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Abstract

This is a personal review of the logic of quantum mechanics, with special emphasis
on spatial aspects. My views originated in the topos-theoretical approach to quantum
theory pioneered by Isham (initially with Butterfield and subsequently with Döring),
in the form developed by Caspers, Heunen, Spitters, Wolters, and the author at Nij-
megen, but the conclusion, namely that quantum logic is intuitionistic and is described
by a specific Heyting lattice Q(A) one may associate to each (unital) C*-algebra A,
is somehow independent of this origin. Indeed, the derivation of this Heyting lattice
from topos theory will only be reviewed very briefly at the end of the paper, whose
emphasis is rather on the relationship between the dualities associated with the names
of Stone, Birkhoff, Priestely, and Esakia (all in lattice theory), and of course Gelfand.

1 Introduction

Any new approach to some topic that has already been studied by serious people in the
past comes with the obligation to explain its necessity. Quantum logic is no exception in
this regard, especially since it was founded by the greatest mathematician and logician
ever to have occupied himself with quantum mechanics, namely von Neumann; see von
Neumann (1932) for the fundamental role of projections, and Birkhoff & von Neumann
(1936) for the subsequent formalization of quantum logic in terms of specific non-Boolean
lattices (initially taken to be modular lattices, later generalized to orthomodular lattices).

A noteworthy aspect of the approach of Birkhoff and von Neumann, which will also
be adopted in our own theory, is its semantic nature: unlike traditional twentieth-century
logic, which starts from syntax and subsequently moves on to semantics (i.e. model theory),
they defined their quantum logic directly through its class of models. Indeed, they con-
ceptually based their model of quantum logic on Boole’s models for classical propositional
logic, in which (in a physical setting) elementary propositions correspond to (measur-
able) subsets of phase space M (up to sets of measure zero). Birkhoff and von Neumann
first recalled that such sets (or equivalence classes thereof) define a Boolean lattice under
the obvious partial order A ≤ B iff A ⊆ B (which gives rise to the lattice operations
A ∨ B = A ∪ B and A ∧ B = A ∩ B) and the complementation A′ = Ac = M\A. In
particular, this lattice is distributive and satisfies the law of the excluded middle

A ∨A′ = >, (1)

where > (often called 1) is the top element of the lattice (given by M itself).
Using von Neumann’s own mathematical formalism for quantum mechanics, in which

each physical system is no longer associated with a phase space but with a Hilbert space

1To appear in New Spaces in Mathematics and Physics, eds. M. Anel & G. Catren (CUP 2019).



H, and each elementary proposition is interpreted by a closed linear subspace L ⊆ H,
Birkhoff and von Neumann observed that the set L(H) of all such L again forms a lattice
under the natural partial ordering (i.e. inclusion), which this time gives rise to the lattice
operations L∨M = L+M (i.e. the closed linear span of L and M), and L∧M = L∩M
(the same as in the classical case). They observed that this lattice is no longer distributive
(unless dim(H) = 1), but, with the obvious (ortho)complementation L′ = L⊥ (i.e. the
orthogonal complement of L in H), it still satisfies the law of the excluded middle.2

All this is easy to generalize if we identify the above lattice L(H) of all closed subspaces
of H with the lattice P(B(H)) of all projections on H (here B(H) is the algebra of all
bounded operators on H, of which an element e is a projection iff e2 = e∗ = e); if
M ⊂ B(H) is a von Neumann algebra, then its subset of projections P(M) inherits the
lattice structure of P(B(H)) ∼= L(H), so that each von Neumann algebra (nomen est
omen!) defines a quantum logic in the spirit of Birkhoff and von Neumann (Rédei, 1998).

However, looking at cases like Schrödinger’s Cat–at least in the naive view that it is
neither alive nor dead, which view may be wrong for macroscopic objects (Landsman, 2017)
but which certainly holds for microscopic ones–and also submitting that distributivity
simply cannot be given up if ∧ and ∨ are to preserve anything remotely similar to their
usual logical meanings “and” and “or”, one cannot avoid the impression that despite its
novelty and interest, the quantum logic proposed by Birkhoff and von Neumann is:

• too radical in giving up distributivity (rendering it problematic to interpret the
logical operations ∧ and ∨ as conjunction and disjunction, respectively);

• not radical enough in keeping the law of excluded middle, which is precisely what
an “intuition pump” like Schrödinger’s cat challenges.

Thus it would be preferable to have a quantum logic with exactly the opposite features,
i.e., one that remains distributive but drops the law of the excluded middle. This suggest
the use of intuitionistic logic for quantum mechanics, and actually finding appropriate
models thereof has been the main outcome of the quantum toposophy program so far.3

The aim of this paper is to put the intuitionistic quantum logic discovered through the
topos approach in the light of the great (categorical) dualities that on the one hand deserve
the name “spatial”, and on the other hand are somehow related to logic, namely Gelfand
duality in (commutative) C*-algebra theory, reconsidered in §2, and the dualites in lattice
theory named after Stone, Birkhoff, Priestely, and Esakia, which will be reviewed in §§3, 4.
In §5 we show how all of these dualities culminate in our models for intuitionistic quantum
logic, which, more or less as an afterthought, are finally derived from topos theory in §6.

2Birkhoff and von Neumann noted that if one works with all linear subspaces of H instead of the closed
ones (in which case L ∨M = L + M), their lattice satisfies a weakened version of distributivity, in that
L ≤ N implies L ∨ (M ∧ N) = (L ∨M) ∧ N for each M (i.e., if distributivity holds merely if L ≤ N).
This is called the modular law ; it was later shown that their actual lattice of closed subspaces satisfies the
modular law at least for M = L⊥. Such lattices are called orthomodular ; orthomodularity is equivalent to
the perhaps more appealing condition that the compatibility relation

c∼ on P(H) is symmetric (i.e. L
c∼M

iff M
c∼ L), where we say that L

c∼M iff L = (L∧M)∨(L∧M⊥), i.e., the associated projections commute.
3Although the initial goals of the topos-theoretic approach to quantum mechanics were quite a bit more

ambitious, including quantum gravity and the associated development of an entirely new language for
theoretical physics–cf. the founding literature on the subject starting with Isham & Butterfield (1998) and
ending with the review by Döring & Isham (2010)–in my view topos theory is best (and more modestly) seen
as a tool providing a new approach to quantum logic. See Caspers, Heunen, Landsman, & Spitters (2009),
Heunen, Landsman, & Spitters (2009; 2012), Heunen, Landsman, Spitters, & Wolters (2012), Landsman
(2017a), Hekkelman (2018), and Rutgers (2018) for our side of the program, and Wolters (2013ab) for a
comparison between the ‘contravariant’ approach of Isham et al and the ‘covariant’ Nijmegen approach.
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2 Gelfand duality revisited

Our approach to Gelfand duality (as well as to all other topics treated in this paper) will
be constructive, which not only means that proofs by reductio ad absurdum, the law of the
excluded middle, and the Axiom of Choice are disabled, but also that the use of points is
eschewed; instead, one relies on open sets as much as possible.4 To this end, recall that a
frame is a complete lattice L that is “infinitely distributive” in that

x ∧
∨
S =

∨
{x ∧ y, y ∈ S}, (2)

for arbitrary subsets S ⊂ L. Frame homomorphism by definition preserve finite infima
and arbitrary suprema. This defines the category Frm of frames, whose opposite category
is called the category Loc of locales. Thus a locale is the same thing as a frame, seen
however as an object in the opposite category.5 The motivating example of a frame is the
topology O(X) of a space X, partially ordered by set-theoretic inclusion. Not all frames
are toplogies, though (see also below), and this fact makes the following notation used
in constructive mathematics pretty confusing: any frame is denoted by O(X) and the
corresponding locale is called X whether or nor the given frame is a topology, and despite
the fact that even if it is, the locale is actually O(X) rather than the space X. Oh well!

A simple frame is 2 = {0, 1} ≡ {⊥,>}, with order 0 ≤ 1; this is just the topology O(1)
of a singleton 1. A frame map p−1 : O(X)→ 2 is the same as a locale map p : 1→ X and
defines a point of the locale X. We denote the set of points of X by Pt(X). If O(X) is
the topology of some space X, then each point x ∈ X corresponds to a map

px : 1→ X, px(1) = x; (3)

whose inverse image map p−1
x : O(X) → 2 is frame map and hence defines a point in the

above sense. Conversely, if X is sober (see below), each point of O(X) arise in that way.
The set Pt(X) has a natural topology, with opens

Pt(U) = {p ∈ Pt(X) | p(1) ∈ U}, (4)

where U ∈ O(X); here p(1) ∈ U really means p−1(U) = 1. This gives a frame map

O(X)→ Pt(X); (5)

U 7→ Pt(U). (6)

A frame O(X) (or the corresponding locale X) is called spatial if this map is an isomor-
phism. Spatial frames are topologies, but this does not mean that any topology O(X)
is isomorphic (as a frame) to O(Pt(X)), since Pt(X) may not be homeomorphic to X.
Spaces X for which this is the case are called sober ; more precisely, in that case the map

X → Pt(X); (7)

x 7→ px, (8)

is a homeomorphism. Thus a sober space X may be reconstructed (up to homeomorphism)
from its topology O(X). The category Frm has a full subcategory Spat of spatial frames,

4See Johnstone (1983) for motivation, and also Mac Lane & Moerdijk (1992) for some of what follows.
5See Johnstone (1982) and Picado & Pultr (2012).
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likewise the category Top of topological spaces has a full subcategory Sob of sober spaces,
and it is well known (cf. e.g. Mac Lane & Moerdijk, 1992, §IX.3, Corollary 4) that

Spat ' Sobop, (9)

i.e., the categories Spat and Sob are dual (here Cop is the opposite category C): if X is a
sober space, then O(X) is a spatial frame, and if O(X) is a spatial frame, then Pt(X) is
a sober space (with the obvious choices of maps making these associations functorial).

For later use (in Gelfand duality), we mention that a frame O(X) with top element >
(which exists because O(X) is a complete lattice, whence > =

∨
O(X)) is called compact

if every subset S ⊂ O(X) with
∨
S = > has a finite subset F ⊂ S with

∨
F = >.

Furthermore, O(X) is regular if each V ∈ O(X) satisfies

V =
∨
{U ∈ O(X) | U � V }, (10)

where U � V iff there exists W such that U ∧W = ⊥ and V ∨W = >.6 If some frame
O(X) is a topology, then O(X) is compact and regular iff X is compact and Hausdorff.

Gelfand duality, at last, states, in its simplest form,7 that one has a duality

CCA1 ' CHop, (11)

where CCA1 is the category of commutative unital C*-algebras and unital homomorphims
(by which we mean ∗-homomorphisms), CH is the category of compact Hausdorff spaces
and continuous maps, and ' denotes equivalence of categories. The idea of the proof is to
map a unital C*-algebra A into its Gelfand spectrum Σ(A), which consists of all nonzero
multiplicative linear functionals A→ C (or, equivalently, of all pure states on A), equipped
with the topology of pointwise convergence (in which Σ(A) is compact and Hausdorff);
in the opposite direction, a compact Hausdorff space X is sent to the algebra C(X)
of continuous functions X → C with pointwise operations and the supremum-norm (in
which C(X) is a commutative unital C*-algebra). Functorially, any unital homomorphism
ϕ : A → B induces a pullback ϕ∗ : Σ(B) → Σ(A), and similarly any continuous map
f : X → Y induces a pullback f∗ : C(Y )→ C(X). In particular, eq. (11) implies

A ∼= C(Σ(A)), a 7→ â; (12)

X ∼= Σ(C(X)), x 7→ evx, (13)

where â : Σ(A)→ C is the Gelfand transform of a, neatly defined by â(ω) = ω(a), and
evx : C(X)→ C is the evaluation map at x ∈ X, i.e. evx(f) = f(x).

All (known) proofs of Gelfand duality are non-constructive, typically relying on either
Zorn’s Lemma (in realizations of Σ(A) through maximal ideals, as in Gelfand’s original
approach) or on the (equivalent) Hahn–Banach Theorem (in the above definition of Σ(A)).
Constructive versions of Gelfand duality therefore change the statement of the theorem.

6Note that U � V implies U ≤ V , since U = U ∧ (V ∨W ) = (U ∧ V ) ∨ (U ∧W ) = U ∧ V ≤ V .
7Less elementary forms of Gelfand duality refer to the non-unital/non-compact case. One version is

CCAn ' LCHpop, where CCAn is the category of commutative C*-algebras with nondegenerate homomor-
phisms and LCHp is the category of locally compact Hausdorff spaces and proper continuous maps. This
easily follows from unitization, i.e. adding a formal unit to a C*-algebra without one, see e.g. Landsman
(2017), §C.6. Another, due to An Huef, Raeburn, & Williams (2010), is CCAm ' LCHop, where CCAm is
the category of commutative C*-algebras with nondegenerate homomorphims into the multiplier algebra
as arrows and LCH is the category of locally compact Hausdorff spaces and continuous maps. As far as I
know, the explicit categorical perspective on Gelfand duality goes back to Negrepontis (1969).
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In the most radical approach (Henry, 2014ab) both sides of the duality are changed:
instead of C*-algebras one uses so-called localic C*-algebras, whilst compact Hausdorff
spaces are replaced by compact regular locales. It is enough for our purposes to make the
second change but not the first; this slightly less radical approach to Gelfand duality goes
back to Banaschewski & Mulvey (2006) and was continued by Coquand & Spitters (2009).

Constructive Gelfand duality, then, states that CCA1 is dual to the category of compact
regular locales (i.e., equivalent to the category of compact regular frames). Of course, the
point is to define the constructive Gelfand spectrum O(Σ(A)) directly from A as a frame
(or locale), rather than as the topology of the underlying space Σ(A).8 This may be done
as follows.9 A hereditary subalgebra of a C*-algebra A is a C∗-subalgebra H of A with
the property that a ≤ b for b ∈ H+ and a ∈ A+ implies a ∈ H+.10 The set of all hereditary
subalgebras of A is denoted by H(A). Similarly, the set of all closed left (right) ideals in
A is called L(A) (R(A)), and the closed two-sided ideals are denoted by I(A). It is easy
to show that there are bijective correspondences between hereditary subalgebras H of A,
closed left ideals L of A, and closed right ideals R of A, given by:

L = {a ∈ A | a∗a ∈ H+}; (14)

R = {a ∈ A | aa∗ ∈ H+}; (15)

H = L ∩ L∗ = R ∩R∗. (16)

The set H(A) is a complete lattice in the partial order given by set-theoretic inclusion,
with inf and sup of any subset S ⊂ H(A) given by∧

S =
⋂
S; (17)∨

S =
⋂
{I ∈ H(A) | I ⊇ J for all J ∈ S}. (18)

If A is commutative, with Gelfand spectrum Σ(A), then H(A) is a frame, and one has

O(Σ(A)) ∼= H(A), (19)

as a frame isomorphism. Moreover, in that case L∗ = L, R∗ = R, and L = R = H, so

H(A) = I(A) = L(A) = R(A). (20)

In the usual description, where Σ(A) is a space, the map U 7→ C0(U) provides an iso-
morphism (where U ∈ O(Σ(A)), i.e. U ⊂ Σ(A) is open), but constructively it is best to
simply define the constructive Gelfand spectrum O(Σ(A)) as H(A). If this is taken as the
starting point (and it will), then the connection with the usual theory is as follows:11

8Indeed, in most toposes different from the topos of sets (cf. Mac Lane & Moerdijk, 1992) the classical
Gelfand spectrum does not even exist.

9The following construction of O(Σ(A)) is taken from Landsman (2017a), §C.11, inspired by Akemann
& Bice (2014). In the references cited in footnote 3 we used a much more complicated construction, adopted
from Coquand & Spitters (2009). I did not redo our computation of O(Σ(A)) in terms of H(A), but the
result should be the same. It should be mentioned, though, that the proof of the constructive formulation
of Gelfand duality by Coquand & Spitters (2009) is in fact constructive, whereas my proof of (19) is not.

10Here A+ is the positive cone in A, defined for example as A+ = {a∗a | a ∈ A}, and for self-adjoint a
and b we say that a ≤ b iff b− a ∈ A+ (so that in particular b ≥ 0 iff b ∈ A+).

11A prime element P ∈ O(X) of some frame O(X) is an element P 6= > such that U∧V ≤ P iff U ≤ P
or V ≤ P . For a point p−1 : O(X) → 2, we write ker(p−1) for {U ∈ O(X) | p−1(U) = 0}. For any frame
O(X) (i.e. locale X), there is a bijective correspondence between points p−1 : O(X)→ 2 of X and prime
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1. The frame H(A) of hereditary subalgebras of a commutative C*-algebra A is spatial,
with Pt(H(A)) ∼= Σ(A) as topological spaces.

2. The prime elements of H(A) are the maximal ideals of A, so that, equipping the set
M(A) of maximal ideals of A with the Zariski topology, we have M(A) ∼= Σ(A).

3. The Gelfand isomorphism (12) of the classical theory is replaced by

A ∼= Frm(O(C), H(A)), (21)

where we refrain from using the notation O(H(A)) for the frame H(A), as the under-
lying locale will not occur. In general, Frm(O(Y ),O(X)) = HomFrm(O(Y ),O(X))
denotes the set of frame maps f−1 : O(Y ) → O(X), often written as Loc(X,Y ) or
HomLoc(X,Y ) or (confusingly) even as C(X,Y ), since in the spatial case these are
precisely the continuous maps f : X → Y ; with inverse image maps f−1 as above.
Because of this, eqs. (19) and (21) recover the classical Gelfand isomorphism (12).

For example, if A is finite-dimensional (and still commutative), so that A ∼= Cn, we have

P(A)
∼=−→ H(A); (22)

e 7→ eA = {a ∈ A | ea = a}. (23)

Indeed, if A = Cn, so that a ∈ A is an n-tuple (a0, . . . , an−1) with ak ∈ C, then each
projection e = (e0, . . . , en−1) ∈ P(Cn) is an n-tuple whose only entries are 0 and 1; the
pertinent isomorphism P(Cn) → H(Cn) then maps e to the ideal e · Cn consisting of all
(a0, . . . , an−1) ∈ Cn such that ak = 0 if ek = 0 (k = 0, . . . , n− 1). Equivalently,

P(Cn) ∼= P (n); (24)

H(Cn) ∼= P (n), (25)

where the natural number n is seen (à la von Neumann) as the set {0, 1, . . . , n− 1}, and
P (n) is its power set (partially ordered, as always, by inclusion). The (frame) isomorphism
(24) comes from the bijection P (n)→ P(Cn) that maps s ∈ P (n) to the projection e with
ek = 1 iff k ∈ s (and hence ek = 0 iff k /∈ s), whilst (25) is the bijection P (n) → H(Cn)
that maps s ⊂ n to the ideal Is = {a ∈ Cn | ak = 0∀ k /∈ s}. Similarly,

P(A)
∼=−→ O(Σ(A)) = P (Σ(A)); (26)

e 7→ {ϕ ∈ Σ(A) | ϕ(e) = 1}. (27)

It is enough to prove this for the special case A = Cn, where Σ(Cn) ∼= n under the bijection
n → Σ(Cn) given by k 7→ ϕk, where ϕk(a) = ak (k ∈ n), and hence O(Σ(Cn)) ∼= P (n),
i.e., the discrete topology on n. For one thing, together with (24) this reproduces (26) -
(27). Furthermore, we obtain the classical Gelfand isomorphism A→ C(n) as a 7→ â with
â(k) = ak, as well as the constructive Gelfand isomorphism (21) as a 7→ ã, with

ã : O(C)→ P (n); (28)

U 7→ {k ∈ n | ak ∈ U}. (29)

elements P ∈ O(X), given by P =
∨

ker(p−1) and p−1(U) = 0 iff U ≤ P . Under this correspondence, the
topology on Pt(X) is given by the Zariski topology, whose closed sets FP consist of all Q ⊇ P , where P
is some prime element of O(X). The prime elements of H(A), where A is a commutative C*-algebra, are
the prime ideals in A, i.e., the proper ideals J ⊂ A such that J1J2 ⊂ J iff J1 ⊆ A or J2 ⊆ A, for any
ideals J1, J2 of A (closed by definition, like J); note that J1J2 = J1 ∩ J2. the topology on Pt(X) is given
by the Zariski topology, whose closed sets FP consist of all Q ⊇ P , where P is some prime element of
O(X). A proof of the three claims in the main text may be found in Landsman (2017a), Theorem C.86.
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3 Stone duality and its relatives

We now turn to Stone duality, once again starting with its classical (i.e. spatial) form. A
space X is called totally disconnected if it has no other connected subspaces than its
points (so any larger subspace 6= X is the union of two proper clopen sets). A Stone space
is a totally disconnected compact Hausdorff space, and we have a full subcategory St of CH
whose objects are Stone spaces. At the other side of the duality we have the category BL
of Boolean lattices (i.e. distributive orthocomplemented lattices) with homomorphisms
of orthocomplemented lattices as arrows.12 Like the power set P (X) of any set, the
poset Clopen(X) of all clopen subsets of some Stone space X, (partially ordered by set-
theoretic inclusion, so that suprema are unions and infima are intersections), is a Boolean
lattice. Conversely, a Boolean lattice L is isomorphic to Clopen(X) for some Stone space
X = S(L), called the Stone spectrum of L, which is uniquely determined by L up to
homeomorphism (in a manner reviewed below). This gives Stone duality :

BL ' Stop. (30)

The Stone spectrum S(L) of a Boolean lattice L has a canonical realization resembling
the set of points of a frame just discussed. This time, we regard 2 = {0, 1} = P (1) as
a Boolean lattice, and define Pt(L) as the set of all homomorphisms ϕ : L → 2, with
topology generated by the basic opens Ux defined in (32) below, where x ∈ L, and their
set-theoretic complements U cx. Then Pt(L) is a Stone space, and

L
∼=−→ Clopen(Pt(L)); (31)

x 7→ Ux = {ϕ ∈ Pt(L) | ϕ(x) = 1}, (32)

is an isomorphism of Boolean lattices. The (contravariant) functorial nature of the Stone
spectrum comes out particularly clearly from the above description: given a homomor-
phism h : L→ L′, one immediately obtains a map h∗ : Pt(L′)→ Pt(L) by pullback. Con-
versely, a continuous map f : X → Y induces the inverse image map f−1 : O(Y )→ O(X),
as above, which restricts to f−1 : Clopen(Y )→ Clopen(X). The duality (30) then implies

L ∼= Clopen(S(L)); (33)

X ∼= S(Clopen(X)). (34)

A key example of this construction comes from classical propositional logic. Let S =
{p1, p2, . . .} be an alphabet of atomic propositions, with associated set wff(S) of well-
formed formulae over S according to the rules of classical propositional logic.13 Because
of the recursive definition of wff(S), any map v : S → 2 (where 2 = {0, 1}) has a unique
extension v : wff(S)→ 2 (called a valuation) subject to the rules (with abuse of notation):

v(⊥) = 0; (35)

v(¬α) = ¬v(α); (36)

v(α ∧ β) = v(α) ∧ v(β); (37)

v(α ∨ β) = v(α) ∨ (β); (38)

v(α→ β) = v(α)→ (β), (39)

12An orthocomplementation on a lattice L with 0 and 1 is a map ⊥: L → L, x → x⊥, that satisfies
x⊥⊥ = x, x ≤ y iff y⊥ ≤ x⊥, x∧ x⊥ = 0, and x∨ x⊥ = 1. A lattice (poset) with an orthocomplementation
is called orthocomplemented. A homomorphism of orthocomplemented lattices is an lattice morphism
that also preserves the orthocomplementation, as well as 0 or 1.

13See e.g. Givant & Halmos (2009) or van Dalen (2013).
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where the expressions on the right-hand side are determined by the usual truth tables.
Let T be some theory, i.e. a subset of wff(S), with associated Lindenbaum algebra

L(S, T ) = wff(S)/ ∼T , (40)

where, for any ψ,ϕ ∈ wff(S), we say that ψ ∼T ϕ if T ` ψ ↔ ϕ, i.e., ψ ↔ ϕ (which
abbreviates (ψ → ϕ) ∧ (ϕ → ψ)) is provable from T . Unlike wff(S), the set L(S, T ) is a
Boolean lattice in the partial order defined by [ψ] ≤ [ϕ] whenever T ` ψ → ϕ, and the
orthocomplementation defined by [ψ]′ = [¬ψ]; suprema and infima are given (with some
abuse of notation) by [ψ] ∨ [ϕ] = [ψ ∨ ϕ] and [ψ] ∧ [ϕ] = [ψ ∧ ϕ], respectively.

Define Mod2(S, T ) as the set of binary models of T , i.e., the set of all valuations
v : wff(S) → 2 that satisfy v(α) = 1 for each axiom α ∈ T . Then any v ∈ Mod2(S, T )
descends to a homomorphism v′ : L(S, T ) → 2 of Boolean lattices, and vice versa, each
such homomorphism v′ comes from a unique binary model v ∈ Mod2(S, T )). Hence the
Stone spectrum of the Boolean lattice L = L(S, T ) (realized as explained earlier) is just

S(L(S, T )) = Mod2(S, T )), (41)

topologized as explained above (31), and the isomorphism (31) - (32) is neatly given by

L(S, T )
∼=−→ Clopen(Mod2(S, T )); (42)

[ψ] 7→ {V ∈ Mod2(S, T )) | V (ψ) = 1}. (43)

Thus Stone duality maps the logical equivalence class [ψ] of some wff ψ ∈ wff(S) with
respect to the given theory T (syntax ) to the set of all models of T in which ψ is true
(semantics). Alas, this equaivalence cannot be achieved in intuitionistic quantum logic.

For a pointfree or constructive description of Stone duality, we note that the topology
O(S(L)) of the Stone spectrum S(L) of a Boolean lattice L may be given directly as

O(S(L)) ∼= Idl(L), (44)

where Idl(L) is the set of all ideals in L, partially ordered by inclusion.14 Indeed, for any
lattice L, the poset Idl(L) is a frame, whose points are its prime elements, and it is well
known that the set U(L) of ultrafilters of L (which in a Boolean lattice coincide with the
prime filters of L), topologized by declaring the sets

U ′x = {F ∈ U(L) | x ∈ F} (x ∈ L), (45)

to be a basis of the topology, is a model of the Stone spectrum of L, too: for any ϕ ∈ Pt(L),
the set ϕ−1({1}) is an ultrafilter in L (and ϕ−1({0}) is a maximal ideal).15 Unfortunately,
the constructive Stone spectrum (44) of a Boolean lattice is less useful than the construc-
tive Gelfand spectrum H(A) of a commutative C*-algebra given by (19), since the Gelfand

14An ideal in a lattice L is a subset I ⊆ L such that x, y ∈ I implies x ∨ y ∈ I, and y ≤ x ∈ I implies
y ∈ I. An ideal I is proper if I 6= L. A maximal ideal is an ideal that is maximal in the set of all proper
ideals, ordered by inclusion. In a Boolean lattice, maximal ideals coincide with prime ideals, which are
ideals I that do not contain the top element 1, and where x ∧ y ∈ I implies x ∈ I or y ∈ I. Filters in L
are defined dually, i.e. as nonempty subsets F ⊂ L such that x, y ∈ F implies x ∧ y ∈ F , and y ≥ x ∈ F
implies y ∈ F . The (set-theoretic) complement of a maximal ideal is a maximal filter (i.e. an ultrafilter),
so that an ideal I in a Boolean lattice is maximal (i.e. prime) iff for any x ∈ L either x ∈ I or x′ ∈ I.

15This was even Stone’s original description of his spectrum of a Boolean lattice!
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isomorphism (21) actually involves H(A), whereas the Stone isomorphism (33) uses the
Boolean lattice Clopen(S(L)) rather than the (non-Boolean) frame O(S(L)).

Comparing (11) and (30) and noting that by definition St is a full subcategory of CH,
there must be a relationship between Gelfand duality and Stone duality, which is subtle:

1. Commutative C*-algebras are not the same things as Boolean algebras; this differ-
ence will be overcome by looking at projections.16 The set of all projections in a
C*-algebra A is denoted by P(A), and if A is commutative and has a unit 1A, then
P(A) is a Boolean lattice in the partial order e ≤ f iff ef = e, with orthocomple-
mentation e′ = 1A− e; infima are simply given by e∧ f = ef , and suprema are most
easily stated through De Morgan’s Law, i.e. e ∨ f = (e′ ∧ f ′)′. Without any further
assumptions on A (i.e. beyond commutativity and unitality), we then have

P(A) ∼= Clopen(Σ(A)). (46)

2. One needs conditions on a commutative unital C*-algebra A that make its Gelfand
spectrum Σ(A) a Stone space. This turns out to be the case iff A has real rank
zero, written rr(A) = 0,17 or, equivalently (given that A is commutative), iff A is an
approximately finite-dimensional or AF C*-algebra.18 We then have:19

Σ(A) ∼= S(P(A)); (47)

H(A) ∼= Idl(P(A)); (48)

A ∼= C(S(P(A))), (49)

as topological spaces, frames, and C*-algebras, respectively. Conversely, for any
Boolean lattice L the C*-algebra C(S(L)) is AF (and has real rank zero), and

L ∼= P(C(S(L))). (50)

The case A = Cn remains instructive: eq. (46) reproduces our earlier isomorphisms
P(Cn) ∼= P (n) and Σ(Cn) ∼= n with discrete topology, so that Clopen(n) = P (n). The
Stone spectrum S(P (n)) consists of all homomorphisms ϕ : P (n)→ 2 of Boolean lattices;
since each subset s ⊂ n is the supremum of its elements, ϕ is determined by its values
on each {k} ⊂ n, where k ∈ n, and if ϕ(k) = 1, then the condition that ϕ be a homo-
morphism enforces ϕ(l) = 1 − ϕ(n\{l}) = 1 − 1 = 0 for each l 6= k, since k ∈ n\{l} and
hence ϕ(n\{l}) = 1). Therefore, S(P (n)) ∼= n under the map n 7→ S(P (n)) defined by
k 7→ ϕk with ϕk(s) = 1 iff k ∈ s. This gives (47). Since P (n) is finite, we have I =↓(

∨
I)

for any I ∈ Idl(P (n)), and hence Idl(P (n)) ∼= P (n) under the bijection P (n)→ Idl(P (n))
given by s 7→↓ s = {t ∈ P (n) | t ⊂ s}, which gives (48). Eq. (49) is the classical Gelfand
isomorphism Cn ∼= C(n) discussed in §2, and finally, for L = P (n) the isomorphism (50)
follows by unfolding: S(L) ∼= n, C(n) ∼= Cn, and P(Cn) ∼= P (n) as above.

16Just like the case A = B(H), an element e ∈ A of any C*-algebra A is called a projection if e2 = e∗ = e.
This implies that projections are positive and in particular self-adjoint elements, and the natural partial
order on projections, i.e. e ≤ f iff ef = e, is a special case of the order defined in footnote 10.

17This is the case iff the invertible self-adjoint elements of A are dense in all self-adjoint elements of A.
18This means that A is the norm-closure of the union of some (not necessarily countable) directed set

of finite-dimensional C*-subalgebras (which in turn are necessarily direct sums of matrix algebras).
19Cf. Landsman (2017a), Theorem C.168 for further details and a proof.

9



4 Priestley duality and Esakia duality

Eqs. (46) - (49) relate classical propositional logic to commutative C*-algebras, at least in
so far as the semantic side of the former is concerned.20 Towards intuitionistic quantum
logic, we need to move to intuitionistic logic as well as to non-commutative C*-algebras.
In support of the first move, we first review the well-known concept of a Heyting lattice (or
Heyting algebra), which plays the role of a Boolean lattice in intuitionistic propositional
logic. A Heyting lattice is a lattice L with top > and bottom ⊥, equipped with a
(necessarily unique) map →: L× L→ L, called (material) implication, that satisfies

a ≤ (b→ c) iff (a ∧ b) ≤ c. (51)

A Heyting algebra is automatically distributive. Negation (which in a Boolean lattice is
orthocomplementation and belongs to the primary structure) is derived from → by

¬a ≡ (a→ ⊥); (52)

in classical logic this is a tautology (which may be used to eliminate negation), but in
intuitionstic logic it is a definition. A Heyting algebra is complete when it is complete as
a lattice, in that arbitrary suprema (and hence also arbitrary infima) exist. In that case,
condition (2) is satisfied, so that a complete Heyting algebra is a frame. Conversely, a
frame becomes a complete Heyting algebra if we define the implication arrow → by

b→ c =
∨
{a ∈ L | a ∧ b ≤ c}. (53)

However, frames and complete Heyting algebras drift apart as soon as morphisms are
concerned, for although in both cases one requires maps to preserve the partial order,
maps between Heyting algebras must preserve → rather than

∨
(which in the case of

incomplete Heyting lattices would not even be defined). This defines a category HL of
(not necessarily complete) Heyting lattices, for which we would like to find a natural dual
category of spaces, analogous to St, with an ensuing generalization of Stone duality.21

Let DL be the category of bounded distributive lattices (possessing ⊥ ≡ 0 and > ≡ 1)
with bounded lattice homomorphisms (i.e. maps preserving 0, 1, ∨ and ∧) as arrows. For
each bounded distributive lattice L, the associated poset Ip(L) of prime ideals in L is both
a topological space and a poset. The topology is generated by all sets

Ua = {I ∈ Ip(L) | a /∈ I} (a ∈ L), (54)

and their set-theoretic complements U cx, and this makes Ip(L) a Stone space. The partial
order on Ip(L) is simply given by set-theoretic inclusion.22 The topology and the order
satisfy a compatibility condition called the Priestley separation axiom :23

20Commutative von Neumann algebras are a special case of commutative AF-algebras, with the special
property that their spectrum is Stonean, which adds a measure-theoretic property to the Stone condition.
So from a logical perspective von Neumann algebras do not form a particularly natural class of C*-algebras.

21The following result originates with Esakia (1985), which is in Russian (which I could not read). I
am indebted to Nick Bezhanishvili for this reference, and also for Morandi (2005), from which I learnt it.
More general duality results for distributive lattices go back to Birkhoff (Jr.) and Priestley, cf. Davey &
Priestley (2002) and the special issue of Studia Logica (no. 56, vols. 1–2, 1996) dedicated to such results.

22The same analysis may be carried out using prime filters: the set-theoretic complement of a prime
ideal in L is a prime filter. The appropriate partial order then of course changes direction.

23A down-set in any poset (P,≤) is a subset D ⊂ P such that x ≤ y ∈ P implies x ∈ P . So an ideal in
a lattice is a down-set that is closed under finite suprema (a filter is an up-set closed under finite infima).
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If b � a, there is a clopen down-set U ⊂ Ip(L) such that a ∈ U and b /∈ U .

A partially ordered Stone space satisfying the Priestley separation axiom is called a
Priestley space. Such spaces form a category Pr with continuous order-preserving maps
as arrows. This category has been invented to yield Priestley duality, stating that

DL ' Prop; (55)

• a bounded distributive lattice L yields a Priestley space Pr(L) = Ip(L);

• a Priestley space X gives rise to the poset Clopen↓(X) of clopen down-sets of X
(ordered by set-theoretic inclusion), which form a bounded distributive lattice.

Functorially, a bounded lattice homomorphism ϕ : L→M gives rise to a continuous order
morphism ϕ−1 : Ip(M) → Ip(L) (i.e. the inverse image map), and a continuous order
morphism f : X → Y similarly induces a pull-back f−1 : Clopen↓(Y ) → Clopen↓(X). In
particular, for any bounded distributive lattice L and any Priestley space X we have

L ∼= Clopen↓(Ip(L)), a 7→ Ua; (56)

X ∼= Ip(Clopen↓(X)), x 7→ {U ∈ Clopen↓(X) | x /∈ U}. (57)

Two special cases may clarify this result. We call 0 6= a ∈ L join-irreducible if a = b∨ c
implies a = b or a = c (equivalently, a ≤ b∨ c implies a ≤ b or a ≤ c). Let J (L) be the set
of join-irreducible elements in L, which is a poset in the partial order inherited from L.

• If L is finite, we have an order isomorphism (Davey & Priestley, 2002, Lemma 10.8)

J (L)
∼=−→ Ip(L); (58)

a 7→ L\↑a, (59)

which maps each down-set ↓ a ⊂ J (L), where a ∈ J (L), into the (clopen) subset
Ua ⊂ Ip(L). Consequently, Priestley duality reduces to Birkhoff duality between
finite distributive lattices L and finite posets P , according to which we have

L ∼= Down(J (L)), a 7→ (↓a) ∩ J (L); (60)

P ∼= J (Down(P )), p 7→↓p, (61)

where Down(P )) is the lattice of all down-sets in P , partially ordered by set-theoretic
inclusion. In this case the topology on Ip(L) is trivial (discrete) and plays no role.

• If L is Boolean we recover Stone duality. Thus for Boolean lattices the partial order
on Ip(L) is trivial and drops out. If L is Boolean and finite, J (L) coincides with
the set A(L) of atoms in L, and Birkhoff duality reduces to L ∼= P (A(L)).

Our goal lies in Heyting lattices L. An Esakia space is a Priestley space X such that:

For any open set U ∈ O(X), the corresponding down-set ↓U (defined as the smallest
down-set containing U , i.e. the intersection of all down-sets containing U) is open, too.24

24This may equivalently be stated in terms of clopen sets. Esakia spaces are alternatively called Heyting
spaces, much as Stones spaces are someties called Boolean spaces.
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The appropriate arrows f : X → Y between Esakia spaces X,Y are called p-morphisms,
which not only preserve order and topology (i.e. are continuous), but in addition satisfy:

If y ≥ f(x), there is x′ ≥ x such that f(x′) = y (for all x ∈ X, y ∈ Y ).

If E is the category of Esakia spaces with p-morphisms, the desired duality is given by

HL ' Eop, (62)

where the pertinent functors are the restrictions of those just stated for Priestley duality.
In particular, the Esakia spectrum E(L) = Ip(L) of a Heyting lattice L is the same as
the associated Priestley spectrum Pr(L) of L (merely seen as a bounded distributive
lattice).25 Unfortunately, towards the applications to logic we are after, Esakia duality
has a drawback compared to Stone duality, in that there seems to be no neat intuitionistic
analogue of (42) - (43). Indeed, the Lindenbaum algebra L(S, T ) of an intuitionistic
propositional theory remains perfectly well defined and duly yields a Heyting algebra,
but the realization of its Esakia spectrum E(L(S, T )) in terms of binary models of T is
meaningless in intuitionistic logic (since the law of the excluded middle, which intuitionistic
logic denies, is automatically valid in binary models). Furthermore, Gödel (1932) proved
that there cannot be a single finite Heyting lattice replacing the Boolean lattice 2 in
providing a complete semantics of intuitionistic propositional logic, and Bezhanishvili et
al (2010) extended this no-go result to arbitrary Heyting lattices. One therefore needs
some family of finite Heyting lattices to obtain a complete semantics of intuitionistic
propositional logic, such as the well-known Kripke models.26 For any (finite) poset P ,
the set Up(P ) of all up-sets U of P (i.e. y ≥ x ∈ U implies y ∈ U), is a complete Heyting
algebra in the partial order defined by inclusion, with ∨ = ∪, ∧ = ∩, and implication

U → V = {x ∈ P | (↑x) ∩ U ⊆ V }. (63)

This is actually a special case of (53), since the up-sets form a topology on any poset P ,
called the Alexandrov topology (i.e. Up(P ) = O(P ) in this topology), which has the
principal up-sets ↑x = {y ∈ P | y ≥ x} as a basis (x ∈ P ). In intuitionistic mathematics,
elements x ∈ P are typically interpreted as states of knowledge or information, so that
x ≤ y means that y carries more knowledge than x (perhaps because y is ‘later’ than x).

As in the classical case, one has a set wff(S) of well-formed formulae over some alphabet
S, and once again it follows from the recursive definition of wff(S) that any map v : S →
Up(P ) uniquely extends to a valuation v : wff(S) → Up(P ) subject to the rules (35) -
(39), where this time the expressions on the right-hand sides are defined in the Heyting
lattice Up(P ) (with ¬U ≡ U → ⊥), rather than in the Boolean lattice 2. We say that
ϕ ∈ wff(S) is valid with respect to v if v(ϕ) = 1 (i.e. the top element 1 = P of Up(P )).
For any x ∈ P and ϕ ∈ wff(S) we write x  ϕ iff x ∈ v(ϕ), and say that x forces ϕ.

25This means that the constructive description (44) of the Priestley or Esakia spectrum remains valid,
but it seems less useful here since it carries no information about the order (which is defined on the points).

26See e.g. van Dalen (2013) and Dummett (2000). Also, Palmgren (2009) is a useful summary.
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Then obviously v(ϕ) = 1 iff x  ϕ for all x ∈ P , and we have the forcing rules:27

x  ϕ and y ≥ x imply y  ϕ; (64)

x  ⊥ for no x ∈ P ; (65)

x  ϕ ∧ ψ iff x  ϕ and x  ψ; (66)

x  ϕ ∨ ψ iff x  ϕ or x  ψ; (67)

x  ϕ→ ψ iff for all y ≥ x, y  ϕ implies y  ψ; (68)

x  ¬ϕ iff for all y ≥ x, y  ϕ is false. (69)

For any theory T ⊂ wff(S), the associated Lindenbaum agebra L(S, T ) differs from its
classical counterpart, since intuitionistic logic has fewer derivation rules than classical logic
(in particular, intuitionistic propositional logic lacks the reductio ad absurdum (RAA)
rule). This difference makes L(S, T ) merely a Heyting lattice (rather than a Boolean
one), and, similarly to the classical case, any valuation v : wff(S) → Up(P ) that satisfies
v(α) = 1 for each α ∈ T (i.e. any model of T in Up(P ), aptly called a Kripke model)
descends to a Heyting lattice homomorphism v′ : L(S, T )→ Up(P ). Conversely, any such
homomorphism comes from a valuation. What seems missing here is a realization of the
Esakia spectrum of L(S, T ) in terms of Kripke models, but we will come close in the next
section, at least for intuitionistic ‘quantum’ logics defined by C*-algebras.

5 Intuitionistic quantum logic

We now move straight to intuitionistic quantum logic, explaining its origin in topos theory
in the next section. The idea is to associate a Heyting lattice Q(A) to any unital C*-algebra
A, in contrast with the Birkhoff–von Neumann idea of associating the (orthomodular)
projection lattice P(A) to A (which, unlike our procedure, only makes sense if A has
sufficiently many projections, for example if it is a von Neumann algebra). An important
role will be played by the poset C(A) of all unital commutative C*-subalgebras of A,
ordered by set-theoretic inclusion,28 so we will say a few things about this poset first.29

The poset C(A) has a bottom element, namely ⊥ = C · 1A, but no top element unless A is
commutative, in which case > = A. Similarly, C(A) has arbitrary infima (i.e. meets), given
by intersection, but it only has suprema (i.e. joins) of families of elements that mutually
commute. Indeed, it is easy to show that C(A) is a complete lattice iff A is commutative.
In that case, using the Gelfand isomorphism, C(A) has a purely topological description,
as follows.30 Let A = C(X). Any C ∈ C(A) induces an equivalence relation ∼C on X by

x ∼C y iff f(x) = f(y) ∀ f ∈ C. (70)

This, in turn, defines a partition X =
⊔
λKλ of X (henceforth called π), whose blocks

Kλ ⊂ X are the equivalence classes of ∼C . This partition is upper semicontinuous:

27These rules easily follow from the construction of a valuation v : wff(S) → Up(P ). Originally (i.e. in
the work of Kripke and his followers), eqs. (64) - (68), which imply (69), were taken to be axioms extending
a binary “forcing” relation x  p on P × T to P × IT .

28One may think of this poset as a mathematical home for Bohr’s notion of complementarity, in that
each C ∈ C(A) represents some classical or experimental context, which has been decoupled from the
others, except for the inclusion relations, which relate compatible experiments (in general there seem to
be no preferred pairs of complementary subalgebras C,C′ ∈ C(A) that jointly generate A, although Bohr
typically seems to have had such pairs in mind, e.g. position and momentum). See Landsman (2017b).

29See also Heunen (2014), Lindenhovius (2016), and Landsman (2017a).
30This description follows from Firby (1973), cf. Lindenhovius (2016), Ch. 4 or Landsman (2017a), §9.1.
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• Each block Kλ of the partition π is closed;

• For each block Kλ of π, if Kλ ⊆ U for some open U ∈ O(X), then there is V ∈ O(X)
such that Kλ ⊆ V ⊆ U and V is a union of blocks of π (in other words, if K is such
a block, then V ∩K = ∅ implies K = ∅).

Conversely, any upper semicontinuous partition π of X defines some C ∈ C(C(X)) by

C =
⋂
Kλ∈π

İKλ , (71)

where IK = {f ∈ C(X) | f(x) = 0∀x ∈ K} and İKλ is its unitization. Therefore,
the poset C(C(X)) is anti-isomorphic to the poset USC(X) of all upper semicontinuous
decompositions of X in the ordering ≤ in which π ≤ π′ if π is finer than π′, and both
posets are actually lattices. If X is finite and hence A ∼= Cn, then C(Cn) is anti-isomorphic
to the partition lattice Πn of n, such that a partition n =

⊔
λ sλ (i.e. π = {sλ}, sλ ⊂ n)

corresponds to the set of all (a1, . . . , an) in Cn for which ai = aj whenever i, j ∈ sλ.31

We return to the general case (in which A may be non-commutative). Although the
poset C(A) is not itself our intuitionistic quantum logic, we may nonetheless compare
it with the projection lattice P(A) of traditional quantum logic. For A = B(H), the
C*-algebra of all bounded operators on some (not necessarily finite-dimensional) Hilbert
space H, the projection lattice P(A) is already a powerful invariant of A in the following
sense: if dim(H) > 2, any order isomorphism N : P(B(H)) → P(B(H)) preserving
orthocomplementation (i.e. N(1H − e) = 1H −N(e) for each e ∈ P(B(H)), where 1H is the
unit operator on H) takes the form N(e) = ueu∗, where the operator u is either unitary
or anti-unitary, and is uniquely determined by N up to a phase. This is a corollary of
Wigner’s Theorem in quantum mechanics, cf. Landsman (2017a), Theorem 5.4. Similarly,
any order isomorphism B : C(B(H))→ C(B(H)) takes the form B(C) = uCu∗ (etc.).

More generally, if A and B are unital C*-algebras, we define a weak Jordan isomor-
phism of A and B as an invertible map J : A → B whose restriction to each C ∈ C(A),
is a unital homomorphism (of commutative C*-algebras) onto its image, and which also
satisfies J(a+ ib) = J(a)+ iJ(b) for all self-adjoint a, b ∈ A. Hamhalter’s Theorem then
states that any order isomorphism B : C(A) → C(B) is implemented by a weak Jordan
isomorphism J : A→ B (whose restrictions to all C ∈ C(A) define a map C(A)→ C(B)). If
A is isomorphic to neither C2 nor M2(C), then J is uniquely determined by B.32 The proof
of this theorem also gives an explicit reconstruction of A from C(A), though, of course, as
a Jordan algebra rather than as a C*-algebra.33 In order to recover A as a C*-algebra one
needs to endow the poset C(A) with additional structure, see e.g. Heunen & Reyes (2014)
for AW*-algebras and Döring (2014) for von Neumann algebras.34

We now define our Heyting lattices. If A is finite-dimensional,35 then Q(A) is given by

Q(A) = {S : C(A)→ P(A) | S(C) ∈ P(C), S(C) ≤ S(D) if C ⊆ D}. (72)

31The ordering on Πn has π′ ≤ π iff π′ is finer than π, i.e. iff any s′ ∈ π′ is contained is some s ∈ π.
32See Hamhalter (2011), Lindenhovius (2016), §4.7, or Landsman (2017a), Theorem 9.4.
33Connes (1975) produced a C*-algebra that is not anti-isomorphic to itself. See also Phillips (2001).
34A similar problem arises of one wants to reconstruct A from its pure state space (seen as a set with a

transition probability), cf. Landsman (1998), or from its state space (seen as a compact convex set), see
Alfsen & Shultz (2003).

35As shown by Hekkelman (2018) and Rutgers (2018), eq. (72) also makes sense for AW*-algebras.
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As stated before, the partial order on C(A) is here given by set-theoretic inclusion and the
one on P(A) is e ≤ f iff ef = e. The partial order 6 on Q(A) is defined by S 6 T iff
S(C) ≤ T (C) for all C ∈ C(A), and in this order Q(A) is a Heyting lattice, with operations

(S ∧ T )(C) = S(C) ∧ T (C); (73)

(S ∨ T )(C) = S(C) ∨ T (C); (74)

(S → T )(C) =

P(C)∧
D⊇C

S(D)⊥ ∨ T (D), (75)

where the right-hand side of (75) is shorthand for

P(C)∧
D⊇C

S(D)⊥ ∨ T (D) ≡
∨
{e ∈ P(C) | e ≤ S(D)⊥ ∨ T (D) ∀D ⊇ C}. (76)

In contrast to traditional quantum logic, both logical connectives ∧ and ∨ on Q(A) are
physically meaningful, as they only involve local conjunctions S(C)∧T (C) and disjunctions
S(C)∨ T (C), for which S(C) ∈ P(C) and T (C) ∈ P(C) commute. With similar notation
in (77) - (78) below, the derived operations ¬ and ¬¬ are then given by

(¬S)(C) =

P(C)∧
D⊇C

S(D)⊥; (77)

(¬¬S)(C) =

P(C)∧
D⊇C

P(D)∨
E⊇D

S(E). (78)

A Heyting algebra is Boolean iff ¬¬S = S for each S, and one sees from (78) that (at
least if n > 1) the property ¬¬S = S only holds iff S is either > or ⊥, so that already for
A = M2(C) the Heyting algebra Q(A) is non-Boolean and hence properly intuitionistic.

In the Birkhoff–Neumann approach each projection e ∈ P(A) defines an elementary
proposition, whereas in ours (where the ‘classical context’ C is crucial) an elementary
proposition is a pair (C, e), where e ∈ P(C); this is supposed to incorporate Bohr’s insight
that every proposition in quantum theory ought to be accompanied by the (experimental)
context in which it is measured. If for each such pair (C, e) we define

S(C,e) : C(A)→ P(A); (79)

D 7→ e (C ⊆ D); (80)

D 7→ ⊥ otherwise, (81)

we see that each pair (C, e) injectively defines an element of Q(A). As pointed out by
Hermens (2016), each element S ∈ Q(A) is a disjunction over such elementary propositions:

S =
∨

C∈C(A)

S(C,S(e)). (82)

In the finite-dimensional commutative case A ∼= Cn it is straightforward to compute
Q(A), since we already know that C(A) ∼= Πn (i.e. the partition lattice of n, partially
ordered by the opposite of the usual refinement order), and P(A) ∼= P (n). Hence

Q(Cn) ∼= Q̃(Cn) = {S̃ : Πn → P (n) | π ≤ {S̃(π), n\{S̃(π)}, S̃(π) ⊆ S̃(π′) if π′ ≤ π}. (83)
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Here the first condition after the bar means that, for any π ∈ Πn, any cell s ∈ π must be
contained in either S̃(π) ⊂ n or in its complement, and the second condition simply states
that S̃ is (opposite) order-preserving. Let us initially ignore the first condition, however,
and compute the poset Q̃′(Cn) ⊂ Q̃(Cn) defined by

Q̃′(Cn) = {S̃ : Πn → P (n) | S̃(π) ⊆ S̃(π′) if π′ ≤ π}. (84)

For any poset (X,≤), the Hom-set of homomorphisms of posets from X to P (n) is

Hom(X,P (n)) ∼= Hom(X, 2n) ∼= (Hom(X, 2))n ∼= (Up(X))n, (85)

and so Q̃′(Cn) is isomorphic (as poset and even as a Heyting lattice) to

Q̃′(Cn) ∼= (Down(Πn))n, (86)

where we have Down(Πn) instead of Up(Πn) in view of the opposite order. Therefore,36

Q(Cn) ∼= {(U1, . . . , Un) ∈ (Down(Πn))n | ∀π∈Πn∀s∈π((∀k∈sπ ∈ Uk)∨(∀k∈sπ /∈ Uk))}. (87)

Here, like in (85), the partial order is given by inclusion, and the condition after the bar
may equivalently be stated as (k ∼π l)→ (π ∈ Uk ↔ π ∈ Ul), where k ∼π l means that k
and l lie in the same cell s of the partition π. See also the description (98) - (99) below.

It is an open question what the Esakia spectrum E(Q(A)) of the Heyting algebra Q(A)
is. The closest approximation to the classical case would be to replace the value set {0, 1},
seen as the discrete topology of a singleton, by the Alexandrov topology of the poset
P = C(A), and hence to replace (41) by the set ModC(A)(Q(A)) of all Heyting lattice
homomorphisms from Q(A) to Up(C(A)). Indeed,37 any state ω on A defines a function

Vω : Q(A)→ Up(C(A)); (88)

Vω(S) = {C ∈ C(A) | ω(S(C)) = 1}. (89)

If we say that S ∈ Q(A) is true in a state ω provided Vω(S) = C(A) (i.e. the top element of
the frame Up(C(A))), and call S false if Vω(S) = ∅ (i.e. the bottom element of Up(C(A)),
then ¬S is true iff S is false, and S ∨ T is true iff either S or T is true.38 Consequently,
(89) simply lists the contexts C in which S(C) is true, and we have C  S iff ω(S(C)) = 1.

The problem, however, is that the Kochen–Specker Theorem implies that for reason-
ably non-commutative A (and A = Mn(C) for n > 1 is already a case in point) the set
of Heyting lattice homomorphisms from Q(A) to Up(C(A)) is empty.39 The ensuing dis-
appointment is only limited, since, as already pointed out in the text following (62), the
poset C(A) would not be able to do the job on its own in any case. Nonetheless, it would be
desirable to map propositions in Q(A) to the (clopen down-) sets of (C(A)-valued Kripke)
models (replacing binary models) in which they are true, as in the classical case.

36I am indebted to Nick Bezhanishvili, Guram Bezhanishvili, David Gabelaia, and Mamuka Jibladze for
help with the computation (87)), in response to an erroneous conjecture in an earlier draft of this paper.

37Note that Vω(S) indeed defines an up-set in C(A), for if C ⊆ D then S(C) ≤ S(D), so that ω(S(C)) ≤
ω(S(D)) by positivity of states, and hence ω(S(D)) = 1 whenever ω(S(C)) = 1 (given that ω(S(D)) ≤ 1,
which is true since 0 ≤ ω(e) ≤ 1 for any projection e).

38Since Vω(S) = C(A) iff S(C · 1) = 1, which forces S(C) = 1 for all C.
39See e.g. Landsman (2017), §12.5, based on Heunen, Landsman, and Spitters (2009, 2012). I am very

grateful to my students Evert-Jan Hekkelman and Quinten Rutgers for reminding me of our own result;
their B.Sc. theses Hekkelman (2018) and Rutgers (2018) contain many interesting results in this direction.
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This analysis can be generalized to any unital C*-algebra A.40 First, we define the set

ΣA =
⊔

C∈C(A)

Σ(C), (90)

i.e. the disjoint union over all Gelfand spectra Σ(C), where C ∈ C(A). We then equip ΣA

with the weakest topology making the canonical projection

π : ΣA → C(A); (91)

π(σ) = C, (92)

where σ ∈ Σ(C) ⊂ ΣA, continuous with respect to the Alexandrov topology on C(A). To
be more specific, note that any U ⊂ ΣA takes the form

U =
⊔

C∈C(A)

UC ; (93)

UC = U ∩ Σ(C). (94)

Then U is open iff the following two conditions are satisfied for each C ∈ C(A):

1. UC ∈ O(Σ(C)).

2. For all D ⊇ C, if λ ∈ UC and λ′ ∈ Σ(D) such that λ′|C = λ, then λ′ ∈ UD.

Being a frame, the topology O(ΣA) is a Heyting lattice, which generalizes our earlier
Heyting lattice Q(A) in (72) to arbitrary unital C*-algebras A. To see that Q(A) is indeed
a special case of O(ΣA), where A is taken to be finite-dimensional (e.g. A = Mn(C)), we
use (26) - (27), where A is now replaced by C ∈ C(A), so that we have an isomorphism (of
Boolean lattices) β : P(C)→ O(Σ(C)). We then obtain a Heyting lattice isomorphism

O(ΣA)
∼=−→ Q(A); (95)

U 7→ SU ; (96)

SU (C) = β−1(UC). (97)

Conversely, each S ∈ Q(A) defines U ∈ O(Σ(C)) by (93) with UC = β(S(C)).
In our running example A ∼= Cn this leads to the description

ΣCn ∼=
⊔
π∈Πn

π, (98)

whose elements we denote by pairs (π, s) with s ∈ π (and hence s ⊂ n). The topology
O(ΣCn) is then given by all subsets U ⊂ ΣCn such that if (π, s) ∈ U , then (π′, s′) ∈ U
whenever π′ ≤ π (i.e. π′ is finer than π) and s′ ⊂ s (where ⊂ is the same as ⊆). The
previous description (87) is then recovered through

Uk = {π ∈ Πn | ∃s⊂n(((π, s) ∈ U) ∧ (k ∈ s))}. (99)

The topological condition on U then precisely gives rise to the condition on the Uk in (87).

40The discovery that Q(A) is a topology, which is far from obvious even in de special case (72), is due to
Wolters (2013ab). See also Heunen, Landsman, Spitters, & Wolters (2012) and Landsman (2017a), §12.4.
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Also in the general case we may write U as a disjunction à la (82), viz.

U =
∨

C∈C(A)

UC , (100)

which is even almost trivial, since ∨ = ∪ in the frame O(ΣA). The elementary propositions
UC ⊂ Σ(C) (which in the finite-dimensional case may be identified with projections in
C and hence in A, as we have seen) are open subsets of the ‘classical phase spaces’
Σ(C), which, in the spirit of Bohr, carry the contextual label C. Consequently, the
intuitionistic quantum logic of (unital) C*-algebras would be largely understood at the
level of propositional logic, except for the possible functoriality of the map A 7→ O(ΣA),
i.e. of A 7→ Q(A) for finite-dimensional C*-algebra A.41 As soon as this is solved, we
would have a new duality between arbitrary (unital) C*-algebras and a particular class of
Heyting lattices, which is meant to replace Gelfand duality for commutative C*-algebras.

What remains is an extension to first-order logic, which we suggest to be the internal
logic of the sheaf topos Sh(ΣA). To understand this suggestion, we now briefly review the
topos-theoretic background of the above construction of the Heyting lattice Q(A), which
framework (as pointed out before) we now regard as a means rather than as an end.

6 Epilogue: from topos theory to quantum logic

Let A be a unital C*-algebra, with associated poset C(A) of all unital commutative C*-
subalgebras of A, as before. Regarding C(A) as a (posetal) category, in which there is a
unique arrow C → D iff C ⊆ D and there are no other arrows, we obtain the topos T(A)
of covariant functors F : C(A)→ Sets from C(A) into the category Sets of sets, i.e.,42

T(A) = [C(A), Sets]. (101)

Since for any posetX we have an equivalence (even an isomorphism) of categories [X,Sets] '
Sh(X), where X is endowed with the Alexandrov topology,43 we may alternatively write

T(A) ' Sh(C(A)). (102)

This category is a topos,44 which makes it a “universe of discourse” in which to do
mathematics, replacing set theory.45 One major difference with set theory is that the logic
in most toposes (including T(A)) the logic is intuitionistic.46 Nonetheless, (Dedekind) real
numbers and C*-algebras can be defined in toposes (with a natural numbers object), and
one even has various constructive versions of Gelfand duality.47 All we need is the fact that
each commutative C*-algebra A in a topos T has a constructive Gelfand spectrum Σ(A),

41This problem is highly non-trivial, cf. van den Berg & Heunen (2012) and Döring (2012).
42One usually works with presheaves on a given category C, i.e. contravariant functors C→ Sets. Thus

T(A) consists of presheaves on C(A)op, in which the order on C(A) is reversed.
43This isomorphism maps a functor F : X → Sets to a sheaf F : O(X)op → Sets, by defining the latter

on a basis of the Alexandrov topology as F (↑ x) = F (x) extended to general Alexandrov opens by the
sheaf property. Vice versa, a sheaf F on X defines F by reading the previous equation from right to left.

44A topos is a cartesian closed category (i.e., having a terminal object, binary products, and function
spaces) with pullbacks and a subobject classifier. See Mac Lane & Moerdijk (1992) or Johnstone (2002).

45Although in our approach set theory remains the metamathematics in which topos theory is studied.
46This implies in particular that all definitions and proofs have to be constructive, in that reduction ad

absurdum, the law of the excluded middle, and the Axiom of Choice are not enabled.
47See Banaschewski & Mulvey (2006), Coquand & Spitters (2009), and Henry (2014ab).

18



defined as a locale in T, and an associated Gelfand isomorphism à la (21), also within
T, where Σ(A) may be either defined or computed as H(A), the lattice of hereditary C*-
subalgebras of A. Here we underline objects in T, especially the internal C*-algebra A, in
order to distinguish (underlined) constructions internal to T from constructions in Sets,
like the given C*-algebra A, on which our reasoning in T ultimately relies. The entire
argument hinges on the following C*-algebra A in our topos T(A):48

A : C(A)→ Sets; (103)

C 7→ C; (104)

(C ⊆ D) 7→ (C ↪→ D), (105)

where, despite the identical notation, on the left-hand side of (104) C is an element of
C(A), whereas on the right-hand side it is the corresponding C*-subalgebra of A seen as
a set, and in (105) the notation C ⊆ D denotes the unique arrow in T(A) from C to D,
which the functor A maps to the inclusion map ↪→ from C into D in the category of sets.

The point is that A is a commutative C*-algebra in T(A) under pointwise operations,
called the Bohrification of A (which may be as non-commutative as one desires). Its
constructive Gelfand spectrum Σ(A) has been explicitly computed within T(A),49 but one
of the virtues of toposes of sheaves Sh(X) (at least for beginners, like the author) is that
any locale Y in Sh(X) has a so-called external description in set theory,50 namely as a
locale map π : Y → X (in set theory), or, more precisely, as a frame map

π−1 : O(X)→ O(Y ). (106)

Here O(Y ) = O(Y )(X), which is a frame in Sets. Applied to the Gelfand spectrum Σ(A)
in T(A), where X = C(A) in the Alexandrov topology, and Y = Σ(A), it turns out that
O(Y ) is spatial, so that the associated frame O(Y ) is the topology of a genuine space and
(106) is the inverse image map of a continuous map π : Y → X, which is given by (91).

This may be seen as a ‘derivation’ of our intuitionistic quantum logic from topos theory,
but of course this derivation is based on certain categorical input that may be hardly more
convincing than just postulating the Heyting lattice O(ΣA) or its finite-dimensional case
Q(A). Whichever way one looks at its origin, the advantages of O(ΣA) or Q(A) over
the Birkhoff-von Neumann lattice P(A) are impressive: the logic is distributive (which is
needed in order to interpret the lattice operations ∧ and ∨ as “and” and “or”, respectively,
even in quantum theory), lacks the excluded middle third property (which indeed is highly
questionable in quantum theory), and it is spatial in two different senses of the word:

• Seen as a frame, the lattice O(ΣA) is spatial;

• Seen as a Heyting lattice, O(ΣA) has an associated Esakia spectrum E(O(ΣA)).

48This C*-algebra was introduced in Heunen, Landsman, & Spitters (2009). The proof that A is actually
a C*-algebra in T(A) is nontrivial and is somewhat incomplete in the above reference. An improved version
may be found in Landsman (2017a), §12.1, relying on details in Banaschewski & Mulvey (2006).

49See Heunen, Landsman, & Spitters (2009), Wolters (2013), and Landsman (2017), §12.4.
50See Joyal & Tierney (1984) and Johnstone (2002), §C1.6, summarized in Landsman (2017a), §E.4.

19



References

[1] Akemann, C.A., Bice, T. (2014). Hereditary C*-subalgebra lattices.
arXiv:1410.0093.

[2] Alfsen, E.M., Shultz, F.W. (2003). Geometry of State Spaces of Operator Algebras.
Basel: Birkhäuser.
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