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Abstract
Let (X,σ) be our phase space, which we assume to be a pos-

sibly infinite-dimensional symplectic vector space admitting a unit-
ary structure. We construct a so-called strict deformation quantiz-
ation of (X,σ), which generalizes Weyl quantization, in such a way
that the non-commutative C*-algebra obtained is the resolvent algebra
R(X,σ), introduced in 2003 by Buchholz and Grundling. In the pre-
cise sense of strict deformation quantization, this resolvent algebra
has a classical counterpart, which we call the commutative resolvent
algebra. We describe this algebra in detail, and in particular compute
its Gelfand spectrum.
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1 Introduction

Initiated by the insights of Newton, mankind has developed a formalism to
describe the world with incredible accuracy. A core concept behind this form-
alism is that any system with n degrees of freedom (for instance, a particle
moving in n-dimensional space) can be described by only 2n parameters
x = (x1, . . . x2n). Any quantity that can be assigned to this system (its speed,
its heat, et cetera) is therefore a function from R2n to R, called a classical
observable. Prime examples of classical observables are momentum and
position, which are usually defined as the coordinate functions on R2n. We
will use a more general class of classical observables px : R2n → R, indexed
by x ∈ R2n, defined by

px(y) := x · y
for all y ∈ R2n.

Towards the end of the nineteenth century, it became clear that the formalism
just mentioned was not the whole story. When looking at small or high-
energetic systems, a wavefunction ψ on Rn, rather than a point y ∈ R2n fully
describes the system. In quantum mechanics an observable is an operator
that maps wavefunctions to wavefunctions. We define the momentum and
position operators as

Pjψ(u) := −i~ ∂ψ
∂uj

(u), Qjψ(u) := ujψ(u) , (1)

respectively. Here ~ often denotes the reduced Planck constant, but in this
context it can be any nonzero number. Mimicking our classical formalism, we
will use a more general class of operators φ(x), indexed by x ∈ R2n, defined
by

φ(x) :=
n∑
j=1

x2j−1Pj + x2jQj . (2)

What distinguishes the quantum formalism from the classical formalism is
that operators may not commute. In fact, we have

[φ(x), φ(y)] = −i~σn(x, y)1 (3)

for the standard symplectic form σn. One might see (3) as the defining rela-
tion of our formalism. Alternatively, one may regard (3) as the definition of
σn, and verify that (R2n, σn) is a symplectic space.

1



When describing quantum physics in a mathematically pleasing way, one
often uses C*-algebras. The theory of C*-algebras is well developed, and
thanks to that, many tools are readily available. To cast the relation (3)
into the C*-algebraic framework, Weyl introduced the C*-algebra generated
by
{
eiφ(x)

∣∣ x ∈ R2n
}

. This C*-algebra, known as the Weyl algebra or CCR-
algebra, has long served quantum physisicts well, but we will nonetheless
provide an alternative. Instead of forming complex exponentials of φ(x), we
could form g(φ(x)) for any g ∈ C0(R), meaning that g is continuous and
vanishes at infinity. The C*-algebra

R(R2n, σn) := C∗ (g(φ(x)) | x ∈ Rm, g ∈ C0(R))

is called the resolvent algebra, and was introduced by Buchholz and Grundling
in 2003. Contrary to the Weyl algebra, the resolvent algebra is stable in time,
as presented in [2] as one of the arguments in favor of the resolvent algebra.
Adding to that, the present paper will show that the resolvent algebra is at
least as appealing as the Weyl algebra, when it comes to classical physics.

One might expect that quantum physics would simply replace classical phys-
ics entirely, but this has not been the case. Even today most (quantum)
physicists have to use the classical framework at some point. It is the task of
the physicist to describe the world we experience, and the world we experience
is (for all practical and some philosophical purposes) classical. Furthermore,
progress in quantum physics is often motivated by our understanding of clas-
sical physics, and the models used in quantum physics are often derived from
the analogous models in classical physics. It is therefore important to pre-
cisely relate the classical and quantum frameworks.

We have seen two examples of non-commutative C*-algebras, namely the
Weyl algebra and the resolvent algebra. While non-commutative C*-algebras
are used in quantum physics, commutative C*-algebras (containing classical
observables, which are functions) are used to describe classical physics. But
we can do more than embedding classical and quantum physics into the same
theory, we can actually relate classical with quantum C*-algebras.

A quantization map is a linear map Q~ (for each ~ 6= 0) assigning an
operator (a quantum observable) to each classical observable. A quantiza-
tion map should fulfill some demands, for instance that Q~(fg) converges to
Q~(f)Q~(g) when ~ → 0. For different purposes, different demands on Q~
are set. Rieffel, in [11], [12] and [13], introduced a type of quantization that
refers to C*-algebras. We are talking about strict deformation quantiza-
tion as defined by [8], which fulfills about every demand known to precisely
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relate classical physics to quantum physics.1 The word ‘deformation’ means
to suggest that a non-commutative C*-algebra is ‘deformed’ into a commut-
ative C*-algebra when ~→ 0.

It is of no debate that we should ‘quantize’ classical position and momentum
to their respective operators. In our notation, this means that we define

Q~(px) := φ(x) .

However, the definition of Q~(f) for a general classical observable f is a
choice made by the physicist. For example, the definition of Q~(pxpy) is
already nontrivial, as pxpy = pypx but φ(x)φ(y) 6= φ(y)φ(x). Should we
define Q~(pxpy) = φ(x)φ(y) or rather Q~(pypx) = φ(y)φ(x)? Our choice is to
write

pxpy = 1
2
p2x+y − 1

2
p2x − 1

2
p2y ,

and to agree that Q~(g ◦ px) = g(φ(x)) for any x ∈ R2n and suitable function
g. Using g(t) = t2, we find

Q~(pxpy) = 1
2
φ(x+ y)2 − 1

2
φ(x)2 − 1

2
φ(y)2

= 1
2
(φ(x)φ(y) + φ(y)φ(x)) . (4)

One may recognise that we have ended up with Weyl quantization, as (4) is
often used to introduce this quantization map. However, rather than (4), it
is because of the rule Q~(g ◦ px) = g(Q~(px)) that Weyl Quantization plays
the leading part in this thesis.

Define the algebra of almost periodic functions as C∗(eipx|x ∈ R2n). It can
be intuitively expected that the Weyl algebra is obtained from the algebra
of almost periodic functions, since Q~(e

ipx) = eiφ(x). Indeed, as proven in
[1], the almost periodic functions form the classical counterpart of the Weyl
algebra in the sense of strict deformation quantization. One may wonder if
a similar result holds for the resolvent algebra. What is its classical counter-
part?

The contribution of this thesis is the following. We define a new classical
observable algebra called the commutative resolvent algebra as

CR(R2n) := C∗
(
g ◦ px

∣∣ g ∈ C0(R), x ∈ R2n
)
,

1It is slightly stronger than Rieffel’s definition because the quantization map should
also be *-preserving.
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we give a precise description of its structure, and show that it is the classical
counterpart of the resolvent algebra R(R2n, σn). Precisely stated, our main
result is that Weyl quantization gives a strict deformation quantization of
CR(R2n) and R(R2n, σn).

Up to this point everything was done whilst assuming our phase space to be
finite dimensional. We will also treat the general case, replacing (R2n, σn) by
a symplectic vector space (X, σ) admitting a unitary structure. We construct
a strict deformation quantization that generalizes the prescription of Weyl,
and we prove that in this sense CR(X) := C∗(g ◦ px | g ∈ C0(R), x ∈ X)
is the classical counterpart of R(X, σ). In quantum field theory and the
theory of multi-particle systems, the infinite-dimensional version of the re-
solvent algebra is the only interesting version. However, the key features of
the resolvent algebra are already present in the finite case, and it will turn
out to be a small step to generalize our results from R2n to X.

We therefore first prove our result for finite dimensional phase spaces in Sec-
tions 2 to 4. More precisely, we define the commutative resolvent algebra
in Section 2, and investigate the structure of this algebra in §2.1 and §2.2.
The resolvent algebra is introduced in our own way in Section 3. We discuss
strict deformation quantization in Section 4. We define our quantization map
precisely in §4.1, and prove the key result Q~(g ◦ px) = g(Q~(px)) in §4.2.
Our main result is proven in §4.3 and §4.4.

The generalized version of the commutative resolvent algebra is given in Sec-
tion 5 and the resolvent algebra in Section 6. Our main result is generalized
in Section 7.
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2 Commutative Resolvent Algebra: Finite

Case

We define a commutative algebra, consisting of complex functions on the
space Rm. It will be defined as a C*-subalgebra of Cb(Rm), the algebra
of bounded continuous functions. This C*-subalgebra will turn out to be
the classical counterpart of the resolvent algebra on the phase space R2n, if
m = 2n. This section allows for general m ∈ N, as it stays in the classical
context. We view Rm as an inner product space, with the standard inner
product x · y, (x, y ∈ Rm).

Definition 2.1. For λ ∈ R\{0} and x ∈ Rm define hλx(y) := 1/(iλ− x · y).
The commutative resolvent algebra over Rm, denoted by CR(Rm), or
simply by CR, is the C*-subalgebra of Cb(Rm) generated by the functions hλx.

This C*-algebra CR is unital since ih10 = 1. Let us write hλx = gλ ◦ px for
gλ = 1/(iλ− ·) and px(y) := x · y. The function px is surjective on its range,
so the following very general observation applies to it.

Lemma 2.2. Let p : X → Y be a surjection between topological spaces, and
A ⊆ Cb(Y ) a *-subalgebra. Then its ‘pull-back’ p∗ : A→ Cb(X), g 7→ g ◦ p is
an isometric *-homomorphism.

Proof. Because the operations addition, multiplication and involution on A
and Cb(X) are defined pointwise, these operations are preserved by p∗. Be-
cause p is surjective, we find

sup
x∈X
|g(p(x))| = sup

y∈Y
|g(y)| ,

giving ‖g ◦ p‖∞ = ‖g‖∞.

We can apply Lemma 2.2 to give an equivalent definition of CR. The
theorem of Stone-Weierstrass gives C∗(gλ|λ ∈ R\{0}) = C0(R), implying
C∗(hλx|λ ∈ R\{0}) = C0(R) ◦ px, for any x. Hence, CR is the C*-algebra
generated by {g ◦ px | g ∈ C0(R), x ∈ Rm} .

We will see that these g ◦ px generate more general functions g ◦ p, when we
generalize px by p : Rm → Rr and let g ∈ C0(Rr) for any r ∈ {0, . . .m}. It
will sometimes be useful to assume that g is a Schwartz function, by which we
mean g ∈ S(Rr). We discuss our conventions on the Schwartz space S(Rr)
in Appendix A.
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Lemma 2.3. For j ∈ {1, 2}, assume Rm
pj
−�
linear

Rrj
gj−→ C. There exists a

linear surjection p and a complex function g such that

(i) (g1 ◦ p1)(g2 ◦ p2) = g ◦ p,

(ii) ker p = ker p1 ∩ ker p2,

(iii) if g1 and g2 both vanish at infinity, then so does g,

(iv) if g1 and g2 both are Schwartz, then so is g.

Proof. Let Rm = V1 ⊕ V2 ⊕ V3 ⊕ V4 for subspaces Vj ⊆ Rm such that:

V4 = ker p1 ∩ ker p2 ,

V3 ⊕ V4 = ker p1 ,

V2 ⊕ V4 = ker p2 . (5)

Let p : Rm → V1 ⊕ V2 ⊕ V3 be the canonical projection, which is linear and
surjective. It has a linear section sp, so p ◦ sp =idV1⊕V2⊕V3 . By virtue of (5),
it is possible to write

g1 ◦ p1 ◦ sp(v1, v2, v3) = h1(v1, v2) ,

g2 ◦ p2 ◦ sp(v1, v2, v3) = h2(v1, v3) (vj ∈ Vj) ,

for functions h1, h2 on V1⊕ V2 and V1⊕ V3 respectively. Since pj ◦ sp ◦ p = pj
for j ∈ {1, 2}, we have

(g1 ◦ p1) · (g2 ◦ p2) = [(g1 ◦ p1 ◦ sp)(g2 ◦ p2 ◦ sp)] ◦ p
≡ g ◦ p ,

for some function g on V1 ⊕ V2 ⊕ V3. This proves (i) and (ii). If g1 and g2
are Schwartz, then h1 and h2 are Schwartz as well. Therefore Lemma A.2
implies (iv). Since S is dense in C0 with respect to ‖·‖∞ and multiplication
is continuous in that same norm, (iv) implies (iii).

Because CR(Rm) is generated by the functions g◦px, Lemma 2.3 implies that
CR(Rm) contains various other functions g ◦p. It is appropriate to give them
a name.

Definition 2.4. A dike g ◦ p : Rm → C is a composition of some linear
surjective function p : Rm → Rr and some function g ∈ C0(Rr).
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When the C0-condition on g is dropped, g ◦ p is called a cylindrical (or
cylinder) function. Dikes for which g is Schwartz will be very useful when
working with Weyl Quantization. We therefore define

SR(Rm) := span {g ◦ p | p : Rm � Rr linear, g ∈ S(Rr) for 0 6 r 6 m} .

Any scalar multiplication of a dike is again a dike. Therefore, an arbitrary
element of SR := SR(Rm) is just a finite sum of dikes.

Proposition 2.5. The space SR(Rm) is a dense *-subalgebra of CR(Rm).

Proof. We will show that any dike g ◦ p with g ∈ S(Rr) is an element of
CR. Because S(Rr) = S(R)⊗ · · · ⊗ S(R) with respect to the Schwartz topo-
logy, it is sufficient to assume g = g1 ⊗ · · · ⊗ gr for gj ∈ S(R). If we define
pj(x) := p(x)j, then g ◦ p =

∏
gj ◦ pj. As pj ∈ (Rm)∗, there is an xj such

that pj = pxj . It follows that g ◦ p ∈ CR. We conclude that SR ⊆ CR.
The set SR is clearly closed under linear combinations and involution. Fur-
thermore, closure under multiplication follows by Lemma 2.3(i) and (iv), and
we may conclude that SR is a *-subalgebra.
Finally, any generator hλx is approximated by functions g ◦ px ∈ SR where
g ∈ S(R) approximates gλ = 1/(iλ− ·) ∈ C0(R). This proves density.

This is all we need to know about the commutative resolvent algebra in order
to discuss strict deformation quantization. However, there is much more to
say about the structure of this intriguing C*-algebra, and an understanding
of its structure yields a lot of intuition (if not knowledge) about the resolvent
algebra on the quantum side.

The next two sections will give a precise description of CR(Rm), first by
describing its elements, and second by describing its Gelfand spectrum ∆.
At the end of this section it is established that ∆ is a novel compactification of
Rm, which implies that the elements of CR(Rm) are precisely the continuous
functions on ∆ restricted to Rm.

2.1 Function Spaces

If we want to understand CR(Rm), we will need to understand dikes. We have
used the notation g ◦ p, in which way we see this is the function g ∈ C0(Rr)
acting on the r directions picked out by p. Another notation provides more
geometrical insight. If we use a projection P : Rm → Rm, (that is, P ∗ =
P 2 = P ,) instead of p, and demand g ∈ C0(ranP ) instead of g ∈ C0(Rr), we
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find that the collection of functions of the form g ◦P is exactly the collection
of dikes. Indeed, g̃ ◦ p = g ◦ P whenever

g = g̃ ◦ γ , ranP = (ker p)⊥ , p�ranP = γ ◦ P ,

for a linear isomorphism γ : ranP
∼−→ Rr. Writing g ◦ P is a way to denote a

dike ‘independent of a choice of basis’.

In the rest of this section a dike is a composition g ◦ P , consisting of a pro-
jection P : Rm → Rm and a function g ∈ C0(ranP ).

Before we begin the analysis, we give a geometrical interpretation of dikes.
For m = 2 and nulP (= dim kerP ) = 1, the surface plot of the absolute value
of g ◦ P resembles a physical dike with top height of ‖g‖∞ stretching out
indefinitely in the direction of kerP and - in the perpendicular direction -
descending into the flat surrounding landscape. See Figures 1 and 2. The
function g determines the shape of the dike and P determines the direction
into which it extends. For general values of nulP and m, it is helpful to ima-
gine an affine space of dimension nulP , around which the support of g ◦ P
is concentrated.

Figure 1: A dike Figure 2: An actual dike

We have already seen a dense subset of CR(Rm), consisting solely of finite
sums of dikes. The algebra CR itself contains infinite sums that can be con-
ditionally convergent. This already happens in the case that m = 2. In
Figure 3 we have plotted a sum of two dikes with norm 1 and norm 1

2
, the

norm of the sum being 3
2
. The region where this sum is greater than 1+ ε (in

absolute value) is compact for any ε > 0, so we could subtract a C0-function
such that the result is bounded by 1. In this fashion, if we alternately add
a dike and subtract a C0-function (both with norm 1/n), we can construct
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Figure 3: A sum of two dikes

an infinite sum that converges in CR, even though the sum of the subtracted
C0-functions is divergent.

In order to avoid conditionally convergent sums, we will define function spaces
Cr(Rm), consisting of countable sums of dikes gk ◦ Pk for which nulPk = r,
modulo dikes g ◦ P with nulP < r.

Definition 2.6. For 06 r6 m, define the spaces Cr(Rm) as follows. First,
C0(Rm) is the usual space of continuous functions vanishing at infinity (show-
ing the consistency of our notation). Assuming Cr−1(Rm) is a C*-algebra,
we denote the equivalence class of f ∈ Cb(Rm) in Cb(Rm)/Cr(Rm) by [f ]r−1,
and use the topology induced by

‖[f ]r−1‖r−1 := inf
ϕ∈Cr−1

‖f − ϕ‖∞ .

We define

Cr(Rm) :=

{
f ∈ Cb(Rm)

∣∣∣∣ [f ]r−1 =
∑

k[gk ◦ Pk]r−1 for Pk distinct (m-r)-
dimensional projections, and gk ∈ C0(ranPk)

}
,

where we use an arbitrary countable sum.

We often write ‖f‖r−1 := ‖[f ]r−1‖r−1 for convenience. The function spaces
Cr build up the commutative resolvent algebra, in the following precise way.

Theorem 2.7. We have

CR(Rm) = Cm(Rm).

Moreover, C0 ⊂ C1 ⊂ . . . ⊂ Cm is a chain of closed ideals in CR.
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The proof, given at the end of this section, uses an inductive argument to
prove that each Cr is an algebra, for which the following lemma is important.
We could prove this lemma using Lemma 2.3, but we will instead provide an
independent proof, to give more insight.

Lemma 2.8. Let g ◦ P ∈ Cs(Rm) and h ◦Q ∈ Cr(Rm) be dikes. Then

(g ◦ P ) · (h ◦Q) ∈ Cmin(s,r)(Rm) ,

and if s = r and P 6= Q, then (g ◦ P ) · (h ◦Q) ∈ Cs−1(Rm).

Proof. Define R to be the projection onto ranP + ranQ. Then

kerR = kerP ∩ kerQ ,

which gives (g ◦P )(h ◦Q) = f ◦R, where f := (g ◦P )(h ◦Q). We claim that
we can find C such that

‖Rx‖ 6 C max(‖Px‖ , ‖Qx‖) for all x .

If this were not the case, we could find a sequence of x on the unit sphere
such that the reverse inequality holds for increasing C. Then a convergent
subsequence yields a contradiction. Now ‖Rx‖ → ∞ implies

f(Rx) = g(Px)h(Qx)→ 0 .

Therefore, f ∈ C0(ranR). From nulR 6 min(nulP, nulQ) it follows that
f ◦ R ∈ Cmin(s,r)(Rm). If r = s and P 6= Q, then nulR < nulP , so f ◦ P ∈
Cs−1(Rm).

From now on, we fix an r 6 m such that Cs is an algebra for all s 6 r. We will
specify the behaviour of an arbitrary function f ∈ Cr+1 at infinity. To this
purpose, let V +w ⊆ Rm be an affine space, with space of directions S(V ) :=
{v ∈ V | ‖v‖ = 1} when V 6= 0, and S(0) := {0}. We equip S(V ) with the
dimV -dimensional Hausdorff measure µ. The convergence at infinity of f is
captured by the following lemma.

Lemma 2.9. Take f ∈ Cs for s 6 r + 1. Then the limit

fV,w(v) := lim
t→∞

f(tv + w) (6)

exists for all v ∈ S(V ) and hence defines a function fV,w : S(V ) → C.
Furthermore, fV,w takes a constant value µ-almost everywhere.
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Proof. We prove the lemma with induction to s 6 r+1, the case s = 0 being
clear. Suppose the lemma holds for some s 6 r and that f ∈ Cs+1. Writing
fK :=

∑K
k=1 gk ◦Pk for the partial sums of f (meaning that ‖fK − f‖s → 0),

we have a well-defined function fV,wK with fV,wK = cK µ-a.e. for some cK ∈ C,
just by comparing dimensions. Taking f̃K := fK + ξK for the right ξK ∈ Cs,
we can make sure that

∥∥f̃K−f∥∥∞ → 0. By the induction hypothesis f̃V,wK is a

well-defined function with f̃V,wK = c̃K µ-a.e., for some c̃K ∈ C. This sequence
(c̃K) converges to some c ∈ C because (f̃K) is Cauchy in ‖·‖∞. If

Γ := {v ∈ S(V ) | ∀K : f̃V,wK (v) = c̃K} ,

then µ(S(V ) \ Γ) = 0 by countable additivity of µ. Now for arbitrary v ∈ Γ
we have

lim
K→∞

lim
t→∞

f̃K(tv + w) = lim
K→∞

c̃K = c ,

and for any v ∈ S(V ) we have f̃K(tv + w) → f(tv + w) uniformly in t.
Therefore fV,w is a function with fV,w = c µ-a.e.

To stress that we will later quotient out Cr(Rm), we will now use the letter
ξ for an element in Cr(Rm), contrasting the notation ‘f ∈ Cr+1(Rm)’.

Corollary 2.10. Let W ⊂ Rm be affine with dimW = r + 1. For all ε > 0
and ξ ∈ Cr(Rm) there exists an x ∈ W with |ξ(x)| < ε.

Proof. Write W = V + w so we can apply Lemma 2.9. With induction to
s < r + 1 we obtain ξV,w = 0 µ-a.e. for all ξ ∈ Cs. The claim follows by
taking s = r.

Corollary 2.11. Let P be a projection with nulP = r+1 and g ∈ C0(ranP ).
Then ‖g ◦ P‖r = ‖g ◦ P‖∞ = ‖g‖∞.

Proof. It is easily seen that ‖g ◦ P‖r 6 ‖g ◦ P‖∞ = ‖g‖∞, but we need
Corollary 2.10 for ‖g‖∞ 6 ‖g ◦ P‖r. Let ξ ∈ Cr and x so that |g(x)| = ‖g‖∞.
Since W := P−1{x} is affine, we obtain for all ε > 0 an x0 with |ξ(x0)| < ε.
Then |g(Px0)−ξ(x0)| > ‖g‖∞− ε. It follows that ‖g ◦ P − ξ‖∞ > ‖g‖∞.

We are now ready to prove the main result of §2.1.

Proof of Theorem 2.7. Using induction on r 6 m, we will prove the following
claim:

Cr(Rm) is a C*-subalgebra of CR(Rm). (7)
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If r = 0 this follows by applying the (locally compact version of the) Stone-
Weierstrass theorem,2 or by recalling that SR ⊆ CR. Suppose now that (7)
is true for a fixed r < m. Then Cb/Cr is a C*-algebra, in particular a Banach
space, a fact we will use throughout the proof. Let f ∈ Cr+1(Rm), generically
written as [f ]r =

∑
k∈N[gk ◦ Pk]r for dikes gk ◦ Pk with nulPk = r + 1.

Lemma 2.12. Under these conditions we have, for each I ⊆ N,∥∥∥∥∥∑
k∈I

[gk ◦ Pk]r

∥∥∥∥∥
r

= sup
k∈I
‖gk‖∞ . (8)

Proof. By continuity of ‖·‖r on Cb/Cr, we only need to show (8) for every
finite I ⊂ N. We will use induction on #I. Let K ∈ I be such that
supk∈I ‖gk‖∞ = ‖gK‖∞. Then by the induction hypothesis,∥∥∥∥∥ ∑

K 6=k∈I

gk ◦ Pk

∥∥∥∥∥
r

6 ‖gK‖∞ .

Fix ε > 0 and take ξ ∈ Cr such that∥∥∥∥∥∑
k 6=K

gk ◦ Pk − ξ

∥∥∥∥∥
∞

6 ‖gK‖∞ + ε . (9)

So both
∑

k 6=K gk ◦Pk − ξ and gK ◦PK are (almost) bounded by ‖gK‖∞, but
their sum may be substantially larger at some region. It turns out that this
region is small enough to be corrected for by a Cr-function. More precisely,
we can find φ ∈ Cr(Rn) such that∥∥∥∥∥∑

k∈I

gk ◦ Pk − ξ − φ

∥∥∥∥∥
∞

6 ‖gK‖∞ + ε .

Some analysis shows that

φ =

(∑
k 6=K

gk ◦ Pk − ξ

)
|gK ◦ PK |
‖gK‖∞

does the job. The fact that φ ∈ Cr follows from Lemma 2.8, using Pk 6= PK ,
and Cr is closed. We conclude that

∥∥∑
k∈I gk ◦ Pk

∥∥
r
6 ‖gK‖∞ .

To attain ‖gK‖∞, we choose x ∈ ranPK with |gK(x)| = ‖gK‖∞. Fix ε > 0

2Seperating x, y ∈ Rn is done by extending e1 := x − y to an orthogonal basis of Rn.
Then h1e1 · · ·h

1
en separates x and y.
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and choose ξ ∈ Cr to satisfy (9). Fix η ∈ Cr. Now W = P−1K (x) is affine
with dimension r + 1, so Corollary 2.10 gives an x0 with |η(x0)| < ε and
|gK(PKx0)| = ‖gK‖∞. Some more analysis yields∣∣∣∣∣

(∑
k∈I

gk ◦ Pk − ξ − φ− η

)
(x0)

∣∣∣∣∣ > ‖gK‖∞ − ε .
Letting ε → 0, we conclude that also

∥∥∑
k∈I gk ◦ Pk

∥∥
r
> ‖gK‖∞ . Thus we

have finished our inductive step, and the proposition follows.

Continuing the proof of Theorem 2.7, we observe that
∑∞

k=1[gk◦Pk] converges
unconditionally:∥∥∥∥∥∑

k>K

εk[gk ◦ Pk]

∥∥∥∥∥
r

= sup
k>K
‖εkgk‖∞ =

∥∥∥∥∥∑
k>K

[gk ◦ Pk]

∥∥∥∥∥
r

→ 0 .

Hence two converging sums such as in Definition 2.6 will add to another
converging sum. It then follows that Cr+1 is a vector space. Because of
Lemma 2.8, the multiplication

[gk ◦ Pk]r · [g′k ◦ P ′k]r = [(gk ◦ Pk)(g′k ◦ P ′k)]r ∈ Cr+1

is well defined. Again by unconditional convergence, we have∑
k

[gk ◦ Pk]r
∑
k

[g′k ◦ P ′k]r =
∑
k,k′

[(gk ◦ Pk)(g′k′ ◦ P ′k′)]r ∈ Cr+1 .

Together with (
∑

k[gk ◦ Pk])∗ =
∑

k[ḡk ◦ Pk] , this implies that Cr+1 is a *-
algebra.

Let (f s)s∈N ⊂ Cr+1 converge uniformly to f . Write [f s]r =
∑

k[g
s
k ◦ P s

k ]r
with gsk and P s

k as usual. We can reshuffle the terms and add zeroes to
obtain g̃sα, Pα (for α in some countable set I) such that∑

k∈N

[gsk ◦ P s
k ] =

∑
α∈I

[g̃sα ◦ Pα] ,

for all s ∈ N. Intuitively, we will let each g̃sα converge to some function gα,
thus obtaining f as the sum over all [g̃sα ◦ Pα], α ∈ I. We can only do this
because Pα does not depend on s anymore.
Lemma 2.12 displays an interplay between convergence of series and uniform

13



convergence of functions. For instance, (f s) is Cauchy iff (g̃sα) is uniformly
Cauchy:

sup
α∈I

∥∥g̃sα − g̃tα∥∥∞ =

∥∥∥∥∥∑
α∈I

[(g̃sα − g̃tα) ◦ Pα]

∥∥∥∥∥
r

=
∥∥f s − f t∥∥

r
→ 0 .

Thus we may define gα := lim g̃sα ∈ C0(ranPα). It follows that g̃sα → gα
uniformly in α.
Using the just mentioned interplay, convergence of the series

∑
[g̃sα ◦ Pα]

implies ‖g̃sα‖∞ → 0 (for all s). Therefore ‖gα‖∞ → 0, which in turn implies
convergence of

∑
[gα◦Pα]. We will write down the concluding step explicitly.

Let rlim denote the limit in the quotient norm on Cb/Cr. Then∥∥∥∥∥[f ]−
∑
α

[gα ◦ Pα]

∥∥∥∥∥
r

=

∥∥∥∥∥rlim
s

∑
α

[g̃sα ◦ Pα]−
∑
α

[gα ◦ Pα]

∥∥∥∥∥
r

= lim
s

∥∥∥∥∥∑
α

[(g̃sα − gα) ◦ Pα]

∥∥∥∥∥
r

= lim
s

sup
α
‖g̃sα − gα‖∞ = 0 ,

and hence f ∈ Cr+1(Rn), giving us a C*-algebra.

Let P be a projection and take g ∈ C0(ranP ). It should be clear that

C∗
(
hλx�ranP

∣∣ x ∈ ranP, λ
) ∼= C∗

(
hλx
∣∣ x ∈ ranP, λ

)
,

under f 7→ f ◦ P . Using the Stone-Weierstrass theorem, C0(ranP ) is con-
tained in the left-hand-side. Therefore, g ◦P is an element of the right-hand-
side. Let f ∈ Cr+1 be arbitrary, written as

[f ] =
∑

[gk ◦ Pk] ∈ Cr+1/Cr ,

with the usual conventions. Then all gk ◦ Pk ∈ CR, and thereby also the
partial sums fK :=

∑K
k=1 gk ◦ Pk ∈ CR. Since

∥∥fK − f∥∥
r
→ 0, we can find

ξK ∈ Cr ⊆ CR such that
∥∥fK − ξK − f∥∥∞ → 0. Hence, f ∈ CR.

Thus we have proven that Cr+1(Rm) is a C*-subalgebra of CR. By in-
duction it follows that this holds for all r < m, and in particular we find
Cm(Rm) ⊆ CR(Rm).
The other inclusion follows if hλx ∈ Cm(Rm) for all λ 6= 0, x ∈ Rm. Define
P as the projection on the span of x. Then kerP is m-dimensional when
x = 0 and is (m− 1)-dimensional otherwise. Since g(Py) := hλx(y) defines a
function g ∈ C0(ranP ), we finally obtain hλx = g ◦ P ∈ Cm(Rm).

14



2.2 Gelfand Spectrum

We implicitly encountered characters of the commutative resolvent algebra
in Lemma 2.9. Let us now define them precisely. For V ⊆ Rm linear,
w ∈ V ⊥ and f ∈ CR(Rm), we have defined fV,w : S(V ) → C in (6). Let
χ(V +w)(f) be the unique z ∈ C such that fV,w = z almost everywhere.3 A
quick calculation shows that χ(V + w) is multiplicative and nonzero, hence
χ(V + w) ∈ ∆(CR(Rm)), where ∆(CR(Rm)) is the Gelfand spectrum of
the commutative resolvent algebra, more briefly denoted by ∆, carrying the
weak*-topology (i.e. the Gelfand topology). In practice the characters χ(V +
w) are calculated on dikes, where they become rather simple.

Remark 2.13. Let f = g ◦ P be a dike. If V ⊆ kerP , then fV,w takes the
constant value g(Pw). If not, V ∩kerP is a proper linear subspace of V . For
v ∈ S(V ) \ (V ∩ kerP ) we obtain fV,w(v) = 0. Hence

V ⊆ kerP ⇒ χ(V + w)(f) = g(Pw) ,

V * kerP ⇒ χ(V + w)(f) = 0 .

What does it mean if a net (χ(Vα + wα)) weak*-converges to χ(V + w)? In
that case we have

χ(Vα + wα)(g ◦ PV ⊥)→ χ(V + w)(g ◦ PV ⊥) = g(w) ,

for any g ∈ C0(V
⊥). It follows that eventually (for all α bigger than a fixed

α0) we have Vα ⊆ V = kerPV ⊥ , with PV ⊥ the projection onto V ⊥. Also, by
choosing a sequence of g’s with support closing in upon w, it follows that
PV ⊥wα → w. Inspired by these results, we will prove that ∆ is homeomorphic
to the following space (see Theorem 2.18).

Definition 2.14. We define the set

Ω :=
{
V + w

∣∣ V ⊆ Rm linear, w ∈ V ⊥
}
,

and say that a net (Vα+wα)α in Ω is absorbed in V +w ∈ Ω iff PV ⊥wα → w
and eventually Vα ⊆ V .

As a set, Ω is known by geometers as the affine Grassmanian Graff(Rm), but
we will endow Ω with a different topology. This topology is defined by a
notion of convergence of nets that uses the notion of absorption of nets. By
the previous discussion, if χ(Vα+wα)→ χ(V +w), then Vα+wα is absorbed
in V + w. However, the converse is false, as manifested by the fact that all
nets in Ω are absorbed in Rm + 0.

3The character χ(V + w) can be thought of as the ‘mean value’ on V + w.
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Definition 2.15. A net (Vα + wα)α in Ω converges to V + w ∈ Ω iff it is
absorbed in V +w and none of its subnets is absorbed in any Ṽ + w̃ ( V +w.

If a net converges to V +w, then any subnet also converges to V +w. Hence
Definition 2.15 defines a topology on Ω. We have a topological embedding
Rm ↪→ Ω by sending w 7→ {0}+ w, as a result of Definition 2.14.

Theorem 2.16. The space Ω is a compactification of Rm.

Proof. Compactness follows from Definition 2.15. Indeed, to any net (Vα +
wα) we can assign a V +w ∈ Ω such that some subnet (Vβ +wβ) ⊆ (Vα+wα)
is absorbed in V + w. Either Vβ + wβ → V + w or a subsubnet (Vγ + wγ) ⊆
(Vβ+wβ) is absorbed in a smaller dimensional affine space. The thus resulting
chain of subnets has to stop somewhere, because dimV <∞, and gives us a
convergent subnet of (Vα + wα).
To show that Rm is dense in Ω, let V + w be arbitrary, and suppose that
every V ′ + w′ with dimV ′ < dimV lies in Rm, i.e. the closure of Rm in Ω.
Then we can construct a sequence in Rm, converging to V + w, as follows.
We choose U ⊂ V with dimU = dimV −1, some u ∈ V ∩U⊥, and a sequence
(tn) ⊂ R without convergent subsequence. Then U+tnu→ V +w. Applying
induction to the dimension of V , it follows that Rm = Ω.

The topology on Ω indeed matches the (weak*-)topology on ∆:

Lemma 2.17. The function χ : Ω → ∆ is an embedding (i.e. a continuous
open injection).

Proof. We begin with injectivity. Let χ(V + w) = χ(V ′ + w′) for some
V + w, V ′ + w′ ∈ Ω. Take a projection P onto V ⊥ and take a g ∈ C0(V

⊥)
with g(w) = 1, and g(v) < 1 for all v 6= w. Now

χ(V ′ + w′)(g ◦ P ) = χ(V + w)(g ◦ P ) = 1 ,

so V ′ ⊆ V and g(Pw′) = 1. By symmetry we obtain V ′ = V , and therefore
g(w′) = 1. It follows that V + w = V ′ + w′.
We are left to check that the maps χ and χ−1 :χ(Ω)→ Ω preserve convergence
of nets.
Suppose χ(Vα +wα)→ χ(V +w). As already discussed, Vα +wα is absorbed
in V + w. Let (Vβ + wβ) be a subnet that is absorbed in Ṽ + w̃ ( V + w.
Take a dike f = g ◦ PṼ ⊥ , where g(w̃) = 1, so

lim
β
χ(Vβ + wβ)(f) = lim

β
g(PṼ ⊥wβ) = 1 6= 0 = χ(V + w)(f).

This contradicts χ(Vα + wα)→ χ(V + w). We conclude Vα + wα → V + w.
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Suppose conversely that Vα + wα → V + w. We would like to prove that

χ(Vα + wα)(f)→ χ(V + w)(f)

for arbitrary f ∈ CR(Rm). Since sums of dikes lie densely in CR, we may
assume f = g ◦ P is a dike. If V ⊆ kerP , then we simply compute

lim
α
|χ(Vα + wα)(f)− χ(V + w)(f)| = lim

α
|g(Pwα)− g(Pw)|

= |g(P lim
α
PV ⊥wα)− g(Pw)| = 0 ,

so we assume in the rest of the proof that V * kerP . Since χ(V +w)(f) = 0,
it remains to show that χ(Vα + wα)(f) converges to zero. We assume the
contrary, which gives us a subnet (Vβ+wβ) ⊆ (Vα+wα), such that all subnets
(Vγ + wγ) ⊆ (Vβ + wβ) have χ(Vγ + wγ)(f) /→0. Define Ṽ := V ∩ kerP ( V .
As in the proof of Lemma 2.8, we have a constant C such that

‖PṼ ⊥wγ‖ 6 C max(‖Pwγ‖ , ‖PV ⊥wγ‖) . (10)

To estimate the right-hand-side, firstly observe that limγ |χ(Vγ + wγ)(f)| 6
limγ |g(Pwγ)| , if this limit exists. This means that g(Pwγ) /→0, so (Pwγ)
has a bounded subnet. Secondly, observe that PV ⊥wγ → w, so (PV ⊥wγ) is
eventually bounded. Now (10) implies that (PṼ ⊥wγ) has a bounded subnet,
and therefore a convergent subnet, denoted by (PṼ ⊥wδ). This net converges
to some w̃ ∈ Ṽ ⊥ ∩ (V + w). Since Vδ + wδ is not absorbed in Ṽ + w̃, this
implies that Vδ is not eventually in Ṽ . In other words, (Vδ +wδ) has a subnet
(Vε + wε) ⊆ (Vβ + wβ) such that Vε * Ṽ . But this cannot be, because
χ(Vε + wε)(f) /→0.

Theorem 2.18. The Gelfand spectrum of the commutative resolvent algebra
CR(Rm) is homeomorphic to Ω, i.e. ∆(CR(Rm)) ∼= Ω via the map χ.

Proof. This relies on Lemma 2.17. Continuity of χ implies that its pullback,

χ∗ : C(∆)→ C(Ω), f 7→ f ◦ χ ,

is a *-homomorphism. We are left to show injectivity and surjectivity of χ∗.
Suppose χ∗(f̂) = 0 for some f̂ ∈ C(∆), which is the Gelfand representation
of f ∈ CR(Rm). For all w ∈ Rm we have

0 = χ∗(f̂)(0 + w) = χ(0 + w)(f) = f(w).

Hence χ∗ is injective. If g ∈ C(Ω), then g ◦ χ−1 ∈ C(χ(Ω)). Since χ(Ω) is
a compact subset of the compact Hausdorff space ∆, we may use Urysohn’s
lemma to extend g ◦ χ−1 to ∆. We obtain a function h ∈ C(∆) such that
h ◦ χ = g, completing the proof.
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3 Resolvent Algebra: Finite Case

In this section we turn to quantum mechanics. Replacing the dimension m
by 2n, we will work with the space R2n, which we call phase space. This is
a symplectic space with the symplectic form σn(x, y) := x · (Jny), where

Jn :=

 0 1
−1 0

...
0 1
−1 0

 .

For x ∈ R2n we define the operators

φ(x) :=
n∑
j=1

x2j−1Pj + x2jQj , dom(φ(x)) := S(Rn)

as unbounded operators in H := L2(Rn) , where Pj and Qj are defined,
initially on S(Rn), by (1). From these definitions, the canonical commutation
relation

[φ(x), φ(y)] ⊆ ~
i
σn(x, y)1

follows directly. Here ~ is a fixed nonzero constant, on which Pj and hence
φ implicitly depend. The following lemma is crucial to the definition of the
resolvent algebra, and also to the analysis in Section 4.

Lemma 3.1. For a fixed x ∈ R2n, the operator φ(x) is essentially self-adjoint.

Proof. To avoid unnecessary technicalities, all operators considered in this
proof should be understood as maps S(Rn) → S(Rn). We claim that there
exist unitaries Uj ∈ B(H) such that Uj(S(Rn)) ⊆ S(Rn) and

x2j−1Pj + x2jQj = ajU
∗
jQjUj ,

for some real aj. If x2j−1 = 0, then Uj = 1 suffices, so suppose x2j−1 6= 0.
Abbreviating cj := x2j/(2~x2j−1), we define Ũj : S(Rn)→ S(Rn) by

Ũjψ(y) := exp(icjy
2
j )ψ(y) .

As Ũj is multiplication by a function with values in the unit circle, it extends
to H and is unitary as such. We calculate

Ũj
∗
PjŨjψ(t) =

~
i
(2icjyjψ(y) + ∂jψ(y))

=
1

x2j−1
(x2jQj + x2j−1Pj)ψ(y) .
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Since Pj = bjF∗jQjFj with some bj ∈ R, and Fj the Fourier transform

in the coordinate j, we find that Uj = FjŨj suits our purposes. Define
U := U1 · · ·Un. Because [Uj, Uk] = [Uj, Pk] = 0 for j 6= k, we find

U∗
∑

ajQjU = φ(x) .

By pulling back a coordinate transformation that maps
∑
ajej to ‖a‖ e1,

we find that
∑
ajQj in turn is unitarily equivalent to ‖a‖Q1. Since Q1 is

essentially self-adjoint on S(Rn), and unitary equivalence preserves essential
self-adjointness (on a dense domain), φ(x) is essentially self-adjoint.

In what follows, we identify the operator φ(x) with its closure, so φ maps
R2n to unbounded self-adjoint operators in H. The resolvents of these self-
adjoint operators allow for a definition of the resolvent algebra of (R2n, σn).
A definition of the resolvent algebra R(X, σ) in terms of generators and
relations on a general phase space (X, σ), is given in Section 6. However,
this definition is too abstract for our present purposes, and we will only
need a concrete characterization of R(R2n, σn) as a subset of B(H). Using
Theorem 4.10 of their paper [2], Buchholz and Grundling proved that the
Schrödinger representation πnS : R(R2n, σn) → B(H) is faithful. We may
therefore identify R(R2n, σn) with πnS(R(X, σ)), and define it as follows.

Definition 3.2. The finite resolvent algebra R(R2n, σn) is the C*-algebra
generated by the operators (iλ − φ(x))−1 ∈ B(H) for every x ∈ R2n and
λ ∈ R\{0}.

In the next section we give a so-called strict deformation quantization

Q2n
~ : SR(R2n)→ R(R2n, σn) .

4 Quantization: Finite Case

In this section we achieve our goal for finite-dimensional phase spaces. Taking
the resolvent algebra as quantum algebra, we give a strict deformation quant-
ization of our commutative C*-algebra CR(R2n) of Section 2. The definition
of strict deformation quantization is given next. Our definition is equivalent
to Definition 1.1.2 of [8], and is stronger than any of the definitions of strict
(deformation) quantization that occur in the excellent survey in [7].

Let Ã0
R be a Poisson algebra that is densely contained in the self-adjoint

part A0
R of a commutative C*-algebra A0. It follows that Ã0

R is the real
part of a *-algebra Ã0, which in turn is dense in A0. We can now give the
anticipated definition.
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Definition 4.1. A strict deformation quantization of Ã0
R consists of a

subset I ⊆ R containing 0 as an accumulation point (meaning 0 ∈ I∩I\{0}),
a collection of C*-algebras {A~}~∈I , and a collection of injective linear maps
{Q~ : Ã0

R → A~
R}~∈I , Q0 being the identity map, such that for all f, g ∈ Ã0

R:

~ 7→ ‖Q~(f)‖ is continuous on I, (11)

lim
~→0
‖Q~(f)Q~(g)−Q~(fg)‖ = 0 , (12)

lim
~→0

∥∥ i
~ [Q~(f), Q~(g)]−Q~({f, g})

∥∥ = 0 , (13)

and such that, extending Q~ to Q~ : Ã0 → A~ by complex linearity, Q~(Ã
0)

is a dense *-subalgebra of A~, for each ~ ∈ I.

For our convenience, we fix ~ 6= 0, as we have done in Section 3. The map Q~
is called a quantization map. A standard example of a quantization map is
Weyl quantization, denoted here by Q2n

~ . (Keeping track of the phase space
dimension 2n will be useful once we extend our results to infinite-dimensional
symplectic spaces.) For a suitable function f : R2n → C, Weyl quantization
is defined by

Q2n
~ (f) :=

∫
R2n

/dy f̂(y)eiφ(y) , (14)

where f̂ is the Fourier transform of f in the sense of Cordes, [4], which in
general is not a function but a distribution. For example, the Fourier trans-
form of 1Rm is a delta distribution. Also in keeping with Cordes, we denote
/dy := (2π)−m/2dy whenever y runs over Rm. Notice that the ~-dependence
of Q2n

~ comes from φ.

A suitable function in most contexts (for instance [6] and [8]) is a Schwartz
function, f ∈ S(R2n), but for more general f it is not immediately clear
how the above integral is defined. Rieffel ([12]) works with Weyl quantiza-
tion of functions in some bigger space, B(R2n). We will work with the space
SR(R2n), for which we have S ⊆ SR ⊆ B. In Section 4.1 we will define the
integral in (14) for f ∈ SR(R2n), making Q2n

~ (f) an element of B(H), and
justifying our heuristic computations. For now, we just view (14) as a formal
expression, and assume the basic rules of calculus apply to it.

Rieffel does not explicitly use (14), but uses an equivalent prescription. As
explained in [13], Rieffel’s results can be applied to show that Weyl quant-
ization, when restricted to a *-subalgebra SR(R2n) ⊆ B(R2n), satisfies the
first couple of requirements in Definition 4.1. For this version of Weyl quant-
ization to be a strict deformation quantization, we only need to prove that
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Q2n
~ (SR(R2n)) is a dense *-subalgebra of R(R2n, σn).

It turns out that Weyl quantization takes a concrete form on dikes, which
will be used throughout this section. The especially appealing form of Weyl
quantization on g ◦ px is discussed in §4.2. We use the notation g ◦ p from
now on, contrary to Sections 2.1 and 2.2, because our definition of Q2n

~ is
basis-dependent. Let (e1, . . . e2n) be the standard basis of R2n.

Proposition 4.2. Let (v1, . . . vr) be a basis of V ⊆ R2n. Define p : R2n → Rr

linearly by vj 7→ ej, p�V ⊥ = 0. Define B ∈ GL(Rr) by its matrix elements
Bjk := vj · vk with respect to the standard basis. Then for each g ∈ S(Rr) we
have

Q2n
~ (g ◦ p) =

∫
Rr

/dx (g ◦B−1)̂ (x)ei
∑r

j=1 xjφ(vj) .

Proof. If we extend the basis (vj) with vr+1, . . . , v2n ∈ V ⊥ to a basis of R2n,
then we can define R ∈ GL(R2n) by R : ej 7→ vj, and find

(g ◦ p)̂ ((Rt)−1y) = | detR|(g ◦ p ◦R)̂ (y) = | detR|(g ⊗ 1)̂ (y)

= | detR|ĝ(y1, . . . , yr)δ(yr+1, . . . , y2n) .

In the integral formula for Weyl quantization we can change variables by
y 7→ (Rt)−1y to obtain

Q2n
~ (g ◦ p) =

∫
R2n

/dy | detR|−1(g ◦ p)̂ ((Rt)−1y)eiφ((R
t)−1y)

=

∫
Rr

/dx ĝ(x)eiφ((R
t)−1(x⊕0)) .

Since RtR has span{e1, . . . , er} and span{er+1, . . . , e2n} as invariant sub-
spaces, we may write RtR = B ⊕ C for B ∈ GL(Rr) and C ∈ GL(R2n−r).
Indeed, Bjk = vtjvk. Now it is worth changing variables once more, this time
sending x 7→ Bx, since Bx⊕ 0 = RtR(x⊕ 0). Because Bt = B, we find

Q2n
~ (g ◦ p) =

∫
Rr

/dx | detB|ĝ(Bx)eiφ(R(x⊕0))

=

∫
Rr

/dx (g ◦B−1)̂ (x)ei
∑r

j=1 xjφ(vj) . (15)
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4.1 The Operator-Valued Integral

We have done some calculus with integrals, while only using formal expres-
sions. We will now show how to give a concrete meaning to these integrals,
and hence to the results obtained so far.

Let {Ax}x∈Rr be a family of bounded operators on H, and (Kj) an exhaustive
sequence of compacts in Rr. Whenever x 7→ Axψ is a continuous function
Rr → H for all ψ ∈ H, the Pettis integrals (as introduced in [10])

∫
Kj
Axψdx

exist, and we may define(∫
Kj

Axdx

)
ψ :=

∫
Kj

Axψdx .

This gives a sequence (
∫
Kj
Axdx) of linear operators on H. If this is a Cauchy

sequence in B(H), then we define
∫
Rr Axdx as the limit of

∫
Kj
Axdx, and call

it the operator-valued integral of {Ax}.

The rules of calculus that we have used so far all hold for the Pettis integral
on H, and using the operator norm on B(H), we find that these rules hold
for the operator-valued integral as well.

We apply the above general discussion to the situation at hand. The integ-
rand of (15) is

Ax := (2π)−r/2(g ◦B−1)̂ (x)ei
∑
xjφ(ψj) ,

where (g ◦ B−1)̂ is Schwartz by Lemma A.1. For any ψ ∈ H, the function
x 7→ Axψ is continuous by a multi-dimensional Stone’s Theorem, called the
Stone-Naimark-Ambrose-Godement Theorem. Hence the integral

∫
K
Axdx is

defined for any compact K. We estimate∥∥∥∥∫
K

Axψdx

∥∥∥∥
2

6
∫
K

/dx |(g ◦B−1)̂ (x)|
∥∥ei∑xjφ(ψj)ψ

∥∥
2

6 ‖ψ‖2
∫
K

/dx |(g ◦B−1)̂ (x)| .

By this estimate, the sequence (
∫
Kj
Atdt) will be Cauchy in B(H). Therefore

(15), which equals
∫
Rr Axdx, is defined. Following the proof of Proposition

4.2 backwards, we find that all integral expressions there can be defined
as explained above for the bounded operator (15). Thus we have defined
Q2n

~ (g ◦ p) as a bounded operator on H.
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Definition 4.3. For a fixed ~ 6= 0, Weyl quantization is the map

Q2n
~ : SR(R2n)→ B(H) ,

Q2n
~ (f) :=

∫
R2n

/dy f̂(y)eiφ(y) ,

which is defined by the above discussion.

4.2 Weyl Quantization on Functions of One Variable

Let us apply Proposition 4.2 to the case r = 1. Fix a nonzero vector x ∈ R2n.
Let the basis (v1, . . . , vr) consist solely of v1 = x/ ‖x‖2, and px(y) := x · y. If
g ∈ S(R), then the dike g ◦ px is quantized by the operator

Q2n
~ (g ◦ px) =

∫
R
/dy ĝ(y)eiyφ(x) ≡ Φx(g) . (16)

This defines a map Φx : S(R)→ B(H), which occurs in several places in the
literature as a functional calculus of φ(x). It can be continuously extended.

Lemma 4.4. There is a (norm-continuous) *-homomorphism Φx : C0(R)→
B(H) which equals the integral expression in (16) whenever ĝ ∈ L1(R).

Proof. We can use (16) to show that Φx is a *-homomorphism on S(R).
Indeed, when x is fixed, the operators eiyφ(x) behave as the functions t 7→ eiyt

under the operations addition, involution and multiplication. By standard
Fourier analysis it follows that Φx�S(R) preserves these operations.
It is known that the Fourier transform ·̂ : C0(R)→ C∗(R) is a *-isomorphism.
For a fixed f ∈ L1(R), define ρ(f) :=

∫
/dy f(y)eiyφ(x), so that Φx(f) = ρ(f̂).

Now u(y) := eiyφ(x) is a unitary representation, and as such ‖ρ(f)‖ 6 ‖f‖∗,
by definition of the norm ‖·‖∗ on C∗(R). (See for example [9], section C.18.)

Extending ρ to all of C∗(R), we can define Φx(f) := ρ(f̂) for f ∈ C∗(R) and
again find ‖ρ(f)‖ 6 ‖f‖∗. We obtain

‖Φx(f)‖ =
∥∥∥ρ(f̂)

∥∥∥ 6 ∥∥∥f̂∥∥∥
∗

= ‖f‖∞ ,

implying norm-continuity. Since Φx is a *-homomorphism on a dense domain
and continous, it is a *-homomorphism on the whole of C0(R).

Proposition 4.5. Φx(1/(iλ− ·)) = R(λ, x).
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Proof. The Fourier transform of 1/(iλ− ·) is:(
1

iλ− ·

)
(̂t) = −i

√
2π sgn(λ)eλtθ(−λt) ,

where θ is the Heaviside step function. The above function is clearly in
L1(R). Applying (16) yields

Φx

(
1

iλ− ·

)
= −isgn(λ)

∫ ∞
−∞

eλtθ(−λt)eitφ(x)dt

= i

∫ −sgn(λ)∞
0

eλteitφ(x)dt ,

by distinguishing the two cases sgn(λ) = ±1. Now a change of variables gives

Φx

(
1

iλ− ·

)
= −i

∫ sgn(λ)∞

0

e−λte−itφ(x)dt = R(λ, x) ,

by the Laplace transform. See for instance [2], Corollary 4.4.

Let us stress the significance of the main result of §4.2. Weyl quantization,
considered on functions of one variable, is the usual functional calculus of
self-adjoint operators (for instance treated in [9]). To put it symbolically, we
have

Q2n
~ (g ◦ px) = g(φ(x)) .

As explained in the introduction, this approach via dikes is an equivalent
way to introduce Weyl quantization.

4.3 Dense Subalgebra of the Resolvent Algebra

We are now in a position to rewrite Q2n
~ (SR). Recall that SR is the linear

span of{
g ◦ p

∣∣ p : R2n → Rr linear and surjective, g ∈ S(Rr), r 6 2n
}
.

We once again fix a subspace V ⊆ R2n and a basis (v1, . . . , vr) of V , more
briefly denoted by (vj). We say an operator A is (vj)-Schwartz iff

A =

∫
Rr

/dx ĝ(x)ei
∑r

j=1 xjφ(vj) for some g ∈ S(Rr) .

Loosely speaking, being (vj)-Schwartz means that A has a symbol (see [4])
that is Schwartz in the direction of (vj). This property should not depend
on the choice of basis, and that is indeed the case.

24



Lemma 4.6. Let (vj) and (v′j) be two bases of V . Then A is (vj)-Schwartz
iff A is (v′j)-Schwartz, in which case we say A is V -Schwartz. Thus

Q2n
~ (SR) = span

{
A
∣∣ A is V -Schwartz for some linear V ⊆ R2n

}
.

Proof. Suppose A is (vj)-Schwartz. Then Proposition 4.2 lets us write A =
Q2n

~ (g◦p) for some g ∈ S(Rr) and p : vj 7→ ej. Now (pv′j) forms a basis of Rr,
so there exists an R ∈ GL(Rr) such that Rpv′j = ej. Now g ◦R−1 ∈ S(Rr) by
Lemma A.1. It follows by Proposition 4.2 that A = Q2n

~ ((g ◦R−1) ◦ (R ◦ p))
is (v′j)-Schwartz.
Now we may safely use the statement “A is V -Schwartz”. The last claim
follows from Proposition 4.2, since for any B ∈ GL(Rr), g is Schwartz iff
g ◦B−1 is Schwartz (again by Lemma A.1).

The class of V -Schwartz operators ties together (a subset of) the compact
operators4 and the Schwartz functions5. What is useful for us, is that V -
Schwartz operators form a *-algebra, as we will now prove.

Theorem 4.7. The set Q2n
~ (SR(R2n)) is a *-algebra within B(H).

Proof. Closure under involution is easily checked, as

Q2n
~ (f)∗ =

∫
R2n

/dy f̂(y)e−iφ(y) =

∫
R2n

/dy f̂(−y)eiφ(y) = Q2n
~ (f ∗) . (17)

The real problem here is closure under multiplication, but Lemma 4.6 provides
a solution. Suppose A1, A2 ∈ Q2n

~ (SR) are V1- and V2-Schwartz, respectively.
Then we may choose bases (v11, . . . , v

1
r1

), (v21, . . . , v
2
r2

) for V1 and V2 respect-
ively, with the property that v1j = v2j for all j 6 r := dimV1 ∩ V2. For
appropriate gk ∈ S(Rrk), we find

A1A2 =

∫
/dt g1(t)e

i
∑
tjφ(v

1
j )

∫
/ds g2(s)e

i
∑
sjφ(v

2
j )

=

∫
/dt/ds g1(t)g2(s)f(t, s)ei

∑
tjφ(v

1
j )+sjφ(v

2
j ) ,

4If V is nondegenerate, (meaning that (V, σ�V ) is a symplectic space) then a V -Schwartz
operator can be written as A⊗ 1, with compact operator A, for some appropriate factor-
ization of H. We do not prove this fact, but it follows from our results.

5If V is fully degenerate, (meaning that σ�V = 0,) then a V -Schwartz operator is a
Schwartz function applied (by functional calculus) to a set of commuting operators. Just
as in the previous footnote, this fact brings some intuition, but it is not needed for our
eventual goal.
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where f(t, s) = e
i~
2

∑
j,k σ(tjv

1
j ,skv

2
k) by the Baker-Campbell-Hausdorff formula.

We write t0 = (t1, . . . , tr), t
k = (tr+1, . . . , trk). A change of variables t0 7→

t0 − s0 gives

A1A2 =

∫
/dt/ds g1(t

0−s0, t1)g2(s)f(t0−s0, t1, s)ei
∑r1

j=1 tjφ(v
1
j )+i

∑r2
j=r+1 sjφ(v

2
j )

=

∫
/dt/ds2 g(t, s2)ei

∑r1
j=1 tjφ(v

1
j )+i

∑r2
j=r+1 sjφ(v

2
j ) ,

where we define the function g by

g(x, y, z) :=

∫
Rr

/dw g1(x− w, y)g2(w, z)f(x− w, y, z) ,

for all x ∈ Rr, y ∈ Rr1−r, z ∈ Rr2−r. We want to show that g is Schwartz.
Using the Leibniz rule, ∂βg is a linear combination of functions of the form

hγ(x, y, z) :=

∫
/dw ∂γ1x ∂

γ2
y g1(x− w, y)∂γ3z g2(w, z)∂

β−γf(x− w, y, z),

where ∂αx := ∂α⊕0⊕0 et cetera. We now investigate the absolute value of hγ.
Because of the form of f , we have |∂β−γf(x−w, y, z)| = |p1(x−w)p2(y)p3(z)|
for some polynomials pj which implicitly depend on β and γ, but we leave
out such β, γ dependence from now on. We can absorb the derivatives, poly-
nomials and absolute value into the functions gj, giving rapidly decreasing
functions g̃j, (see Appendix A,) such that

|hγ(x, y, z)| =
∫
/dw g̃1(x− w, y)g̃2(w, z) .

Therefore, |hγ| is rapidly decreasing by Lemma A.2, and consequently

sup
x
|xα∂βg| 6

∑
γ

cγ sup
x
|xαhγ(x)| <∞ ,

proving that g ∈ S(Rr1+r2−r).
Since (v11, . . . v

1
r1
, v2r+1, . . . v

2
r2

) is a basis of V1 + V2, it follows that A1A2 is
V1 + V2-Schwartz. By Lemma 4.6, Q2n

~ (SR) is therefore a *-algebra.

Theorem 4.8. We have Q2n
~ (SR(R2n)) = R(R2n, σn).

Proof. Since Q2n
~ (SR) is a *-algebra, we want its closure to contain R(λ, x).

We know that R(λ, x) = Φx(1/(iλ − ·)), by Proposition 4.5. Take a se-
quence (gk) in S(R) converging to 1/(iλ−·) in norm. Then Φx(gk) converges
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to R(λ, x) by Lemma 4.4. Therefore, R(λ, x) ∈ QW
~ (SR). It follows that

R(R2n, σn) ⊆ QW
~ (SR).

By Lemma 4.6 we are left to show that every V -Schwartz operator A ∈ B(H)
is contained in R(R2n, σn). We do this by induction in dimV . Let (v1, . . . vr)
be a basis of some V ⊆ R2n, and fix the appropriate g ∈ S(Rr) such that

A =

∫
Rr

/dx ĝ(x)ei
∑
xjφ(vj) .

Let f : Rr → S1 be such that ei
∑
xjφ(vj) = f(x)eix1φ(v1)ei

∑r
j=2 xjφ(vj). Keeping

in mind that S(Rr) = S(R)⊗S(Rr−1) with respect to the Schwartz topology,
assume for now that ĝf = ĝ1 ⊗ ĝ2. In that case

A =

∫
Rr

/dx ĝ1(x1)ĝ2(x2, . . . , xr)e
ix1φ(v1)ei

∑r
j=2 xjφ(vj)

= Φv1(g1)

∫
Rr−1

/dy ĝ2(y)ei
∑r−1

j=1 yjφ(vj+1) .

By the induction hypothesis the latter integral is in R(R2n, σn), and by
the Stone-Weierstrass theorem we can approximate g1 by polynomials in
1/(iλ− ·). By Lemma 4.4 and Proposition 4.5, Φv1 maps these polynomials
to R(R2n, σn). By continuity of Φv1 it follows that also Φv1(g1) ∈ R(R2n, σn).
So A ∈ R(R2n, σn) whenever ĝf is an elementary tensor or, by linearity of
R, is a finite sum of those. Suppose now that ĝf is not of this form, but
ĝkf is, so that Ak :=

∫
Rr
/dx ĝk(x)ei

∑
xjφ(vj) ∈ R(R2n, σn), and assume that

ĝkf → ĝf in the Schwartz topology. We find

‖A− Ak‖ =

∥∥∥∥∫ /dx (g − gk )̂ (x)ei
∑
xjφ(vj)

∥∥∥∥
6
∫
/dx |(g − gk )̂ (x)|

∥∥ei∑xjφ(vj)
∥∥

=

∫
/dx |(ĝf − ĝkf)(x)| .

The sequence (ĝkf) converges to ĝf in the Schwartz topology, hence also in
L1-norm. This gives us ‖A− Ak‖ → 0, proving that A ∈ R(R2n, σn).
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4.4 Strict Deformation Quantization

At the beginning of Section 4 we have suggested that, because Q2n
~ (SR) is

a dense *-subalgebra of the resolvent algebra, we have achieved our goal in
the finite case. However, giving a rigorous proof needs some careful work.
We will begin by introducing the concepts needed for a precise formulation
of the main result of Section 4.

The real part SR(R2n)R of SR(R2n) consists of the functions f that satisfy
f ∗ = f , where the involution is given by complex conjugation. Weyl quantiz-
ation Q2n

~ is *-preserving, by (17). Therefore, Q2n
~ (SR(R2n)R) ⊆ R(R2n, σn)R,

and it makes sense to restrict Q2n
~ to a map SR(R2n)R → R(R2n, σn)R. The

complex linear extension of this latter map is simply Q2n
~ , because Weyl

quantization is complex linear by definition.

On SR(R2n)R we can put the Poisson structure of C∞(R2n;R), in effect de-
fining

{f, g} := σn(∂f, ∂g) ,

where ∂f, ∂g are vector-valued functions to which we pointwise apply σn.
Note that {f, g} is just a polynomial of partial derivatives ∂jf, ∂jg. By
applying the chain rule to a dike, we see that ∂jf, ∂jg ∈ SR(R2n), and hence
{f, g} ∈ SR(R2n)R. This makes SR(R2n)R a Poisson algebra, and we may
state the main result of this section.

Theorem 4.9. Let A0 := CR(R2n) and A~ := R(R2n, σn) for ~ > 0. The set
I = [0, 1], together with the collection of C*-algebras {A~}~∈I , and the maps
Q2n

~ : SR(R2n)R → R(R2n, σn)R, constitute a strict deformation quantization
of SR(R2n)R.

Proof. Let us adopt some notation from the article [13] of Rieffel, because
we will be using one of his results. We have the classical function algebra

B :=
{
f ∈ C∞(R2n)

∣∣ ‖∂αf‖∞ <∞ for all α ∈ N2n
}
,

on which Rieffel defines an alternative product, ×~, and norm, ‖·‖~, for
every ~ ∈ I. The ‖·‖~-completion of B, equipped with linear and involutive
structure from B, and equipped with the product×~, is denoted by B~. Rieffel
proves that this is a C*-algebra. Now we shall stray from the course taken
by Rieffel, and define QR

~ : B ↪→ B~ as the canonical embedding. Because
the maps QR

~ are *-preserving, just like Q2n
~ , we may ask if these, together

with I and {B~}~, constitute a strict deformation quantization. Indeed, the
facts (1) and (2) on page 73 of [13] imply the axioms (11), (12) and (13) of
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our Definition 4.1. By definition, each map QR
~ is injective, linear and maps

B to a dense *-subalgebra of B~.
Thus the maps QR

~ give us a strict deformation quantization, which remains
the case when they are composed with *-isomorphisms π~ (assuming π0 = id).
As explained in [13], the prescription

π~(f) :=

∫
/dy f(y)eiφ(y) (f ∈ B)

defines an irreducible *-representation of B~ on H, for each ~ > 0. When we
define Q2n

0 = idSR as well as π0 := idB, it is clear that π~ ◦ QR
~�SR = Q2n

~ for
each ~ ∈ I. Restricting the quantization maps to a subalgebra has effect on
neither their injectivity and linearity, nor on the axioms (11), (12) and (13).
The only thing left to prove is that Q2n

~ (SR) is a dense *-subalgebra of A~.
This is exactly the statement that we have worked towards. For ~ = 0 it
follows from Proposition 2.5, and for ~ > 0 it is the combination of Theorem
4.7 and Theorem 4.8.

We note here that even though Definition 4.1 (i.e. that of strict deformation
quantization) does not explicitly demand {A~}~ to be a continuous field of
C*-algebras, this existence is a consequence. In fact, the following corollary
follows from Theorem 1.2.4 in [8].

Corollary 4.10. Let A0 := CR(R2n) and A~ := R(R2n, σn) for ~ > 0. There
exists a unique continuous field of C*-algebras (C, {A~, ϕ~}~∈[0,1]) whose col-
lection of sections {ϕ~(A)}~∈[0,1], A ∈ C, contains all {Q~(f)}~∈[0,1] for
f ∈ SR(R2n).

The tuple (CR(R2n),R(R2n, σn)) may be added to the list of existing strict de-
formation quantizations on R2n, using (some generalization of) Weyl quant-
ization as quantization map. These can be fitted into the diagram

(C0(R2n), K(H))

(CR(R2n),R(R2n, σn)) (W(R2n, 0),W(R2n, σn))

(Cu(R2n),B~)

in which arrows depict inclusion of the corresponding C*-algebras, K(H) is
the space of compact operators, W(R2n, 0) is the space of almost continuous
functions (as in [1]),W(R2n, σn) is the Weyl algebra and Cu(R2n) is the space
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of bounded uniformly continuous functions (as in [13]).

We have already foreshadowed that our work does not stop here, upon giving
a strict deformation quantization involving the resolvent algebra on R2n, and
will now advance to deal with the general version of the resolvent algebra.
Still, the hardest part is now behind us. The general resolvent algebra is a
direct limit of resolvent algebras on R2n (as n→∞), allowing us to construct
a quantization map which generalizes Weyl quantization.
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5 Commutative Resolvent Algebra: General

Case

Let X be a Pre-Hilbert space, which means a complex vector space (possibly
infinite dimensional) with a Hermitian inner product 〈·, ·〉, from which X
derives its topology. We view X as a real vector space. By this we mean
that, unless noted otherwise, we use the real structure on X. We can then
view X as a symplectic space with symplectic form6

σ(x, y) := Im〈x, y〉 .

It will prove useful to put a real inner product on X, which we do by defining

〈x, y〉R := Re〈x, y〉 .

When X has this structure, we refer to it as a symplectic space admitting a
unitary structure. This is what Buchholz and Grundling usually assume for
the symplectic vector space on which they define the resolvent algebra. It is
this X that will replace our earlier R2n, and it should come as no surprise
that we can define the commutative resolvent algebra in the following way.

Definition 5.1. For λ∈R\{0} and x∈X define hλx(y) := 1/(iλ − 〈x, y〉R).
The commutative resolvent algebra over X, denoted by CR(X), or simply
by CR, is the C*-subalgebra of Cb(X) generated by the functions hλx.

We will not go through the lengths of generalizing §2.1 and §2.2 to infinite
dimensions, as this –in our opinion– will not yield much additional insight.
Instead we briefly give a way to pass to CR(X), starting from CR(V ) for
finite dimensional V ⊆ X.

We can embed CR(V ) ↪→ CR(W ) whenever V ⊆ W by composing with the
projection onto V , thus sending f 7→ f ◦PV . This gives us a directed system
{CR(V )}V⊆X f.d. (f.d. meaning finite dimensional). Since CR(X) is gener-
ated by the functions hλx = hλx ◦ Pspan{x}, it is generated by the subalgebras
CR(span{x}). Therefore, CR(X) is the direct limit of {CR(V )}V⊆X f.d., in
the sense of C*-algebras.

6As before we mean a bilinear anti-symmetric nondegenerate form. A form σ on a
Banach space E under these assumptions is called a weak symplectic form, and is called
strong iff E → E∗, x 7→ σ(x, ·) is an isomorphism of Banach spaces. The Banach space X
is in fact a Hilbert space, on which any weak symplectic form is a strong symplectic form.
So the distinction is irrelevant here.
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5.1 The Smooth Commutative Resolvent Algebra

In the finite case the commutative resolvent algebra is densely spanned by
the functions g ◦ p, which are basically functions that are Schwartz in, say,
r directions and are constant in the other 2n − r directions. The infinite
dimensional generalization thereof is close to the finite dimensional case. It
consists of functions that are Schwartz in r directions, and are constant in
the other (cofinitely many) directions. Now continuity is not yet garanteed,
so we put this assumption on p, defining

SR(X) := span

{
g ◦ p

∣∣∣∣ p : X � Rr linear, continuous,
g ∈ S(Rr) for r ∈ N

}
. (18)

When X = R2n, equation (18) coincides with our previous definition. For
general X, we will regard SR(X) as the direct limit of finite dimensional
versions, similar to the case of CR. But contrary to the case of CR, we
will use a basis-dependent approach. We use the symplectic space (R2n, σn)
as defined in Section 3. If a linear isomorphism between two symplectic
spaces preserves their symplectic forms, we call it a symplectomorphism,
abbreviated ‘sympl.’. For a complex-linear subspace V ⊆ X (this implies
that (V, σ�V ) is a symplectic space) of real dimension 2n, we define the space

PV2n :=
{
p : X → R2n

∣∣ p�V sympl., p�V ⊥ = 0
}
,

and let P be the union of all possible PV2n. For all p ∈ PV2n we define sp := p−1�V ,
and remark that sp is a section of p. We also define

SR(X)p :=
{
f ◦ p

∣∣ f ∈ SR(R2n)
}
.

Every g◦p in SR(X) can be written as f◦q for some q ∈ PV2n and f ∈ SR(R2n),
for arbitrarily large V . Hence we find that

SR(X) =
⋃
p∈P

SR(X)p . (19)

For any p ∈ PV2n, the function algebra SR(X)p is isometrically isomorphic
to SR(R2n), and so in a way SR(X) is built from the SR(R2n)’s. This is
useful as we have already seen how to quantize SR(R2n). Concretely, the
isomorphism SR(X)p

∼−→ SR(R2n) that we use is the pull-back (see Lemma
2.2) of the symplectomorphism p′ : R2n → V , defined by

p′x := i sp(Jnx) . (20)

Here we use the complex linear structure on X when multiplying by i. Re-
call that Jn is the standard symplectic matrix, which can be viewed as the
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analogue of −i. To justify our notation, note that p′ is dual to p in the sense
that 〈p′x, v〉R = x · pv for all v ∈ V and x ∈ R2n.

An important property of the subspaces SR(X)p is the following.

Lemma 5.2. Assume p ∈ PV2n and q ∈ PW2m. If V ⊆ W , then SR(X)p ⊆
SR(X)q.

Proof. Let f ◦ p ∈ SR(X)p for f ∈ SR(R2n). We may assume that f = g ◦ e
for some linear e : R2n � Rr and g ∈ S(Rr), giving the following diagram:

W R2n Rr C

R2m

q

p e g

p ◦ sq

From this diagram it can be seen that e◦p◦sq is surjective, giving g◦e◦p◦sq ∈
SR(R2m). We conclude that

f ◦ p = g ◦ e ◦ p
= g ◦ e ◦ p ◦ sq ◦ q ,

which is in SR(X)q.

We may now write SR(X)V := SR(X)p for a certain (and hence all) p ∈ PV2n.
We find that I :=

{
V ⊆ X

∣∣ V is f.d. and complex linear
}

is a directed set,
over which {SR(X)V }V ∈I is a direct system, with inclusions as connecting
maps. Because of (19), the direct limit of this system is SR(X).
As CR(X) is the direct limit of {CR(V )}V ∈I , the next proposition follows
directly from its finite dimensional analogue, Proposition 2.5.

Proposition 5.3. The space SR(X) is a dense *-subalgebra of CR(X).

5.2 Poisson Structure

In this part we will investigate SR(X)R, the real part of SR(X), as a real
*-algebra. We will give SR(X)R a Poisson structure by noting that

SR(X)R =
⋃
p∈P

SR(X)pR , SR(X)pR ' SR(R2n)R when p ∈ PV2n .

We can transfer the Poisson structure of SR(R2n)R to SR(X)pR. Explicitly,
the definition of the Poisson bracket {·, ·}p on SR(X)pR reads

{f ◦ p, g ◦ p}p := {f, g} ◦ p = σn(∂f, ∂g) ◦ p (f, g ∈ SR(R2n)) .
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Lemma 5.4. Assume p ∈ PV2n and q ∈ PW2m, and let f, g ∈ SR(R2n) be such
that f ◦ p, g ◦ p ∈ SR(X)pR ∩ SR(X)qR. We then have

{f ◦ p, g ◦ p}p = {f ◦ p, g ◦ p}q .

Proof. We first prove this when V = W . In this case, f ◦ p = f ◦ T ◦ q and
g ◦ p = g ◦ T ◦ q for the symplectic isomorphism T = p ◦ sq on R2n. The
Poisson bracket is invariant under T , hence

{f ◦ p, g ◦ p}q = {f ◦ T, g ◦ T} ◦ q
= {f, g} ◦ T ◦ q
= {f ◦ p, g ◦ p}p .

By Lemma 5.2, we may restrict ourselves to the case V ⊆ W . By the above,
we may choose p and q to our liking. We can write W = V ⊕ U for U :=
W ∩V ⊥, and choose p, q such that q�W = p�V ⊕ q̃ for some q̃ : U

∼−→ R2m−2n. It
follows that h ◦ p ◦ sq = h⊗ 1 for any h ∈ SR(R2n), using the tensor product
SR(R2n) ⊗ SR(R2m−2n). Because the Poisson bracket factors through this
tensor product, we obtain

{f ◦ p, g ◦ p}q = {f ⊗ 1, g ⊗ 1} ◦ q
= ({f, g} ⊗ 1) ◦ q
= {f, g} ◦ p ,

which implies the lemma.

We are therefore able to define

{f, g} := {f, g}p whenever f, g ∈ SR(X)p .

In order to prove that {·, ·} is a Poisson bracket, some conditions (bilinearity,
antisymmetry, Leibniz rule, Jacobi identity) should hold. Because every
triple of f, g, h ∈ SR(X) has a p ∈ P such that f, g, h ∈ SR(X)p, these
conditions follow directly from those on {·, ·}p. This makes SR(X) a Poisson
algebra, as desired.
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6 Resolvent Algebra: General Case

The resolvent algebra was introduced by Buchholz and Grundling in [2]. We
copy this definition (following [3]) to have an easy reference. As always, X
is a symplectic space admitting a unitary structure.7

Definition 6.1. Define R0(X, σ) as the universal unital *-algebra generated
by the set {R(λ, x) | λ ∈ R\{0}, x ∈ X} and the relations

R(λ, 0) = − i
λ
1 ,

R(λ, x)−R(µ, x) = i(µ− λ)R(λ, x)R(µ, x) ,

R(λ, x)∗ = R(−λ, x) ,

[R(λ, x), R(µ, y)] = iσ(x, y)R(λ, x)R(µ, y)2R(λ, x) ,

νR(νλ, νx) = R(λ, x) ,

R(λ, x)R(µ, y) = R(λ+ µ, x+ y)
[
R(λ, x)

+R(µ, y) + iσ(x, y)R(λ, x)2R(µ, y)
]
.

Let S denote the set of positive, normalized functionals (i.e. states) ω of
R0(X, σ). By Proposition 3.3 of [2], the corresponding GNS-representations
(πω, Hω) are uniformly bounded with respect to S. Now

‖A‖ := sup
ω∈S
‖πω(A)‖Hω

(A ∈ R0(X, σ))

defines a seminorm on R0(X, σ), which allows for the following definition.

Definition 6.2. The resolvent algebra R(X, σ) is the C*-completion of
the quotient algebra R0(X, σ)/ ker ‖·‖.

The functions hλx were made to match with the generators R(λ, x). Indeed,
taking σ = 0 for a moment, it follows algebraically that the resolvent func-
tions satisfy the above equations. Analogous to [1], one could generalise the
definition of the resolvent algebra to spaces X with possibly degenerate σ,
and thus validate the name ‘commutative resolvent algebra’. However, this

7Looking at the original definition in [2], the reader may notice that R(X,σ) is defined
there for any symplectic space (X,σ), not necessarily admitting a unitary structure. How-
ever, as shown in [14], a symplectic space without unitary structure can cause significant
difficulties. As mentioned in [3], [14] and [15], these difficult symplectic spaces should be
viewed as pathologies. Any symplectic space used in a physical application has a unitary
structure. It is for this reason that a unitary structure is assumed on X in [3] and the
successive articles on the resolvent algebra, and for the same reason we have assumed a
unitary structure on X as well.
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is not needed in the present analysis, and could make it confusing to refer
to ‘the resolvent algebra’. With this in mind, we stick with the terminology
used in [2] and [3].

When our symplectic spaceX is 2n-dimensional, we may define the Schrödinger
representation πnS : R(X, σ) → B(L2(Rn)) by πnS(R(λ, x)) := (iλ − φ(x))−1.
As mentioned in Section 3, this defines a faithful *-representation. Through-
out Sections 3 and 4 we have used this to identifyR(R2n, σn) with πnS(R(R2n, σn)).
However, with our eye on defining a quantization map, we will henceforth
make a clear distinction between the two.
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7 Quantization: General Case

In this section we prove our main result, namely that a generalization of Weyl
quantization provides a strict deformation quantization involving CR(X) and
R(X, σ). The quantization map QW

~ that is meant to generalize Q2n
~ will be

constructed using certain embeddings SR(R2n) ↪→ SR(X) and πnSR(R2n, σn) ↪→
R(X, σ), meant to reduce the case of X to the case of R2n. The first em-
bedding is the inverse of p′∗, already isometric by Lemma 2.2. The second
embedding we now construct.

For λ 6= 0 and x ∈ R2n, we define

ip(π
n
SR(λ, x)) := R(λ, sp(x)) , (21)

allowing for the following proposition.

Proposition 7.1. The prescription (21) defines an isometric *-homomorphism

ip : πnS(R(R2n, σn))→ R(X, σ) .

Proof. We will show that ip is the composition of three isometric *-homo-
morphisms. As we have seen, the Schrödinger representation πnS is faithful,
hence

πnS(R(R2n, σn)) ' R(R2n, σn)

as C*-algebras. Let us define ϕ(R(λ, x)) := R(λ, sp(x)) ∈ R(V, σ�V ) for
λ 6= 0 and x ∈ R2n. The resolvent algebra R(X, σ) as defined in sec-
tion 6 only depends on the linear and symplectic structure of (X, σ). Be-
cause sp is a symplectic linear isomorphism, we find that ϕ extends to
a *-isomorphism ϕ : R(R2n, σn) → R(V, σ�V ). Next, we denote by τ :
R(V, σ�V ) ↪→ R(X, σ) the canonical embedding. By [2], Theorem 4.9(i),
τ is an isometric *-homomorphism. Buchholz and Grundling use this fact
to identify R(V, σ�V ) with τ(R(V, σ�V )). To clearly distinguish the two, we
should replace R(λ, sp(x)) in (21) by τ(R(λ, sp(x))). In this light, we see that
ip extends to

ip = τ ◦ ϕ ◦ (πnS)−1 ,

which proves the claim.

We can now construct quantization maps on the individual subspaces SR(X)p

of SR(X).

Definition 7.2. Define Qp
~ : SR(X)p → R(X, σ) by

Qp
~ := ip ◦Q2n

~ ◦ p′∗ ,

where p′∗ is the pull-back of p′.
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One may wonder whether the maps Qp
~, for varying p ∈ P , can be patched

together. The answer is yes, they can.

Proposition 7.3. Assume p ∈ PV2n and q ∈ PW2m.

(i) If V = W , then Qp
~ = Qq

~.

(ii) If V ⊆ W , then Qp
~ = Qq

~�SR(X)p.

Proof of (i). By Lemma 5.2, we have SR(X)p = SR(X)q. We now have two
isomorphisms p′∗, q′∗ : SR(X)p → SR(R2n), which are different in general,
but can be related by the symplectic transformation T := p ◦ sq, or rather
by S := (T t)−1 = J−1n TJn. Indeed, we find

p′(Sx) = i · sp(TJnx)

= i · sp(p(sq(Jnx)))

= q′(x) .

In terms of pull-backs, this implies S∗ ◦ p′∗ = q′∗.
Inspired by this, we search for α such that the following diagram commutes:

SR(X)p SR(R2n) πnS(R(R2n, σn))

SR(R2n) πnS(R(R2n, σn)) R(X, σ)

p′∗

q′∗

Q2n
~

S∗
ip

α

Q2n
~ iq

(22)

Because T−1 is a symplectic transformation, we find that y 7→ eiφ(y) and y 7→
eiφ(T

−1y) are both representations of the canonical commutation relations, in
the sense of -for instance- [6]. By the Stone-von Neumann theorem, there
exists a unitary U ∈ B(H) such that

eiφ(T
−1y) = Ueiφ(y)U∗, for all y ∈ R2n .

This is just what we need. Define α ∈ Aut(B(H)) by α(a) := UaU∗. From
the definition of Weyl quantization, we then obtain

α(Q2n
~ (f)) =

∫
/dy f̂(y)Ueiφ(y)U∗

=

∫
/dy | detT |f̂(Ty)eiφ(y)

= Q2n
~ (f ◦ S) ,
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from which we find commutativity of the middle square of (22). For commut-
ativity of the right triangle we need ip = iq◦α, which we will now check for the
resolvent πnSR(λ, x) (fixing λ 6= 0, x ∈ R2n). Using the Laplace transforma-
tion, πnSR(λ, x) = (iλ−φ(x))−1 can be expressed as an integral over operators
of the form eiφ(y), and we thus obtain α(πnSR(λ, x)) = πnSR(λ, T−1x). Because
of this,

iq(α(πnSR(λ, x))) = R(λ, sq(T
−1x))

= R(λ, sq(s
−1
q (sp(x))))

= ip(π
n
SR(λ, x)) ,

which implies that ip − (iq ◦ α) is zero on some generating elements. By
Proposition 7.1 and by construction of α, the function ip−iq◦α is a continuous
*-homomorphism, hence it is zero on the whole of πnS(R(R2n, σn)). We now
have commutativity of (22), which concludes the proof of (i).

Proof of (ii). By virtue of (i), we may choose p ∈ PV2n and q ∈ PW2m however
we want. For this purpose, we first choose a complex orthonormal basis
(u1, . . . , um) of W such that its first n elements u1, . . . , un form a C-basis of
V . Putting vj := iuj gives us a symplectic basis (u1, v1, . . . , um, vm) that is
simultaneously orthonormal (with respect to 〈·, ·〉R). Now define

p :uj 7→ en2j−1 , vj 7→ en2j (j ∈ {1, . . . , n}) ,
q :uj 7→ em2j−1 , vj 7→ em2j (j ∈ {1, . . . ,m}) .

The maps p�V and q�W preserve the respective real inner products, and satisfy
p(iv) = J tnp(v) and q(iw) = J tmq(w). Therefore, they are symplectomorph-
isms. As we can write R2m = R2n⊕R2m−2n, and W = V ⊕U for U := W∩V ⊥,
we easily find q�W = p�V ⊕ q̃ for some q̃ : U → R2m−2n.
As we take f ∈ SR(R2n), we would like to prove that the element

Qp
~(f ◦ p) = ip(Q

2n
~ (f ◦ p ◦ p′)))

is equal to the element

Qq
~(f ◦ p) = iq(Q

2m
~ (f ◦ p ◦ q′))) .

The identity p(iv) = J tnp(v) implies p′ = i · sp ◦Jn = sp, and similarly we find
q′ = sq. Now

Qp
~(f ◦ p) = ip(Q

2n
~ (f))

and
Qq

~(f ◦ p) = iq(Q
2m
~ (f ◦ p ◦ sq) = iq(Q

2m
~ (f ⊗ 1) .
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Weyl quantization factors through tensor products, so we obtainQ2m
~ (f⊗1) =

Q2n
~ (f)⊗1 as operators on L2(Rm) = L2(Rn)⊗L2(Rm−n). It remains to show

that iq(a ⊗ 1) = ip(a) for any a ∈ πnS(R(R2n, σn)). As before, we only have
to show this for a = πnSR(λ, x), where λ 6= 0 and x ∈ R2n. Indeed,

iq(π
n
SR(λ, x)⊗ 1) = iq(π

m
S R(λ, x⊕ 0))

= R(λ, sq(x⊕ 0))

= R(λ, sp(x))

= ip(π
n
SR(λ, x)) ,

where in the third equality we have used

q(sq(x⊕ 0)) = x⊕ 0 = p(sp(x))⊕ q̃(0) = q(sp(x) + 0) ,

hence sq(x⊕0) = sp(x) ∈ W by injectivity of q�W . This finishes the proof.

Definition 7.2 has given us a family of maps {Qp
~ | p ∈ P}, defined on varying

subsets of SR(X). Proposition 7.3 ensures that these maps coincide on the
overlap of their domains. This enables the following definition.

Definition 7.4. We define the map QW
~ : SR(X) → R(X, σ) by QW

~ (f) :=
Qp

~(f) whenever f ∈ SR(X)p.

Thus we have succeeded in defining a map which generalizes Weyl quant-
ization to infinite dimensional phase space. By this we mean that, when
(X, σ) = (R2n, σn), we have QW

~ = Q2n
~ . The only thing left to do is to prove

that QW
~ is the quantization map of a strict deformation quantization (as

defined in Definition 4.1).

7.1 Strict Deformation Quantization

Recall that X is a symplectic space admitting a complex stucture. Also note
that Q2n

~ is involutive, hence QW
~ �SR(X)p = ip ◦ Q2n

~ ◦ p′∗ is involutive, and
it makes sense to talk about QW

~ : SR(X)R → R(X, σ)R. Finally, defining
QW

0 := idSR(X), our main result reads:

Theorem 7.5. Let A0 := CR(X) and A~ := R(X, σ) for ~ > 0. The set
I = [0, 1], together with the collection of C*-algebras {A~}~∈I , and the maps
QW

~ : SR(X)R → R(X, σ)R, constitute a strict deformation quantization of
SR(X)R.

Proof. Note that the maps Q2n
~ : SR(R2n) → πnS(R(R2n, σn)) already form

a strict deformation quantization of SR(R2n). So Q2n
0 = id, Q2n

~ is linear,
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injective, and satisfies (11),(12) and (13). Furthermore Q2n
~ (SR(R2n)) is a

dense *-subalgebra of πnS(R(R2n, σn)).
We have

QW
~ �SR(X)p = ip ◦Q2n

~ ◦ p′∗

for all p ∈ PV2n, where p′∗ : SR(X)p → SR(R2n) is an isometric *-isomorphism
also leaving the Poisson structure invariant. The map ip : πSn (R(R2n, σn))→
R(X, σ) is an isometric *-homomorphism.
By these considerations, QW

~ is already linear and injective. For f, g ∈
SR(X)R we choose p ∈ PV2n such that f, g ∈ SR(X)pR. Because we have
p′∗(f), p′∗(g) ∈ SR(R2n), we find that∥∥QW

~ (f)
∥∥ =

∥∥ip(Q2n
~ (p′∗(f)))

∥∥
=
∥∥Q2n

~ (p′∗(f))
∥∥ ,

which is continuous as a function of ~. Also

lim
~→0
‖QW

~ (f)QW
~ (g)−QW

~ (fg)‖

= lim
~→0

∥∥(Q2n
~ (p′∗(f))Q2n

~ (p′∗(g)))−Q2n
~ (p′∗(f)p′∗(g))

∥∥
= 0 ,

and

lim
~→0
‖ i~ [QW

~ (f), QW
~ (g)]−QW

~ ({f, g})‖

= lim
~→0

∥∥ i
~ [Q2n

~ (p′∗(f)), Q2n
~ (p′∗(g))]−Q2n

~ (p′∗{f, g})
∥∥

= lim
~→0

∥∥ i
~ [Q2n

~ (p′∗(f)), Q2n
~ (p′∗(g))]−Q2n

~ ({p′∗(f), p′∗(g)})
∥∥

= 0 ,

proving (11), (12) and (13) for QW
~ .

Because the sets QW
~ (SR(X)p) = ip(Q

2n
~ (SR(R2n, σn))), labeled by p ∈ P ,

form a net of *-algebras in R(X, σ), their union

QW
~ (SR(X)) =

⋃
p∈P

QW
~ (SR(X)p)

is a *-subalgebra of R(X, σ) as well.
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What remains to show is density. We calculate

QW
~ (SR(X)) ⊇

⋃
p∈P

QW
~ (SR(X)p)

=
⋃
p∈P

ip(Q2n
~ (SR(R2n))

=
⋃
p∈P

ip(π
n
S(R(R2n, σn)))

=
⋃

V⊆X f.d
and C-linear

τ(R(V, σ�V )) ,

using the notation from the proof of Proposition 7.1: τ is the natural em-
bedding of R(V, σ�V ) into R(X, σ). Thanks to [2], Theorem 4.9(ii), we know
that R(X, σ) is the inductive limit (and therefore the closed union) of the
net

{τ(R(V, σ�V )) | V ⊆ X f.d. and nondegenerate} ,

of which
{τ(R(V, σ�V )) | V ⊆ X f.d. and C-linear}

is a subnet. Therefore, R(X, σ) ⊆ QW
~ (SR(X)), which implies equality.
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8 Discussion

We introduced a novel C*-algebra called the commutative resolvent algebra
and gave a precise account of its structure. We have given a strict deform-
ation quantization linking this algebra to the resolvent algebra, building on
Rieffel’s results on Weyl quantization. Subsequently, we have shown how to
pass to infinite dimensional phase space, and have generalized our results,
culminating in a strict deformation quantization.

We have achieved our goal, but we could have chosen other routes. For in-
stance, we could have used the article [15] of Weaver, who constructs a very
general strict deformation quantization, passing from R2n to Hilbert spaces.
We could also have used the framework of Werner given in [16]. In Werner’s
notation, our CR ⊕ R is a pair. To give another approach, Binz, Honegger
and Rieckers defined the Weyl algebra for a pre-symplectic space, before giv-
ing a strict deformation quantization in [1]. The same reasoning could have
been applied to the resolvent algebra instead of the Weyl algebra. Finally,
we could have used the Fock representation to directly define our quantiza-
tion map. Be aware that the choices made in this thesis were deliberate, but
nonetheless they were choices. The ideal route to quantization may depend
on the application.

Our route was focused on R2n, in line with the philosophy that the heart of
the problem is already present in the finite case. In the same way, we feel
that the heart of the resolvent algebra is already present in the commutative
resolvent algebra.

The commutative resolvent algebra helps to understand many features of
the resolvent algebra. A helpful mindset to us was the following. We may
only hope for something to hold in the resolvent algebra, if the analogous
formulation holds in the commutative resolvent algebra. If it holds in the
commutative resolvent algebra, and it does not seem to depend on its com-
mutativity, we may as well write it down as a conjecture.

With the present paper, the analogy between the commutative resolvent
algebra and the resolvent algebra is validated. The commutative algebra is
the classical limit of the resolvent algebra. We are glad to say that applying
the resolvent algebra to the classical world is now possible, and the result is
as beautiful as we could have expected.
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A Schwartz functions

This section discusses the space S(Rm) of Schwartz functions. There exist
countless good introductions to this subject, like [4], with which we do not
wish to compete. Here we just fix our notation, and prove two results which
we have seen nowhere in quite the form we need.

For a multi-index α ∈ Nm and a point x ∈ Rm we write xα := xα1
1 · · ·xαm

m

and ∂α := ∂α1
1 · · · ∂αm

m , where ∂j is the partial derivative in the jth variable.
We say a function f : Rm → C is rapidly decreasing if, for all α,

sup
x∈Rm

|xαf(x)| <∞ .

A smooth function f ∈ C∞(Rm) is called Schwartz if all of its derivatives
are rapidly decreasing. To make this definition a little more explicit, define
the seminorms ‖·‖α,β by

‖f‖α,β := sup
x∈Rm

|xα∂βf(x)| ,

for all α, β ∈ Nm. Now Schwartz functions are the elements of

S(Rm) :=
{
f ∈ C∞(Rm)

∣∣∣ ‖f‖α,β <∞ for all α, β
}
,

and the locally convex topology on S(Rm) induced by the seminorms ‖·‖α,β
is called the Schwartz topology.

The following lemmma is indispensable for Section 4.

Lemma A.1. If g ∈ S(Rr) and R ∈ GL(Rr) then g ◦R ∈ S(Rr).

Proof. To prove this, we estimate ‖g ◦R‖α,β := supx |xα∂β(g ◦R)(x)|. Using

the chain rule repeatedly we find that ∂β(g ◦ R) is a linear combination of
∂γg ◦R, for multi-indices γ with |γ| = |δ|. Furthermore, supx |xα∂γg(Rx)| =
supx |(R−1x)α∂γg(x)|, so we are left to estimate |(R−1x)α|. This is possible,
since (R−1x)α is a linear combination of xδ, for |δ| = |α|. To summarize,
there exists a finite collection of constants cγ,δ such that

‖g ◦R‖α,β 6
∑
γ,δ

cγ,δ sup
x
|xδ∂γg(x)| =

∑
γ,δ

cγ,δ ‖g‖γ,δ <∞ .
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Lemma A.1 tells us that the definition of S(Rn) is independent of the basis,
a fact which is used implicitly by many authors. How else can we justify the
notation S(V ), for a vector space V ? This comes into play in the following
lemma, where V1, V2, V3 are finite dimensional vector spaces. By Lemma A.1
we may freely identify these with euclidean spaces.

Lemma A.2. If h1 ∈ S(V1 ⊕ V2) and h2 ∈ S(V1 ⊕ V3) then the functions

g(x, y, z) := h1(x, y)h2(x, z)

h(x, y, z) := [h1(·, y) ∗ h2(·, z)](x)

are Schwartz as well: g, h ∈ S(V1 ⊕ V2 ⊕ V3). If we only assume h1, h2 to be
rapidly decreasing, then g, h are rapidly decreasing as well.

Proof. If α = α1 ⊕ α2 and β = β1 ⊕ β2 then

‖f‖α,β = sup
y
|yα2|

∥∥∂β2y f(·, y)
∥∥
α1,β1

.

We use this repeatedly in the following, but now α = α1 ⊕ α2 ⊕ α3 and
β = β1 ⊕ β2 ⊕ β3.

‖h‖α,β = sup
y,z
|yα2zα3|

∥∥∂β2y ∂β3z h(·, y, z)
∥∥
α1,β1

= sup
y,z
|yα2zα3|

∥∥∂β2y h1(·, y) ∗ ∂β3z h2(·, z)
∥∥
α1,β1

6
∑
γ,δ,ε,ζ

cγ,δ,ε,ζ sup
y
|yα2|

∥∥∂β2y h1(·, y)
∥∥
γ,δ

sup
z
|zα3|

∥∥∂β3z h2(·, z)∥∥ε,ζ <∞ ,

for a finite set of constants cγ,δ,ε,ζ . If h1, h2 are only rapidly decreasing, we
take β = 0 in the above calculation. Then β1 = β2 = β3 = 0 and cγ,δ,ε,ζ = 0
whenever δ or ζ are nonzero. It follows that ‖h‖α,0 < ∞, meaning that h
is rapidly dereasing. The same works for g, needing only a single nonzero
cγ,δ,ε,ζ in the last line.
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