ξK(q)Fq−1 (L(X′))] ◦ [idF ′q(K(V )) ⊗′ K((δFq,q−1)L(X′))
−1]

◦ [idF ′q(K(V )) ⊗′ ξK(e)−1
L(X′)] ◦ [idF ′q(K(V )) ⊗′ F ′e(ϕX′)] ◦ [idF ′q(K(V )) ⊗′ εF

′

X′ ] ◦ [ξK(q)V ⊗′ idX′ ]

= [α′q,r,q−1(X ′)⊗′ idF ′q(K(V ))] ◦ (δ
F ′q
F ′r(F ′q(X

′)),K(V ))
−1 ◦ F ′q(F ′r(ϕF ′

q−1 (X′))
−1 ⊗′ idK(V ))

◦ F ′q(ξK(r)L(F ′q(X
′)) ⊗′ idK(V )) ◦ F ′q(δKFr(L(F ′

q−1 (X′))),V )−1 ◦ F ′q(K(ΦV (L(F ′q−1(X ′)))))

◦ F ′q(δKV,L(F ′
q−1 (X′))) ◦ δ

F ′q
K(V ),K(L(F ′

q−1 (X′))) ◦ [idF ′q(K(V )) ⊗′ F ′q(K(ξL(q−1)X′))
−1]

◦ [idF ′q(K(V )) ⊗′ F ′q(ξK(q−1)L(X′))
−1] ◦ [idF ′q(K(V )) ⊗′ (δF

′

q,q−1)−1
K(L(X′))] ◦ [idF ′q(K(V )) ⊗′ F ′e(ϕX′)]

◦ [idF ′q(K(V )) ⊗′ εF
′

X′ ] ◦ [ξK(q)V ⊗′ idX′ ]
(∗∗)
= [α′q,r,q−1(X ′)⊗′ idF ′q(K(V ))] ◦ (δ

F ′q
F ′r(F ′q(X

′)),K(V ))
−1 ◦ F ′q(F ′r(ϕF ′

q−1 (X′))
−1 ⊗′ idK(V ))

◦ F ′q(ξK(r)L(F ′
q−1 (X′)) ⊗′ idK(V )) ◦ F ′q(δKFr(L(F ′

q−1 (X′))),V )−1 ◦ F ′q(K(ΦV (L(F ′q−1(X ′)))))

◦ F ′q(δKV,L(F ′
q−1 (X′))) ◦ F

′
q(idK(V ) ⊗′ ϕF ′

q−1 (X′)) ◦ δ
F ′q
K(V ),F ′

q−1 (X′)

◦ [idF ′q(K(V )) ⊗′ (δF
′

q,q−1)−1
X′ ] ◦ [idF ′q(K(V )) ⊗′ εF

′

X′ ] ◦ [ξK(q)V ⊗′ idX′ ]

= [α′q,r,q−1(X ′)⊗′ idF ′q(K(V ))] ◦ (δ
F ′q
F ′r(F ′q(X

′)),K(V ))
−1 ◦ F ′q(K ΦV (F ′q−1(X ′)))

◦ δF
′
q

K(V ),F ′
q−1 (X′) ◦ [idF ′q(K(V )) ⊗′ ∆′q(X ′)−1] ◦ [ξK(q)V ⊗′ idX′ ]

= [F ′qK ΦV (X ′)] ◦ [ξK(q)V ⊗′ idX′ ].

We will now explain the equalities
(∗)
= and

(∗∗)
= in somewhat more detail. It follows from

F ′q−1(ϕX′) = ξK(q−1)L(X′) ◦K(ξL(q−1)X′) ◦ ϕF ′
q−1 (X′)

that we have
(ξK(q−1)L(X′))

−1 ◦ F ′q−1(ϕX′) = K(ξL(q−1)X′) ◦ ϕF ′
q−1 (X′).

Taking the inverse on both sides results in

F ′q−1(ϕX′)
−1 ◦ ξK(q−1)L(X′) = ϕ−1

Fq−1 (X′) ◦K(ξL(q−1)X′)
−1,

which was used in the equality
(∗)
= above. For the other equality we first observe that

K(ξL(q−1)X′)
−1 ◦ (ξK(q−1)L(X′))

−1 ◦ F ′q−1(ϕX′) = ϕF ′
q−1 (X′).

Letting F ′q act on both sides, we get

F ′q(K(ξL(q−1)X′))
−1 ◦ F ′q(ξK(q−1)L(X′))

−1 ◦ F ′q(F ′q−1(ϕX′)) = F ′q(ϕF ′
q−1 (X′)).
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Using that
F ′q(F

′
q−1(ϕX′)) = (δF

′

q,q−1)−1
K(L(X′)) ◦ F

′
e(ϕX′) ◦ (δF

′

q,q−1)X′ ,

this gives us

F ′q(K(ξL(q−1)X′))
−1 ◦ F ′q(ξK(q−1)L(X′))

−1 ◦ (δF
′

q,q−1)−1
K(L(X′)) ◦ F

′
e(ϕX′) = F ′q(ϕF ′

q−1 (X′)) ◦ (δF
′

q,q−1)−1
X′ ,

which was used in the equality
(∗∗)
= above.

�

Using this lemma, for each (V, q,ΦV ) ∈ ZG(C) and q ∈ G we can define an isomorphism

ξK (q)(V,q,ΦV ) ∈ HomZG(C′)(K Fq[(V, q,ΦV )],F ′qK [(V, q,ΦV )])

by ξK (q)(V,q,ΦV ) := ξK(q)V . We will now show that (K , εK , δK , ξK ) is a G-functor from ZG(C) to ZG(C′).
To check naturality of ξK (q) for q ∈ G, let (V, q,ΦV ), (W, q,ΦW ) ∈ ZG(C) and f ∈ HomZG(C)((V, q,ΦV ), (W, q,ΦW )).
Then

ξK (q)(W,q,ΦW ) ◦K (Fq(f)) = ξK(q)W ◦K(Fq(f)) = F ′q(K(f)) ◦ ξK(q)V

= F ′q(K (f)) ◦ ξK (q)(V,q,ΦV ),

where in the second step we used naturality of ξK(q). If q, r ∈ G and (V, s,ΦV ) ∈ ZG(C), then

ξK (qr)(V,s,ΦV ) ◦K ((δFq,r)(V,s,ΦV )) = ξK(qr)V ◦K((δFq,r)V )

= (δF
′

q,r)K(V ) ◦ F ′q(ξK(r)V ) ◦ ξK(q)Fr(V )

= (δF
′

q,r)(K(V ),s,K ΦV ) ◦ F ′q(ξK (r)(V,s,ΦV )) ◦ ξK (q)(Fr(V ),rsr−1,FrΦV )

= (δF
′

q,r)K [(V,s,ΦV )] ◦ F ′q(ξK (r)(V,s,ΦV )) ◦ ξK (q)Fr[(V,s,ΦV )],

where in the second step we used that ξK is part of the data of a G-functor. For each (V, q,ΦV ) ∈ ZG(C)
we also have

εF
′

K [(V,q,ΦV )] = εF
′

K(V ) = ξK(e)V ◦K(εFV )

= ξK (e)(V,q,ΦV ) ◦K (εF(V,q,ΦV )).

Finally, if q ∈ G and (V, r,ΦV ), (W, s,ΦW ) ∈ ZG(C), then

ξK (q)(V,r,ΦV )⊗(W,s,ΦW ) = ξK (q)(V⊗W,rs,ΦV ⊗ΦW ) = ξK(q)V⊗W

= F ′q(δ
K
V,W ) ◦ δF

′
q

K(V ),K(W ) ◦ [ξK(q)V ⊗′ ξK(q)W ] ◦ (δKFq(V ),Fq(W ))
−1 ◦K(δ

Fq
V,W )−1

= F ′q(δK
(V,r,ΦV ),(W,s,ΦW )) ◦ δ

F ′q
K [(V,r,ΦV )],K [(W,s,ΦW )] ◦ [ξK (q)(V,r,ΦV ) ⊗′ ξK (q)(W,s,ΦW )]

◦ (δK
Fq [(V,r,ΦV )],Fq [(W,s,ΦW )])

−1 ◦K (δ
Fq
(V,r,ΦV ),(W,s,ΦW ))

−1.

We thus conclude that (K , εK , δK , ξK ) is a G-functor. Furthermore, since for each (V, q,ΦV ) ∈ ZG(C) we
have ∂′[(K(V ), q,K ΦV )] = q, it is in fact a G-crossed functor.

B.5 The G-crossed functor K is braided

We will now demonstrate that the G-crossed functor (K , εK , δK , ξK ) is braided.
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Lemma B.5.1 Let (V, q,ΦV ), (W, r,ΦW ) ∈ ZG(C). Then

K ΦV (K(W )) = [ξK(q)W ⊗′ idK(V )] ◦ (δKFq(W ),V )−1 ◦K(ΦV (W )) ◦ δKV,W

and the G-crossed functor (K , εK , δK , ξK ) is braided.

Proof. Using the natural isomorphism ψ : L ◦K → idC we get

K ΦV (K(W ))

= [F ′q(ϕK(W ))
−1 ⊗′ idK(V )] ◦ [ξK(q)L(K(W )) ⊗′ idK(V )] ◦ (δKFq(L(K(W ))),V )−1

◦K(ΦV (L(K(W )))) ◦ δKV,L(K(W )) ◦ [idK(V ) ⊗′ ϕK(W )]

= [F ′q(ϕK(W ))
−1 ⊗′ idK(V )] ◦ [ξK(q)L(K(W )) ⊗′ idK(V )] ◦ (δKFq(L(K(W ))),V )−1

◦K(ΦV (L(K(W )))) ◦K(idV ⊗ ψ−1
W ) ◦K(idV ⊗ ψW ) ◦ δKV,L(K(W )) ◦ [idK(V ) ⊗′ ϕK(W )]

= [F ′q(ϕK(W ))
−1 ⊗′ idK(V )] ◦ [ξK(q)L(K(W )) ⊗′ idK(V )] ◦ (δKFq(L(K(W ))),V )−1

◦K(Fq(ψW )−1 ⊗ idV ) ◦K(ΦV (W )) ◦ δKV,W ◦ [idK(V ) ⊗′ K(ψW )] ◦ [idK(V ) ⊗′ ϕK(W )]

= [F ′q(ϕK(W ))
−1 ⊗′ idK(V )] ◦ [F ′q(K(ψW ))−1 ⊗′ idK(V )] ◦ [ξK(q)W ⊗′ idK(V )]

◦ (δKFq(W ),V )−1 ◦K(ΦV (W )) ◦ δKV,W ◦ [idK(V ) ⊗′ K(ψW )] ◦ [idK(V ) ⊗′ ϕK(W )],

which is equivalent to

[ξK(q)W ⊗′ idK(V )] ◦ (δKFq(W ),V )−1 ◦K(ΦV (W )) ◦ δKV,W
= [F ′q(K(ψW ))⊗′ idK(V )] ◦ [F ′q(ϕK(W ))⊗′ idK(V )] ◦ [K ΦV (K(W ))]

◦ [idK(V ) ⊗′ ϕ−1
K(W )] ◦ [idK(V ) ⊗′ K(ψW )−1]

= K ΦV (K(W )),

where the second equality follows from naturality of K ΦV . But this can be rewritten in terms of morphisms
in ZG(C′) as

C ′(K(V ),q,K ΦV ),(K(W ),r,K ΦW ) = [ξK (q)(W,r,ΦW ) ⊗′ id(K(V ),q,K ΦV )] ◦ (δK
(Fq(W ),qrq−1,FqΦW ),(V,q,ΦV ))

−1

◦K (C(V,q,ΦV ),(W,r,ΦW )) ◦ δK
(V,q,ΦV ),(W,r,ΦW ),

which is precisely the condition for (K , εK , δK , ξK ) to be braided, so that it is in fact a braided G-crossed
functor.
�

B.6 ZG(C) ' ZG(C ′) as braided G-crossed categories

In the preceding sections we have shown how to construct a braided G-crossed functor

(K , εK , δK , ξK ) : ZG(C)→ ZG(C′)

from the G-functors (K, εK , δK , ξK) : C → C′ and (L, εL, δL, ξL) : C′ → C and the natural G-isomorphisms
ϕ : idC′ → K ◦L and ψ : L ◦K → idC . By interchanging the roles of K and L and interchanging the roles of
ϕ and ψ−1, it is trivial to see that we can also construct a braided G-crossed functor L : ZG(C′)→ ZG(C)
from the same collection of data. For future reference it will be convenient to have an explicit expression for
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the functor L . Analogues to K , we define the functor L on the objects of ZG(C′) by K [(V ′, q,ΦV ′)] :=
(L(V ′), q,L ΦV ′), where the half q-braiding L ΦV ′ for L(V ′) is given by

L ΦV ′(X) = [Fq(ψX)⊗ idL(V ′)] ◦ [ξL(q)K(X) ⊗ idL(V ′)] ◦ (δLF ′q(K(X)),V ′)
−1

◦ L(ΦV ′(K(X))) ◦ δLV ′,K(X) ◦ [idL(V ′) ⊗ ψ−1
X ]

for X ∈ C. On the morphisms L is defined as L (f ′) = L(f ′) and the εL , δL and ξL are given directly by
the εL, δL and ξL, in the same manner as we did for K .

We will now show that the functors K and L together set up an equivalence of braided G-crossed
categories.

Lemma B.6.1 If (V ′, q,ΦV ′) ∈ ZG(C′), then

ϕV ′ ∈ HomZG(C′)((V
′, q,ΦV ′), (K(L(V ′)), q,K L ΦV ′)).

Proof. For any X ′ ∈ C′ we have

K L ΦV ′(X
′)

= [F ′q(ϕX′)
−1 ⊗′ idK(L(V ′))] ◦ [ξK(q)L(X′) ⊗′ idK(L(V ′))] ◦ (δKFq(L(X′)),L(V ′))

−1

◦K(LV ′(L(X ′))) ◦ δKL(V ′),L(X′) ◦ [idK(L(V ′)) ⊗′ ϕX′ ]

= [F ′q(ϕX′)
−1 ⊗′ idK(L(V ′))] ◦ [ξK(q)L(X′) ⊗′ idK(L(V ′))] ◦ (δKFq(L(X′)),L(V ′))

−1

◦K(Fq(ψL(X′))⊗ idL(V ′)) ◦K(ξL(q)K(L(X′)) ⊗ idL(V ′)) ◦K(δLF ′q(K(L(X′))),V ′)
−1

◦K(L(ΦV ′(K(L(X ′))))) ◦K(δLV ′,K(L(X′))) ◦K(idL(V ′) ⊗ ψ−1
L(X′))

◦ δKL(V ′),L(X′) ◦ [idK(L(V ′)) ⊗′ ϕX′ ]

= [F ′q(ϕX′)
−1 ⊗′ idK(L(V ′))] ◦ [F ′q(K(ψL(X′)))⊗′ idK(L(V ′))]

◦ [ξK(q)L(K(L(X′))) ⊗′ idK(L(V ′))] ◦ [K(ξL(q)K(L(X′)))⊗′ idK(L(V ′))]

◦ (δKL(F ′q(K(L(X′)))),L(V ′))
−1 ◦K(δLF ′q(K(L(X′))),V ′)

−1 ◦K(L(ΦV ′(K(L(X ′)))))

◦K(δLV ′,K(L(X′))) ◦ δ
K
L(V ′),L(K(L(X′))) ◦ [idK(L(V ′)) ⊗′ K(ψL(X′))

−1] ◦ [idK(L(V ′)) ⊗′ ϕX′ ]
(∗)
= [F ′q(ϕX′)

−1 ⊗′ idK(L(V ′))] ◦ [F ′q(K(ψL(X′)))⊗′ idK(L(V ′))]

◦ [(ξK � ξL)(q)K(L(X′)) ⊗′ idK(L(V ′))] ◦ ((δK � δL)F ′q(K(L(X′))),V ′)
−1 ◦K(L(F ′q(ϕX′)⊗′ idV ′))

◦ ϕF ′q(X′)⊗′V ′ ◦ ΦV ′(X
′) ◦ ϕ−1

V ′⊗′X′ ◦K(L(idV ′ ⊗′ ϕ−1
X′ ))

◦ (δK � δL)V ′,K(L(X′)) ◦ [idK(L(V ′)) ⊗′ K(ψL(X′))
−1] ◦ [idK(L(V ′)) ⊗′ ϕX′ ]

= [F ′q(ϕX′)
−1 ⊗′ idK(L(V ′))] ◦ [F ′q(K(ψL(X′)))⊗′ idK(L(V ′))] ◦ [F ′q(K(L(ϕX′)))⊗′ idK(L(V ′))]

◦ [(ξK � ξL)(q)X ⊗′ idK(L(V ′))] ◦ ((δK � δL)F ′q(X′),V ′)
−1 ◦ ϕF ′q(X′)⊗′V ′ ◦ ΦV ′(X

′) ◦ ϕ−1
V ′⊗′X′ ◦ (δK � δL)V ′,X′

◦ [idK(L(V ′)) ⊗′ K(L(ϕX′))
−1] ◦ [idK(L(V ′)) ⊗′ K(ψL(X′))

−1] ◦ [idK(L(V ′)) ⊗′ ϕX′ ]
= [F ′q(ϕX′)

−1 ⊗′ idK(L(V ′))] ◦ [F ′q(K(ψL(X′)))⊗′ idK(L(V ′))] ◦ [F ′q(K(L(ϕX′)))⊗′ idK(L(V ′))]

◦ [(ξK � ξL)(q)X ⊗′ idK(L(V ′))] ◦ [ϕF ′q(X′) ⊗
′ ϕV ′ ] ◦ ΦV ′(X

′) ◦ [ϕ−1
V ′ ⊗

′ ϕ−1
X′ ]

◦ [idK(L(V ′)) ⊗′ K(L(ϕX′))
−1] ◦ [idK(L(V ′)) ⊗′ K(ψL(X′))

−1] ◦ [idK(L(V ′)) ⊗′ ϕX′ ]
= [idF ′q(X′) ⊗

′ ϕV ′ ] ◦ [F ′q(ϕX′)
−1 ⊗′ idV ′ ] ◦ [F ′q(K(ψL(X′)))⊗′ idV ′ ]

◦ [F ′q(K(L(ϕX′)))⊗′ idV ′ ] ◦ [F ′q(ϕX′)⊗′ idV ′ ] ◦ ΦV ′(X
′) ◦ [idV ′ ⊗′ ϕ−1

X′ ]
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◦ [idV ′ ⊗′ K(L(ϕX′))
−1] ◦ [idV ′ ⊗′ K(ψL(X′))

−1] ◦ [idV ′ ⊗′ ϕX′ ]
◦ [ϕ−1

V ′ ⊗
′ idX′ ]

= [idF ′q(X′) ⊗
′ ϕV ′ ] ◦ ΦV ′(X

′) ◦ [ϕ−1
V ′ ⊗

′ idX′ ],

where in the last step we used naturality of ΦV ′ . We have thus shown that

K L ΦV ′(X
′) ◦ [ϕV ′ ⊗′ idX′ ] = [idF ′q(X′) ⊗

′ ϕV ′ ] ◦ ΦV ′(X
′),

which is what we had to prove. We will now explain the step
(∗)
= in some more detail. By naturality of ϕ

we have
K(L(ΦV ′(X

′))) = ϕF ′q(X′)⊗′V ′ ◦ ΦV ′(X
′) ◦ ϕ−1

V ′⊗′X′

and by naturality of ΦV ′ we have

ΦV ′(K(L(X ′))) = [F ′q(ϕX′)⊗′ idV ′ ] ◦ ΦV ′(X
′) ◦ [idV ′ ⊗′ ϕ−1

X′ ].

Combining these two expressions, we obtain

K(L(ΦV ′(K(L(X ′)))))

= K(L(F ′q(ϕX′)⊗′ idV ′)) ◦K(L(ΦV ′(X
′))) ◦K(L(idV ′ ⊗′ ϕ−1

X′ ))

= K(L(F ′q(ϕX′)⊗′ idV ′)) ◦ ϕF ′q(X′)⊗′V ′ ◦ ΦV ′(X
′) ◦ ϕ−1

V ′⊗′X′ ◦K(L(idV ′ ⊗′ ϕ−1
X′ )).

�

Using this lemma, we can define for each (V ′, q,ΦV ′) ∈ ZG(C′) the isomorphism

ϕ̃(V ′,q,ΦV ′ )
∈ HomZG(C′)((V

′, q,ΦV ′),K L [(V ′, q,ΦV ′)])

by ϕ̃(V ′,q,ΦV ′ )
:= ϕV ′ . We will now show that this defines a natural braided G-crossed isomorphism from

idZG(C′) to K ◦L . To prove naturality, let f ′ ∈ HomZG(C′)((V
′, q,ΦV ′), (W

′, q,ΦW ′)). Then

ϕ̃(W ′,q,ΦW ′ )
◦ f ′ = ϕW ′ ◦ f ′ = K(L(f ′)) ◦ ϕV ′ = K (L (f ′)) ◦ ϕ̃(V ′,q,ΦV ′ )

,

where in the second step we used naturality of ϕ. We also have

εK �L = εK�L = ϕI′ = ϕ̃(I′,e,Φ0
I′ )
,

where in the second step we used that ϕ is a natural tensor isomorphism. Also, if (V ′, q,ΦV ′) and
(W ′, r,ΦW ′) are objects in ZG(C′), then

ϕ̃(V ′⊗′W ′,qr,ΦV ′⊗′ΦW ′ ) = ϕV ′⊗′W ′ = (δK � δL)V ′,W ′ ◦ [ϕV ′ ⊗′ ϕW ′ ]
= (δK � δL )(V ′,q,ΦV ′ ),(W

′,r,ΦW ′ )
◦ [ϕ̃(V ′,q,ΦV ′ )

⊗′ ϕ̃(W ′,r,ΦW ′ )
],

where in the second step we used that ϕ is a natural tensor isomorphism. This shows that ϕ̃ is a natural
tensor isomorphism. If q ∈ G and (V ′, r,ΦV ′) ∈ ZG(C′), then

F ′q(ϕ̃(V ′,r,ΦV ′ )
) = F ′q(ϕV ′) = (ξK � ξL)(q)V ′ ◦ ϕF ′q(V ′)

= (ξK � ξL )(q)(V ′,r,ΦV ′ )
◦ ϕ̃F ′q [(V ′,r,ΦV ′ )],

showing that ϕ̃ is a natural G-isomorphism, and hence a natural braided G-crossed isomorphism. In exactly
the same manner one can construct a natural braided G-crossed isomorphism ψ̃ : L ◦K → idZG(C). Thus
ZG(C) and ZG(C′) are equivalent as braided G-crossed categories.
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Summary

In modern physics, space and time are described together as four-dimensional spacetime by the theory of
relativity. The laws of nature for microscopic particles are described by quantum theory. When combining
the theory of relativity with quantum theory, it becomes very natural to describe everything in terms of
fields, thus giving rise to what is called quantum field theory (QFT). Although QFT is very accurate in
describing physical phenomena, it is a theory that has not been made completely mathematically rigorous.
Several attempts have been made to make QFT mathematically rigorous, one of which is called algebraic
quantum field theory (AQFT), which has played a major role in our research. In AQFT one assigns to each
region O of spacetime an operator algebra A(O), i.e.

O 7→ A(O),

where the operator algebra A(O) is called an algebra of local observables. The elements in the algebra A(O)
are interpreted as the mathematical objects that describe the physical quantities that can be observed in
the region O of spacetime. We are especially interested in the case where spacetime is only one-dimensional,
because in this case some interesting features occur that are not present in the case of a four-dimensional
spacetime, as we will explain below. We also assume that there is a group G acting on the AQFT, which
is often called a gauge group by physicists. We will simpy refer to this entire setting as an AQFT with a
G-action.

As for many abstract algebraic concepts in mathematics, it is common to study certain of their concrete
realizations in order to understand them better. These concrete realizations are also called representations.
The starting point for our research was the study of the class of so-called localized representations of an
AQFT A with a G-action. The nice feature of these localized representations is that together they form a
mathematical structure Locf (A) that is called a braided G-category. The braiding is a typical property of
the low-dimensional spacetime, since in higher-dimensional spacetime the braiding is always a symmetry, so
that we obtain only a symmetric G-category. Besides the localized representations, one can also consider the
more general class of G-localized representations of the AQFT A. These form a braided G-crossed category
G− Locf (A) that is a braided G-crossed extension of Locf (A).

In the beginning we were especially interested whether it was possible for a certain special class of
AQFTs A with a G-action to construct G − Locf (A) from Locf (A) by using purely categorical methods.
This question about representations in AQFT led us to the more general question of whether it is possible
to find a method to extend a braided G-category C to a braided G-crossed category D, which contains C as
its part with trivial degree. This more general question led us to the construction of a braided G-crossed
category ZG(C) from any (not necessarily braided) G-category C. This construction is a generalization of
the construction of the Drinfeld center Z(C) of a tensor category C. We prove several non-trivial properties
of ZG(C) and although ZG(C) is not a braided G-crossed extension of C (in the sense that the part of ZG(C)
with trivial degree does not coincide with C in general), we show that ZG(C) does have some nice internal
structure in case some braided G-crossed extensions of C exist inside of ZG(C).
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Samenvatting (Dutch summary)

In de moderne natuurkunde worden ruimte en tijd samen beschreven als vier-dimensionale ruimtetijd in
de relativiteitstheorie. De natuurwetten voor microscopisch kleine deeltjes worden beschreven in de kwan-
tumtheorie. Wanneer de relativiteitstheorie gecombineerd wordt met kwantumtheorie, wordt het al gauw
heel natuurlijk om alles in termen van velden te beschrijven en op die manier verkrijgt men dus de zoge-
naamde kwantumveldentheorie. Hoewel deze theorie erg nauwkeurig is in het beschrijven van natuurkundige
fenomenen, is het een theorie die niet volledig wiskundig onderbouwd is. Er zijn diverse pogingen gedaan
om kwantumveldentheorie wiskundig te formuleren, één daarvan is de algebräısche kwantumveldentheorie,
welke een prominente rol heeft gespeeld in ons onderzoek. In algebräısche kwantumveldentheorie kent men
aan elk gebied O in de ruimtetijd een operator algebra A(O) toe, i.e.

O 7→ A(O),

waarbij de operator algebra A(O) ook wel een algebra van lokale observabelen genoemd wordt. De elementen
van de algebra A(O) worden gëınterpreteerd als de wiskundige objecten die de natuurkundige grootheden
beschrijven die waargenomen kunnen worden in het gebied O in de ruimtetijd. Wij zijn vooral gëınter-
esseerd in het geval waarbij de ruimtetijd één-dimensionaal is, omdat in dit geval bijzondere eigenschappen
plaatsvinden die niet aanwezig zijn in vier-dimensionale ruimtetijd, zoals we hieronder zullen toelichten.
We nemen ook aan dat er een groep G is, ook wel een ijkgroep genoemd door natuurkundigen, die werkt
op de kwantumveldentheorie. Wij zullen simpelweg refereren aan deze hele setting als een algebräısche
kwantumveldentheorie met een G-werking.

Zoals vaker voor abstract algebräısche concepten in de wiskunde, is het gebruikelijk om zekere concrete
realisaties ervan te bestuderen om ze zo beter te begrijpen. Deze concrete realisaties heten ook wel rep-
resentaties. Het beginpunt voor ons onderzoek was de studie van de klasse van zogenaamde gelokaliseerde
representaties van een algebräısche kwantumveldentheorie A met een G-werking. De mooie eigenschap
van deze gelokaliseerde representaties is dat ze samen een wiskundige structuur Locf (A) vormen die ook
wel een gevlochten G-categorie heet. De vlechting is een typische eigenschap van de laag-dimensionale
ruimtetijd, omdat in hoger dimensionale ruimtetijd deze vlechting altijd een symmetrie is, zodat men
slechts een symmetrische G-categorie verkrijgt. Behalve de gelokaliseerde representaties kan men ook de
meer algemene G-gelokaliseerde representaties van A beschouwen. Deze vormen een gevlochten G-gekruiste
categorie G− Locf (A) die een G-gekruiste extensie is van Locf (A).

In het begin waren we vooral gëınteresseerd in de vraag of het mogelijk is om voor een zekere speciale
klasse van algebräısche kwantumveldentheorieën met een G-werking de categorie G−Locf (A) te construeren
uit Locf (A) door puur categorische methoden te gebruiken. Deze vraag over representaties in algebräısche
kwantumveldentheorie leidde ons tot de meer algemene vraag of het mogelijk is om een methode te vinden
om een gevlochten G-categorie C uit te breiden tot een gevlochten G-gekruiste categorie D, die C bevat als
het deel met triviale graad. Deze meer algemene vraag leidde ons tot de constructie van een gevlochten
G-gekruiste categorie ZG(C) uit een (niet noodzakelijk gevlochten) G-categorie C. Deze constructie is een
generalisatie van de constructie van het Drinfeld centrum Z(C) van een tensor categorie C. We bewijzen
diverse niet-triviale eigenschappen van ZG(C) en hoewel ZG(C) niet een gevlochten G-gekruiste extensie is
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van C (in de zin dat het deel van ZG(C) met triviale graad in het algemeen niet samenvalt met C), laten we
zien dat ZG(C) wel een mooie interne structuur heeft indien er bepaalde gevlochten G-gekruiste extensies
van C bestaan binnen ZG(C).
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