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Introduction

Historical background

In their 1982 paper [28], Guillemin and Sternberg proved a theorem that became
known as ‘quantisation commutes with reduction’, or symbolically, ‘[Q,R] = 0’.
For a Hamiltonian action by a compact Lie group K on a compact Kähler
manifold (M,ω), their result asserts that the space of K-invariant vectors in the
geometric quantisation space of (M,ω) equals the geometric quantisation of the
symplectic reduction of (M,ω) by the action of K. Here geometric quantisation
was defined as the (finite-dimensional) space of holomorphic sections of a certain
holomorphic line bundle over M .

A more general definition of geometric quantisation, attributed to Bott, is
formulated in terms of Dirac operators. A compact symplectic K-manifold
(M,ω) always admits a K-equivariant almost complex structure that is com-
patible with ω, even if the manifold is not Kähler. Via this almost complex
structure, one can define a Dolbeault–Dirac operator or a Spinc-Dirac operator,
coupled to a certain line bundle, whose index is interpreted as the geometric
quantisation of (M,ω). Alternatively, one can associate a Spinc-structure to
the symplectic form ω, and define the quantisation of (M,ω) as the index of
a Spinc-Dirac operator on the associated spinor bundle. Since Dirac operators
are elliptic, and since M is compact, these indices are well-defined formal dif-
ferences of finite-dimensional representations of K, that is to say, elements of
the representation ring of K.

In this more general setting, the fact that quantisation commutes with reduc-
tion, or ‘Guillemin–Sternberg conjecture’, was proved in many different ways,
and in various degrees of generality, by several authors [39, 60, 61, 64, 80, 85].
The requirement that M and K are compact remained present, however. An
exception is the paper [65], in which Paradan proves a version of the Guillemin–
Sternberg conjecture where M is allowed to be noncompact in certain circum-
stances. An approach to quantising actions by noncompact groups on noncom-
pact manifolds was also given by Vergne, in [84].

These compactness assumptions are undesirable from a physical point of
view, since most classical phase spaces (such as cotangent bundles) are not com-
pact. Furthermore, one would also like to admit noncompact symmetry groups.
However, dropping the compactness assumptions poses severe mathematical
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10 Introduction

difficulties, since the index of a Dirac operator on a noncompact manifold is
no longer well-defined, and neither is the representation ring of a noncompact
group.

In [51], Landsman proposes a solution to these problems, at least in cases
where the quotient of the group action is compact. (The action is then said to be
cocompact.) He replaces the representation ring of a group by the K-theory of its
C∗-algebra, and the equivariant index by the analytic assembly map that is used
in the Baum–Connes conjecture. Landsman’s formulation of the Guillemin–
Sternberg conjecture reduces to the case proved in [39, 60, 61, 64, 80, 85] if
the manifold and the group in question are compact. The advantage of this
formulation is that it still makes sense if one only assumes compactness of the
orbit space of the action.

The first main result in this thesis is a proof of Landsman’s generalisation of
the Guillemin–Sternberg conjecture for Hamiltonian actions by groups G with
a normal, discrete subgroup Γ, such that G/Γ is compact.

In the compact case, the Guillemin–Sternberg conjecture implies a more gen-
eral multiplicity formula for the decomposition of the geometric quantisation of
(M,ω) into irreducible representations of K. This implication is based on the
Borel–Weil theorem, which is itself a special case of the multiplicity formula
that follows from the Guillemin–Sternberg conjecture. In the noncompact case,
it is harder to state and prove such a multiplicity formula. This is caused by
the fact that the Borel–Weil theorem is a statement about compact groups, and
by the fact that the geometric quantisation of a symplectic manifold is now a
K-theory class instead of a (virtual) representation.

For semisimple groups G, we tackle these difficulties using V. Lafforgue’s
work in [49] on discrete series representations and K-theory. We then obtain
our second main result, which is a formula for the multiplicity of the K-theory
class associated to a discrete series representation, in the geometric quantisation
of a cocompact Hamiltonian G-manifold. For this result, we assume that the
image of the momentum map lies in the strongly elliptic set. This is the set of
elements of the dual of the Lie algebra of G that have compact stabilisers with
respect to the coadjoint action. The coadjoint orbits in this set correspond to
discrete series representations in the orbit philosophy.

Outline of this thesis

In this thesis, we combine two branches of mathematics: symplectic geometry
and noncommutative geometry. To help readers who are specialised in one of
these branches understand the other one, we give a rather detailed theoretical
background in Part I. In Chapter 1, which is aimed at a general mathemati-
cal audience, we explain the physical motivation of the research in this thesis.
Chapters 2–5 are introductions to symplectic geometry, geometric quantisation
and noncommutative geometry. We conclude Part I with Chapter 6, in which
we state our two main results, Theorems 6.5 and 6.13.
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The proofs of these results follow the same strategy: we deduce them from
the compact case of the Guillemin–Sternberg conjecture, using naturality of the
assembly map. This naturality of the assembly map is the core of the noncom-
mutative geometric part of this thesis, and is described in Part II. It contains
two cases: naturality for quotient maps, and (a very special case of) natural-
ity for inclusion maps. Besides these two cases of naturality of the assembly
map, the third main result in Part II is Corollary 8.11, about the image of K-
homology classes associated to elliptic differential operators under the Valette
homomorphism. This homomorphism is the crucial ingredient of naturality of
the assembly map for quotient maps.

In Part III, we show that the ‘Guillemin–Sternberg–Landsman’ conjecture
for groups with a cocompact, normal, discrete subgroup is a consequence of
Corollary 8.11. We give an alternative proof in the special case where the group
is abelian and discrete, and conclude with the example of the action of Z2 on
R2 by addition.

To prove the multiplicity formula for discrete series representations in the
case of actions by semisimple groups, we prove an intermediate result that we
call ‘quantisation commutes with induction’. This is the central result of Part
IV, and its proof is based on our version of naturality of the assembly map for in-
clusion maps. In this part, we define ‘Hamiltonian induction’ and ‘Hamiltonian
cross-sections’, to construct new Hamiltonian actions from given ones. These
constructions are each other’s inverses, and the ‘quantisation commutes with
induction’-theorem provides a link between these constructions and the Dirac
induction map used in the Connes–Kasparov conjecture, and (more importantly
to us) in Lafforgue’s work on discrete series representations in K-theory. This
will allow us to deduce the multiplicity formula for discrete series representations
from the Guillemin–Sternberg conjecture in the compact case.

Credits

Chapters 1 – 5 only contain standard material, except perhaps the alternative
proof of Proposition 5.17. Section 6.1 is based on Landsman’s paper [51], and
Section 6.2 is an explanation of the facts in [49] that we use. Gert Heckman
proved Lemma 6.9 for us.

Chapter 7 is a reasonably straightforward generalisation of the epimorphism
case of Valette’s ‘naturality of the assembly map’-result in [62] to possibly
nondiscrete groups.

The idea of our proof of Theorem 6.5, as described in Section 10.1, is due to
Klaas Landsman. Sections 11.1–11.3 are based on Example 3.11 from [8], and
on Lusztig’s paper [56]. The proof of Lemma 11.2 was suggested to us by Elmar
Schrohe.

Section 12.3 is based on the proof of the symplectic cross-section theorem
in [55]. Some of the remaining facts in Chapter 12 and in Chapter 13 may be
known in the case where the pair (G,K) is replaced by the pair (K,T ), although
the author has not found them in the literature. The induction procedure for
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Spinc-structures described in Section 13.2, was explained to us by Paul-Émile
Paradan.

Our proof of Theorem 6.13 was inspired by Paradan’s article [64], and
Paradan’s personal explanation of the ideas behind this paper.

Prerequisites

This thesis is aimed at readers who are familiar with

• basic topology;

• basic Riemannian and almost complex geometry;

• basic Banach and Hilbert space theory;

• basic Lie theory, and representation theory of compact Lie groups;

• the theory of (pseudo-)differential operators on vector bundles and their
principal symbols, in particular elliptic differential operators and their
indices.

Assumptions

In the topological context, all vector bundles and group actions are tacitly sup-
posed to be continuous. In the smooth context they are supposed to be smooth.

Unless stated otherwise, all functions are complex-valued, and all Hilbert
spaces and vector bundles are supposed to be complex, apart from vector bun-
dles constructed from tangent bundles. Inner products on complex vector spaces
are supposed to be linear in the first entry, and antilinear in the second one.

Publications

A large part of Chapters 2 and 3 is an adapted version of material from [33],
written jointly with Gert Heckman, which will be published in the proceedings
of the 2004 spring school ‘Lie groups in analysis, geometry and mechanics’ held
at the university of Utrecht.

Chapters 7, 8, 10 and 11 were taken from the paper [38], written jointly with
Klaas Landsman, which has been accepted for publication in K-theory.

The end of Section 5.3, Sections 6.2 and 6.3, Chapter 9 and Chapters 12 –
15 were taken from the paper [37], which has been submitted for publication.
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Preliminaries and
statement of the results
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The bulk of this first part, Chapters 2–5, consists of introductions to the two
branches of mathematics that we use: symplectic geometry and noncommutative
geometry. These introductions start at a basic level, so that the reader does not
have to be a specialist in both of these areas to be able to read this thesis.
Readers who are familiar with symplectic geometry and/or noncommutative
geometry can skip the relevant chapters, or just quickly take a look at the
notation and the results we will use.

In Chapter 1 we give some physical background, and in Chapter 6 we state
our two main results: Theorems 6.5 and 6.13. All material in Part I is standard,
except Chapter 6, and possibly the alternative proof of Proposition 5.17.
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Chapter 1

Classical and quantum
mechanics

We begin by briefly reviewing classical and quantum mechanics. This provides
the physical motivation of the research in this thesis. The physical notion of
quantisation will be explained, to motivate the abstract mathematical Defini-
tions 3.15, 3.17, 3.20, 3.30 and 6.1. Chapter 1 is only meant to provide this
motivation, and the rest of this thesis does not logically depend on it.

The mathematics behind classical mechanics with symmetry is treated in
Chapter 2. The mathematics behind quantum mechanics with symmetry is the
theory of equivariant operators on Hilbert spaces carrying unitary representa-
tions of a Lie group. Chapters 4 and 5 on noncommutative geometry deal with
a way of looking at this theory.

1.1 Classical mechanics

Let us look at an example. Consider a point particle of mass m moving in 3-
dimensional Euclidean space R3. Let q = (q1, q2, q3) be the position coordinates
of the particle. Suppose the particle is acted upon by an external force field
F : R3 → R3 that is determined by a potential function V ∈ C∞(R3), by

F = − gradV = −
( ∂V
∂q1

,
∂V

∂q2
,
∂V

∂q3

)
. (1.1)

Then the motion of the particle, as a function of time t, is given by a curve γ
in R3, determined by the differential equation

F (γ(t)) = mγ′′(t), (1.2)

which is Newton’s second law F = ma.

17



18 Chapter 1. Classical and quantum mechanics

Let δ(t) := mγ′(t) be the momentum of the particle at time t as it moves
along the curve γ. Then (1.1) and (1.2) may be rewritten as

γ′(t) =
1
m
δ(t);

δ′(t) = − gradV (γ(t)).
(1.3)

Given this system of equations, the particle’s trajectory is determined uniquely
if both its position q := γ(t0) and momentum p := δ(t0) at a time t0 are given.
This motivates the definition of the phase space of the particle as R6 = R3×R3,
consisting of all possible positions q = (q1, q2, q3) and momenta p = (p1, p2, p3)
the particle can have. A point in phase space, called a state, determines the
motion of the particle, through Newton’s law (1.3).

To rewrite (1.3) in a way that will clarify the link between classical and
quantum mechanics, consider the Hamiltonian function H ∈ C∞(R6), given by
the total energy of the particle:

H(q, p) :=
1

2m

3∑

j=1

(
pj

)2 + V (q). (1.4)

Furthermore, for two functions f, g ∈ C∞(R6), we define the Poisson bracket

{f, g} :=
3∑

j=1

∂f

∂pj
∂g

∂qj
− ∂f

∂qj
∂g

∂pj
∈ C∞(R6). (1.5)

One can check that the Poisson bracket is a Lie bracket on C∞(R6), and that
it has the derivation property that for all f, g, h ∈ C∞(R6),

{f, gh} = g{f, h}+ {f, g}h. (1.6)

The reason why we consider this bracket is that it allows us to restate (1.3)
as follows. Write

γ(t) =
(
γ1(t), γ2(t), γ3(t)

)
;

δ(t) =
(
δ1(t), δ2(t), δ3(t)

)
.

Then (1.3) is equivalent to the system of equations
(
γj

)′(t) = {H, qj}(γ(t), δ(t));
(
δj

)′(t) = {H, pj}(γ(t), δ(t)),
(1.7)

for j = 1, 2, 3, where qj , pj ∈ C∞(R6) denote the coordinate functions. Re-
naming the curves q(t) := γ(t) and p(t) := δ(t), we obtain the more familiar
form

(
qj)′ = {H, qj};

(
pj

)′ = {H, pj}.
(1.8)
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Here qj and pj denote both the components of the curves q and p and the co-
ordinate functions on R6, making (1.8) shorter and more suggestive, but math-
ematically less clear than (1.7).

To describe the curves γ and δ in a different way, we note that the linear
map f 7→ {H, f}, from C∞(R6) to itself, is a derivation by (1.6). Hence it
defines a vector field ξH on R6, called the Hamiltonian vector field of H. Let
etξH : R6 → R6 be the flow of this vector field over time t. That is,

d

dt

∣∣∣∣
t=0

f
(
etξH (q, p)

)
= ξH(f)(q, p) = {H, f}(q, p)

for all f ∈ C∞(R6) and (q, p) ∈ R6. Then, if γ(0) = q and δ(0) = p, conditions
(1.7) simply mean that

(γ(t), δ(t)) = etξH (q, p). (1.9)

An observable in this setting is by definition a smooth function of the position
and the momentum of the particle, i.e. a function f ∈ C∞(R6). The Hamil-
tonian function and the Poisson bracket allow us to write the time evolution
equation of any observable f as the following generalisation of (1.7):

d

dt

(
f(γ(t), δ(t))

)
= {H, f}(γ(t), δ(t)). (1.10)

Here γ and δ are curves in R3 satisfying (1.7). This time evolution equation for f
can be deduced from the special case (1.7) using the chain rule. We will see that
(1.10) is similar to the time evolution equation (1.16) in quantum mechanics.

In (1.10), the state (γ, δ) of the system changes in time, whereas the ob-
servable f is constant. To obtain a time evolution equation that resembles the
quantum mechanical version more closely, we define the time-dependent version
f̃ ∈ C∞(R× R6) of f , by

f̃(t, q, p) := f(etξH (q, p)) =: ft(q, p).

Then by (1.9), equation (1.10) becomes

∂f̃

∂t

∣∣∣∣∣
t

= {H, ft}. (1.11)

Motivated by this example of one particle in R3 moving in a conservative
force field, we define a classical mechanical system to be a triple (M, {−,−},H),
where M is a smooth manifold called the phase space (replacing R6 in the
preceding example), {−,−} is a Lie bracket on C∞(M) satisfying (1.6) for
all f, g, h ∈ C∞(M), and H is a smooth function on M , called the Hamilto-
nian function. The bracket {−,−} is called a Poisson bracket, and the pair
(M, {−,−}) is a Poisson manifold. In this thesis, we will consider symplectic
manifolds (Definition 2.1), a special kind of Poisson manifolds. Given a classical
mechanical system, the dynamics of any observable f ∈ C∞(M) is determined
by the classical time evolution equation (1.11).

For more extensive treatments of the Hamiltonian formulation of classical
mechanics, see [1, 2].
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1.2 Quantum mechanics

The quantum mechanical description of a particle is quite different from the
classical one. The position of a particle is no longer uniquely determined in
quantum mechanics, but one can only compute the probability of finding the
particle in a certain region. The same goes for any other observable.

Consider once more a particle moving in R3. The probability of finding the
particle in a (measurable) region A ⊂ R3 is then given by

∫

A

|ψ(q)|2 dq, (1.12)

where ψ is the (position) wave function of the particle. For the integral (1.12)
to be well-defined for all measurable A, it is necessary that ψ is an L2-function.
Furthermore, the probability that the particle exists anywhere at all (which we
assume. . . ) is both equal to 1 and to

∫

R3
|ψ(q)|2 dq.

Therefore the L2-norm of ψ equals 1. Finally, since for any real number α the
functions ψ and eiαψ determine the same probability density |ψ|2, the relevant
phase space in quantum mechanics is

{ψ ∈ L2(R3); ‖ψ‖L2 = 1}/U(1), (1.13)

where U(1) acts on L2(R3) by scalar multiplication. The quotient (1.13) is the
projective space P(L2(R3)).

We will always work with the Hilbert space L2(R3) rather than its projective
space, since it is easier to work with in several respects, and since P(L2(R3)) can
obviously be recovered from it. The operators on P(L2(R3)) that are relevant
for quantum mechanics are induced by the unitary and anti-unitary operators
on L2(R3). This is Wigner’s theorem, see [77], Appendix D or [92], pp. 233-236.

We have so far considered a quantum mechanical system at a fixed point
in time. In the Schrödinger picture of quantum dynamics, one considers time
dependent wave functions ψ on R × R3, where the first factor R represents
time, denoted by t. As before, let m be the mass of the particle, and let V
be the potential function that determines the force acting on it. The quantum
mechanical time evolution of the state ψ is then determined by the Schrödinger
equation1

i~
∂ψ

∂t
= − ~

2

2m

3∑

j=1

∂2ψ

(∂qi)2
+ V ψ, (1.14)

1If the function ψ is not sufficiently differentiable, then its derivatives should be interpreted
in the distribution sense. On the domain on which the differential operator on the right

hand side of (1.14) is self-adjoint, the time derivative of ψ is defined as the limit ∂ψ
∂t

˛̨
˛
t

:=

limh→0
ψ(t+h,−)−ψ(t,−)

h
, with respect to the L2-norm.
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where ~ is Planck’s constant divided by 2π.
The differential operator2

H := − ~
2

2m

3∑

j=1

∂2

(∂qi)2
+ V

is called the Hamiltonian of this system. We see that the quantum mechanical
Hamiltonian arises from the classical one (1.4) if we replace pj by i~ ∂

∂qj . His-
torically, this was the very first step towards quantisation. By Stone’s theorem
(see [67], Theorem 7.17 or [69], Theorem VIII.7), equation (1.14) is equivalent
to

ψt = e−
it
~Hψ0, (1.15)

where ψt(q) := ψ(t, q) for all q ∈ R3.
In this quantum mechanical setting, an observable is a self-adjoint operator3

a on L2(R3). The spectrum of such an operator is the set of possible values of
the observable that can be obtained in a measurement. The expectation value
of a measurement of the observable a when the system in in the state ψ is given
by

(ψ, aψ)L2 =
∫

R3
ψ(q)(aψ)(q) dq.

Up to now, we have used the Schrödinger picture of quantum dynamics,
where states evolve in time, and observables remain fixed. In the Heisenberg
picture, states are time independent, whereas observables vary in time. Thus,
in our situation, an observable is a curve t 7→ at of self-adjoint operators on
L2(R3), such that for all states ψ,

(ψ0, atψ0)L2 = (ψt, a0ψt)L2 .

By (1.15), this implies that

at = e
it
~ Ha0e

−it
~ H .

This, in turn, is equivalent to

dat
dt

∣∣∣∣
t

=
i

~
[H, at], (1.16)

the commutator4 Hat − atH of the operators H and at. This time evolution
equation in quantum mechanics is very similar to the classical time evolution
equation (1.11). This is the basis of any theory about quantising observables.

In general, a quantum mechanical system (in the Heisenberg picture) consists
of a Hilbert space H (replacing L2(R3)) called the phase space, and a self-adjoint
operator5 H, called the Hamiltonian. Observables are curves t 7→ at of self-
adjoint operators on H, whose dependence on t is determined by (1.16).

2This is operator is not defined on all of L2(R3), but only on a dense subspace. It is an
unbounded operator (see Section 4.3).

3Again, this operator may be unbounded, and need only be densely defined.
4The definition of the commutator of two unbounded operators is actually a more delicate

matter than we suggest here, but we will not go into this point.
5possibly unbounded
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1.3 Quantisation

The term ‘quantisation’ refers to any way of constructing the quantum mechani-
cal description of a physical system from the classical mechanical description. To
a classical mechanical system (M, {−,−},H), a quantisation procedure should
associate a quantum mechanical system

Q(M, {−,−},H) = (H, Ĥ) (1.17)

(where the hat on H is used to distinguish the quantum Hamiltonian from the
classical one). Such constructions go back to the pioneers of quantum mechanics
(Bohr, Heisenberg, Schrödinger, Dirac). Overviews are given in [50, 52].

In addition, one would like to be able to quantise observables. Quantisation
of observables is often required to be a Lie algebra homomorphism

(
C∞(M), {−,−}) Q−→ ({self-adjoint operators on H}, i

~
[−,−]

)
(1.18)

such that Q(H) = Ĥ. If this quantisation map is a Lie algebra homomorphism,
then by time evolution equations (1.11) and (1.16), we have

dQ(f)t
dt

∣∣∣∣
t=0

= Q

(
dft
dt

∣∣∣∣
t=0

)
,

for all f ∈ C∞(M). However, we will see that quantisation of observables cannot
be a Lie algebra homomorphism, if it is also required to have some additional
desirable properties.

From a physical point of view, it is only required that the classical and
quantum mechanical time evolution equations are related by quantisation ‘in the
limit ~→ 0’. That is, quantisation of observables should only be a Lie algebra
homomorphism in this limit. If it is an actual Lie algebra homomorphism, this
implies that the laws of quantum dynamics are the same as the laws of classical
dynamics, which is obviously not the case. Nevertheless, the requirement that
quantisation of observables is a Lie algebra homomorphism is often imposed
in geometric quantisation, possibly because it is mathematically natural, and
because it at least gives some relation between classical and quantum dynamics.

Other properties one might like to see in a quantisation procedure are the
following (cf. [27], page 89).

• Let 1M be the constant function 1 on M , and let IH be the identity
operator on H. Then Q(1M ) = i~IH.

• If a set of functions {fj}j∈J separates points almost everywhere on M ,
then the set of operators {Q(fj)}j∈J acts irreducibly, i.e. no nonzero
proper subspace of H is invariant under all Q(fj).

But Groenewold & van Hove’s ‘no go theorems’ [26, 83, 82] state that such a
quantisation procedure does not exist. This may not be too surprising, given the
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highly restrictive assumption that quantisation of observables is a Lie algebra
homomorphism.

There are various ways to define quantisation in such a way that as many as
possible of the above requirements are satisfied, or that they are satisfied asymp-
totically ‘as ~ tends to zero’. In this thesis however, we hardly pay any attention
to the observable side (1.18) of geometric quantisation. Instead, we consider a
mathematically rigorous approach to (1.17), based on geometric quantisation à
la Bott. This procedure gives a way to construct the quantum mechanical phase
space H from the classical one (M, {−,−}). The prequantisation formula (see
Definition 3.6) then gives a quantisation map for (some) observables, that is
actually a Lie algebra homomorphism. But as we said, this will only be a side
remark.

Quantising phase spaces may not seem like the most interesting part of quan-
tisation, but it turns out that this has interesting features (especially mathe-
matical ones), particularly in the presence of symmetry.

1.4 Symmetry and ‘quantisation commutes with
reduction’

If a physical system possesses a symmetry, it can often be described in terms of a
‘smaller’ system. Replacing a system by this smaller system is called reduction.
It is defined in a precise way for classical mechanics in Definitions 2.17 and
2.21 below. For quantum mechanics, this notion of reduction is harder to define
rigorously. The quantum reduction procedure we will work with will be given
by (6.3) and (6.12).

In classical mechanics, a symmetry of a system (M, {−,−},H) is an action
of a group G on M that leaves the bracket {−,−} and the function H invariant.
Under certain circumstances (if the action is Hamiltonian, see Definition 2.6)
such a symmetry allows us to define the reduced system

(MG, {−,−}G, HG) = R(M, {−,−},H).

In quantum mechanics, a symmetry of a system (H, H) is a unitary repre-
sentation of a group G on H, such that H is a G-equivariant operator. We can
then, again under favourable circumstances, define the reduced system

(HG,HG) = R(H,H).

The central motto in this thesis (and indeed, in its title) is ‘quantisation com-
mutes with reduction’, or symbolically, ‘[Q,R] = 0’. This is the equality

R
(
Q(M, {−,−},H)

) ∼= Q
(
R(M, {−,−},H)

)
.

This equality is often expressed by commutativity (up to a suitable notion of
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isomorphism) of the following diagram:

(M, {−,−}, H)
_

R

²²

Â Q // Q(M, {−,−},H) =: (H, Ĥ)
_

R

²²
(MG, {−,−}G,HG) Â Q // Q(MG, {−,−}G, HG) ∼= (HG, ĤG).

If one only considers the phase space part of quantisation and reduction,
then [Q,R] = 0 has been proved for compact M and G. This is known as the
Guillemin–Sternberg conjecture (see [28, 39, 60, 61, 64, 80, 85]). The goal of
this thesis is to generalise the Guillemin–Sternberg conjecture to noncompact
M and G, under the assumption that the orbit space M/G is still compact.
To state and prove this generalisation, we use techniques from noncommutative
geometry. We have found proofs in the case where G has a cocompact, discrete,
normal subgroup (Theorem 6.5) and in the case where G is semisimple (Theorem
6.13).

The mathematics underlying classical mechanics is symplectic geometry, to
which we now turn.



Chapter 2

Symplectic geometry

As we saw in Chapter 1, the mathematical structure of a classical phase space
is that of a Poisson manifold. We will only consider particularly nice kinds of
Poisson manifolds, namely symplectic manifolds (Definition 2.1). The ideal form
of symmetry in the symplectic setting is a Hamiltonian group action (Definition
2.6). This involves an action of a Lie group that has an associated conserved
quantity called a momentum map. For Hamiltonian actions, we can make the
classical reduction process mentioned in Section 1.4 more precise (Definitions
2.17 and 2.21). We give many examples of Hamiltonian group actions, to give
the reader a feeling for what is going on.

The proofs of most facts in this chapter and the next have been omitted.
They are usually straightforward, and can be found in [33]. More information
about the role of symplectic geometry in classical mechanics can be found for
example in [29, 58, 76].

2.1 Symplectic manifolds

Let us define the special kind of Poisson manifold called symplectic manifold.
A Poisson manifold is symplectic if the Poisson structure is nondegenerate in
some sense (compare Theorems 2.4 and 2.5), which makes symplectic manifolds
easier to work with than general Poisson manifolds.

Definition 2.1. A symplectic manifold is a pair (M,ω), where M is a smooth
manifold and ω is a differential form on M of degree 2, such that

1. ω is closed, in the sense that dω = 0;

2. ω is nondegenerate, in the sense that for all m ∈ M , the map TmM →
T ∗mM , given by v 7→ ω(v,−), is a linear isomorphism.

Such a form ω is called a symplectic form.

When explicitly verifying that a given two-form is nondegenerate, we will
often use the fact that nondegeneracy of ω is equivalent to the property that

25
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for all m ∈ M and all nonzero v ∈ TmM , there is a w ∈ TmM such that
ωm(v, w) 6= 0.

Example 2.2. A symplectic vector space is a vector space equipped with a
nondegenerate, antisymmetric bilinear form. When viewed as a diferential form
of degree 2, this bilinear form is a symplectic form on the given vector space.

The natural notion of isomorphism of symplectic manifolds is called sym-
plectomorphism:

Definition 2.3. Let (M,ω) and (N, ν) be symplectic manifolds. A diffeomor-
phism ϕ : M → N is called a symplectomorphism if ϕ∗ν = ω.

Let (M,ω) be a symplectic manifold. The canonical Poisson bracket {−,−}
on C∞(M) is defined as follows. For f ∈ C∞(M), the Hamiltonian vector field
ξf of f is defined by the equality

df = ω(ξf ,−) ∈ Ω1(M). (2.1)

Because ω is nondegenerate, this determines ξf uniquely. We then set

{f, g} := ξf (g) = ω(ξg, ξf ) = −ξg(f) ∈ C∞(M),

for f, g ∈ C∞(M). This can be shown to be a Poisson bracket, as defined at
the end of Section 1.1. In particular, the Jacobi identity for {−,−} follows from
the fact that ω is closed.

It follows from the nondegeneracy of ω that M is even-dimensional. From a
physical point of view, this corresponds to the fact that to each ‘position dimen-
sion’ in a classical phase space, there is an associated ‘momentum dimension’.
The simplest example is the manifold M := R2n, for an n ∈ N, with coordinates

(q, p) = (q1, p1, . . . , qn, pn),

and the symplectic form

ω :=
n∑

j=1

dpj ∧ dqj . (2.2)

In fact, all symplectic manifolds are locally of this form:

Theorem 2.4 (Darboux). Let (M,ω) be a symplectic manifold, and let m ∈M
be given. Then there exists an open neighbourhood U 3 m and local coordinates
(q, p) on U , such that

ω|U =
n∑

j=1

dpj ∧ dqj .

The coordinates (q, p) are called Darboux coordinates. For a proof of this
theorem, see [29], Theorem 22.1.

In Darboux coordinates, the Poisson bracket associated to the symplectic
form is given by the standard expression (1.5), with 3 replaced by n := dimM/2,
and f, g ∈ C∞(M). The difference between symplectic manifolds and general
Poisson manifolds is illustrated nicely by Weinstein’s following result (see [89],
Corollary 2.3).
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Theorem 2.5. Let (M, {−,−}) be a Poisson manifold, and let m ∈M be given.
Then there exists an open neighbourhood U of m and local coordinates (q, p, c)
on U , such that in these coordinates, the Poisson bracket has the standard form
(1.5).

The coordinates (q, p, c) are called Darboux–Weinstein coordinates. Here q
and p are maps U → Rn, for the same n ∈ N, and c is a map from U to
RdimM−2n.

In the Section 2.3, we will give some more examples of symplectic manifolds.
We will then also see that the natural group actions defined on these examples
are in fact Hamiltonian.

2.2 Hamiltonian group actions

The relevant actions of a group G on a symplectic manifold (M,ω) are those
that leave the symplectic form ω invariant: g∗ω = ω for all g ∈ G. Such actions
are called symplectic actions. Suppose that G is a Lie group, and that (M,ω)
is a symplectic manifold equipped with a symplectic G-action. For every X ∈ g
(the Lie algebra of G), we have the induced vector field XM on M , given by

(
XM

)
m

:= Xm :=
d

dt

∣∣∣∣
t=0

exp(tX)m, (2.3)

for all m ∈M . Because the action is symplectic, the Lie derivative LXω equals
zero for each X ∈ g. Using Cartan’s formula LX = diXM

+ iXM
d (where iXM

denotes contraction with XM ), we get

0 = LXω = d
(
iXMω

)
, (2.4)

since dω = 0. In other words, the one-form iXM
ω is closed. The action is called

Hamiltonian if this form is exact, in the following special way:

Definition 2.6. In the above situation, the action of G on (M,ω) is called
Hamiltonian if there exists a smooth map

Φ : M → g∗

with the following two properties.

1. For all X ∈ g, let ΦX ∈ C∞(M) be the function defined by pairing Φ with
X. Its derivative is given by

dΦX = −iXMω. (2.5)

2. The map Φ is equivariant1 with respect to the coadjoint action of G on
g∗.

1Sometimes a momentum map is not required to be equivariant, and the action is called
strongly Hamiltonian if it is.
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Such a map Φ is called a momentum map2 of the action.

Note that if G is connected, equation (2.4) implies that every Hamiltonian
G-action is symplectic. Because we will also consider non-connected groups, we
reserve the term Hamiltonian for symplectic actions.

Property (2.5) can be rephrased in terms of Hamiltonian vector fields, by
saying that for all X ∈ g, one has ξΦX

= −XM . If G is connected, then Φ is
equivariant if and only if for all X,Y ∈ g, we have {ΦX ,ΦY } = Φ[X,Y ]. That is,
if and only if Φ is a Poisson map with respect to the standard Poisson structure
on g∗.

The presence or absence of minus signs in these formulas depends on the
sign conventions used in the definitions of momentum maps, Hamiltonian vector
fields and vector fields induced by Lie algebra elements.

Remark 2.7 (Uniqueness of momentum maps). If Φ and Φ′ are two momentum
maps for the same action, then for all X ∈ g,

d(ΦX − Φ′X) = 0.

IfM is connected, this implies that the difference ΦX−Φ′X is a constant function,
say cX , on M . By definition of momentum maps, the constant cX depends
linearly on X. So there is a an element ξ ∈ g∗ such that

Φ− Φ′ = ξ.

By equivariance of momentum maps, the element ξ is fixed by the coadjoint
action of G on g∗. In fact, given a momentum map, the space of elements of
g∗ that are fixed by the coadjoint action parametrises the set of all momentum
maps for the given action.

In the next section we give some examples of Hamiltonian group actions.
We end this section by giving some techniques to construct new examples from
given ones.

Lemma 2.8 (Restriction to subgroups). Let H < G be a closed subgroup, with
Lie algebra h. Let

p : g∗ → h∗

be the restriction map from g to h.
Suppose that G acts on a symplectic manifold (M,ω) in a Hamiltonian way,

with momentum map Φ : M → g∗. Then the restricted action of H on M is
also Hamiltonian. The composition

M
Φ−→ g∗

p−→ h∗

is a momentum map.

2or ‘moment map’, as people on the east coast of the United States like to say
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Remark 2.9. An interpretation of Lemma 2.8 is that the momentum map is
functorial with respect to symmetry breaking. For example, consider a phys-
ical system of N particles in R3 (Example 2.16). If we add a function to the
Hamiltonian that is invariant under orthogonal transformations, but not under
translations, then the Hamiltonian is no longer invariant under the action of
the Euclidean motion group G. However, it is still preserved by the subgroup
O(3) of G. In other words, the G-symmetry of the system is broken into an
O(3)-symmetry. By Lemma 2.8, angular momentum still defines a momentum
map, so that it is still a conserved quantity (see Remark 2.15).

Lemma 2.10 (Invariant submanifolds). Let (M,ω) be a symplectic manifold,
equipped with a Hamiltonian action of G, with momentum map Φ : M → g∗.
Let N ⊂ M be a G-invariant submanifold, with inclusion map j : N ↪→ M .
Assume that the restricted form j∗ω is a symplectic form on N (i.e. that it is
nondegenerate). Then the action of G on N is Hamiltonian. The composition

N
j
↪→M

Φ−→ g∗

is a momentum map.

The next lemma will play a role in Example 2.16, and in the shifting trick
(Remark 2.22).

Let (M1, ω1) and (M2, ω2) be symplectic manifolds. Suppose that there is a
Hamiltonian action of a group G on both symplectic manifolds, with momentum
maps Φ1 and Φ2, respectively. The Cartesian product manifold M1×M2 carries
the symplectic form ω1 × ω2, which is defined as

ω1 × ω2 := p∗1ω1 + p∗2ω2,

where pi : M1 ×M2 →Mi denotes the canonical projection map.
Consider the diagonal action of G on M1 ×M2,

g · (m1,m2) = (g ·m1, g ·m2),

for g ∈ G and mi ∈Mi.

Lemma 2.11 (Cartesian products). This action is Hamiltonian, with momen-
tum map

Φ1 × Φ2 : M1 ×M2 → g∗,

(Φ1 × Φ2) (m1,m2) = Φ1(m1) + Φ2(m2),

for mi ∈Mi.

2.3 Examples of Hamiltonian actions

The most common classical phase spaces are cotangent bundles.
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Example 2.12 (Cotangent bundles). Let N be a smooth manifold, and let
M := T ∗N be its cotangent bundle, with projection map πN : T ∗N → N . The
tautological 1-form τ on M is defined by

〈τη, v〉 = 〈η, TηπN (v)〉,

for η ∈ T ∗N and v ∈ TηM . The one-form τ is called ‘tautological’ because for
all 1-forms α on N , we have

α∗τ = α.

Here on the left hand side, α is regarded as a map from N to M , along which
the form τ is pulled back.

Let q = (q1, . . . , qd) be local coordinates on an open neighbourhood of an
element n of N . Consider the corresponding coordinates p on T ∗N in the fibre
direction, defined by pk = ∂

∂qk . Then locally, one has

τ =
∑

k

pk dqk.

The 2-form
σ := dτ =

∑

k

dpk ∧ dqk (2.6)

is a symplectic form on M , called the canonical symplectic form.
Let G be a Lie group acting on N . The induced action of G on M ,

g · η := (Tgng−1)∗η ∈ T ∗gnN,

for g ∈ G, n ∈ N and η ∈ T ∗nN , is Hamiltonian, with momentum map

ΦX = iXM τ,

for all X ∈ g. Explicitly:

ΦX(η) := 〈η,XπN (η)〉,

for X ∈ g and η ∈ T ∗N .

The following example forms the basis of Kirillov’s ‘orbit method’ [43, 44,
45]. The idea behind this method is that unitary irreducible representations
can sometimes be obtained as geometric quantisations of coadjoint orbits. An
example of this idea is the Borel–Weil theorem (Example 3.36), which can be
used to generalise the ‘quantisation commutes with reduction’ theorem in the
compact setting (Theorem 3.34) to a statement about reduction at arbitrary
irreducible representations (Theorem 3.35), as shown in Lemma 3.37.

Example 2.13 (Coadjoint orbits). Let G be a connected Lie group. Fix an
element ξ ∈ g∗. We define the bilinear form ωξ on g by

ωξ(X,Y ) := −〈ξ, [X,Y ]〉,
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for all X,Y ∈ g. This form is obviously antisymmetric.
The coadjoint action Ad∗ of G on g∗ is given by

〈Ad∗(g)η,X〉 = 〈η,Ad(g−1)X〉
for all g ∈ G, η ∈ g∗ and X ∈ g. The infinitesimal version of this action is
denoted by ad∗, and defined by

〈ad∗(X)η, Y 〉 := −〈η, [X,Y ]〉,
for all X,Y ∈ g and η ∈ g∗.

Let Gξ be the stabiliser group of ξ with respect to the coadjoint action:

Gξ := {g ∈ G; Ad∗(g)ξ = ξ}.
The Lie algebra gξ of Gξ equals

gξ = {X ∈ g; ad∗(X)ξ = 0}
= {X ∈ g;ωξ(X,Y ) = 0 for all Y ∈ g}, (2.7)

by definition of ωξ. By (2.7), the form ωξ defines a symplectic form on the
quotient g/gξ.

Let
Oξ := G · ξ ∼= G/Gξ

be the coadjoint orbit through ξ. The tangent space

TξOξ ∼= g/gξ

carries the symplectic form ωξ. This form can be extended G-invariantly to a
symplectic form ω on the whole manifold Oξ. It is shown in [45], Theorem 1,
that it is closed. This symplectic form is called the canonical symplectic form
on the coadjoint orbit3 Oξ.

The coadjoint action of G on Oξ is Hamiltonian. The inclusion

Φ : Oξ ↪→ g∗

is a momentum map.

The following example can be used to show that a momentum map defines
a conserved quantity of a physical system.

Example 2.14 (Time evolution). Let (M,ω) be a symplectic manifold, and
let H be a smooth function on M . If we interpret H as the Hamiltonian of
some physical system on M , then we saw in (1.9) that the time evolution of the
system is given by the flow t 7→ etξH of the Hamiltonian vector field ξH of H. If
this flow is defined for all t ∈ R, then it defines an action of the Lie group R on
M . This action is Hamiltonian, with momentum map −H : M → R ∼= R∗. In
physics, it is well known that energy, given by the Hamiltonian function, is the
conserved quantity associated to invariance under time evolution. The minus
sign in front of H is a consequence of our sign conventions.

3In terms of Poisson geometry, coadjoint orbits are the symplectic leaves of the Poisson
manifold g∗.
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Remark 2.15. The interpretation of a momentum map as a conserved quantity
arises when a Hamiltonian action of a Lie group G on a symplectic manifold
(M,ω) is given (with momentum map Φ), along with a G-invariant (Hamilto-
nian) function H on M . Then for all X ∈ G, the time dependence of ΦX is
given by

d

dt

∣∣∣∣
t=0

(
etξH

)∗ΦX = ξH
(
ΦX

)

= ω(ξΦX
, ξH)

= −ξΦX
(H)

= XM (H)
= 0,

since H is G-invariant.
In terms of the Poisson bracket, the above computation shows that both

time invariance of ΦX (for all X ∈ g) and G-invariance of H (for connected G)
are equivalent to the requirement that {H,ΦX} = 0 for all X ∈ g.

This can be seen as a form of Noether’s theorem, which relates symmetries
of a physical system to conserved quantities (see [27], page 16).

Example 2.16 (N particles in R3). To motivate the term ‘momentum map’,
we give an example from classical mechanics. It is based on Example 2.12 about
cotangent bundles, and Lemma 2.11 about Cartesian products.

Consider a physical system of N particles moving in R3. The corresponding
phase space is the manifold

M :=
(
T ∗R3

)N ∼= R6N .

Let (qi, pi) be the coordinates on the ith copy of T ∗R3 ∼= R6 in M . We write

qi = (q1i , q
2
i , q

3
i ),

pi = (p1
i , p

2
i , p

3
i ),

and
(q, p) =

(
(q1, p1), . . . , (qN , pN )

) ∈M.

Using Example 2.12 and Lemma 2.11, we equip the manifold M with the sym-
plectic form

ω :=
N∑

i=1

dp1
i ∧ dq1i + dp2

i ∧ dq2i + dp3
i ∧ dq3i .

Let G be the Euclidean motion group of R3:

G := R3 oO(3),

whose elements are pairs (v,A), with v ∈ R3 and A ∈ O(3), with multiplication
defined by

(v,A)(w,B) = (v +Aw,AB),
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for all elements (v,A) and (w,B) of G. Its natural action on R3 is given by

(v,A) · x = Ax+ v,

for (v,A) ∈ G, x ∈ R3.
Consider the induced action of G on M . As remarked before, the physically

relevant actions are those that preserve the Hamiltonian. In this example, if
the Hamiltonian is preserved by G then the dynamics does not depend on the
position or the orientation of the N particle system as a whole. In other words,
no external forces act on the system.

By Example 2.12 and Lemma 2.11, the action of G on M is Hamiltonian.
The momentum map can be written in the form

Φ(q, p) =
N∑

i=1

(pi, qi × pi) ∈
(
R3

)∗ × o(3)∗ = g∗.

Note that the Lie algebra o(3) is isomorphic to R3, equipped with the exterior
product ×. We identify R3 with its dual (and hence with o(3)∗) via the standard
inner product.

The quantity
∑N
i=1 pi is the total linear momentum of the system, and∑N

i=1 qi × pi is the total angular momentum. As we saw in Remark 2.15, the
momentum map is time-independent if the group action preserves the Hamil-
tonian. In this example, this implies that the total linear momentum and the
total angular momentum of the system are conserved quantities.

2.4 Symplectic reduction

Half of the ‘quantisation commutes with reduction’ principle that is the subject
of this thesis is the term ‘reduction’. Half again of this term is reduction on the
classical side, which we explain in this section.

The definition

For cotangent bundles (see Example 2.12) the appropriate notion of reduction
is

R : T ∗N 7→ T ∗(N/G), (2.8)

which is well-defined if N/G is again a smooth manifold. Indeed, T ∗N is the
phase space of a system with configuration space (i.e. space of all possible posi-
tions) N , and it seems that N/G is a natural choice for the reduced configuration
space.

More generally, we would like to associate to a Hamiltonian G-manifold
(M,ω) a symplectic manifold R(M,ω), in such a way that (2.8) is a special
case. We immediately see that R(M) = M/G is not a good choice, since it does
not generalise (2.8) unless G is discrete. Furthermore, there is no way to define
a canonical symplectic form on M/G (although M/G does inherit a canonical
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Poisson structure from (M,ω)). A better definition of reduction is the following
one.

Definition 2.17. Let (M,ω) be a symplectic manifold, and let G be a Lie
group. Suppose a Hamiltonian action of G on (M,ω) is given, with momentum
map Φ. Suppose that 0 ∈ g∗ is a regular value4 of Φ. Then Φ−1(0) is a smooth
submanifold of M , which is G-invariant by equivariance of Φ. Suppose that
the restricted action of G on Φ−1(0) is proper and free. Then the symplectic
reduction (at zero) of the Hamiltonian action of G on (M,ω) is the symplectic
manifold (M0, ω0), where

M0 := Φ−1(0)/G ,

and ω0 is the unique symplectic form on M0 such that

p∗ω0 = j∗ω, (2.9)

with p and j the quotient and inclusion maps in

Φ−1(0) Â Ä j //

p
²²²²

M

M0.

Theorem 2.18 (Marsden–Weinstein). Such a symplectic form ω0 exists, and
is uniquely determined by the property (2.9).

For a proof, see [59]. Another common notation for (M0, ω0) is (M�G,ωM�G).
Another term for symplectic reduction is Marsden–Weinstein reduction.

It turns out to be useful to also consider symplectic reduction at other values
than 0 ∈ g∗. Before explaining this, we look at some examples of symplectic
reduction at zero.

Proposition 2.19. Consider Example 2.12 about cotangent bundles. Suppose
that the action of G on N is proper and free. Let T ∗(N/G) be the cotangent
bundle of the (smooth) quotient N/G, equipped with the canonical symplectic
form σG = dτG. The symplectic reduction of (T ∗N, σ) by the action of G is
symplectomorphic to (T ∗(N/G), σG):

(
(T ∗N)0, σ0

) ∼=
(
T ∗(N/G), σG

)
.

A special case of reduction of cotangent bundles is the following.

Example 2.20 (N particles in R3 revisited). In Example 2.16, we considered a
classical mechanical system of N particles moving in R3. We will now describe
the symplectic reduction of the phase space M =

(
T ∗R3

)N of this system by
the action of the subgroup R3 of the Euclidean motion group G = R3 oO(3).

4That is, for all m ∈ Φ−1(0), the tangent map TmΦ is surjective.
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Consider the action on M of the translation subgroup R3 of G. By Lemma
2.8, the total linear momentum of the system defines a momentum map for this
action. By Theorem 2.19, the reduced phase space for this restricted action is

M0 =
(
T ∗R3N

)
0

= T ∗(R3N/R3).

Let V be the (3N − 3)-dimensional vector space R3N/R3. As coordinates on V ,
one can take

q̄i := qi −
N∑

j=1

cjqj : V → R3, i = 1, . . . N,

for any set of coefficients {cj} with sum 1. The coordinates then satisfy the
single relation

N∑

i=1

ciq̄i = 0.

A physically natural choice for the cj is

cj :=
mj∑N
k=1mk

,

where mj is the mass of particle j. The coordinates q̄i are then related by

N∑

i=1

miq̄i = 0.

Thus, the reduced phase space may be interpreted as the space of states of the
N particle system in which the centre of mass is at rest in the origin.

Reduction at other values of the momentum map

In the definition of symplectic reduction, we used the level set of the momentum
map at the value 0. Reductions at other values also turn out to be interesting.

Definition 2.21. Let (M,ω) be a symplectic manifold equipped with a Hamil-
tonian G-action, with momentum map Φ. Let ξ ∈ g∗ be given, and let Gξ be its
stabiliser with respect to the coadjoint action. Suppose that ξ is a regular value
of Φ, and that Gξ acts properly and freely on Φ−1(ξ). The symplectic reduction
at ξ of the Hamiltonian action of G on (M,ω) is then defined as the symplectic
manifold (Mξ, ωξ), where

Mξ := Φ−1(ξ)/Gξ ,

and the symplectic form ωξ is defined by the condition analogous to (2.9).
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The inclusion map Φ−1(ξ) ↪→ Φ−1(G · ξ) induces a diffeomorphism Mξ
∼=

Φ−1(G · ξ)/G. When we do not specify the value at which we take a symplectic
reduction, this value is always zero.

When considering questions about symplectic reductions, one can often use
the shifting trick to generalise results about reduction at zero to results about
reduction at arbitrary momentum map values.

Remark 2.22 (The shifting trick). The symplectic reduction of a Hamiltonian
group action of G on (M,ω) at any regular value ξ ∈ g∗ of the momentum
map can be obtained as the symplectic reduction at 0 of a certain symplectic
manifold containing M , by an action of G.

Indeed, let Oξ := G · ξ ∼= G/Gξ be the coadjoint orbit of G through ξ (see
Example 2.13). We noted that Mξ

∼= Φ−1(G·ξ)/G. Consider the two symplectic
manifolds (O−ξ = G · (−ξ), ω−ξ) and (M,ω). On these symplectic manifolds,
we have Hamiltonian G-actions, with momentum maps

j−ξ : O−ξ ↪→ g∗

Φ : M → g∗.

Consider the Hamiltonian action of G on the Cartesian product (O−ξ ×
M,ω−ξ ×ω) (see Lemma 2.11). As we saw, a momentum map for this action is

j−ξ × Φ : O−ξ ×M → g∗,

(j−ξ × Φ)(η,m) := η + Φ(m),

for η ∈ O−ξ and m ∈ M . The symplectic reduction of the action of G on
O−ξ ×M at the value 0 is equal to the symplectic reduction of M at ξ:

(
j−ξ × Φ

)−1(0)/G = {(g · (−ξ),m) ∈ O−ξ ×M ; g · (−ξ) + Φ(m) = 0}/G
= Φ−1(G · ξ)/G
∼= Mξ.

This exhibits Mξ as the symplectic reduction at zero of a Hamiltonian action.

The Guillemin–Sternberg conjecture, which we attempt to generalise to non-
compact groups and manifolds, is usually proved for symplectic reduction at
zero, and then generalised to reduction at arbitrary momentum map values via
the shifting trick (see Lemma 3.37).

Final remarks

Remark 2.23 (Regularity assumptions). In the definition of symplectic re-
duction at an element ξ ∈ g∗, we assumed that ξ was a regular value of the
momentum map Φ, and that the stabiliser Gξ acted properly and freely on
Φ−1(ξ). The freeness assumption may be dropped if one is willing to work with
orbifolds instead of smooth manifolds.
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Indeed, if ξ is a regular value of Φ, then the action of Gξ on Φ−1(ξ) is always
locally free, i.e. has discrete stabilisers. This result is known as Smale’s lemma,
see Lemma 2.24 below. We always suppose that a given action is proper. Then
all stabilisers of the action of Gξ on Φ−1(ξ) are compact and discrete, and hence
finite. This implies that for any regular value ξ of Φ, the symplectic reduction
Mξ is an orbifold, and ωξ is a symplectic form in the orbifold sense. Although
we will not work with orbifolds in this thesis, we do prove our two main results
in cases where the symplectic reduction is an orbifold. This is possible because
the compact versions (Theorems 3.34 and 3.38) of our main results hold in the
orbifold case, and because generalising these results to our noncompact settings
does not require the use of orbifolds.

Worse singularities arise when ξ is not a regular value of Φ. However, Mein-
renken and Sjamaar [61] have found a way to state and prove a ‘quantisation
commutes with reduction’ result in this generality, by using Kirwan’s desingu-
larisation process [46]. Since it is not clear a priori if their approach also works
for noncompact groups and manifolds, we will restrict ourselves to the orbifold
case.

Lemma 2.24 (Smale). In the setting of Definition 2.21, the element ξ is a
regular value of Φ if and only if for all points m ∈ Φ−1(ξ), the infinitesimal
stabiliser gm is trivial.

This fact follows from the defining relation (2.5) of the momentum map. It
was originally formulated in [75], Proposition 6.2.

In Part III, we will use the following ‘reduction in stages’-theorem. Let G
be a Lie group, acting in Hamiltonian fashion on a symplectic manifold (M,ω),
with momentum map Φ. Let N CG be a closed, normal subgroup. By Lemma
2.8, the action of N on M is Hamiltonian. Suppose that 0 ∈ n∗ is a regular value
of the momentum map induced by Φ, and let (M�N,ωM�N ) be the symplectic
reduction at zero of this action.

Theorem 2.25 (Reduction in stages). The action of the quotient group G/N
on (M�N,ωM�N ) is Hamiltonian, with momentum map ΦN : M�N → (g/n)∗

given by
〈ΦN (Nm), X + n〉 := 〈Φ(m), X〉

for all m ∈M and X ∈ g. Suppose that 0 ∈ g∗ and 0 ∈ (g/n)∗ are regular values
of Φ and ΦN , respectively. Then the symplectic reduction (at zero) of this action
is symplectomorphic to the symplectic reduction (M�G,ωM�G) of (M,ω) by G.

For a proof, see [57], or [50], Theorem IV.1.8.2.
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Chapter 3

Geometric quantisation

This chapter is about geometric quantisation in the compact case. Some parts
of it are necessary to understand Definitions 6.1 and 6.2 in the noncompact case,
while other parts only serve as motivation for these definitions.

The quantisation of a symplectic manifold (M,ω) should be a Hilbert space
H. The easiest way to construct such a Hilbert space would be setting

H := L2(M),

with respect to the Liouville measure given by the volume form ωn

n! , with
dimM = 2n. This first guess can be improved in two ways.

First of all, instead of functions on M , we will look at sections of a line
bundle Lω → M . Given a suitable Hermitian metric and a connection on Lω,
we then have a way to ‘quantise observables’ (see Definition 3.6). Such a line
bundle with a metric and a connection is called a prequantisation of (M,ω).
This is explained in Section 3.1.

Secondly, as we saw in Section 1.2, the quantisation of R6 should be L2(R3),
not L2(R6). The problem how to ‘shrink’ L2(M,Lω) to a more appropriate
quantisation space can be solved using either polarisations (Section 3.2) or Dirac
operators (Sections 3.3 and 3.4).

Another indication that L2(M,Lω) is ‘too big’ is that quantisation only
commutes with reduction if it is defined as the smaller space mentioned in
the previous paragraph. The author views the ‘quantisation commutes with
reduction’ principle as an axiom of quantisation and reduction; if this principle is
violated, then something must be wrong with the quantisation and/or reduction
procedures one is using. The ‘quantisation commutes with reduction’ principle
is explained in Section 3.7 for actions of compact groups on compact manifolds,
and for cocompact actions it is explained in Chapter 6.

39



40 Chapter 3. Geometric quantisation

3.1 Prequantisation

The first step towards geometric quantisation is prequantisation. A prequan-
tisation of a symplectic manifold (M,ω) is a Hermitian line bundle Lω over
M , equipped with a Hermitian connection whose curvature form is 2πi ω. The
geometric quantisation of (M,ω) will (initially) be defined as a subspace of the
space of sections of this line bundle. The Hermitian structure on Lω turns this
space into a Hilbert space, and the connection on Lω allows us to quantise
observables to a certain extent.

Line bundles

We begin with some background information about line bundles. Let M be a
smooth manifold, and let L → M be a smooth complex line bundle over M .
The space of smooth sections of L is denoted by Γ∞(M,L), or by Γ∞(L). The
space of smooth differential forms on M of degree k, with coefficients in L, is
the space

Ωk(M ;L) := Γ∞(M,
∧k

T ∗M ⊗ L).

Definition 3.1. If (−,−)L is a Hermitian metric on L, then a connection ∇
on L is called Hermitian if for all s, t ∈ Γ∞(M,L),

d(s, t)L = (∇s, t)L + (s,∇t)L ∈ Ω1(M).

A connection ∇ on L can be uniquely extended to a linear map

∇ : Ωk(M ;L)→ Ωk+1(M ;L),

such that for all α ∈ Ωk(M) and β ∈ Ω(M ;L), the following generalised Leibniz
rule holds:

∇(α ∧ β) = α ∧∇β + (−1)kdα ∧ β.
A consequence of this Leibniz rule is that the square of ∇,

∇2 : Ωk(M ;L)→ Ωk+2(M ;L),

is a C∞(M)-linear mapping. Hence it is given by multiplication by a certain
two-form.

Definition 3.2. The curvature (form) of a connection ∇ on L is the two-form

2πi ω ∈ Ω2
C(M) := Γ∞(M,

∧2
T ∗M ⊗ C)

such that for all s ∈ Γ∞(M,L),

∇2s = 2πi ω ⊗ s. (3.1)
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An equivalent formulation of (3.1) is that for all vector fields v and w on M ,
the C∞(M)-linear map

[∇v,∇w]−∇[v,w] : Γ∞(M,L)→ Γ∞(M,L) (3.2)

is given by multiplication by the function 2πi ω(v, w).
It turns out that ω is real, closed (the Bianchi identity), and that the co-

homology class [ω] ∈ H2
dR(M) is integral. That is, it lies in the image of the

map H2(M ;Z)→ H2
dR(M). Or, equivalently, for all compact, two-dimensional

submanifolds S ⊂M , the number
∫
S
ω is an integer.

Conversely, we have the following theorem. For a proof, see [94].

Theorem 3.3 (Weil). Let M be a smooth manifold, ω a real, closed two-form
on M , with integral cohomology class [ω] ∈ H2

dR(M).
Then there is a line bundle Lω → M , with a Hermitian metric (−,−)Lω ,

and a Hermitian connection ∇ whose curvature form is 2πi ω.

Definition 3.4. A triple (Lω, (−,−)Lω , ∇) as in Theorem 3.3 is a prequanti-
sation for (M,ω). The line bundle Lω is called a prequantum line bundle.

Observables

In this thesis, we are not concerned with quantising observables. However, to
motivate the definition of prequantisation, let us explain a possible approach to
quantising observables using a prequantisation. First, recall the definition (2.1)
of Hamiltonian vector fields. The map f 7→ ξf is a Lie algebra homomorphism
from the Poisson algebra

(
C∞(M), {−,−}) of (M,ω) to the Lie algebra X(M)

of vector fields on M :

Lemma 3.5. For all f, g ∈ C∞(M),

[ξf , ξg] = ξ{f,g}.

This lemma can be proved via a straightforward local verification in Darboux
coordinates.

We mentioned in Section 1.3 that it is a common assumption that quanti-
sation of observables is a Lie algebra homomorphism from the Poisson algebra(
C∞(M), {−,−}) to the algebra of operators on the quantum phase space, with

the Lie bracket defined as the commutator. Here we omit the constant i
~ in

(1.18). The quantum phase space obtained via geometric quantisation will be a
subspace of the space of smooth sections of a prequantum line bundle Lω →M .
If the prequantisation operator (defined below) associated to a classical observ-
able preserves this subspace, then the induced operator on the quantum phase
space can be interpreted as the quantisation of the classical observable.

Definition 3.6. Let (Lω, (−,−)Lω ,∇) be a prequantisation for (M,ω). Let
f ∈ C∞(M), and consider the linear operator P (f) on Γ∞(M,Lω), defined by

P (f) := ∇ξf
− 2πif. (3.3)
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It is called the prequantisation operator of the function f .
The linear map

P : C∞(M)→ End (Γ∞(M,Lω))

defined by (3.3), is called prequantisation.

Prequantisation is indeed a Lie algebra homomorphism:

Theorem 3.7 (Kostant – Souriau). Prequantisation is a Lie algebra homo-
morphism with respect to the Poisson bracket on C∞(M) and the commutator
bracket of operators on Γ∞(M,Lω).

A proof of this theorem can be given by using Lemma 3.5 and the fact that
∇2 = 2πi ω. This is a reason for looking at sections of a prequantum bundle
instead of at functions.

Equivariant prequantisations

Since we are interested in Hamiltonian group actions on symplectic manifolds,
and not just in the symplectic manifolds themselves, we now take a look at
prequantisations of such group actions. Let (M,ω) be a symplectic manifold,
and let G be a Lie group acting symplectically on (M,ω).

Definition 3.8. An equivariant prequantisation of the action of G on M is a
prequantisation (LΓ∞(M,Lω), (−,−)Lω ,∇) of (M,ω) with the following addi-
tional properties.

• Lω is a G-equivariant line bundle;

• the metric (−,−)Lω is G-invariant;

• the connection ∇ is G-equivariant as an operator on Ω∗(M ;Lω).

Equivariance of ∇ is equivalent to the requirement that for all sections s ∈
Γ∞(Lω), all vector fields v ∈ X(M) and all g ∈ G, we have

g · (∇vs
)

= ∇g·v g · s.
Here the section g · s and the vector field g · v are defined by

(g · s)(m) = g · s(g−1m); (3.4)
(g · v)m = Tg−1mg(vg−1m).

for all m ∈M .

Remark 3.9 (Existence of equivariant prequantisations). As can be seen in the
example in Section 11.5, it is not always clear if an equivariant prequantisation
exists.

If G is compact, then existence of an equivariant prequantisation is equiva-
lent to integrality of the equivariant cohomology class [ω−Φ] (see [27], Theorem
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6.7). If the manifold M is simply connected and the group G is discrete, then
Hawkins [32] gives a procedure to lift the action of G on M to a projective action
on the trivial line bundle over M , such that a given connection is equivariant.
Under a certain condition (integrality of a group cocycle), this projective action
is an actual action.

In general however, existence of an equivariant prequantisation of a given
Hamiltonian action does not follow from a result like Theorem 3.3, and has
to be assumed. In Section 13.1, we show how in some cases, an equivariant
prequantisation can be constructed from a prequantisation of an action by a
compact group on a compact submanifold.

In the literature on the Guillemin–Sternberg conjecture, usually a more spe-
cific kind of equivariant prequantisation is considered. To define this prequan-
tisation, suppose that (M,ω) is a Hamiltonian G-manifold, with momentum
map Φ. Let (Lω, (−,−)Lω ,∇) be a prequantisation of (M,ω), which is not yet
assumed to be equivariant. Suppose Lω is a G-line bundle. The induced action
of the Lie algebra g on Γ∞(Lω) is defined by

X(s)(m) =
d

dt

∣∣∣∣
t=0

exp(tX)s(exp(−tX)m),

for X ∈ g, s ∈ Γ∞(Lω) and m ∈M .

Proposition 3.10. Suppose that G is connected, and that the action of g on
Γ∞(Lω) is given by the Kostant formula

X(s) = −P (ΦX) = −∇ξXM
s+ 2πiΦXs.

Then (Lω, (−,−)Lω ,∇) is an equivariant prequantisation of the action of G on
(M,ω). That is, the metric (−,−)Lω is G-invariant, and the connection ∇ is
G-equivariant.

The author is not aware of a proof of this fact in the literature, but such a
proof is a straightforward matter of verifying the desired properties, using the
fact that (Lω, (−,−)Lω ,∇) is a prequantisation.

A reason why we consider the more general equivariant prequantisations, as
in Definition 3.8, is that we will also consider non-connected groups in Part III.

3.2 Quantisation via polarisations

The first way to quantise a prequantised symplectic manifold (M,ω) is by using
a polarisation of the complex tangent space TMC := TM ⊗R C.

Definition 3.11. Let (V, ω) be a symplectic vector space of dimension 2n. The
symplectic form ω extends complex-linearly to the complexification V ⊗ C. A
polarisation of V ⊗ C is a complex Lagrangian subspace P of V ⊗ C. That is,
P⊥ = P , where P⊥ is the subspace of V ⊗C orthogonal to P with respect to ω.
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Definition 3.12. Let (M,ω) be a symplectic manifold, and let P be a smooth
subbundle of the complexified tangent bundle TM ⊗ C. Then P is called a
polarisation of (M,ω) if it has the following properties.

1. The subspace Pm ⊂ TmM ⊗ C is a polarisation of (TmM ⊗ C, ωm) for all
m ∈M .

2. The signatures (rm, sm) of the forms (−,−)Pm on Pm/(Pm ∩ P̄m) are
locally constant on M .

3. The subbundle P of TM ⊗ C is integrable. That is, the space of sections
of P is closed under the Lie bracket of vector fields.

Example 3.13 (Vertical polarisation). Let N be a manifold, and let M be the
cotangent bundle T ∗N , equipped with the standard symplectic form σ = dτ
from Example 2.12. Let P ⊂ TM ⊗ C be the subbundle

P := kerTCπN ,

where πN : T ∗N → N denotes the cotangent bundle projection. Then P is a
polarisation of (M,σ), called the vertical polarisation. Note that

P ∼= TN ⊗ C ↪→ TM ⊗ C.

Example 3.14 (Kähler polarisation). Let M be a complex manifold, and let H
be a Hermitian metric on TM . Let g be the real part of H, and let ω be minus
the imaginary part of H. (The minus sign makes the notation in this example
compatible with the notation in the rest of this thesis.) The pair (M,H) is called
a Kähler manifold if dω = 0. In that case, (M,ω) is a symplectic manifold.

Let J : TM → TM be the complex structure on M . Then

g(−,−) = ω(−, J −)

is a Riemannian metric on M . Because g and H are determined by ω and J , we
may also denote the Kähler manifold (M,H) by (M,ω, J), or (M,ω) by abuse
of notation.

The Kähler polarisation of (M,ω) is the−i eigenspace of J acting on TM⊗C:

P := {JX − iX;X ∈ TM}.

A function f ∈ C∞(M) is holomorphic if and only if Z(f) = 0 for all Z ∈ Γ∞(M,P ).

Given a symplectic manifold (M,ω), a prequantisation (Lω, (−,−)Lω ,∇) of
(M,ω) and a polarisation P ⊂ TM ⊗ C, the geometric quantisation of (M,ω)
can be defined as

QI(M,ω) := {s ∈ Γ∞(M,Lω);∇Zs = 0 for all Z ∈ Γ∞(M,P )}. (3.5)

This definition of quantisation is often applied to compact Kähler manifolds,
and it is this case that we will generalise in the course of this chapter.
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Definition 3.15 (Quantisation I). Let (M,ω) be a compact Kähler manifold,
such that [ω] is an integral cohomology class. Let P be the Kähler polarisa-
tion of M , and let (Lω, (−,−)Lω ,∇) be a prequantisation. Then the Kähler-
quantisation of (M,ω) is the finite-dimensional vector space (3.5).

We can give the line bundle Lω the structure of a holomorphic line bundle, by
requiring that its space of holomorphic sections is QI(M,ω). The vector space
QI(M,ω) is therefore indeed finite-dimensional. A reason for using sections
of a line bundle instead of functions on M in the definition of quantisation,
is the fact that there are no nonconstant holomorphic functions on a compact
complex manifold, whereas a holomorphic line bundle on such a manifold may
have interesting sections.

Remark 3.16. In the situation of Definition 3.15, consider the Dolbeault com-
plex on M with coefficients in Lω:

0 //Ω0,0(M ;Lω)
∂̄⊗1Lω //Ω0,1(M ;Lω)

∂̄⊗1Lω // . . .
∂̄⊗1Lω //Ω0,dM (M ;Lω) //0 .

Here dM is the real dimension of M . The zeroth cohomology space H0,0(M ;Lω)
is the space of holomorphic sections of Lω, which we defined to be QI(M,ω).
This implies that QI(M,ω) is not the zero space if the line bundle Lω is suffi-
ciently positive.

Indeed, if Lω ⊗∧0,dMTM is a positive line bundle, then by Kodaira’s van-
ishing theorem (see e.g. [91], Section VI.2), all Dolbeault cohomology spaces
H0,k(M ;Lω) vanish for k > 0. The Hirzebruch–Riemann–Roch theorem ex-
presses the number

dM∑

k=0

(−1)k dimH0,k(M ;Lω) = dimH0,0(M ;Lω)

as the integral over M of a certain differential form. If Lω is positive enough,
this number turns out to be nonzero.

If the line bundle Lω is positive, but not positive enough, then we can replace
Lω by a tensor power Lω⊗n, to make it sufficiently positive. This amounts to
replacing the symplectic form ω by a multiple nω. Roughly speaking, we can
think of n as being proportional to 1/~ so that choosing Lω positive enough,
i.e. choosing n big enough, comes down to ~ being small enough.

3.3 Quantisation via the Dolbeault–Dirac oper-
ator

In this section, we improve Definition 3.15 of geometric quantisation in two ways.
First, we give a definition (Definition 3.17) that yields a nonzero quantisation in
more cases than Definition 3.15, and then we rephrase Definition 3.17 in a way
that allows us to generalise it to possibly non-Kähler symplectic manifolds. Both
definitions reduce to Definition 3.15 if the prequantum line bundle is positive
enough.
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Definition 3.17 (Quantisation II). Let (M,ω) be a compact Kähler manifold,
suppose that [ω] is an integral cohomology class, and let (Lω, (−,−)Lω ,∇) be a
prequantisation. We define the quantisation of (M,ω) as

QII(M,ω) :=
n∑

k=0

(−1)kH0,k(M ;Lω),

the alternating sum of the Dolbeault cohomology spaces of M with coefficients in
Lω. This is a virtual vector space, i.e. a formal difference of vector spaces, whose
isomorphism class is determined by the integer

∑n
k=0(−1)k dimH0,k(M ;Lω).

If the line bundle Lω is positive enough, then the definition of quantisation
agrees with the previous one (see Remark 3.16).

The Dolbeault–Dirac operator

Definition 3.17 may be reformulated in a way that makes sense even when
the manifold M is not Kähler. Let (M,ω) be a compact symplectic manifold.
Suppose that [ω] is an integral cohomology class, and let (Lω, (−,−)Lω ,∇) be a
prequantisation. Let J be an almost complex structure on TM that is compatible
with ω:

Definition 3.18. An almost complex structure J on a symplectic manifold
(M,ω) is said to be compatible with ω, if the symmetric bilinear form

g := ω(−, J −)

is a Riemannian metric on M .

Compatible almost complex structures always exist (see for example [27],
pp. 111–112).

As we noted before, the connection ∇ on Lω defines a differential operator

∇ : Ωk(M ;Lω)→ Ωk+1(M ;Lω),

such that for all α ∈ Ωk(M) and s ∈ Γ∞(M,Lω),

∇(α⊗ s) = dα⊗ s+ (−1)kα ∧∇s.

Consider the projection

π0,∗ : Ω∗C(M ;Lω)→ Ω0,∗(M ;Lω),

according to the decomposition ΩkC(M ;Lω) =
⊕

p+q=k Ωp,q(M ;Lω). Define the
differential operator

∂̄Lω : Ω0,q(M ;Lω)→ Ω0,q+1(M ;Lω)
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by
∂̄Lω := π0,∗ ◦ ∇.

The Riemannian metric g induces a metric on the bundle
∧0,∗

T ∗M , which
we also denote by g. Let (−,−) be the inner product on Ω0,∗

c (M ;Lω) such that
for all α, β ∈ Ω0,∗

c (M) and all s, t ∈ Γ∞(M,Lω),

(α⊗ s, β ⊗ t) =
∫

M

g(α, β)(m)(s, t)Lω (m) dm.

where dm is the Liouville measure. Let ∂̄∗Lω by the formal adjoint of ∂̄Lω , defined
by the requirement that

(∂̄Lωϕ,ψ) = (ϕ, ∂̄∗Lωψ)

for all ϕ,ψ ∈ Ω0,∗(M ;Lω), where ϕ has compact support.

Definition 3.19. The Dolbeault–Dirac operator is the elliptic differential oper-
ator

∂̄Lω + ∂̄∗Lω : Ω0,∗(M ;Lω)→ Ω0,∗(M ;Lω).

This operator maps forms of even degree to forms of odd degree, and vice
versa.

Dolbeault-quantisation

Definition 3.20 (Quantisation III). The Dolbeault-quantisation of (M,ω) is
defined as the virtual vector space

ker
((
∂̄Lω + ∂̄∗Lω

) |Ω0,even(M ;Lω)

)− ker
((
∂̄Lω + ∂̄∗Lω

) |Ω0,odd(M ;Lω)

)
,

which is the index of the Dolbeault–Dirac operator

∂̄Lω + ∂̄∗Lω : Ω0,even(M ;Lω)→ Ω0,odd(M ;Lω). (3.6)

In other words,
QIII(M,ω) := index

(
∂̄Lω + ∂̄∗Lω

)
. (3.7)

Because this operator is elliptic and M is compact, its index is well-defined.

Remark 3.21. In general, let E = E0 ⊕ E1 → M be a Z2-graded vector
bundle, equipped with a metric, over a compact manifold. Let D be an elliptic
differential operator on E. Suppose that D is symmetric with respect to the L2-
inner product in sections of E with respect to a given measure on M , and that
it interchanges sections of E0 and E1 Then, as in (3.7), we will often slightly
abuse notation by writing

indexD := index
(
D : Γ∞(E0)→ Γ∞(E1)

)

= [kerD ∩ Γ∞(E0)]− [kerD ∩ Γ∞(E1)].
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Remark 3.22 (Quantisation III for Kähler manifolds). If M is a complex
manifold, and Lω is a holomorphic line bundle over M , then we can define the
elliptic differential operator

(∂̄ + ∂̄∗)⊗ 1Lω : Ω0,∗(M ;Lω)→ Ω0,∗(M ;Lω) (3.8)

as follows. Locally, one has

Ω0,q(U ;Lω|U ) ∼= Ω0,q(U)⊗O(U) O(U,Lω|U ).

Here U is an open subset of M over which Lω trivialises, O(U) denotes the space
of holomorphic functions on U , and O(U,Lω|U ) is the space of holomorphic
sections of Lω on U . Because (by definition) ∂̄f = 0 for holomorphic functions
f , we can locally define the differential operator

∂̄ ⊗ 1Lω : Ω0,q(U ;Lω|U )→ Ω0,q+1(U ;Lω|U ),

by
∂̄ ⊗ 1Lω (α⊗ s) = ∂̄α⊗ s,

for all α ∈ Ω0,q(U) and s ∈ O(U,Lω|U ). These local operators patch together
to a globally defined operator

∂̄ ⊗ 1Lω : Ω0,q(M ;Lω)→ Ω0,q+1(M ;Lω),

from which we can define the operator (3.8) by

(∂̄ + ∂̄∗)⊗ 1Lω := ∂̄ ⊗ 1Lω + (∂̄ ⊗ 1Lω )∗.

If (M,ω) is a compact Kähler manifold that admits a prequantum line bundle
(Lω, (−,−)Lω ,∇), then the Dolbeault–Dirac operator ∂̄Lω + ∂̄∗Lω turns out to
have the same principal symbol, and hence the same index, as the operator
(∂̄ + ∂̄∗)⊗ 1Lω . So for Kähler manifolds, Definition 3.20 may be rephrased as

QIII(M,ω) := index
(
(∂̄ + ∂̄∗)⊗ 1Lω : Ω0,even(M ;Lω)→ Ω0,odd(M ;Lω)

)
.

Lemma 3.23. If (M,ω) is a Kähler manifold, then Definitions II and III of
geometric quantisation agree.

Proof. Note that

H0,k(M ;Lω) = ker
(
∂̄k ⊗ 1Lω

)
/ im

(
∂̄k−1 ⊗ 1Lω

)

∼= ker
(
∂̄k ⊗ 1Lω

) ∩ (
im

(
∂̄k−1 ⊗ 1Lω

))⊥

= ker
(
∂̄k ⊗ 1Lω

) ∩ ker
(
∂̄k−1 ⊗ 1Lω

)∗

= ker
((
∂̄k +

(
∂̄k−1

)∗)⊗ 1Lω

)
,

because the images of ∂̄k and
(
∂k−1

)∗ lie in different spaces.
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We conclude that

H0,even(M ;Lω) =
⊕

k even

ker
(
∂̄k +

(
∂̄k−1

)∗)⊗ 1Lω

= ker
((
∂̄ + ∂̄∗

)⊗ 1Lω |Ω0,even(M ;Lω)

)
,

and similarly,

H0,odd(M ;Lω) =
⊕

k odd

ker
(
∂̄k +

(
∂̄k−1

)∗)⊗ 1Lω

= ker
((
∂̄ + ∂̄∗

)⊗ 1Lω |Ω0,odd(M ;Lω)

)
.

3.4 Quantisation via the Spinc-Dirac operator

Prequantisations and almost complex structures are the crucial ingredients of
the definition of quantisation via the Dolbeault–Dirac operator. These two
ingredients can, in some sense, be combined into the single notion of a Spinc-
structure. Such a structure allows us to give another definition of geometric
quantisation, which is slightly different from the previous one. We will use this
definition in Theorem 6.13 about discrete series representations of semisimple
Lie groups.

It is possible to restate Definition 3.20 of Dolbeault-quantisation in terms of
Spinc-structures associated to almost complex structures and prequantum line
bundles. See for example [80]. This definition is different from the one we give
in this section, where we do not use almost complex structures. The difference
between these definitions is explained in [63].

Spinc-structures and Dirac operators

We begin by introducing Spinc-structures on manifolds. More information can
be found in [22] or in [54], Appendix D. For n ∈ N, n ≥ 2, the group Spin(n)
is by definition the connected double cover of SO(n). It can be constructed
explicitly as follows.

The Clifford algebra of a vector space V with a quadratic form q is the
quotient of the tensor algebra of V by the two-sided ideal generated by the
elements v ⊗ v − q(v), for v ∈ V . See [22, 23, 54] for more information. Let Cn
be the Clifford algebra of Rn with the quadratic form q(x) = −x2

1 − · · · − x2
n.

Then Spin(n) is the group in Cn generated by elements of norm one and degree
two:

Spin(n) = 〈xy;x, y ∈ Sn−1 ⊂ Rn ⊂ Cn〉.
The group Spinc(n) is defined as

Spinc(n) := Spin(n)×Z2 U(1).
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Here Z2 is embedded into Spin(n) as the kernel of the covering map λ : Spin(n)→
SO(n), and into U(1) as the subgroup {±1}.

More generally, we have the groups Spin(V ) and Spinc(V ), for any finite-
dimensional vector space V equipped with a quadratic form. They are defined
completely analogously to the groups Spin(n) and Spinc(n), respectively.

Definition 3.24. A Spinc-structure on a vector bundle E → M of rank r is a
pair (P,ψ), consisting of a right principal Spinc(n)-bundle P →M and a vector
bundle isomorphism

ψ : P ×Spinc(r) Rr → E.

Here Spinc(r) acts on Rr via the homomorphism Spinc(r) → SO(r) given by
[a, z] 7→ λ(a), for a ∈ Spin(r) and z ∈ U(1).

A Spinc-structure on a manifold is a Spinc-structure on its tangent bundle.
A manifold equipped with a Spinc-structure is called a Spinc-manifold.

A Spinc-structure on a vector bundle E → M induces a metric and an ori-
entation on E, obtained from the Euclidean metric and the standard orientaion
on RdM , via the map ψ. If E was already equipped with these structures, then
the map ψ is supposed to preserve them. That is, ψ is an isometric isomorphism
of oriented vector bundles.

If an action of a group G on M is given, then an equivariant Spinc-structure
on M is a Spinc-structure (P,ψ), where G acts on P from the left, and ψ is
assumed to be G-equivariant.

We will sometimes sloppily use the term Spinc-structure for the principal
Spinc-bundle P .

Remark 3.25 (Spin-structures). A Spin-structure is defined in the same way
as a Spinc-structure, with the group Spinc(r) replaced by Spin(r) everywhere.
A Spin-structure P → M on a vector bundle of rank r naturally induces a
Spinc-structure on this bundle, equal to P ×Spin(r) Spinc(r)→M .

Now suppose n ∈ N is even. We denote the canonical representation of Cn
by c : Cn → End(∆n) (see [54, 22, 23]). The vector space ∆n is naturally iso-
morphic to C2n/2

. The restriction to Spin(n) of this representation decomposes
into two irreducible subrepresentations ∆n = ∆+

n ⊕∆−
n of equal dimension. For

x ∈ Rn ⊂ Cn, we have

x∆+
n := c(x)∆+

n ⊂ ∆−
n ;

x∆−
n := c(x)∆−

n ⊂ ∆+
n .

(3.9)

The representation ∆n of Spin(n) extends to the group Spinc(n) via the formula

[a, z] · δ = z(a · δ),

for a ∈ Spin(n), z ∈ U(1) and δ ∈ ∆n. The Spinc-Dirac operator acts on
sections of the spinor bundle associated to the Spinc-structure on M :
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Definition 3.26. Let (P, ψ) be a Spinc-structure on an even-dimensional mani-
fold M . The spinor bundle on M associated to this Spinc-structure is the vector
bundle

S := P ×Spinc(dM ) ∆dM
.

The isomorphism ∆dM
∼= C2dM /2

induces a Hermitian metric on S. The spinor
bundle has a natural decomposition S = S+⊕S−, induced by the decomposition
∆dM

= ∆+
dM
⊕∆−

dM
.

The action of TM on S, called the Clifford action and denoted by cTM , is
defined as follows. Let [p, x] ∈ P ×Spinc(n) Rn ∼= TM be given. Then for all
δ ∈ ∆dM

, the Clifford action is defined by

cTM ([p, x])[p, δ] := [p, x · δ]. (3.10)

Note that by (3.9), the Clifford action interchanges the sub-bundles S+ and S−.
The induced action of vector fields on sections of the spinor bundle will also be
denoted by cTM .

To define the Spinc-Dirac operator on an even-dimensional manifold M , we
suppose a Hermitian connection ∇ on the spinor bundle to be given.

Definition 3.27. The Spinc-Dirac operator /DM on M , associated to the Spinc-
structure (P, ψ) and the connection ∇, is defined by the property that for all
orthonormal local frames {e1, . . . , edM

} of TM , we locally have

/DM =
dM∑

j=1

cTM (ej)∇ej .

This operator maps sections of S+ to sections of S− and vice versa.
The principal symbol σ/DM

of the Spinc-Dirac operator is given by

σ/DM
(ξ, δ) = (ξ, icTM (ξ∗)δ)

Here (ξ, δ) ∈ π∗MS, with πM the cotangent bundle projection of M . The tangent
vector ξ∗ ∈ TM is the one associated to ξ via the Riemannian metric on M .
The square of this principal symbol is given by scalar multiplication by ‖ξ‖2, so
that σ/DM

is invertible, and the Spinc-Dirac operator is elliptic.
Furthermore, the Spinc-Dirac operator is symmetric with respect to the L2-

inner product of compactly supported smooth sections of the spinor bundle
([93], [22], page 69). This L2-inner product is defined using the volume form
on M associated to the Riemannian metric. Finally, if M is equipped with a
G-equivariant Spinc-structure, then the spinor bundle has a natural structure
of a G-vector bundle. If the connection on S is G-equivariant, then so is the
Spinc-Dirac operator.
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Spinc-quantisation

Let (M,ω) be a compact symplectic manifold. In the definition of Spinc-
quantisation, we use a slightly different notion of prequantisation from the one
introduced in Section 3.1. To define Dolbeault-quantisation, we assumed that
the cohomology class [ω] was integral. For Spinc-quantisation, we assume that
the cohomology class

[ω] +
1
2
c1

(∧0,dM

C (TM, J)
) ∈ H2

dR(M) (3.11)

is integral, for some almost complex structure J on M , not necessarily com-
patible with ω. This integrality condition is independent of the choice of J .
Integrality of (3.11) implies in particular that [2ω] is an integral cohomology
class, so that (M, 2ω) is prequantisable.

Definition 3.28. A Spinc-prequantisation of (M,ω) is a prequantisation (L2ω, (−
,−)L2ω ,∇), as in Definition 3.4, of the symplectic manifold (M, 2ω). That is,
the curvature form of ∇ is 4πi ω instead of 2πi ω.

Note that if Lω is a normal prequantum line bundle over (M,ω), then
(
Lω

)⊗2

is a Spinc-prequantum line bundle. We will motivate this definition in Lemma
3.32.

In the case of Spinc-quantisation, the link between the Spinc-structure and
the prequantisation is given by the determinant line bundle:

Definition 3.29. The determinant homomorphism det : Spinc(n) → U(1) is
given by

det[a, z] = z2,

for a ∈ Spin(n) and z ∈ U(1).
Let P →M be a principal Spinc(n)-bundle. The determinant line bundle of

P is the line bundle

det(P ) := P ×Spinc(n) C→M,

where Spinc(n) acts on C via the determinant homomorphism.

Definition 3.30 (Quantisation IV). Let (M,ω) be a compact symplectic man-
ifold, and suppose that the cohomology class (3.11) is integral. Then there is
a Spinc-prequantisation (L2ω, (−,−)L2ω ,∇) of (M,ω), and a Spinc structure
P → M on M whose determinant line bundle is (isomorphic to) L2ω (see Re-
mark 3.31). Let

/DL2ω

M : Γ∞(M,S+)→ Γ∞(M,S−)

be the Spinc-Dirac operator on the spinor bundle S, with respect to any con-
nection on S. Its index is the Spinc-quantisation of (M,ω):

QIV (M,ω) := index /DL2ω

M .



3.5 Equivariant quantisation 53

Note that the principal symbol, and hence the index, of /DL2ω

M does not depend
on the choice of connection on S.

Remark 3.31. Integrality of (3.11) implies that a Spinc-structure P as in
Definition 3.30 always exists. Indeed, let J be any almost complex structure on
M , not necessarily compatible with ω. By integrality of (3.11), the line bundle

L2ω ⊗∧0,dM

C (TM, J)→M

always has a square root LJ . Then P may be taken to be the standard Spinc-
structure associated to LJ and J , as described for example in [27], Proposition
D.50.

The specific choice of the Spinc-structure P is irrelevant in Definition 3.30,
as long as its determinant line bundle is L2ω.

The link between Definitions 3.4 and 3.28 of prequantisation, and between
Definitions 3.20 and 3.30 of geometric quantisation, is the following.

Lemma 3.32. Let (M,ω) be a compact symplectic manifold, and let Lω → M

be a prequantum line bundle. Then L2ω :=
(
Lω

)⊗2 →M is a Spinc-prequantum
line bundle. Let J be an almost complex structure on M , compatible with ω. If
the line bundle ∧0,dM

C (TM, J)→M

is trivial, then the Dolbeault-quantisation of (M,ω), with respect to Lω, equals
the Spinc-quantisation of (M,ω), with respect to L2ω.

3.5 Equivariant quantisation

So far, we have only defined quantisation in the absence of a group action.
These definitions generalise naturally to the equivariant setting. Let (M,ω) be
a compact symplectic manifold, equipped with a symplectic action by a group
G. Let a (Spinc- or normal) equivariant prequantisation be given.

In the case of Dolbeault-quantisation, let J be a G-equivariant almost com-
plex structure on M , compatible with ω. If the action of G on M is proper,
then such an almost complex structure always exists (see [27], Example D.12
and Corollary B.35). In the case of Spinc-quantisation, the Spinc-structure P
in Definition 3.30 can be given the structure of a G-equivariant Spinc-structure,
by applying the construction in Remark 3.31 to an equivariant almost complex
structure on M . Choose a G-equivariant connection on the corresponding spinor
bundle. It then follows that the virtual vector spaces QI(M,ω)–QIV (M,ω) are
invariant under the representation of G given by (3.4), and therefore carry rep-
resentations of G.

If G = K is a compact Lie group, then these quantisations therefore define
elements of the representation ring of K:

Definition 3.33. Let K be a compact Lie group. The representation ring
R(K) of K is the quotient of the free abelian group with one generator for each
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isomorphism class of finite-dimensional representations of K, by the equivalence
relation [V ] + [W ] ∼ [V ⊕W ], for all finite-dimensional K-representations V
and W . The tensor product of representations induces a commutative product
on R(K).

In particular, we have

QIII(M,ω) = K-index
(
∂̄Lω + ∂̄∗Lω

) ∈ R(K); (3.12)

QIV (M,ω) = K-index /DL2ω

M ∈ R(K). (3.13)

Here the Dolbeault–Dirac operator ∂̄Lω + ∂̄∗Lω and the Spinc-Dirac operator
/D
L2ω

M are understood as operators between the spaces of even- and odd-graded
antiholomorphic differential forms with values in with values in Lω, or sections
of the spinor bundle, as in Definitions 3.20 and 3.30.

The goal of this thesis is to generalise the ‘quantisation commutes with
reduction’ theorem in Section 3.7 to noncompact M and G. Definitions (3.12)
and (3.13) cannot directly be generalised to this case, for two reasons. The
first is that if M is noncompact, then the kernels of the Dolbeault- and Spinc-
Dirac operators need no longer be finite-dimensional. The second reason is
that the representation ring has to be defined in terms of finite-dimensional
representations, to avoid problems with formal differences of infinite-dimensional
vector spaces, and that the finite-dimensional representations of noncompact Lie
groups do not include all the interesting ones. Indeed, for noncompact simple
groups the only finite-dimensional unitary representations are direct sums of the
trivial one. We will use the solution to these problems proposed by Landsman
[51], which is to replace the representation ring of a group by the K-theory of its
C∗-algebra, and the K-index by the analytic assembly map. This is explained
in Chapters 4, 5 and 6.

3.6 Quantisation of symplectic reductions

Because we always suppose that the orbit space of a given group action is
compact, all symplectic reductions we consider are compact as well. We can
therefore quantise these reductions in the usual way, which we describe in this
section.

Suppose that G is a group, (M,ω) is a Hamiltonian G-manifold, with mo-
mentum map Φ, and that (Lω, (−,−)Lω ,∇) is an equivariant prequantisation.
Suppose M/G is compact. Consider the symplectic reduction (M0, ω0) of (M,ω)
at zero. If 0 is a regular value of Φ, and G acts properly and freely on Φ−1(0),
then we have the line bundle

Lω0 :=
(
Lω|Φ−1(0)

)
/G→M0. (3.14)

If p : Φ−1(0) → M0 is the quotient map, and i : Φ−1(0) ↪→ M is the inclu-
sion, then we have p∗Lω0 ∼= i∗Lω. The G-invariant Hermitian metric (−,−)Lω
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induces a metric (−,−)Lω0 on Lω0 , by

(G · l, G · l′)Lω0 := (l, l′)Lω ,

for all m ∈ Φ−1(0) and l, l′ ∈ Lωm. Furthermore, there is a unique connection
∇M0 on Lω0 such that p∗∇M0 = i∗∇ (see [28], Theorem 3.2). The triple

(
Lω0 , (−

,−)Lω0 ,∇M0
)

is a prequantisation of (M0, ω0).
To define the Dolbeault-quantisation of the the symplectic reduction (M0, ω0),

we choose an almost complex structure JM0 on M0, compatible with ω0. We
then form the Dolbeault–Dirac operator ∂̄Lω0 + ∂̄∗Lω0 with respect to JM0 . As
in Section 3.3, the Dolbeault-quantisation is the index of this operator:

QIII(M0, ω0) = index
(
∂̄Lω0 + ∂̄∗Lω0

)
.

For Spinc-quantisation, let P → M be a G-equivariant Spinc-structure
with determinant line bundle L2ω. In [65], Paradan shows that P induces a
Spinc-structure P0 on M0 whose determninant line bundle is L2ω0 . The Spinc-
quantisation of (M0, ω0) is then defined, as in Section 3.4, as the index of the
Spinc-Dirac operator on the spinor bundle S of P , with respect to any connec-
tion on S:

QIV (M0, ω0) = index /DL2ω0

M0
.

Even if the action of G on Φ−1(0) is not assumed to be free, it is still locally
free by Lemma 2.24. If the action of G on Φ−1(0) is proper, then it has compact
stabilisers, so that the reduced space M0 is an orbifold. It is then still possible to
define a Dolbeault- or Spinc-Dirac operator on M0, and its index is still denoted
by QIII(M0, ω0) or by QIV (M0, ω0), respectively. These indices can be computed
via Kawasaki’s orbifold index theorem (see [42], or [60], Theorem 3.3).

If 0 is not a regular value of Φ, then M0 is not necessarily an orbifold. In
[61], Meinrenken and Sjamaar deal with this situation in the compact setting.
Because their methods may not work in the noncompact setting, we will avoid
working with such singular spaces by only considering regular values of Φ.

Next, let any element ξ ∈ g∗ be given, with the property that 〈ξ,X〉 ∈ 2πiZ for
all X ∈ ker exp. Then ξ lifts to a homomorphism eξ : Gξ → U(1) (with Gξ the
stabiliser of ξ with respect to the coadjoint action). Let Oξ be the coadjoint
orbit through ξ, and consider the line bundle

LO
ξ

:= G×Gξ
Cξ → G/Gξ ∼= Oξ,

where Gξ acts on Cξ via the homomorphism eξ.
By the shifting trick (Remark 2.22), the diagonal action of G on M ×O−ξ

is Hamiltonian, and its symplectic reduction at zero is symplectomorphic to
(Mξ, ωξ). Consider the exterior product line bundle LLω £ LO

−ξ

over M ×
O−ξ, with metric and connection induced by those on Lω and some choices of
metric and connection on LO

−ξ

. The quantisation Q(Mξ, ωξ) is by definition
the quantisation of the reduction at zero of (M ×O−ξ, ω × ω−ξ), prequantised
by Lω £ LO

−ξ

, as described above. By homotopy invariance of the index, this
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quantisation is independent of the choices of the connection and the metric on
LO

−ξ

.
We will denote the line bundle over Mξ = (M×O−ξ)0 induced by Lω£LO−ξ

as in (3.14) by Lωξ .

3.7 Quantisation commutes with reduction: the
compact case

In the case of compact Lie groups K, quantum reduction is easy to define. In-
deed, quantum reduction at the trivial representation, denoted by R0

K is defined
by taking subspaces of K-invariant vectors:

R0
K : R(K)→ Z;

[V ]− [W ] 7→ dimV K − dimWK ,
(3.15)

for all finite-dimensional representations V and W of K.

Dolbeault-quantisation

With the notion of quantum reduction described above, , we have the follow-
ing ‘quantisation commutes with reduction’ theorem in the case of Dolbeault-
quantisation.

Theorem 3.34 (Dolbeault-quantisation commutes with reduction). Let (M,ω)
be a compact Hamiltonian K-manifold, with momentum map Φ. Suppose there
is a K-equivariant prequantisation of (M,ω). If 0 ∈ Φ(M), then

R0
K

(
QIII(M,ω)

)
= QIII(M0, ω0),

with QIII as in Definition 3.20. If 0 6∈ Φ(M), then the integer on the left hand
side equals zero.

This theorem was proved in various degrees of generality in [39, 60, 61, 64,
80, 85]. The most general proof, without any regularity assumptions on the
momentum map or on the group action, is the one given in [61]. If QIII is
replaced by QI , Theorem 3.34 was proved by Guillemin and Sternberg in [28].
After Guillemin and Sternberg published their result, and before Theorem 3.34
was proved in this generality, the latter theorem became know as the Guillemin–
Sternberg conjecture. An overview is given in [71].

Theorem 3.34 can be symbolically expressed by the ‘quantisation commutes
with reduction’-diagram

(K © M,ω) Â Q //
_

R0
K

²²

G © Q(M,ω)
_

R0
K

²²
(M0, ω0) Â Q // Q(M0, ω0) = Q(M,ω)K .

(3.16)
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Here on the left hand side, R0
K denotes symplectic reduction at zero.

Theorem 3.34 admits a generalisation to reduction at other representations
than the trivial one. Quantum reduction at an arbitrary irreducible representa-
tion U of K is defined by taking the multiplicity of U in a given representation:

RUK : R(K)→ Z;
[V ]− [W ] 7→ [V : U ]− [W : U ].

(3.17)

Here [V : U ] denotes the multiplicity of U in V , which by Schur’s lemma equals
the dimension of Hom(U, V )K .

To state a ‘quantisation commutes with reduction’ theorem at other irre-
ducible representations than the trivial one, we now apply some representation
theory of compact Lie groups to link quantum reduction at a given irreducible
representation to symplectic reduction at some element of k∗. Let T < K be
a maximal torus, let t ⊂ k be its Lie algebra, and let t∗+ ⊂ t∗ be a choice of
positive Weyl chamber. Let Λ+ ⊂ it∗+ be the set of dominant integral weights
with respect to the positive roots for (k, t) corresponding to t∗+. The elements
λ ∈ Λ+ are in one-to-one correspondence with the irreducible representations
of K. This correspondence is given by λ 7→ Vλ, where Vλ is the irreducible
representation of K with highest weight λ. We will write RλK := RVλ

K for the re-
duction map at Vλ, and (Mλ, ωλ) := (M−iλ, ω−iλ) for the symplectic reduction
of (M,ω) at −iλ ∈ t∗ ↪→ k∗. The embedding t∗ ↪→ k∗ is given by

t∗ ∼= (k∗)Ad(T ) ⊂ k∗.

Theorem 3.35 (Dolbeault-quantisation commutes with reduction). Let (M,ω)
be a compact Hamiltonian K-manifold, with momentum map Φ. Suppose there
is a K-equivariant prequantisation of (M,ω). Then for all λ ∈ Λ+ ∩ iΦ(M),

RλK
(
QIII(M,ω)

)
= QIII(Mλ, ωλ),

with QIII as in Definition 3.20. If λ 6∈ iΦ(M), then this integer equals zero.

In other words, we get a complete decomposition

QIII(M,ω) =
⊕

λ∈Λ+∩iΦ(M)

QIII(Mλ, ωλ)V λ,

of the virtual K-representation QIII(M,ω) into irreducibles.
In the compact case, Theorem 3.35 can be deduced from Theorem 3.34. This

deduction is possible because of the shifting trick and the following example.

Example 3.36 (The Borel–Weil theorem). The Borel–Weil theorem in repre-
sentation theory is a special case of Theorem 3.35. However, all known proofs of
Theorem 3.35 depend on the Borel–Weil theorem to deduce this theorem from
Theorem 3.34. Hence the Borel–Weil theorem is not obtained as a corollary to
Theorem 3.35, but only serves as an illustration.
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To deduce the Borel–Weil theorem from Theorem 3.35, consider Example
2.13 about coadjoint orbits. Let λ ∈ Λ+ be given, and let Oλ be the coadjoint
orbit through −iλ. Note that Oλ ∼= K/Kλ as smooth manifolds. There is a
complex structure on K/Kλ which gives Oλ the structure of a Kähler manifold.
We have the prequantum line bundle LO

λ

over (Oλ, ωλ), defined as

LO
λ

= K ×Kλ
Cλ → K/Kλ,

where Kλ acts on Cλ via the global weight eλ : Kλ → U(1). It can be shown that
this line bundle is ‘positive enough’, so that by Kodaira’s vanishing theorem, we
have H0,k(Oλ;LOλ) = 0 if k > 0. Definitions I – III of geometric quantisation
therefore coincide in this case, and we see that Theorem 3.35 implies that

QIII(Oλ, ωλ) = Vλ.

This is a version of the Borel–Weil theorem (see e.g. [86], Theorem 6.3.7). See
also [12].

Example 3.36 illustrates the mathematical relevance of Theorem 3.35. This
theorem is of mathematical interest because it is a link between symplectic geom-
etry and representation theory. In other words, a link between the mathematics
behind classical mechanics and the mathematics behind quantum mechanics.
This mathematical link is a more important reason why the author is interested
in Theorem 3.34 than a possible physical link between classical mechanics and
quantum mechanics that this theorem may provide.

Using the Borel–Weil theorem, we can show that Theorem 3.35 follows from
Theorem 3.34. We will use the fact that

QIII(M ×N,ω × ν) = QIII(M,ω)⊗QIII(N, ν) (3.18)

for Hamiltonian K-manifolds (M,ω) and (N, ν). This relation follows for ex-
ample from the Künneth formula for Dolbeault-cohomology.

Lemma 3.37. Theorem 3.34 implies Theorem 3.35.

Proof. Let λ ∈ Λ+ be given. Then using the shifting trick (Remark 2.22),
Theorem 3.34 and formula (3.18), we get

QIII(Mλ, ωλ) = QIII
(
(M ×O−λ)0, (ω × ω−λ)0

)

= R0
K

(
QIII(M ×O−λ, ω × ω−λ)

)

=
(
QIII(M,ω)⊗QIII(O−λ, ω−λ)

)K
.

Now by the general form of the Borel–Weil theorem, we have QIII(O−λ, ω−λ) =
V ∗λ , so that

QIII(Mλ, ωλ) =
(
QIII(M,ω)⊗ V ∗λ

)K = RλK
(
QIII(M,ω)

)
.

See also [61], Corollary 2.11.
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Spinc-quantisation

For Spinc-quantisation, we have the following result, which is Theorem 1.7 in
Paradan’s paper [65].

Theorem 3.38 (Spinc-quantisation commutes with reduction). Let (M,ω) be
a compact Hamiltonian K-manifold, with momentum map Φ. Suppose there is
a K-equivariant Spinc-prequantisation of (M,ω). Let ρ be half the sum of the
positive roots of (k, t) with respect to t∗+.

If all stabilisers of the action of K on N are abelian, then for all λ ∈
Λ+ ∩ iΦ(M),

RλK
(
QIV (M,ω)

)
= QIV (Mλ+ρ, ωλ+ρ),

with QIV as in Definition 3.30. If λ 6∈ iΦ(M), then this integer equals zero.

The condition that the action of K on N has abelian stabilisers is related to
the fact that there may be several different coadjoint orbits in k∗ whose Spinc-
quantisation equals a given irreducible representation of K. This ambiguity,
which is not present in the case of Dolbeault-quantisation, can be removed by
imposing the condition that the action has abelian stabilisers.

Generalisations

Various generalisations of Theorem 3.34 have been considered. Vergne [84] has
found an approach to quantising certain classes of actions by noncompact groups
on noncompact manifolds. In [65], Paradan proves a version of the Guillemin–
Sternberg conjecture for Hamiltonian actions by compact groups K on possibly
non-compact manifolds, under some assumptions that are satisfied by regular
elliptic coadjoint orbits of semisimple groups. He defines the quantisation of
such an action as the index of a certain transversally elliptic symbol, which is
an element of the generalised character ring R−∞(K). The unpublished work
of Duflo and Vargas on restricting discrete series representations of semisim-
ple groups to semisimple subgroups can also be interpreted as a ‘quantisation
commutes with reduction’ result for Hamiltonian actions on coadjoint orbits.

Generalising in another direction, Bos [11] defines a notion of Hamiltonian
Lie groupoid actions, and proves a Guillemin–Sternberg conjecture for Hamilto-
nian actions of proper Lie groupoids on bundles of compact Kähler manifolds.

In [51], Landsman proposes a generalisation of Theorem 3.34 to actions by
noncompact groups on noncompact manifolds, as long as the orbit space of
such an action is compact. This generalisation is formulated in the language of
noncommutative geometry, as we will explain in Chapters 4, 5 and 6.

The aim of the author’s Ph.D. project was to prove Landsman’s generalisa-
tion in as many cases as possible. Part III contains a proof of this generalisation
for groups G that have a discrete normal subgroup Γ such that G/Γ is com-
pact, such as G = Rn or G discrete. In Part IV, we prove a generalisation of the
stronger Theorem 3.38 for semisimple groups, where λ parametrises the discrete
series representations of such a group.
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The strategy of the proofs in this thesis is to deduce the noncompact case
from the compact case. Thus, Theorems 3.34 and 3.38 are essential ingredients
of our proofs, and we do not obtain these theorems as corollaries to our results.
The reduction to the compact case is made possible by the ‘naturality of the
assembly map’-results that we prove in Part II.



Chapter 4

Noncommutative geometry

We will generalise the ‘quantisation commutes with reduction’ results in the
compact case, Theorems 3.34 and 3.38, to the noncompact case using tools from
noncommutative geometry. These tools the are K-theory and K-homology of
C∗-algebras. In Chapter 5, we will introduce KK-theory, which a powerful
tool that generalises both K-theory and K-homology. Using KK-theory, we
then define the analytic assembly map used in the Baum–Connes conjecture.
This map will replace the K-index in Definitions 3.20 and 3.30 of geometric
quantisation.

Further explanations, as well as the proofs we omit, can be found in [10, 17,
18, 23, 53, 88].

4.1 C∗-algebras

The central objects of study in noncommutative geometry are C∗-algebras. Ac-
tually, ‘noncommutative topology’ is a more accurate term for the study of
C∗-algebras without further structure. Indeed, the basis of noncommutative ge-
ometry is the idea that all information about a locally compact Hausdorff space
X is contained in the algebra C0(X) of (complex-valued) continuous functions
on X that ‘vanish at infinity’. These algebras have natural structures of com-
mutative C∗-algebras, and the central goal in noncommutative geometry is to
extend the tools of topology and geometry, such as K-theory and (co)homology,
to noncommutative C∗-algebras.

The basic theory

Let us explain the example of the algebra C0(X) in some more detail.

Example 4.1 (Continuous functions vanishing at infinity). Let X be a locally
compact Hausdorff space. A function f on X is said to vanish at infinity if for
all ε > 0 there is a compact subset C ⊂ X such that for all x ∈ X \C, we have
|f(x)| < ε. The vector space of continuous functions on X vanishing at infinity

61
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is denoted by C0(X). Note that if X is compact, then all functions on X vanish
at infinity (just take C = X).

For f, g ∈ C0(X) and x ∈ X, set

‖f‖∞ := sup
y∈X
|f(y)|;

f∗(x) := f(x);
(fg)(x) = f(x)g(x). (4.1)

Then C0(X) is a Banach space in the norm ‖ · ‖∞, and a commutative algebra
over C with respect to the pointwise product (4.1). Furthermore, we have for
all f, g ∈ C0(X),

‖fg‖∞ ≤ ‖f‖∞‖g‖∞;

‖f∗f‖∞ = ‖f‖2∞.
The structure on C0(X) mentioned in Example 4.1, and its properties (apart

from commutativity) are the motivation for the following definition.

Definition 4.2. A C∗-algebra is a Banach space (A, ‖ · ‖), equipped with an
associative bilinear product (a, b) 7→ ab and an antilinear map a 7→ a∗ whose
square is the identity, such that for all a, b ∈ A, we have

(ab)∗ = b∗a∗;
‖ab‖ ≤ ‖a‖ ‖b‖;
‖a∗a‖ = ‖a‖2.

A homomorphism of C∗-algebras is a linear homomorphism of algebras that
intertwines star operations. Such homomorphisms are automatically bounded.

It follows from the C∗-algebra axioms that ‖a∗‖ = ‖a‖ for all a in a C∗-
algebra.

The following result shows that studying locally compact Hausdorff spaces
is equivalent to studying commutative C∗-algebras. It is proved for example in
[18], Theorem 1.4.1.

Theorem 4.3 (Gelfand–Naimark for commutative C∗-algebras). Every com-
mutative C∗-algebra is isomorphic to the C∗-algebra of continuous functions
that vanish at infinity on a locally compact Hausdorff space. If two commutative
C∗-algebras C0(X) and C0(Y ) are isomorphic, then X and Y are homeomor-
phic.

A proper continuous map f between two locally compact Hausdorff spaces
X and Y induces a homomorphism of C∗-algebras

f∗ : C0(Y )→ C0(X),

defined by pulling back functions along f . In this way, C0 is a contravariant
functor from the category of locally compact Hausdorff spaces, with proper
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continuous maps, to the category of commutative C∗-algbras. Together with
the fact that all homomorphisms between two commutative C∗-algebras C0(X)
and C0(Y ) are defined by pulling back along some proper continuous map,
Theorem 4.3 implies that this functor defines an equivalence of categories.

Note that a commutative C∗-algebra has a unit if and only if the corre-
sponding space is compact. This correspondence will be used in Section 4.2 on
K-theory.

The following example is the standard example of a noncommutative C∗-
algebra.

Example 4.4. LetH be a Hilbert space, and let B(H) be the algebra of bounded
operators on H. For a ∈ B(H), let ‖a‖ be the operator norm of a, and let a∗ be
its adjoint, defined by

(x, ay) = (a∗x, y)

for all x, y ∈ H. Then B(H), equipped with these structures, is a C∗-algebra.

In fact, all C∗-algebras can be realised as subalgebras of an algebra of
bounded operators on a Hilbert space (see [18], Theorem 2.6.1):

Theorem 4.5 (Gelfand–Naimark for general C∗-algebras). Every C∗-algebra is
isomorphic to a norm-closed subalgebra of B(H) that in addition is closed under
the ∗-operation, for some Hilbert space H.

Example 4.6. Let X be a locally compact Hausdorff space. Given a measure
on X, with respect to the Borel σ-algebra of X, we can form the Hilbert space
L2(X). For suitable measures (the counting measure always works), the repre-
sentation of C0(X) in L2(X) as multiplication operators yields an embedding
of C0(X) into B(L2(X)).

Group C∗-algebras

The two kinds of C∗-algebras we will use most in this thesis are commutative
ones and group C∗-algebras. Let G be a locally compact Hausdorff topological
group, equipped with a left Haar measure dg. For two functions ϕ,ψ ∈ Cc(G),
their convolution product ϕ ∗ ψ is defined by

(ϕ ∗ ψ)(g) :=
∫

G

ϕ(g′)ψ(g′−1g)dg. (4.2)

The function ϕ∗ is defined by

ϕ∗(g) := ϕ(g−1)∆(g)−1, (4.3)

where ∆ is the modular function on G with respect to dg, defined by d(gh) =
∆(h)dg for all h ∈ G. We will only consider unimodular groups, defined by the
property that ∆ is the constant function 1. In other words, by the property
that any left Haar measure is also right invariant (and vice versa).
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The full and reduced C∗-algebras of G are defined as completions of Cc(G)
in certain norms, with multiplication and ∗-operation defined as the continuous
extensions of (4.2) and (4.3).

To define these norms, we consider unitary representations (H, ρ) of G. For
ϕ ∈ Cc(G), we have the operator

ρ(ϕ) :=
∫

G

ϕ(g)ρ(g) dg ∈ B(H).

The norm ‖ · ‖ used to define the full C∗-algebra C∗(G) of G is

‖ϕ‖ := sup
(H,ρ)∈Ĝ

‖ρ(ϕ)‖B(H).

Here Ĝ denotes the unitary dual of G, i.e. the set of all irreducible unitary
representations of G. This supremum is finite, because ‖ρ(ϕ)‖B(H) ≤ ‖ϕ‖L1(G)

for all ϕ ∈ Cc(G) and all unitary representations (H, ρ) of G.
The reduced C∗-algebra C∗r (G) of G is the completion of Cc(G) in the norm

‖ · ‖r, given by
‖ϕ‖r := ‖λG(ϕ)‖B(L2(G)).

Here λG : G→ U(L2(G)) is the left regular representation

(
λG(g)ϕ

)
(g′) = ϕ(g−1g′).

Note that λG(ϕ)ψ = ϕ ∗ ψ for all ϕ ∈ Cc(G) and ψ ∈ L2(G).
The convolution product on C∗(G) and C∗r (G) is commutative if and only

if G is commutative. Hence, by Theorem 4.3, for abelian groups G, there are
locally compact Hausdorff spaces X and Y such that

C∗(G) ∼= C0(X);
C∗r (G) ∼= C0(Y ).

(4.4)

It turns out that both X and Y may be taken to be the unitary dual Ĝ of G.
The isomorphisms (4.4) are given by the Fourier transform.

So for abelian groups G, we have C∗(G) = C∗r (G). This equality also holds if
G is compact (but not necessarily abelian). Indeed, by the Peter–Weyl theorem
([47], Theorem IV.4.20) every irreducible representation of a compact group G
occurs in the left regular representation of G in L2(G). In general, a group is
called amenable if its full and reduced C∗-algebras are equal.

The C∗-algebra of a compact Lie group can be described explicitly as follows.
We will use this description in the proof of Proposition 4.29. Let K be a compact
Lie group, and consider the direct sum

⊕

π∈K̂
B(Vπ), (4.5)
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where, as before, K̂ is the set of irreducible (unitary) representations (Vπ, π)
of K, and this direct sum by definition consists of the sequences (aπ)π∈K̂ such
that aπ ∈ B(Vπ) for all π, and

lim
π→∞

‖aπ‖B(Vπ) = 0.

(That is, for all ε > 0, there is a finite set X ⊂ K̂ such that ‖aπ‖B(Vπ) < ε for
all π outside X.) Equipped with the norm

‖(aπ)π∈K̂‖ := sup
π∈K̂
‖aπ‖B(Vπ)

and the natural ∗-operation, (4.5) becomes a C∗-algebra.

Proposition 4.7. There is an isomorphism of C∗-algebras

C∗(K) ∼=
⊕

π∈K̂
B(Vπ). (4.6)

Sketch of proof. Consider the Hilbert space

L̂2(K) :=
{
a = (aπ)π∈K̂ ∈

∏

π∈K̂
B(Vπ); (a, a) :=

∑

π∈K̂
tr(a∗πaπ) <∞

}
.

It follows from the Peter–Weyl theorem (see e.g. [47], Theorem 4.20) that the
Plancherel transform P : L2(K)→ L̂2(K), given by

(Pf)π =
√

dimVπ π(f)

for f ∈ L2(K) and π ∈ K̂, is a unitary isomorphism. Consider the map ϕ :
C∗(K)→ B(L̂2(K)) that on C(K) is given by

ϕ(f) = Pπ(f)P−1,

and extended continuously to all of C∗(K). This map can be shown to be an
isomorphism of C∗-algebras onto its image, which is the right hand side of (4.6),
acting on L̂2(K) by left multiplication. ¤

Additional concepts

We conclude this section with some definitions that we will use occasionally.

Definition 4.8. A C∗-algebra is said to be σ-unital if it has a countable ap-
proximate unit. That is, there is a sequence (ej)∞j=1 in A, such that for all
a ∈ A, the sequences (eja)∞j=1 and (aej)∞j=1 converge to a.

Example 4.9. Full and reduced group C∗-algebras are σ-unital; a sequence in
Cc(G) that converges to the distribution δe is an approximate identity.

A commutative C∗-algebra C0(X) is σ-unital if X is σ-compact. If (Cj)∞j=1

is an increasing collection of compact subsets of X such that
⋃∞
j=1 Cj = X, then

an approximate identity can be constructed as a sequence of functions in Cc(X)
such that the jth function equals 1 on Cj .
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Definition 4.10. Let A be a C∗-algebra. By Theorem 4.5, it can be embedded
into the algebra of bounded operators on some Hilbert space H. The multiplier
algebra of A is the algebra

M(A) := {T ∈ B(H);TA ⊂ A and AT ⊂ A}.
Example 4.11. Let X be a locally compact Hausdorff space, and consider the
C∗-algebra C0(X) as an algebra of operators on L2(X), for some measure on
X. Then M(C0(X)) = Cb(X), the C∗-algebra of continuous bounded functions
on X. Being a unital C∗-algebra, the algebra Cb(X) equals C(βX) for some
compact Hausdorff space X, called the Stone–Čech compactification of X.

The following property of multiplier algebras will play a role in the definition
of the homomorphism VN (see page 123).

Lemma 4.12. Any homomorphism of C∗-algebras A→ B extends to a homo-
morphism M(A)→M(B).

See [88], Proposition 2.2.16.
In particular, any representation π : A → B(H) of a C∗-algebra A in a

Hilbert space H extends to a representation

π : M(A)→M(B(H)) = B(H).

Definition 4.13. A positive element of a C∗-algebra A is an element a ∈ A for
which there exists an element b ∈ A such that a = b∗b.

Example 4.14. If H is a Hilbert space, then a positive element of B(H) is an
element a such that

(x, ax) ≥ 0

for all x ∈ H.

The tensor product of two C∗-algebras A and B can be formed in several
ways, that is, with respect to several different norms on the algebraic tensor
product A⊗B. See [88], Appendix T for more information.

Definition 4.15. The minimal tensor product A ⊗min B is the completion of
the algebraic tensor product A ⊗ B as a subalgebra of B(HA ⊗ HB), if A and
B are realised as algebras of bounded operators on two Hilbert spaces HA and
HB , respectively. The resulting norm on A⊗min B is denoted by ‖ · ‖min.

Definition 4.16. The maximal tensor product A ⊗max B is the completion of
the algebraic tensor product A⊗B in the norm

∥∥∑

k

ak ⊗ bk
∥∥

max
:= sup

∥∥∑

k

πA(ak)πB(bk)
∥∥
B(H)

, (4.7)

for ak ∈ A and bk ∈ B, where the supremum is taken over all commuting
representations πA : A → B(H) and πB : B → B(H) of A and B on the same
Hilbert space H.
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The supremum in (4.7) actually turns out to be a maximum.
For any norm ‖ · ‖ on A ⊗ B with the property that the completion in this

norm is a C∗-algebra, one has

‖ · ‖min ≤ ‖ · ‖ ≤ ‖ · ‖max,

which explains the names of these norms. A C∗-algebra A is called nuclear if
for all other C∗-algebras B, the minimal and maximal norms on A⊗B coincide.
Then there is only one way to form the tensor product of A with any other given
C∗-algebra (if this tensor product is required to be a C∗-algebra).

Example 4.17. Commutative C∗-algebras are nuclear. In particular, one has

C0(X1)⊗ C0(X2) ∼= C0(X1 ×X2) (4.8)

for all locally compact Hausdorff spaces X1 and X2.

Example 4.18. For all locally compact Hausdorff groups G1 and G2, one has

C∗(G1)⊗max C
∗(G2) ∼= C∗(G1 ×G2);

C∗r (G1)⊗min C
∗
r (G2) ∼= C∗r (G1 ×G2).

(4.9)

4.2 K-theory

One of the nicest results in noncommutative topology is the generalisation of
Atiyah–Hirzebruch topological K-theory for locally compact Hausdorff spaces,
i.e. commutative C∗-algebras, to arbitrary C∗-algebras. We begin with the
definition of topological K-theory, and then we rephrase this definition in a
C∗-algebraic way. This allows us to generalise the definition to arbitrary C∗-
algebras.

Topological K-theory

We first consider a compact Hausdorff space X.

Definition 4.19. The (topological) K-theory of X is the abelian group K0(X)
whose generators are isomorphism classes [E] of (complex) vector bundles over
X, subject to the relation

[E] + [F ] = [E ⊕ F ]

for all vector bundles E and F over X.
A continuous map f : X → Y between compact Hausdorff spaces induces

a map f∗ : K0(Y ) → K0(X), defined via the pullback of vector bundles along
f . This turns K0 into a contravariant functor from the category of compact
Hausdorff spaces to the category of abelian groups.
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More information about topological K-theory can be found in [3]. Note that
a general element of K0(X) is a formal difference [E] − [F ] of isomorphism
classes of vector bundles.

Vector bundles over locally compact, but not compact spaces are not as well-
behaved as those over compact spaces. Therefore, the K-theory of a general
locally compact Hausdorff space X is not defined directly as in Definition 4.19,
but via the one-point compactification X+ of X.

Let X+ = X ∪ {∞} be the one-point compactification of X. Let

i : {∞} ↪→ X+

be the inclusion map of the point at infinity. Consider the functorially induced
map

i∗ : K0(X+)→ K0({∞}).
Note that vector bundles over the one-point space {∞} are just finite-dimensional
vector spaces, whose isomorphism classes are characterised by their dimensions.
Therefore K0({∞}) ∼= Z.

Definition 4.20. The K-theory of the locally compact Hausdorff space X is
the kernel of the map i∗. It is denoted by K0(X).

As a consequence of this definition, the only maps between locally compact
Hausdorff spaces that induce maps on K-theory are the ones that extend to
continuous maps between one-point compactifications. These are the proper
continuous maps. Hence topological K-theory is a contravariant functor from
the category of locally compact Hausdorff spaces, with proper continuous maps,
to the category of abelian groups. (See also the remark below Theorem 4.3.)

K-theory of unital C∗-algebras

Let us rephrase the definition of K0(X) in terms of the C∗-algebra C0(X).
First suppose that X is compact, so that C0(X) equals the algebra C(X) of all
continuous functions on X.

If E → X is a vector bundle, then the space Γ(E) of its continuous sections
has the natural structure of a C(X)-module, given by pointwise multiplication.
Two such C(X)-modules Γ(E) and Γ(F ) are isomorphic if and only if E ∼= F
as vector bundles. Note that there is a natural isomorphism of C(X)-modules
Γ(E ⊕F ) ∼= Γ(E)⊕ Γ(F ). Furthermore, for any vector bundle E → X, there is
a vector bundle F → X such that E ⊕ F is trivial, say isomorphic to X × Rn
(see [3], Corollary 1.4.14). This implies that

Γ(E)⊕ Γ(F ) ∼= Γ(E ⊕ F ) = Γ(X × Rn) ∼= C(X)n.

More generally, a module M over a C∗-algebra (or ring) A is called finitely
generated and projective if there exists an A-module N such that M ⊕ N is a
finitely generated free A-module, i.e. of the form An for some n ∈ N. It turns out
that any finitely generated projective C(X)-module is isomorphic to the module
Γ(E), for some vector bundle E → X. Hence Definition 4.19 of K-theory for
compact spaces can be restated as follows:



4.2 K-theory 69

Proposition 4.21 (Serre–Swan). The K-theory of the compact Hausdorff space
X is the abelian group whose generators are isomorphism classes [M] of finitely
generated projective C(X)-modules, subject to the relation

[M] + [N] = [M⊕N]

for all finitely generated projective modules M and N over C(X).

The definition of topological K-theory provided by Proposition 4.21 can be
generalised to arbitrary C∗-algebras with a unit.

Definition 4.22. Let A be a C∗-algebra with a unit. The K-theory of A is
the group in Proposition 4.21, with C(X) replaced by A. This abelian group is
denoted by K0(A).

A unital homomorphism f : A → B of unital C∗-algebras induces a map
f∗ : K0(A) → K0(B). This map is defined by [M] 7→ [M ⊗f B], for finitely
generated projective (right) A-modules M. The tensor product M⊗f B is the
algebraic tensor product M⊗B over C, with the equivalence relation

(m · a)⊗ b ∼ m⊗ (f(a)b),

for all m ∈ M, a ∈ A and b ∈ B, divided out. This makes the K-theory of
unital C∗-algebras a covariant functor. By Lemma 4.23 below, this functoriality
generalises the functoriality of topological K-theory for compact spaces.

Note that this time we use a subscript 0 instead of a superscript, because we
are dealing with a covariant functor on C∗-algebras, rather than a contravariant
functor on topological spaces.

Lemma 4.23. Let X and Y be compact Hausdorff spaces, let f : X → Y be
a continuous map, and let E → Y be a vector bundle. Consider the homomor-
phism of C∗-algebras f∗ : C(Y )→ C(X) defined by pulling back functions along
f . There is an isomorphism

Γ(X, f∗E) ∼= Γ(Y,E)⊗f∗ C(X).

See [23], Proposition 2.12.

K-theory of general C∗-algebras

The extension of Definition 4.22 to possibly non-unital C∗-algebras is analogous
to the extension of Definition 4.19 to Definition 4.20. Indeed, if X is a locally
compact Hausdorff space, then

C0(X)⊕ C ∼= C(X+).

The isomorphism is given by (f, z) 7→ f̃ + z, where f̃ ∈ C(X+) is given by

f̃(x) = f(x) for all x ∈ X;

f̃(∞) = 0.
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The multiplication, star operation and the norm on C0(X)⊕ C are defined by

(f + z)(g + w) := fg + zg + wg + zw;
(f + z)∗ := f∗ + z̄;
‖f + z‖ := max

y∈X+
|f(y) + z|

= sup
x∈X
|f(x) + z|

= ‖f + z‖B(C0(X)),

for f, g ∈ C0(X) and z, w ∈ C. The resulting C∗-algebra is called the unitisation
of C0(X).

The inclusion map i : {∞} ↪→ X+ induces the map

i∗ : C0(X)⊕ C ∼= C0(X+)→ C (4.10)

given by the natural projection onto the term C. Then we have

Proposition 4.24. The topological K-theory of X is the kernel of the map

i∗ :=
(
i∗

)
∗ : K0(C(X+))→ K0(C) ∼= Z

induced by (4.10).

For a general C∗-algebra, we proceed as follows.

Definition 4.25. Let (A, ‖ · ‖A) be a C∗-algebra. Its unitisation A+ is defined
as the algebra A+ := A⊕C, with multiplication, star operation and norm given
by

(a+ z)(b+ w) := ab+ zb+ wa+ zw;
(a+ z)∗ := a∗ + z̄;
‖a+ z‖A+ := ‖a+ z‖B(A),

for a, b ∈ A and z, w ∈ C. Here ‖a+ z‖B(A) is the norm of a+ z as a bounded
operator on the Banach space A, given by left multiplication.

For a C∗-algebra A, consider the map

i∗ : A+ → C,
a+ z 7→ z.

We denote the induced map on K-theory by

i∗ :=
(
i∗

)
∗ : K0(A+)→ K0(C) ∼= Z.

Definition 4.26. The K-theory of A is the kernel of the map i∗. It is denoted
by K0(A).
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Hence for all locally compact Hausdorff spaces, we haveK0(X) = K0(C0(X)).
For unital A, Definition 4.26 reduces to Definition 4.22. Note that for any

C∗-algebra A, every finitely generated projective A-module can be extended to
an finitely generated projective A+-module, which is in the kernel of the map i∗.
Such modules therefore define classes in K0(A), as in the unital case, although
they usually do not exhaust the whole group K0(A).

Remark 4.27 (K-theory via projections). The K-theory of a unital C∗-algebra
A is often defined using projections in the ‘infinite matrix algebra’

M∞(A) := lim
−→

Mn(A),

i.e. elements p such that p2 = p = p∗. These correspond to projective A-modules
via p 7→ p

(
An

)
, for p a projection in Mn(A). The functoriality of K-theory is

then induced by
f(p)ij = f(pij) ∈ B,

if f : A→ B is a homomorphism of C∗-algebras and p ∈M∞(A) is a projection.
By the way, in this picture another reason why K-theory for non-unital

C∗-algebras has to be defined separately becomes apparent. Indeed, if X is a
connected, locally compact but not compact Hausdorff space, then there are no
nonzero projections in M∞(C0(X)), because the trace of such a projection is a
constant function on X.

Remark 4.28 (Higher K-groups). For any integer n, and any C∗-algebra A,
one has the K-theory group Kn(A) := K0

(
A ⊗ C0(Rn)

)
. Bott periodicity is

the statement that Kn+2(A) ∼= Kn(A) for all such n and A (naturally in A).
Therefore, it is enough to consider the K-theory groups K0(A) and K1(A). In
this thesis, we will only use K0(A). This is eventually related to the fact that
we consider symplectic, and hence even-dimensional manifolds.

The K-theory of the C∗-algebra of a compact group

The only C∗-algebras whose K-theory we will use in this thesis are (full or
reduced) group C∗-algebras (see Section 4.1). For compact groups K, this K-
theory group1 is isomorphic to the abelian group underlying the representation
ring R(K). Indeed, let (Vπ, π) be a finite-dimensional representation of K. Then
Vπ has the structure of a projective C∗(K)-module, given by

f · v := ρ(f)v =
∫

K

f(k)π(k)v dk. (4.11)

Here f ∈ C(K), v ∈ Vπ, dk is a Haar measure on K, and this C(K)-module
structure on V extends continuously to a C∗(K)-module structure.

1This is one of the few occasions where we use the capital letter K to denote both a
compact group and a K-theory functor. We hope this is not too confusing.
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Proposition 4.29. This procedure induces an isomorphism of abelian groups

R(K) ∼= K0(C∗(K)). (4.12)

Proof. The proof of this proposition is based on Proposition 4.7, which states
that

C∗(K) ∼=
⊕

π∈K̂
B(Vπ). (4.13)

Let a sequence (Xn)∞n=1 of finite subsets of K̂ be given, such that Xn ⊂ Xn+1 for
all n, and that

⋃∞
n=1Xn = K̂. Then it follows from the definition of inductive

limits of Banach algebras ([10], Section 3.3) that
⊕

π∈K̂
B(Vπ) = lim

−→

⊕

π∈Xn

B(Vπ).

We conclude that, by continuity of K-theory with respect to inductive limits
(see [10], 5.2.4 or [53], Theorem 6.3.2),

K0(C∗(K)) ∼= lim
−→

K0

( ⊕

π∈Xn

B(Vπ)
)

= lim
−→

⊕

π∈Xn

K0(B(Vπ))

=
⊕

π∈K̂
K0(B(Vπ))

=
⊕

π∈K̂
Z · [Vπ]

= R(K).

In the second line from the bottom, Vπ is first viewed as a B(Vπ)-module, and
then as an irreducible representation of K. The fact that the resulting isomor-
phism K0(C∗(K)) ∼= R(K) is given by the procedure described above Proposi-
tion 4.29, follows from the explicit form of the isomorphism (4.13), as given in
the proof of Proposition 4.7.

Recall that for compact groups, the full and reduced C∗-algebras coincide.
Proposition 4.29 is crucial to the motivation of the definition of quantisation

we will use (Definition 6.1). This quantisation takes values in the K-theory
group of the (full or reduced) C∗-algebra of the group in question. By Proposi-
tion 4.29, this corresponds to an element of the representation ring in the case
of compact groups.

4.3 K-homology

As we said at the end of the previous section, the quantisation procedure we use
takes values in the K-theory of the group that acts on the symplectic manifold
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that is to be quantised. In the case of compact groups and manifolds, geometric
quantisation was defined as the equivariant index of a Dirac operator. In the
noncompact case, the K-theory element that is the quantisation of a symplectic
action will be the ‘generalised equivariant index’ of an ‘abstract elliptic operator’
defined by the same Dirac operator. To be more precise, the ‘abstract elliptic
operators’ on a G-space X will be the elements of the K-homology group KG

0 (X)
defined in this section. The ‘generalised equivariant index’ of such an element
is its image under the analytic assembly map, which is defined in Section 5.2.

The definition of K-homology

We begin with the abstract definition of the K-homology group KG
0 (X). We

will later state a theorem that (some) first order elliptic differential operators on
a smooth manifold define elements of the associated K-homology group. The
Dirac operators that we use to define quantisation are examples of such elliptic
operators.

Let X be a locally compact Hausdorff space. Let G be a locally compact
Hausdorff topological group acting properly on X.

Definition 4.30. 1. An equivariant K-homology cycle, or equivariant ab-
stract elliptic operator over X is a triple (H, F, π), where

• H is a Z2-graded Hilbert space carrying a graded unitary represen-
tation of G (such as the space L2(E), for some Z2-graded Hermitian
G-vector bundle E → X, with respect to some measure on X);

• F is a bounded operator on H which is odd with respect to the
grading (such as an odd zeroth order pseudo-differential operator on
E, when X and E are smooth);

• π is a graded representation of C0(X) in H (such as the pointwise
multiplication operator of C0(X) on L2(E)).

The triple (H, F, π) is supposed to satisfy the assumptions that for all
g ∈ G and f ∈ C0(X), we have

π(g · f) = gπ(f)g−1, (4.14)

and the operators [F, π(f)], π(f)(F 2 − 1) and π(f)[g, F ] are compact.

2. Two K-homology cycles (H, F, π) and (H′, F ′, π′) are said to be unitarily
equivalent if there is a unitary isomorphism H ∼= H′ that intertwines the
representations of G and of C0(X) on H and H′, as well as the operators
F and F ′.

3. Two K-homology cycles (H, F, π) and (H, F ′, π) are called operator homo-
topic if there is a continuous path (Ft)t∈[0,1] in B(H) such that (H, Ft, π)
is a K-homology cycle for all t, and F0 = F , F1 = F ′.



74 Chapter 4. Noncommutative geometry

4. The equivariant K-homology of X is the abelian group KG
0 (X) with one

generator for every unitary equivalence class of equivariant K-homology
cycles over X, with the relations

• [H, F, π] = [H, F ′, π] if (H, F, π) and (H, F ′, π) are operator homo-
topic;

• [H⊕H′, F ⊕ F ′, π ⊕ π′] = [H, F, π] + [H′, F ′, π′].
K-homology is a covariant functor on the category of locally compact Haus-

dorff proper G-spaces with equivariant continuous proper maps: such a map
f : X → Y induces a map

f∗ : KG
0 (X)→ KG

0 (Y ),

given by
[H, F, π] 7→ [H, F, π ◦ f∗].

As with K-theory, we also have an odd version KG
1 of K-homology. We will

not use this odd part, however.

Functional calculus

An operator in a K-homology cycle is supposed to be bounded, and can be
thought of as an abstract zeroth order pseudo-differential operator. We will
mainly consider K-homology classes defined by Dirac operators, which are first-
order differential operators. These do not define bounded operators on the
space of L2-sections of the spinor bundle, and hence do not directly define a
K-homology class. A way to associate a K-homology class to an unbounded
operator is to use functional calculus to turn this unbounded operator into a
bounded one.

An (unbounded) operator on a Hilbert space H is a linear map

D : domD → H,

where domD ⊂ H is a dense subspace. The operator D is symmetric if for all
x, y ∈ domD,

(Dx, y)H = (x,Dy)H.

The adjoint of D is the operator D∗ with domain

domD∗ := {x ∈ H; the linear function y 7→ (x,Dy)H on domD is bounded},

and defined by (D∗x, y)H = (x,Dy)H for all x ∈ domD∗ and y ∈ domD. The
operator D is called self-adjoint if domD∗ = domD, and D∗ = D on this
common domain. Functional calculus is defined for self-adjoint operators D.
For any bounded measurable function f on the spectrum of D, it allows us to
defined a bounded operator f(D) in a suitable way. See for example [69], page
261 for the definition of this operator.
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A symmetric operator that is not self-adjoint sometimes has a self-adjoint
closure. An operator D on H is closable if the closure of its graph in H × H
is again the graph of an operator D on H. This operator D is then called the
closure of D. The domain of D is the completion of domD in the norm ‖ · ‖D,
which is defined by

‖x‖2D := ‖x‖2H + ‖Dx‖2H, (4.15)

for all x ∈ domD.
If the closure of D is self-adjoint, then we call D essentially self-adjoint, and

we can apply the functional calculus to D. We will usually write f(D) instead
of f(D) if D is essentially self-adjoint.

The following result about functional calculus of unbounded operators fol-
lows directly from the definition as given for example in [69], page 261.

Lemma 4.31. Let H be a Hilbert space, and let D : domD → H be a self-
adjoint operator. Let H′ be another Hilbert space, and let T : H → H′ be a
unitary isomorphism. Let f be a measurable function on R. Then

Tf(D)T−1 = f(TDT−1).

K-homology classes of first order elliptic differential oper-
ators

To define a K-homology class associated to an essentially self-adjoint elliptic
differential operator D, we will use the operator b(D), where b is a normalising
function:

Definition 4.32. A normalising function is a smooth function b : R→ [−1, 1]
with the properties that

• b is odd ;

• b(x) > 0 for all x > 0;

• limx→±∞ b(x) = ±1.

The most common normalising function used in the context ofK-homology is
b(x) = x√

1+x2 . This function has the technical disadvantage that the operator
b(D) need not be properly supported, which is required to apply the analytic
assembly map to the associated K-homology class. More on this in Section 5.2.

We are now prepared to define the K-homology class associated to a sym-
metric first order elliptic differential operator. Let M be a smooth manifold,
on which a locally compact Hausdorff topological group G acts properly. Let
E = E+ ⊕ E− → M be a Z2-graded G-vector bundle, equipped with a G-
invariant Hermitian metric, and let

D : Γ∞(E)→ Γ∞(E)
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be a G-equivariant first order elliptic differential operator that maps sections of
E+ to sections of E− and vice versa. Suppose that M is equipped with a G-
invariant measure, and consider the unbounded operator D : Γ∞c (E) → L2(E)
on L2(E). Suppose it is symmetric. Then it is closable and essentially self-
adjoint ([35], Lemma 10.2.1 and Corollary 10.2.6). We can therefore form the
bounded operator b(D) on L2(E), where b is a normalising function. Finally,
let

πM : C0(M)→ B(L2(E))

be the representation defined by pointwise multiplication of sections by func-
tions.

The manifold M is said to be complete for D if there is a proper function
f ∈ C∞(M) such that [D, f ] ∈ B(L2(E)).

Theorem 4.33. If M is complete for D, then (L2(E), b(D), πM ) is an equiv-
ariant K-homology cycle over X. Its K-homology class is independent of the
choice of b.

Proof. See [35], Theorem 10.6.5 for the non-equivariant case. The equivariant
case then follows from Lemma 4.31.

We denote this K-homology class by [D].

Remark 4.34. Two elliptic operators D0 and D1 on the same vector bundle,
as in Theorem 4.33, define the same class in K-homology if they have the same
principal symbol. Indeed, in that case, the operator Dt := tD1 + (1 − t)D0

satisfies the assumptions of Theorem 4.33 for all t ∈ [0, 1], and we obtain a
homotopy between [D0] and [D1].

Remark 4.35. In the situation of Theorem 4.33, it is possible to define a K-
homology class [D] associated to D in an appropriate way, even if M is not
complete for D (see [35], Proposition 10.8.2). However, this class does not have
the explicit form [D] = [L2(E), b(D), πM ] that it has if M is complete for D.
We use this form in the proof of Corollary 8.11, and therefore we always assume
that this completeness condition is satisfied.

Our main application of Theorem 4.33 is the following.

Corollary 4.36. Let M be an even-dimensional manifold, acted on by a locally
compact Hausdorff group G. Suppose M has a G-equivariant Spinc-structure,
and let S be the associated spinor bundle. The Spinc-structure on M induces
a G-invariant Riemannian metric on M . This metric induces a G-invariant
density on M , which we use to define L2-sections of S.

Let /DM be the Spinc-Dirac operator on M , defined using any G-equivariant
Hermitian connection on S. If M is complete as a metric space, then /DM

satisfies the conditions of Theorem 4.33, and hence defines a class
[
/DM

] ∈
KG

0 (X).
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Proof. The Dirac operator is elliptic, symmetric, and odd with respect to the
grading on S (see e.g. [20], Lemma 5.5). By the description of the geodesic
distance on M in terms of Dirac operator as given in [17], Chapter VI.1, we
see that completeness of M as a metric space implies that M is complete for
/DM .

A similar result holds for the Dolbeault–Dirac operator on an almost complex
Riemannian manifold.

Remark 4.37. The principal symbol of the Dirac operator /DM does not depend
on the choice of the connection on S. Hence the class

[
/DM

]
is independent of

this choice, by Remark 4.34.

We have seen that a Dirac operator defines an abstract elliptic operator in the
sense of K-homology. We will define quantisation as the ‘generalised equivariant
index’ of this abstract elliptic operator. This generalised equivariant index is
the analytic assembly map, which we will define in Section 5.2. It is defined in
terms of KK-theory, which is a powerful tool that generalises both K-homology
and K-theory.
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Chapter 5

KK-theory and the
assembly map

Kasparov’s KK-theory is a bivariant functor that assigns an abelian group
KK0(A,B) to two C∗-algebras A and B. If G is a group acting on A and B in a
reasonable way, then we also have the equivariant KK-theory group KKG

0 (A,B)
of A and B. As in the case of K-theory and K-homology, KK-theory has an
even and an odd part, and we will only use the even part.

There are three useful features of KK-theory that we will use in this thesis.

1. KK-theory generalises both K-theory and K-homology, in the sense that

KKG
0 (C0(X),C) = KG

0 (X) (5.1)

for all locally compact Hausdorff proper G-spaces X, and

KK0(C, B) ∼= K0(B) (5.2)

for all σ-unital C∗-algebras B (such as group C∗-algebras).

2. Using KK-theory, we can define the analytic assembly map

µGX : KG
0 (X)→ K0(C∗(r)(G))

(for a locally compact Hausdorff space X equipped with a proper action
by a locally compact Hausdorff group G, such that X/G is compact) as a
map

µGX : KG
0 (X)→ KK0(C, C∗(r)(G)),

via the isomorphism (5.2). Here C∗(r)(G) denotes either the reduced or the
full C∗-algebra of G.

79
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3. There is a product on KK-theory, the most general form of which is a
map

KKG1
0 (A1, B1 ⊗ C)×KKG2

0 (C ⊗A2, B2) ×C−−→
KKG1×G2

0 (A1 ⊗A2, B1 ⊗B2), (5.3)

for groups G1 and G2, G1-C∗-algebras A1 and B1, a C∗-algebra C, and
G2-C∗-algebras A2 and B2. Here one can use any tensor product of C∗-
algebras. This general form is defined via the special case where B1 =
A2 = C.

The product (5.3), called the Kasparov product, is functorial many re-
spects, and associative in a suitable sense. We will mainly use this product
in the proof of Theorem 9.1.

The construction ofKK-theory was motivated by index theory, and in partic-
ular by a desire to find generalisations and more elegant proofs of the Atiyah–
Singer index theorem. One result of this desire was the construction of the
analytic assembly map, which is our main application of KK-theory, and is
treated in Section 5.2. In Section 5.3, we introduce Baaj and Julg’s unbounded
picture of KK-theory, and describe the analytic assembly map in this setting.
This description will be used in the proof of Theorem 9.3 about multiplicativity
of the assembly map with respect to the Kasparov product.

5.1 The definition of KK-theory

Because the definition of KK-theory is quite involved, we will try to be as brief
as possible about this definition. This section may therefore seem like a big pile
of unmotivated definitions on first reading, and we suggest that readers who are
not yet familiar with KK-theory skim through this section, and later return to
look at the details when they are needed. We will almost only be concerned
with the special cases (5.1) and (5.2), with B the C∗-algebra of a group. We
will therefore rarely use the machinery of this chapter in its full generality.

More information on KK-theory can be found in [10, 34], and in Kasparov’s
original papers [40, 41].

In this section, all C∗-algebras are supposed to be separable. A commutative
C∗-algebra C0(X) is separable if X is metrisable. Because we usually work with
smooth manifolds, this condition is not an important restriction.

Hilbert C∗-modules

The basic objects in the definition of KK-theory are the adjointable operators
on Hilbert modules over C∗-algebras.

Definition 5.1. Let A be a C∗-algebra. A (right) Hilbert A-module is a (com-
plex) vector space E , equipped with the structure of a right A-module, and with



5.1 The definition of KK-theory 81

an ‘A-valued inner product’

(−,−)E : E × E → A,

which is additive in both entries, and has the following properties:

• for all e, f ∈ E and a ∈ A, we have (e, fa)E = (e, f)Ea;

• for all e, f ∈ E , we have (e, f)E = (f, e)∗E ;

• for all e ∈ E , the element (e, e)E ∈ A is positive;

• E is complete in the norm ‖ · ‖E , defined by ‖e‖2E = ‖(e, e)E‖A, for e ∈ E .

A homomorphism of Hilbert A-modules is a homomorphism of A-modules
that preserves the A-valued inner products. An isomorphism is a bijective ho-
momorphism.

The tensor product E1 ⊗ E2 of a Hilbert A1-module E1 and a Hilbert A2-
module E2 is the algebraic tensor product of E1 and E2 as complex vector spaces,
completed in the A1 ⊗A2-valued inner product

(e1 ⊗ e2, e′1 ⊗ e′2)E1⊗E2 := (e1 ⊗ e′1)E1 ⊗ (e2 ⊗ e′2)E2 .

Here ej , e′j ∈ Ej , and one has to specify which tensor product is used to form
A1 ⊗A2.

Note that a Hilbert C-module is nothing more than a Hilbert space. The
motivating example for the definition of Hilbert modules over C∗-algebras is the
following.

Example 5.2. Let X be a locally compact Hausdorff space, and let E be a
vector bundle over X, with a Hermitian structure (−,−)E . Let Γ0(E) be the
space of continuous sections s of E such that the function x 7→ (s(x), s(x))E
vanishes at infinity. Then Γ0(E) is a Hilbert C0(X)-module, whose module
structure is given by pointwise multiplication, and with the C0(X)-valued inner
product

(s, t)Γ0(E)(x) := (s(x), t(x))E ,

for all s, t ∈ Γ0(E) and x ∈ X.

The algebras of bounded and compact operators on a Hilbert space have the
following generalisations to Hilbert C∗-modules.

Definition 5.3. Let A be a C∗-algebra, and let E be a Hilbert A-module. The
algebra B(E) of adjointable operators on E consists of the C-linear A-module
homomorphisms T : E → E for which there is another such homomorphism T ∗

that satisfies
(Te, f)E = (e, T ∗f)E

for all e, f ∈ E .



82 Chapter 5. KK-theory and the assembly map

All adjointable operators are bounded with respect to the norm ‖ · ‖E , and
B(E) is a C∗-algebra in the operator norm ([10], Proposition 13.2.2).

Definition 5.4. The subalgebra F(E) ⊂ B(E) of finite rank operators on E is
by definition algebraically generated by operators of the form

θe1,e2 : e3 7→ e1(e2, e3)E ,

for e1, e2 ∈ E . The C∗-algebra K(E) of compact operators on E is by definition
the closure of F(E) in B(E).

Kasparov bimodules

The basic building blocks of KK-theory are the Kasparov bimodules.

Definition 5.5. Let A and B be C∗-algebras. A Kasparov (A,B)-bimodule is
a triple (E , F, π), where

• E is a countably generated Hilbert B-module;

• π : A→ B(E) is a homomorphism of C∗-algebras;

• F ∈ B(E) is an adjointable operator such that for all a ∈ A, the operators
[F, π(a)], (F − F ∗)π(a) and (F 2 − 1E)π(a) are compact.

One says that F ‘almost commutes with π’, is ‘almost self-adjoint’, and
‘almost Fredholm’.1

To define equivariant KK-theory, we will use Z2-graded Kasparov bimodules,
equipped with suitable actions by a group G.

Definition 5.6. A Z2-graded Hilbert module over a C∗-algebra A is a Hilbert
A-module E with a decomposition E = E0 ⊕ E1, such that ae ∈ Ek for all a ∈ A
and e ∈ Ek.

A Z2-grading on a Hilbert module E naturally induces Z2-gradings on the
C∗-algebras B(E) and K(E).

For the remainder of this section, let G be a locally compact Hausdorff group
that is second countable, i.e. whose topology has a countable basis.

Definition 5.7. A G-C∗-algebra is a C∗-algebra equipped with a continuous
(left) G-action. If A is a G-C∗-algebra, then a G-Hilbert A-module is a Hilbert
A-module equipped with a continuous (left) action of G by bounded, invertible
C-linear operators, such that

• for all e, e′ ∈ E and g ∈ G, one has (g · e, g · e′)E = g · (e, e′)E ;

• for all g ∈ G, e ∈ E and a ∈ A, we have g · (ea) = (g · e)(g · a).
1A bounded operator F on a Hilbert space H is called Fredholm if there is a bounded

operator F ′ on H such that the operators FF ′ − 1H and F ′F − 1H are compact. Fredholm
operators have finite-dimensional kernels and cokernels, which makes them the central objects
of study in index theory.
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The only G-C∗-algebras we will use in this thesis are of the form C0(X),
where X is a G-space.

A Z2-graded G-Hilbert module is just what the name means, with the re-
quirement that the G-action respects the grading.

Definition 5.8. Let A and B be G-C∗-algebras. A Z2-graded equivariant Kas-
parov (A,B)-bimodule is Kasparov (A,B)-bimodule (E , F, π), with the addi-
tional properties that

• E is a Z2-graded G-Hilbert B-module;

• π : A → B(E) is a G-equivariant homomorphism of C∗-algebras that
respect the gradings, where G acts on B(E) via conjugation;

• F ∈ B(E) reverses the grading on E and has the properties that the
map g 7→ gFg−1 from G to B(E) is norm-continuous, and is ‘almost
equivariant’, in the sense that for all g ∈ G and a ∈ A, the operator
(gFg−1 − F )π(a) is compact.

The definition

We continue using the notation of Definition 5.8. The equivariant KK-theory of
A and B is the set of Z2-graded equivariant Kasparov (A,B)-bimodules, modulo
unitary equivalence and homotopy.

Definition 5.9. Two Z2-graded equivariant Kasparov (A,B)-bimodules (E0, F0, π0)
and (E1, F1, π1) are said to be

• unitarily equivalent if there is a G-equivariant isomorphism of Hilbert B-
modules E0 ∼= E1 that respects the gradings, and intertwines F0 and F1,
and π0(a) and π1(a), for all a ∈ A;

• homotopic if there is a Z2-graded equivariant Kasparov
(
A,C([0, 1], B)

)
-

bimodule (E , F, π), with the following property. For j = 0, 1, let evj :
C([0, 1], B) → B be the evaluation map at j. Then, for j = 0, 1, the
Z2-graded equivariant Kasparov (A,B)-bimodule

(E ⊗evj B,F ⊗ 1B , π ⊗ 1B
)

has to be unitarily equivalent to (Ej , Fj , πj). Here E ⊗evj B is the tensor
product E⊗B over C, modulo the equivalence relation eϕ⊗b ∼ e⊗evj(ϕ)b,
for all e ∈ E , ϕ ∈ C([0, 1], B) and b ∈ B.

Remark 5.10. A special case of homotopy of Z2-graded equivariant Kasparov
(A,B)-bimodules is operator homotopy. This is the fact that two Z2-graded
equivariant Kasparov (A,B)-bimodules (E , F, π) and (E , F ′, π) are homotopic
if there is a norm-continuous map t 7→ Ft from [0, 1] to B(E) such that for all
t, (E , Ft, π) is a Z2-graded equivariant Kasparov (A,B)-bimodule, and F0 = F
and F1 = F ′.
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If A is separable and B is σ-unital, then the combined equivalence relation
unitary equivalence & operator homotopy is the same as the homotopy equiva-
lence relation ([10], Theorem 18.5.3).

Definition 5.11. The equivariant KK-theory of A and B is the abelian group
KKG

0 (A,B) of Z2-graded equivariant Kasparov (A,B)-bimodules modulo ho-
motopy, with addition induced by the direct sum. The inverse is given by

−(E0 ⊕ E1, F, π) = (E1 ⊕ E0,−F, π).

Functoriality of KK-theory if defined as follows. If f : A1 → A2 is an
equivariant homomorphism of Z2-graded G-C∗-algebras, then for all B, we have
the map f∗ : KKG

0 (A2, B)→ KKG
0 (A1, B), given by

f∗[E , F, π] = [E , F, π ◦ f ].

If, on the other hand, ψ : B1 → B2 is such a homomorphism, the for all A, the
map ψ∗ : KKG

0 (A,B1)→ KKG
0 (A,B2) is given by

ψ∗[E , F, π] = [E ⊗ψ B,F ⊗ 1B , π ⊗ 1B ]

Thus, KKG
0 is a contravariant functor in the first variable, and a covariant

functor in the second one.

If the groupG is trivial, we omit it from the notation and writeKK0(A,B) :=
KK

{e}
0 (A,B).

Properties of KK

It follows directly from the definitions, and Remark 5.10, that if X is a locally
compact Hausdorff space on which G acts properly, then

KKG
0 (C0(X),C) = KG

0 (X),

the equivariant K-homology of X. In general, the equivariant K-homology of a
G-C∗-algebra A is defined as

K0
G(A) := KKG

0 (A,C).

On the other hand, we have

Theorem 5.12. If B is a σ-unital C∗-algebra, then

KK0(C, B) ∼= K0(B). (5.4)

See [10], Proposition 17.5.5 and Theorem 18.5.3.
For unital B, the isomorphism (5.4) is given by the map defined as follows.

First note that for any Hilbert B-module E , there is only one possible C∗-
algebra homomorphism C → B(E). Therefore, a Kasparov (C, B)-module may
be denoted by (E , F ). The isomorphism is given by

[E , F ] 7→ [ker F̃+]− [ker F̃−] ∈ K0(B),
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where F̃ =
(

0 F̃−

F̃+ 0

)
is an operator on E = E0⊕E1, homotopic to F , such

that ker F̃+ and ker F̃− are finitely generated projective B-modules. Existence
of such an operator F̃ can be deduced from Mingo’s generalisation of Kuiper’s
theorem. See [88], Corollary 16.7, Theorem 16.8 and Theorem 17.3.11.

The final, and possibly most important feature of KK-theory is the existence
of the Kasparov product (5.3). We will not define this product here, since
its definition is even more technical than the rest of this section. Thorough
discussions of this product can be found in [10], Chapter 18, in [34], and in
Kasparov’s own papers [40, 41].

We will only use some properties of the Kasparov product, the most im-
portant of which is its simpler form in the unbounded picture of KK-theory, as
described in Section 5.3, in the special case where C = C.

5.2 The analytic assembly map

The analytic assembly map is a generalisation of the equivariant index of elliptic
differential operators on compact manifolds, acted on by compact groups. It is
the key ingredient of the Baum–Connes conjecture.

The definition of the assembly map

Let X be a locally compact Hausdorff space, on which a second countable,
locally compact Hausdorff group G acts properly. Suppose that the orbit space
X/G is compact, i.e. that the action of G on X is cocompact. The (analytic)
assembly map is the map

µGX : KG
0 (X)→ K0(C∗(G)),

or more precisely,
µGX : KG

0 (X)→ KK0(C, C∗(G)),

given by
µGX [H, F, π] = [E , FE ],

with E and FE defined as follows.
Consider the subspace

Hc := π(Cc(X))H ⊂ H.
Define the Cc(G)-valued inner product (−,−)E on Hc by setting

(ξ, η)E(g) = (ξ, g · η)H,

for all ξ, η ∈ Hc and g ∈ G. Let ‖ · ‖E be the associated norm on Hc, as in
Definition 5.1, with A = C∗(G). Then E is the completion of Hc in this norm.
The (right) C∗(G)-module structure on E is given by

ξ · f =
∫

G

f(g)g · ξ dg,
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for ξ ∈ Hc, f ∈ Cc(G), and by continuous extension. The C∗(G)-valued inner
product on E is the continuous extension of (−,−)E .

To define the operator FE on E induced by F , we need F to have the following
property.

Definition 5.13. The operator F is called properly supported if for every f ∈
Cc(X) there is an h ∈ Cc(X) such that

π(h)Fπ(f) = Fπ(f).

If H is a space of sections of a vector bundle over X, and π is defined by
pointwise multiplication, then F is properly supported if it is ‘local’, in the sense
that it maps compactly supported sections to compactly supported sections. It
is always possible to choose F so that it is properly supported, without changing
the corresponding K-homology class (see also the remark after Definition (3.6)
in [8]):

Lemma 5.14. For all K-homology classes [H, F, π] ∈ K0
G(X), there is an opera-

tor F̃ ∈ B(H) which is properly supported and G-equivariant, such that (H, F̃ , π)
is an equivariant K-homology cycle over X, and that [H, F, π] = [H, F̃ , π].

Sketch of proof. Let f ∈ Cc(X) be a function such that for all x ∈ X,
∫

G

f2(gx)dg = 1

(see Lemma 7.8). Set

F̃ = AGf (F ) :=
∫

G

gπ(f)Fπ(f)g−1 dg.

Then F̃ is a bounded, properly supported, G-equivariant operator on H (see
Lemma 7.11, with N replaced by G). It can be shown that F and F̃ are
homotopic, so that the claim follows. ¤

Remark 5.15. The only K-homology classes we will use are those associated
to equivariant elliptic differential operators (see Theorem 4.33). The operators
in these classes are equivariant by Lemma 4.31, and they are even properly
supported for suitable choices of normalising functions (see Proposition 8.3).
We will therefore never have to use Lemma 5.14. We have included it so that
we can define the analytic assembly map on general K-homology cycles.

If F is properly supported, then it maps Hc into itself. We will show (Lemma
7.7) that if F is also equivariant, the restriction of F to Hc is adjointable with
respect to the inner product (−,−)E , so that it induces an adjointable operator
on E . This is the operator FE .

Remark 5.16. There is also a version of the assembly map that takes values
in the K-theory of the reduced C∗-algebra of G. It is defined in the same way
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as above, with C∗(G) replaced by C∗r (G) everywhere. We will use the same
notation µGX for these two versions, since this will usually not cause too much
confusion.

The assembly maps for the full and reduced group C∗-algebras are related
as follows. The identity map on Cc(G) is bounded as a map

(
Cc(G), ‖ · ‖C∗(G)

)→ (
Cc(G), ‖ · ‖C∗r (G)

)
.

Hence it extends to a continuous map C∗(G) → C∗r (G), which in turn induces
a map on K-theory

λG : K0(C∗(G))→ K0(C∗r (G)).

It follows from the definitions that the following diagram commutes:

KG
0 (X)

µG
X //

µG
X &&MMMMMMMMMM

K0(C∗(G))

λG

²²
K0(C∗r (G)).

The assumption that X/G is compact is needed to prove that the assembly
map is well-defined. If this condition is not satisfied, then it is still possible to
define the assembly map on the representable K-homology of X:

RKG
0 (X) := lim

−→
A⊂X

KG
0 (A),

where A runs over the G-invariant subsets A ⊂ X such that A/G is compact.
However, because a Dirac operator on a G-manifold M does not naturally define
a class in RKG

0 (M), we will always assume that the orbit spaces of the actions
we consider are compact.

The assembly map was introduced to state the Baum–Connes conjecture.
This conjecture states that if EG is a classifying space for proper G-actions (see
[8], Sections 1 and 2, and Appendix 1), then the assembly map

µGEG : RKG
0 (EG)→ K0(C∗r (G))

is an isomorphism of abelian groups. More on the Baum–Connes conjecture
can be found in [8, 62, 81]. A proof for groups with finitely many connected
components is given in [15].

The assembly map in the compact setting

The reason why the assembly map can be interpreted as a generalised equivari-
ant index is the following fact.



88 Chapter 5. KK-theory and the assembly map

Proposition 5.17. Let M be a compact manifold, on which a compact group
K acts properly. Let D be a first order elliptic differential operator on M as in
Theorem 4.33, so that we have the class [D] ∈ KK

0 (M). Then

µKM [D] = K-indexD ∈ R(K) ∼= K0(C∗(K)).

Sketch of proof. Let pt be the one-point space, and consider the map p :
KK

0 (M)→ KK
0 (pt) induced by collapsing M to a point:

p[H, F, π] = [H, F ],

where on the right hand side, the representation of C(pt) = C on H is given
by scalar multiplication. It follows directly from the definition of the assembly
map, and from compactness of M , that the following diagram commutes:

KK
0 (M)

p

²²

µK
M // K0(C∗(K)).

KK
0 (pt)

µK
pt

88qqqqqqqqqqq

(5.5)

Now since KK
0 (pt) ∼= R(K) via the index map, it can be shown that

p[D] = K-indexD ∈ R(K),

for all K-homology classes [D] ∈ KK
0 (M) as in the statement of the proposition.

Furthermore, it turns out that µKpt is the isomorphism R(K) ∼= KK
0 (pt) ∼=

K0(C∗(K)) described above Proposition 4.29. Therefore, the proposition follows
from commutativity of diagram (5.5). ¤
Sketch of an alternative proof. An alternative proof of Proposition 5.17 is based
on an explicit description of the assembly map in the compact case. Indeed, by
Proposition 4.7, we have C∗(K) ∼= ⊕

π∈K̂ B(Vπ). For every irreducible (unitary)
representation (Vπ, π) of K, and with M , E, D and K = G as in Theorem 4.33,
let Eπ →M/K be the vector bundle

Eπ := (E ⊗ B(Vπ))/K.

Here K acts on E ⊗ B(Vπ) by k · (e⊗ a) = k · e⊗ a ◦ k−1, for all k ∈ K, e ∈ E
and a ∈ B(Vπ). The K-equivariant operator D on Γ∞(E) naturally induces an
operator Dπ on Γ∞(Eπ), which acts trivially on B(Vπ).

Let
⊕

π∈K̂ L
2(Eπ) be the completion of the algebraic direct sum in the⊕

π∈K̂ B(Vπ)-valued inner product given by

(s1π ⊗ ϕ1
π, s

2
π ⊗ ϕ2

π) =
∫

M

(s1π(m), s2π(m))E
(
ϕ1
π(m)

)∗
ϕ1
π(m) dm,

for sjπ ∈ L2(E) and ϕjπ ∈ L2(M,B(Vπ)) such that sjπ ⊗ϕjπ ∈ L2(E⊗B(Vπ))K ∼=
L2(Eπ). The resulting norm on

⊕
π∈K̂ L

2(Eπ) is explicitly given by
∥∥∥

⊕

π∈K̂
sπ

∥∥∥ = sup
π∈K̂
‖sπ‖L2(Eπ),
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for sπ ∈ L2(Eπ). In this way,
⊕

π∈K̂ L
2(Eπ) becomes a Hilbert

⊕
π∈K̂ B(Vπ)-

module, and we claim that

µKM [D] =
[⊕

π∈K̂
L2(Eπ),

⊕

π∈K̂
b(Dπ)

]
∈ K0

(⊕

π∈K̂
B(Vπ)

) ∼= K0(C∗(K)), (5.6)

where b is a normalising function.
The equality (5.6) follows from the fact that the map

T : L2(E) = L2(E)c →
⊕

π∈K̂
L2(Eπ)

given by

(Ts)(Km)v =
∫

K

k · s(k−1m)⊗ k · v dk,

for all s ∈ L2(E) and v ∈ Vπ, extends to an isomorphism E ∼= ⊕
π∈K̂ L

2(Eπ)
of Hilbert C∗(K)-modules, which intertwines the operators b(D)E on E and⊕

π∈K̂ b(Dπ) on
⊕

π∈K̂ L
2(Eπ).

To finish the proof of Proposition 5.17, one shows that the class (5.6) is
mapped to the class

⊕

π∈K̂
[kerD+

π ]− [kerD−π ] ∈ R(K),

which equals
⊕

π∈K̂

[(
kerD+ ⊗ B(Vπ)

)K]− [(
kerD− ⊗ B(Vπ)

)K]
=

⊕

π∈K̂

[
(kerD+ ⊗ V ∗π )K ⊗ Vπ

]− [
(kerD− ⊗ V ∗π )K ⊗ Vπ

]
= [kerD+]− [kerD−],

by Schur’s lemma. ¤
Note that the ‘index’-aspect of the assembly map, by which we mean taking a
kernel and a cokernel, lies in the isomorphisms KK0(C, C∗(K)) ∼= K0(C∗(K)) ∼=
R(K) of Theorem 5.12 and Proposition 4.29, and not in the actual definition of
the assembly map itself.

Because of Proposition 5.17, we will see that Definitions 6.1 and 6.2 of quan-
tisation reduce to Definitions 3.20 and 3.30 in the compact case.

5.3 The unbounded picture of KK-theory

In [7], Baaj and Julg developed a realisation of KK-theory using unbounded
operators instead of bounded ones. The advantage of this realisation is that the
Kasparov product has a simpler form in this setting. We will use this form in
the proof of Theorem 9.3. The intuitive idea is that the unbounded Kasparov
bimodules introduced by Baaj and Julg are generalisations of first order ellip-
tic pseudo-differential operators, whereas the bounded Kasparov bimodules of
Definition 5.5 generalise elliptic pseudo-differential operators of order zero.
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Unbounded KK-theory

Definition 5.18. Let A and B be C∗-algebras. An unbounded Z2-graded Kas-
parov (A,B)-bimodule is a triple (E , D, π), where E and π are as in Definition
5.8 (without the group G), and D is a self-adjoint unbounded operator2 on E
that reverses the grading on E , and has the following properties.

• D is regular, in the sense that the image of 1E +D2 is dense in E ;

• for all a ∈ A, the operator π(a)(1 +D2)−1 is compact;

• the set of a ∈ A such that the graded commutator [D,π(a)] is well-defined
on domD and extends continuously to an adjointable operator on E , is
dense in A.

The set of unbounded Z2-graded Kasparov (A,B)-bimodules is denoted by
Ψ0(A,B).

The central result in unbounded KK-theory is the following (see [7], Propo-
sition 2.3).

Theorem 5.19. The map

β : Ψ0(A,B)→ KK0(A,B)

defined by

β(E , D, π) =
[E , D√

1 +D2
, π

]

is a well-defined surjection.

The unbounded Kasparov product

Now, for j = 1, 2, let Aj and Bj be C∗-algebras. Suppose that the algebras Aj
are separable, and that the Bj are σ-unital. In the special case where C = C,
the Kasparov product (5.3) has the following description in terms of unbounded
Kasparov bimodules.

Let (Ej , Dj , πj) ∈ Ψ0(Aj , Bj) be given. Let D be the closure of the operator
D1 ⊗ 1E2 + 1E1 ⊗D2 on E1 ⊗ E2. Then define

(E1, D1, π1)× (E2, D2, π2) := (E1 ⊗ E2, D, π1 ⊗ π2).

Theorem 5.20. This is an element of Ψ0(A1⊗A2, B1⊗B2), and the following
diagram commutes:

Ψ0(A1, B1)×Ψ0(A2, B2)
× //

β×β
²²

Ψ0(A1 ⊗A2, B1 ⊗B2)

β

²²
KK0(A1, B1)×KK0(A2, B2)

× // KK0(A1 ⊗A2, B1 ⊗B2).

2Self-adjoint unbounded operators on Hilbert modules over C∗ algebras are defined anal-
ogously to such operators on Hilbert spaces (see Section 4.3).
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See [7], Theorem 3.2.

Remark 5.21 (Equivariant unbounded KK-theory). There is an equivariant
version of unbounded KK-theory. The operators in equivariant unbounded
Kasparov bimodules are supposed so satisfy a condition that is much weaker
than equivariance with respect to the given group actions. We will only use
equivariant unbounded K-homology of topological spaces however (that is, A1

and A2 are commutative, and B1 = B2 = C). In that case it suffices to consider
unbounded Kasparov bimodules with strictly equivariant operators, by Lemma
5.14.

The assembly map

Next, we describe the analytic assembly map in the unbounded picture of KK-
theory. We will use this description in the proof of Theorem 9.3.

For full group C∗-algebras, the assembly map in the unbounded picture is
defined in Kucerovsky’s appendix to [62], in the following way. Let G be a
second countable, locally compact Hausdorff group, acting properly on a locally
compact Hausdorff space X, with compact quotient. The assembly map in the
unbounded picture is given by

µGX(H, D, π) = (E , DE) ∈ Ψ0(C, C∗G), (5.7)

for all (H, D, π) ∈ ΨG
0 (C0(X),C). The Hilbert C∗(G)-module E is defined as

usual for the assembly map. The definition of the operator DE on E is more
involved.

First, let H̃ be the auxiliary Hilbert C∗(G)-module defined as the completion
of the Hilbert Cc(G)-module Cc(G,H) with respect to the Cc(G) ⊂ C∗(G)-
valued inner product

(ϕ,ψ)H̃(g) :=
∫

G

(
ϕ(g′), ψ(g′g)

)
H dg

′, (5.8)

where ϕ,ψ ∈ Cc(G,H), g ∈ G, and dg′ is a Haar measure on G. Next, let
h ∈ Cc(X) be a function such that for all x ∈ X,

∫

G

h2(gx) dg = 1

(see Lemma 7.8).
Let p ∈ Cc(X ×G) be the projection given by

p(x, g) := h(x)h(g−1x). (5.9)

This function is compactly supported by properness of the action of G on X.
Let π̃ : Cc(X ×G)→ B(H̃) be the representation given by

(
π̃(f)ϕ

)
(g) =

∫

G

π(f(−, g′))g′ · ϕ(g′−1g) dg′,



92 Chapter 5. KK-theory and the assembly map

for f ∈ Cc(X × G), ϕ ∈ Cc(G,H) and g ∈ G. (The representation π̃ can
actually be extended to the crossed product C0(X)oG, but we will not use this
extension.)

Then the map
α : π̃(p)Cc(G,H)→ Hc,

given by

π̃(p)ϕ 7→
∫

G

g−1π(h)ϕ(g) dg,

preserves the C∗(G)-valued inner products and the C∗(G)-module structures on
H̃ and on E , and induces an isomorphism π̃(p)H̃ ∼= E of Hilbert C∗(G)-modules.
We will write Ẽ := π̃(p)H̃.

To define the operator DE on E we first consider an operator DẼ on Ẽ . This
operator is defined as the closure of the operator D̃ on Ẽ , given by

D̃
(
π̃(p)ϕ

)
:= π̃(p)

(
D ◦ ϕ)

, (5.10)

on the domain dom D̃ := π̃(p)Cc(G,domD). We finally set

DE := αDẼα
−1,

on the domain domDE = α
(
domDẼ

)
.

In the proof of Theorem 9.3, we will actually use the following definition of
the assembly map:

µ̃GX(H, D, π) :=
(Ẽ , DẼ

) ∈ Ψ0(C, C∗G), (5.11)

which gives the same class in K0(C∗(G)) as (5.7), because α is an isomorphism.
Kucerovsky’s proof that the above constructions give a well-defined de-

scription of the assembly map in the unbounded picture is valid for discrete
groups, but it admits a straightforward generalisation to possibly nondiscrete
(unimodular) ones. One simply replaces sums by integrals, and uses the fact
that the integral over a compact, finite Borel space of a continuous family of
adjointable operators is again an adjointable operator (see Lemma 7.2). In ad-
dition, in the proof of Lemma 2.15 in [62], one takes β−1(π(f)η) = π̃(p)ψ, with
ψ(g) = π(h)π(g · f)g · η (where the β in [62] is our α). This reduces to Valette’s
β−1(π(f)η) = π̃(p)π̃(〈h|f〉)η̄ in the discrete case.

To use the unbounded picture of the assembly map for reduced group C∗-
algebras, one can use the above description for the full C∗-algebra, use the map
β to descend to KK-theory, and then apply the map λG (see Remark 5.16).



Chapter 6

Noncommutative geometry
and quantisation: statement
of the results

In this chapter, we state the two main results of this thesis. Using the techniques
from Chapters 4 and 5, we extend the Guillemin–Sternberg conjecture, Theorem
3.34, to noncompact groups and manifolds. To state this generalisation, we
replace the index by the assembly map. The assumptions that the group and
the manifold in question are compact are replaced by the assumption that the
quotient space of the action is compact, i.e. that the action is cocompact.

We first state a generalisation of Theorem 3.34 to cocompact Hamiltonian
actions by any Lie group. This generalisation, Conjecture 6.4, was formulated
by Landsman in [51], and is the subject of Section 6.1. We will prove a special
case of this conjecture, Theorem 6.5, in Part III.

In Section 6.3, we state a generalisation of Theorem 3.38 to cocompact
Hamiltonian actions by semisimple Lie groups. This generalisation, Theorem
6.13, is based on V. Lafforgue’s work on discrete series representations in the
context of the K-theory of reduced group C∗-algebras, which is summarised in
Section 6.2. In Part IV, we prove Theorem 6.13.

6.1 Quantisation commutes with reduction for
cocompact group actions

Let (M,ω) be a symplectic manifold. Let G be a Lie group acting properly and
in Hamiltonian fashion on (M,ω), with momentum map Φ. Suppose that M/G
is compact.

93
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Quantisation of cocompact actions

We first generalise Dolbeault-quantisation to the cocompact case. Let J be a
G-equivariant almost complex structure on M , compatible with ω. Such a J
always exists, by [27], Example D.12 and Corollary B.35. Let g := ω(−, J −) be
the associated Riemannian metric on M . Suppose that there is a G-equivariant
prequantisation (Lω, (−,−)Lω ,∇) of the action of G on (M,ω) (see Remark
3.9).

Let ∂̄Lω +∂̄∗Lω be the Dolbeault–Dirac operator on the vector bundle
∧0,∗

T ∗M⊗
Lω (Definition 3.19). It defines a class

[
∂̄Lω + ∂̄∗Lω ] ∈ KG

0 (M) by Corollary 4.36.
This class is independent of the connection ∇ and the choice of J .

Definition 6.1 (Quantisation V, Landsman [51]). The Dolbeault-quantisation
of the action of G on (M,ω) is the K-theory class

QV (M,ω) := µGM
[
∂̄Lω + ∂̄∗Lω

] ∈ K0(C∗(G)).

The definition of Spinc-quantisation can be generalised in a similar way. Let
(L2ω, (−,−)L2ω ,∇) be a G-equivariant Spinc-quantisation of (M,ω), and let
P → M be an equivariant Spinc-structure on M with determinant line bundle
L2ω. Let /DLω

M be the Spinc-Dirac operator on the associated spinor bundle
(Definition 3.27). Then we have the K-homology class

[
/DLω

M

] ∈ KG
0 (M), by

Corollary 4.36.

Definition 6.2 (Quantisation VI). The Spinc-quantisation of the action of G
on (M,ω) is the K-theory class

QVI(M,ω) := µGM
[
/DLω

M

] ∈ K0(C∗r (G)).

Note that we now use the reduced C∗-algebra of G, instead of the full one
used in Definition 6.1. The reason for this difference is that we will use Definition
6.1 to state a ‘quantisation commutes with reduction’-result for reduction at
the trivial representation, which implies that we have to use the full group
C∗-algebra. We will use Definition 6.2 to state a ‘quantisation commutes with
reduction’-result for reduction at discrete series representations of semisimple
Lie groups, and in that case, it is more natural to work with the reduced group
C∗-algebra. This choice between the full and the reduced C∗-algebra is not at all
related to the difference between Dolbeault-quantisation and Spinc-quantisation.

Remark 6.3. Now that we have given the sixth and last definition of geometric
quantisation, let us summarize the relations between these definitions.

• If M and G are compact, then we have

QV (M,ω) = QIII(M,ω);
QVI(M,ω) = QIV (M,ω)

(see Proposition 5.17).
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• If the line bundle
∧0,dM

C (TM, J) is trivial for some equivariant almost
complex structure J , compatible with ω, then

QVI(M,ω) = QV (M,ω),

and if, in addition, M and G are compact, then

QIV (M,ω) = QIII(M,ω)

(see Lemma 3.32).

• If M and G are compact, and (M,ω) is Kähler, then

QIII(M,ω) = QII(M,ω)

(see Lemma 3.23).

• If M and G are compact, (M,ω) is Kähler, and ω is positive, then

QII(M,nω) = QI(M,nω),

for n large enough (see Remark 3.16).

We will only use QV and QVI from now on.

Reduction

The reduction map
R0
G : K0(C∗(G))→ Z (6.1)

that generalises taking the multiplicity of the trivial representation as in (3.15),
is defined as follows. The map

∫
G

: Cc(G)→ C (6.2)

given by
∫
G

(f) =
∫

G

f(g) dg

(with dg a Haar measure) is the one associated to the trivial representation of
G. It is continuous with respect to the norm ‖ · ‖C∗(G) on Cc(G). Because the
trivial representation is not contained in L2(G) for noncompact G, the map (6.2)
is not continuous with respect to the norm on the reduced group C∗-algebra of
G in the noncompact case. This is why we work with the full one here.

The continuous extension of (6.2) to a map C∗(G) → C induces a map on
K-theory

R0
G :=

(∫
G

)
∗ : K0(C∗(G))→ K0(C) ∼= Z (6.3)

Using the fact that the constant function 1 on G is in Cc(G) ⊂ C∗(G) if G is
compact, one can show that the map R0

G is given by (3.15) for compact G = K.



96 Chapter 6. Statement of the results

Since M/G is compact, the symplectic reduction M0 = Φ−1(0)/G is com-
pact as well. Suppose that 0 is a regular value of Φ. Then the quantisation
QIII(M0, ω0) is well-defined (see Section 3.6). Here we use QIII instead of QV ,
since QIII(M0, ω0) = QV (M0, ω0) if M0 is smooth, and we do not know if
QV (M0, ω0) is well-defined if M0 is an orbifold. This would depend on an orb-
ifold version of Corollary 4.36.

We now have all ingredients needed to state the following conjecture.

Conjecture 6.4 (Guillemin–Sternberg–Landsman conjecture). If 0 ∈ Φ(M),
then the following integers are equal:

R0
G

(
QV (M,ω)

)
:=

(∫
G

)
∗
(
µGM

[
/D
L2ω

M

])
= QIII(M0, ω0).

If 0 6∈ Φ(M), then R0
G

(
QV (M,ω)

)
= 0.

In [51], Landsman states Conjecture 6.4 as a special case of a more far-
reaching conjecture called ‘functoriality of quantisation’. The latter conjecture
states that quantisation can be defined as a functor between the category of
Poisson manifolds, with Weinstein dual pairs as arrows, and the category of C∗-
algebras, with KK-groups as sets of arrows. The object part of this conjectural
quantisation functor should be defined by deformation quantisation, whereas
the arrow part should be given by geometric quantisation.

A subgroup H < G is called cocompact if G/H is compact. In Part III, we
prove the following result:

Theorem 6.5. Suppose G has a cocompact, discrete, normal subgroup Γ C G.
Suppose furthermore that that Γ acts freely on M . Finally, assume that M
is complete1 in the Riemannian metric g. With these additional assumptions,
Conjecture 6.4 is true.

In the setting of Theorem 6.5, we will denote the compact group G/Γ by K.
Examples of groups G that satisfy the assumptions of Theorem 6.5 are:

• G = K is compact, and Γ = {eG};

• G = Γ is discrete, and K = {eK};

• G = Rn, Γ = Zn and K = Tn for some n ∈ N,

or direct products of these three examples. In fact, if G is connected, then Γ
must be central, and G is the direct product of a compact group and a vector
space.

Remark 6.6. One can try to make life easier by assuming that the action of G
on M is free. However, in the situation of Theorem 6.5, this assumption implies
that G is discrete.

1see Remark 4.35
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Indeed, if the action is locally free then by Smale’s lemma (Lemma 2.24), the
momentum map Φ is a submersion, and in particular an open mapping. And
since it is G-equivariant, it induces

ΦG : M/G→ g∗/Ad∗(G),

which is also open. So, since M/G is compact, the image

ΦG(M/G) ⊂ g∗/Ad∗(G)

is a compact open subset. Because g∗/Ad∗(G) is connected,2 it must therefore
be compact. This, however, can only be the case (under the assumptions of
Theorem 6.5) when G is discrete. Indeed, we have

Ad∗(G) ∼= Ad∗(K) ⊂ GL(k∗) ∼= GL(g∗).

So Ad∗(G) is compact, and g∗/Ad∗(G) cannot be compact, unless g∗ = 0, i.e.
G is discrete.

Example 6.7. Suppose (M1, ω1) is a compact symplectic manifold, K is a
compact Lie group, and let a proper Hamiltonian action of K on M1 be given.
Suppose that (M1, ω1) has an equivariant prequantisation. Let Γ be a discrete
group acting properly and freely on a symplectic manifold (M2, ω2), leaving
ω2 invariant. Suppose that M2/Γ is compact, and that there is an equivariant
prequantisation of (M2, ω2). Then the direct product action of K×Γ on M1×M2

satisfies the assumptions of Theorem 6.5.

Remark 6.8. In the case where G is a torsion-free discrete group acting freely
on M , Theorem 6.5 follows from a result of Pierrot ([68], Theorème 3.3.2).

A refinement?

To state a more refined version of Conjecture 6.4, which includes reduction at
more representations that just the trivial one, we need an ‘orbit method’ for the
group G. The orbit method is an idea of Kirillov [43, 44, 45]. It is an attempt
to realise irreducible unitary representations H as quantisations H = HO of
coadjoint orbits O ⊂ g∗ (see Example 2.13) in a subset A ⊂ g∗.

The symplectic reduction of M at a coadjoint orbit O can be defined as
MO := Φ−1(O)/G. If all irreducible representations HO define classes

[HO
] ∈

K0(C∗(G)), then we can try to make sense of the folllowing statement:

“µGM
[
/D
L
M

]
=

⊕

O⊂A
Q(MO, LO)

[HO
]
”. (6.4)

Or, if ROG : K0(C∗(G))→ Z is a suitable reduction map,

“ROG
(
µGM

[
/D
L
M

])
= Q(MO, LO)”. (6.5)

2If G = K is a compact connected Lie group, then k∗/Ad∗(K) is a Weyl chamber.
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For compact groups, the appropriate orbit method is the Borel–Weil theorem
(Example 3.36). For discrete series representations, the ‘orbit method’ we will
use is described in Section 6.2, although this method does not use coadjoint
orbits, but other homogeneous spaces. The resulting version of (6.5) is Theorem
6.13, which is stated using Spinc-quantisation instead of Dolbeault-quantisation.
We will prove this result in Part IV.

A final note is that the decomposition (6.4) only makes sense if the set A/G
is discrete. Otherwise, the direct sum would have to be replaced by a direct
integral with respect to a suitable measure on A/G. The author has no idea
how to state a ‘quantisation commutes with reduction’ theorem in this situation.
In any case, this shows that it is natural to restrict one’s attention to discrete
series representations of a semisimple group when trying to state (6.4) rigorously
for such groups.

6.2 Discrete series representations and K-theory

In [49], V. Lafforgue reproves some classical results about discrete series repre-
sentations by Harish-Chandra [30, 31], Atiyah & Schmid [5] and Parthasarathy
[66], using K-homology, K-theory and assembly maps. We will give a quick
summary of the results in [49] that we will use in this thesis.

For the remainder of this chapter, let G be a connected3 semisimple Lie
group with finite centre. Let K < G be a maximal compact subgroup, and let
T < K be a maximal torus. Suppose that T is also a Cartan subgroup of G,
so that G has discrete series representations by Harish-Chandra’s criterion [31].
Discrete series representations are representations whose matrix elements are
square-integrable over G. They form a discrete subset of the unitary dual of G.

In [66], Parthasarathy realises the irreducible discrete series representations
of G as the L2-indices of Dirac operators /DV , where V runs over the irreducible
representations of K. Atiyah and Schmid do the same in [5], replacing Harish-
Chandra’s work by results from index theory. In [72, 73, 74], Slebarsky considers
the decomposition into irreducible representations of G of L2-indices of Dirac
operators on any homogeneous space G/L, with L < G a compact, connected
subgroup.

Dirac induction

For a given irreducible representation V of K, the Dirac operator /DV used
by Parthasarathy and Atiyah–Schmid is defined as follows. Let p ⊂ g be the
orthogonal complement to k with respect to the Killing form. Then p is an
Ad(K)-invariant linear subspace of g, and g = k⊕p. Consider the inner product
on p given by the restriction of the Killing form. The adjoint representation

Ad : K → GL(p)
3Theorem 6.13 and the results in this Part IV (possibly in modified forms) are also valid

for groups with finitely many connected components, but the assumption that G is connected
allows us to circumvent some technical difficulties.
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of K on p takes values in SO(p), because the Killing form is Ad(K)-invariant,
and K is connected. We suppose that it has a lift Ãd to the double cover Spin(p)
of SO(p). It may be necessary to replace G and K by double covers for this lift
to exist. Then the homogeneous space G/K has a G-equivariant Spin-structure

PG/K := G×K Spin(p)→ G/K.

Here G×K Spin(p) is the quotient of G× Spin(p) by the action of K defined by

k(g, a) = (gk−1, Ãd(k)a),

for k ∈ K, g ∈ G and a ∈ Spin(p).
Fix an orthonormal basis {X1, . . . , Xdp} of p. Using this basis, we identify

Spin(p) ∼= Spin(dp). Let ∆dp be the canonical 2
dp
2 -dimensional representation

of Spin(dp) (see Section 3.4). Because p is even-dimensional, ∆dp splits into two
irreducible subrepresentations ∆+

dp
and ∆−

dp
. Consider the G-vector bundles

E±V := G×K (∆±
dp
⊗ V )→ G/K.

Note that
Γ∞(G/K,E±V ) ∼=

(
C∞(G)⊗∆±

dp
⊗ V )K

, (6.6)

where K acts on C∞(G)⊗∆±
dp
⊗ V by

k · (f ⊗ δ ⊗ v) = (f ◦ lk−1 ⊗ Ãd(k)δ ⊗ k · v) (6.7)

for all k ∈ K, f ∈ C∞(G), δ ∈ ∆dp and v ∈ V . Here lk−1 denotes left
multiplication by k−1.

Using the basis {X1, . . . , Xdp} of p and the isomorphism (6.6), define the
differential operator

/D
V : Γ∞(E+

V )→ Γ∞(E−V ) (6.8)

by the formula

/D
V :=

dp∑

j=1

Xj ⊗ c(Xj)⊗ 1V . (6.9)

Here in the first factor, Xj is viewed as a left invariant vector field on G, and
in the second factor, c : p → End(∆dp) is the Clifford action (see Section 3.4).
This action is odd with respect to the grading on ∆dp . The operator (6.8) is the
Spin-Dirac operator on G/K (see [66], Proposition 1.1 and [22], Chapter 3.5).

Lafforgue (see also Wassermann [87]) uses the same operator to define a
‘Dirac induction map’

D-IndGK : R(K)→ K0(C∗r (G)) (6.10)

by
D-IndGK [V ] :=

[(
C∗r (G)⊗∆dp ⊗ V

)K
, b

(
/D
V )]

, (6.11)



100 Chapter 6. Statement of the results

where b : R → R is a normalising function, e.g. b(x) = x√
1+x2 . The expression

on the right hand side defines a class in Kasparov’s KK-group KK0(C, C∗r (G)),
which is isomorphic to the K-theory group K0(C∗r (G)) by Theorem 5.12. In
[87], Wassermann proves the Connes–Kasparov conjecture, which states that
this Dirac induction map is a bijection for linear reductive groups.

Reduction

The relation between the Dirac induction map and the work of Atiyah & Schmid
and of Parthasarathy can be seen by embedding the discrete series of G into
K0(C∗r (G)) via the map

H 7→ [H] := [dHcH],

where H is a Hilbert space with inner product (−,−)H, equipped with a discrete
series representation of G, cH ∈ C(G) is the function

cH(g) = (ξ, g · ξ)H
(for a fixed ξ ∈ H of norm 1), and dH is the inverse of the L2-norm of cH (so
that the function dHcH has L2-norm 1). Because dHcH is a projection in C∗r (G),
it indeed defines a class in K0(C∗r (G)) (see Remark 4.27).

Next, Lafforgue defines a map4

RHG : K0(C∗r (G))→ Z (6.12)

that amounts to taking the multiplicity of the irreducible discrete series repre-
sentation H, as follows. Consider the map

C∗r (G)→ K(H)

(the C∗-algebra of compact operators on H), given on Cc(G) ⊂ C∗r (G) by

f 7→
∫

G

f(g)π(g) dg. (6.13)

Here π is the representation of G in H. Since K0(K(H)) ∼= Z, this map induces
a map K0(C∗r (G))→ Z on K-theory, which by definition is (6.12).

The map RHG has the property that for all irreducible discrete series repre-
sentations H and H′ of G, one has

RHG ([H′]) =
{

1 if H ∼= H′
0 if H 6∼= H′.

Hence it can indeed be interpreted as a multiplicity function. For compact
groups, it follows from Schur orthogonality that this is indeed the usual multi-
plicity.

4In Lafforgues’s notation, RHG (x) = 〈H, x〉.



6.2 Discrete series representations and K-theory 101

In Section 6.1 we used the full group C∗-algebra to define reduction at the
trivial representation. This is because the trivial representation is not square-
integrable for noncompact groups. Indeed, the map (6.2) extends continuously
to a function on C∗(G), but not to a function on C∗r (G). Now we can use the
reduced group C∗-algebra, since the map (6.13) is continuous with respect to
the norm on C∗r (G), for discrete series representations π. It is natural to use the
reduced group C∗-algebra when studying discrete series representations, since
they are contained in the left regular representation of G on L2(G), and the
reduced C∗-algebra is defined in terms of this representation.

Dirac induction links the reduction map RHG to the reduction map 3.17 in the
following way.

Let R = R(g, t) be the root system of (g, t), let Rc := R(k, t) ⊂ R be the
subset of compact roots, and let Rn := R \Rc be the set of noncompact roots.
Let R+

c ⊂ Rc be a choice of positive compact roots, and let Λk
+ be the set of

dominant integral weights of (k, t) with respect to R+
c .

Let H be an irreducible discrete series representation of G. Let λ be the
Harish-Chandra parameter of H (see [30, 31]) such that (α, λ) > 0 for all α ∈
R+
c . Here (−,−) is a Weyl group invariant inner product on t∗C. Let R+ ⊂ R

be the positive root system defined by

α ∈ R+ ⇔ (α, λ) > 0,

for α ∈ R. Then R+
c ⊂ R+, and we denote by R+

n := R+ \ R+
c the set of non-

compact positive roots. We will write ρ := 1
2

∑
α∈R+ α and ρc := 1

2

∑
α∈R+

c
α.

We will use the fact that λ − ρc lies on the dominant weight lattice Λk
+, since

λ ∈ Λk
+ + ρ.

Note that the dimension of the quotient G/K equals the number of noncom-
pact roots, which is twice the number of positive noncompact roots, and hence
even.

Lemma 6.9. Let µ ∈ Λk
+ be given. Let Vµ be the irreducible representation of

K with highest weight µ. We have

RHG
(
D-IndGK [Vµ]

)
=

{
(−1)

dim G/K
2 if µ = λ− ρc

0 otherwise.
(6.14)

The relation (6.14) can be summarised as

RHG ◦D-IndGK = (−1)
dim G/K

2 Rλ−ρc

K ,

with Rλ−ρc

K as defined below Definition 3.17.

Proof. According to Lafforgue [49], Lemma 2.1.1, we have

RHG
(
D-IndGK [Vµ]

)
= dim

(
V ∗µ ⊗∆∗

dp
⊗H)K

=
[
∆∗
dp
⊗H|K : Vµ

]
, (6.15)
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the multiplicity of Vµ in ∆∗
dp
⊗H|K . Let us compute this multiplicity.

By Harish-Chandra’s formula (Harish-Chandra [31], Schmid [70], Theorem
on page 95/96), the character Θλ of H is given by

Θλ|T reg = (−1)
dim G/K

2

∑
w∈W (k,t) ε(w)ewλ

∏
α∈R+

(
eα/2 − e−α/2).

Here ε(w) = det(w), and W (k, t) is the Weyl group of (k, t). The character χ∆dp

of the representation

K
fAd−−→ Spin(p)→ GL(∆dp), (6.16)

on the other hand, is given by (Parthasarathy [66], Remark 2.2)

χ∆dp
|T reg :=

(
χ∆+

dp

− χ∆−dp

)|T reg =
∏

α∈R+
n

(
eα/2 − e−α/2).

It follows from this formula that for all t ∈ T reg,

χ∆∗dp
(t) = χ∆dp

(t−1) = χ∆dp
(t),

and hence

(
Θλχ∆∗dp

)|T reg = (−1)
dim G/K

2

∑
w∈W (k,t) ε(w)ewλ

∏
α∈R+

c

(
eα/2 − e−α/2)

= (−1)
dim G/K

2 χλ−ρc ,

by Weyl’s character formula. Here χλ−ρc is the character of the irreducible
representation of K with highest weight λ− ρc.

Therefore, by (6.15),

RHG
(
D-IndGK [Vµ]

)
=

[
∆∗
dp
⊗H|K : Vµ

]

= (−1)
dim G/K

2 [Vλ−ρc : Vµ]

=
{

(−1)
dim G/K

2 if µ = λ− ρc
0 otherwise.

Remark 6.10. Lemma 6.9 is strictly speaking not an orbit method, because
the coadjoint orbit through µ is only equal to G/K if K = T , and µ does not
lie on any root hyperplanes.

6.3 Quantisation commutes with reduction at
discrete series representations of semisimple
groups

Consider the situation of Section 6.1, with the additional assumptions and nota-
tion of Section 6.2. We will state a rigorous version of (6.5) in this setting, under
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the assumption that the image of Φ lies inside the strongly elliptic set g∗se ⊂ g∗.
We first clarify this assumption, and then state our result for semisimple groups.

The set g∗se
Let us define the subset g∗se ⊂ g∗ of strongly elliptic elements. We always view
k∗ as a subspace of g∗ via the linear isomorphism k∗ ∼= p0 (via restriction from g
to k), with p0 the annihilator of p in g∗. As before, the dual space t∗ is identified
with the subspace

(
k∗

)Ad∗(T ) of k∗.
Let t∗+ ⊂ t∗ be a choice of positive Weyl chamber. We denote by ‘ncw’ the

set of noncompact walls:

ncw := {ξ ∈ t∗; (α, ξ) = 0 for some α ∈ Rn}, (6.17)

where as before, (−,−) is a Weyl group invariant inner product on t∗C. We then
define

g∗se := Ad∗(G)(t∗+ \ ncw). (6.18)

Equivalently, g∗se is the set of all elements of g∗ with compact stabilisers under
the coadjoint action, and also the interior of the elliptic set g∗ell := Ad(G)k∗. We
will also use the notation

k∗se := Ad∗(K)(t∗+ \ ncw). (6.19)

Note that k∗se ⊂ k∗ is an open dense subset, and that g∗se = Ad∗(G)k∗se. The set
g∗se is generally not dense in g∗.

The reason for our assumption that the momentum map takes values in g∗se
is that we are looking at multiplicities of discrete series representations. These
can be seen as ‘quantisations’ of certain coadjoint orbits that lie inside g∗se (see
Schmid [70], Parthasarathy [66] and also Paradan [65]). In general, the ‘quan-
tisation commutes with reduction’ principle implies that the quantisation of a
Hamiltonian action decomposes into irreducible representations associated to
coadjoint orbits that lie in the image of the momentum map. Hence if we sup-
pose that this image lies inside g∗se, we expect the quantisation of the action
to decompose into discrete series representations. In [90], Proposition 2.6, We-
instein proves that g∗se is nonempty if and only if rankG = rankK, which is
Harish-Chandra’s criterion for the existence of discrete series representations of
G.

The most direct application of the assumption that the image of the mo-
mentum map lies in g∗se is the following lemma, which we will use several times.

Lemma 6.11. Let ξ ∈ g∗se. Then gξ ∩ p = {0}.
Proof. Let X ∈ gξ ∩ p be given. We consider the one-parameter subgroup
exp(RX) of G. Because ξ ∈ g∗se, the stabiliser Gξ is compact. Because exp(RX)
is contained in Gξ, it is therefore either the image of a closed curve, or dense in
a subtorus of Gξ. In both cases, its closure is compact.
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On the other hand, the map exp : p → G is an embedding (see e.g. [47],
Theorem 6.31c). Hence, if X 6= 0, then exp(RX) is a closed subset of G,
diffeomorphic to R. Because the closure of exp(RX) is compact by the preceding
argument, we conclude that X = 0.

Now suppose that Φ(M) ⊂ g∗se. Then the assumption that the action of G
on M is proper is actually unnecessary:

Lemma 6.12. If Φ(M) ⊂ g∗se, then the action of G on M is automatically
proper.

Proof. In [90], Corollary 2.13, it is shown that the coadjoint action of G on g∗se
is proper. This is a slightly stronger property than the fact that elements of g∗se
have compact stabilisers, and it implies properness of the action of G on M .

Indeed, let a compact subset C ⊂M be given. It then follows from continuity
and equivariance of Φ, and from properness of the action of G on g∗se that the
closed set

GC := {g ∈ G; gC ∩ C 6= ∅}
⊂ {g ∈ G; gΦ(C) ∩ Φ(C) 6= ∅}

is compact, i.e. the action of G on M is proper.

The result

Compactness of M/G is enough to guarantee compactness of the reduced spaces
Mξ = Φ−1(ξ)/Gξ ∼= Φ−1(G ·ξ)/G, but it can even be shown that in this setting,
Φ is a proper map. This gives another reason why the reduced spaces are
compact.

We can finally state our result. Let H be an irreducible discrete series
representation. Let λ ∈ it∗ be its Harish-Chandra parameter such that (α, λ) >
0 for all α ∈ R+

c . As before, we will write (Mλ, ωλ) := (M−iλ, ω−iλ) for the
symplectic reduction of (M,ω) at −iλ ∈ t∗+\ncw ⊂ g∗se. Then our generalisation
of Theorem 3.38 is:

Theorem 6.13 (Quantisation commutes with reduction at discrete series rep-
resentations). Consider the situation of Conjecture 6.4, with the difference that
(M,ω) is now supposed to have a G-equivariant Spinc-prequantisation (Lω, (−
,−)Lω ,∇) instead of a normal one. Suppose that the additional assumptions of
this section hold, and that −iλ is a regular value of Φ. Then

RHG
(
QVI(M,ω)

)
:= RHG

(
µGM

[
/D
L2ω

M

])
= (−1)

dim G/K
2 QIV (Mλ, ωλ).

If −iλ does not lie in the image of Φ, then the integer on the left hand side
equals zero.

We will prove this theorem in Part IV, via a reduction to the compact case.
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As in Theorem 6.5, we use the compact version of quantisation to define
the quantisation QIV (Mλ, ωλ) of the symplectic reduction, since this version is
well-defined in the orbifold case.

If G = K, then the irreducible discrete series representation H is the irre-
ducible representation Vλ−ρc of K with highest weight λ−ρc (see [70], corollary
on page 105). Hence RHG amounts to taking the multiplicity of Vλ−ρc

, as re-
marked after the definition of RHG . The assumption that M/G is compact is now
equivalent to compactness of M itself. Therefore Theorem 6.13 indeed reduces
to Theorem 3.38 in this case. As mentioned before, our proof of Theorem 6.13 is
based on this statement for the compact case, so that we cannot view Theorem
3.38 as a corollary to Theorem 6.13.

To obtain results about discrete series representations, we would like to apply
Theorem 6.13 to cases where M is a coadjoint orbit of some semisimple group,
such that the quantisation of this orbit in the sense of Definition 6.1 is the K-
theory class of a discrete series representation of this group. The condition that
M/G is compact rules out any interesting applications in this direction, however.
If we could generalise Theorem 6.13 to a similar statement where the assumption
that M/G is compact is replaced by the assumption that the momentum map is
proper, then we might be able to deduce interesting corollaries in representation
theory.

One such application could be analogous to unpublished work of Duflo and
Vargas about restricting discrete series representations to semisimple subgroups.
In this case, the assumption that the momentum map is proper corresponds to
their assumption that the restriction map from some coadjoint orbit to the dual
of the Lie algebra of such a subgroup is proper.

An interesting refinement of a special case of Duflo and Vargas’s work was
given by Paradan [65], who gives a multiplicity formula for the decomposition
of the restriction of a discrete series representation of G to K, in terms of
symplectic reductions of the coadjoint orbit corresponding to this discrete series
representation.
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Part II

Naturality of the assembly
map
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The two main results in this thesis are Theorems 6.5 and 6.13. We will prove
these results by deducing them from the compact case, Theorems 3.34 and 3.38.
This deduction is based on the results in this part, which express ‘naturality of
the assembly map’. For discrete groups, this naturality is proved in Valette’s
part of [62]. The proof in [62] is split into two parts: the ‘epimorphism case’
and the ‘monomorphism case’.

We first give a generalisation of Valette’s epimorphism case to possibly non-
discrete groups (Theorem 7.1). The proof of this theorem is a straightforward
generalisation of Valette’s.

Then, we give an explicit description of the epimorphism case forK-homology
classes of equivariant elliptic differential operators. This is Corollary 8.11, which
is the key result in our proof of Theorem 6.5.

Finally, we generalise a very special case of the monomorphism case to in-
clusions of maximal compact subgroups into semisimple Lie groups. This is
Theorem 9.1, which is the central step in the ‘quantisation commutes with in-
duction’ result, Theorem 14.5, in Part IV. The latter result in turn is the key
to the deduction of Theorem 6.13 from Theorem 3.38.

In Parts III and IV, we show that the ‘naturality of the assembly map’
results in this part are ‘well-behaved’ with respect to the K-homology classes
of the Dirac operators we use to define quantisation. These facts, together with
Theorems 3.34 and 3.38, will imply Theorems 6.5 and 6.13.

This part contains almost all of the noncommutative geometry in this thesis.
In Parts III and IV, we will almost only use differential and symplectic geometry
(the most notable exception is Chapter 11). Readers who are less familiar with
noncommutative geometry than with the other subjects of this thesis should feel
free to skip the proofs in this part, and only read the main results, Theorems
7.1 and 9.1, before going on to Part III.
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Chapter 7

The epimorphism case

Theorem 6.5 is partly a consequence of naturality of the assembly map. For
discrete groups, this naturality is explained in detail by Valette in [62]. In this
chapter, we generalise the ‘epimorphism part’ of Valette’s theorem to possibly
non-discrete groups. This generalisation is basically a straightforward exercise in
replacing sums by integrals and finite sets by compact ones. Where Valette uses
the facts that finite sums of bounded operators on Hilbert spaces are bounded
operators, and that finite sums of compact operators on Hilbert C∗-modules are
again compact, we use the lemmas in Section 7.1. These lemmas, together with
Lemma 7.18 and the final part of the proof of Theorem 7.1 are our own input,
the rest of this chapter consists of slight generalisations of arguments from [62].

Throughout this chapter, G is a locally compact unimodular group, equipped
with a Haar measure dg, acting properly on a locally compact Hausdorff space
X. We consider a closed normal subgroup N of G, and a left-invariant Haar
measure dn on N . We suppose that X/G is compact.

In Section 7.4, we will also need the assumption that either X/N or N
is compact. This assumption may not be necessary, but we need it for our
arguments. We will apply the results in this chapter to the case where N is
compact in Section 9.1, and to the case where X/N is compact in Section 10.1.

The version of naturality of the assembly map that we will need is the
following.

Theorem 7.1. The Valette homomorphism VN , defined in Section 7.4, makes
the following diagram commutative:

KG
0 (X)

µG
X //

VN

²²

K0(C∗(G))

R0
N

²²
K
G/N
0 (X/N)

µ
G/N

X/N // K0(C∗(G/N)).

Here µGX and µ
G/N
X/N are analytic assembly maps as explained in Section 5.2,
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and the map
R0
N =

(∫
N

)
∗ : K0(C∗(G))→ K0(C∗(G/N)) (7.1)

is functorially induced by the map
∫
N

: C∗(G)→ C∗(G/N) given on f ∈ Cc(G)
by [24]

∫
N

(f) : Ng 7→
∫

N

f(ng) dn. (7.2)

In Chapter 8, we describe the image of a K-homology class defined by an
elliptic differential operator under the homomorphism VN (see Corollary 8.11).
This description will allow us to prove Theorem 6.5 in Part III.

A version of naturality of the assembly map for locally compact groups can
also be distilled from [14].

Sections 7.1–7.3 consist of preparations for the definition of the homomor-
phism VN in Section 7.4, and for the proof of Theorem 7.1 in Section 7.5.

7.1 Integrals of families of operators

In this chapter, there are several occasions where we consider integrals of families
of operators. The following facts will be used in those situations.

Adjointable operators and integrals

Lemma 7.2. Let (M,µ) be a compact Borel space with finite measure, let E be
a Hilbert A-module, and let

ϕ : M → B(E)

be a continuous map. Then the integral
∫

M

ϕ(m) dµ(m)

defines an adjointable operator on E, determined by

(
ξ,

∫

M

ϕ(m) dµ(m) η
)
E

=
∫

M

(ξ, ϕ(m)η)E dµ(m) ∈ A, (7.3)

for all ξ, η ∈ E.
Proof. The integral on the right hand side of (7.3) converges, because µ(M)
is finite, and because the map m 7→ (ϕ(m)ξ, η)E is continuous on the compact
space M , and hence bounded. It follows directly from the definition (7.3) of the
operator

∫
M
ϕ(m) dµ(m) that it has an adjoint, given by

(∫

M

ϕ(m) dµ(m)
)∗

=
∫

M

ϕ(m)∗ dµ(m).
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We will often use the fact that ‘adjointable operators commute with inte-
grals’, in the following sense:

Lemma 7.3. Let (M,µ) be a measure space, let E be a Hilbert A-module, and
let

ϕ : M → B(E)

be a measurable function. That is to say, the integral
∫
M
ϕ(m)dµ(m) is a well-

defined adjointable operator on E, determined by (7.3).
Let E ′ be another Hilbert A-module, and let T : E → E ′ be an adjointable

operator. Then
∫

M

T ◦ ϕ(m)dµ(m) = T ◦
∫

M

ϕ(m)dµ(m).

Proof. The statement follows directly from (7.3).

Compact operators and integrals

In the proof of Lemma 7.12 we will use the fact that in some cases, ‘the integral
over a compact set of a family of compact operators is compact’. To be more
precise:

Lemma 7.4. Let (M,µ) be a compact Borel space with finite measure. Let E be
a Hilbert C∗-module, and let ϕ : M → K(E) be a continuous compact operator-
valued map. Suppose that ϕ is ‘uniformly compact’, in the sense that there exists
a sequence

(
ϕj

)∞
j=1

: M → F(E) such that

‖ϕj − ϕ‖∞ := sup
m∈M

‖ϕj(m)− ϕ(m)‖B(E)

tends to zero as j → ∞. Suppose furthermore that for every j ∈ N, there is a
sequence

(
ϕkj

)∞
k=1

: M → F(E) of simple functions (i.e. measurable functions
having finitely many values), such that for all ε > 0 there is an n ∈ N such that
for all j, k ≥ n, ‖ϕkj − ϕj‖ < ε. Then the integral

∫

M

ϕ(m)dµ(m)

defines a compact operator on E.
Proof. For all j, k ∈ N, the integral

∫
M
ϕkj (m)dµ(m) is a finite sum of finite rank

operators, and hence a finite rank operator itself. And because ‖ϕjj −ϕ‖∞ → 0
as j tends to ∞, we have

∫

M

ϕjj(m)dµ(m)→
∫

M

ϕ(m)dµ(m)

in B(E). Hence
∫
M
ϕ(m)dµ(m) is a compact operator.
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In the following situation, the assumptions of Lemma 7.4 are met:

Lemma 7.5. Let E be a Hilbert C∗-module, and let (M,µ) be a compact Borel
space with finite measure. Suppose M is metrisable. Let α, β : M → B(E)
be continuous, and let T ∈ K(E) be a compact operator. Define the map ϕ :
M → K(E) by ϕ(m) = α(m)Tβ(m). This map satisfies the assumptions made
in Lemma 7.4.

Proof. Choose a sequence (Tj)∞j=1 in F(E) that converges to T . For m ∈M , set

ϕj(m) = α(m)Tjβ(m)

Then
‖ϕj − ϕ‖∞ ≤ ‖α‖∞‖Tj − T‖B(E)‖β‖∞ → 0

as j →∞. Note that α and β are continuous functions on a compact space, so
their sup-norms are finite.

Choose sequences of simple functions αk, βk : M → B(E) such that ‖αk −
α‖∞ → 0 and ‖βk − β‖∞ → 0 as j goes to ∞ (see Lemma 7.6 below). For all
j, k ∈ N, set

ϕkj (m) := αk(m)Tjβk(m),

for m ∈M . Note that

‖ϕkj − ϕj‖∞ = sup
m∈M

‖αk(m)Tjβk(m)− α(m)Tjβ(m)‖

≤ sup
m∈M

(
‖αk(m)Tjβk(m)− αk(m)Tjβ(m)‖

+ ‖αk(m)Tjβ(m)− α(m)Tjβ(m)‖
)

≤ ‖αk‖∞‖Tj‖‖βk − β‖∞ + ‖αk − α‖∞‖Tj‖‖β‖∞.

The sequences k 7→ ‖αk‖∞ and j 7→ ‖Tj‖ are bounded, since αk → α and
Tj → T . Hence, because the sequences ‖αk−α‖∞ and ‖βk−β‖∞ tend to zero,
we see that ‖ϕkj − ϕj‖ can be made smaller than any ε > 0 for k large enough,
uniformly in j.

Lemma 7.6. Let (M,µ) be a metrisable compact Borel space with metric d, let
Y be a normed vector space, and let α : M → Y be a continuous map.

Then there exists a sequence of simple maps αk : M → Y such that the
sequence

‖α− αk‖∞ := sup
m∈M

‖α(m)− αk(m)‖Y

goes to zero as k goes to infinity.

Proof. For every k ∈ N, choose a finite covering Ũk = {Ṽ 1
k , . . . , Ṽ

nk

k } of M by
balls of radius 1

k . From each Ũk, we construct a partition Uk = {V 1
k , . . . , V

nk

k } of
M , by setting V 1

k := Ṽ 1
k , and V jk := Ṽ jk \

⋃j−1
i=1 Ṽ

i
k , for j = 2, . . . , nk. Note that
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the sets V jk are Borel-measurable. For all k ∈ N and j ∈ {1, . . . , nk}, choose an
element mj

k ∈ V jk . Define the simple map αk : M → Y by

αk(m) := α(mj
k) if m ∈ V jk .

Note that, because α is continuous (and uniformly continuous because M is
compact), for every ε > 0 there is a kε ∈ N such that for all m,n ∈M ,

d(m,n) <
1
kε

⇒ ‖α(m)− α(n)‖Y < ε.

Hence for all ε > 0, all k > kε, and all m ∈M (say m ∈ V jk ),

‖α(m)− αk(m)‖Y = ‖α(m)− α(mj
k)‖Y < ε.

So ‖α− αk‖∞ indeed goes to zero.

7.2 Extension of operators to Hilbert C∗-modules

From now on, let (H, F, π) be a G-equivariant K-homology cycle over X. In
the definition of the assembly map, a Hilbert C∗(G)-module E is constructed
from the Hilbert space H, namely as the closure of the space Hc = π(Cc(X))H
in a certain norm (see Section 5.2). We shall prove the well-known fact that F
induces an operator on E , because we will also use some of the ingredients in
this proof later in this chapter.

Lemma 7.7. Let T ∈ B(H) be properly supported and G-equivariant. Then T
preserves Hc, and T |Hc extends continuously to an adjointable operator TE on
E.

In the proof of Lemma 7.7, and also later, we will use:

Lemma 7.8. There is a nonnegative function c ∈ Cc(X) such that for all
x ∈ X, ∫

G

c(gx)dg = 1.

Proof. Because the quotient X/G is compact, there is a nonnegative function
h ∈ Cc(X) such that for all x ∈ X, the orbit Gx intersects the interior of the
support of h. Therefore, ∫

G

h(gx)dx > 0

for all x ∈ X. Let c ∈ Cc(X) be the function

c(x) :=
h(x)∫

G
h(gx)dg

.

By right invariance of dg, this function has the desired property.
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Corollary 7.9. Let hN ∈ Cc(X/N). Then there is a function h ∈ Cc(X) such
that for all x ∈ X, ∫

N

h(nx) dn = hN (Nx). (7.4)

Proof. If X/N is compact, choose

h(x) := c(x)hN (Nx),

where c is the function from Lemma 7.8 (with G replaced by N). Otherwise
set Y := p−1(supphN ), with p : X → X/N the quotient map. The preceding
argument yields a function h ∈ Cc(Y ) such that for all y ∈ Y ,

∫

N

h(ny) dn = hN (Ny).

Since ∂Y = p−1(∂ supphN ), we have h|∂Y = 0. Hence h can be extended by
zero outside Y to a continuous function on X. This extension satisfies (7.4).

An auxiliary map S

Let L2(G,H) be the Hilbert space of functions ϕ : G→ H whose norm-squared
function g 7→ (ϕ(g), ϕ(g))H is integrable over G. Let c ∈ Cc(X) be the function
from Lemma 7.8, and let f :=

√
c. Just as Valette does in [62], we define the

linear map
S : H → L2(G,H)

by
Sξ(g) = π(f)g · ξ.

Lemma 7.10. The map S is an isometry, intertwines the representation of G
in H and the right regular representation of G in L2(G,H), and it maps Hc into
the space L2

c(G,H) of compactly supported L2-functions from G to H.

Proof. The facts that G acts unitarily on H, π is a ∗-homomorphism and a
nondegenerate representation, together with Lemma 7.3 and the definition of
f , imply that S is an isometry. So in particular, the image of S lies inside
L2(G,H). Furthermore, it follows from the definitions that S intertwines the
representation of G in H and the right regular representation of G in L2(G,H).

By equivariance of π, we have for all h ∈ Cc(X), all ξ ∈ H and all g ∈ G,

S(π(h)ξ)(g) = π(f)gπ(h)ξ = π(fgh)g · ξ.
Since the action of G on X is proper, the latter expression is a compactly
supported function of g. In other words, the image of the space Hc under the
map S is contained in the space L2

c(G,H).

The spaces Hc and L2
c(G,H) carry Cc(G) ⊂ C∗(G)-valued inner products

given by
(ξ, η)C∗(G)(g) = (ξ, g · η)H, (7.5)
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for ξ, η ∈ Hc and g ∈ G, and

(ϕ,ψ)C∗(G)(g) = (ϕ, ρG(g)ψ)L2(G,H), (7.6)

for ϕ,ψ ∈ L2
c(G,H) and g ∈ G. Here ρG denotes the right regular representation

of G in L2(G,H): (ρG(g)ψ)(g′) = ψ(g′g). With respect to these inner products,
the adjoint of the restriction S : Hc → L2

c(G,H) is the map

S∗ : L2
c(G,H)→ Hc

given by

S∗ϕ =
∫

G

g−1π(f)ϕ(g)dg. (7.7)

This follows from a computation involving an application of Lemma 7.3.
Another important property of the maps S and S∗ is that the composition

S∗S is the identity on Hc, by definition of f and by Lemma 7.3.

Proof of Lemma 7.7. Because T is properly supported, it preserves Hc. Via the
map S, the restriction of T to Hc induces the operator STS∗ on L2

c(G,H) ∼=
L2
c(G)⊗̂H, which is a dense subspace of the Hilbert C∗(G)-module C∗(G) ⊗
H. This embedding of L2

c(G,H) into C∗(G) ⊗ H is isometric with respect to
the C∗(G)-valued inner product (7.6) on L2

c(G,H) and the C∗(G)-valued inner
product on C∗(G)⊗H given by

(α⊗ ξ, β ⊗ η)C∗(G)⊗H = (ξ, η)H α ∗ β∗,
for α, β ∈ C∗(G) and ξ, η ∈ H. We will show that the operator STS∗ defines
an adjointable operator on C∗(G) ⊗H with respect to this inner product. We
then conclude that T = S∗STS∗S is adjointable as well.

To see that STS∗ defines an adjointable operator on C∗(G) ⊗ H, let ϕ ∈
L2
c(G,H) be given. Then for all g ∈ G, one computes

STS∗ϕ(g) =
∫

G

π(f)Tπ(g′f)g′ϕ(g′−1g)dg′.

Identifying L2
c(G,H) with L2

c(G)⊗̂H, we see that for all χ ∈ L2
c(G) and ξ ∈ H,

STS∗(χ⊗ ξ) =
∫

G

χ(g′−1g)π(f)Tπ(g′f) g′ξ dg′.

In other words,

STS∗ =
∫

G

λG(g′)⊗ (
π(f)Tπ(g′f)g′

)
dg′, (7.8)

where λG denotes the left regular representation of G in L2(G).
The integrand in (7.8) is compactly supported, since by equivariance of π

and T ,

π(f)Tπ(g′f) = π(f)g′Tπ(f)g′−1 = g′π(g′−1f)π(h)Tπ(f)g′−1
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for some h ∈ Cc(X), because T is properly supported. And because the action
of G on X is proper, the map

g′ 7→ π(g′−1f)π(h) = π
(
(g′−1f)h

)

has compact support Σ. Note that, for χ, χ′ ∈ L2
c(G) and ξ, ξ′ ∈ H, the Cc(G)-

valued inner product (7.6) is given by

(χ⊗ ξ, χ′ ⊗ ξ′)C∗(G)(g) =
(
χ, ρG(g)χ′

)
L2(G)

(ξ, ξ′)H,

for g ∈ G. Since by Lemma 7.2, the operators
∫
Σ
π(f)Tπ(g′f)g′ dg′ on H and∫

Σ
λG(g′) dg′ on L2(G) are adjointable, and since the left and right regular

representations of G in L2(G) commute, the operator S∗TS∗ is adjointable. ¤

7.3 The averaging process

In the proof that the homomorphism VN is well-defined, we will use a certain
averaging process.

Averaging

As before, let (H, F, π) be an equivariant K-homology cycle over X.

Lemma 7.11. For T ∈ B(H) and f ∈ Cc(X), set

AGf (T ) :=
∫

G

gπ(f)Tπ(f)g−1dg.

1. AGf (T ) is a well-defined bounded operator on H;

2. AGf (T ) is properly supported;

3. AGf (T ) is G-equivariant.

Proof. 1. Suppose T is self-adjoint. (Otherwise apply the following argument to
the real and imaginary parts of T .) Then for all g ∈ G, we have the inequalities
in B(H):

−gπ(f2)g−1‖T‖B(H)1H ≤ gπ(f)Tπ(f)g−1 ≤ gπ(f2)g−1‖T‖B(H)1H.

Therefore,

−
∫

G

gπ(f2)g−1‖T‖B(H)1H dg ≤ AGf (T ) ≤
∫

G

gπ(f2)g−1‖T‖B(H)1H dg.
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And hence, by equivariance property (4.14) of π,

‖AGf (T )‖ ≤
∥∥∥
∫

G

gπ(f2)g−1dg
∥∥∥‖T‖

=
∥∥∥
∫

G

π(g · f2)dg
∥∥∥‖T‖

=
∥∥∥π

(∫

G

g · f2dg

)∥∥∥‖T‖

≤
∥∥∥
∫

G

g · f2dg
∥∥∥
∞
‖T‖,

where we have used the fact that the function

x 7→
∫

G

f2(gx) dg

is in C(X)G ∼= C(X/G), and hence bounded, by compactness of X/G.
2. Let ϕ ∈ Cc(X). Then, using equivariance of π in the second equality, we

see that

AGf (T )π(ϕ) =
∫

G

gπ(f)Tπ(f)g−1π(ϕ)dg

=
∫

G

π(g · f)gTπ(f g−1 · ϕ)g−1dg. (7.9)

Let K ⊂ G be the compact set K := {g ∈ G; f g−1ϕ 6= 0}. This set is compact
because the G-action on X is proper. Choose a function ψ ∈ Cc(X) that equals
1 on the compact set

⋃
g∈K g · supp f . Then, since ψ g · f = g · f for all g ∈ K,

it follows from (7.9) that

π(ψ)AGf (T )π(ϕ) = AGf (T )π(ϕ).

3. Equivariance of AGf (T ) follows from left invariance of the Haar measure
dg.

Averaging compact operators

Let T be a bounded operator onH, and let h ∈ Cc(X) be given. Then by Lemma
7.11, the averaged operator AGh (T ) is properly supported and G-equivariant. So
by Lemma 7.7, the operator AGh (T ) induces an adjointable operator on E . We
will need the following lemma to prove that the homomorphism VN is well-
defined.

Lemma 7.12. If T is a compact operator, then the operator on E induced by
AGh (T ) is compact as well.
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Proof. Let c ∈ Cc(X) be the function from Lemma 7.8, let f :=
√
c, and let S

be the operator from Lemma 7.10. Applying (7.8) to the operator AGh (T ), we
obtain

SAGh (T )S∗ =
∫

G

∫

G

π(f)
(
g′π(h)Tπ(h)g′−1

)
π(g · f) (λG(g)⊗ g) dg dg′

=
∫

G

∫

G

π(fg′ · h)g′Tπ(hg′−1g · f)
(
λG(g)⊗ g′−1g

)
dg dg′, (7.10)

where we have used Lemma 7.3 and equivariance of π.
Since the action of G on X is proper, the set K := {g′ ∈ G; fg′ · h 6= 0} is

compact. Hence the set L :=
⋃
g′∈K{g ∈ G;hg′−1g · f 6= 0} is compact as well.

The support of the integrand in (7.10) is contained in K × L, so it is compact.
We see that (7.10) is the integral over a compact space of a family of compact
operators. By Lemma 7.5, this family satisfies the assumptions of Lemma 7.4.
The latter lemma therefore implies that SAGh (T )S∗ defines a compact operator
on C∗(G)⊗H, so that AGh (T ) = S∗SAGh (T )S∗S defines a compact operator on
E .

7.4 The homomorphism VN

Definition of VN

The Valette homomorphism

VN : KG
0 (X)→ K

G/N
0 (X/N)

is given by
VN [H, F, π] = [HN , FN , πN ],

with HN , FN and πN defined as follows.
We equip the vector space Hc = π(Cc(X))H with the sesquilinear form

(ξ, η)N :=
∫

N

(ξ, n · η)H dn.

(For all ξ, η ∈ Hc, the integrand is compactly supported.) This form is positive
semidefinite:

Lemma 7.13. For all ξ ∈ Hc, one has

(ξ, ξ)N ≥ 0. (7.11)

Proof. We will prove that the compactly supported function

(ξ, ξ)C∗(N) : n 7→ (ξ, n · ξ)H



7.4 The homomorphism VN 121

on N , defines a positive element of C∗(N). We then note that any homomor-
phism of C∗-algebras preserves positivity. Hence, applying the trivial represen-
tation to (ξ, ξ)C∗(N), we see that

∫

N

(ξ, ξ)C∗(N)(n) dn = (ξ, ξ)N ≥ 0.

To show that (ξ, ξ)C∗(N) is a positive element of C∗(N), we will use a map
very similar to the map S of Lemma 7.10. Since X/N is not necessarily compact,
the map S may not be well-defined if we replace G by N . However, write
ξ = π(h)η, for some h ∈ Cc(X) and η ∈ H. Then

Y := N · supph ⊂ X,

is a proper N -space, such that Y/N is compact. Therefore, by Lemma 7.8, there
is a function f ∈ Cc(Y ) such that for all y ∈ Y ,

∫

N

f(n · y)2 dn = 1.

We define the map
Sξ : H → L2(N,H)

by
Sξ(ζ)(n) = π(f)n · ζ.

This map has similar properties to the properties of the map S given in Lemma
7.10. The adjoint of the map Sξ with respect to the C∗(N)-valued inner products
analogous to (7.5) and (7.6) is given by (7.7), with G replaced by N .

The main difference between S and Sξ is the fact that S∗ξSξ is not the identity
on Hc in general. However, we do have

S∗ξSξ(ξ) =
∫

N

n−1π(f)π(f)nπ(h)η dn

=
∫

N

π(n · f2) dnπ(h)η

= π(h)η
= ξ,

since the function
∫
N
n · f2 dn equals 1 on the support of h. Therefore, we see

that
(ξ, ξ)C∗(N) = (ξ, S∗ξSξξ)C∗(N) = (Sξξ, Sξξ)C∗(N).

We will shortly demonstrate that for all ϕ ∈ L2
c(N,H), the function (ϕ,ϕ)C∗(N)

is a positive element of C∗(N). Then taking ϕ = Sξ shows that (ξ, ξ)C∗(N) is
positive in C∗(N).
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Let ϕ ∈ L2
c(N,H), and choose a Hilbert basis (ei)i∈I of H. Write ϕ(n) =∑

i∈I ϕi(n)ei, with ϕi ∈ L2
c(N) for all i ∈ I. Then

(ϕ,ϕ)C∗(N)(n) =
∫

N

∑

i∈I
ϕ̄i(n′)ϕi(n′n)dn′

=
∑

i∈I

∫

N

ϕ∗i (n
′−1)ϕi(n′n)dn′

=
∑

i∈I
ϕ∗i ∗ ϕi(n).

Now note that all functions ϕ∗i ∗ ϕi are positive in C∗(N).

Because of this lemma, the form (−,−)N induces an inner product on
the quotient space Hc/ ker(−,−)N . We define HN to be the completion of
Hc/ ker(−,−)N with respect to this inner product.

Next, let us define the operator FN . From now on, we suppose that either X/N
is compact, or N is compact.

Let EN be the Hilbert C∗(N)-module defined as the completion of Hc with
respect to the C∗(N)-valued inner product given by

(ξ, η)EN (n) = (ξ, n · η)H, (7.12)

for ξ, η ∈ Hc and n ∈ N .
First, suppose X/N is compact. Then, by Lemma 7.7, the operator F

induces an adjointable operator FEN
on EN . Since adjointable operators are

bounded, there is a c > 0 such that for all ξ ∈ EN ,

‖FEN
ξ‖2EN

≤ c‖ξ‖2EN
.

Therefore, the operator c1EN − F ∗EN
FEN is a positive element of B(EN ), which

implies that for all ξ ∈ EN , the element
(
(c − F ∗EN

FEN
)ξ, ξ

)
EN

of C∗(N) is
positive. In other words,

(FEN
ξ, FEN

ξ)EN
≤ c(ξ, ξ)EN

(7.13)

in C∗(N). In particular, if ξ ∈ Hc, and we apply the trivial representation, we
can conclude that

(Fξ, Fξ)N ≤ c(ξ, ξ)N .
Therefore, F extends continuously to a bounded operator FN on HN .

If N is compact, then we have:

Lemma 7.14. For all ξ ∈ Hc,
(Fξ, Fξ)N ≤ ‖F‖2B(H)(ξ, ξ)N .

Hence also in this case, the operator F induces a bounded operator FN on
HN .
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Proof. By equivariance of F , and by compactness of N , we have

(Fξ, Fξ)N =
∫

N

(Fξ, Fn · ξ)H dn

=
1

vol(N)

∫

N

∫

N

(n′Fn′−1 · ξ, Fn · ξ)H dn dn′

=
1

vol(N)

∫

N

∫

N

(Fn′−1 · ξ, Fn′−1n · ξ)H dn dn′. (7.14)

Applying Lemma 7.2, we obtain a bounded operator

η 7→
∫

N

n · η dn

on H, such that for all η, η′ ∈ H:
(
η,

∫

N

n · η′ dn
)
H

=
∫

N

(η, n · η′)H dn.

By Lemma 7.3 and left invariance of dn, we see that (7.14) equals

1
vol(N)

(
F

(∫

N

n′−1 · ξ dn′
)
, F

(∫

N

n · ξ dn
))

H

=
1

vol(N)

(
F

(∫

N

n · ξ dn
)
, F

(∫

N

n · ξ dn
))

H

≤
‖F‖2B(H)

vol(N)

∫

N

∫

N

(n · ξ, n′ · ξ)H dn′ dn

≤
‖F‖2B(H)

vol(N)
vol(N) max

n∈N

(∫

N

(n · ξ, n′ · ξ)H dn′
)

= ‖F‖2B(H) max
n∈N

∫

N

(ξ, n−1n′ · ξ)H dn′

= ‖F‖2B(H)(ξ, ξ)N ,

by left invariance of dn.

Finally, the representation π of C0(X) in H extends to the multiplier algebra
Cb(X) of C0(X) (see Example 4.11). We embed the algebra C0(X/N) into
Cb(X) via the isomorphism C(X/N) ∼= C(X)N . The operators on H of the
form π(f), with f ∈ C(X)N , are properly supported and N -equivariant. So by
the argument used in the definition of FN , π induces a representation

πN : C0(X/N)→ B(HN ).

VN is well-defined

Let us prove that the triple (HN , FN , πN ) actually defines a class inKG/N
0 (X/N).

In the proof, we will use a different description of the Hilbert space HN .
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Consider the Hilbert space EN ⊗C∗(N) C = EN ⊗R
N
C, which is defined as

the quotient of the tensor product EN ⊗ C by the equivalence relation

(ξ · f)⊗ z ∼ ξ ⊗ ∫
N

(f)z,

for all ξ ∈ EN , f ∈ C∗(N) and z ∈ C. Here the map
∫
N

: C∗(N)→ C is defined
analogously to (6.2). That is, by

∫
N

(f) :=
∫
N
f(n) dn

for all f ∈ Cc(N), and extended continuously to all of C∗(N). The inner product
on EN ⊗C∗(N) C is given by

(
[ξ ⊗ z], [ξ′ ⊗ z′])EN⊗C∗(N)C

:=
∫
N

(
(ξ, ξ′)EN

)
zz̄′.

It is a straightforward matter to prove the following lemma:

Lemma 7.15. The linear map Hc ⊗ C → Hc given by ξ ⊗ z 7→ zξ induces a
unitary isomorphism EN ⊗C∗(N) C→ HN .

Using this description of HN we can now prove:

Lemma 7.16. The triple (HN , FN , πN ) defines a class in K
G/N
0 (X/N), with

FN properly supported.

Proof. We will show that for all hN ∈ C0(X/N), the bounded operators

[πN (hN ), FN ] and πN (hN )(F 2
N − 1)

on HN are compact. All other properties of K-homology cycles follow by a
straightforward verification.

Let hN ∈ Cc(X/N) be given. It is sufficient to prove the claim for all hN in
this dense subspace of C0(X/N). Let h ∈ Cc(X) be the function from Corollary
7.9. Then

∫
N
n · h dn = p∗hN , with p : X → X/N the quotient map. We

may suppose that hN is real-valued, for otherwise we can apply the following
argument to the real and imaginary parts of hN .

We split the proof of Lemma 7.16 into two parts, by first considering the
case where X/N is compact, and then proving the result for compact N .

Assume that X/N is compact. Then we have the bounded operator FEN
on

EN induced by F as in Lemma 7.7. The isomorphism EN ⊗C∗(N) C ∼= HN from
Lemma 7.15 intertwines the operator FN on HN and the operator FEN ⊗ 1 on
EN ⊗C∗(N) C. Indeed, for all ξ ∈ Hc and all z ∈ C, we have (FEN ⊗ 1)[ξ ⊗ z] =
[Fξ ⊗ z], and FN [zξ] = [zFξ].

Let us first prove that [πN (hN ), FN ] is a compact operator on HN . Because
F is properly supported, there is an f1 ∈ Cc(X) such that π(f1)Fπ(h) = Fπ(h).
Choose f ∈ Cc(X) such that f equals 1 on supp f1 ∪ supph. Then fh = h, and
π(f)Fπ(h) = π(f)π(f1)Fπ(h) = π(f1)Fπ(h) = Fπ(h). Now

[π(p∗hN ), F ] =
∫

N

n[π(h), F ]n−1 dn, (7.15)
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by Lemma 7.3 and equivariance of π. Note that

Fπ(h) = π(f)Fπ(h) = π(f)Fπ(h)π(f). (7.16)

Since F , π(f) and π(h) are self-adjoint operators, taking adjoints in (7.16) yields
π(h)F = π(f)π(h)Fπ(f). Hence

[π(h), F ] = π(f)[π(h), F ]π(f),

and (7.15) equals ANf ([π(h), F ]).
By assumption, the commutator [π(h), F ] is compact. Since X/N is com-

pact, we can therefore apply Lemma 7.12, and conclude that [π(p∗hN ), F ] in-
duces a compact operator [π(p∗hN ), F ]EN

on EN . Because the isomorphism
EN ⊗C∗(N) C ∼= HN intertwines the compact operator [π(p∗hN ), F ]EN

⊗ 1 on
EN ⊗C∗(N) C and the operator [πN (hN ), FN ] on HN , the latter is compact as
well.

To prove compactness of πN (hN )(F 2
N − 1), let hN and h be as above. Then

π(p∗hN )(F 2 − 1) =
∫

N

nπ(h)(F 2 − 1)n−1 dn. (7.17)

Because F is properly supported, so is F 2. So there is a function f ∈ Cc(X)
such that

F 2π(h) = π(f)F 2π(h) = π(f)F 2π(h)π(f).

Taking the adjoint of this equality, we see that (7.17) equals ANf
(
π(h)(F 2−1)

)
,

which is compact. As above, this implies that πN (hN )(F 2
N − 1) is compact.

Next, we suppose that N is compact. We saw that

[π(p∗hN ), F ] = ANf ([π(h), F ]).

By Lemma 7.17 below, the operator ANf ([π(h), F ])N on HN is compact. Hence
the operator

[πN (hN ), FN ] = [π(p∗hN ), F ]N

is compact as well. A similar argument can be used to prove that πN (hN )(F 2
N −

1) is compact.
Finally, to prove that FN is properly supported, let hN ∈ Cc(X/N) and

h ∈ Cc(X) be as above. We saw that, because F is properly supported, there
is a function f ∈ Cc(X) such that π(f)Fπ(h) = Fπ(h) and fh = h. Then as
before,

Fπ(p∗hN ) =
∫

N

Fnπ(h)n−1 dn

=
∫

N

nπ(f)Fπ(h)n−1 dn

=
∫

N

nπ(f)Fπ(h)π(f)n−1 dn

= ANf (Fπ(h)).
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Set KN := p(supp f), and let ϕN ∈ Cc(X/N) be equal to 1 on KN . Then
p∗ϕN f = f , and hence

π(p∗ϕN )ANf (Fπ(h)) =
∫

N

π(p∗ϕN )nπ(f)Fπ(h)π(f)n−1 dn

=
∫

N

nπ(n−1 · p∗ϕN )π(f)︸ ︷︷ ︸
=π(f)

Fπ(h)π(f)n−1 dn

= ANf (Fπ(h)).

And therefore,
πN (ϕN )FNπN (hN ) = FNπN (hN ).

In the proof of Lemma 7.16, we used the following analogue of Lemma 7.12.

Lemma 7.17. Suppose N is compact. Let T ∈ K(H) and h ∈ Cc(X) be given.
Then the operator ANh (T )N on HN , induced by ANh (T ), is compact as well.

Proof. Let
(
Tj

)∞
j=1

be a sequence of finite rank operators on H that converges
to T in B(H). We first claim that the averaged operators ANh (Tj) have finite
rank, for all j. Indeed, if Tj is a rank 1 operator:

Tj(ξ) = (η, ξ)Hζ

for all ξ ∈ H, then for all such ξ,

ANh (Tj)(ξ) =
∫

N

(nπ(h)η, ξ)H nπ(h)ζ dn

⊂ spann∈N n · π(h)ζ.

By compactness of N and unitarity of the representation of N in H, the unit
sphere in the latter space is compact. This space is therefore finite-dimensional,
so that ANh (Tj) is indeed a finite rank operator. In general, if Tj is a finite sum
of rank 1 operators, we see that ANh (Tj) is still a finite rank operator.

Furthermore, we have for all j,

‖ANh (Tj)−ANh (T )‖B(H) =
∥∥∥
∫

N

nπ(h)(Tj − T )π(h)n−1 dn
∥∥∥
B(H)

≤ vol(N)‖π(h)‖2B(H)‖Tj − T‖B(H),

which tends to zero. Lemma 7.14 implies that

‖ANh (Tj)N −ANh (T )N‖B(HN ) ≤ ‖ANh (Tj)−ANh (T )‖B(H),

and we see that ANh (Tj)N → ANh (T )N in B(HN ).
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Now the operators ANh (Tj)N have finite rank. Indeed, if the image of ANh (Tj)
is contained in the finite-dimensional subspace Vj ⊂ H, then, since ANh (Tj) is
properly supported,

ANh (Tj)Hc ⊂ Hc ∩ Vj ,
and the image of ANh (Tj)N is contained in the (finite-dimensional) closure of
Hc ∩ Vj in HN . It therefore follows that ANh (T )N is a compact operator on
HN .

The last step in the construction of the map VN is the fact that it is well-
defined on K-homology classes:

Lemma 7.18. The map VN maps equivalent K-homology cycles to equivalent
cycles.

Proof. It follows from the definition of VN that it maps unitarily equivalent
cycles to unitarily equivalent cycles.

To show that VN preserves operator homotopy, it is enough to prove that
there is a constant C > 0 such that for all K-homology cycles (H, F, π) with F
properly supported and G-equivariant, one has

‖FN‖B(HN ) ≤ C‖F‖B(H).

I.e. the map F 7→ FN is bounded.
For compact N , it follows from Lemma 7.14 that ‖FN‖B(HN ) ≤ ‖F‖B(H),

and we are done. Therefore, suppose that X/N is compact.
Let (H, F, π) be a K-homology cycle over X, with F properly supported and

G-equivariant. As before, let EN be the completion of Hc in the inner product
(7.12). By Lemma 7.7, F induces a bounded operator FEN

on EN , and by (7.8)
we have

‖FEN
‖B(EN ) = ‖SFEN

S∗‖B(L2(N,H))

=
∥∥∥
∫

N

λN (n)⊗ π(f)Fπ(n · f)ndn
∥∥∥,

where f ∈ Cc(X) has the property that
∫
N
f(nx)2 dn = 1 for all x ∈ X. Because

λN (n) and n are unitary operators on L2(N) and H respectively, this norm is
at most equal to

∫

K

‖π(f)‖B(H)‖π(n · f)‖B(H)‖F‖B(H) dn = vol(K)‖π(f)‖2B(H)‖F‖B(H),

where K is the compact set {n ∈ N ; f · nf 6= 0}. Set

C := vol(K)‖π(f)‖2B(H),

so that ‖FEN
‖B(EN ) ≤ C‖F‖B(H).

Then for all ξ ∈ Hc, we have ‖FEN ξ‖EN ≤ C‖F‖B(H) ‖ξ‖EN . Therefore, as
in (7.13), we see that

C2‖F‖2B(H)(ξ, ξ)C∗(N) − (FEN ξ, FEN ξ)C∗(N)
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is a positive element of C∗(N). Applying the trivial representation, we conclude
that

C2‖F‖2B(H)‖ξ‖2N − ‖Fξ‖2N ≥ 0

for all ξ ∈ Hc, i.e. ‖FN‖B(HN ) ≤ C‖F‖B(H).

7.5 Proof of naturality of the assembly map

Having finished the construction of the homomorphism VN , we are now ready
to prove Theorem 7.1.

Proof of Theorem 7.1.

Step 1: the K
G/N
0 (X/N)-cycles. Let [H, F, π] ∈ KG

0 (X), and suppose F is
G-equivariant and properly supported. Our goal is to show that

(∫
N

)
∗ ◦ µGX [H, F, π] = µ

G/N
X/N [HN , FN , πN ]

as elements of K0(C∗(G/N)).
Let E and FE be the Hilbert C∗(G)-module and the operator on E con-

structed from the cycle (H, F, π) as in the definition of the assembly map. That
is,

µGX [H, F, π] = [E , FE ].

The Hilbert C∗(G/N)-module part of
(∫
N

)
∗ ◦ µGX [H, F, π] is

EG/N := E ⊗C∗(G) C
∗(G/N),

where C∗(G) acts on C∗(G/N) via the homomorphism
∫
N

. The C∗(G/N)-
valued inner product on EG/N is given by

(
[ξ ⊗ a], [η ⊗ b])EG/N

= a∗
(∫
N

(
(ξ, η)E

))
b,

for all ξ, η ∈ E and a, b ∈ C∗(G/N). The operator part of
(∫
N

)
∗ ◦µGX [H, F, π] is

FEG/N
:= FE ⊗ 1.

On the other hand, the Hilbert C∗(G/N)-module part of µG/NX/N [HN , FN , πN ]

is a certain completion ẼG/N of the space

HN,c = πN (Cc(X/N))HN .

The completion ẼG/N of HN,c is taken in the norm

‖ξN‖2ẼG/N
= ‖Ng 7→ (ξN , Ng · ξN )N‖C∗(G/N).

The operator part FẼG/N
of µG/NX/N [HN , FN , πN ] is defined as the continuous

extension of FN , as in Lemma 7.7.
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Step 2: an isomorphism. If ξ ∈ Hc, we will write ξN := ξ + ker(−,−)N for its
class in HN . Then for all ξ ∈ Hc, we have ξN ∈ HN,c. Indeed, let f ∈ Cc(X)
and ζ ∈ H be such that ξ = π(f)ζ. Let hN ∈ Cc(X/N) be equal to 1 on the
image of supp f in X/N . Then

ξN = π(p∗hN )π(f)ζ + ker(−,−)N
= πN (hN )

(
π(f)ζ + ker(−,−)N

)

= πN (hN )ξN .

Define the linear map

Ψ : Hc ⊗Cc(G) Cc(G/N)→ HN,c

by

Ψ[ξ ⊗ ϕ] =
∫

G/N

ϕ(Ng−1)Ng · ξNd(Ng),

where d(Ng) is the Haar measure on G/N normalised such that1 for all h ∈
Cc(G), ∫

G

h(g)dg =
∫

Ng∈G/N

∫

n∈N
h(gn) dn d(Ng). (7.18)

We will show that Ψ is an isometry with respect to the Cc(G/N) ⊂ C∗(G/N)-
valued inner products on the spaces in question. This implies that Ψ extends
to an isometry between the completions in these inner products:

Ψ : EG/N = Hc ⊗Cc(G) Cc(G/N)→ HN,c = ẼG/N .

It will turn out that Ψ is surjective, and intertwines the operators FEG/N
and

FẼG/N
. This will complete the proof.

To prove that Ψ is an isometry, let ξ, η ∈ Hc and ϕ,ψ ∈ Cc(G/N) be given.
Then for all g ∈ G, one computes

([ξ ⊗ ϕ], [η ⊗ ψ])EG/N
(Ng) =

∫

G/N

∫

G/N

ϕ̄(Ng′−1)ψ(Ng′′−1g′−1g)(ξ, g′′ · ξ)N d(Ng′) d(Ng′′)

= (Ψ[ξ ⊗ ϕ],Ψ[η ⊗ ψ])ẼG/N
(Ng).

(7.19)

Next, we show that Ψ : EG/N → ẼG/N has dense image, and is hence surjec-
tive, because it is an isometry. Indeed, let ξ ∈ Hc. We will show that ξN lies in
the closure of the image of Ψ. Because Hc/ ker(−,−)N is dense in HN,c, which
in turn is dense in ẼG/N , this proves that Ψ has dense image. Let us construct
a sequence in Hc ⊗Cc(G) Cc(G/N) whose image under Ψ converges to ξN . Let

1The correct way to define the integral on the right hand side of (7.18) is via a measurable
section G/N → G.
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(ϕjN )∞j=1 be a sequence in Cc(G/N) such that for all j, ϕjN is a nonnegative real
valued function with integral 1, and that

lim
j→∞

ϕjN = δNe,

as distributions on G/N (with respect to the Haar measure d(Ng)). Then for
all j,

‖Ψ(ξ ⊗ ϕjN )− ξN‖N =
∥∥∥
∫

N/G

Ng · ξN ϕjN (Ng−1)d(Ng)−
∫

N/G

ξN ϕjN (Ng−1)d(Ng)
∥∥∥
N

≤
∫

N/G

ϕjN (Ng−1)‖Ng · ξN − ξN‖d(Ng),

which tends to zero as j →∞. So Ψ is surjective.
Finally, it follows directly from the definitions that Ψ◦ (FE⊗1) = FẼG/N

◦Ψ.
¤



Chapter 8

K-homology classes of
differential operators

In this chapter, we will compute the image under the homomorphism VN from
Theorem 7.1 of a K-homology class associated to an equivariant elliptic differen-
tial operator on a vector bundle over a smooth manifold. The result is Corollary
8.11. In Chapter 10, we will specialise Corollary 8.11 to Dirac operators in the
case of a free action by a discrete group, proving Theorem 6.5. Corollary 8.11
will also play a role in Section 9.4.

8.1 L2-spaces of sections of a vector bundle

Let G be a unimodular Lie group with a Haar measure dg, and let N be a
closed, normal subgroup of G, with a left invariant Haar measure dn. Let M be
a smooth manifold on which G acts properly, such that the action of N on M
is free. Suppose M/G is compact.

Now let q : E → M be a G-vector bundle, equipped with a G-invariant
Hermitian metric (−,−)E . Let dm be a G-invariant measure on M , and let
L2(M,E) be the space of square-integrable sections of E with respect to this
measure. Let πM : C0(M) → B(L2(M,E)) be the representation defined by
multiplying sections with functions. Let L2(M,E)N be the Hilbert space con-
structed from L2(M,E) as in the definition of the homomorphism VN . We
will show that L2(M,E)N is G/N -equivariantly and unitarily isomorphic to
the Hilbert space L2(M/N,E/N) of square-integrable sections of the quotient
vector bundle

qN : E/N →M/N.

The L2-inner product on sections of E/N is defined via the metric on E/N
induced by the one on E, and the measure dO on M/N with the property that

131
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for all measurable sections1 ϕ : M/N →M and all f ∈ Cc(M),
∫

M

f(m)dm =
∫

M/N

∫

N

f(n · ϕ(O)) dn dO (8.1)

(see [13], Proposition 4b, page 44).
Note that in this example, the space

L2
c(M,E) := π(Cc(M))L2(M,E)

is the space of compactly supported L2-sections of E. Consider the linear map

χ : L2
c(M,E)→ L2(M/N,E/N), (8.2)

defined by

χ(s)(Nm) := N ·
∫

N

n · s(n−1m) dn,

for all s ∈ L2
c(M,E) and m ∈ M . Because s is compactly supported and the

action is proper, the integrand is compactly supported for all m ∈M .

Proposition 8.1. The map χ induces a G/N -equivariant unitary isomorphism

χ : L2(M,E)N
∼=−→ L2(M/N,E/N). (8.3)

Proof. It follows from a lengthy but straightforward computation that the map
χ is isometric, in the sense that for all s ∈ L2

c(M,E),

‖χ(s)‖L2(M/N,E/N) = ‖s‖N ,

where ‖ · ‖N is the norm corresponding to the inner product (−,−)N . Hence χ
induces an injective linear map

χ : L2
c(M,E)/K → L2(M/N,E/N), (8.4)

where K is the space of sections s ∈ L2
c(M,E) with ‖s‖N = 0.

Furthermore, the map χ has dense image, see Lemma 8.2 below. It therefore
extends to a unitary isomorphism

χ : L2(M,E)N → L2(M/N,E/N).

The fact that N is a normal subgroup implies that this isomorphism intertwines
the pertinent representations of G/N .

Lemma 8.2. The image of the map χ in (8.2) contains the space L2
c(M/N,E/N)

of compactly supported L2-sections of E/N →M/N .

1Measurable in the sense that the inverse image of any Borel measurable subset of M is
Borel measurable in M/N .
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Proof. Let σ ∈ L2
c(M/N,E/N). We will construct a section s ∈ L2

c(M,E) such
that χ(s) = σ, using the following diagram:

E
pE //

q

²²

E/N

qN

²²
M

p // M/N.

Here the horizontal maps are quotient maps and define principal fibre bundles,
and the vertical maps are vector bundle projections.

Let {Uj} be an open cover of suppσ ⊂M/N that admits local trivialisations

τj : p−1(Uj)
∼=−→ Uj ×N ;

θNj : q−1
N (Uj)

∼=−→ Uj × E0,

where E0 is the typical fibre of E. Because suppσ is compact, the cover {Uj}
may be supposed to be finite. Via the isomorphism of vector bundles p∗(E/N) ∼=
E, the trivialisations θNj induce local trivialisations of E:

θj : q−1(p−1(Uj))
∼=−→ p−1(Uj)× E0.

And then, we can form trivialisations

τEj : p−1
E (q−1

N (Uj))
∼=−→ q−1

N (Uj)×N,

by

p−1
E (q−1

N (Uj)) = q−1(p−1(Uj))
∼= p−1(Uj)× E0 via θj
∼= Uj ×N × E0 via τj
∼= q−1

N (Uj)×N via θNj .

Here the symbol ‘∼=’ indicates an N -equivariant diffeomorphism. It follows from
the definition of the trivialisation θj that τEj composed with projection onto
q−1
N (Uj) equals pE , so that τEj is indeed an isomorphism of principal N -bundles.

For every j, define the section sj ∈ L2(M,E) by

sj(τ−1
j (O, n)) =

(
τEj

)−1(σ(O), n)

for all O ∈ Uj and n ∈ N , and extended by zero outside p−1(Uj). By compact-
ness of suppσ, there is a compact subset C̃ ⊂M that intersects all N -orbits in
suppσ. Let K ⊂ N be a compact subset of dn-volume 1, and set C := K · C̃.
Then for all m ∈M , the volume of the compact set

Vm := {n ∈ N ;n−1m ∈ C}
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is at least 1. Define the section s̃ of E by

s̃(m) =
{ ∑

j sj(m) if m ∈ C
0 if m 6∈ C.

Then s̃ ∈ L2
c(M,E), and for all m ∈M ,

χ(s̃)(Nm) =
∑

j,
Nm∈Uj

∫

Vm

pE
(
n · sj(n−1m)

)
dn

=
∑

j,
Nm∈Uj

∫

Vm

pE
((
τEj

)−1(σ(Nm), n · ψ(n−1m))
)
dn, (8.5)

where (Nm,ψ(n−1m)) := τj(n−1m). Now since pE ◦
(
τEj

)−1 is projection onto
q−1
N (Uj), the expression (8.5) equals

#{j;Nm ∈ Uj} vol(Vm)σ(Nm).

Setting ϕ(m) := #{j;Nm ∈ Uj} vol(Vm) gives a measurable function ϕ on M
which is bounded below by 1 and N -invariant by invariance of dn. Hence

s :=
1
ϕ
s̃,

is a section s ∈ L2
c(M,E) for which χ(s) = σ.

8.2 Differential operators

Let G and E → M be as in Section 8.1. Let D : Γ∞(M,E) → Γ∞(M,E) be
a G-equivariant first order differential operator that is symmetric with respect
to the L2-inner product on compactly supported sections. Then D defines an
unbounded operator on L2(M,E). We assume that this operator has a self-
adjoint extension, which we also denote by D.

Functional calculus and properly supported operators

Applying the functional calculus to the self-adjoint extension of D, we define the
bounded, self-adjoint operator b(D) on L2(M,E), for any bounded measurable
function b on R. The operator b(D) is G-equivariant because of Lemma 4.31.

We will later consider the case where
(
L2(M,E), b(D), πM

)
is a K-homology

cycle, and apply the map VN to this cycle. It is therefore important to us that the
operator b(D) is properly supported (Definition 5.13) for well-chosen functions
b:

Proposition 8.3. If b is a bounded measurable function with compactly sup-
ported (distributional) Fourier transform b̂, then the operator b(D) is properly
supported.
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The proof of this proposition is based on the following two facts, whose
proofs can be found in [35], Section 10.3.

Proposition 8.4. If b is a bounded measurable function on R with compactly
supported Fourier transform, then for all s, t ∈ Γ∞c (M,E),

(
b(D)s, t

)
L2(M,E)

=
1

2π

∫

R

(
eiλDs, t

)
L2(M,E)

b̂(λ) dλ.

This is Proposition 10.3.5. from [35]. By Stone’s theorem, the operator eiλD

is characterised by the requirements that λ 7→ eiλD is a group homomorphism
from R to the unitary operators on L2(M,E), and that for all s ∈ Γ∞c (M,E),

∂

∂λ

∣∣∣∣
λ=0

eiλDs = iDs.

Lemma 8.5. Let s ∈ Γ∞c (M,E), and let h ∈ C∞c (M) be equal to 1 on the
support of s. Let λ ∈ R such that |λ| < ‖[D,πM (h)]‖−1. Then

supp eiλDs ⊂ supph.

This follows from the proof of Proposition 10.3.1. from [35].

Proof of Proposition 8.3. Let R > 0 be such that supp b̂ ⊂ [−R,R]. Let
f ∈ Cc(M), and choose h ∈ C∞c (M) such that h equals 1 on the support of f ,
and that ‖[D,πM (h)]‖ ≤ 1

R . Let 1M be the constant function 1 on M . Then
by Lemma 8.5,

πM (1M − h)eiλDπM (f) = 0, (8.6)

for all λ ∈] − R,R[. Here we have extended the nondegenerate representation
πM of C0(M) on L2(M,E) to the multiplier algebra Cb(M) of C0(M). So by
Proposition 8.4, we have for all s, t ∈ Γ∞c (M,E),

(
πM (1M − h)b(D)πM (f)s, t

)
L2(M,E)

=
(
b(D)πM (f)s, πM (1M − h̄)t

)
L2(M,E)

=
1

2π

∫

R

(
eiλDπM (f)s, πM (1M − h̄)t

)
L2(M,E)

b̂(λ) dλ

=
1

2π

∫ R

−R

(
πM (1M − h)eiλDπM (f)s, t

)
L2(M,E)

b̂(λ) dλ = 0,

by (8.6). So

(
1− πM (h)

)
b(D)πM (f) = πM (1M − h)b(D)πM (f) = 0,

and hence b(D) is properly supported. ¤
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The image of b(D) under VN

Now suppose that D is elliptic and that b is a normalising function with com-
pactly supported Fourier transform. If g is a smooth, even, compactly sup-
ported function on R, and f := g ∗ g is its convolution square, then b(λ) :=∫
R
eiλx−1
ix f(x) dx is such a function (see [35], Exercise 10.9.3).

Because b(D) is properly supported it preserves L2
c(M,E), and the construc-

tion used in the definition of the map VN applies to b(D). The resulting operator
b(D)N on L2(M,E)N is defined by commutativity of the following diagram:

L2
c(M,E) //

b(D)

²²

L2(M,E)N

b(D)N

²²
L2
c(M,E) // L2(M,E)N .

On the other hand, the operator D induces an unbounded operator on
L2(M/N,E/N), because it restricts to

D̃N : Γ∞(M,E)N → Γ∞(M,E)N .

We then use the following fact:

Proposition 8.6. Let H be a group acting properly and freely on a manifold
M . Let q : E →M be an H-vector bundle. Then the induced projection

qH : E/H →M/H

defines a vector bundle over M/H.
Let Γ∞(M,E)H be the space of H-invariant sections of E. The linear map

ψE : Γ∞(M,E)H → Γ∞(M/H,E/H), (8.7)

defined by
ψE(s)(H ·m) = H · s(m),

is an isomorphism of C∞(M)H ∼= C∞(M/H)-modules.

Sketch of proof. The inverse of ψE is the pullback along the quotient map
p : M →M/H,

p∗ : Γ∞(M/H,E/H)→ Γ∞(M,E)H ,

defined by
(p∗σ)(m) = (m,σ(Hm)) ∈ p∗(E/H) ∼= E,

for σ ∈ Γ∞(M/H,E/H). The isomorphism p∗(E/H) ∼= E is given by

(m,He) 7→ e, (8.8)

for m ∈M and e ∈ Em. ¤
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Using Proposition 8.6, we define

DN := ψ−1
E D̃NψE : Γ∞(M/N,E/N)→ Γ∞(M/N,E/N). (8.9)

We regard DN as an unbounded operator on L2(M/N,E/N). It is symmet-
ric with respect to the L2-inner product, and hence essentially self-adjoint
by [35], Corollary 10.2.6. We therefore have the bounded operator b(DN ) on
L2(M/N,E/N).

Our claim is:

Proposition 8.7. The isomorphism χ from Proposition 8.1 intertwines the
operators b(D)N and b(DN ):

L2(M,E)N
χ //

b(D)N

²²

L2(M/N,E/N)

b(DN )

²²
L2(M,E)N

χ // L2(M/N,E/N).

We will prove this claim by reducing it to the commutativity of another
diagram. This diagram involves the Hilbert space L̃2(M/N,E/N), which is
defined as the completion of the space Γ∞(M,E)N in the inner product

(σ, τ) :=
∫

M/N

(
σ(ϕ(O)), τ(ϕ(O)

)
E
dO,

for any measurable section ϕ : M/N → M . The map ψE from Proposition 8.6
extends continuously to a unitary isomorphism

ψ̃E : L̃2(M/N,E/N)→ L2(M/N,E/N).

The unbounded operator D̃N on L̃2(M/N,E/N) is essentially self-adjoint
because DN is, and because ψ̃E intertwines the two operators. Hence we have
b(D̃N ) ∈ B(

L̃2(M/N,E/N)
)
. We will deduce Proposition 8.7 from Lemma 8.8:

Lemma 8.8. The following diagram commutes:

L2
c(M,E)

∫
N
n·

//

b(D)

²²

L̃2(M/N,E/N)

b(D̃N )

²²
L2
c(M,E)

∫
N
n·

// L̃2(M/N,E/N),

where the map
∫
N
n· is given by2

(∫
N
n · (s)

)
(Nm) =

∫

N

n · s(n−1m) dn.

2Note that the space L̃2(M/N,E/N) can be realised as a space of sections of E.
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Proof. Step 1. Because the representation of N in L2(M,E) is unitary, we have

(∫
N
n · (s), t

)
L2(M,E)

=
(
s,

∫
N
n · (t)

)
L2(M,E)

for all s, t ∈ L2
c(M,E).

Step 2. By equivariance of D, we have
(∫

N
n·

)
◦D = D̃N ◦ ∫

N
n·

on Γ∞c (M,E).

Step 3. For all s ∈ Γ∞c (M,E), we have

∂

∂λ

∣∣∣∣
λ=0

∫
N
n · ◦ eiλDs =

∫

N

∂

∂λ
eiλDn · s dn

= i

∫

N

n ·Dsdn

= iD̃N
∫
N
n·(s) (by Step 2)

=
∂

∂λ

∣∣∣∣
λ=0

eiλD̃
N ∫

N
n · (s).

So by Stone’s theorem,

∫
N
n · ◦ eiλD = eiλD̃

N ◦ ∫
N
n·

for all λ ∈ R.

Step 4. By using Proposition 8.4 and Steps 1 and 3 several times, we finally see
that for all s, t ∈ Γ∞c (M,E),

(
b(D̃N )

∫
N
n · (s), t)

L2(M,E)
=

1
2π

∫

R

(
eiλD̃

N ∫
N
n · (s), t)

L2(M,E)
b̂(λ) dλ

=
1

2π

∫

R

(∫
N
n · eiλDs, t)

L2(M,E)
b̂(λ) dλ

=
1

2π

∫

R

(
eiλDs,

∫
N
n · (t))

L2(M,E)
b̂(λ) dλ

=
(
b(D̃)s,

∫
N
n · (t))

L2(M,E)

=
(∫
N
n · b(D̃)s, t

)
L2(M,E)

.

This completes the proof.

We now derive Proposition 8.7 from Lemma 8.8.
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Proof of Proposition 8.7. Consider the following cube:

L2
c(M,E)

∫
N
n·

//

b(D)

²²

ÂÂ@
@@

@@
@@

@@
@@

@@
@@

@@
@@

L̃2(M/N,E/N)

b(D̃N )

²²
ψ̃E

""DDDDDDDDDDDDDDDDDDDDD

L2
c(M,E) //

ÃÃ@
@@

@@
@@

@@
@@

@@
@@

@@
@@

L̃2(M/N,E/N)

EE
EE

EE
EE

EE

ψ̃E

""EE
EE

EE
EE

EEL2(M,E)N χ
//

b(D)N

²²

L2(M/N,E/N)

b(DN )

²²
L2(M,E)N

χ // L2(M/N,E/N).

The rear square (with the operators b(D) and b(D̃N ) in it) commutes by Lemma
8.8. The left hand square (with the operators b(D) and b(D)N ) commutes
by definition of b(D)N , and the right hand square (with b(D̃N ) and b(DN ))
commutes by Lemma 4.31. The top and bottom squares commute by definition
of the map χ, so that the front square commutes as well, which is Proposition
8.7. ¤

8.3 Multiplication of sections by functions

Let G, M and E be as in Sections 8.1 and 8.2. As before, let

πM : C0(M)→ B(L2(M,E))

and
πM/N : C0(M/N)→ B(L2(M/N,E/N))

be the representations defined by multiplication of sections by functions. Let

πMN : C0(M/N)→ B(L2(M,E)N )

be the representation obtained from πM by the procedure in Section 7.4.

Lemma 8.9. The isomorphism (8.3) intertwines the representations πMN and
πM/N .

Proof. The representation πMN is induced by

(
πM

)N : C(M/N)→ B(L2
c(M,E)),

(
πM

)N (f)s(m) = f(N ·m)s(m).
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For all f ∈ C(M/N), s ∈ L2
c(M,E) and m ∈M , we therefore have

χ
(
πMN (f)s

)
(N ·m) = χ

((
πM

)N (f)s
)

(N ·m)

= N ·
∫

N

n · f(N · n−1m)s(n−1 ·m) dn

= N · f(N ·m)
∫

N

n · s(n−1 ·m) dn

=
(
πM/N (f)χ(s)

)
(N ·m).

8.4 Conclusion

Let G, M , E, D, DN , πM and πM/N be as in Sections 8.1 – 8.3. Suppose that
the vector bundle E carries a Z2-grading with respect to which the operator D
is odd. Suppose D is elliptic and essentially self-adjoint as an unbounded oper-
ator on L2(M,E).3 Let b be a normalising function with compactly supported
Fourier transform. Then Proposition 8.1, Proposition 8.7 and Lemma 8.9 may
be summarised as follows.

Theorem 8.10. Let
(
L2(M,E)N , b(D)N , πMN

)
be the triple obtained from

(L2(M,E), b(D), πM ) by the procedure of Section 7.4. Then there is a unitary
isomorphism

χ : L2(M,E)N → L2(M/N,E/N)

that intertwines the representations of G/N , the operators b(D)N and b(DN ),
and the representations πMN and πM/N .

Corollary 8.11. The image of the class

[D] :=
[
L2(M,E), b(D), πM

] ∈ KG
0 (M)

under the homomorphism VN defined in Section 7.4 is

VN [D] =
[
L2(M/N,E/N), b(DN ), πM/N

]
=

[
DN

] ∈ KG/N
0 (M/N).

Remark 8.12. If the action of G on M happens to be free, then Corollary 8.11
allows us to restate the Guillemin–Sternberg–Landsman conjecture 6.4 without
using techniques from noncommutative geometry. Indeed, for free actions we
have

R0
G ◦ µGM

[
/D
L
M

]
= µ

{e}
M/G ◦ VG

[
/D
L
M

]
(by Theorem 7.1)

= index
(
/D
L
M

)G (by Corollary 8.11)

= dim
(

ker
(
/D
L
M

)+
)G
− dim

(
ker

(
/D
L
M

)−)G
∈ Z.

3This is the case if M is complete and D is a Dirac operator on M , see Corollary 4.36.
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Note that even though the vector spaces ker
(
/D
L
M

)± may be infinite-dimensional,
their G-invariant parts are not, because they are the kernels of the elliptic op-

erators
((
/D
L
M

)±)G
on the compact manifold M/G. So Conjecture 6.4 becomes

dim
(

ker
(
/D
L
M

)+
)G
− dim

(
ker

(
/D
L
M

)−)G
= index /DL2ω0

M0
.

In the setting of Theorem 6.5, the assumption that the action is free is a
very restrictive one, see Remark 6.6.
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Chapter 9

Inclusions of maximal
compact subgroups into
semisimple groups

The monomorphism part of Valette’s ‘naturality of the assembly map’ is harder
to generalise to nondiscrete groups than the epimorphism part (Theorem 7.1).
The reason for this is more or less that the geometry of homogeneous spaces of
nondiscrete groups is usually nontrivial. More specifically, the problem is that a
principal fibre bundle G→ G/H has no smooth transversal in general. We will
generalise this monomorphism part to the case of inclusions of maximal compact
subgroups K of semisimple Lie groups G. The geometry of G/K enters into this
theorem via a Dirac operator /DG,K . This generalisation (Theorem 9.1) is one
of the key steps in a ‘quantisation commutes with induction’ result (Theorem
14.5) that we will use to deduce Theorem 6.13 from the compact case.

In the proof of Theorem 9.1, we will actually use the epimorphism case
of naturality of the assembly map, Theorem 7.1, and Corollary 8.11 from the
previous section, in Sections 9.1 and 9.4, respectively.

Let G be a connected semisimple Lie group with finite centre, and let K < G
be a maximal compact subgroup. Let N be a smooth manifold,1 equipped with
a K-action. Let M := G×K N be the quotient of G×N by the K-action given
by

k · (g, n) = (gk−1, kn),

for k ∈ K, g ∈ G and n ∈ N . Because this action is proper and free, M is a
smooth manifold. Left multiplication on the factor G induces an action of G on
M .

Theorem 9.1 (Naturality of the assembly map for K ↪→ G). The map K-IndGK ,
defined by commutativity of the left hand side of diagram (9.2), makes the fol-

1In the previous two chapters, we used N to denote a normal subgroup. We hope this is
not too confusing.

143
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lowing diagram commutative:

KG
0 (M)

µG
M // K0(C∗r (G))

KK
0 (N)

µK
N //

K-IndG
K

OO

R(K).

D-IndG
K

OO
(9.1)

This result is analogous to Theorem 4.1 from [4], which is used by Paradan in
[64] to reduce the Guillemin–Sternberg conjecture for compact groups to certain
subgroups. Our proof of Theorem 6.13 is analogous to this part of Paradan’s
work.

We will prove Theorem 9.1 by decomposing diagram (9.1) as follows:

KG
0 (M)

µG
M // K0(C∗r (G))

K
G×∆(K)
0 (G×N)

µ
G×∆(K)
G×N //

V∆(K)

OO

K0(C∗r (G×K))

R0
K

OO

KG×K×K
0 (G×N)

µG×K×K
G×N //

ResG×K×K
G×∆(K)

OO

K0(C∗r (G×K ×K))

ResG×K×K
G×∆(K)

OO

KK
0 (N)

µK
N

//

K-IndG
K

99

[/DG,K ]×−
OO

R(K).

D-IndG
K

ee

µG×K
G [/DG,K ]×−

OO

(9.2)

In this diagram, all the horizontal maps involving the letter µ are analytic
assembly maps. The symbol ‘×’ denotes the Kasparov product, and ∆(K) is
the diagonal subgroup of K ×K. The map D-IndGK was defined in (6.11). The
other maps will be defined in the remainder of this chapter.

The K-homology class [/DG,K ] ∈ KG×K
0 (G) is defined as follows. Note that

the Spin-Dirac operator on G/K is the operator /DG/K = /DC, with C the trivial
K-representation, and /DC as in (6.9). Let pG : G→ G/K be the quotient map,
let SG/K := G ×K ∆p be the spinor bundle on G/K, and consider the trivial
vector bundle p∗GSG/K = G × ∆dp → G. Let /DG,K be the operator on this
bundle given by the same formula (6.9) as the operator /DV , with V = C the
trivial representation. This operator satisfies

/DG,K(p∗Gs) = p∗G
(
/DCs

)
,

for all sections s of SG/K → G/K. We will use the fact that it is equivariant
with respect to the action of G×K on G×∆dp defined by

(g, k) · (g′, δ) = (gg′k−1, Ãd(k) · δ),
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for g, g′ ∈ G, k ∈ K and δ ∈ ∆dp . It is elliptic (see Lemma 15.6), and therefore
defines a class [/DG,K ] ∈ KG×K

0 (G).

We will distinguish between the different subdiagrams of (9.2) by calling
them the ‘left-hand’, ‘top’, ‘middle’, ‘bottom’ and ‘right-hand’ diagrams. Com-
mutativity of the left-hand diagram is the definition of the map K-IndGK . In this
chapter we will prove that the other diagrams commute as well, thus giving a
proof of Theorem 9.1.

9.1 The top diagram: naturality of the assembly
map for epimorphisms

In this section, we suppose that G is a locally compact Hausdorff group, and
that KCG is a compact normal subgroup of G. Furthermore, let X be a locally
compact, Hausdorff, proper G-space such that X/G is compact. Commutativ-
ity of the the top diagram is a special case of commutativity of the following
diagram:

K
G/K
0 (X/K)

µ
G/K

X/K

//

µ
G/K

X/K

**
K0(C∗(G/K))

λG/K

// K0(C∗r (G/K))

KG
0 (X)

µG
X //

VK

OO

µG
X

44
K0(C∗(G))

λG //

R0
K

OO

K0(C∗r (G)).

R0
K

OO
(9.3)

We have used the same notation for the assembly map with respect to the full
group C∗-algebra as for the assembly map with respect to the reduced one.
The maps λG/K and λG were defined in Remark 5.16, where it was also noted
that they make the top and bottom parts of diagram (9.3) commutative. The
maps VK and R0

K are defined as in the epimorphism case of naturality of the
assembly map, Theorem 7.1. It is a striking feature of our version of naturality
of the assembly map for the monomorphism K ↪→ G that it actually relies on
the epimorphism case in this way.

It remains to prove that the right-hand part of diagram (9.3) commutes.
But this is easily seen to be true, as the C∗-algebra homomorphisms that induce
the maps R0

K , λG and λG/K commute on the dense subspace Cc(G) of C∗(G)
(since the maps inducing λG and λG/K are the identity on Cc(G) and Cc(G/K),
respectively, and they are continuous).
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9.2 The middle diagram: restriction to subgroups

In the middle diagram of (9.2), the map

ResG×K×KG×∆(K) : KG×K×K
0 (G×N)→ K

G×∆(K)
0 (G×N)

is simply given by restricting representations and actions of G × K × K to
G×∆(K). The other restriction map,

ResG×K×KG×∆(K) : K0(C∗r (G×K ×K))→ K0(C∗r (G×∆(K))), (9.4)

is harder to define. (The restriction map Cc(G × K × K) → Cc(G × ∆(K))
is not continuous in the norms of the reduced group C∗-algebras involved, for
example.)

We define the map (9.4) using the Künneth formula. Since G is a connected
Lie group (in particular, it is an almost connected locally compact topological
group), it satisfies the Baum–Connes conjecture with arbitrary G-trivial coef-
ficients (see [16], Corollary 0.5). By Corollary 0.2 of [16], the algebra C∗r (G)
therefore satisfies the Künneth formula. In particular,

K0(C∗r (G×K ×K)) ∼= K0(C∗r (G)⊗min C
∗
r (K ×K))

∼= K0(C∗r (G))⊗K0(C∗r (K ×K))
∼= K0(C∗r (G))⊗R(K ×K).

Here we have used the fact that the representation ring R(K ×K) is torsion-
free, and the fact that C∗r (G1) ⊗min C

∗
r (G2) ∼= C∗r (G1 ⊗ G2) for all locally

compact Hausdorff groups G1 and G2. Analogously, we have an isomorphism
K0(C∗r (G×K)) ∼= K0(C∗r (G))⊗R(K).

The isomorphism is given by the Kasparov product. This product is defined
as the composition

KK0(C, C∗r (G))⊗KK0(C, C∗r (K ×K))
1⊗τC∗r (G)−−−−−−→

KK0(C, C∗r (G))⊗KK0(C∗r (G), C∗r (G)⊗min C
∗
r (K ×K))

×C∗r (G)−−−−−→
KK0(C, C∗r (G)⊗min C

∗
r (K ×K)), (9.5)

where τC∗r (G) is defined by tensoring from the left by C∗r (G), and × denotes the
Kasparov product (see [10], Chapter 18.9). Let

ResK×K∆(K) : R(K ×K)→ R(∆(K)) = R(K)

be the usual restriction map to the diagonal subgroup. We define (9.4) as the
map

1K0(C∗r (G)) ⊗ ResK×K∆(K) : K0(C∗r (G))⊗R(K ×K)→ K0(C∗r (G))⊗R(K).

Commutativity of the middle diagram now follows from
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Lemma 9.2. Let X be a locally compact, Hausdorff, proper G×K-space with
compact quotient, and let Y be a compact, Hausdorff K-space. Then the follow-
ing diagram commutes:

K
G×∆(K)
0 (X × Y )

µ
G×∆(K)
X×Y // K0(C∗r (G×K))

KG×K×K
0 (X × Y )

ResG×K×K
G×∆(K)

OO

µG×K×K
X×Y // K0(C∗r (G×K ×K)).

ResG×K×K
G×∆(K)

OO

Proof. Let a = [H, F, π] ∈ KG×K×K
0 (X × Y ), b = [EG, FG] ∈ K0(C∗r (G)) and

[V ] ∈ R(K ×K) be given, such that

µG×K×KX×Y (a) = b× [C∗r (G)⊗ V ] = [EG ⊗ V, FG ⊗ 1V ] ∈ K0(C∗r (G×K ×K)).

Because the assembly and restriction maps are Z-module homomorphisms, it is
sufficient to prove the claim in this case where the image of a is a simple tensor.

If we write

[E , FE ] := µG×K×KX×Y (a) ∈ K0(C∗r (G×K ×K));

[E ′, FE′ ] := µ
G×∆(K)
X×Y ◦ ResG×K×KG×∆(K)(a) ∈ K0(C∗r (G×K)),

then the operators FE and FE′ coincide on the dense mutual subspace Hc of E
and E ′. It is therefore enough to prove that

E ′ ∼= EG ⊗C
(
V |∆(K)

)

as Hilbert C∗r (G×K)-modules.
Using the usual choice of representatives of the classes b and [E , FE ] we have

an isomorphism of Hilbert C∗r (G×K ×K)-modules

ψ : E ∼=−→ EG ⊗ V.

Define the map
ϕ : E ′ ∼=−→ EG ⊗

(
V |∆(K)

)

by ϕ|Hc = ψ|Hc , and continuous extension. The map ϕ is well-defined, and
indeed an isomorphism, if it is a homomorphism of Hilbert C∗r (G×K)-modules.
To show that ϕ preserves the C∗r (G×K)-valued inner products, let ξ1, ξ2 ∈ Hc
be given, and suppose that ϕ(ξj) = ej⊗vj ∈ EG⊗V for j = 1, 2. (By linearity of
ϕ, it is indeed enough to consider the case where the ϕ(ξj) are simple tensors.)
Then for all g ∈ G and k ∈ K,

(
ϕ(ξ1), ϕ(ξ2)

)
EG⊗V |∆(K)

(g, k) = (e1, e2)EG
(g)

(
v1, (k, k) · v2

)
V

=
(
ψ(ξ1), ψ(ξ2)

)
EG⊗V (g, k, k)

= (ξ1, ξ2)E(g, k, k),
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because ψ is an isomorphism of Hilbert C∗(G × K × K)-modules. The latter
expression equals

(
ξ1, (g, k, k) · ξ2

)
H = (ξ1, ξ2)E′(g, k),

which shows that ϕ preserves the inner products.
Finally, because ψ is a homomorphism of C∗r (G×K×K)-modules, the map

ϕ is a homomorphism of C∗r (G×K)-modules on Hc, and hence on all of E ′.

9.3 The bottom diagram: multiplicativity of the
assembly map

Commutativity of the bottom diagram is a special case of the multiplicativity
property of the assembly map that we will prove in this section. This property
generalises multiplicativity of the index with respect to Atiyah’s ‘sharp product’
of elliptic operators, as described in [4], Theorem 3.5. In this section, we will
denote the tensor product of Hilbert C∗-modules (see Definition 5.1) by ⊗̂, to
emphasise the difference with the algebraic tensor product ⊗.

For this section, let G1 and G2 be locally compact Hausdorff topological
groups, acting properly on two locally compact metrisable spaces X1 and X2,
respectively. Suppose X1/G1 and X2/G2 are compact. Consider the Kasparov
product maps

KG1
0 (X1)⊗KG2

0 (X2) ×−→ KG1×G2
0 (X1 ×X2);

K0(C∗(r)(G1))⊗K0(C∗(r)(G2)) ×−→ K0(C∗(r)(G1 ×G2)). (9.6)

Here the symbol C∗(r) denotes either the full or the reduced group C∗-algebra,
and we have used the C∗-algebra isomorphisms (4.8) and (4.9).

Analogously to (9.5), the Kasparov product (9.6) is actually the composition

KK0(C, C∗(r)(G1))⊗KK0(C, C∗(r)(G2))
1⊗τC∗(r)(G1)

−−−−−−−−→

KK0(C, C∗(r)(G1))⊗KK0(C∗(r)(G1), C∗(r)(G1)⊗ C∗(r)(G2))
×C∗(r)(G1)

−−−−−−→
KK0(C, C∗(r)(G1)⊗ C∗(r)(G2)) = KK0(C, C∗(r)(G1 ×G2)). (9.7)

The tensor product denotes the maximal tensor product in the case of full C∗-
algebras, and the minimal tensor product for reduced C∗-algebras.

Theorem 9.3 (Multiplicativity of the assembly map). If X1 and X2 are metris-
able, then for all aj ∈ KGj

0 (Xj), we have

µG1
X1

(a1)× µG2
X2

(a2) = µG1×G2
X1×X2

(a1 × a2) ∈ K0(C∗(r)(G1 ×G2)).
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Here the assembly maps are defined with respect to either the full of the
reduced group C∗-algebras. We suppose X1 and X2 to be metrisable, because
the C∗-algebras C0(X1) and C0(X2) are then separable, so that we can use
Baaj and Julg’s unbounded description of the Kasparov product. Theorem 9.3
may well be true for non-metrisable spaces, but we will only apply it to smooth
manifolds anyway.

In the proof of Theorem 9.3, we will use the unbounded picture of KK-
theory (see Section 5.3), because of the easy form of the Kasparov product in
this setting. The construction of the unbounded assembly map in Section 5.3
works for full group C∗-algebras, so the following proof applies only to this case.
Theorem 9.3 for reduced group C∗-algebras can then be deduced using the maps
λG1 and λG2 defined in Remark 5.16.

Proof of Theorem 9.3. For j = 1, 2, let

aj = (Hj , Dj , πj) ∈ ΨGj

0 (C0(Xj),C)

be given. Then
µ̃
Gj

Xj
(aj) =

(Ẽj , DẼj

)
,

as in (5.11). The product of µ̃G1
X1

(a1) and µ̃G2
X2

(a2) is

µ̃G1
X1

(a1)× µ̃G2
X2

(a2) = (Ẽ1⊗̂Ẽ2, DẼ1⊗̂Ẽ2) ∈ Ψ0(C, C∗(G1 ×G2)). (9.8)

Here DẼ1⊗̂Ẽ2 is the closure of the operator

DẼ1 ⊗ 1Ẽ2 + 1Ẽ2 ⊗DẼ2 ,
on the domain domDẼ1 ⊗ domDẼ2 .

On the other hand, the product a1 × a2 is

(H1⊗̂H2, DH1⊗̂H2
, π) ∈ ΨG1×G2

0 (C0(X1 ×X2),C), (9.9)

with DH1⊗̂H2
the closure of the operator

D1 ⊗ 1H2 + 1H1 ⊗D2

on domD1 ⊗ domD2. Furthermore, we have abbreviated π := π1 ⊗ π2 for later
convenience. Applying the unbounded assembly map µ̃G1×G2

X1×X2
to the cycle (9.9),

we obtain (Ẽ , DẼ
) ∈ Ψ0(C, C∗(G1 ×G2)), (9.10)

where Ẽ := π̃(p)H̃1⊗̂H2. Here p := p1⊗p2, with pj the projection in Cc(Xj×Gj)
as defined in (5.9). Furthermore, the operator DẼ is the closure of the operator
D̃H1⊗̂H1

, as defined in (5.10), with D = DH1⊗̂H2
.

First, let us show that Ẽ = Ẽ1⊗̂Ẽ2. Note that H̃1⊗̂H2 is the completion of
the space Cc(G1 × G2,H1⊗̂H2) with respect to the C∗(G1 × G2)-valued inner
product (−,−)H̃1⊗̂H2

, defined analogously to (5.8). On the other hand,

Ẽ1⊗̂Ẽ2 = π̃1(p1)H̃1⊗̂π̃2(p2)H̃2 = π̃(p)H̃1⊗̂H̃2,
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since it is not hard to check that π̃(f1 ⊗ f2) = π̃1(f1) ⊗ π̃2(f2) for all fj ∈
Cc(Xj×Gj). Here H̃1⊗̂H̃2 is the completion of Cc(G1,H1)⊗Cc(G2,H2) in the
C∗(G1)⊗ C∗(G2) ∼= C∗(G1 ×G2)-valued inner product given by

(
ϕ1 ⊗ ϕ2, ψ1 ⊗ ψ2

)
H̃1⊗̂H̃2

= (ϕ1, ψ1)H̃1
⊗ (ϕ2, ψ2)H̃2

,

for ϕj , ψj ∈ Cc(Gj ,Hj). It follows directly from the definition (5.8) of the inner
products (−,−)H̃1⊗̂H2

and (−,−)H̃1⊗̂H̃2
, that they coincide on the subspace

Cc(G1,H1)⊗ Cc(G2,H2) ⊂ Cc(G1 ×G2,H1⊗̂H2).
We claim that the completion of Cc(G1,H1) ⊗ Cc(G2,H2) with respect to

this inner product contains the space Cc(G1 × G2,H1⊗̂H2). Then we indeed

have H̃1⊗̂H2
∼= H̃1⊗̂H̃2, and hence

Ẽ = π̃(p)
(H̃1⊗̂H2

) ∼= π̃(p)
(H̃1⊗̂H̃2

)
= Ẽ1⊗̂Ẽ2,

as Hilbert C∗(G1 × G2)-modules. The proof of this claim is based on the in-
equality

‖(ϕ,ϕ)H̃1⊗̂H̃2
‖C∗(G1×G2) ≤ ‖ϕ‖2L1(G1×G2,H1⊗̂H2)

:=
(∫

G1×G2

‖ϕ(g1, g2)‖H1⊗̂H2
dg1 dg2

)2

,
(9.11)

for all ϕ ∈ Cc(G1,H1) ⊗ Cc(G2,H2). This inequality is proved in Lemma 9.4
below. Because of this estimate, the completion of Cc(G1,H1) ⊗ Cc(G2,H2)
with respect to the inner product (−,−)H̃1⊗̂H̃2

contains the completion of this
tensor product in the norm ‖·‖L1(G1×G2,H1⊗̂H2)

, which in turn contains Cc(G1×
G2,H1⊗̂H2).

Next, we prove that the two unbounded cycles (9.8) and (9.10) define the
same class in KK-theory. By Lemma 10 and Corollary 17 from [48], this follows
if we can show that

domDẼ1⊗̂Ẽ2 ⊂ domDẼ , and (9.12)

DẼ |domDẼ1⊗̂Ẽ2
= DẼ1⊗̂Ẽ2 . (9.13)

We first prove (9.12). Note that the domain of DẼ1⊗̂Ẽ2 is the completion of
domDẼ1 ⊗ domDẼ2 in the norm ‖ · ‖DẼ1⊗̂Ẽ2 , as in (4.15), given by

‖ϕ1⊗ϕ2‖2DẼ1⊗̂Ẽ2 := ‖ϕ1⊗ϕ2‖2H̃1⊗̂H̃2
+‖DẼ1ϕ1⊗ϕ2+ϕ1⊗DẼ2ϕ2‖2H̃1⊗̂H̃2

, (9.14)

for all ϕj ∈ domDẼj
. The domain ofDẼj

in turn is the completion of π̃j(pj)Cc(Gj ,domDj)
in the norm ‖ · ‖DẼj

, defined analogously to (9.14).
To prove (9.12), we consider the subspace

V := π̃1(p1)Cc(G1, domD1)⊗ π̃2(p2)Cc(G2, domD2)
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of domDẼ1 ⊗ domDẼ2 . We begin by showing that the completion of V in the
norm ‖ · ‖DẼ1⊗̂Ẽ2 contains domDẼ1 ⊗ domDẼ2 . This will imply that

V = domDẼ1 ⊗ domDẼ2
= domDẼ1⊗̂Ẽ2 ,

(9.15)

with completions taken in the norm ‖ · ‖DẼ1⊗̂Ẽ2 .

For j = 1, 2, let ϕj ∈ domDẼj
be given. Let

(
ϕkj

)∞
k=1

be a sequence in
π̃j(pj)Cc(Gj , domDj) such that

lim
k→∞

‖ϕkj − ϕj‖DẼj
= 0.

We claim that

lim
k→∞

∥∥ϕk1 ⊗ ϕk2 − ϕ1 ⊗ ϕ2

∥∥
DẼ1⊗̂Ẽ2

= 0, (9.16)

which implies that ϕ1 ⊗ ϕ2 lies in the completion of V in the norm ‖ · ‖DẼ1⊗̂Ẽ2 .
This claim is proved in Lemma 9.5 below. General elements of domDẼ1 ⊗
domDẼ2 are (finite) sums of simple tensors like ϕ1 ⊗ ϕ2, and can be approxi-
mated by sums of sequences like

(
ϕk1 ⊗ ϕk2

)∞
k=1

. Hence the completion of V in
the norm ‖ · ‖DẼ1⊗̂Ẽ2 indeed contains domDẼ1 ⊗ domDẼ2 , so that (9.15) holds.

Finally, observe that domDẼ is the completion of π(p)Cc(G1×G2,domDH1⊗̂H2
)

in the norm ‖ · ‖DẼ , which is again defined analogously to (9.14). Since V is
contained in π(p)Cc(G1 × G2, domDH1⊗̂H2

), the completion of V in the norm
‖ · ‖DẼ is contained in domDẼ . Furthermore, the operators DẼ and DẼ1⊗̂Ẽ2
coincide on V , since their restrictions to V are both given by

π̃1(p1)ϕ1 ⊗ π̃2(p2)ϕ2 7→ π̃1(p1)D1 ◦ ϕ1 ⊗ π̃2(p2)ϕ2 + π̃1(p1)ϕ1 ⊗ π̃2(p2)D2 ◦ ϕ2.

This implies that the norms ‖ · ‖DẼ and ‖ · ‖DẼ1⊗̂Ẽ2 are the same on V , so that
the completion of V with respect to ‖ · ‖DẼ equals the completion of V with
respect to ‖ · ‖DẼ1⊗̂Ẽ2 , which equals domDẼ1⊗̂Ẽ2 , by (9.15). We conclude that

domDẼ1⊗̂Ẽ2 = V ⊂ domDẼ ,

as claimed.
Claim (9.13) now follows, because by (9.15), the restriction ofDẼ to domDẼ1⊗̂Ẽ2

is the closure of DẼ |V , which equals DẼ1⊗̂Ẽ2 |V . The closure of the latter operator
is DẼ1⊗̂Ẽ2 , again by (9.15), and we are done. ¤

Lemma 9.4. The inequality (9.11) holds for all ϕ ∈ Cc(G1,H1)⊗Cc(G2,H2).
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Proof. For such ϕ, we have

‖(ϕ,ϕ)H̃1⊗̂H̃2
‖C∗(G1×G2) ≤ ‖(ϕ,ϕ)H̃1⊗̂H̃2

‖L1(G1×G2)

=
∫

G1×G2

∣∣∣∣
∫

G1×G2

(
ϕ(g′1, g

′
2), ϕ(g′1g1, g

′
2g2)

)
H1⊗̂H2

dg′1 dg
′
2

∣∣∣∣ dg1 dg2

≤
∫

G1×G2

∫

G1×G2

∣∣∣
(
ϕ(g′1, g

′
2), ϕ(g′1g1, g

′
2g2)

)
H1⊗̂H2

∣∣∣ dg′1 dg′2 dg1 dg2

≤
∫

G1×G2

∫

G1×G2

‖ϕ(g′1, g
′
2)‖H1⊗̂H2

‖ϕ(g′1g1, g
′
2g2)‖H1⊗̂H2

dg′1 dg
′
2 dg1 dg2,

by the Cauchy-Schwartz inequality. Because of left invariance of the Haar mea-
sures dg1 and dg2, the latter expression is the square of the L1-norm of ϕ.

Lemma 9.5. The limit (9.16) equals zero.

Proof. Since for j = 1, 2, we have

0 = lim
k→∞

‖ϕkj − ϕj‖2DẼj

= lim
k→∞

(
‖ϕkj − ϕj‖2H̃j

+ ‖DẼj
ϕkj −DẼj

ϕj‖2H̃j

)
, (9.17)

both terms in (9.17) tend to zero as k →∞. Let us rewrite (9.16) in a way that
allows us to use this fact. By definition of the norm ‖ · ‖DẼ1⊗̂Ẽ2 , we have

∥∥ϕk1 ⊗ ϕk2 − ϕ1 ⊗ ϕ2

∥∥2

DẼ1⊗̂Ẽ2
=

∥∥ϕk1 ⊗ ϕk2 − ϕ1 ⊗ ϕ2

∥∥2

H̃1⊗̂H̃2
+

∥∥DẼ1ϕk1 ⊗ ϕk2 −DẼ1ϕ1 ⊗ ϕ2 + ϕ̃k1 ⊗DẼ2ϕk2 − ϕ1 ⊗DẼ2ϕ2

∥∥2

H̃1⊗̂H̃2
.

Using the triangle inequality and the fact that ‖ψ1⊗ψ2‖H̃1⊗̂H̃2
≤ ‖ψ1‖H̃1

‖ψ1‖H̃1

for all ψj ∈ H̃j (this follows from the fact that any C∗-norm on a tensor product
is subcross, see [88], Corollary T.6.2), we see that this number is less than or
equal to

(
‖ϕk1 − ϕ1‖H̃1

‖ϕk2‖H̃2
+ ‖ϕ1‖H̃1

‖ϕk2 − ϕ2‖H̃2

)2

+
(
‖DẼ1ϕk1 −DẼ1ϕ1‖H̃1

‖ϕk2‖+ ‖DẼ1ϕ1‖H̃1
‖ϕk2 − ϕ2‖H̃2

+

‖ϕk1 − ϕ1‖H̃1
‖DẼ2ϕk2‖H̃2

+ ‖ϕ1‖H̃1
‖DẼ2ϕk2 −DẼ2ϕ2‖H̃2

)2

. (9.18)

By the observation at the beginning of this proof, all terms in (9.18) contain a
factor that goes to zero as k →∞. Since the other factors are bounded functions
of k, the claim follows.
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9.4 The right-hand diagram: a decomposition
of the induction map D-IndGK

In this section, we complete the proof of Theorem 9.1 by proving commutativity
of the right-hand diagram in (9.2). In this proof, we will use commutativity of
the top, middle and bottom diagrams in the case where N is a point.

But first, we give the following description of the map D-IndGK . Let V

be a finite-dimensional unitary representation of K, and let /DV be the Dirac
operator defined in (6.9). The closure of this operator is an unbounded self-
adjoint operator on the space of L2-sections of EV , which is odd with respect to
the Z2-grading. This space of L2-sections is isomorphic to the space

(
L2(G)⊗

∆dp⊗V
)K , where the K-action is again defined by (6.7) (with smooth functions

replaced by L2-functions, of course). Let b be a normalising function, so that
we have the class

[(
L2(G)⊗∆dp ⊗ V

)K
, b(/DV ), πG/K

] ∈ KG
0 (G/K).

Here πG/K denotes the representation of C0(G/K) on L2(G/K,EV ) as multi-
plication operators.

Lemma 9.6. In this situation, we have

D-IndGK [V ] = µGG/K
[(
L2(G)⊗∆dp ⊗ V

)K
, b(/DV ), πG/K

] ∈ K0(C∗r (G)).

Proof. Write

[E , FE ] := µGG/K
[(
L2(G)⊗∆dp ⊗ V

)K
, b(/DV ), πG/K

]
.

Since the restriction of FE to
(
Cc(G) ⊗∆dp ⊗ V

)K is the restriction of b(/DV )
to this space, we only need to prove that

E =
(
C∗r (G)⊗∆dp ⊗ V

)K (9.19)

as Hilbert C∗r (G)-modules.
To prove this equality, we note that for all f, f ′ ∈ (L2(G))c and all g ∈ G,

(f, f ′)E(g) = (f, g · f ′)L2(G) =
(
f ∗ (f ′)∗

)
(g),

as one easily computes. This implies that the C∗rG-valued inner product on E
is the same as the one on

(
C∗r (G)⊗∆dp ⊗ V

)K .
The C∗r (G)-module structure of E is given by

h · (f ⊗ δ ⊗ v) =
∫

G

h(g)g · (f ⊗ δ ⊗ v)dg

= (h ∗ f)⊗ δ ⊗ v,
for all h ∈ Cc(G), f ∈ L2(G), δ ∈ ∆dp and v ∈ V . Hence the equality (9.19)
includes the C∗r (G)-module structure.
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Proof of commutativity of the right-hand diagram. Consider the vector bun-
dles V and {0} over a point. Let 0V : V → {0} be the only possible operator
between (the spaces of smooth sections of) these bundles. It defines a class
[0V ] = [V ⊕ {0}, 0V ] ∈ KK

0 (pt), and we have

µKpt[0V ] = [V ] ∈ R(K).

Now we find that

D-IndGK [V ] = µG×K×KG/K

[(
L2(G)⊗∆dp ⊗ V

)K
, b(/DV ), πG/K

]

by Lemma 9.6,

= µGG/K ◦ V∆(K) ◦ ResG×K×KG×∆(K) [/DG,K ⊗ 1V ]

by Corollary 8.11 and the fact that /DV is the restriction of /DG,K ⊗ 1V to K-
invariant elements of C∞(G)⊗∆dp ⊗ V ,

= µGG/K ◦ V∆(K) ◦ ResG×K×KG×∆(K)

(
[/DG,K ]× [0V ]

)

= R0
K ◦ ResG×K×KG×∆(K) ◦µG×KG

(
[/DG,K ]× [V ]

)
,

by commutativity of the top, middle and bottom diagrams when N is a point.
¤

Remark 9.7. Supposing that V is irreducible, we could also have applied the
Borel–Weil(–Bott) theorem to realise the class [V ] ∈ R(K) as µKK/T [/Diλ], where
iλ is the highest weight of V , and /Diλ is the Dolbeault–Dirac operator on K/T
coupled to the usual line bundle that is used in the Borel–Weil theorem. We
would then have used commutativity of the top, middle and bottom diagrams
for N = K/T .
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This part is devoted to a proof of Theorem 6.5. The ingredients of this proof
are:

1. the Guillemin–Sternberg conjecture in the compact case (Theorem 3.34);

2. the epimorphism part of naturality of the assembly map (Theorem 7.1);

3. symplectic reduction in stages (Theorem 2.25);

4. quantum reduction in stages (10.5);

5. specialisation (10.8) of Corollary 8.11 to Dirac operators, in the case of a
free action by a discrete group.

We combine these ingredients into Diagram 10.1, which gives an outline of our
proof. The main technical step that then remains is Proposition 10.1, which we
prove in Section 10.3.

In Chapter 11, we illustrate Theorem 6.5 by giving an independent proof of
this theorem, in the case that G is discrete and abelian. This proof, based on
a paper by Lusztig [56] (see also [8], pp. 242–243) gives considerable insight in
the situation, and does not rely on naturality of the assembly map. It is based
on an explicit computation of the image under µΓ

M of a K-homology class [D]
associated to a Γ-equivariant elliptic differential operator D on a Γ-vector bundle
E over a Γ-manifold M . Because in this case C∗(Γ) ∼= C(Γ̂) (with Γ̂ the unitary
dual of Γ), this image corresponds to the formal difference of two equivalence
classes of vector bundles over Γ̂. These bundles are described as the kernel
and cokernel of a ‘field of operators’

(
Dα

)
α∈Γ̂

on a ‘field of vector bundles’(
Eα → M/Γ

)
α∈Γ̂

. The operators Dα and the bundles Eα are constructed
explicitly from D and E, respectively. The quantum reduction of the class
µΓ
M [D] is the index of the operator D1 on E1 →M/Γ, where 1 ∈ Γ̂ is the trivial

representation. Because D1 is the operator DΓ mentioned above, in this case
Theorem 6.5 follows from the computation in Chapter 10.

Finally, in Sections 11.5 and 11.6 we check the discrete abelian case in an
explicit computation. We will see that the quantisation of the action of Z2

on R2 corresponds to a certain line bundle over the two-torus T2 = Ẑ2. The
quantum reduction of this K-theory class is the rank of this line bundle, the
integer 1. This is also the quantisation of the reduced space T2 = R2/Z2, as
can be seen either directly or by applying Atiyah–Singer for Dirac operators.
Although this is the simplest example of Guillemin–Sternberg for noncompact
groups and spaces, it is not a trivial matter to find a suitable prequantisation
in this case.
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Chapter 10

Dirac operators and the
map VΓ

In this chapter, we finish the proof of Theorem 6.5. We first sketch an outline
of this proof in Section 10.1, and then state and prove the remaining technical
step in Sections 10.2 and 10.3.

10.1 Outline of the proof

We use the notation and assumptions from Section 6.1 and Theorem 6.5. In
particular, G is a Lie group, Γ/G is a discrete normal subgroup, such that K :=
G/Γ is compact. Furthermore, (M,ω) is a proper Hamiltonian G-manifold, on
which Γ acts freely. The assumption that M/G is compact is now equivalent to
compactness of M/Γ.

The third and fourth ingredients mentioned at the beginning of the intro-
duction to Part III allow us to set up the following diagram:

Preq(G © M,ω)
[∂̄•+∂̄∗• ] //

R0
Γ

²²

KG
0 (M)

µG
M // K0(C∗(G))

R0
Γ

²²
Preq(K © M�Γ, ωM�Γ)

[∂̄•+∂̄∗• ] //

R0
K

²²

KK
0 (M�Γ)

µK
M�Γ // K0(C∗(K))

R0
K

²²
Preq

(
(M�Γ)�K,ω(M�Γ)�K

) index(∂̄•+∂̄∗• ) // Z.

(10.1)

Here the following notation is used. Preq(G © M,ω) is the set of all G-
equivariant prequantisations of (M,ω). A necessary condition for Preq(G ©
M,ω) to be nonempty is the requirement that the cohomology class [ω] ∈
H2(M,R) be integral. Since we assume (M,ω) to be equivariantly prequan-
tisable, this condition must be satisfied. Similarly, Preq(K © M�Γ, ωM�Γ)
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is defined given the K-action on M�Γ induced by the G-action on M , and
Preq

(
(M�Γ)�K,ω(M�Γ)�K

)
is just the set of prequantisations of the symplectic

orbifold (
(M�Γ)�K,ω(M�Γ)�K

) ∼= (M�G,ωM�G); (10.2)

this isomorphism follows from Theorem 2.25. Note that in this case, M�Γ =
M/Γ, since Γ is discrete.

The maps R0
Γ and R0

K on the left hand (classical) side of (10.1) are given
by the construction (3.14) of a prequantisation on a symplectic reduction, in-
duced by an equivariant prequantisation on the original manifold. The quantum
counterparts of these maps on the right hand side of (10.1) are defined by

R0
Γ := (

∑
Γ)∗ ; (10.3)

R0
K :=

(∫
K

)
∗ . (10.4)

Here (
∑

Γ)∗ : K0(C∗(G))→ K0(C∗(K)) is the map functorially induced by the
map

∑
Γ : C∗(G)→ C∗(G/Γ) given by

(∑
Γf

)
(Γg) =

∑

γ∈Γ

f(γg),

initially defined on f ∈ Cc(G) and continuously extended to all of C∗(G). This
map was more generally defined for any closed normal subgroup N of G in
(7.1). Finally, the maps [∂̄• + ∂̄∗• ] are defined by taking the K-homology class
of the Dolbeault–Dirac operator coupled to a given prequantum line bundle,
as explained in Corollary 4.36. Thus the commutativity of the upper part of
diagram (10.1) is the equality

µKM/Γ[∂̄Lω/Γ + ∂̄∗Lω/Γ] = R0
Γ

(
µGM [∂̄Lω + ∂̄∗Lω ]

)
,

for any prequantum line bundle Lω → M . Commutativity of the lower part is
the statement

index
(
∂̄Lω(M/Γ)�K + ∂̄∗

L
ω(M/Γ)�K

)
= R0

K

(
µKM/Γ[∂̄Lω/Γ + ∂̄∗Lω/Γ]

)
.

It is easily shown that ∫
K
◦∑

Γ =
∫
G
,

so that by functoriality of K0, one has

R0
K ◦R0

Γ = R0
G. (10.5)

The classical version of (10.5) follows from (10.2). Using the classical and quan-
tum versions of this equality, we see that the outer diagram in (10.1) is equal
to

Preq(G © M,ω)

R0
G

²²

QV // K0(C∗(G))

R0
G

²²
Preq(MG, ωG)

QV // Z.

(10.6)
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Here QV is the quantisation map of Definition 6.1, so that commutativity of
diagram (10.6) is precisely Theorem 6.5.

We will prove commutativity of diagram (10.6) by showing that the two
inner diagrams in (10.1) commute. Now the lower diagram commutes by the
validity of the Guillemin–Sternberg conjecture for compact K (Theorem 3.34),
whereas the upper diagram decomposes as

Preq(G © M,ω)
[∂̄•+∂̄∗• ] //

R0
Γ

²²

KG
0 (M)

µG
M //

VΓ

²²

K0(C∗(G))

R0
Γ

²²
Preq(K © M/Γ, ωM/Γ)

[∂̄•+∂̄∗• ]// KK
0 (M/Γ)

µK
M/Γ // K0(C∗(K)),

(10.7)

where VΓ is the map defined in Section 7.4, with N = Γ. The right hand
inner diagram in (10.7) commutes by the epimorphism case of naturality of
the assembly map, Theorem 7.1. So it is only left to prove that the left hand
diagram in (10.7) commutes. Explicitly, commutativity of this diagram means
that

VΓ[∂̄Lω + ∂̄∗Lω ] = [∂̄Lω/Γ + ∂̄∗Lω/Γ]. (10.8)

We will deduce this equality from Corollary 8.11. Indeed, Proposition 10.1
states that if ∂̄Lω + ∂̄∗Lω is the Dolbeault–Dirac operator on M , coupled to Lω,
then the operator

(
∂̄Lω + ∂̄∗Lω

)Γ from Corollary 8.11 is precisely the Dolbeault–
Dirac operator on the quotient M/Γ coupled to the line bundle Lω/Γ. In Section
10.3 we prove this proposition, and hence (10.8).

10.2 The isomorphism

The main step in our proof of (10.8) is the following proposition. We hope that
the use of the letter Γ to denote a both discrete group and a space of sections
will not cause any confusion.

Proposition 10.1. Consider the Dolbeault–Dirac operator ∂̄Lω +∂̄∗Lω on Ω0,∗(M ;Lω),

and the induced operator
(
∂̄Lω + ∂̄∗Lω

)Γ on Γ∞
(
M/Γ,

(∧0,∗
T ∗M ⊗ Lω)

/Γ
)
, as

defined in (8.9). There is an isomorphism

Ξ : Ω0,∗(M/Γ;Lω/Γ)→ Γ∞
(
M/Γ,

(∧0,∗
T ∗M ⊗ Lω)

/Γ
)

that is isometric with respect to the L2-inner product and intertwines the Dolbeault–
Dirac operator ∂̄Lω/Γ + ∂̄∗Lω/Γ on Ω0,∗(M/Γ;Lω/Γ) and the operator

(
∂̄Lω +

∂̄∗Lω

)Γ.

Consequently, Ξ induces a unitary isomorphism between the corresponding
L2-spaces, which by Lemma 4.31 intertwines the bounded operators obtained
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from ∂̄Lω/Γ + ∂̄∗Lω/Γ and
(
∂̄Lω + ∂̄∗Lω

)Γ using a normalising function with com-
pactly supported Fourier transform. Hence (10.8) follows, as

VΓ

([
∂̄Lω + ∂̄∗Lω

])
=

[(
∂̄Lω + ∂̄∗Lω

)Γ
]

by Corollary 8.11

= [∂̄Lω/Γ + ∂̄∗Lω/Γ] by Proposition 10.1.

The isomorphism of C∞(M/Γ)-modules Ξ in Proposition 10.1 is defined as
follows. The quotient map p : M → M/Γ induces the vector bundle homomor-
phism Tp : TM → T (M/Γ). Since Tp is invariant with respect to the action of
Γ on TM , it descends to a vector bundle homomorphism

(Tp)Γ : (TM)/Γ→ T (M/Γ).

Because the group Γ is discrete, this map is an isomorphism. This is the most
important reason why we assume Γ to be discrete. We denote the transpose of
the isomorphism (Tp)Γ by

(T ∗p)Γ : T ∗(M/Γ)→ (T ∗M)/Γ.

This gives ∧
(T ∗p)Γ :

∧
T ∗(M/Γ)→ ∧

(T ∗M)/Γ, (10.9)

and since Tp intertwines the almost complex structures on TM and T (M/Γ),
we obtain ∧0,∗(T ∗p)Γ :

∧0,∗
T ∗(M/Γ)→ ∧0,∗(T ∗M)/Γ. (10.10)

On the spaces of smooth sections of the vector bundles in question, the
isomorphisms (10.9) and (10.10) induce isomorphisms of C∞(M/Γ)-modules

Ψ : Ω∗(M/Γ)→ Γ∞
(
M/Γ, (

∧
T ∗M) /Γ

)
; (10.11)

Ψ0,∗ : Ω0,∗(M/Γ)→ Γ∞
(
M/Γ,

(∧0,∗
T ∗M

)
/Γ

)
. (10.12)

Now the isomorphism Ξ is defined as

Ξ : Ω0,∗(M/Γ;Lω/Γ) ∼=

Ω0,∗(M/Γ)⊗C∞(M/Γ) Γ∞(M/Γ, Lω/Γ)
Ψ0,∗⊗1Γ∞(M/Γ,Lω/Γ)−−−−−−−−−−−−−−→

Γ∞
(
M/Γ,

(∧0,∗
T ∗M

)
/Γ

)
⊗C∞(M/Γ) Γ∞(M/Γ, Lω/Γ)

∼= Γ∞
(
M/Γ,

(∧0,∗
T ∗M ⊗ Lω)

/Γ
)
.

It is isometric by definition of the measure dO on M/Γ, defined in (8.1), and the
metrics on the vector bundles involved. An equivalent definition of the measure
dO is ∫

M/Γ

f(O)dO :=
∫

U

f(m), dm,
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for f ∈ C(M/Γ), where U ⊂ M is any fundamental domain of the Γ-action.
Here by a fundamental domain, we mean an open subset U ⊂M such that Γ ·U
is dense in M , and that for all γ ∈ Γ and m ∈ U ,

γ ·m ∈ U ⇒ γ = e.

It remains to prove that Ξ intertwines the operators ∂̄Lω/Γ + ∂̄∗Lω/Γ and
(
∂̄Lω + ∂̄∗Lω

)Γ.

10.3 Proof of Proposition 10.1

The connections

Let ψLω : Γ∞(M,Lω)Γ → Γ∞(M/Γ, Lω/Γ) be the isomorphism of C∞(M)Γ ∼=
C∞(M/Γ)-modules from Proposition 8.6, with E = Lω and H = Γ. Also
consider the pullback p∗ of differential forms on M/Γ to invariant differential
forms on M . It defines an isomorphism of C∞(M/Γ) ∼= C∞(M)Γ-modules

p∗ : Ω∗(M/Γ)→ Ω∗(M)Γ.

The prequantum connection ∇Γ on the prequantum line bundle Lω/Γ→ M/Γ
is defined by the property that p∗∇Γ = ∇ (see Section 3.6). Explicitly, this
definition can be expressed by commutativity of the following diagram:

Ω∗(M ;Lω)Γ ∇ //

∼=
²²

Ω∗(M ;Lω)Γ

∼=
²²

Ω∗(M)Γ ⊗C∞(M)Γ Γ∞(M,Lω)Γ Ω∗(M)Γ ⊗C∞(M)Γ Γ∞(M,Lω)Γ

Ω∗(M/Γ)⊗C∞(M/Γ) Γ∞(M/Γ, Lω/Γ)

p∗⊗ψ−1
Lω

∼=
OO

Ω∗(M/Γ)⊗C∞(M/Γ) Γ∞(M/Γ, Lω/Γ)

p∗⊗ψ−1
Lω

∼=
OO

Ω∗(M/Γ;Lω/Γ) ∇Γ
//

∼=
OO

Ω∗(M/Γ;Lω/Γ).

∼=
OO

(10.13)
By definition of the almost complex structure on T (M/Γ), we have

p∗
(
Ω0,q(M/Γ)

)
= Ω0,q(M)Γ

for all q. Therefore, commutativity of diagram (10.13) implies that the following
diagram commutes:

Ω0,∗(M ;Lω)Γ
∂̄Lω // Ω0,∗(M ;Lω)Γ

Ω0,∗(M/Γ;Lω/Γ)
∂̄Lω/Γ //

p∗⊗ψ−1
Lω

∼=
OO

Ω0,∗(M/Γ;Lω/Γ),

p∗⊗ψ−1
Lω

∼=
OO

(10.14)
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with ∂̄Lω and ∂̄Lω/Γ as in Definition 3.19.

The Dirac operators

By definition of the measure dO on M/Γ, the metric gΓ on T (M/Γ) induced by
the metric g = ω(−, J −) on TM , and the metric (−,−)Lω/Γ on Lω/Γ, induced
by the metric (−,−)Lω on Lω, the isomorphism

p∗ ⊗ ψ−1
Lω : Ω0,∗(M/Γ;Lω/Γ)→ Ω0,∗(M ;Lω)Γ

is isometric with respect to the inner product on Ω0,∗(M/Γ;Lω/Γ) defined by

(α⊗ σ, β ⊗ τ) =
∫

M/Γ

gΓ(α, β)(σ, τ)Lω/Γ dO, (10.15)

for all α, β ∈ Ω0,∗(M/Γ) and σ, τ ∈ Γ∞(M/Γ, Lω/Γ), and the inner product on
Ω0,∗(M ;Lω)Γ defined by

(ζ ⊗ s, ξ ⊗ t) =
∫

U

g(ζ, ξ)(m)(s, t)Lω (m) dm, (10.16)

for all ζ, ξ ∈ Ω0,∗(M)Γ and s, t ∈ Γ∞(M,Lω)Γ. (Recall that U ⊂ M is a
fundamental domain for the Γ-action.)

In the definition of the Dolbeault–Dirac operator ∂̄Lω/Γ +
(
∂̄Lω/Γ

)∗ on M/Γ,
the formal adjoint

(
∂̄Lω/Γ

)∗ is defined with respect to the inner product (10.15).
If we denote the metric (−,−)Lω on Lω by HLω

for the moment, then the formal
adjoint ∂̄∗Lω is defined by

∫

M

(g ⊗HLω

)
(
∂̄∗Lωη, θ

)
(m) dm =

∫

M

(g ⊗HLω

)
(
η, ∂̄Lωθ

)
(m) dm,

for all η, θ ∈ Ω0,∗(M ;Lω), θ with compact support. But this is actually the
same as the formal adjoint of ∂̄Lω with respect to the inner product (10.16):

Lemma 10.2. Let Γ be a discrete group, acting properly and freely on a man-
ifold M , equipped with a Γ-invariant measure dm. Suppose M/Γ is compact.
Let E → M be a Γ-vector bundle, equipped with a Γ-invariant metric (−,−)E.
Let

D : Γ∞(M,E)→ Γ∞(M,E)

be a Γ-equivariant differential operator. Let

D∗ : Γ∞(M,E)→ Γ∞(M,E)

be the operator such that for all s, t ∈ Γ∞(M,E), t with compact support,
∫

M

(D∗s, t)E(m) dm =
∫

M

(s,Dt)E(m) dm.
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Let U ⊂M be a fundamental domain for the Γ-action. Then the restriction
of D∗ to Γ∞(M,E)Γ satisfies

∫

U

(D∗s, t)E(m) dm =
∫

U

(s,Dt)E(m) dm, (10.17)

for all s, t ∈ Γ∞(M,E)Γ.

Proof. We will show that for all s ∈ Γ∞(M,E)Γ, and all t in a dense subspace of
Γ∞(M,E)Γ, the equality (10.17) holds. Let τ be a section of E, with compact
support in U . Define the section t of E by extending the restriction τ |U Γ-
invariantly to M . The space of all sections t obtained in this way is dense in
Γ∞(M,E)Γ with respect to the topology induced by the inner product

(s, t) :=
∫

U

(s, t)E(m) dm

used in (10.17).
Then for all s ∈ Γ∞(M,E)Γ,

∫

U

(D∗s, t)E(m) dm =
∫

M

(D∗s, τ)E(m) dm

=
∫

M

(s,Dτ)E(m) dm

=
∫

U

(s,Dt)E(m) dm.

We conclude that p∗ ⊗ ψ−1
Lω is an isometric isomorphism with respect to

the inner products used to define the adjoints ∂̄∗Lω and
(
∂̄Lω/Γ

)∗. Hence the
commutativity of diagram (10.14) implies:

Corollary 10.3. The following diagram commutes:

Ω0,∗(M ;Lω)Γ
∂̄Lω +∂̄∗Lω // Ω0,∗(M ;Lω)Γ

Ω0,∗(M/Γ;Lω/Γ) //
∂̄Lω/Γ+∂̄∗Lω/Γ

p∗⊗ψ−1
Lω

∼=
OO

Ω0,∗(M/Γ;Lω/Γ).

p∗⊗ψ−1
Lω

∼=
OO

Remark 10.4. Corollary 10.3 shows that for free actions by discrete groups, a
much stronger statement than the Guillemin–Sternberg–Landsman conjecture
holds. Indeed, by Remark 8.12 the Guillemin–Sternberg conjecture states that
the restriction of the operator ∂̄Lω + ∂̄∗Lω to Ω0,∗(M ;Lω)Γ is related to the
operator ∂̄Lω/Γ + ∂̄∗Lω/Γ by the fact that their indices are equal (as operators
on smooth, not necessarily Lω2, sections). But these operators are in fact more
strongly related: they are intertwined by an isometric isomorphism.
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End of the proof of Proposition 10.1

The last step in the proof of Proposition 10.1 is a decomposition of the isomor-
phism

p∗ : Ω∗(M/Γ)→ Ω∗(M)Γ.

Lemma 10.5. The following diagram commutes:

Ω∗(M/Γ)
p∗

∼=
//

Ψ ∼=
²²

Ω∗(M)Γ

ψ∧T∗M

∼=
vvlllllllllllll

Γ∞
(
M/Γ, (

∧
T ∗M)/Γ

)
,

where Ψ is the isomorphism (10.11), and ψ∧T∗M is the isomorphism from Propo-
sition 8.6.

The proof of this lemma is a short and straightforward computation.

Proof of Proposition 10.1. Together with Lemma 10.5 and the definition of the
operator

(
∂̄Lω +∂̄∗Lω

)Γ : Γ∞
(
M/Γ,

(∧0,∗
T ∗M ⊗ Lω)

/Γ
)
→ Γ∞

(
M/Γ,

(∧0,∗
T ∗M ⊗ Lω)

/Γ
)
,

Corollary 10.3 implies that the following diagram commutes:

Ω0,∗(M ;Lω)Γ

∼=ψ∧0,∗T∗M⊗ψLω

²²

∂̄Lω +∂̄∗Lω // Ω0,∗(M ;Lω)Γ

∼=ψ∧0,∗T∗M⊗ψLω

²²

Γ∞
(
M/Γ,

(∧0,∗
T ∗M ⊗ Lω)

/Γ
)(∂̄Lω +∂̄∗Lω

)Γ

// Γ∞
(
M/Γ,

(∧0,∗
T ∗M ⊗ Lω)

/Γ
)

Ω0,∗(M/Γ;Lω/Γ)

∼=Ξ=Ψ0,∗⊗1

OO

∂̄Lω/Γ+∂̄∗Lω/Γ // Ω0,∗(M/Γ;Lω/Γ).

∼=Ξ=Ψ0,∗⊗1

OO

Indeed, the outside diagram commutes by Corollary 10.3 and Lemma 10.5, and
the upper square commutes by definition of

(
∂̄Lω + ∂̄∗Lω

)Γ. Hence the lower
square commutes as well, which is Proposition 10.1. ¤



Chapter 11

Special case: abelian
discrete groups

We now consider the situation of Theorem 6.5, with the additional assumption
that G = Γ is an abelian discrete group. Then the Guillemin–Sternberg con-
jecture can be proved directly, without using naturality of the assembly map
(Theorem 7.1). This proof is based on Proposition 10.1, and the description of
the assembly map in this special case given by Baum, Connes and Higson [8],
Example 3.11 (which in turn is based on Lusztig [56]). We will first explain this
example in a little more detail than given in [8], and then show how it implies
Theorem 6.5 for abelian discrete groups.

This chapter only serves to illustrate Theorem 6.5, and the rest of this thesis
does not depend on it. We have therefore chosen to give less detailed arguments
in this chapter than in the other ones.

11.1 The assembly map for abelian discrete groups

The proof of the Guillemin–Sternberg conjecture for discrete abelian groups is
based on the following result:

Proposition 11.1. Let M , E, D and DΓ be as in Section 8.4. Suppose that
G = Γ is abelian and discrete. Using the normalising function b(x) = x√

1+x2 ,
we form the operator F := b(D), so that we have the class

[L2(M,E), F, πM ] ∈ KΓ
0 (M).

Then1

R0
Γ ◦ µΓ

M

[
L2(M,E), F

]
= indexDΓ.

In view of Proposition 10.1, Proposition 11.1 implies our Guillemin–Sternberg
conjecture (i.e. Theorem 6.5) for discrete abelian groups.

1Recall that we use indexDΓ to denote the formal difference of the even and odd parts of
the kernel of DΓ.

167
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Kernels of operators as vector bundles

Using Example 3.11 from [8], we can explicitly compute

[E , FE ] := µΓ
M

[
L2(M,E), F

] ∈ KK0(C, C∗(Γ)). (11.1)

Note that since the group Γ is discrete, its unitary dual Γ̂ is compact. And
because Γ is abelian, all irreducible unitary representations are of the form

Uα : Γ→ U(1),

for α ∈ Γ̂. Fourier transform defines an isomorphism C∗(Γ) ∼= C0(Γ̂). Therefore,

KK0(C, C∗(Γ)) ∼= K0(C∗(Γ)) ∼= K0(C0(Γ̂)) ∼= K0(Γ̂).

Because Γ̂ is compact, the image of [E , FE ] in K0(Γ̂) is the difference of the
isomorphism classes of two vector bundles over Γ̂. These two vector bundles can
be determined as follows. For all α ∈ Γ̂, we define the Hilbert space Hα as the
space of all measurable sections sα of E (modulo equality almost everywhere),
such that for all γ ∈ Γ,

γ · sα = Uα(γ)−1sα,

and such that the norm
‖sα‖2α = (sα, sα)α (11.2)

is finite, where the inner product (−,−)α is defined by

(sα, tα)α :=
∫

M/Γ

(
sα(ϕ(O)), tα(ϕ(O))

)
E
dO,

where ϕ is any measurable section of the principal fibre bundle M → M/Γ.
The space Hα is isomorphic to the space of L2-sections of the vector bundle Eα,
where

Eα := E/(γ · e ∼ U−1
α (γ)e)→M/Γ.

Let HDα be the dense subspace

HDα := {sα ∈ Hα ∩ Γ∞(M,E);Dsα ∈ Hα} ⊂ Hα. (11.3)

Because the operator D is Γ-equivariant, it restricts to an unbounded operator

Dα : HDα → Hα
on Hα. It is essentially self-adjoint by [35], Corollary 10.2.6., and hence induces
the bounded operator

Fα :=
Dα√

1 +D2
α

∈ B(Hα). (11.4)

The grading on E induces a grading on Hα with respect to which Dα and Fα
are odd. The operators Fα are elliptic pseudo-differential operators:
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Lemma 11.2. Let D be an elliptic, first order differential operator on a vector
bundle E → M , and suppose D defines an essentially self-adjoint operator on
L2(M,E) with respect to some measure on M and some metric on E. Then the
operator F := D√

1+D2 is an elliptic pseudo-differential operator.

Proof. It is sufficient to show that (1 + D2)−
1
2 is a pseudo- differential opera-

tor. According to [9], a bounded operator A : L2(Rn) → L2(Rn) is a pseudo-
differential operator on Rn if and only if all iterated commutators with xj (as
a multiplication operator) and ∂

∂xj
are bounded operators. This immediately

yields the lemma for M = Rn (cf. [9], Theorem 4.2). To extend this result to the
manifold case, we recall that an operator A : C∞(M) → D′(M) on a manifold
M is a pseudo-differential operator when for each choice of smooth functions f , g
with support in a single coordinate neighbourhood, fAg is a pseudo-differential
operator on Rn. (Here one has to admit nonconnected coordinate neighbour-
hoods.)

Now write (1+D2)−
1
2 as a Dunford integral (cf. [21], pp. 556–577), as follows:

(1 +D2)−
1
2 =

1
2πi

∮

C

(1 + z)−
1
2 (z −D2)−1 dz.

Here C is any contour around the spectrum of D. To compute the commutators
of f(1+D2)−

1
2 g with xj and ∂

∂xj
, one may take these inside the contour integral.

Boundedness of all iterated commutators then easily follows, using the fact that
f and g have compact support.

The same argument, with the exponent − 1
2 replaced by 1

2 , shows that (1 +
D2)

1
2 is a pseudo-differential operator, and ellipticity of (1+D2)−

1
2 follows.

We were informed of the above proof by Elmar Schrohe. An independent
proof of this lemma was suggested to us by John Roe, who mentioned that in the
case at hand the functional calculus for (pseudo-)differential operators developed
in [79] for compact manifolds may be extended to the noncompact case. A third
proof may be constructed using heat kernel techniques, as in the unpublished
Diplomarbeit of Hanno Sahlmann (Rainer Verch, private communication).

Consider the field of Hilbert spaces

(Hα)α∈Γ̂ → Γ̂. (11.5)

In the next section, we will give this field the structure of a continuous field
of Hilbert spaces by specifying its space of continuous sections Γ

(
Γ̂, (Hα)α∈Γ̂

)
.

Consider the subfields
(
kerD+

α

)
α∈Γ̂
→ Γ̂;

(
kerD−α

)
α∈Γ̂
→ Γ̂.

(11.6)

These are indeed well-defined subfields of (Hα)α∈Γ̂ because kerD±α = kerF±α by
the elliptic regularity theorem (here we use Lemma 11.2), and by the fact that
the operator 1√

1+D−αD
+
α

is invertible.
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Suppose that the fields (11.6) are vector bundles over Γ̂ in the topology on
(11.5) that we will define in Section 11.2. As in the proof that KK0(C, C(Γ̂)) ∼=
K0(C(Γ̂)) (see the remark below Theorem 5.12), the operator D can always
be replaced by an operator for which Γ

((
kerD±α

)
α∈Γ̂

)
are finitely generated

projective C(Γ̂)-modules, that is, for which
(
kerD±α

)
α∈Γ̂

are vector bundles,
and that the K-theory class µΓ

M

[
L2(M,E), F

] ∈ KK(C, C(Γ̂)) is the same,
whether we make this replacement or not.

Then:

Proposition 11.3. The image of the class
[
L2(M,E), F

] ∈ KΓ
0 (M) under the

assembly map µΓ
M is

µΓ
M

[
L2(M,E), F

]
=

[(
kerD+

α

)
α∈Γ̂

]
−

[(
kerD−α

)
α∈Γ̂

]
∈ K0(Γ̂).

Proposition 11.3 will be proved in the next two sections.

11.2 The Hilbert C∗-module part of the assem-
bly map

In this section we determine the Hilbert C∗(Γ) ∼= C0(Γ̂)-module E in (11.1).
The result is Proposition 11.7.

A unitary isomorphism

Let dα be the measure on Γ̂ corresponding to the counting measure on Γ via
the Fourier transform. Consider the Hilbert space

H :=
∫ ⊕

Γ̂

Hαdα.

That is, H consists of the measurable maps

s : Γ̂→ (Hα)α∈Γ̂;

α 7→ sα,

such that sα ∈ Hα for all α, and

‖s‖2H = (s, s)H :=
∫

Γ̂

‖sα‖2αdα <∞.

Define the linear map V : H → L2(M,E) by

(V s) (m) :=
∫

Γ̂

sα(m)dα.
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Lemma 11.4. The map V is a unitary isomorphism, with inverse
(
V −1σ

)
α

(m) =
∑

γ∈Γ

γ · σ(γ−1m)Uα(γ), (11.7)

for all σ ∈ Γc(M,E) ⊂ L2(M,E).

Remark 11.5. It follows from unitarity of V that V s is indeed an L2-section
of E for all s ∈ H. Conversely, a direct computation shows that for all σ ∈
L2(M,E), α ∈ Γ̂ and γ ∈ Γ, one has

γ · (V −1σ
)
α

= Uα(γ)−1
(
V −1σ

)
α
,

so that V −1σ lies in H.

Sketch of proof of Lemma 11.4. The proof is based on the observations that
for all α ∈ Γ̂, ∑

γ∈Γ

Uα(γ) = δ1(α), (11.8)

where δ1 ∈ D′(Γ̂) is the δ-distribution at the trivial representation 1 ∈ Γ̂, and
that for all γ ∈ Γ, ∫

Γ̂

Uα(γ)dα = δγe, (11.9)

the Kronecker delta of γ and the identity element. Using these facts, one can
easily verify that V is an isometry, and that (11.7) is indeed the inverse of V .

¤
The representation πH of Γ in H corresponding to the standard representa-

tion (3.4) of Γ in L2(M,E) via the isomorphism V is given by

(πH(γ)s)α = Uα(γ)−1sα.

This follows directly from the definitions of the space Hα and the map V .

Fourier transform

By definition of the assembly map, the Hilbert C∗(Γ)-module E is the closure
of the space Γc(M,E) in the norm

‖σ‖2E := ‖γ 7→ (σ, γ · σ)L2(M,E)‖C∗(Γ).

The C∗(Γ)-module structure of E is defined by

f · σ =
∑

γ∈Γ

f(γ) γ · σ,

for all f ∈ Cc(Γ) and σ ∈ Γc(M,E). The isomorphism V induces an isomor-
phism of the Hilbert C∗(Γ)-module E with the closure EH of V −1(Γc(M,E)) ⊂ H
in the norm

‖s‖2EH := ‖γ 7→ (V s, γ · V s)L2(M,E)‖C∗(Γ) = ‖γ 7→ (s, πH(γ)s)H‖C∗(Γ),
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by unitarity of V . The C∗(Γ)-module structure on EH corresponding to the one
on E via V is given by

f · s =
∑

γ∈Γ

f(γ)πH(γ)s, (11.10)

for all f ∈ Γc(Γ) and s ∈ V −1(Γc(M,E)).
Next, we use the isomorphism C0(Γ̂) ∼= C∗(Γ) defined by the Fourier trans-

form ψ 7→ ψ̂, where

ψ̂(γ) =
∫

Γ̂

ψ(α)Uα(γ)dα

for all ψ ∈ Γc(Γ̂). Because of (11.8) and (11.9), the inverse Fourier transform is
given by f 7→ f̂ , where for f ∈ Cc(Γ), one has

f̂(α) =
∑

γ∈Γ

f(γ)Uα(γ)−1.

So via the Fourier transform, the Hilbert C∗(Γ)-module EH corresponds to
the Hilbert C0(Γ̂)-module ÊH, which is the closure of the space V −1(Γc(M,E))
in the norm

‖s‖2ÊH =
∥∥∥α 7→

∑

γ∈Γ

(s, πH(γ)s)HUα(γ)−1
∥∥∥
C0(Γ̂)

= sup
α∈Γ̂

∣∣∣
∑

γ∈Γ

(s, πH(γ)s)HUα(γ)−1
∣∣∣. (11.11)

Continuous sections

Using the following lemma, we will describe the Hilbert C0(Γ̂)-module ÊH as
the space of continuous sections of a continuous field of Hilbert spaces.

Lemma 11.6. For all s, t ∈ V −1(Γc(M,E)),
∑

γ∈Γ

(s, πH(γ)t)HUα(γ)−1 = (sα, tα)α.

Proof. Let ϕ be a measurable section of the principal fibre bundle M → M/Γ.
Then by (11.8),

∑

γ∈Γ

(s, πH(γ)t)HUα(γ)−1 =
∑

γ∈Γ

(∫

Γ̂

∫

M/Γ

(
sβ(ϕ(O)), Uβ(γ)−1tβ(ϕ(O))

)
E
dO dβ

)
Uα(γ)−1

=
∫

M/Γ

(
sα(ϕ(O)), tα(ϕ(O))

)
E
dO

= (sα, tα)α.
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We conclude from (11.11) and Lemma 11.6 that ÊH is the closure of V −1(Γc(M,E))
in the norm

‖s‖2ÊH = sup
α∈Γ̂

‖sα‖2α.

Therefore, it makes sense to define the space Γ
(
Γ̂, (Hα)α∈Γ̂

)
of continuous sec-

tions of the field of Hilbert spaces (Hα)α∈Γ̂ as the C0(Γ̂)-module ÊH (cf. [19, 78]).
Then our construction implies

Proposition 11.7. The Hilbert C∗(Γ)-module E is isomorphic to the Hilbert
C0(Γ̂)-module Γ

(
Γ̂, (Hα)α∈Γ̂

)
.

Let us verify explicitly that the representations of C0(Γ̂) in ÊH and in
Γ
(
Γ̂, (Hα)α∈Γ̂

)
are indeed intertwined by the isomorphism induced by V and

the Fourier transform: for all f ∈ Cc(Γ) and all s ∈ V −1(Γc(M,E)), we have

(f · s)α =
∑

γ∈Γ

f(γ) (πH(γ)s)α by (11.10)

=
∑

γ∈Γ

f(γ)Uα(γ)−1sα

= f̂(α)sα.

11.3 The operator part of the assembly map

Proposition 11.8. Consider the adjointable operator FÊH =
(
Fα

)
α∈Γ̂

on the
Hilbert C0(Γ̂)-module ÊH = Γ

(
Γ̂, (Hα)α∈Γ̂

)
, given by

(
FÊHs

)
α

:= Fαsα,

for all α ∈ Γ̂ and s ∈ Γ
(
Γ̂, (Hα)α∈Γ̂

)
. Here Fα is the operator (11.4). Then for

all s ∈ V −1(Γc(M,E)), we have

FV s = V FÊHs.

Proof. The claim is that for all such s, and all m ∈M ,

FV s(m) =
∫

Γ̂

Fαsα(m)dα.

Let HD ⊂ H be the space of s ∈ H such that V s ∈ Γ∞c (M,E), and sα ∈ HDα
for all α ∈ Γ̂ (see (11.3)).

Note that we have DV s(m) =
∫
Γ̂
Dsα(m)dα for all s ∈ HD and m ∈ M .

Because of Lemma 4.31 this proves the proposition, since HD is dense in H.

Proof of Proposition 11.3. Since Γc(M,E) is dense in E and V −1(Γc(M,E))
is dense in ÊH, Propositions 11.7 and 11.8 imply that

µΓ
M

[
L2(M,E), F

]
= [E , FE ]

= [ÊH, FÊH ]

=
[
Γ
(
Γ̂, (Hα)α∈Γ̂

)
, (Fα)α∈Γ̂

] ∈ KK0(C, C0(Γ̂)).
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The image of this class in K0(C0(Γ̂)) is the formal difference of projective C0(Γ̂)-
modules [

ker
(
(F+
α )α∈Γ̂

)]− [
ker

(
(F−α )α∈Γ̂

)]
. (11.12)

By compactness of M/Γ and the elliptic regularity theorem, the kernels of F+
α

and F−α are equal to the kernels of D+
α and D−α , respectively. By the remark

above Proposition 11.3, we may suppose that the kernels of D+
α and D−α define

vector bundles over Γ̂. Then by Lemma 11.9 below, the class (11.12) equals
[
Γ
(
Γ̂,

(
kerD+

α

)
α∈Γ̂

)]− [
Γ
(
Γ̂,

(
kerD−α

)
α∈Γ̂

)]
.

Under the isomorphism K0(C0(Γ̂)) ∼= K0(Γ̂), the latter class corresponds to
[(

kerD+
α

)
α∈Γ̂

]− [(
kerD−α

)
α∈Γ̂

] ∈ K0(Γ̂).

¤

Lemma 11.9. Let H be a continuous field of Hilbert spaces over a topological
space X, and let ∆ be its space of continuous sections. Let H′ be a subset of H
such that for all x ∈ X, H′x := Hx ∩H′ is a linear subspace of Hx. Set

∆′ := {s ∈ ∆; s(x) ∈ H′x for all x ∈ X}.
Let s : X → H′ be a section. Then s is continuous in the subspace topology

of H′ in H if and only if s ∈ ∆′.

Proof. Let s : X → H be a section. Then s is a continuous section of H′ in the
subspace topology if and only if s is a continuous section of H and s(x) ∈ H′x
for all x. The topology on H is defined in such a way that s is continuous if and
only if s ∈ ∆ [19, 78].

11.4 Reduction

We will now describe the reduction map R0
Γ : K0(C∗(Γ)) → Z, and prove

Proposition 11.1.

Lemma 11.10. Let Γ be an abelian discrete group, and let i : {1} ↪→ Γ̂ be the
inclusion of the trivial representation. The following diagram commutes:

K0(C∗(Γ))
R0

Γ //

∼=
²²

K0(C)

∼=
²²

K0(Γ̂)
i∗ // K0({1}).

That is,
R0

Γ ([E]) = dimE1 = rank(E) ∈ Z,
for all vector bundles E → Γ̂.
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The proof is a straightforward verification.

End of proof of Proposition 11.1. From Lemma 11.10 and Proposition 11.3,
we conclude that

R0
Γ ◦ µΓ

M

[
L2(M,E), F

]
= [kerD+

1 ]− [kerD−1 ] = indexD1 ∈ Z.
The Hilbert space H1 is isomorphic to L2(M/Γ, E/Γ), and this isomorphism
intertwines D1 and DΓ. Hence Proposition 11.1 follows. ¤

11.5 Example: the action of Z2n on R2n

For some natural number n, let M be the manifold M = T ∗Rn ∼= R2n ∼= Cn.
An element of M is denoted by (q, p) := (q1, p1, . . . , qn, pn), where qj , pj ∈ R, or
by q + ip = z := (z1, . . . , zn), where zj = qj + ipj ∈ C. We equip M with the
standard symplectic form ω :=

∑n
j=1 dpj ∧ dqj , as in (2.2).

Let Γ be the group Γ = Z2n ∼= Zn + iZn. The action of Γ on M by addition
is denoted by α. Our aim is to find a prequantisation for this action and the
corresponding Dirac operator for general n, and the quantisation of this action
for n = 1.

Prequantisation

Let L := M × C → M be the trivial line bundle. Inspired by the construction
of line bundles on tori with a given Chern class (see e.g. [25], pp. 307–317), we
lift the action of Γ on M to an action of Γ on L (still called α), by setting

ej · (z, w) = (z + ej , w);

iej · (z, w) = (z + iej , e
−2πizjw).

Here z ∈M , w ∈ C, and

ej := (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn,
the 1 being in the jth place. The corresponding representation of Γ in the space
of smooth sections of L is denoted by ρ:

(ρk+ils) (z) = αk+ils(z − k − il),
for k, l ∈ Zn and z ∈M . Define the metric (−,−)L on L by

(
(z, w), (z, w′)

)
L

= h(z)ww̄′,

where z ∈M , w,w′ ∈ C, and h ∈ C∞(M) is defined by

h(q + ip) := e2π
P

j(pj−p2j ).

Let ∇ be the connection on L defined by

∇ := d+ 2πi
n∑

j=1

pj dzj + π dpj .
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Proposition 11.11. The triple (L, (−,−)L,∇) defines an equivariant prequan-
tisation for (M,ω).

The proof of this proposition is a set of tedious computations. Because of
the term 2πi

∑n
j=1 pj dqj in the expression for the connection ∇, it has the

right curvature form. The terms −2π
∑n
j=1 pj dpj and π dpj do not change the

curvature, and have been added to make ∇ equivariant. At the same time, the
latter two terms ensure that there is a Γ-invariant metric (namely (−,−)L) with
respect to which ∇ is Hermitian.

As we mentioned in Section 6.1, there is a procedure in [32] to lift the
action of Z2n on R2n to a projective action on L that leaves the connection (for
example) ∇′ := d+ 2πi

∑
j pj dqj invariant. This projective action turns out to

be an actual action in this case, and preserves the standard metric on L. We
thus obtain prequantisation of this action that looks much simpler than the one
given in this chapter. However, we found our formulas to be more suitable to
compute the kernel of the associated Dirac operator.

The Dirac operator

In this section, we compute the Dolbeault–Dirac operator ∂̄L+∂̄∗L on M , coupled
to L. We will simplify the notation by denoting this operator by /D in the rest
of this chapter. To compute the quantisation of the action we are considering,
we need to compute the kernels of

/D+ := /D|Ω0,even(M);

/D− := /D|Ω0,odd(M).

This is not easy to do in general. But for n = 1, these kernels are computed in
Section 11.6.

In our expression for the Dirac operator, we will use multi-indices

l = (l1, . . . , lq) ⊂ {1, . . . , n},

where q ∈ {0, . . . , n} and l1 < · · · < lq. We will write dz̄l := dz̄l1 ∧ . . . ∧ dz̄lq . If
l = ∅, we set dz̄l := 1M , the constant function 1 on M . Note that {dz̄l}l⊂{1,...,n}
is a C∞(M)-basis of Ω0,∗(M ;L).

Given l ⊂ {1, . . . , n} and j ∈ {1, . . . , n}, we define

εjl := (−1)#{r∈{1,...,q};lr<j},

plus one if an even number of lr is smaller than j, and minus one if the number
of such lr is odd. From the definition of the Dolbeault–Dirac operator one then
deduces:
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Proposition 11.12. For all l ⊂ {1, . . . , n} and all f ∈ C∞(M), we have

/D
(
fdz̄l

)
=

∑

j∈l
εjl

(
−2

∂f

∂zj
+ (iπ − 4πipj)f

)
dz̄l\{j}

+
∑

1≤j≤n,
j 6∈l

εjl

(
∂f

∂z̄j
+
iπ

2
f

)
dz̄l∪{j}.

(11.13)

11.6 The case n = 1

We now consider the case where n = 1. That is, M = C and Γ = Z + iZ.
We can then explicitly compute the quantisation of the action of Γ on M .
This will allow us to illustrate the Guillemin–Sternberg–Landsman conjecture
by computing the four corners in diagram (3.16).

If n = 1, Proposition 11.12 reduces to

Corollary 11.13. The Dirac operator on C, coupled to L, is given by

/D(f1 + f2dz̄) =
(
∂f1
∂z̄

+
iπ

2
f1

)
dz̄ − 2

∂f2
∂z

+ (iπ − 4πi p)f2.

That is to say, with respect to the C∞(M)-basis {1M , dz̄} of Ω0,∗(M ;L), the
Dirac operator /D has the matrix form

/D =
(

0 /D−

/D+ 0

)
,

where

/D+ =
∂

∂z̄
+
iπ

2
;

/D− = −2
∂

∂z
+ iπ − 4πi p.

In this case, the kernels of /D+ and /D− can be determined explicitly:

Proposition 11.14. The kernel of /D+ consists of the sections s of L given by

s(z) = e−iπz̄/2ϕ(z),

where ϕ is a holomorphic function.
The kernel of /D− is isomorphic to the space of smooth sections t of L given

by
t(z) = eiπz/2+π|z|

2−πz2/2 ψ(z),

where ψ is a holomorphic function.
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The unitary dual of the group Z + iZ = Z2 is the torus T2. Therefore, by
Proposition 11.3, the quantisation of the action of Z + iZ on C is the class in
KK(C, C∗(Z2)) that corresponds to the class

[(
ker /D+

(α,β)

)
(α,β)∈T2

]
−

[(
ker /D−(α,β)

)
(α,β)∈T2

]

in K0(T2). It will turn out that the kernels of /D+
(α,β) and /D−(α,β) indeed define

vector bundles over T2. Let us compute these kernels.

Proposition 11.15. Let λ, µ ∈ R. Define the section sλµ ∈ Γ∞(M,L) by

sλµ(z) = eiλze−πp
∑

k∈Z
e−πk

2
e−k(λ+iµ+2π)e2πikz.

Set α := eiλ and β := eiµ. Then ker /D+
(α,β) = Csλµ.

Remark 11.16. For all λ, µ ∈ R, we have

sλ+2π,µ = eλ+iµ+3πsλµ;
sλ,µ+2π = sλµ.

Hence the vector space Csλµ ⊂ Γ∞(M,L) is invariant under λ 7→ λ + 2π and
µ 7→ µ + 2π. This is in agreement with the fact that Csλµ is the kernel of
/D+

(eiλ,eiµ)
.

Sketch of proof of Proposition 11.15. Let λ, µ ∈ R, and s ∈ Γ∞(M,L) =
C∞(C,C). Suppose s is in the kernel of /D+

(eiλ,eiµ)
. Let ϕ be the holomorphic

function from Proposition 11.14, and write

ϕ̃(z) := e−iλze−iπz/2ϕ(z) =
∑

k∈Z
ak e

2πikz

(note that for all z ∈ C, one has ϕ̃(z+1) = ϕ̃(z)). Then it follows from invariance
of s under the action of the subgroup iZ of Γ that ak = e−πk

2
e−k(λ+iµ+2π)a0,

which gives the desired result. ¤
Proposition 11.17. The kernel of /D−(α,β) is trivial for all (α, β) ∈ T2.

Sketch of proof. Let λ, µ ∈ R and let t dz̄ ∈ Ω0,1(M ;L) = Γ∞(M,L)dz̄. Suppose
that t dz̄ ∈ ker /D−

(eiλ,eiµ)
. Let ψ be the holomorphic function from Proposition

11.14, and write

ψ̃(z) := eπ(z̄2+iz̄)/2−iλz̄ψ(z) =
∑

k∈Z
ck e

2πikz̄

(note that for all z ∈ C, one has ψ̃(z+1) = ψ̃(z)). Then it follows from invariance
of t dz̄ under the action of the subgroup iZ of Γ that ck = eπk

2
ek(λ−iµ−2π)c0,

which implies that c0 = 0. ¤
We conclude:
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Proposition 11.18. The quantisation of the action of Z2 on C is the class in
K0(T2) defined by the vector bundle2

(Csλµ)(eiλ,eiµ)∈T2 → T2.

By Lemma 11.10, we now find that the reduction of the quantisation of the
action of Z2 on R2 is the one-dimensional vector space C · s0,0 ⊂ Γ∞(M,L),
where

s0,0(z) = e−πp
∑

k∈Z
e−πk

2
e−2πke2πikz.

As we saw in Section 11.1, it follows from Proposition 10.1 that this is precisely
the index of the Dolbeault–Dirac operator ∂̄L/Z2 +∂̄∗L/Z2 on the torus T2, coupled
to the line bundle L/Z2 via the connection induced by ∇. Schematically, we
therefore have

Z2 © R2 Â Q //
_

R0
Z2

²²

(Csλµ)(eiλ,eiµ)∈T2
_
R0
Z2

²²
T2 Â Q // C · s0,0.

(11.14)

Note that it is a coincidence that the two-torus appears twice in this diagram:
in this example M/Γ = T2 = Γ̂.

Remark 11.19. The fact that the geometric quantisation of the torus T2 is
one-dimensional can alternatively be deduced from the Atiyah–Singer index
theorem for Dirac operators. Indeed, let ∂̄L/Z2 + ∂̄∗L/Z2 be the Dirac operator on
the torus, coupled to the quotient line bundle L/Z2. Then by Atiyah–Singer, in
the form stated for example in [27] on page 117, one has

Q(T2) = index
(
∂̄L/Z2 + ∂̄∗L/Z2

)
=

∫

T2
ech1(L/Z2)

=
∫

T2
dp ∧ dq

= 1,

the symplectic volume of the torus, i.e. the volume determined by the Liouville
measure.

2By Remark 11.16, this is indeed a well-defined vector bundle.
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Discrete series
representations of
semisimple groups
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In Part IV, we consider a cocompact Hamiltonian action of a semisimple
Lie group G on a symplectic manifold (M,ω), and prove Theorem 6.13. The
strategy of this proof is to deduce Theorem 6.13 from the (known) case of the
action of a maximal compact subgroup K < G on the compact submanifold
N := Φ−1(k∗) of M , with Φ : M → g∗ the momentum map.

We will see in Chapter 12 that there are inverse constructions

H-CrossGK :G © M Ã K © N := Φ−1(k∗);

H-IndGK :K © N Ã G © M := G×K N.

These are called Hamiltonian cross-section and Hamiltonian induction, respec-
tively. In Chapter 13, we define induction procedures for prequantisations,
almost complex structures and Spinc-structures, compatible with this Hamilto-
nian induction procedure.

The central result in Part IV is Theorem 14.5, which states that ‘quantisation
commutes with induction’. Roughly speaking, this is expressed by the diagram

(M = G×K N,ω) Â QG // QG(M) ∈ K0(C∗r (G))

(N, ν)
_

H-IndG
K

OO

Â QK // QK(N) ∈ R(K).

D-IndG
K

OO

Here R(K) is the representation ring of K, K0(C∗r (G)) is the K-theory of the
reduced C∗-algebra of G, and D-IndGK is the Dirac induction map (6.10). In
Chapter 14, we tie the other chapters in Part IV together, by showing how
Theorem 14.5 implies Theorem 6.13, and by sketching a proof of Theorem 14.5.
The details of this proof are filled in in Chapter 15.

Our proof Theorem 14.5 is based on naturality of the assembly map for
the inclusion of K into G (Theorem 9.1). In Chapter 15, we show that this
naturality result is well-behaved with respect to the K-homology classes of the
Dirac operators we use, thus proving Theorem 14.5.

Unless stated otherwise, we will use the notation and assumptions of Chapter
6. A large part of Part IV is about the relation between structures on the
manifolds M and N . To avoid confusion, we use a superscript M or N to
indicate if a given structure is defined on M or on N . In this way, we will have
the momentum maps ΦM and ΦN , and the almost complex structures JM and
JN , for example.



184



Chapter 12

Induction and cross-sections
of Hamiltonian group
actions

In this chapter, we explain the Hamiltonian induction and Hamiltonian cross-
section constructions mentioned in the introduction to Part IV. We will see
in Section 12.4 that they are each other’s inverses. Our term ‘Hamiltonian
induction’ is quite different from Guillemin and Sternberg’s term ‘symplectic
induction’ introduced in [29], Section 40.

Many results in this chapter are known for the case where the pair (G,K)
is replaced by (K,T ). See for example [55, 64].

12.1 The tangent bundle to a fibered product

In our study of the manifold G×K N , we will use an explicit description of its
tangent bundle, which we will now explain.

For this section, let G be any Lie group, H < G any closed subgroup, and N
a left H-manifold. We consider the action of H on the product G×N defined
by

h · (g, n) = (gh−1, hn),

for all h ∈ H, g ∈ G and n ∈ N . We denote the quotient of this action by
G×HN , or by M . Because the action of H on G×N is proper and free, M is a
smooth manifold. We would like to describe the tangent bundle to M explicitly.

To this end, we endow the tangent bundle TH ∼= H × h with the group
structure

(h,X)(h′, X ′) := (hh′,Ad(h)X ′ +X),

for h, h′ ∈ H and X,X ′ ∈ h. This is a special case of the semidirect product
group structure on a product V oH, where V is a representation space of H.
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We consider the action of the group TH on TG× TN defined by

(h,X) · (g, Y, v) := (gh−1,Ad(h)Y −X,Tnh(v) +Xhn),

for h ∈ H, X ∈ h, (g, Y ) ∈ G× g ∼= TG, n ∈ N and v ∈ TnN . Let TG×TH TN
be the quotient of this action. It is a vector bundle over M , with projection
map [g,X, v] 7→ [g, n] (notation as above). We let G act on TG×TH TN by left
multiplication on the first factor.

Proposition 12.1. There is a G-equivariant isomorphism of vector bundles

Ψ : TG×TH TN → TM,

given by
Ψ[g, Y, v] = Tp(g, Y, v),

with p : G×N →M the quotient map.

Proof. Let us first show that Ψ is well-defined. Let g ∈ G, Y ∈ g, v ∈ TnN ,
h ∈ H and X ∈ h be given. Let γ be a curve in N with γ(0) = n and γ′(0) = v.
Define the curve δ in G×N by

δ(t) =
(
gh−1 exp(tAd(h)Y ) exp(−tX), exp(tX) · h · γ(t)

)
.

Then

δ′(0) = (gh−1,Ad(h)Y −X,Tnh(v) +Xhn) ∈ G× g× ThnN.

Now since for all t,

p ◦ δ(t) = p
(
gh−1 exp(tAd(h)) exp(−tX), exp(tX) · h · γ(t)

)

= p
(
g exp(tY )h−1 exp(−tX), exp(tX) · h · γ(t)

)

= p
(
g exp(tY ), γ(t)

)
,

we have

Tp(gh−1,Ad(h)Y −X,Tnh(v) +Xhn) =
d

dt

∣∣∣∣
t=0

p ◦ δ(t)

=
d

dt

∣∣∣∣
t=0

p
(
g exp(tY ), γ(t)

)

= Tp(g, Y, v).

So Ψ is indeed well-defined.
The map Ψ is a surjective vector bundle homomorphism because Tp : TG×

TN → TM is. Because the bundles TM and TG×TH TN have the same rank,
the map Ψ is therefore an isomorphism of vector bundles.
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Now suppose that there is an Ad(H)-invariant linear subspace p ⊂ g such
that g = h⊕ p (such as in the case H = K we consider in the rest of Part IV).
Then there is a possibly simpler description of TM , that we will also use later.
Consider the action of H on the product G× TN × p given by

h · (g, v, Y ) = (gh−1, Tnh(v),Ad(h)Y ),

and denote the quotient by G×H (TN × p).

Lemma 12.2. The map

Ξ : TG×TH TN → G×H (TN × p),

given by
Ξ[g, Y, v] = [g, v + (Yh)n, Yp]

for all g ∈ G, Y ∈ g, n ∈ N and v ∈ TnN , is a well-defined, G-equivariant
isomorphism of vector bundles. Here Yh and Yp are the components of Y in h
and p respectively, according to the decomposition g = h⊕ p.

Because of Proposition 12.1 and Lemma 12.2, we have TM ∼= G×H (TN×p)
as G-vector bundles.1

Proof. We first show that Ξ is well-defined. Indeed, for all g ∈ G, Y ∈ g, n ∈ N
and v ∈ TnN , and for all h ∈ H and X ∈ h, we have

Ξ[(h,X) · (g, Y, v)] = [gh−1, Tnh(v) +Xhn +
(
(Ad(h)Y −X)h

)
hn
, (Ad(h)Y −X)p]

= [gh−1, Tnh(v) +
(
Ad(h)(Yh)

)
hn
,Ad(h)Yp] ∈ G×H (TN × p).

(12.1)

Here we have used the fact that the decomposition g = h⊕p is Ad(H)-invariant.
Furthermore, we have

(
Ad(h)(Yh)

)
hn

=
d

dt

∣∣∣∣
t=0

exp(tAd(h)Yh)hn

=
d

dt

∣∣∣∣
t=0

h exp(tYh)n

= Tnh
(
Yh

)
n
.

Hence (12.1) equals

[h · (g, v + (Yh)n, Yp)] = [g, v + (Yh)n, Yp] = Ξ[g, Y, v],

which shows that Ξ is well-defined.
It is obvious that Ξ is fibrewise linear. Let us prove that it is fibrewise

injective: with notation as above, suppose that

Ξ[g, Y, v] = [g, v + (Yh)n, Yp] = 0.
1A version of this fact is used without a proof in [6] on page 503.
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That is, Y ∈ h and v = −(Yh)n. And therefore,

[g, Y, v] = [(e,−Y ) · (g, 0, 0)] = [g, 0, 0],

and Ξ is fibrewise injective. Hence, because Ξ is a map between vector bundles
of the same rank, it is a fibrewise linear isomorphism.

Finally, the isomorphism Ξ is G-equivariant because on both sides, G acts
by left multiplication on the first factor.

In Chapter 13, we will use the following version of Proposition 12.1 and
Lemma 12.2.

Corollary 12.3. In the situation of Lemma 12.2, there is an isomorphism of
G-vector bundles

TM ∼=
(
p∗G/HT (G/H)

)⊕ (G×H TN),

where pG/H : M → G/H is the natural projection.

Proof. The claim follows from Proposition 12.1, Lemma 12.2, and the fact that

T (G/H) ∼= G×H p,

where H acts on p via Ad.

12.2 Hamiltonian induction

We return to the standard situation in Part IV, where G is a semisimple group,
and K < G is a maximal compact subgroup.

The symplectic manifold

Let (N, ν) be a symplectic manifold on which K acts in Hamiltonian fashion,
with momentum map ΦN : N → k∗. Suppose that the image of ΦN lies in the
set k∗se, defined in (6.19). As in Section 12.1, we consider the fibered product
M = G×K N , equipped with the action of G induced by left multiplication on
the first factor. As a consequence of Proposition 12.1 and Lemma 12.2, we have
for all n ∈ N ,

T[e,n]M ∼= TnN ⊕ p.

We define a two-form ω on M by requiring that it is G-invariant, and that for
all X,Y ∈ p, n ∈ N and v, w ∈ TnN ,

ω[e,n](v +X,w + Y ) := νn(v, w)− 〈ΦN (n), [X,Y ]〉. (12.2)

Note that [X,Y ] ∈ k for all X,Y ∈ p, so the pairing in the second term is well-
defined. We claim that ω is a symplectic form. This is analogous to formula
(7.4) from [64].
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Proposition 12.4. The form ω is symplectic.

Proof. The form ω is closed, because it is the curvature form of a connection on
a line bundle over M . This will be proved in Section 13.1.

Next, we show that ω is nondegenerate. By G-invariance of ω, it is enough
to prove this at points of the form [e, n], with n ∈ N . Let v ∈ TnN and X ∈ p
be given, such that for all w ∈ TnN and Y ∈ p, we have

ω[e,n](v +X,w + Y ) = 0. (12.3)

Then in particular,
ω[e,n](v +X,w) = νn(v, w) = 0

for all such w, and hence v = 0 by nondegeneracy of ν.
On the other hand, we have

0 = ω[e,n](v +X,Y )

for all Y ∈ p, which equals

−〈ΦN (n), [X,Y ]〉 = 〈ad∗(X)ΦN (n), Y 〉 = 〈XΦN (n), Y 〉.

Analogously, for Z ∈ k we have

〈XΦN (n), Z〉 = −〈ΦN (n), [X,Z]〉,

which also equals zero, since [X,Z] ∈ p and ΦN (n) ∈ k∗ ∼= p0. Therefore,
XΦN (n) = 0, which by Lemma 6.11 implies that X = 0, since ΦN (N) ⊂ k∗se. We
conclude that ω[e,n] is indeed nondegenerate.

The momentum map

Next, consider the map ΦM : M → g∗ given by

ΦM [g, n] = Ad∗(g)ΦN (n). (12.4)

This map is well-defined by K-equivariance of ΦN . Furthermore, it is obviously
G-equivariant, and its image lies in g∗se.

Proposition 12.5. The map ΦM is a momentum map for the action of G on
M .

Proof. We first prove the defining property of momentum maps,

dΦMX = −XMyω (12.5)

for all X ∈ g, at points of the form [e, n], with n ∈ N . To this end, we compute
the tangent map T[e,n]ΦM in the following way. Let v ∈ TnN and Y ∈ p be
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given. Let γ be a curve in N such that γ(0) = n and γ′(0) = v. Then

T[e,n]ΦM (v + Y ) =
d

dt

∣∣∣∣
t=0

ΦM [exp(tY ), γ(t)]

=
d

dt

∣∣∣∣
t=0

Ad∗(exp tY )ΦN (γ(t))

=
d

dt

∣∣∣∣
t=0

ΦN (γ(t)) +
d

dt

∣∣∣∣
t=0

Ad∗(exp tY )ΦN (n)

= TnΦN (v) + ad∗(Y )ΦN (n).

Now let X ∈ g and let Y, v be as before. Write X = Xk + Xp, with Xk ∈ k
and Xp ∈ p. Then

〈d[e,n]ΦMX , v + Y 〉 = 〈T[e,n]ΦM (v + Y ), X〉
= 〈TnΦN (v), X〉+ 〈ad∗(Y )ΦN (n), X〉
= 〈TnΦN (v), Xk〉+ 〈ΦN (n), [X,Y ]k〉. (12.6)

By the defining property of ΦN , and because [X,Y ]k = [Xp, Y ], the expression
(12.6) equals

−νn
(
(Xk)n, v

)
+ 〈ΦN (n), [Xp, Y ]〉 = −ω[e,n]((Xk)n +Xp, v + Y ).

By Lemma 12.6 below, we have X[e,n] = (Xk)n+Xp, which yields equality (12.5)
at the point [e, n].

To prove (12.5) on all of M , we note that on both sides of this equation,
pulling back along an element g ∈ G amounts to replacing X by Ad(g)X, as
one can compute. Therefore, equality (12.5) at points of the form [e, n] implies
the general case.

In the proof of Proposition 12.5, we used:

Lemma 12.6. With notation as before, we have

X[e,n] = (Xk)n +Xp

in TnN ⊕ p ∼= T[e,n]M .

Proof. Using the isomorphisms TM ∼= TG×TK TN and TG×TK TN ∼= G×K
(TN × p) from Proposition 12.1 and Lemma 12.2, we compute

X[e,n] =
d

dt

∣∣∣∣
t=0

[exp tX, n] ∈ T[e,n]M

7→ [e,X, 0] ∈ TG×TK TN

= [e,Xp,
(
Xk)n]

7→ (Xk)n +Xp ∈ TnN ⊕ p.
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Definition 12.7. The Hamiltonian induction of the Hamiltonian action of K
on (N, ν) is the Hamiltonian action of G on (M,ω):

H-IndGK(N, ν,ΦN ) := (M,ω,ΦM ).

Example 12.8. Let ξ ∈ t∗ \ ncw be given, and consider the coadjoint orbit
N := K · ξ ⊂ k∗. The Hamiltonian induction of the coadjoint action of K on
N is the coadjoint action of G on the coadjoint orbit M := G · ξ, including the
natural symplectic forms and momentum maps. Indeed, the map

G · ξ → G×K N

given by g · ξ 7→ [g, ξ] is a symplectomorphism.

12.3 Hamiltonian cross-sections

We now turn to the inverse construction to Hamiltonian induction, namely
the Hamiltonian cross-section. In this case, we start with a Hamiltonian G-
manifold (M,ω), with momentum map ΦM . Such a cross-section will indeed
be symplectic and carry a Hamiltonian K-action, under the assumption that
the image of ΦM is contained in g∗se. A Hamiltonian cross-section is a kind of
double restriction: it is both a restriction to a subgroup of G and a restriction
to a submanifold of M .

Most of this section is based on the proof of the symplectic cross-section
theorem in Lerman et al. [55].

As before, we identify k∗ with the subspace p0 of g∗. The main result of this
section is:

Proposition 12.9. If ΦM (M) ⊂ g∗se, then N :=
(
ΦM

)−1(k∗) is a K-invariant
symplectic submanifold of M , and ΦN := ΦM |N is a momentum map for the
action of K on N .

We denote the restricted symplectic form ω|N by ν.

Definition 12.10. The Hamiltonian cross-section of the Hamiltonian action of
G on (M,ω) is the Hamiltonian action of K on (N, ν):

H-CrossGK(M,ω,ΦM ) := (N, ν,ΦN ).

In Proposition 12.15, we will see that M ∼= G×KN , so that M/G is compact
if and only if N is.

To prove Proposition 12.9, we have to show that N is a smooth submanifold
of M , and that the restricted form ω|N is symplectic. Then the submanifold N
is K-invariant by K-equivariance of ΦM , and the fact that ΦN is a momentum
map is easily verified. We begin with some preparatory lemmas, based on the
proof of the symplectic cross-section theorem mentioned above.

For the remainder of this section, let m ∈ M be given, and write ξ :=
ΦM (m).
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Lemma 12.11. The linear map

ψ : Tm(G ·m)→ Tξ(G · ξ)
given by

ψ(Xm) = Xξ

for X ∈ g, is symplectic, in the sense that for all X,Y ∈ g,

ωm(Xm, Ym) = −〈ξ, [X,Y ]〉.
Proof. First note that ψ is well-defined because by equivariance of ΦM , we have
gm ⊂ gξ.

Furthermore, by the properties of ΦM we have

ωm(Xm, Ym) = −〈dmΦMX , Ym〉
= −〈TmΦM (Ym), X〉

= − d

dt

∣∣∣∣
t=0

〈ΦM (exp(tY )m), X〉

= − d

dt

∣∣∣∣
t=0

〈Ad∗(exp tY )ΦM (m), X〉

= −〈ad∗(Y )ξ,X〉
= −〈ξ, [X,Y ]〉.

Lemma 12.12. We have the following inclusions of subspaces of g∗:

g0
ξ ⊂ TmΦM (TmM) ⊂ g0

m.

Proof. The second inclusion is the easiest one to prove. Indeed, let v ∈ TmM
and X ∈ gm be given. Then by definition of momentum maps,

〈TmΦM (v), X〉 = 〈dmΦMX , v〉 = −ω(Xm, v) = 0,

since Xm = 0.
To prove the first inclusion, we consider the maps

g0
ξ
∼=

(
g/gξ

)∗ ∼= T ∗ξ (G · ξ) #←−∼= Tξ(G · ξ) ψ←− Tm(G ·m) ↪→ TmM.

Here ‘#’ denotes the isomorphism induced by the standard symplectic form on
G · ξ (see Example 2.13).

Let η ∈ g0
ξ be given, and choose v ∈ Tm(G ·m) such that the images of v

and η in Tξ(G · ξ) under the maps above coincide. (Note that such a v exists
since ψ is surjective.) We claim that TmΦM (v) = η. Indeed, write v = Xm for
an X ∈ g. Then for all Y ∈ g,

〈η, Y 〉 = 〈ξ, [X,Y ]〉 = −ωm(Xm, Ym)

by the definition of the map #, and by Lemma 12.11. By definition of ΦM , the
latter expression equals 〈TmΦM (v), Y 〉, which proves the claim.
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Lemma 12.13. If m ∈ N ⊂M , then the subspace

p ·m := {Xm;X ∈ p} ⊂ TmM

is symplectic.

Proof. Step 1: we have

Tξ(G · ξ) ∼= g · ξ = (k + p) · ξ = Tξ(K · ξ) + p · ξ.

Step 2: the subspace p · ξ ⊂ Tξ(G · ξ) is symplectic.
Indeed, by Step 1 and Lemma 12.14 below, it is enough to prove that p · ξ and
Tξ(K ·ξ) are symplectically orthogonal. Let X ∈ k and Y ∈ p be given. Because
m ∈ N , we have ξ ∈ k∗, and also ad∗(X)ξ ∈ k∗ ∼= p0. Hence

〈ξ, [X,Y ]〉 = −〈ad∗(X)ξ, Y 〉 = 0.

Step 3: the subspace p ·m ⊂ TmM is symplectic.
Indeed, let a nonzero X ∈ p be given. We are looking for a Y ∈ p such that
ωm(Xm, Ym) 6= 0. Note that by Lemma 6.11, we have ad∗(X)ξ = Xξ 6= 0. So
by Step 2, there is a Y ∈ p for which 〈ξ, [X,Y ]〉 6= 0. Hence by Lemma 12.11,

ωm(Xm, Ym) = −〈ξ, [X,Y ]〉 6= 0.

In Step 2 of the proof of Lemma 12.13, we used

Lemma 12.14. Let (W,σ) be a symplectic vector space, and let U, V ⊂ W be
linear subspaces. Suppose that W = U+V , and that U and V are symplectically
orthogonal. Then U and V are symplectic subspaces.

Proof. We prove the claim for U . Let u ∈ U \ {0} be given. Choose w ∈ W
such that σ(u,w) 6= 0. Since W = U +V , there are u′ ∈ U and v ∈ V such that
w = u′ + v. For such u′, we have

σ(u, u′) = σ(u,w) 6= 0.

After these preparations, we are ready to prove Proposition 12.9.

Proof of Proposition 12.9. We first show that N is smooth. This is true if ΦM

satisfies the transversality condition that for all n ∈ N , with η := ΦM (n), we
have

Tηg
∗ = Tηk

∗ + TnΦM (TnM).

(See e.g. [36], Chapter 1, Theorem 3.3.) By Lemma 12.12, we have g0
η ⊂

TnΦM (TnM), and by Lemma 6.11, we have gη ∩ p = {0}. Now, using the
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fact that V 0 + W 0 = (V ∩W )0 for two linear subspaces V and W of a vector
space, we see that

Tηk
∗ + TnΦM (TnM) ⊃ p0 + g0

η = (p ∩ gη)0 = {0}0 = g∗.

This shows that N is indeed smooth.
Next, we prove that ω|N is a symplectic form. It is closed because ω is, so

it remains to show that it is nondegenerate. Let n ∈ N be given. By Lemma
12.14, it is enough to show that TnM = TnN + p · n, and that TnN and p · n
are symplectically orthogonal.

We prove that TnM = TnN ⊕ p · n, by first noting that

dimN = dimM − dim g∗ + dim k∗ = dimM − dim p.

Because gn ⊂ gΦM (n), and gΦM (n) ∩ p = {0} by Lemma 6.11, we have dim p =
dim(p · n), and

dimTnM = dimTnN + dim(p · n).

It is therefore enough to prove that TnN ∩p ·n = {0}. To this end, let X ∈ p be
given, and suppose Xn ∈ TnN . That is, TnΦM (Xn) ∈ k∗, which is to say that
for all Y ∈ p,

ωn(Xn, Yn) = −〈TnΦM (Xn), Y 〉 = 0.

By Lemma 12.13, it follows that Xn = 0, so that indeed TnN ∩ p · n = {0}.
Finally, we show that for all v ∈ TnN and X ∈ p, we have ωn(v,Xn) = 0.

Indeed, for such v and X, we have TnΦM (v) ∈ k∗ ∼= p0, so

ωn(v,Xn) = 〈TnΦM (v), X〉 = 0.

¤

12.4 Hamiltonian induction and taking Hamil-
tonian cross-sections are mutually inverse

Let us prove the statement in the title of this section. One side of it (Proposition
12.15) will be used in the proof of Theorem 6.13 in Section 14.3. We will not
use the other side (Proposition 12.16).

Induction of a cross-section

First, we have

Proposition 12.15. Let (M,ω,ΦM ) and (N, ν,ΦN ) := H-CrossGK(M,ω,ΦM )
be as in Section 12.3. Consider the manifold M̃ := G ×K N , with symplectic
form ω̃ equal to the form ω in (12.2). Define the map Φ̃M as the map ΦM in
(12.4). Then the map

ϕ : M̃ →M
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given by
ϕ[g, n] = g · n

is a well-defined, G-equivariant symplectomorphism, and ϕ∗ΦM = Φ̃M .
Put differently, H-IndGK ◦H-CrossGK is the identity, modulo equivariant sym-

plectomorphisms that intertwine the momentum maps.

It follows from this proposition that M/G = N/K, so that M/G is compact
if and only if N is compact.

Proof. The statement about the momentum maps follows from G-equivariance
of ΦM .

The map ϕ is well-defined by definition of the action of K on G × N . It
is obviously G-equivariant. Furthermore, ϕ is smooth because the action of G
on M is smooth (this was a tacit assumption), and by definition of the smooth
structure on the quotient G×K N .

To prove injectivity of ϕ, let g, g′ ∈ G and n, n′ ∈ N be given, and suppose
that g ·n = g′ ·n′. Because ΦM (N) ⊂ k∗se, there are k, k′ ∈ K and ξ, ξ′ ∈ t∗+\ncw
such that

ΦM (n) = k · ξ;
ΦM (n′) = k′ · ξ′.

Then by equivariance of ΦM , we have gk · ξ = g′k′ · ξ′. Because t∗+ \ ncw is a
fundamental domain for the coadjoint action of G on g∗se, we must have ξ = ξ′,
and

k′−1g′−1gk ∈ Gξ ⊂ K.
So k′′ := g′−1g ∈ K. Hence

g′k′′n = g · n = g′ · n′,
and k′′ · n = n′. We conclude that

[g′, n′] = [gk′′−1, k′′ · n] = [g, n],

and ϕ is injective.
To prove surjectivity of ϕ, let m ∈ M be given. Since ΦM (m) ∈ g∗se, there

are g ∈ G and ξ ∈ t∗+ \ ncw such that ΦM (m) = g · ξ. Set n := g−1m. Then
ΦM (n) = ξ ∈ k∗, so n ∈ N , and ϕ[g, n] = m.

Next, we show that the inverse of ϕ is smooth. We prove this using the
inverse function theorem: smoothness of ϕ−1 follows from the fact that the
tangent map Tϕ is invertible. Or, equivalently, from the fact that the map T̃ϕ,
defined by the following diagram, is invertible.

T (G×K N)
Tϕ // TM

TG×TK TN.

Ψ ∼=
OO

fTϕ

88qqqqqqqqqqq
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Here Ψ is the isomorphism from Proposition 12.1. Explicitly, the map T̃ϕ is
given by

T̃ϕ[g,X, v] = Tϕ ◦ Tp(g,X, v)
= Tα(g,X, v),

for all g ∈ G, X ∈ g and v ∈ TnN , with α : G×N →M the action map. Let γ
be a curve in N with γ(0) = n and γ′(0) = v. Then we find that

Tα(g,X, v) =
d

dt

∣∣∣∣
t=0

exp(tX)g · γ(t)

= Xgn + Tng(v).
(12.7)

Because the vector bundles TG×TK TN and TM have the same rank, it is
enough to show that T̃ϕ is surjective. To this end, let m ∈ M and w ∈ TmM
be given. Since ϕ is surjective, there are g ∈ G and n ∈ N such that m = g · n.
Furthermore, we have

TnM = TnN + g · n.
Indeed, in our situation we even have TnM = TnN ⊕ p · n (see the proof of
Proposition 12.9). Hence

TmM = Tng(TnM) = Tng(TnN + g · n).

Therefore, there are v ∈ TnN and X ∈ g such that

w = Tng(v +Xn)

= Tng(v) +
(
Ad(g)X

)
g·n

= T̃ϕ[g,Ad(g)X, v],

by (12.7). This shows that T̃ϕ is indeed surjective.
Finally, we prove that ϕ is a symplectomorphism. Let n ∈ N , v, w ∈ TnN

and X,Y ∈ p be given. We will show that

ωn
(
T[e,n]ϕ(v +X), T[e,n]ϕ(w + Y )

)
= ωn(v, w)− 〈ΦM (n), [X,Y ]〉.

By G-invariance of the symplectic forms ω and ω̃, this implies that ϕ is a
symplectomorphism on all of M̃ .

Similarly to (12.7), we find that T[e,n]ϕ(v +X) = v +Xn. Therefore,

ωn
(
T[e,n]ϕ(v +X), T[e,n]ϕ(w + Y )

)
= ωn(v +Xn, w + Yn)
= ωn(v, w) + ωn(Xn, Yn), (12.8)

since TnN and p · n are symplectically orthogonal (see the end of the proof of
Proposition 12.9). Now applying Lemma 12.11 to the first term in (12.8) gives
the desired result.
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Cross-section of an induction

Conversely to Proposition 12.15, we have:

Proposition 12.16. Let (N, ν,ΦN ) and (M,ω,ΦM ) := H-Ind(N, ν,ΦN ) be as
in Section 12.2. Suppose ΦN (N) ⊂ k∗se. Then

(N, ν) ∼=
((

ΦM
)−1(k∗), ω|(ΦM )−1(k∗)

)
,

and this isomorphism intertwines the momentum maps ΦN and ΦM .
In other words, H-CrossGK ◦H-IndGK is the identity, modulo equivariant sym-

plectomorphisms that intertwine the momentum maps.

Proof. We claim that

(
ΦM

)−1(k∗) = {[e, n];n ∈ N} =: Ñ . (12.9)

The map n 7→ [e, n] is a diffeomorphism from N to Ñ . It is clear that this
diffeomorphism is K-equivariant, and intertwines the momentum maps ΦN and
ΦM .

To prove that
(
ΦM

)−1(k∗) = Ñ , let [g, n] ∈ M be given, and suppose
ΦM [g, n] = g · ΦN (n) ∈ k∗. Because ΦN (N) ⊂ k∗se, we have

g · ΦN (n) ∈ (
G · k∗se

) ∩ k∗ = k∗se.

So there are k, k′ ∈ K and ξ, ξ′ ∈ t∗+ \ ncw such that

ΦN (n) = k · ξ;
g · ΦN (n) = k′ · ξ′.

Hence gk ·ξ = k′ ·ξ′, and since t∗+\ncw is a fundamental domain for the coadjoint
action of G on g∗se, we have ξ′ = ξ. So

k′−1gk ∈ Gξ ⊂ K,

and hence g ∈ K. We conclude that [g, n] = [e, g−1n], which proves (12.9) (the
inclusion Ñ ⊂ (

ΦM
)−1(k∗) follows from the definition of ΦM ).

For each n ∈ N , the natural isomorphism v 7→ [e, 0, v] from TnN to T[e,n]Ñ
intertwines the respective symplectic forms, by definition of those forms.
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Chapter 13

Induction of
prequantisations and
Spinc-structures

We extend the induction procedure of Chapter 12 to prequantisations and to
Spinc-structures, used to define quantisation. For prequantisations, it is possible
to define restriction to a Hamiltonian cross-section in a suitable way. For our
purposes, it is not necessary to restrict Spinc-structures.

13.1 Prequantisations

Since we are interested in quantising Hamiltonian actions, let us look at in-
duction of prequantum line bundles, and at restriction to Hamiltonian cross-
sections.

Restriction to Hamiltonian cross-sections

The easy part is restriction. Indeed, let (M,ω) be a Hamiltonian G-manifold,
let ΦM be a momentum map with ΦM (M) ⊂ g∗se, and let (N, ν,ΦN ) be the
Hamiltonian cross-section of this action. Now let Lω → M be a prequantum
line bundle, let (−,−)Lω be a G-invariant Hermitian metric on Lω, and let ∇M
be a G-equivariant Hermitian connection on Lω with curvature 2πi ω. Let ∇N
be the connection on Lν := Lω|N defined as the pullback of ∇M along the
inclusion map N ↪→M . It is given by

∇N(
s|N

)
=

(∇Ms) |N ,

for all sections s ∈ Γ∞(Lω). This is indeed a connection, with curvature

R∇N = R∇M |N = 2πi ω|N = 2πi ν.

199
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Furthermore, it is Hermitian with respect to the restriction (−,−)Lν of (−,−)Lω .
That is, (Lν , (−,−)Lν ,∇N ) is a prequantisation of the action of K on N .

In the same way, we see that a Spinc-prequantum line bundle on (M,ω),
that is, a prequantum line bundle on (M, 2ω), restricts to a Spinc-prequantum
line bundle on (N, 2ν).

Induction: an auxiliary connection ∇
Now let us consider induction of prequantisations. As in Section 12.2, let (N, ν)
be a Hamiltonian K-manifold, with momentum map ΦN . Let (M,ω,ΦM ) be the
Hamiltonian induction of these data. Let

(
Lν , (−,−)Lν ,∇N)

be an equivariant
prequantisation of the action of K on N . As in the case of restriction, the
following argument extends directly to Spinc-prequantisations.

Consider the line bundle

Lω := G×K Lν →M,

with the natural projection map [g, l] 7→ [g, n] for g ∈ G, n ∈ N and l ∈ Lνn.
Let (−,−)Lω be the G-invariant Hermitian metric on Lω induced by (−,−)Lν :
for all g, g′ ∈ G, n ∈ N and l, l′ ∈ Lνn, set

(
[g, l], [g′, l′]

)
Lω := (l, l′)Lν .

In the remainder of this section, we will construct a connection ∇M on Lω, such
that

(
Lω, (−,−)Lω ,∇M)

is a G-equivariant prequantisation of (M,ω). This is
by definition the prequantisation induced by

(
Lν , (−,−)Lν ,∇N)

.
To construct the connection ∇M , we consider the line bundle

L := G× Lν → G×N,
with the obvious projection map (g, l) 7→ (g, n), for all g ∈ G, l ∈ Lνn. Then
Lω = L/K, where K acts on L by

k · (g, l) = (gk−1, k · l),
for k ∈ K, g ∈ G and l ∈ Lν . By Proposition 8.6, we therefore have a linear
isomorphism

ψL : Γ∞(L)K → Γ∞(Lω),

given by
ψL(σ)[g, n] = [σ(g, n)]. (13.1)

We will construct ∇M as the connection induced by a K-equivariant connection
∇ on L. The space Γ∞(L) of sections of L is isomorphic to the space

Γ̃∞(L) := {s : G×N C∞−−→ Lν ; s(g, n) ∈ Lνn for all g ∈ G and n ∈ N.}
Indeed, the isomorphism is given by s 7→ σ, where σ(g, n) = (g, s(g, n)). For
s ∈ Γ̃∞(L), g ∈ G and n ∈ N , we write

sg(n) := s(g, n) =: sn(g).
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(We will use the same notation when s is replaced by a function on G × N .)
Then for fixed g, sg is a section of Lν , and for fixed n, sn is a function

sn : G→ Lνn.

Let s ∈ Γ̃∞(L), X ∈ g, v ∈ X(N), g ∈ G and n ∈ N be given. We define
(∇v+Xs

)
(g, n) :=

(∇Nv sg
)
(n) +X(sn)(g) + 2πiΦNXk

(n)s(g, n). (13.2)

Here we have written X = Xk + Xp ∈ k ⊕ p. (The subscript k in Xk in (13.2)
is actually superfluous, because we identify k∗ with p0 ⊂ g∗.) In the expression
X(sn), we view X as a left invariant vector field on G, acting on the function
sn. Note that all tangent vectors in T(g,n)(G × N) are of the form Xg + vn =
(g,X, vn) ∈ TgG×TnN , and therefore the above formula determines∇ uniquely.
We claim that ∇ is a K-equivariant connection on L with the right curvature,
so that it induces a connection ∇M on Lω with curvature ω.

Lemma 13.1. The formula (13.2) defines a connection ∇ on L.

Proof. The Leibniz rule for ∇ follows from the fact that for f ∈ C∞(G × N),
X ∈ g, v ∈ X(N), g ∈ G and n ∈ N , one has

(v +X)(f)(g, n) = v(fg)(n) +X(fn)(g).

Linearity over C∞(G × N) in the vector fields follows from the fact that,
with notation as above,

(
f(v +X)

)
(g,n)

=
(
fnX

)
g

+
(
fgv

)
(n).

Locality is obvious.

Properties of the connection ∇
Let (−,−)L be the Hermitian metric on L given by

(
(g, l), (g′, l′)

)
L

:= (l, l′)Lν

for all g, g′ ∈ G and l, l′ ∈ Lνn.

Lemma 13.2. The connection ∇ is Hermitian with respect to this metric.

Proof. Let s, t ∈ Γ̃∞(L), X ∈ g, v ∈ X(N), g ∈ G and n ∈ N be given. Then

(∇v+Xs, t
)
L

(g, n) +
(
s,∇v+Xt

)
L

(g, n) =
((∇Nv sg

)
(n), t(g, n)

)
L

+
(
s(g, n),

(∇Nv tg
)
(n)

)
L

+
(
X(sn)(g), t(g, n)

)
L

+
(
s(g, n), X(tn)(g)

)
L

+
(
2πiΦNXk

(n)s(g, n), t(g, n)
)
L

+
(
s(g, n), 2πiΦNXk

(n)t(g, n)
)
L
.
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By sesquilinearity of (−,−)L, the last two terms cancel. And since ∇N is
Hermitian, we are left with

v
(
(s, t)L

)
(g, n) +X

(
(s, t)L

)
(g, n) = (v +X)

(
(s, t)L

)
(g, n),

which shows that ∇ is indeed Hermitian.

Next, we compute the curvature of ∇.

Lemma 13.3. The curvature R∇ of ∇ is given by

R∇(v +X,w + Y )(g, n) = 2πi
(
νn(v, w)− 〈ΦN (n), [X,Y ]k〉

)
,

for all X,Y ∈ g, v, w ∈ X(N), g ∈ G and n ∈ N .

Proof. We compute:

(∇v+X∇w+Y s
)
(g, n) =
(∇Nv ∇Nw sg

)
(n) +∇Nv

(
n′ 7→ (

Y sn
′)

(g)
)
(n)

+X
(
g′ 7→ (∇Nw sg′

)
(n)

)
(g) + 2πiΦNYk

(n)(Xsn)(g)

+ (XY sn)(g) + 2πi
(
v(ΦNYk

)sg
)
(n)

+ 2πi
(
ΦNYk
∇Nv sg

)
(n) + 2πi

(
ΦNXk
∇Nw sg

)
(n)

− 4π2
(
ΦNXk

ΦNYk
sg

)
(n) + 2πiΦNXk

(n)Y (sn)(g). (13.3)

In this expression, the following terms are symmetric in v +X and w + Y :

• 2πiΦNYk
(n)(Xsn)(g) + 2πiΦNXk

(n)Y (sn)(g);

• 2πi
(
ΦNYk
∇Nv sg

)
(n) + 2πi

(
ΦNXk
∇Nw sg

)
(n);

• −4π2
(
ΦNXk

ΦNYk
sg

)
(n).

Furthermore, note that

∇Nv
(
n′ 7→ (

Y sn
′)

(g)
)
(n) = ∇Nv

(
n′ 7→ d

dt

∣∣∣∣
t=0

s(exp(−tY )g, n′)
)
(n)

=
d

dt

∣∣∣∣
t=0

(∇Nv sexp(−tY )g

)
(n)

= Y
(
g′ 7→ (∇Nv sg′

)
(n)

)
(g).

Therefore, the following term in (13.3) is also symmetric in v +X and w + Y :

∇Nv
(
n′ 7→ (

Y sn
′)

(g)
)
(n) +X

(
g′ 7→ (∇Nw sg′

)
(n)

)
(g).

We conclude that in the commutator [∇v+X ,∇w+Y ], most terms in (13.3) drop
out, and we are left with

(
[∇v+X ,∇w+Y ]s

)
(g, n) =

([∇Nv ,∇Nw
]
sg

)
(n) +

(
[X,Y ]sn

)
(g). (13.4)
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On the other hand, note that as vector fields on G × N , the Lie brackets
[X, v] and [Y,w] vanish. Therefore,

[v +X,w + Y ] = [X,Y ] + [v, w],

so that
(∇[v+X,w+Y ]s

)
(g, n) =

(∇[X,Y ]+[v,w]s
)
(g, n)

=
(∇N[v,w]sg

)
(n) +

(
[X,Y ]sn

)
(g) + 2πiΦN[X,Y ]k

(n)s(g, n)
(13.5)

Finally, taking the difference of (13.4) and (13.5), we obtain
(
R∇(v +X,w + Y )s

)
(g, n) =

(
R∇N (v, w)sg

)
(n)− 2πiΦN[X,Y ]k

s(g, n)

= 2πi
(
νn(vn, wn)− 〈ΦN (n), [X,Y ]k〉

)
s(g, n).

It remains to show that the connection ∇ induces the desired connection
∇M on Lω. This will follow from K-equivariance of ∇.

Lemma 13.4. The connection ∇ is K-equivariant in the sense that for all
X ∈ g, v ∈ X(N), k ∈ K, s ∈ Γ∞(L), g ∈ G and n ∈ n, we have

k · (∇v+Xs
)

= ∇k·(v+X)k · s.

Proof. By definition of the connection ∇, we have

(
k · (∇v+Xs

))
(g, n) =

k · ((∇Nv sgk
)
(k−1n)

)
+ k ·

(
X(sk

−1n)(gk)
)

+ ΦNXk
(k−1n)k · (s(gk, k−1n)

)
.

(13.6)

We examine this expression term by term.
By K-equivariance of ∇N , the first term in (13.6) equals

k · ((∇Nv sgk
)
(k−1n)

)
=

(
k · (∇Nv sgk

))
(n)

=
(∇Nk·vk · sgk

)
(n)

=
(∇Nk·v(k · s)g

)
(n).

The second term equals

k · (X(sk
−1n)(gk)

)
= k · d

dt

∣∣∣∣
t=0

s(gk exp(tX), k−1n)

= k · d
dt

∣∣∣∣
t=0

s(g exp(tAd(k)X)k, k−1n)

= k · (Ad(k)X(sk
−1n)

)
.
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Furthermore, note that for all g ∈ G and n ∈ N , we have

(
Ad(k)X

)
G×N (g, n) =

d

dt

∣∣∣∣
t=0

(
exp(tAd(k)X)g, n

)

=
( d

dt

∣∣∣∣
t=0

k exp(tX)k−1g, 0
)

=
(
Tk−1gk(Xk−1g), 0

)

=
(
k · (XG×N )

)
(g, n).

Finally, by K-equivariance of ΦN , the last term in (13.6) is

〈ΦN (k−1n), Xk〉k ·
(
s(gk, k−1n)

)
= 〈ΦN (n),Ad(k)Xk〉(k · s)(g, n).

Therefore, (
k · (∇v+Xs

))
(g, n) = (∇k·X+k·v k · s) (g, n).

We now define ∇M via the isomorphism ψL in (13.1). Note that by Propo-
sition 12.1 and Lemma 12.2, we have

X(M) ∼= Γ∞(G×K N,G×K (TN × p))
∼= Γ∞(G×N,G× TN × p)K

⊂ Γ∞(G×N, (G× g)× TN)K

= X(G×N)K

We will write j : X(M) ↪→ X(G×N)K for this embedding map. For w ∈ X(M)
and s ∈ Γ∞(L)K , we define the connection ∇M by

∇Mw ψL(s) := ψL
(∇j(w)s

)
.

Because s and j(w) are K-invariant, and ∇ is K-equivariant, we indeed have
∇j(w)s ∈ Γ∞(L)K , the domain of ψL.

It now follows directly from the definitions and from Lemmas 13.1, 13.2 and
13.3 that ∇M is a Hermitian connection on Lω with curvature ω.

Induction and restriction

The induction and restriction procedures for line bundles described above are
each other’s inverses (modulo equivariant line bundle isomorphisms), although
this does not include the connections on the bundles in question:

Lemma 13.5. (i) Let N be a K-manifold, and qN : EN → N a K-vector
bundle. Then (

G×K EN
)| eN ∼= EN ,

with Ñ as in (12.9).
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(ii) Let M be a G-manifold, EM → M a G-vector bundle. Let N ⊂ M be
a K-invariant submanifold, and denote the restriction of EM to N by EN . Let
ϕ : G×K N →M be the map ϕ[g, n] = gn. Then

ϕ∗EM ∼= G×K EN .

Proof. (i) Note that
(
G×K EN

)| eN =
{

[g, v] ∈ G×K EN ; [g, qN (v)] = [e, n] for an n ∈ N}

=
{

[e, v] ∈ G×K EN ; v ∈ EN}

∼= EN .

(ii) Note that

ϕ∗EM =
{(

[g, n], v
)
; g ∈ G,n ∈ N and v ∈ EMgn

}
.

The map
(
[g, n], v

) 7→ [g, v] is the desired vector bundle isomorphism onto G×K
EN .

For our purposes, it does not matter that this lemma says nothing about
connections that may be defined on the vector bundles in question, because the
K-homology classes defined by Dirac operators associated to such connections
are homotopy invariant. In our setting, the vector bundle isomorphisms in the
proof of Lemma 13.5 do intertwine the metrics (−,−)Lω and (−,−)Lν on the
respective line bundles.

13.2 Spinc-structures

Because we want to compare the Dirac operators on M and N , we now look
at induction of Spinc-structures. As before, we consider a semisimple group G
with maximal compact subgroup K, and a K-manifold N . We form the fibred
product M := G×K N , and we will show how a K-equivariant Spinc-structure
on N induces a G-equivariant Spinc-structure on M . It will turn out that the
operation of taking determinant line bundles intertwines the induction process
for Spinc-structures in this section, and the induction process for prequantum
line bundles in the previous one.

General constuctions

The construction of induced Spinc-structures we will use, is based on the fol-
lowing two facts, of which we were informed by Paul-Émile Paradan.

Lemma 13.6. For j = 1, 2, let Ej →M be a real vector bundle over a manifold
M . Suppose E1 and E2 are equipped with metrics and orientations. Let Pj →M
be a Spinc-structure on Ej, with determinant line bundle Lj →M . Then there
is a Spinc-structure P →M on the direct sum E1⊕E2 →M , with determinant
line bundle L1 ⊗ L2.
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Proof. Let rj be the rank of Ej , and write r := r1 + r2. Consider the double
covering map

π : Spinc(r)→ SO(r)×U(1),

given by [a, z] 7→ (λ(a), z), where a ∈ Spin(r), z ∈ U(1), and λ : Spin(r) →
SO(r) is the standard double covering. Consider the subgroups

H ′ := SO(r1)× SO(r2)×U(1)

of SO(r)×U(1), and H := π−1(H ′) of Spinc(r). Noting that

H ′ ∼= (SO(r1)×U(1))×U(1) (SO(r2)×U(1)),

we see that
H ∼= Spinc(r1)×U(1) Spinc(r2).

Let P1 ×U(1) P2 be the quotient of P1 × P2 by the U(1)-action given by

z(p1, p2) = (p1z, p2z
−1),

for z ∈ U(1) and pj ∈ Pj . Define

P :=
(
P1 ×U(1) P2

)×H Spinc(r).

Then we have naturally defined isomorphisms

P ×Spinc(r) Rr ∼=
(
P1 ×U(1) P2

)×H (Rr1 ⊕ Rr2)
∼=

(
P1 ×Spinc(r1) R

r1
)⊕ (

P2 ×Spinc(r2) R
r2

)
∼= E1 ⊕ E2.

The determinant line bundle of P is

det(P ) =
(
P1 ×U(1) P2

)×H C,
where H acts on C via the determinant homomorphism. Note that, for all
h = [h1, h2] ∈ Spinc(r1)×U(1) Spinc(r2) ∼= H, we have det(h) = det(h1) det(h2).
Using this equality, one can check that the map

(
P1 ×U(1) P2

)×H C→
(
P1 ×Spinc(r1) C

)⊗ (
P2 ×Spinc(r2) C

)
,

given by
[p1, p2, z] 7→ [p1, z]⊗ [p2, 1],

defines an isomorphism det(P ) ∼= det(P1)⊗ det(P2).

Lemma 13.7. Let G be a Lie group, acting on a smooth manifold N . Let
H < G be a closed subgroup, and consider the fibered product M := G ×H N .
Let EN → N be an oriented H-vector bundle of rank r, equipped with an H-
invariant metric. Then, as in Section 13.1, we can form the G-vector bundle

EM := G×H EN →M.

If PN → N is an H-equivariant Spinc-structure on E, then PM := G×HPN
is a G-invariant Spinc-structure on EM . If LN → N is the determinant line
bundle of PN , then the determinant line bundle of PM is G×H LN .
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Proof. The first claim is a direct consequence of the fact that the actions of H
and Spinc(r) on PN commute. For the same reason, we have

det(PM ) =
(
G×H PN

)×Spinc(r) C
= G×H

(
PN ×Spinc(r) C

)

= G×H LN .

An induced Spinc-structure

Let a K-equivariant Spinc-structure PN on N be given. To construct a G-
equivariant Spinc-structure on M = G×K N , we recall that, by Corollary 12.3,

TM ∼= (p∗G/KT (G/K))⊕ (G×K TN), (13.7)

with pG/K : M → G/K the natural projection. As in Section 6.2, we assume
that the homomorphism Ad : K → SO(p) lifts to a homomorphism Ãd : K →
Spin(p). Then G/K carries the natural Spin-structure

PG/K := G×K Spin(p),

where K acts on Spin(p) via Ãd.

Lemma 13.8. The principal Spinc(p)-bundle

P
G/K
M := G×K (N × Spinc(p))→M

defines a Spinc-structure on p∗G/KT (G/K). Its determinant line bundle is triv-
ial.

Proof. We have

G×K (N × Spinc(p))×Spinc(p) p ∼= G×K (N × p)
∼= p∗G/K(G×K p)
∼= p∗G/KT (G/K).

Note that the determinant homomorphism is trivial on the subgroup Spin(p) <
Spinc(p), and that Ãd(K) < Spin(p). Therefore, the action of K on C, given
by the composition

K
fAd−−→ Spin(p) ↪→ Spinc(p) det−−→ U(1),

is trivial. We conclude that

det
(
P
G/K
M

) ∼= G×K (N × C) ∼= M × C,
as claimed.
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Using the decomposition (13.7) of TM , and the constructions from Lemmas
13.6 and 13.7, we now obtain a Spinc-structure PM → M on M , from the
Spinc-structures PG/KM →M and PN → N . Explicitly,

PM :=
(
G×K (N × Spinc(p))

)×U(1)

(
G×K PN

)×H Spinc(dM ).

By Lemmas 13.6 and 13.7, and by triviality of det
(
P
G/K
M

)
, we see that the

determinant line bundle of PM equals

det
(
PM

)
= G×K det

(
PN

)
.

In particular, if the determant line bundle of PN is a Spinc-prequantum line
bundle L2ν → N , then

det
(
PM

)
= G×K L2ν = Lω (13.8)

is the Spinc-prequantum line bundle on M constructed in Section 13.1.
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Quantisation commutes
with induction

Our proof that quantisation commutes with reduction for semisimple groups is
a reduction to the case of compact groups. This reduction is possible because
of the ‘quantisation commutes with induction’ result in this chapter (Theorem
14.5). It is analogous to Theorem 7.5 from [64]. After stating this result,
we show how, together with the quantisation commutes with reduction result
for the compact case, it implies Theorem 6.13. Our proof that quantisation
commutes with induction is based on naturality of the assembly map for the
inclusion K ↪→ G (Theorem 9.1). This proof is outlined in Section 14.4, with
details given in Chapter 15.

14.1 The sets CSEHamPS(G) and CSEHamPS(K)

We first restate the results of Chapters 12 and 13 in a way that will allow us to
draw a ‘quantisation commutes with induction’ diagram.

Definition 14.1. The set SEHamP(G) of Hamiltonian G-actions with mo-
mentum map values in the strongly elliptic set, with Spinc-prequantisations,
consists of classes of sextuples (M,ω,ΦM , L2ω, (−,−)L2ω ,∇M ), where

• (M,ω) is a symplectic manifold, equipped with a symplectic G-action;

• ΦM : M → g∗ is a momentum map for this action, and ΦM (M) ⊂ g∗se;

• (
L2ω, (−,−)L2ω .∇M)

is a G-equivariant Spinc-quantisation of (M,ω).

Two classes [M,ω,ΦM , L2ω, (−,−)L2ω ,∇M ] and [M ′, ω′,ΦM
′
, LM

′
, (−,−)LM′ ,∇M ′

]
of such sextuples are identified if there is an equivariant symplectomorphism ϕ :
M →M ′ such that ϕ∗ΦM

′
= ΦM , ϕ∗LM

′
= L2ω and ϕ∗(−,−)LM′ = (−,−)L2ω .

We do not require ϕ to relate the connections ∇M and ∇M ′
to each other. For

209
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the purpose of quantisation, it is enough that it relates their curvatures by
ϕ∗R∇M′ = R∇M , which follows from the facts that ϕ is a symplectomorphism,
and that ∇M and ∇M ′

are prequantum connections.
Analogously, SEHamP(K) is the set of classes [N, ν,ΦN , L2ν , (−,−)L2ν ,∇N ],

where (N, ν) is a Hamiltonian K-manifold, with momentum map ΦN , with
image in k∗se, and (L2ν , (−,−)L2ν ,∇N ) is a K-equivariant Spinc-prequantisation
of (N, ν). The equivalence relation between these classes is the same as before.

Using this definition, we can summarise the results of Sections 12.2, 12.3,
12.4 and 13.1 as follows:

Theorem 14.2. There are well-defined maps

H-IndGK : SEHamP(K)→ SEHamP(G)

and
H-CrossGK : SEHamP(G)→ SEHamP(K),

given by

H-IndGK [N, ν,ΦN , L2ν , (−,−)L2ν ,∇N ] = [M,ω,ΦM , L2ω, (−,−)L2ω ,∇M ]

as in Sections 12.2 and 13.1, and

H-CrossGK [M,ω,ΦM , L2ω, (−,−)L2ω ,∇M ] = [N, ν,ΦN , L2ν , (−,−)L2ν ,∇N ]

as in Sections 12.3 and 13.1. They are each other’s inverses.

To state our ‘quantisation commutes with reduction’ result, we need slightly
different sets from SEHamP(G) and SEHamP(K). For these sets we only have
an induction map, and we do not know if it is possible to define a suitable
cross-section map.

Definition 14.3. The set CSEHamPS(G) of cocompact Hamiltonian G-actions
on complete manifolds, with momentum map values in the strongly elliptic set,
with Spinc-prequantisations and Spinc-structures, consists of classes of septuples
(M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ), with (M,ω,ΦM , L2ω, (−,−)L2ω ,∇M ) as
in Definition 14.1, M/G compact, and PM a G-equivariant Spinc-structure on
M , such that

• M is complete in the Riemannian metric induced by PM ;

• the determinant line bundle of PM is isomorphic to L.

The equivalence relation is the same as in Definition 14.1. There is no need
to incorporate the Spinc-structures into this equivalence relation, besides the
condition on the determinant line bundles of these structures that is already
present.

The set CSEHamPS(K) is defined analogously. In this case, the condition
that N/K is compact is equivalent to compactness of N .
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For these sets, we have the induction map

H-IndGK : CSEHamPS(K)→ CSEHamPS(G), (14.1)

with

H-IndGK [N, ν,ΦN , L2ν , (−,−)L2ν ,∇N , PN ] = [M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ],

as defined in Sections 12.2, 13.1 and 13.2.

14.2 Quantisation commutes with induction

Consider an element [M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ] ∈ CSEHamPS(G).
Using a connection on the spinor bundle associated to PM , we can define the
Spinc-Dirac operator /DL2ω

M on M , as in Section 3.4. In Definition 6.2, we defined
the quantisation of the action of G on (M,ω) as the image of the K-homology
class of /DL2ω

M under the analytic assembly map:

QVI(M,ω) = µGM
[
/DL2ω

M

]
.

as we noted before, this definition does not depend on the choice of connection
on the spinor bundle.

Definition 14.4. The quantisation map

QGVI : CSEHamPS(G)→ K0(C∗r (G))

is defined by

QGVI [M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ] = µGM
[
/D
L2ω

M

]
.

Analogously, we have the quantisation map

QKVI : CSEHamPS(K)→ K0(C∗rK)

given by
QKVI [N, ν,Φ

N , L2ν , (−,−)L2ν ,∇N , PN ] = µKN
[
/D
L2ν

N

]
,

which corresponds to K-index /DL2ν

N ∈ R(K) by Proposition 5.17.

Using the Dirac induction map (6.10) and the Hamiltonian induction map
(14.1), we can now state the following result:

Theorem 14.5 (Quantisation commutes with induction). The following dia-
gram commutes:

CSEHamPS(G)
QG

VI // K0(C∗r (G))

CSEHamPS(K)
QK

VI //

H-IndG
K

OO

R(K).

D-IndG
K

OO
(14.2)

This is the central result of Part IV. We will outline its proof in Section
14.4, and fill in the details in Chapter 15.
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14.3 Corollary: [Q,R] = 0 for semisimple groups

As announced, we derive Theorem 6.13 from Theorem 14.5 and the fact that
Spinc-quantisation commutes with reduction in the compact case (Theorem
3.38).

Proof of Theorem 6.13. Let G, K, (M,ω), ΦM = Φ, L2ω = L, (−,−)L2ω = (−
,−)L and ∇M = ∇ be as in Theorem 6.13. Set

(N, ν,ΦN , L2ν , (−,−)L2ν ,∇N ) := H-CrossGK(M,ω,ΦM , L2ω, (−,−)L2ω ,∇M ).

Let PN → N be a K-equivariant Spinc-structure on N , with determinant line
bundle L2ν . Let PM → M be the induced Spinc-structure on M , as described
in Section 13.2. Since the determinant line bundle of PM is L2ω, by (13.8) and
part (ii) of Lemma 13.5, we have the elements

[N, ν,ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(K);

[M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ] ∈ CSEHamPS(G).

By Proposition 12.15, we have

H-IndGK [N, ν,ΦN , L2ν , (−,−)L2ν ,∇N , PN ] = [M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ].

Now let H and λ be as in Theorem 6.13. Then by Theorem 14.5, Proposition
5.17 and Lemma 6.9, we have

RHG ◦ µGM
[
/D
L2ω

M

]
= RHG ◦D-IndGK(K-index /DL2ν

N )

= (−1)dimG/K [K-index /DL2ν

N : Vλ−ρc ].

Because Spinc-quantisation commutes with reduction for the action of K on N
(Theorem 3.38), we have

[K-index /DL2ν

N : Vλ−ρc ] = QIV
(
Nλ, ωλ

)

if −iλ ∈ ΦN (N), and zero otherwise. Recall that N =
(
ΦM

)−1(k∗), so that
−iλ ∈ ΦN (N) if and only if −iλ ∈ ΦM (M). Furthermore, note that Gν ⊂ K
for all ν ∈ t∗+ \ ncw, so that Gν = Kν for such ν. Therefore Nλ = Mλ, which
completes the proof. ¤

14.4 Outline of the proof

The most important ingredient of the proof of Theorem 14.5 is Theorem 9.1,
‘naturality of the assembly map for the inclusion of K into G’. The reason why
this theorem helps us to prove Theorem 14.5 is the fact that the map K-IndGK
that appears in Theorem 9.1 relates the Dirac operators /DL2ν

N and /DL2ω

M to each
other:
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Proposition 14.6. The map K-IndGK maps the K-homology class of the oper-
ator /DL2ν

N to the class of /DL2ω

M .

Combining Theorem 9.1 and Proposition 14.6, we obtain a proof of Theorem
14.5:

Proof of Theorem 14.5. Let

x = [N, ν,ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(K)

be given, and write

[M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ] := H-IndGK(x).

Then by Proposition 14.6 and Theorem 9.1,

QGVI
(
H-IndGK(x)

)
= µGM

[
/D
L2ω

M

]

= µGM ◦K-IndGK
[
/D
L2ν

N

]

= D-IndGK ◦µKN
[
/D
L2ν

N

]

= D-IndGK
(
QKVI(x)

)
.

¤
It remains to prove Proposition 14.6. This proof will be given in Chapter 15.
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Chapter 15

Dirac operators and the
map K-IndG

K

This chapter is devoted to the proof of Proposition 14.6. We will define an

operator /̃D
L2ω

M whose K-homology class is the image of the class of /DL2ν

N under
the map K-IndGK . Then we prove some general facts about principal symbols,

and finally we use these facts to show that /DL2ω

M and /̃D
L2ω

M define the same class
in K-homology, proving Proposition 14.6.

Throughout this chapter, we will consider a class

[N, ν,ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(K),

and we will write

[M,ω,ΦM , L2ω, (−,−)L2ω ,∇M , PM ] :=

H-IndGK [N, ν,ΦN , L2ν , (−,−)L2ν ,∇N , PN ] ∈ CSEHamPS(G).

15.1 Another Dirac operator on M

Let us construct the differential operator /̃D
L2ω

M mentioned in the introduction
to this chapter. Just like the Spinc-Dirac operator /DL2ω

M , it acts on sections of
the spinor bundle

SM := PM ×Spinc(dM ) ∆dM
→M, (15.1)

associated to the Spinc-structure PM defined in Section 13.2.

In the definition of the operator /̃D
L2ω

M , we will use the following decomposi-
tion of the spinor bundle SM :

215
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Lemma 15.1. We have a G-equivariant isomorphism of vector bundles over
M ,

SM ∼=
(
(G×∆dp) £ SN)

/K,

where K acts on (G×∆dp) £ SN by

k · ((g, δp)⊗ sN)
= (gk−1, Ãd(k)δp)⊗ k · sN ,

for k ∈ K, g ∈ G, δp ∈ ∆dp and sN ∈ SN .

Proof. We have the following chain of isomorphisms:

SM ∼=
(
P
G/K
M ×U(1) (G×K PN )

)×H ∆dp ⊗∆dN

∼=
(
P
G/K
M ×Spinc(dp) ∆dp

)⊗ (
G×K PN ×Spinc(dN ) ∆dN

)

∼= (G×N ×∆dp)/K ⊗ (G× SN )/K
∼=

(
(G×∆dp) £ SN)

/K.

(15.2)

The first isomorphism in (15.2) is induced by the H-equivariant isomorphism
∆dM

∼= ∆dp ⊗∆dN .
The second isomorphism is given by

[
p
G/K
M , [g, pN ], δp ⊗ δN

] 7→ [pG/KM , δp]⊗ [
[g, pN ], δN

]
,

for all pG/KM ∈ PG/KM , g ∈ G, pN ∈ PN , δp ∈ ∆dp and δN ∈ ∆dN
.

The third isomorphism is the obvious one, given the definitions of PG/KM and
SN .

Finally, the fourth isomorphism is a special case of the isomorphism

E/G⊗ F/G ∼= (E ⊗ F )/G,

if H is a group acting freely on a manifold M , and E → M and F → M are
G-vector bundles.

Explicitly, the isomorphism (15.2) is given by
[
[g, n, a], [g, pN ], δdp ⊗ δN

] 7→ [
(g, aδp)⊗ [pN , δN ]

]
,

for g ∈ G, n ∈ N , a ∈ Spinc(p), pN ∈ PN , δp ∈ ∆dp and δN ∈ ∆dN .

Next, let /DG,K be the operator defined on page 144, and consider the oper-
ator

/DG,K ⊗ 1 + 1⊗ /DL2ν

N : Γ∞
(
G×N, (G×∆dp) £ SN)→

Γ∞
(
G×N, (G×∆dp) £ SN)

,

which is odd with respect to the grading on the tensor product (G×∆dp) £SN
induced by the gradings on ∆dp and SN . Because the operators /DG,K and /DL2ν

N

are K-equivariant, we obtain an operator

/̃D
L2ω

M := (/DG,K ⊗ 1 + 1⊗ /DL
N )K (15.3)
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on

Γ∞
(
G×N, (G×∆dp) £ SN)K ∼= Γ∞

(
M,

(
(G×∆dp) £ SN⊗)

/K
)

∼= Γ∞(M,SM ),

by Proposition 8.6 and Lemma 15.1.

The importance of the operator /̃D
L2ω

M lies in the following fact:

Lemma 15.2. The image of the class [/DL2ν

N ] ∈ KK
0 (N) under the map K-IndGK

is the class of /̃D
L2ω

M in KG
0 (M).

Proof. By Theorem 10.8.7 from [35],1 the Kasparov product [/DG,K ]× [/DL2ν

N ] ∈
KG×K×K

0 (G × N) is the class of the operator /DG,K ⊗ 1 + 1 ⊗ /DL2ν

N on (G ×
∆dp) £ SN . It then follows from Corollary 8.11 that the latter class is mapped

to the class of /̃D
L2ω

M .

Therefore, Proposition 14.6 follows if we can prove that /̃D
L2ω

M and /DL2ω

M define
the same K-homology class. We prove this fact by showing that their principal
symbols are equal (see Remark 4.34).

15.2 Principal symbols

This section contains some general facts about the principal symbols of differ-
ential operators that are constructed from other differential operators. These
facts may be well-known and straightforward to prove, but we have included
them here for completeness’ sake.

Tensor products

First, let X and Y be smooth manifolds, and let E → X and F → Y be
vector bundles. Let DE : Γ∞(E) → Γ∞(E) and DF : Γ∞(F ) → Γ∞(F ) be
differential operators of the same order d. Consider the exterior tensor product
E£F → X ×Y , and let D := DE ⊗ 1 + 1⊗DF be the operator on Γ∞(E£F )
given by

D(s£ t) = DEs£ t+ s£DF t,

for s ∈ Γ∞(E) and t ∈ Γ∞(F ).
As before, we denote the cotangent bundle projection of a manifold M by

πM . The principal symbols of the operators DE , DF and D are vector bundle
homomorphisms

σDE : π∗XE → π∗XE;
σDF : π∗Y F → π∗Y F ;
σD : π∗X×Y (E £ F )→ π∗X×Y (E £ F ).

1This can also be seen in the unbounded picture of KK-theory.
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Let
θ : π∗X×Y (E £ F )→ π∗XE £ π∗Y F

be the isomorphism of vector bundles over T ∗(X × Y ) ∼= T ∗X × T ∗Y given by

θ
(
(ξ, η), (e⊗ f)

)
= (ξ, e)⊗ (η, f),

for x ∈ X, y ∈ Y , ξ ∈ T ∗xX, η ∈ T ∗y Y , e ∈ Ex and f ∈ Fy. The first fact about
principal symbols that we will use is:

Lemma 15.3. The following diagram commutes:

π∗X×Y (E £ F ) σD //

θ ∼=
²²

π∗X×Y (E £ F )

θ ∼=
²²

π∗XE £ π∗Y F σDE
⊗1+1⊗σDF

// π∗XE £ π∗Y F.

Proof. Let g ∈ C∞(X), h ∈ C∞(Y ), s ∈ Γ∞(E) and t ∈ Γ∞(F ) be given. Let
pX : X × Y → X and pY : X × Y → Y be the natural projections. Then we
have the function p∗Xg+p∗Y h ∈ C∞(X×Y ). Let x ∈ X and y ∈ Y be given. Set
µ := d(x,y)(p∗Xg+ p∗Y h) ∈ T ∗(x,y)X × Y . Note that all elements of this cotangent
space can be written in this way (for certain functions g and h). We compute:

σD(µ, s(x)⊗ t(y)) =
(
µ, lim
λ→∞

1
λd
e−iλ(p∗Xg+p

∗
Y h)D

(
eiλ(p∗Xg+p

∗
Y h)s£ t

)
(x, y)

)

=
(
µ, lim
λ→∞

1
λd

[
(e−iλg ⊗ e−iλh)

(
DE

(
eiλgs

)
£ eiλht+ eiλgs£DF

(
eiλht

)]
(x, y)

)

=
(
µ, σDE (dxg, s(x))⊗ t(y) + s(x)⊗ σDF (dyh, t(y))

)
.

In other words,

θ ◦σD ◦ θ−1
(
(dxg, s(x))⊗(dyh, t(y))

)
=

(
σDE⊗1+1⊗σDF

)(
(dxg, s(x))⊗(dyh, t(y))

)
.

Pullbacks

Next, let X and Y again be smooth manifolds, and let q : E → Y be a vector
bundle. Let f : X → Y be a smooth map. (We will later apply this to the
situation X = G × N , Y = M , E = SM ⊗ L2ω, and f the quotient map.)
Let DE be a differential operator on E, of order d. Let Df∗E be a differential
operator on the pullback bundle f∗E with the property that for all s ∈ Γ∞(E),

Df∗E(f∗s) = f∗(DEs).

Consider the vector bundle

f∗(T ∗Y ⊕ E)→ X.
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It consists of triples (x, ξ, e) ∈ X × T ∗Y × E, with f(x) = πY (ξ) = q(e). Using
this vector bundle, we write down the diagram

π∗Y E
σDE // π∗Y E

f∗(T ∗Y ⊕ E)

a

OO

b

²²

gσDE // f∗(T ∗Y ⊕ E)

a

OO

b

²²
π∗X(f∗E)

σDf∗E // π∗X(f∗E),

(15.4)

where for all (x, ξ, e) ∈ f∗(T ∗Y ⊕ E),

a(x, ξ, e) := (ξ, e)

b(x, ξ, e) :=
(
(Txf)∗ξ, x, e

)

σ̃DE (x, ξ, e) :=
(
x, σDE (ξ, e)

)
.

Lemma 15.4. Diagram (15.4) commutes.

Proof. The upper half of diagram (15.4) commutes by definition of the map
σ̃DE

.
To prove commutativity of the lower half, let x ∈ X, ϕ ∈ C∞(Y ) and

s ∈ Γ∞(E) be given. Then

σDf∗E

(
b
(
x, df(x)ϕ, s(f(x))

))
= σDf∗E

(
(Txf)∗df(x)ϕ, x, s(f(x))

)

= σDf∗E

(
dx(f∗ϕ), (f∗s)(x)

)

=
(
dx(f∗ϕ), lim

λ→∞
1
λd

(
e−iλf

∗ϕDf∗Ee
iλf∗ϕf∗s

)
(x)

)

=
(
dx(f∗ϕ), lim

λ→∞
1
λd

(
f∗

(
e−iλϕDEe

iλϕs
)
(x)

)

=
(
dx(f∗ϕ), lim

λ→∞
1
λd

(
x,

(
e−iλϕDEe

iλϕs
)
(f(x))

)

=
(
(Txf)∗df(x)ϕ, x, σDE (df(x)ϕ, s(f(x)))

)

= b
(
σ̃DE

(x, df(x)ϕ, s(f(x)))
)
.

Rather than diagram (15.4), we would prefer a diagram with a direct vector
bundle homomorphism from π∗Y E to π∗X(f∗E) in it. It is however impossible to
define such a map in general. The best we can do is to define it for each point
x ∈ X separately: let

(b ◦ a−1)x : π∗Y E|T∗f(x)Y
→ πX(f∗E)|T∗xX

be the map
(b ◦ a−1)x(ξ, e) =

(
(Txf)∗ξ, e

)
.
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Using this map, we obtain the following statement, which is actually equivalent
to Lemma 15.4.

Corollary 15.5. For all x ∈ X, the following diagram commutes:

π∗Y E|T∗f(x)Y

σDE
|T∗

f(x)Y

//

(b◦a−1)x

²²

π∗Y E|T∗f(x)Y

(b◦a−1)x

²²
π∗X(f∗E)|T∗xX

σDf∗E
|T∗x X

// π∗X(f∗E)|T∗xX .

One last remark that we will use later, is that the maps (b◦a−1)x are injective
if Txf is surjective. So if f is a submersion, all (b ◦ a−1)x are injective.

15.3 The principal symbols of /DL2ω

M and /̃D
L2ω

M .

Let gN and gM be the Riemannian metrics on N and M , respectively, induced
by the Spinc-structures PN and PM . We use the same notation for the map
gM : TM → T ∗M given by v 7→ gM (v,−), and similarly for gN . The Dirac
operators /DL2ω

M and /D
L2ν

N have principal symbols

σ
/DL2ω

M

:π∗MSM → π∗MSM ;

σ
/DL2ν

N

:π∗NSN → π∗NSN ,

given by the Clifford action (3.10):

σ
/DL2ω

M

(ξ, sM ) =
(
ξ, cTM

(
i(gM )−1(ξ)

)
sM

)
; (15.5)

σ
/DL2ν

N

(η, sN ) =
(
η, cTN

(
i(gN )−1(η)

)
sN

)
,

for m ∈M , ξ ∈ T ∗mM , sM ∈ SMm and n ∈ N , η ∈ T ∗nN , sN ∈ SNn .

To determine the principal symbol of /̃D
L2ω

M , we need the following basic fact:

Lemma 15.6. The principal symbol of the operator /DG,K on the trivial bundle
G×∆dp → G is given by

σ/DG,K
(g, ξ, δp) = (g, ξ, cp(iξp∗)δp),

for g ∈ G, ξ ∈ g∗ and δp ∈ ∆dp . Here ξp∗ is the component of ξ in p∗ ∼= k0

according to g∗ = p0 ⊕ k0, and we identify p∗ with p, and p with Rdp , using a
B-orthonormal basis {X1, . . . , Xdp} of p.

Proof. Let g ∈ G, f ∈ C∞(G) and τ ∈ C∞(G,∆dp) be given. Then

σ/DG,K
(dgf, τ(g)) =

(
dgf, lim

λ→∞
1
λ

(
e−iλf/DG,K(eiλfτ)

)
(g)

)

=
(
dgf, lim

λ→∞
1
λ

(
e−iλf

∑

j

cp(Xj)Xj(eiλfτ)
)
(g)

)
.
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This expression equals

(
dgf, lim

λ→∞
1
λ

(∑

j

cp(Xj)
(
iλXj(f)τ +Xj(τ)

))
(g)

)

=
(
dgf, i

∑

j

cp(Xj)〈dgf, Telg(Xj)〉τ(g)
)
.

Hence for all ξ ∈ g∗, δp ∈ ∆dp , we have

σ/DG,K
(g, ξ, δp) =

(
g, ξ, i

∑

j

cp(〈ξ,Xj〉Xj)δp
)

= (g, ξ, cp(iξp)δp) ,

since {Xj} is a basis of p, orthonormal with respect to the Killing form.

We are now ready to prove that /DL2ω

M and /̃D
L2ω

M have the same principal
symbol, and hence define the same class in K-homology. This will conclude the
proof of Proposition 14.6, which was the remaining step in the proof of Theorem
14.5. As we saw in Section 14.3, the latter theorem implies Theorem 6.13, which
is our second main result.

Proposition 15.7. The following diagram commutes:

π∗MSM
σ

/DL2ω
M //

∼=
²²

π∗MSM

∼=
²²

π∗M
((

(G×∆dp) £ SN)
/K

) σ
/̃D

L2ω
M // π∗M

((
(G×∆dp) £ SN)

/K
)

p∗
(
T ∗M ⊕ ((G×∆dp) £ SN )/K

)
a

OO

b

²²

σ̃
/̃D

L2ω
M // p∗

(
T ∗M ⊕ ((G×∆dp) £ SN )/K

)
a

OO

b

²²
π∗G×N

(
p∗((G×∆dp) £ SN )/K

)

∼=h

²²

// π∗G×N
(
p∗((G×∆dp) £ SN )/K

)

∼=h

²²
π∗G×N

(
(G×∆dp) £ SN)

∼=θ

²²

σ
/DG,K⊗1+1⊗/DL2ν

N // π∗G×N
(
(G×∆dp) £ SN)

∼=θ

²²
π∗G(G×∆dp) £ π∗NSN

σ/DG,K
⊗1+1⊗σ

/DL
N // π∗G(G×∆dp) £ π∗NSN .

(15.6)
Here the isomorphism h is induced by the general isomorphism p∗(E/H) ∼= E,
as defined in (8.8). The fourth horizontal map from the top is just defined as
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the composition h−1 ◦ (σ
/DG,K⊗1+1⊗/DL2ν

N

) ◦h, i.e. by commutativity of the second
square from the bottom.

Proof. It follows from Lemma 15.3 that the bottom square of (15.6) commutes.
Note that (

/DG,K ⊗ 1 + 1⊗ /DL2ν

N

)
p∗s = p∗

(
/̃D
L2ω

M s
)

for all s ∈ Γ∞
((

(G×∆dp)£SN)
/K

)
(see the sketch of the proof of Proposition

8.6). We can therefore apply Lemma 15.4 to see that the second and third
squares in (15.6) from the top commute as well. We will first show that the
outside of diagram (15.6) commutes, and then deduce commutativity of the top
subdiagram.

Let g ∈ G, n ∈ N , η ∈ T ∗nN , ξ ∈ p∗, pN ∈ PN , δp ∈ ∆dp and δN ∈ ∆dN
be

given. Then we have the element
(
(g, n), [g, η, ξ],

[
(g, δp)⊗ [pN , δN ]

]) ∈ p∗(T ∗M ⊕ ((G×∆dp)£SN )/K
)
. (15.7)

Here we have used Proposition 12.1 and Lemma 12.2. Applying the map a
and the (inverse of the) isomorphism in the upper left corner of (15.6) to this
element, we obtain

(
[g, η, ξ],

[
[g, n, eSpinc(p)], [g, pN ], δp ⊗ δN

])

∈ π∗M
(
P
G/K
M ×U(1) (G×K PN )×H ∆dp ⊗∆dN

)

∼= π∗MSM . (15.8)

Here eSpinc(p) is the identity element of Spinc(p).
Let ζ ∈ (

RdN
)∗ be the covector such that η ∈ T ∗N corresponds to [pN , ζ] ∈

PN ×Spinc(dN )

(
RdN

)∗. Then σ
/̃D

L2ω

M

applied to (15.8) gives

(
[g, η, ξ],

[
[g, n, eSpinc(p)], [g, pN ], cp⊕RdN (iξ, iζ)(δp ⊗ δN )

])
,

where we identify
(
RdN

)∗ ∼= RdN using the standard Euclidean metric, and
p∗ ∼= p using the Killing form. By definition of the Clifford modules ∆k (see e.g.
[22], page 13), this equals

(
[g, η, ξ],

[
[g, n, eSpinc(p)], [g, pN ], cp(iξ)δp ⊗ δN + δp ⊗ cRdN (iζ)δdN

])
.

(This is the central step in the proof of Proposition 14.6.)
The image of the latter element under the maps θ ◦ h ◦ (b ◦ a−1)(g,n) is

(
(g, ξ), (g, cp(iξ)δp)

)⊗ (
η, [pN , δN ]

)
+

(
(g, ξ), (g, δp)

)⊗ (
η, [pN , cRdN (iζ)δN ]

)
,

which by Lemma 15.6 equals the image under the map
(
σ/DG,K

⊗ 1 + 1⊗ σ
/DL2ν

N

) ◦ θ ◦ h ◦ b

of (15.7). Therefore, the outside of diagram (15.6) commutes.
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Now note that for all (g, n) ∈ G×N , the composition θ ◦ h ◦ (b ◦ a−1)(g,n) is
injective, because p is a submersion (see the remark after Corollary 15.5). This
fact, together with commutativity of the outside of diagram (15.6), implies that
the top part of (15.6) commutes as well.
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Samenvatting in het
Nederlands

Een van de nadelen van het promoveren in de wiskunde is dat je nooit over je
werk kan praten met mensen die niet weten wat bijvoorbeeld de K-theorie van
een C∗-algebra is (ze weten niet wat ze missen2). Aan de andere kant geeft dat
je werk ook wel een soort mysterieuze charme (toch. . . ?). In ieder geval ga ik
in deze samenvatting toch proberen om iets over mijn onderzoek te zeggen dat
ook begrijpelijk is voor mensen die geen wiskunde gestudeerd hebben. Ik ben
er al vier jaar over aan het nadenken hoe ik dat het beste kan aanpakken, en
uiteindelijk heb ik besloten dat ik de titel van mijn proefschrift ga uitleggen aan
de hand van een voorbeeld.

De Nederlandse vertaling van de titel van mijn proefschrift is “Kwantisatie3

commuteert met reductie voor cocompacte Hamiltonse groepsacties.”Een rede-
lijk cryptische zin voor de meeste mensen. Het belangrijkste deel van die titel
is het eerste stuk: “kwantisatie commuteert met reductie”. Ik zal die woorden
uitleggen aan de hand van een auto op de snelweg, zoals in Figuur 1.

100 km/u

200 km

Figuur 1: Een auto op de snelweg

Kwantisatie

Eerst het woord ‘kwantisatie’. Dat betekent dat je van de normale, klassieke
beschrijving van een situatie de kwantummechanische beschrijving ervan maakt.

2Zie paragraaf 4.2.
3Dat schrijf je sinds 1996 inderdaad met ‘kw’.
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Wat betekent dat in het geval van de auto? De klassieke beschrijving van de
situatie is wat we allemaal gewend zijn. Stel, je rijdt in een auto en je vraagt je
af hoe laat je thuis zal zijn. Als je dan (zoals in Figuur 1) weet dat je 200 km
van huis bent, en je 100 km per uur rijdt, dan weet je ook dat je over twee uur
thuis bent. Je kan natuurlijk in de tussentijd in de file komen te staan, of haast
krijgen en 150 km per uur gaan rijden, maar dat zou het verhaal een beetje
verpesten. De twee dingen die je moet weten zijn dus waar je bent (hoe ver van
huis bijvoorbeeld) en hoe hard je gaat. Die twee stukjes informatie, plaats en
snelheid, noemen we de klassieke beschrijving4 van de situatie.

De kwantummechanica is de natuurkunde van de erg kleine dingen. Daarbij
gaat het er volkomen anders aan toe dan je gewend bent. Het belangrijkste
punt in de kwantummechanica is dat je niet meer zeker weet waar iets precies
is, maar dat je alleen de kans weet dat iets hier of daar is. Als je een auto op de
snelweg op een kwantummechanische manier beschrijft, dan weet je niet meer
of je 190, 200 of 210 km van huis bent, maar alleen de kans dat je nog zo ver
moet rijden, zoals bijvoorbeeld in Figuur 2. In dit voorbeeld kan de auto op

210 km

190 km
200 km

kans = 25% kans = 50% kans = 25%

Figuur 2: Een kwantum-auto

drie plaatsen zijn, maar het kunnen er net zo goed twee, zeven of zelfs oneindig
veel zijn.

Dat is natuurlijk onzin, in het echt weet je best waar je bent. Dit gaat ook
alleen maar op voor auto’s die kleiner zijn dan zeg 0, 0000001 mm. Dus zelfs
met een Nissan Micra of een Smart merk je er niets van.

De snelheid van de auto mogen we nu vergeten. Als je de kansverdeling5

weet van de plaats van een auto, dan blijk je via een wiskundig trucje6 ook de
kansverdeling van zijn snelheid te kunnen bepalen, maar dat laten we nu even
zitten.

Wat betekent het woord ‘kwantisatie’ nu? Dat betekent dat je de klassieke

4In dit proefschrift komt vaak de term ‘symplectische variëteit’ (‘symplectic manifold’ in
het Engels, zie Definition 2.1) voor. Dat is min of meer de verzameling van alle mogelijke
plaatsen en snelheden van een auto, een knikker of wat dan ook. Dat een symplectische
variëteit meestal (M,ω) heet betekent trouwens niet dat M voor de plaats staat en ω voor de
snelheid. Plaats en snelheid zitten allebei in die M , en ω is iets dat je kan gebruiken om te
bepalen hoe die auto of die knikker verder gaat bewegen.

5Als ik het in dit proefschrift over een ‘Hilbertruimte’ (‘Hilbert space’) heb, dan is dat min
of meer de verzameling van alle mogelijke kansverdelingen van de plaats van een auto, een
knikker, of iets anders.

6de Fourier-transformatie
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beschrijving neemt, de verzameling van alle mogelijke plaatsen en snelheden
van de auto (zoals in Figuur 1), en die vervangt door de kwantummechanische
beschrijving, de verzameling van alle mogelijke kansverdelingen van de plaats
van de auto (zoals in Figuur 2).7

Reductie

Nu het woord ‘reductie’. Dat heeft alles te maken met symmetrie. Een gezicht
is bijvoorbeeld (bijna) spiegelsymmetrisch, en een appel (bijna) rotatiesymme-
trisch. In het voorbeeld van de auto kijken we naar een ander soort symmetrie.
Stel dat je door een saai, symmetrisch polderlandschap rijdt, met precies om
de 100 km een boom en een huis (zie Figuur 3). Dat landschap blijft hetzelfde

100 km100 km etc.

Figuur 3: Een klassieke auto in een symmetrisch landschap

als je het 100 km opschuift. Met andere woorden: 100 km verschuiven is een
symmetrie8 van het landschap. Als alle bomen en huizen er hetzelfde uitzien
tenminste, maar dat nemen we even aan.

Als je je nu niet afvraagt wanneer je bij jouw huis bent, maar wanneer je
bij een huis bent, dan hoef je niet meer te weten waar je precies op de weg zit,
maar alleen hoe ver je van het dichtstbijzijnde huis bent. Het maakt dan niet
uit of je 100 km verderop zit, of 200 km, etc.

Nu maken we even een denkstap. We zijn allemaal wel eens verdwaald
geweest, en dan vraag je je soms af “Ben ik hier niet al eerder langs gereden?”Dat
vraagt de automobilist in Figuur 3 zich ook af. Hij weet niet of alle bomen en
huizen er hetzelfde uitzien, of dat hij in een rondje aan het rijden is, zoals in
Figuur 4. Hij weet natuurlijk wel of hij naar links moet sturen of rechtdoor
rijdt, maar op een ronde weg van 100 km merk je het verschil toch bijna niet.
Figuur 4 heet de (klassieke) reductie van plaatje 3. Of, om preciezer te zijn, de
verzameling van alle mogelijke plaatsen en snelheden van een auto op de ronde
weg in Figuur 4 is de reductie van de verzameling van alle mogelijke plaatsen
en snelheden van een auto op de symmetrische weg in Figuur 3.

Als er iets symmetrisch aan de hand is, dan kun je vaak net zo goed naar
een kleinere situatie kijken, zoals de weg in Figuur 4 kleiner is (namelijk 100

7Er zijn verschillende wiskundige definities van kwantisatie. Zie Definitions 3.15, 3.17, 3.20,
3.30 and 6.1. Degene die ik gebruikt heb is de meest algemene, Definition 6.1.

8De termen ‘groep’ (‘group’), ‘groepsactie’ (‘group action’) of zelfs ‘Hamiltonse groepsac-
tie’ (‘Hamiltonian group action’, Definition 2.6) in dit proefschrift slaan allemaal op zul-
ke symmetrieën. In dit voorbeeld is de groep de verzameling van alle gehele getallen
n = . . . ,−1, 0, 1, 2, 3, . . ., en de groepsactie is het verschuiven van de weg over n maal 100
km. Deze groepsactie blijkt Hamiltons te zijn.
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Omtrek: 100 kmOmtrek: 100 km

Figuur 4: De reductie: een ronde weg

km lang) dan de weg in Figuur 3 (oneindig lang). Die kleinere situatie heet
dan de reductie9 van de symmetrische situatie. Het is vaak makkelijker om met
de reductie te werken dan met de grote situatie, hoewel dat niet direct uit dit
voorbeeld blijkt.

Commuteert kwantisatie met reductie?

Nu komt alles samen dat we tot zover gezien hebben. Dat kan wat veel infor-
matie tegelijk zijn, dus dit is even een moment om goed op te letten.

Zoals ik al zei is centrale thema van mijn proefschrift de zin “Kwantisatie
commuteert met reductie”. Die betekent dat eerst de klassieke reductie nemen,
en daarvan de kwantisatie, hetzelfde oplevert als eerste de kwantisatie nemen,
en daarvan de kwantum-reductie.10

De reductie van Figuur 3 is Figuur 4. De kwantisatie van die reductie is de
kwantummechanische versie van Figuur 4, die in Figuur 5 uitgebeeld is. Hier

kans = ... kans = ... kans = ...

Omtrek: 100 km

Figuur 5: De kwantisatie van de reductie

bedoel ik eigenlijk weer de verzameling van alle mogelijke kansverdelingen van

9Zie Definition 2.17.
10Op de voorkant van dit proefschrift staat de afkorting [Q,R] = 0 van de zin “Kwantisatie

commuteert met reductie”. In die afkorting staat Q voor kwantisatie (‘quantisation’), R voor
reductie, en [Q,R] voor het ‘verschil’ tussen eerst de reductie nemen en dan de kwantisatie en
eerst de kwantisatie nemen en daarna de reductie. Dat verschil is niet echt goed gedefinieerd,
dus [Q,R] = 0 is een symbolische afkorting, en niet een echte formule.
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de plaats van de auto op de ronde weg.
Dit willen we vergelijken met de (kwantum-)reductie van de kwantisatie van

Figuur 3. Die kwantisatie ziet eruit als Figuur 6.

kans = ...kans = ...

kans = ...

Figuur 6: Een kwantum-auto in een symmetrisch landschap

Maar wat is daar de reductie van? Dat is een moeilijke vraag. Je wil in ieder
geval dat die reductie hetzelfde is als Figuur 5, zodat kwantisatie inderdaad met
reductie commuteert. Maar de standaardmanier11 om de reductie van Figuur
6 te definiëren is om de verzameling te nemen van alle kansverdelingen die niet
veranderen als je ze verschuift over 100 km. Een voorbeeld van zo’n kansverde-
ling staat in Figuur 7. Dat is helaas een onzinnige kansverdeling. Alle kansen

etc.

kans = 60 %

kans = 10 % kans = 10 % kans = 10 %

kans = 60 % kans = 60 %

Figuur 7: De reductie van de kwantisatie?

samen zouden namelijk precies 1 moeten zijn, maar in Figuur 7 zijn alle kansen
samen gelijk aan

60% + 10% + 60% + 10% + 60% + 10% + · · · ,

en daar komt niet 1 uit. (Er komt zelfs ‘oneindig’ uit, wat al helemaal nergens
op slaat.)

Dus commuteert kwantisatie nu met reductie? In dit voorbeeld weten we niet
eens wat de reductie van de kwantisatie is, dus we kunnen de vraag überhaupt
niet goed formuleren. . . Dat probleem wordt veroorzaakt doordat de weg die
we bekijken oneindig uitgestrekt is, waardoor een goede kansverdeling nooit
hetzelfde kan blijven als je hem 100 km opschuift, zoals we net zagen.

Compact en niet-compact

Iets dat oneindig uitgestrekt is, zoals de weg in Figuur 3, noemen we in de wis-
kunde niet-compact. Voorbeelden van andere niet-compacte dingen zijn lijnen,
vlakken en oneindig lange cilinders. Wél compact zijn bijvoorbeeld cirkels (zoals

11Zie (3.15).
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de weg in Figuur 4), boloppervlakken en oppervlakken van autobanden, want
die zijn begrensd.12

In de jaren ’80 en ’90 is er een hoop (wiskundig) onderzoek gedaan naar de
vraag of kwantisatie commuteert met reductie, maar alleen als alles compact
is. (En dan blijkt het antwoord “Ja” te zijn.) Omdat je in het niet-compacte
geval problemen krijgt zoals ik hierboven uitlegde, was daar nog nooit naar
gekeken. Mijn promotor Klaas Landsman heeft een manier gevonden om ook in
niet-compacte situaties de vraag of kwantisatie commuteert met reductie op een
wiskundig precieze manier te stellen.13 De afgelopen 4 jaar heb ik geprobeerd
om die vraag voor zo veel mogelijk situaties te beantwoorden. In de situaties
die ik bekeken heb, is het antwoord weer “Ja”.14

Ik heb dus naar niet-compacte snelwegen gekeken, zoals in Figuur 3, maar
alleen als ze zo symmetrisch waren dat hun reductie compact was, zoals de ronde,
begrensde weg in Figuur 4. Dat is de betekenis van het woord ‘cocompact’ in
de titel van mijn proefschrift.

Tot slot moet ik bekennen dat het voorbeeld in deze samenvatting niet in
mijn proefschrift past, omdat de reductie in Figuur 4 toch eigenlijk niet compact
is. De oorzaak daarvan is dat een auto op een ronde weg wel elke snelheid kan
hebben die je wil. (Dit is nu niet alleen een wiskundige utopie, maar meer een
algemeen mannelijke. Waarmee ik niet wil beweren dat vrouwen geen wiskun-
de kunnen doen, of niet hard zouden willen rijden natuurlijk.) Het snelheids-
gedeelte van Figuur 4 is daardoor wel oneindig uitgestrekt, oftewel niet compact.
In Section 11.6 bekijk ik een variant van dit voorbeeld waarbij het ook niet uit-
maakt of je bijvoorbeeld 80 km per uur rijdt of 180, of 280, etc. Dat heeft niets
meer met de realiteit te maken, maar dan commuteert kwantisatie wel mooi met
reductie.15

Maar wat heb je daar nou aan?

Als iemand iets over wiskunde schrijft of vertelt, dan raak ik meestal snel mijn
interesse kwijt als ik niet snap waarom je naar de wiskunde zou willen kijken
waar het over gaat. Daar wordt vaak weinig aandacht aan besteed, omdat het
meestal moeilijk uit te leggen is. Dat geldt ook voor mijn proefschrift, maar
ik wil toch een paar redenen noemen waarom je het interessant of nuttig kan
vinden dat kwantisatie commuteert met reductie.

Ten eerste is het een test voor de definities van kwantisatie en reductie. Als

12Ik wek hier misschien de indruk dat ‘compact’ hetzelfde betekent als ‘begrensd’, maar dat
is niet helemaal zo. Een begrensd lijnstuk waarvan de eindpunten niet meedoen is bijvoorbeeld
niet compact. Als de eindpunten wel meedoen is zo’n lijnstuk wel compact. Het cruciale
verschil is dat een continue functie op een lijnstuk met eindpunten altijd een maximale en
minimale waarde aanneemt, terwijl dat niet zo is voor een lijnstuk zonder eindpunten. Denk
bijvoorbeeld aan de functie f(x) = 1

x
op het lijnstuk ]0, 1[, dat bestaat uit alle getallen die

groter zijn dan 0 en kleiner dan 1.
13Zie Conjecture 6.4. (‘Conjecture’ betekent ‘vermoeden’.)
14Zie Theorems 6.5 en 6.13. (‘Theorem’ betekent ‘stelling’.)
15Zie diagram (11.14).
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kwantisatie niet commuteert met de reductie, dan is er (vind ik) iets mis met
de definitie van kwantisatie en/of reductie. Mijn begeleider Klaas Landsman
heeft definities bedacht van kwantisatie en (kwantum-)reductie, en het is dus
een goed teken dat met die definities kwantisatie en reductie inderdaad met
elkaar commuteren, in de gevallen die ik bekeken heb.

Ten tweede is het vaak niet makkelijk om de kwantisatie te bepalen van een
klassieke reductie. Maar als kwantisatie commuteert met reductie, dan kun je,
in plaats van die klassieke reductie te kwantiseren, net zo goed de hele situatie
kwantiseren (wat makkelijker is), en daarvan de reductie nemen (wat ook te
doen moet zijn).

De derde reden is voor mij de belangrijkste. Die reden is dat “kwantisatie
commuteert met reductie” een verband aangeeft tussen de wiskunde achter de
klassieke mechanica en de wiskunde achter de kwantummechanica. En de stukjes
wiskunde die ik het mooist vind zijn de stukjes die een verband aangeven tussen
dingen die op het eerste gezicht totaal verschillend lijken.

De stellingen in dit proefschrift zijn zo abstract dat natuurkundigen er
(nog. . . ) niets aan hebben. Maar ze geven wel een verband aan tussen de
wiskunde achter de klassieke mechanica, die symplectische meetkunde heet, en
de wiskunde achter de kwantummechanica, die representatietheorie heet, of in
mijn geval K-theorie. Die vakgebieden lijken niets met elkaar te maken te heb-
ben, als je niet weet dat kwantisatie commuteert met reductie. Dat er wél een
verband is tussen die onderwerpen is niet alleen mooi, maar zorgt er ook voor
dat we ze allebei beter gaan begrijpen. En daar houden wij van, van dingen
begrijpen.
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Paul-Émile, merci beaucoup pour tous tes conseils, et pour l’hospitalité pen-
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mann, Paris, 1963.

[14] J. Chabert and S. Echterhoff. Twisted equivariant KK-theory and the
Baum–Connes conjecture for group extensions. K-Theory, 23(2):157–200,
2001.

[15] J. Chabert, S. Echterhoff, and R. Nest. The Connes–Kasparov conjecture
for almost connected groups. Publications mathématiques de l’Institut des
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C∗-algèbres. Bulletin de la Société mathématique de France, 91:227–284,
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taires de la mécanique quantique et les transformations canoniques de la
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Dirac induction, 99
discrete series representation, 98
Dolbeault complex, 45
Dolbeault–Dirac operator, 47
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functional calculus, 74
fundamental domain, 163
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g, 46
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Gelfand–Naimark theorem
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for general C∗-algebras, 63

geometric quantisation
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of compact symplectic manifolds
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of Kähler manifolds, 45, 46
of symplectic reductions, 54

Guillemin–Sternberg conjecture, 56
Guillemin–Sternberg–Landsman conjec-

ture, 96

Hc, 85
SEHamP(G), 209
H-CrossGK , 191, 210
H-IndGK , 191, 211
Hamiltonian cross-section, 191, 191
Hamiltonian group action, 27
Hamiltonian induction, 191, 191
Hamiltonian vector field, 26
Harish-Chandra parameter, 101
Hermitian connection, 40
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K-theory
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linear momentum, 33
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momentum map, 28

uniqueness of, 28
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nuclear C∗-algebra, 67
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πM , 76
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p, 98
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equivariant –, 42
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of a pullback operator, 219
of a Spinc-Dirac operator, 51
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properly supported operator, 86
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representation ring, 53
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Serre – Swan theorem, 69
shifting trick, 36
Smale’s lemma, 37
Spin-structure, 50
Spinc-Dirac operator, 51
Spinc-group, 49
Spinc-structure, 50
spinor bundle, 51
Stone’s theorem, 21, 135
strongly elliptic element, 103
symmetry breaking, 29
symplectic group action, 27
symplectic manifold, 25
symplectic reduction

at arbitrary values, 35
at zero, 34
in stages, 37

symplectic vector space, 26
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t∗+, 57
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time evolution, 31
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Notation

Topological spaces

For any topological space X, and any (continuous) vector bundle E over X,

• C(X): the space of continuous functions on X;

• Cc(X): the space of compactly supported continuous functions on X.

• Γ(E) = Γ(M,E): the space of continuous sections of E;

• Γc(E) = Γc(M,E): the space of compactly supported continuous sections
of E;

• E £ F : if F → Y is another vector bundle, the exterior product vector
bundle over X × Y ;

• L2(X), L2(X,E): if X is equipped with a measure, the Hilbert space of
L2-functions on X and the Hilbert space of L2-sections of a Hermitian
vector bundle E over X;

• X+: the one-point compactification of X, if X is locally compact;

• pt: the one-point space.

Smooth manifolds

For any smooth manifold M , and any (smooth) vector bundle E over M ,

• C∞(M): the space of smooth functions on M ;

• C∞c (M): the space of compactly supported smooth functions on M ;

• Γ∞(E) = Γ∞(M,E): the space of smooth sections of E;

• Γ∞c (E) = Γ∞c (M,E): the space of compactly supported smooth sections
of E;

• Ωk(M ;E): the space of smooth sections of
∧k

T ∗M ⊗ E →M ;

• Ωp,q(M ;E): the space of smooth sections of
∧p,q

T ∗M ⊗E →M , if M is
equipped with an almost complex structure;
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• X(M): the space of smooth vector fields on M ;

• iv: contraction of differential forms by the vector field v;

• R∇: the curvature of a connection ∇ on E;

• σD: the principal symbol of a (pseudo-)differential operator D on E.

Lie groups, Lie algebras and representations

• g, h: the Lie algebras of Lie groups G, H etc.

• B: the Killing form on a Lie algebra;

• [V : W ]: the multiplicity of a representation W in a (finite-dimensional)
representation V ;

• Vλ: the irreducible representation of a compact Lie group with highest
weight λ ∈ Λ+;

• T reg: the regular elements of a torus T , i.e. the set {expX;X ∈ t, 〈α,X〉 6∈
2πiZ for all roots α};

• XG: for X a set equipped with an action by a group G, the set of fixed
points of the action;

• LX : for X in the Lie algebra of a Lie group acting on a smooth manifold,
the Lie derivative of differential forms, with respect to X;

• V 0: for V a subspace of a vector space W , the annihilator {ξ ∈W ∗; ξ|V =
0}.
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