
The Path to and from Functional Integration over
Fermionic Fields

Master Research Internship and Thesis
NWI-NM086F

Physics and Astronomy: Particle and Astrophysics

Thomas A. L. J. Vissers
s4555724

Supervisor (Max Planck Institute for the History of Science): Dr. A.S. Blum
Supervisor (Radboud University): Prof. Dr. N.P. Landsman

Academic year 2023-2024

The Fermionic Path Integral and the Men Who Made It:
Feynman, Graßmann

Berezin, Faddeev
Each presents, in that order, the closest to a ’main character’ of the chapters.



Abstract

The path integral formulation is widely recognized as an unmissable toolbox for doing

quantum field theory. By integrating the exponential e
i
ħ

∫
L d 4x over all possible evolutions

of field configurations, with L the classical Lagrangian density, one can go on to derive
scattering amplitudes and decay rates. However, it was not always this way. After its

introduction to the broader public by Feynman in 1948, the path integral went through two
’dark decades’, where it was neither well-known nor much used. An important factor in this

relative radio silence was its initial inability to treat fermionic fields, that are generally
thought not to have a classical Lagrangian description. The solution to this problem came

about around the 1960s, in the form of integration over anticommuting Graßmann
numbers. After introducing the path integral formulation and Graßmann’s algebraic

system, this thesis project investigates how this modern formulation of integration of path
integration over fermionic fields came about. To this end, physics as well as historical

methodology is employed through which several papers from British and Russian authors
in the latter half of the 1950s are investigated. It is found that this path integral development
is the end result of the many consecutive contributions of these authors, from introducing

anticommuting numbers to defining explicit integration rules over them. Finally, it is
shown how these results were used to gauge fix Yang-Mills theories and, later, prove the

renormalizability thereof.

2



Contents

1 Introduction 5
1.1 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 The Path Integral Formulation of QM and QFT 10
2.1 The quantum mechanical origin of the path integral . . . . . . . . . . . . . . . . 10
2.2 Bridging the gap to the Schrödinger equation . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Walking the path to the wave . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Riding the wave to the path . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.3 The phase space representation of the path integral . . . . . . . . . . . . 37

2.3 Calculating path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.1 The free particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.2 Perturbation theory and the path integral . . . . . . . . . . . . . . . . . . 44

2.4 The path integral in quantum field theory . . . . . . . . . . . . . . . . . . . . . . 52
2.5 The pros and (fermionic) cons of the path integral . . . . . . . . . . . . . . . . . 66

3 The History and Content of Graßmann Algebra 76
3.1 A brief history of vector analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Graßmann and die Ausdehnungslehre . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3 The basics of exterior algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 The (Re)Discovery of Graßmann Algebra to Formulate Fermionic Path Integrals 91
4.1 "The Representation of Green’s Function in Quantum Electrodynamics in the

Form of Continual Integrals" (1955) by I.M. Khalatnikov . . . . . . . . . . . . . . 92
4.2 "Propagators of Quantized Field" (1955) by P.T. Matthews and A. Salam . . . . . 97
4.3 "Transition Amplitudes as Sums over Histories" (1956) by W. Tobocman . . . . 101
4.4 "On Sums over Trajectories for Systems with Fermi Statistics" (1956) by D.J.

Candlin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.5 "The Feynman principle for a Fermi system" (1959) by J.L. Martin . . . . . . . . 107
4.6 "Canonical operator transformation in representation of secondary quantiza-

tion" (1961) by F.A. Berezin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 From Ghosts to Strings: Reaping the Rewards of the Fermionic Path Integral 134
5.1 The functional integral of the Dirac field . . . . . . . . . . . . . . . . . . . . . . . 134
5.2 Context to Faddeev Popov quantization . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3 Gauge fixing the electromagnetic field . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Gauge fixing the Yang-Mills field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.5 Beyond the dark ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Conclusion 151

3



7 Discussion 154
7.1 Implications of the research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2 Limitations of this research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.3 Suggestions for further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.4 Personal evaluation and acknowledgements . . . . . . . . . . . . . . . . . . . . . 158

8 Bibliography 162

4



1 Introduction

When undergraduate students of physics are introduced to Quantum Mechanics (QM), they
usually start with the relatively accessible wave mechanics formulation of Schrödinger. As
they move on through their studies, they will eventually come to work in the more abstract
language of operators on Hilbert spaces, characterized by the Dirac-von Neumann axioms.
It is typically only graduate students taking an advanced course in Quantum Field Theory
(QFT) that are familiarized with another influential formulation, namely that of path inte-
grals. Inspired by earlier contributions of Paul A.M. Dirac (1902-1984), the path integral for-
mulation was fully introduced by Richard P. Feynman (1918-1988) in his 1942 PhD-thesis,
with a more complete article in Reviews of Modern Physics appearing in 1948 for a wider
audience (Feynman, 1942)(Feynman, 1948). Feynman’s approach focuses not so much on
quantum states, but rather on transition amplitudes between them. In the quantum me-
chanical case, the probability of a particle at a position x⃗1 at a time t1 appearing at a position
x⃗2 at a later time t2, is proportional to the absolute square of the associated amplitude. Feyn-

man could calculate such problems by integrating the exponential e
i
ħS[x(t )] over all possible

paths x(t ) from x⃗1 to x⃗2, where S[x(t )] is the (classical) action of a path under consideration.
In QFT, the integration is instead over all possible field configurations between an initial and
final state, which is why it is sometimes also referred to as the ’sum-over-histories’ approach.

Nowadays, the path integral is generally accepted as a powerful tool, in many respects pro-
viding a convenient formulation of quantum theory. Yet, this was not always the case. While
from roughly the 1970s onwards they enjoy ubiquitous use, the period before this could be
referred to as its ’dark decades’. Throughout the 1950s and 1960s, path integrals were nei-
ther well known nor widely used. Other than novelty, an important contributing factor to
their marginal position were the many problems path integrals still faced. Unitarity of the S-
matrix in the path integral formulation was far from obvious, certain aspects of the integral
were mathematically ill-defined, and spin could not be accounted for from the offset. An ex-
ample of particular importance related to the latter case is that the path integral was unable
to deal with integration over fermionic fields, evidently important for doing QFT (Weinberg,
1995, p. 376-377).

Therefore, much work still needed to be done. Although unitary of the S-matrix was not
evident, it could at least be established indirectly from its mathematical equivalence to the
operator formalism that follows from canonical quantization of fields. Secondly, despite still
existing problems, the path integral now rests on a more rigorous mathematical basis than it
used to due to the work of mathematical physicists, starting with Cécile A.P. DeWitt-Morette
(1922-2017) already soon after Feynman’s original paper (Morette, 1951). Nevertheless, the
history of physics has plenty of examples of physicists not waiting around until every prob-
lem of mathematical rigor is solved when they are provided with a tool that works, so this
is also unlikely to be the dominant reason for the dark decades. A pressing physical reason
can thus be found in the aforementioned inability to deal with one-half of physical systems:
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fermionic ones. It took until around the end of the 1960s for this problem to be solved. Its
resolution came about through the implementation of the exterior (or Graßmann) algebra
first introduced by Hermann G. Graßmann (1809-1877). Armed with this ’new’ algebra, the
path integral formulation has seen a great acceleration in its development and application
range. It paved the way for Ludvig D. Faddeev (1934-2017) and Victor N. Popov (1937-1994) to
in 1967, arguably, end this era by gauge fixing non-Abelian gauge theories in QFT, an instru-
mental step in the eventual establishment of the Standard Model of Particle Physics. Today,
the use of the path integral is common practice in the field.

During these dark decades, however, it is far from entirely clear how these developments
relating to the fermionic path integral, that eventually pushed the formulation into the main-
stream, came about. The seemingly sudden appearance of century-old mathematics to solve
the problem at hand is a clear illustration of this. This naturally leads to the question where
this crucial step in the history of the path integral, and QFT as a whole, came from.

While such a question can be said to have intrinsic value by its contribution to our under-
standing of the history of (quantum) physics, it can be of further interest to the physicist
too. It enriches the methodological apparatus of the physicist to show that the answers to
problems presented in lectures do not come out of the blue. This is true because the intel-
lectual journey towards these results, including the many failures along the way, can serve as
a warning to practicing physicists, as well as expand the number of directions of one’s think-
ing when confronted with a problem. Furthermore, from a philosophy of (mathematical)
physics point of view, this story is another beautiful example of a familiar pattern in physics,
whereby structures formerly residing in the domain of ’pure math’ turn out to provide an
elegant description of physical phenomena. This then also stimulates new developments in
that area of mathematics, as is here already visible through the case of DeWitt-Morette. An-
other philosophical curiosity is that this story allows us to see the interpretation of a phys-
ical theory actively change as these developments are taking place. Lastly, an enquiry such
as this is difficult to leave only to historians, as it simply takes Master’s level physics knowl-
edge to be able to understand and contextualize what people were doing during the 50s. For
the physics student too, however, getting acquainted with how things were done back then
is sure to carry plenty of lessons. Given all of the above reasons to pursue this topic, my
own interest in history and/of physics and the foundations of the field, and me gladly taking
on the challenge of grasping the technical details of the development of a to me previously
unbeknownst but mystifying formulation, our research question shall now be introduced.
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1.1 Research question

The research question of this thesis is formulated as follows:

How did the modern formulation of fermionic path integrals over anticommuting Graßmann
variables come to be introduced around the late 1950s to allow for breakthroughs in the devel-
opment of the path integral formulation of QFT?

Two things come to mind given the above question. For one, it presupposes an adequate de-
gree of knowledge of the path integral formulation, Graßmann algebra, and QFT in general,
most of which a starting Master’s student in physics is unlikely to already possess. Secondly,
the historical angle inherent to the question may lead one to wonder how a physics student
is to go about answering it. The remaining two subsections of this Introduction therefore
aim to clarify these matters, before getting into the main body of this thesis.

1.2 Approach

Earlier, it was stated that the above research question cannot just be left to the historians,
due to the large amount of physics foreknowledge its answering requires. At the same time,
it cannot trivially be left to a physics student with no formal training in historical research
methodology of the field either.
Luckily, I was in the privileged position of being able to spend the first semester of this re-
search internship at the Max Planck Institute for the History of Science (MPIWG) in Berlin,
specifically in the Research Group titled Historical Epistemology of the Final Theory Program.
While ’the Final Theory Program’ will be recognized by the physicist as referring to the quest
for a ’Theory of Everything’, the former term may be less familiar. Historical epistemology
as a discipline, however, is at the core of the MPIWG’s activities. It can be seen as the com-
bination of two different 20th century developments: the historical turn in the philosophy
of science and the increasing focus on how knowledge is thought to come about (’episte-
mologization’ in the French tradition) in the history of science. Historical epistemology is
therefore not so much concerned with a rigid definition of what constitutes knowledge, but
rather, how knowledge is generated throughout history. It investigates under what condi-
tions things are even made into objects of knowledge in the first place. It came about as
a 20th century reaction to the seeming inability of science to capture the world and all its
phenomena as a unified system moving towards completion. Although experts disagree on
its precise, detailed meaning, historian of science and former MPIWG-director Hans-Jörg
Rheinberger (1946) characterizes historical epistemology by the question: ’under what con-
ditions did who know what through an object?’ (Rheinberger, 2010).
During my stay at the MPIWG and under the supervision of the research group’s leader dr.
Blum, I have been able to learn more about such methods from him and others. Moreover, I
could use the MPIWG’s extensive library and resources, and have followed a course given at
the institute titled Knowledge and Its Resources: Concepts, Methods, Historiographies. Lastly,
once back in the Netherlands, the new Radboud Center for Natural Philosophy (RCNP) also

7



provides a stimulating environment for discussing topics related to the history of physics.
While all of this by no means makes me full-fledged historian, it did help me gain basic skills
in addressing the historical part of the research question of this thesis.

Most of this historical research has been focused on reading not just secondary literature,
but taking in the primary sources in the form of the papers at the end of the 1950s that tried
to solve the inability of the path integral to describe fermionic fields. This adds another layer
of difficulty. Notation may be wildly different from contemporary conventions, explanatory
clarity may take a backseat in favor of brevity guidelines, and papers can be tied up in ini-
tially obscure and not always documented broader research contexts. To deal with these
issues best as possible, an extensive survey of published articles on the topic at hand has
been conducted. Many of these, while mentioned and read, have upon evaluation of their
contributions not made the final cut. They do, however, help in uncovering this wider con-
text. When writing about these articles, I have made efforts to communicate the meaning of
their notation as much as possible, and I have often attempted to redo derivations on paper
(some times more successful than others). All of this has ultimately culminated into a set of
concise historical questions through which these papers are to be discussed later in this the-
sis, to draw as accurate historical conclusions as possible. Finally, it may be mentioned that
rather than denoting sources such as these with square brackets and a number as is com-
monplace in physics theses (e.g., [9]), I consciously make use of APA (in-text) citations. This
fits better with the historical character of the thesis, as page numbering will often be very
important when, e.g., being concerned with where an author makes some crucial remark.
Any factual statements made in this introduction are extensively elaborated upon later, as
well as being sourced in this way.

Yet, historical methodology alone does not exhaust all required thought on the overall re-
search approach to this thesis. The other big issue mentioned after the research question
is the fact that the topic at hand demands a substantial amount of physics and mathemat-
ics knowledge that will very likely be unfamiliar to the average starting Master’s student of
physics (including, initially, myself). Since it ought to be written at that level, the follow-
ing contains a large part dedicated to laying out this theoretical background. Aside from the
core question what is required to understand fermionic path integrals, the approach to these
parts are guided by three other goals. These goals exist also to assure some level of novelty in
this large theoretical body, despite these results themselves being well-established. The first
one is clarity. For one, didactics will play an important part in my career after my studies.
But more directly relevant, this advances the understandability for the hypothetical average
Master’s student reading this thesis. The clarity manifests itself in, e.g., the attempt to pro-
vide clear commentary around new concepts and derivations, with a focus on how this may
be done better than in many other bodies of literature. A second goal is that of thorough-
ness of derivations. I have found much existing literature to jump from premise to result
rather quickly, with sometimes few of the logical steps in these derivations being provided
or even explained. Nevertheless, these steps may often incorporate a surprising degree of
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subtle mathematics. I have therefore often reproduced such derivations on my own to fill
in these gaps and be more thorough than is usually seen. Thirdly and finally, some focus is
put on original analysis. I make an effort to regularly take a step back and critically examine
results, whether it be related to interpretation, consistency, assumptions or comparisons. It
is my ambition that the manifestation of these goals in the text are evident to the reader. In
this way, both the requirement of having the knowledge as well as some degree of novelty
with regards to the theory can be satisfied.

Having addressed the approach to answering the research question, we shall now briefly
consider the structure of this thesis that flows out of this, before moving on to the main body.

1.3 Thesis structure

The remainder of this thesis consists of chapters working towards an answer to the research
question. In chapter 2, the necessary knowledge on the path integral formulation of QM and
QFT is thoroughly described. Especially in the former case, we can stay close to Feynman’s
own work. After this, the chapter lays out the central problem of the path integral’s initial
inability to describe fermionic fields. To solve this problem, it is essential to understand the
basics of Graßmann algebra. An exploration thereof, as well as to the historical context that
comes with it, is provided in chapter 3. We then move to the crucial chapter 4, which fully de-
scribes how a number of individuals from the UK and the USSR eventually incorporated this
algebra to solve the fermionic impasse of the path integral formulation. The most important
identity to come out of this is derived at the end. Chapter 5 investigates further develop-
ments that were enabled by this new repertoire that would eventually end the dark decades
for the path integral formulation. The primary focus is on the Faddeev-Popov procedure for
gauge fixing non-Abelian gauge theories, directly using the results from the previous chapter.
A conclusion then follows to summarize the entire story and concretely answer the research
question. After this, we get to the discussion on the research in this thesis, to finally end with
a bibliography containing all the (historical) sources. With this structure in mind, let us now
proceed by discussing the path integral formulation.
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2 The Path Integral Formulation of QM and QFT

This chapter lays the groundwork of this thesis by introducing the path integral formula-
tion of quantum theory. First, the foundation of the formulation in quantum mechanics is
introduced. After this, we show that this, on first sight, wildly different procedure, can in-
deed reproduce the familiar Schrödinger equation, and vice versa. We close our discussion
on QM by considering how the path integral allows one to make calculations, considering
perturbation theory in particular and providing the simplest and most direct case of the free
particle as a concrete example. Next, we show how the generalization to QFT can be made,
where paths are replaced with field configurations. We end this chapter by illuminating the
advantages and problems of the formulation as it stood some time after its conception, with
particular attention to its inability to describe fermionic systems.

2.1 The quantum mechanical origin of the path integral

Feynman is a man with many stories to his name, and the origin of his intuition into path
integrals is no exception. As the disputed but famous story goes, Feynman, as a student, was
attending a lecture on quantum mechanics wherein the double-slit experiment was being
explained. The professor showed how it was the addition of the probability amplitudes of the
waves going through both slits, not of the pure probabilities, that would allow one to derive
the probability distribution of the intensity of signals at a certain position on the screen.
Feynman supposedly asked the professor what to do if we were to add a third slit in the wall.
The professor answered that one simply adds the amplitude of the wave through that slit
to the sum, i.e., the amplitude associated with the extra particle path. Feynman continued
his line of questioning, adding more slits and even more walls with slits (see figure 1), with
the professor growing tired of having to repeat that one is simply to add the corresponding
amplitudes. Eventually, Feynman is purported to have asked what happens if you have an
infinite number of consecutive walls, each with an infinite number of slits (O’Dowd, 2017).
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Figure 1: An arbitrary configuration of four walls A, D, E and B, each with a different number of slits.
A source of, in this example, photons, is stationed on the left end, while on the right end C serves as the
photographic screen. Three of the many possible paths are highlighted with dashed lines. To find the
amplitude of a photon being detected at any position on C, the amplitudes of all possible paths need to
be added (Feynman and Hibbs, 1965, p. 20).

True or not, the story works excellently to familiarize the reader with basic intuition behind
the path integral formulation. To find the probability of a quantum particle appearing at a
given position on the screen in the double-slit experiment, one needs only to add the ampli-
tudes associated with each of the two paths and take, following Born’s rule, the sum’s squared
modulus,1 i.e., P = |φ1 +φ2|2. This is then the probability distribution, and it can be inte-
grated over any spatial interval to find the probability of finding the particle somewhere in
that interval in any experiment. The implication of the story is now that if we want to find
the probability of that particle at an initial position xA at the time tA, later appears at the
particular position xB at the time tB , we must add and then take the squared modulus of the
amplitudes of all possible paths between these two space-time coordinates, as though all of
space is a slit. This intuition may aid in understanding the more formal ideas introduced
later.

Feynman first wrote down these ideas in his PhD-thesis on "The principle of Least Action
in Quantum Mechanics" (Feynman, 1942). While much was already in there, his ideas were
further developed out and published for fellow physicists in a more condensed form in Re-
views of Modern Physics six years later (Feynman, 1948). His most extensive body of work
on the path integral appeared another 17 years later, in the form of a book written together

1While we are not currently discussing the effect of measurement, note that measuring which of the two slits
the particle goes through will change the expression such that P = |φ1|2+|φ2|2. While the study of decoherence
is known to address this phenomenon, Feynman and Hibbs in their 1965 book differentiate between ’exclusive
alternatives’ and ’interfering alternatives’. If we can know which of the holes the particle goes through, the
holes are exclusive alternatives to the particle, while if not, they are interfering alternatives.
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with his doctoral student Albert Roach Hibbs (1924-2003) (Feynman and Hibbs, 1965). While
the fundamental essence of the path integral does not change radically over the years, its
range of application can be seen to expand greatly. The book, for example, contains an en-
tire chapter on the uses of the path integral in statistical mechanics (Feynman and Hibbs,
1965, §10). Due to his methods being further matured, in the following three subsections,
we shall mostly take Feynman’s original presentations in the ’48 paper and ’65 book as our
guidepost, with some occasional help from secondary sources.

With this established, we shall now consider the two postulates Feynman provided for the
path integral formulation and all that follows from them. He introduces the first as follows:

Postulate I: "If an ideal measurement is performed to determine whether a parti-
cle has a path lying in a region of spacetime, then the probability that the result
will be affirmative is the absolute square of the sum of complex contributions, one
from each path in the region."
(Feynman, 1948, p. 371)

With ’ideal measurement’, Feynman intends to refer to a measurement whereby "no further
details could be obtained from the same measurement without further disturbance to the sys-
tem" (Feynman, 1948, p. 370).
Note that his postulate as presented above could also be argued to be a composition of two
ones: the sum over paths yielding the probability amplitude on the one hand, and the Born
rule on the other hand.
More importantly, the postulate introduces no restriction to the type of allowed paths. The
sum includes everything from the classically taken path to an absurd path wherein the par-
ticle first goes to the Andromeda galaxy and then back. An important takeaway from this is
that these paths are not physical: they violate locality. This is something that we shall refer
back to later.

Another question one may ask about this postulate is how one performs a ’sum’ over all
paths. It would seem that for every path, one could always introduce a slight deformation so
that the actual number of them is infinite. Feynman used calculus to find a way to deal with
this. Let us first consider a particle moving in one dimension. First, we subdivide the time
interval between the initial and final states into N equal small increments ϵ, i.e., tB −tA = Nϵ.
This is an example of a ’time-slicing procedure’. We shall ultimately take the limit as ϵ→ 0,
but for our current sake of understanding one may think of it as just ’a small increment of
time’. Consequently, we can enumerate these discretized times with a subscript such that
ti+1 = ti + ϵ, where logically xA = x0, tA = t0, xB = xN and tB = tN . Consider now a particle
in its initial state (xA, tA), as can be viewed in figure 2. After the time increment ϵ the parti-
cle has moved to the position x1. One may note that figure 2 illustrates this using a straight
line. This, as will now implicitly be described, is completely irrelevant with regards to the
first postulate, but not so with regards to the second, and we shall thus come back to it later.
For now, we must consider that we aim to sum over all possible paths. Since we have noted
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that these paths are not physically restricted in any way, x1 can take on any real number,
including those that would require v > c if the particle is to appear there after a time ϵ. After
all, we are still discussing non-relativistic quantum mechanics. It follows that we must sum
over all possible values of x1 our particle might find itself after a time ϵ having started at xA.
Given the continuity of this variable, this sum becomes an integral, i.e.,

∫ ∞
−∞ d x1. This step is

then repeated N −2 more times, such that we end up with the product of N −1 such integrals∫ ∞
−∞ d x1

∫ ∞
−∞ d x2 ···

∫ ∞
−∞ d xN−1. Given that x0 and xN themselves are determined by the initial

and final state of the particle, they are not integrated over. Since the number of integrals is
determined by our choice of ϵ, we require a normalization constant itself depending on ϵ to
guarantee convergence of the path integral taken over a soon to be introduced integrand.
The final step after this procedure is to take the limit ϵ→ 0, as in this limit we truly obtain the
sum over all paths. After all, if we were not to take the limit, we would not account for the
many paths between any two particular values of xi and xi+1. Given that tB −tA = Nϵ, the left
hand side being constant, taking the limit as ϵ→ 0 will simultaneously mean that N →∞, as
may intuitively be expected (Feynman and Hibbs, 1965, p. 26-32).

Figure 2: A graphical illustration of Feynman’s approach to taking the sum over all paths for a particle
moving in one dimension. At each time increment ϵ, a particle at a position xi moves to a possible xi+1.
Ultimately, the limit ϵ→ 0 is taken (Peskin and Schroeder, 2019, p. 278).

Of course, writing out the product of integrals all the time is rather tedious. In practice, the
following notation is used (Feynman and Hibbs, 1965, p. 33-34):

lim
ϵ→0

1

C (ϵ)

∫ ∞

−∞
d x1

C (ϵ)

∫ ∞

−∞
d x2

C (ϵ)
· · ·

∫ ∞

−∞
d xN−1

C (ϵ)
= lim
ϵ→0

1

C (ϵ)

N−1∏
i=1

∫ ∞

−∞
d xi

C (ϵ)
≡

∫
Dx(t ) (1)

Here, the symbol D is conventional for denoting the sum over all paths (Feynman and Hibbs,
1965, p. 34).
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The splitting of the normalization factor is a convention adopted for convenience, its useful-
ness becoming clear in the later subchapter on calculations. Its value shall there also appear
in a natural way. Note that when using the product symbol Π, it is here then meant as an
instruction to repeat everything that follows for each i , including not just the d xi but also
the C−1(ϵ). Of course, one could in principle just write C−N (ϵ), or, while we are at it, redefine
that as C ′(ϵ).

A word of reflection on the above procedure is warranted. The method by Feynman de-
scribed above is far from the only way to formulate the sum over all paths. This specific
method is what is referred to as ’discrete lattice regularization’, due to the need to regularize,
i.e., prevent the integral from diverging, being fulfilled by means of working with discrete
steps whose lattice spacing ϵ eventually goes to zero. Yet, this method is not without its
mathematical problems, and a relation such as ti+1 = ti + ϵ is not demanded by the theory
but rather one possible construct to tackle the problem at hand. We might as well have in-
troduced ti+1=ti+ln(δ), since in the limit δ→ 0 the lattice spacing still disappears. Another
example of such a construct is the line segments between consecutive points xi and xi+1,
which shall be addressed after the introduction of the second postulate.

The need of a second postulate is hinted at by the as of yet undefined ’contributions’ that
are spoken of in the first. In the above, it was discussed how a sum over all paths is taken.
But to get the mass of some non-uniform plate, one does not just integrate over its surface,
but one integrates its mass-density ρ(x, y) over its surface. Similarly, to find the probability
amplitude of a particle undergoing the process described in postulate I, we do not just inte-
grate over all possible paths, but we integrate a particular complex-valued path-dependent
objectφ[x(t )] over all paths. The probability amplitude, whose square modulus provides the
probability distribution, is referred to by Feynman as the ’kernel’ K (xA, tA, xB , tB ) (Feynman
and Hibbs, 1965, p. 26). This is because it carries the particle’s state from (xA, tA) to (xB , tB ).
Consequently, P (xA, tA, xB , tB ) = |K (xA, tA, xB , tB )|2.
The second postulate, now, concerns the nature of these complex contributions φ[x(t )].
Here, Feynman was heavily inspired by Dirac’s 1933 attempt to find out what in quantum
theory corresponds to the Lagrangian method in classical theory. In this paper, Dirac sug-
gested that the unitary transformation mapping a state vector at a time t to a time t +d t was

analogous to the quantity e
i
h Ld t , where L is the classical Lagrangian of the system (Dirac,

1933). Feynman decided to investigate what would happen if this analogy were to be re-
garded as an equality (Blum, 2017, p. 44-47), and this ultimately led to the content of the
now to be introduced second postulate. He states the second postulate as follows:

Postulate II: "The paths contribute equally in magnitude, but the phase of their
contribution is the classical action (in units of ħ; i.e., the time integral of the La-
grangian taken along the path."
(Feynman, 1948, p. 371)
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Therefore, we can mathematically express this contribution F [x(t )] as

F [x(t )] = e
i
h S[x(t )], S[x(t )] =

∫ tB

tA

L(ẋ(t ), x(t ), t )d t (2)

where S[x(t )] is thus the classical action along the path.
By now, one may wonder a to what the reason is for using square brackets. This is related
to the mathematical concept of a functional. This is a function that, rather than taking in a
number and outputting another one, takes in a function and then outputs a number. The
square brackets then denote that the argument one is dealing with in the case of a functional
is a function. Feynman’s path integral is often referred to as a functional integral2. When one
thinks about it, a regular old integral G[ f (x)] = ∫

f (x)d x is in this sense already a functional.
Yet, in Feynman’s path integral, the integrand φ[x(t )] is itself a functional, and we are then
integrating over a space of functions. This idea of using such a mathematical construction
was itself not new to physics. Two decades earlier, mathematician Norbert Wiener (1894-
1964) had applied such a scheme to describe Brownian motion, where he integrated over
the space of all Brownian paths, each being weighed by some probability measure (Cartier
and DeWitt-Morette, 2006, p. 56-59). In fact, Feynman’s and Wiener’s integral can be related
in an interesting way, something that we shall consider later.

Another point to note about the second postulate is that it follows from it that all paths con-
tribute equally in magnitude, but not in phase. On first reading, one may wonder why an
absurd path going to Andromeda and back would contribute equally to a more sensible one
like the classical path. Yet, here we must reinvigorate the previous statement that the paths
are not physical. The formulation ascribes no physical reality to any of these paths. Doing
so in any way is to introduce an interpretation of the path integral on top of the formalism
itself. While this prospect may be of interest to some, it is not forced upon us by theory.

Now that we have formulated both postulates, it should be noted that their combination is
taken to constitute the whole of the path integral formulation of quantum mechanics, math-
ematically being fully equivalent to the others. We shall prove this later, although it may
already be announced that this statement will be troubled by the subsequent inclusion of
spin. In any case, we now have some conception of the meaning of ’quantization’ of a clas-
sical theory through the path integral formulation. It means successfully taking a classical
Lagrangian, plugging that into the phase factor, and integrating this over all possible paths.

When we combine postulate I and II, we find the following complete formula for the ker-
nel of a particle initially being in the state (xA, tA) being later measured in the state (xB , tB ):

K (A,B) =
∫ B

A
e

i
h S[x(t )]Dx(t ) (3)

Where A and B are shorthand for denoting the initial states (xA, tA) and the final state (xB , tB ),
respectively.

2This becomes especially prevalent in the QFT-literature, where we will no longer be integrating over ’paths’.
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In the abstract, the procedure for calculating this object is now quite straightforward: for
every possible path, plug it into the Lagrangian such that the action can be calculated, and
add up the exponentials for every such case. Some thought, however, needs to be put into
how the action is to be calculated when we consider the concrete time-slicing method that
has been employed above. The way we performed this functional integral was through the
product of N − 1 familiar integrals, in the sense that we integrate over numerical variables
rather than functions. While this allows us to sum over all paths, we end up with a set of
N +1 discrete points (xA, x1, x2, ..., xN−1, xB ), yet the Lagrangian is a function of the continu-
ous path x(t ). The action integral requires a path to exist between subsequent points xi and
xi+1. Therefore, one is faced with the conundrum of how the action is now to be expressed
given the discrete lattice regularization method.

To answer this problem, Feynman did two things. First, as stated before, he connected the
discrete positions with lines. In the case of figure 2, these are straight lines, yet they need
not be, since in the ultimate limit ϵ→ 0 the length of all these line segments will approach
zero too. We shall briefly discuss two possible types of line segments: straight line paths,
i.e., paths linear in time, and paths that would be followed by a classical particle if it were to
travel between two given points xi and xi+1.
The second thing that Feynman did was to split up the action into N contributions:

S =
N−1∑
i=0

S(xi , xi+1) (4)

This is allowed because the action is an integral over time which we are slicing up. Therefore,
the sum of these N integrals each over a small time interval from ti to ti + ϵ will, given the
correct action, simply be equivalent to the one from tA to tB . This possibility will later allow
us to connect the path integral formulation to the wave functions of ordinary QM.

We will first consider the case of straight lines. The action as formulated in postulate II can
now be expressed as:∫ tB

tA

L(ẋ(t ), x(t ), t )d t → ϵ
N−1∑
i=0

L

(
xi+1 −xi

ϵ
,

xi+1 +xi

2
,

ti+1 + ti

2

)
(5)

Let us briefly explain where this new form comes from. First of all, the integral from tA to
tB is, as mentioned, replaced by a sum of the action of each straight line path between con-
secutive points xi and xi+1. We must consider the effect of this on the arguments of the La-
grangian. Since the paths between the consecutive points are straight lines, the time deriva-
tives of these paths are nothing more than vi = xi+1−xi

ti+1−ti
, the denominator being ϵ by defini-

tion. For the second argument, the average between the two points is taken. Of course, a
linear formula xi→i+1(t ) = ( xi+1−xi

ϵ

)
t + xi for the straight line between xi and xi+1 could be

constructed, but this would introduce time dependence due to which the Lagrangian could
not be taken outside of the integral. Moreover, once the limit ϵ→ 0 is taken, the approxima-
tion’s effect will disappear too. Similar logic holds for the third argument, namely the time
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variable that is replaced by the average time between two subsequent points ti+1+ti
2 .

We notice now that given these arguments, the Lagrangian is time-independent, meaning
that it can be taken outside of the integral. Since

∫ ti+1
ti

d t = ϵ for all i in the sum, we end up
with the result as shown above.
Although rare, one might wonder what happens when one is presented with Lagrangians
depending on higher derivatives of x(t ) than the velocity. Acceleration terms ẍ(t ) in the La-
grangian, for example, would always be zero on the straight line trajectories between xi and
xi+1. Therefore, these terms would not add to the contribution to the total action of paths
that they could without the straight line approach. Moreover, the fact that the acceleration
is infinite in the transition of the line segment between xi and xi+1 to that between ti+1 and
ti+2 could also spell trouble.
The trick Feynman deemed adequate here was to consider the average acceleration between
two subsequent straight line segments (Feynman and Hibbs, 1965, p. 34). One can then sub-
stitute the following for the acceleration between a point xi−1 and xi :

ẍ(t ) → vi − vi−1

ϵ
=

xi+1−xi
ϵ

− xi−xi−1
ϵ

ϵ
= xi+1 −2xi +xi−1

ϵ2
(6)

The same procedure could be repeated for higher derivatives than the second too.

Since it will be used in the following subchapters, we now state the full formula for the kernel
in the form resulting from discrete lattice regularization, Dx(t ) written out:

K (A,B) = lim
ϵ→0

1

C (ϵ)

N−1∏
k=1

∫ ∞

−∞
e

i
ħ ϵ

∑N−1
i=0 L

(
xi+1−xi

ϵ ,
xi+1+xi

2 ,
ti+1+ti

2

)
d xk

C (ϵ)
(7)

Where the subscript k was used for the integral product to avoid confusion with the sub-
script i used for the sum in the exponential.

Another way of addressing the problem of how to incorporate the action in Feynman’s time-
slicing method is by not using straight lines, but the classical path that a particle with a given
Lagrangian would follow from (xi , ti ) to (xi+1, ti+1). This was method that Feynman favored
in his 1948 paper, although he does end up using straight lines later in the same paper (Feyn-
man, 1948, p. 372). Nevertheless, while less explicit, there is certainly some (conceptual)
merit to the use of the classical path. Since the principle of stationary action dictates that
the classical path is the one for which the action is stationary, one can simply write the fol-
lowing:

S(xi , xi+1) = St at

(∫ ti+1

ti

L(ẋ(t ), x(t ))

)
(8)

That is, rather than introducing any specific type of path between consecutive points, one
simply demands that each contribution to the total action is stationary. This is a compact
way of writing things, both on paper and for a computer program. To further proceed, how-
ever, one would need the Lagrangian to subsequently solve the Euler-Lagrange equation(s)
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∂L
∂x − d

d t
∂L
∂ẋ = 0 to figure out the right paths between the xi ’s and x ′

i+1s. For our current pur-
poses though, the insight that there are multiple ways of handling such problems will suffice.

In such ways, the formulation of the action has been made compatible with our currently
introduced method of computing path integrals. Before moving on to performing a concrete
computation in the next section, five important questions that the reader may have consid-
ered deserve an answer, as to complete our foundational understanding of the path integral
formulation of quantum mechanics.

A first question might concern the empirical content of the formulation. It is clear how the
mathematical toolkit introduced so far allows for measurable statistical predictions of posi-
tions of particles. What is not yet clear, is how this could be done for important and familiar
physical quantities such as momentum, energy and angular momentum.
Feynman has a short and long answer to this question. The short one will ring a bell for those
familiar with Bohmian mechanics, namely the idea that all physical measurements in reality
come down to measurements of positions. Measuring mass on scales comes down to con-
sidering the position of the needle pointing to a particular number. Measuring the energy
of an incoming cosmic ray ultimately comes down to mapping the positions at which we
register shower particles in our detectors. And measuring momentum can be done through
considering the positions of particles in a device it travels through. The argument is now
that if all experimental knowledge can be derived from position measurements, a formula-
tion that allows us to do the latter is complete in the sense that it can, in principle, account
for all experimental knowledge as well as any other (Feynman, 1948, p. 371).
Much has been said about the above argument, but if one is inclined to accept it, it does
seem to speak for the completeness of the path integral formulation with regard to its abil-
ity to make predictions for dynamical variables other than position. There is, however, also
Feynman’s longer and more direct answer. One can use the fact that it is possible to relate po-
sition to momentum mathematically through infinitesimal position measurements, as well
as the familiar technique of Fourier transforms (Feynman and Hibbs, 1965, p. 95-118). The
path integral can also be provided in a momentum representation. In this way, it is, in fact,
possible to provide the kernel as a function of quantities such as momentum and energy us-
ing the sum over paths, or even sum over momenta too in a phase space representation. Up
until now, by only using the sum over paths, we have just been using the coordinate space
representation. The phase space integral was used by Feynman relatively early on too, ap-
pearing already in a 1951 in a paper on his work about operator calculus (Feynman, 1951,
p. 125). It will naturally come about when showing how the path integral formulation fol-
lows from the Schrödinger equation, which is why we will discuss it there rather than here.
In any case, while arguably not strictly necessary, the path integral can indeed explicitly an-
swer questions as for example ’if a particle starts out with a momentum p A at the time tA,
what is the probability that we will detect it with a momentum pB at the later time tB ?’.

A second question may address whether the path integral formalism can be extended to an
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arbitrary number of dimensions, seeing as only one dimension has been considered so far.
Luckily, this can be done in a straightforward way. Using three Cartesian dimensions of space
as an example we get the following Kernel (Feynman and Hibbs, 1965, p. 65-66):

K (A,B) =
∫ B

A
e

i
h S[x(t ),y(t ),z(t )]Dx(t )Dy(t )Dz(t ) (9)

Where A and B now denote the initial particle state (xA, y A, zA, tA) and the final state (xB , yB , zB , tB ).
From here, the same time-slicing method used in the one-dimensional case can be em-
ployed. This triples the number of integrals, and keeping with the convention used for the
normalization constant, we now find 3N factors of C−1(ϵ).
While the above uses Cartesian coordinates, any coordinate system can be used. For exam-
ple, in the two-dimensional case, Cartesian coordinates can also be replaced by functional
integration over polar coordinates, i.e., Dx(t )Dy(t ) → Dr (t )Dθ(t ). To make this a bit more
concrete, in the example of Feynman’s discrete lattice regularization, we can take two inte-
grals

∫ ∞
−∞

∫ ∞
−∞ d xd y → ∫ ∞

−∞
∫ 2π

0 r dr dθ, simultaneously changing the Cartesian variables for
the corresponding action between ti and ti+1 according to the familiar polar substitutions.
This coordinate substitution was only published about 4 years after Feynman’s and Hibbs’
book, first appearing in the work of a British mathematician (Arthurs, 1969).
In conclusion, the path integral formulation of quantum mechanics is not restricted in the
number of degrees of freedom it can describe, nor in the number of coordinate systems in
which it can do so, at least not more so than in the case of any other formulation.

Our third and related question is about whether the above formulation also holds for many-
particle systems. The answer is both yes and no, and we shall consider why.
First of all, we can simply reformulate the general kernel (3) with a many-particle Lagrangian.
For a system of N interacting particles, we have:

L = m

2

N∑
j=1

ẋ2
j (t )− 1

2

∑
j ̸=l

V (x j (t ), xl (t )) (10)

Here, the j -subscript denotes the particles. An example of the above Lagrangian could be
N moving charges. The division by two of the second term avoids double counting of the
potential between two charges.
We can now write the kernel (3) as:

K (A,B) =
N∏

n=1

(∫ B

A
Dxn(t )

)
e

i
h

∫ tB
tA

(
m
2

∑N
j=1 ẋ2

j (t )− 1
2
∑

j ̸=l V (x j (t ),xl (t ))
)
d t

(11)

Some things changed compared to the one-particle case.
For one, we now have A = (x1,A, x2,A, ..., xN ,A, tA), and likewise for B . After all, each particle j
has some distinct starting position x j ,A at tA, and a final position x j ,B at tB .
Moreover, we have introduced a product over n to account for the N path integrals we now
have, with brackets introduced to clarify what is repeated. Rather than looking at all possible
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trajectories for one particle, the many-particle case considers the collective of all possible
configurations of N paths.
As one may imagine, the above is hardly practical for systems with particle numbers of the
order of Avogadro’s constant. Moreover, one is unlikely to have full knowledge of the initial
state of the system in such cases. One may then be interested in the probability of it ending
up in a particular set of final states. Luckily, the path integral here can be applied to statistical
mechanics, where the partition function corresponding to, e.g., the canonical ensemble, can
be represented in terms of one (Feynman and Hibbs, 1965, p. 273-279). We shall say slightly
more about this later, but this goes to show that the path integral does not lose its power
when confronted with many-particle systems of any size.

This all sounds rather favorable for the formulation. Yet, when introducing the question
as to whether it could handle many-particle systems, the answer provided was ’yes and no’.
This ’no’ part goes back to the problem at the core of the historical developments to be con-
sidered. The above generalization does not seem to incorporate any distinction between the
case of identical bosons and identical fermions. Yet, as we are well aware, these very much
exist. In fact, the many-particle kernel (11) only applies to bosons. Why this is the case, and
how this could be solved, is something we will come back to extensively later in this thesis.

The fourth question we consider is that of mathematical legitimacy. The path integral is not
your typical, well-defined object (Cartier and DeWitt-Morette, 2006, p. 3-7). For instance, the
set of paths with continuous derivatives seems to be of measure zero when we take into ac-
count all possible path, the process of which can be handily visualized in figure 2. Moreover,
the convergence of the path integral is far from obvious. As we shall see in the final subsec-
tion of this chapter, it has taken quite some effort to put the path integral on mathematically
firm ground. In fact, this is still not unambiguously the case across the board.
One problematic aspect of the path integral is the imaginary unit i . The oscillatory behavior
of the integrand due to the imaginary phase is more difficult to deal with than its real-valued
counterpart more alike the Wiener integral or the partition function in statistical mechanics.

Taking the Wiener integral as our example, we note that its integrand looks like e−∫ τB
τA

V (x[τ]dτ,
with V [x(τ)] an unspecified functional. Now consider our path integral phase (2), and note
that under a Wick rotation t = iτ, it will look exactly like the Wiener integral. After all, by
substituting d t = i dτ in the action integral, the imaginary unit will combine with the one
already in the phase to i 2 = 1. The Wick rotation is justified by analytic continuation. With-
out getting too much into the mathematical detail, one way to think about it would be to
set up a contour integral that includes the whole imaginary and real axis. By Cauchy’s inte-
gral theorem, the entire contour is zero, as well as contributions to the integral not on the
axes under the right conditions. One can then switch the integral to one over the complex
axis. More importantly, due to the Wick rotation, we have an integral over an exponential
with a negative exponent. Its convergence behavior in the limit of large numbers is then
much easier to establish. Another positive factor that will be more relevant in QFT, is that
the Minkowski metric d s2 = −d t 2 +d x2 will become Euclidean under a Wick rotation, as
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d s2 =−(i dτ)2 +d x2 = dτ2 +d x2, which is much easier to deal with. In conclusion, it is pos-
sible to work with the path integral in a Wick-rotated setting and then just rotate back at
the end. This has both mathematical advantages as well as laying bare the connection with
the Wiener integral and even statistical mechanics (Cartier and DeWitt-Morette, 2006, p. ,3-
4, 28-31, 362-363)(Feynman and Hibbs, 1965, p. 274).

A fifth and final question concerns the formulation’s consistency with classical behavior in
the classical limit. In other words, whether it adheres to the correspondence principle.
The ease of being able to verify this is usually considered one of the great strengths of the
path integral formulation. The argument goes as follows. Consider this rather qualitative
expression of the kernel:

K (A,B) ∝ ∑
paths

e
i
ħS[x(t )] (12)

That is, the kernel of a particle starting at one point and later being measured at another is
proportional to the sum of all paths between these points over the introduced exponential.
Let us consider this term for just a particular path C and, using Euler’s formula, we can also
write:

KC (A,B) ∝ cos

(
SC (A,B)

ħ
)
+ i sin

(
SC (A,B)

ħ
)

(13)

In other words, we can write the contribution of each path as a vector in the complex plane.
We know that, in SI-units, ħ = 1.054 · 10−34 J · s. We would also like to know the order of
magnitude of the action on the classical scale. Consider we drop a raisin of mass m = 1g
to the floor from a height h0 = 1m above it, neglecting friction. The fall starts at t = 0s and

logically ends at t =
√

2∆h
g . The height as a function of time is h(t ) = h0 − 1

2 g t 2 Its initial

velocity being zero, the raisin falls downward with a speed ḣ(t ) = g t . Its Lagrangian is thus
L = T −V = 1

2 mḣ2(t )−mg h(t ) = 1
2 mg 2t 2 −mg (h0 − 1

2 g t 2). Thus, we ultimately find that the
action of this raisin falling straight down to the ground is:

Sclr =
∫ √

2∆h
g

0

(
1

2
mg 2t 2 −mg

(
h0 − 1

2
g t 2

))
d t =−m

3

√
2g h3

0 ≈−1.476 ·10−3 J · s (14)

With Sclr being the ’classical raisin action’.
Unsurprisingly, the order of a classical action is much larger than that of ħ, meaning the ar-

gument of our periodic functions, i.e., the phase, will be of order
∣∣∣Sclr

ħ
∣∣∣ ∼ 1031 radians. The

fact that ħ is so much smaller than a typical value for the action on classical-like length and
energy scales has another effect. Suppose, that in the above example, the raisin does not
fall down in a straight line, but one with a slight curve. Perhaps we introduce a change
r⃗ (t ) = (0,0,h(t )) → r⃗ ′(t ) = (x(t ),0,h(t )), where x(t ) could be a very flat parabola. Let us
suppose this slight alteration of the path leads to a slightly different action S′

clr , such that
δS = S′

clr −Sclr ≈ 1.5 ·10−6 J · s, i.e, about one-thousandth of Sclr . Yet, the relative smallness
of ħ even compared to such a minute deviation of the path will result in an enormous phase
change of the order δS

ħ ∼ 1028 radians.
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When we zoom out to see the bigger picture of this exercise, we may note that the arrows
associated with the paths when represented in the complex plane point in wildly different di-
rections even when these paths are very close together with respect to classical length scales.
The practically random distribution of arrows makes it so that they sum up to zero3. This
is decisively not the case when the action is of the order of ħ or smaller. Concretely, when
S
ħ ∼ 1, small changes to S will shift the phase with only a fraction of a radian, and summing
the arrows corresponding to different paths need not result in zero so easily.

Currently, we are still missing one essential ingredient in our analysis of the sum over all
paths in classical-like settings. Namely, there is a particular path for which linear approxima-
tions to slight deviations from it will leave the action unchanged, so that they constructively
add up. These are the paths for which the action is stationary. From the classical principle of
stationary action, we know that classical particles always follow paths for which the action is
stationary. Therefore, it is the classical path xcl (t ) and paths very much near it that are the
only ones to effectively contribute to the sum over all paths. They do not cancel each other
out.
An elegant visualization of this process is the so-called Cornu spiral that can be seen in figure
3. To keep it orderly, it considers a situation wherein we have one wall with a large number of
slits. The possible paths from the ’start’ and ’end’ point are then shown at the bottom of the
figure. As was mentioned before, each of these paths corresponds to an arrow in the com-
plex plane. These arrows are displayed in the top figure, and the colors can be used to see
which arrows correspond to which paths. The length between the center of the two spirals is
proportional to the kernel. After all, it is the sum of all these arrow contributions that yields
the kernel. The important thing to notice is that when adding all these arrows to each other,
the non-classical paths are spiraling around a point and in this sense cancel each other out,
but the classical-like paths are putting in the work and adding up to contribute most to the
kernel. At least, that is true for the classical regime. The above exposition is usually taken to
the conclusion as an elegant demonstration of the correspondence principle. In Feynman’s
own words: "In this way the classical laws of motion arise from quantum laws." These classi-
cal laws can be derived from the principle of stationary action. This powerful principle had
been known for centuries, but why it worked was unclear. And here, the lower-level quan-
tum theory, formulated in terms of the path integral, is understood as the solution to this
riddle. Because, as we have seen, it is only when the action is stationary that corresponding
paths make significant contributions to the probability amplitude, and these corresponding
paths are for all practical purposes the classical path (Feynman, 1948, p. 377-378)(Feynman
and Hibbs, 1965, p. 29-31).

Nevertheless, I would argue that this view can be criticized. Certainly, one would be hard-
pressed to brush off the equivalence of this crucial condition on the action in classical physics

3While I have tried to sketch a more intuitive physical picture here, this argument has formal backing
through the application of the Riemann-Lebesgue lemma.
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Figure 3: The bottom part of the image shows the possible paths with which a particle can go through
a wall with many slits. Each path, being color-coded, corresponds through a complex arrow in the
upper part of the image. Since the length of the sum of all arrows is proportional to the kernel, the
near-classical paths can be seen to dominate in the classical regime (David, 2013).
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and the action emerging from the path integral formulation in the classical regime as mere
coincidence. Yet, it is not clear why the latter case should be logically connected to the for-
mer. When considering the classical regime whereby v ≪ c, the predictive scheme of special
relativity impeccably coincides with that of classical physics. But when we look at the predic-
tive scheme of the path integral formulation, we do not find this to be the case. Its postulates
tell us that the modulus squared of the sum over all paths is equal to the probability that a
particle being at xA at tA will later at time tB be found at xB . It is true that in the classical
regime, the classical-like paths contribute most to this probability. But it is still a probabil-
ity. The conclusion that classically, action must be stationary, and the path associated with
that must be taken by a particle, conflates contributions to a probability sum with what is
physically real. It was mentioned before that the formalism ascribes no physical reality to
the paths that are summed over. After all, many paths are highly unphysical, going to An-
dromeda and back in one increment of time ϵ. In that case, it is unclear why physical reality
should be ascribed to another path that just happens to contribute more due to not being
cancelled by its neighboring ones.
It might aid understanding to accentuate in what situation the correspondence argument
would make sense. This would be the case where the paths themselves each carry a probabil-
ity of occurring, and that as h → 0 we find P (xcl ) → 1. Yet, the postulates of the path integral
formulation do not state this. The paths are not probabilities themselves, but they are equal
contributions to a sum, that sum itself being related to the probability that a physically real
particle can be found somewhere.
In conclusion, even though the value for the action whereby it is stationary is precisely the
one that both stands at the basis of the classical principle of stationary action and dominates
the contributions to the kernel in the classical regime, the postulates of the path integral for-
mulation do not themselves provide the bridge with which this co-occurrence can be under-
stood.

This concludes our discussion of the fundamentals of the path integral formulation of quan-
tum mechanics. While this may have led to greater conceptual understanding thereof, it is
not at all evident how this formulation is equivalent to that of quantum mechanics as one is
usually introduced to it, nor is it clear how a complicated formula such as the full formula
for the kernel resulting from discrete lattice regularization can be used in practice. The goal
of the next two subchapters is, therefore, to gain insight into these respective issues.

2.2 Bridging the gap to the Schrödinger equation

Feynman himself was once quoted to have said that

"Every theoretical physicist who is any good knows six or seven different theoretical
representations for exactly the same physics."
(Feynman, 1965, p. 168)

It is known that, for example wave and matrix mechanics, have different strengths and weak-
nesses when tackling problems, supporting his case. I would argue, however, that explicit
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understanding of the bridges between these representations is an essential part of this en-
deavour too, for it can reveal surprising translations and spark new tricks and insight. This
will become evident in our attempt to connect the path integral to the more familiar formula-
tion of quantum mechanics for a particle moving in a potential, and also help to understand
steps that authors in chapter 4 are taking. We consider the one-particle system as it will con-
vey to us everything of interest without needlessly complex bookkeeping, since the extension
to many particles is straightforward in principle. We will mainly focus on the accessible wave
mechanics of Schrödinger and show that the equation carrying his name, central to this for-
mulation, can be linked to the path integral formulation. Proving the equivalence of the two
requires us to show that the postulates of each are capable of producing the other. After all,
if formulation A could successfully reproduce formulation B, but not the other way around,
this would indicate not equivalence but rather that B is only a subset of A, i.e., A contains
more information than B. In this subchapter, we will therefore take both routes. We will start
by showing that the Schrödinger equation follows from the path integral. The wave function
being its essential ingredient, this requires us to express it in our new language. After this, it
will be shown how the path integral can also be constructed starting from the Schrödinger
equation. Finally, we will focus on an especially important insight we gain from this, namely
an alternative way of presenting the path integral.

2.2.1 Walking the path to the wave

Before the derivation can be displayed, it is first necessary to understand how the path in-
tegral can represent events occurring in succession. It may, for example, be the case that
after the paths starting at position xA at the time tA converge at the the position xB at time
tB , they go on to a further position xC at the later time tC . The total particle kernel we are
now interested in is K (xA, tA, xC , tC ), or, more conveniently as expressed in the notation in-
troduced before, K (A,C ). Since we know from equation (4) that the action can be expressed
as a sum of contributions of the action between points on the total path, we can infer that
S[A,C ] = S[A,B ]+S[B ,C ]. Then by definition of the path integral (3) and by the general alge-
braic properties of an exponential, we are led to believe the following (untrue!) statement:

K (A,C ) =
∫ C

A
e

i
h (S[A,B ]+S[B ,C ])Dx(t ) =

(∫ B

A
e

i
h S[A,B ]DxA→B (t )

)(∫ C

B
e

i
h S[B ,C ]DxB→C (t )

)
(15)

Here, the sum over all paths Dx(t ) has been split up in the part of a sum over all paths from
A to B , i.e., DxA→B (t ), and likewise from B to C . Note that with regards to the sum over all
paths from xA to xB , the action term S[B ,C ] is constant. Therefore, the first term above will
by definition produce the kernel K (A,B). The same goes for the sum over all paths form xB

to xC , where S[A,B ] is constant and the result is the kernel K (B ,C ).
The one key thing to keep in mind is that since xB is the end point of the former kernel and
the starting point of the latter, there will be no integral over the integration variable d xB

when performing the discrete lattice regularization method to calculate these kernels. Yet, if
we desire to know the kernel K (A,C ), we must consider all paths, and it follows that we must

25



also take all possible values of xB into account4. This what the above expression was missing
and why it was wrong. Therefore, we arrive at the following correct expression (Feynman
and Hibbs, 1965, p. 36-38):

K (A,C ) =
∫ ∞

−∞
K (A,B)K (B ,C )d xB (16)

The essential takeaway here is that we must multiply the amplitudes for events following
one another in time. We could, in principle, even keep adding an arbitrary number of fur-
ther points after xC . When the time interval between these points is infinitesimal, one will,
in line with expectations, recover formula (7). After all, it will result into a product of kernels
K (x j , t j , x j+1, t j +ϵ), each proportional to a single term in the sum of the exponential in (7).

With this knowledge, we can now connect the wave function ψ(x, t ) to the path integral for-
mulation. This derivation is based on the one from Feynman and Hibbs, although it is done
in a much more extensive way (Feynman and Hibbs, 1965, p. 76-78). It also contains some
corrections of small mistakes therein.
One observation provides the key as to how this connection is to be made. We have learned
that |K (x ′, t ′, x, t )|2 is the probability that a particle starting from the configuration (x ′, t ′)
will later be found in (x, t ). From ordinary wave mechanics, we also know that |ψ(x, t )|2 is
the probability that a particle will be found in (x, t ). The difference between the two, then,
seems to be that the history of a particle’s motion is irrelevant for the wave function, while
specified for the kernel. The wave function can then be understood as a kernel in the case
where it is of no interest where a particle came from. While deeming this characterization
sufficient in the 1965 book, he goes on to give a direct expression for it in the 1948 paper. The
expression is as follows:

ψ(x j , t j ) = lim
ϵ→0

1

C (ϵ)

j−1∏
k=−∞

∫ ∞

−∞
e

i
ħ

∑ j−1
i=−∞ S(xi+1,xI ) d xk

C (ϵ)
(17)

Where we can rename the j th term (x j , t j ) as (x, t ).
The above is basically just the particle kernel (7) starting from some arbitrary position that
we will call x−∞ an ’infinite’ time ago, summed over all paths to arrive at a time t , e.g.,
the present, at a position x. Therefore, we can conclude that ψ(x, t ) = K (xk=−∞, tk=−∞ =
−∞, x, t ).
It is understandable why Feynman opted to drop the above direct expression in the 1965

4One may wonder, with regard to our earlier convention, why this integral over d xB would not also come
with a constant C−1(ϵ). For this, consider the kernel expression resulting from discrete lattice regularization
as expressed in (7). Note that other than the constant C−1(ϵ) being attached to each d xk , there is also a factor
C−1(ϵ) in front of the whole expression. This means that when we express the kernel K (A,C ) as a product of
K (A,B) and K (B ,C ), both of these two kernels will introduce this front-factor. This means that we would have
one more than when just directly calculating K (A,C ) according to (7). Yet, this excess C−1(ϵ) is compensated by
the integral over d xB not carrying this constant. Therefore, the accounting of the constants in the convention
as introduced before works out, and the expression for K (A,C ) below is correct.
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book. Any path integral will still need the input of an initial position and the notion of ’an
infinite time ago’ is not necessary to define the wave function, and thus may serve to confuse
readers. It suffices to just say that ψ(x, t ) = K (x ′t ′, x, t ), where we can use the wave function
if we do not care about the particle under consideration coming from (x ′t ′).
One may ask if this is not a problem. After all, the initial configuration (x ′, t ′) will affect
the expression for the wave function. Therefore, if I want to write down the wave function
of a quantum system from the path integral, how do I know what initial configuration to
use? This is, in fact, equivalent to the initial condition problem also present in wave me-
chanics. Consider for example the general solution of the Schrödinger equation in the time-

independent case, ψ(x, t ) = e− i E(t−t ′)
ħ ψ(x, t ′). To calculate the wave function at later times,

one still needs to be handed data on an initial state ψ(x, t ′). To calculate the kernel from one
state to a later one, one also needs to be handed data on an initial state (x ′, t ′).

Having identified the wave function with a kernel whose initial state is irrelevant, and know-
ing about the multiplicative property of kernels (16), we can conclude the following:

ψ(x, t ) =
∫ ∞

−∞
K (x ′, t ′, x, t )ψ(x ′, t ′)d x ′ (18)

Reminiscent of unitary operators in the familiar quantum mechanical formulations, we can
say that the integral kernel carries the wave function at an initial state (x ′, t ′) to a later state
(x, t ). This expression will finally allow us to derive the Schrödinger equation from the path
integral formulation. In a way, it is unsurprising that this puts us on the right path. Given an
initial state, the Schrödinger equation tells us how it will evolve over time. The above integral
does essentially the same.

Suppose the initial wave function of a quantum system is given to be ψ(y, t ). We are in-
terested in the wave function at an infinitesimal time ϵ later, i.e., ψ(x, t + ϵ). In this case, the
kernel carrying the one to the other is easy to identify, namely:

K (y, t , x, t +ϵ) = 1

C (ϵ)
e

i
ħ ϵL

(
x−y
ϵ , x+y

2 ,t+ ϵ
2

)
(19)

The above kernel is a special case whereby the initial and final state are separated only by a
single infinitesimal increment of time ϵ. The means that there are no intermediary d xk to in-
tegrate over, since we go immediately from initial to final state, themselves never integrated
over due to them being fixed. There is ’no path’ in this path integral, so to say. This kernel is
related to just one term in the action sum, which can be seen seen above. The arguments of
the Lagrangian are simply a consequence of entering the initial and final state in the current
case into the expressions given for the Lagrangian arguments in formula (7). Note that for
the final time-dependence argument, here ti+1 = t + ϵ and ti = t , such that ti+1+ti

2 = t + ϵ
2 .

Entering all this in formula (18) yields:

ψ(x, t +ϵ) = 1

C (ϵ)

∫ ∞

−∞
e

i
ħ ϵL

(
x−y
ϵ , x+y

2 ,t+ ϵ
2

)
ψ(y, t )d y (20)
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As postulate II informs us, we now enter the classical Lagrangian for a particle with mass m
in motion in the presence of a potential field. Using the coordinates as defined above, this
gives us the following expression:

L = m(x − y)2

2ϵ2
−V

(x + y

2
, t + ϵ

2

)
(21)

Splitting the exponential into two parts corresponding to the kinetic and potential terms, the
expression of the wave function becomes:

ψ(x, t +ϵ) = 1

C (ϵ)

∫ ∞

−∞
e

i m(x−y)2

2ħϵ e
− i

ħ ϵV
(

x+y
2 ,t+ ϵ

2

)
ψ(y, t )d y (22)

From here on out, a trick can be used the logic of which is reminiscent of that employed in
the discussion on the classical limit at the end of chapter 4.1. Note that the denominator of
the quotient in the kinetic exponential contains the infinitesimal interval ϵ. This means that
unless x − y is close to zero, the terms will, given the smooth behavior of the other terms,
oscillate rapidly. As a result, the positive and negative contributions to the integral in the
domain where x − y is not close to zero will cancel one another.
This observation motivates the substitution y = x + ξ. Since this entails that y − x = ξ, we
expect that only when ξ is small do we see major contributions to the integral5. The resulting
expression becomes:

ψ(x, t +ϵ) = 1

C (ϵ)

∫ ∞

−∞
e

i mξ2

2ħϵ e
− i

ħ ϵV
(
x+ ξ

2 ,t+ ϵ
2

)
ψ(x +ξ, t )dξ (23)

The smallness of ξ (and ϵ) allows us to think about expanding the various terms in the equa-
tion. Although we may wonder up to what order we should go. By the previous logic, we
know that the significant contributions to the integral will be found when ξ is small, specifi-
cally of the order where ξ2 = 2ħϵ

m . After all, when ξ is around this value, i.e., when the exponent
is of order 1, significant contributions can be expected. Consequently, ϵ∝ ξ2, and thus when
expanding to the first order in ϵ we should do so to the second order in ξ. Since ϵ is infinites-
imally small, we need not go further than the first order when expanding with respect to this
parameter.

There are now two functions to consider in the integral, namelyψ(x+ξ, t ) and V
(
x + ξ

2 , t + ϵ
2

)
.

Starting by expanding the former around x, we find:

ψ(x +ξ, t ) =ψ(x, t )+ξ∂ψ(x, t )

∂x
+ 1

2
ξ2∂

2ψ(x, t )

∂x2
+O (ξ3) (24)

As for the potential, note that we can switch V
(
x + ξ

2 , t + ϵ
2

)
for simply V (x, t )+O (ϵ,ξ). This

is true because we need not expand further than the first order in ϵ, and since there is an

5Since the term that appears in the kinetic exponential is x − y , one may wonder why we do not substitute
x − y = ξ instead. For one, since the term appearing in the exponential is squared, it will result in ξ2 either way.
But the added convenience lies in the fact that no minus sign will be produced when changing the variable of
integration from d y to dξ.
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ϵ in front of the potential term in the exponential, the zeroth order approximation V (x, t )
is already of order one in ϵ. This also holds for a first order expansion yielding a ξ term, as
ξϵ∝ ϵ3/2, of greater order than 1, and thus the highest order next term. Thus, we can expand
the exponential itself and find the following:

e
− i

ħ ϵV
(
x+ ξ

2 ,t+ ϵ
2

)
= 1− i

ħϵV (x, t )+O (ξϵ) (25)

Putting this together yields:

ψ(x, t+ϵ) = 1

C (ϵ)

∫ ∞

−∞
e

i mξ2

2ħϵ
(
1− i

ħϵV (x, t )+O (ξϵ)

)(
ψ(x, t )+ξ∂ψ(x, t )

∂x
+ 1

2
ξ2∂

2ψ(x, t )

∂x2
+O (ξ3)

)
dξ

(26)

Note that this will require us to take a number of integrals of the particular form
∫ ∞
−∞ξne

i mξ2

2ħϵ dξ,
which reminds us of the well-known Gaussian standard integral:∫ ∞

−∞
e−ax2

d x =
√
π

a
(27)

Here, a is a constant for which ℜ(a) > 0.
A useful corollary of this standard integral appears when we differentiate both sides of it with
respect to a. When we do so, we find:∫ ∞

−∞
x2e−ax2

d x =
√

π

4a3
(28)

Lastly, we also note the following: ∫ ∞

−∞
x2n+1e−ax2

d x = 0 (29)

With n ∈N, such that all Gaussian integrals with uneven powers of x in front of the exponen-
tial are zero. This is true because x2n+1 is an odd function while e−ax2

is even, so that the
total is odd and the integral vanishes since the lower boundary is the negative of the upper
one.

Notice that in our case, we find that e
i mξ2

2ħϵ = e−aξ2
if a = m

2iħϵ , where we have conveniently
used that i =−i−1. We can now calculate our integrals. We multiply the terms in the brack-
ets, pull out the factors without ξ-dependence and provide the results one by one below:

ψ(x, t )
∫ ∞

−∞
e− m

2iħϵξ
2
dξ=

√
2πiħϵ

m
ψ(x, t ) (30)

∂ψ(x, t )

∂x

∫ ∞

−∞
ξe− m

2iħϵξ
2
dξ= 0 (31)

1

2

∂2ψ(x, t )

∂x2

∫ ∞

−∞
ξ2e− m

2iħϵξ
2
dξ= iħϵ

2m

√
2πiħϵ

m

∂2ψ(x, t )

∂x2
(32)
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− iϵ

ħ V (x, t )ψ(x, t )
∫ ∞

−∞
e− m

2iħϵξ
2
dξ=− iϵ

ħ

√
2πiħϵ

m
V (x, t )ψ(x, t ) (33)

− iϵ

ħ V (x, t )
∂ψ(x, t )

∂x

∫ ∞

−∞
ξe− m

2iħϵξ
2
dξ= 0 (34)

Note that we ignore the combination − iϵ
2ħV (x, t )∂

2ψ(x,t )
∂x2

∫ ∞
−∞ξ2e− m

2iħϵξ
2
dξ, as we can infer that

it is of order O (ϵ2), and therefore discardable.
Further, some brief justification may be provided for ignoring the rest terms in our integral.
First, let us consider the multiplication of O (ξϵ) ∝ ξϵ with the terms in the second pair of

brackets of the integral. Note that only multiplication with the ξ∂ψ(x,t )
∂x and O (ξ3) ∝ ξ3 term

will not result in integrals uneven in ξ, i.e., they need not be zero. The first of these two can
also be discarded due to its order. We have, after all, seen using the third integral in our list
above that an integral with a factor ϵξ2 before the exponential produces a second order term
in ϵ. The same goes for the second of these cases, i.e., a Gaussian integral over ξϵ ·ξ3 in front
of the exponential. This results in a power a−5/2 on the right-hand side and thus an even
higher power of ϵ.
We reach similar conclusions when considering the multiplication of O (ξ3) with the terms
in the first pair of brackets. We have already commented on the pair O (ξ3)O (ξϵ), and the
earlier two terms in the left pair of brackets will result in an uneven power of ξ in front of the
exponential, i.e., integrating over these terms will yield zero.

Putting everything together now, we find the following:

ψ(x, t +ϵ) = 1

C (ϵ)

√
2πiħϵ

m
ψ(x, t )+ iħϵ

2m

√
2πiħϵ

m

∂2ψ(x, t )

∂x2
− iϵ

ħ

√
2πiħϵ

m
V (x, t )ψ(x, t )

 (35)

At this point, we must finally uncover the identity of C (ϵ). There are multiple ways to do
this throughout the literature, some surely more elegant than the following. Yet, it works just
fine. Suppose that at this point we were to take the limit as ϵ→ 0. In that case, the left-hand
side would just be ψ(x, t ), and we need the right-hand side to match this. The first term in

the brackets contains merely this function, and looks like 1
C (ϵ)

√
2πiħϵ

m ψ(x, t ). The only way to
prevent this term from going to zero in the limit, and make sure we just find ψ(x, t ) on the

right-hand side too, is to demand that 1
C (ϵ)

√
2πiħϵ

m = 1, i.e.,

C (ϵ) =
√

2πiħϵ
m

(36)

This does indeed contain a dependence on ϵ, as was already argued in section 4.1. The other
two terms in the brackets still vanish due to the ϵ factor in front of them, and we find that for
this constant the equation is still correct when the limit is taken.
While we will not prove so explicitly, it should be mentioned that in the case of more than
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one Euclidean dimension of space, we merely need to raise C (ϵ) to the number of dimen-
sions, i.e., C D (ϵ). A qualitative understanding of this can be gained by remembering formula
(9). Due to the independent way in which the sum over all paths can be performed in each

dimension, each will just spawn another
√

2πiħϵ
m which means that the just derived result for

C (ϵ) can be generalized straightforwardly.

Armed with this fact, we now find that:

ψ(x, t +ϵ) =ψ(x, t )+ iħϵ
2m

∂2ψ(x, t )

∂x2
− iϵ

ħ V (x, t )ψ(x, t ) (37)

Now let us first move the function ψ(x, t ) to the left-hand side. Subsequently, we multiply
both sides by iħ

ϵ . This yields:

iħψ(x, t +ϵ)−ψ(x, t )

ϵ
=− ħ2

2m

∂2ψ(x, t )

∂x2
+V (x, t )ψ(x, t ) (38)

Note that if at this point we finally take the limit as the small increment of time ϵ→ 0, the
left-hand side contains, by definition, the partial derivative with respect to the time-variable
of the wave function. With this, we have finally retrieved the Schrödinger equation:

iħ∂ψ(x, t )

∂t
=− ħ2

2m

∂2ψ(x, t )

∂x2
+V (x, t )ψ(x, t ) (39)

Therefore, we have proved that the path integral formulation contains Schrödinger’s wave
mechanics. But as was stated earlier, this bridging effort taught us more than just the this
fact. We have found how the wave function can be understood in terms of the kernel, how
the integral kernel (18) can be used to carry the particle wave function to a later time and
accompanying position, and what the identity of the constant C (ϵ) is.
The next step, then, is to prove that we can do this the other way around too.

2.2.2 Riding the wave to the path

For the derivation the other way around, I have had some aid in the form of lecture notes on
path integrals from a 2021 summer school, which I have extended upon and worked out in
detail myself (Rischke, 2021, p. 7-9). A starting point is that it is now much more convenient
to work with the Schrödinger picture in Dirac notation. In this language, the Schrödinger
equation takes the following form:

iħ d

d t
|ψ(t )〉 = Ĥ |ψ(t )〉 (40)

Where the Hamiltonian operator is defined as Ĥ = p̂2

2m +V (x̂), i.e., we consider a particle in
motion subjected to a potential. Note that the Hamiltonian here is independent of time.
One might on first thought consider this a problem, in the sense that if the subset of Hamilto-
nians that is time-independent can already reproduce the path integral, perhaps the Schrödinger
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picture as a whole, i.e., including time-dependent cases, contains more information than it.
This worry, however, has been taken care of by the previous part, since there we have already
shown the path integral to be able to produce the time-dependent Schrödinger equation with
Ĥ = Ĥ(x, t ). Thus, the use of Ĥ = Ĥ(x) entails no loss in generality.
The reason for using a time-independent Hamiltonian is that in this way, we can formulate
the quantum state by having the familiar time-evolution operator act on a prior state:

|ψ(t )〉 = e− i
ħ Ĥ(t−tA)|ψ(tA)〉 ≡ Û (tA, t )|ψ(tA)〉 (41)

The unitary time-evolution operator Û (tA, t ) carries the state |ψ〉 from a time tA to a later
time t . Although an exponentiated differential operator differs from an integral operator like
we saw in (18), this concept certainly reminds us of the path integral kernel. It may therefore
not be a surprise that the use Û (tA, t ) will be instrumental in the coming derivation.

Let us suppose that we want to carry the quantum state from an initial time tA to a final
time tB , i.e., we wish to find the operator Û (tA, tB ).
To start our journey to the path integral, we first require the use of the Trotter product for-
mula:

e A+B = lim
N→∞

(
e

A
N ·e

B
N

)N
(42)

Here, A and B are complex square matrices. The full proof of the formula shall not be given
here, but a very brief description is as follows. The formula contains basically two steps:
slicing up e A+B in an infinite product of smaller contributions, and going from a sum of ma-
trices in the exponential to a product of two exponentials, each with one matrix. Both steps
can be shown to be valid by using expansions. An example in the second case would be that
expanding e A+B would also yield cross terms B A, which is not the case when multiplying the
expansions of e A and eB individually. Yet, such as cross terms would be of the order N−2,
so when taking the limit the differences between the expressions caused by this disappear
and the formula is valid. In physics terms, the non-commutativity of Hermitian operators is
negligible in the limit where exponentials with extremely small arguments are multiplied.

We now apply the Trotter product formula to the expression of the unitary time-evolution
operator. In order to do this, we reintroduce the time-slicing procedure tB − tA = Nϵ with
ti+1 = ti +ϵ and where tA = t0 and tB = tN . This leads to:

e− i (tB−tA )
ħ Ĥ = lim

ϵ→0

N∏
i=1

(
e− iϵ

2ħm p̂2 ·e− iϵ
ħ V (x̂)

)
(43)

In other words, the limit of an infinite-entry product of N unitary operators (split into a
kinetic and potential one), each carrying the quantum state forward with an infinitesimal
time-increment ϵ, is equal to performing just one transformation from tA to tB . Again, by
definition of tB − tA = Nϵ, taking ϵ→ 0 simultaneously implies that N →∞.
The above result, however, deserves a little extra explanation, as it is not immediately obvi-
ous how it follows from the Trotter product formula. First of all, we write out Ĥ , such that
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we can separate our exponential into the product of two, each with a matrix as its exponent.
Secondly, ϵ∝ N−1, and we therefore also find matrices that are divided by a factor later taken
to infinity as exponents. Finally, since the time-slicing is done in equal portions ϵ and each
term k is the same due to the Hamiltonian being constant, there is no difference between

limN→∞
(
e

A
N

)N
and limN→∞

∏N
i=0 e

A
N in this case. Combining this with the aforementioned

equivalence of ϵ→ 0 and N →∞, we can see how the Trotter product formula leads us to the
above result.

We know that 43 is just the unitary time-evolution operator. Therefore, it can also be written
as follows:

Û (tA, tB ) =
N∏

i=1
Û (ti−1, ti ) = lim

ϵ→0

N∏
i=1

(
e− i (ti −ti−1)

2ħm p̂2 ·e− i (ti −ti−1)
ħ V (x̂)

)
(44)

We know from elementary quantum mechanics that if we specifically desire the amplitude
that carries the quantum state not only from a time tA to tB but also from the specific position
xA to xB , we are to take the inner product of it with the initial and final position, i.e.,

U (xA, tA, xB , tB ) = 〈xB |Û (tA, tB )|xA〉 (45)

This, we could abbreviate with U (A,B) like we did with the particle kernel when discussing
the path integral formulation. It may not be a surprise that we are interested in developing
this expression.
To kickstart this, however, one more trick will be needed beyond the identity already estab-
lished in (43). This is the use of the identity operator that follows from the completeness
relation of a Dirac orthonormalized continuous basis in position space:∫ ∞

−∞
|xi 〉〈xi |d xi = Î (46)

The quantum state could of course be expressed as any linear combination of this continu-
ous position basis.
At this point, we can combine all of the above ingredients in the following way. We are inter-
ested in the quantity (45), and will use it as a template for the expression below. For the time
evolution operator, we substitute (43). Then, before every term corresponding to a i -value in
(43), we insert the identity operator (46). This leads us to the following expression:

U (A,B) = 〈xB | lim
ϵ→0

∫ ∞

−∞
d x1 · · ·

∫ ∞

−∞
d xN−1

∫ ∞

−∞
d xN

(
|xN 〉〈xN |e− iϵ

2ħm p̂2 ·e− iϵ
ħ V (x̂)

)
(47)

(
|xN−1〉〈xN−1|e− iϵ

2ħm p̂2 ·e− iϵ
ħ V (x̂)

)
· · ·

(
|x1〉〈x1|e− iϵ

2ħm p̂2 ·e− iϵ
ħ V (x̂)

)
|xA〉 (48)

The brackets show unitary operator terms where each time the identity operator has been
inserted before these.
When we now expand e− iϵ

ħ V (x̂), we see that the position operator will act on some position
eigenstate |xα〉 in the next pair of brackets. This will simply produce the corresponding
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eigenvalue xα. Therefore, we can substitute V (x̂) → V (xα) with α whatever label matches
the one of the ket in front of it. Since it then just becomes a number, we move the potential
exponentials to the left of the kinetic ones.

Still, it is not immediately clear how such integrals can be solved, at least not in the current
position basis. The kinetic exponential in the inner product would have to be expanded, with
momentum operators acting on |xi 〉. Luckily, there is a far easier procedure, which allows us
to make use of the simply fact that having the momentum operator act on a momentum ba-
sis vector will simply return us the momentum eigenvalue, i.e., p̂|pα〉 = pα|pα〉. This is just
the momentum version of the argument just used to substitute V (x̂) =V (xα).
To utilize this fact, this time we will use the identity operator following from the complete-
ness relation of Dirac orthonormalized basis vectors in momentum space:∫ ∞

−∞
|pi 〉〈pi |d pi = Î (49)

Again, we will insert this identity operator into our expression, this time right after every

kinetic exponential e− iϵ
2ħm p̂2

. Expanding the kinetic exponential will make the momentum
operators act on momentum kets, returning the respective eigenvalues. The effect on our
expression is as follows:

U (A,B) = 〈xB | lim
ϵ→0

∫ ∞

−∞
d x1···

∫ ∞

−∞
d xN

∫ ∞

−∞
d p1···

∫ ∞

−∞
d pN

(
|xN 〉〈xN |e− iϵ

ħ V (xN−1) ·e− iϵ
2ħm p2

N |pN 〉〈pN |
)

(50)
· · ·

(
|x1〉〈x1|e− iϵ

ħ V (xA) ·e− iϵ
2ħm p2

1 |p1〉〈p1|
)
|xA〉 (51)

Again, every term has been put into brackets for clarity. Note that every bra 〈pi | at the end of
a term forms an inner product with the subsequent ket |xi−1〉 of the next.
So while there is a structure to it, the above nevertheless looks rather messy. Luckily, we can
clean it up using the product operator:

U (A,B) = 〈xB | lim
ϵ→0

N∏
i=1

(∫ ∞

−∞
d xi

∫ ∞

−∞
d pi e− iϵ

ħ V (xi−1) ·e− iϵ
2ħm p2

i |xi 〉〈xi |pi 〉〈pi |
)
|xA〉 (52)

Here, everything within the brackets ought to be repeated for all i -values. One can check
that it reproduces the written-out version exactly. Note that by the above arguments, the x’s
and p’s in the exponentials have now lost their hats by respectively acting on the position
and momentum kets on their right. Because of that, they have now been removed from the
inner products.

Having rid ourselves of operators and being left with familiar recognizable inner products,
we can now proceed. Standard quantum mechanics tell us that6:

〈xi |pi 〉 = 1p
2πħ

e
i
ħ xi pi (53)

6This identity can actually also be proved using the completeness relations.
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And since 〈ψ|φ〉 = 〈φ|ψ〉∗, it follows that:

〈pi |xi−1〉 = 1p
2πħ

e
−i
ħ xi−1pi (54)

The first of these two inner products can be found in every i -term in U (A,B) above. How-
ever, when we consider the second of these, we note that it is always a combination of the
momentum bra at the end of any term i , and the position ket at the beginning of every sub-
sequent term i − 1. This is unproblematic in general, except for the term i = 1 and i = N
which, respectively, have a momentum bra 〈p1| without a ket and a position ket |xN 〉 with-
out a bra. This is where the 〈xB | all the way on the left and the |xA〉 all the way on the right
come in. These ’latch on’ to, respectively, our braless position ket and our ketless momen-
tum bra. One of the inner products this generates is quite trivial, the other is somewhat more
subtle. Let us start with the latter.
For the case 〈xB |xN 〉, we are dealing with the inner product of two orthonormal basis vectors.
Specifically, they are both of the position basis, the only inner product with this property in
the entire expression. Logically, we know that 〈xB |xN 〉 = δ(xB −xN ). Since there is an integral
over d xN in our product, this subsequently entails

∫ ∞
−∞ f (xN )δ(xB − xN ) = f (xB ). Therefore,

if we just substitute xN = xB where it appears, something we already knew anyway, we can
now remove the integral over d xN from our sum. Thanks to the delta function, it was easy to
perform.
The more straightforward inner product we find is 〈p1|xA〉. We know that (or could also just
define that) xA = x0, and therefore we find 〈p1|x0〉, which is just the i = 1 case for the inner
product 〈pi |xi−1〉 given above.

Therefore, in the end we get:

U (A,B) = lim
ϵ→0

N−1∏
k=1

(∫ ∞

−∞
d xk

) N∏
i=1

(∫ ∞

−∞
1

2πħe− iϵ
2ħm p2

i + i
ħ (xi−xi−1)pi ·e− iϵ

ħ V (xi−1)d pi

)
(55)

Some changes have appeared. Firstly, we now have two product operators, with brackets
demarcating what they act on. This is the case because the position integral corresponding
to the N -th term, over d xN , has now been performed. Therefore, the position integrals now
only go up to N −1. For this reason, these now have their own product operator. The ’origi-
nal’ product operator from i = 1 to i = N still acts on the rest.
Moreover, the results of the inner products have now been added to the kinetic exponential,
since these all have dependencies on momentum. Finally, due to the (2πħ)−1/2 factor from
each of the two inner products from all i , this product operator now also repeats the con-
stant (2πħ)−1 for all i .

We now turn our attention to just the momentum integrals. We ignore the potential expo-
nentials for a moment, as they have no momentum-dependence. These momentum inte-
grals look very much like the Gaussian integral (27) we saw in the previous derivation too7.

7Technically, this integral is valid only when ℜ(b) ≥ 0, and ℜ(a) > 0. Yet, our integral has complex coeffi-
cients. We require some modifications that one can come too using complex analysis and Fresnel integrals.
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The difference is that this one is slightly more general, also containing a linear term:∫ ∞

−∞
e−ax2+bxd x =

√
π

a
e

b2

4a (57)

Looking back at our integrals of interest (55), this means that we can identify a = iϵ
2ħm and

b = i
ħxi −xi−1. Considering a single momentum integral in (55), we then find:∫ ∞

−∞
1

2πħe− iϵ
2ħm p2

i + i
ħ (xi−xi−1)pi d pi =

√
m

2πiħϵe
i m
2ħϵ (xi−xi−1)2

(58)

Multiplying the exponential on the right-hand side with the potential exponential, and re-
alizing that the result is subject to the product operator

∏N
i=1 as we can see in (55), we can

draw the following conclusion:

N∏
i=1

(√
m

2πiħϵe
i m
2ħϵ (xi−xi−1)2− iϵ

ħ V (xi−1)
)
=

( m

2πiħϵ
) N

2
e

∑N
i=1

(
i m
2ħϵ (xi−xi−1)2− iϵ

ħ V (xi−1)
)

(59)

Where, thanks due the general multiplicative property of exponentials, we have turned the
product of exponentials into a sum in the exponent.
As for the constant, we can immediately make one observation, namely that we can detect
(36) in here. Both ways of the equivalence proof allow one to discover the identity of C (ϵ).
Since there were N momentum integrals, we have found that C (ϵ) is now raised to the power
of -N . Since we are working towards the path integral we might as well adopt the notation
C (ϵ) in a similar way as it was introduced there, and instead of C−N (ϵ), write one factor 1

C (ϵ)
for each value of k in the product found in (55). Considering our bookkeeping, we should
remember, however, that there is one more factor 1

C (ϵ) than there are integrals over d xk (N
terms against N −1 terms). We put the one ’excess’ factor in the front.

Now substituting all of the above results back into (55), we find for the matrix element of
the time-evolution operator that:

U (A,B) = lim
ϵ→0

1

C (ϵ)

N−1∏
k=1

∫ ∞

−∞
e

∑N
i=1

(
i m
2ħϵ (xi−xi−1)2− iϵ

ħ V (xi−1)
)

d xk

C (ϵ)
(60)

And with this, the path integral really starts to show itself. For the finishing touch, we let the
sum in the exponent start at i = 0 and end at i = N −1 instead, so that we should substitute
i → i + 1 for the subscripts of the terms in the exponent. One final move then will be to

The result, however, ends up being the same as if we just take the Gaussian integral and substitute a → i a and
b → i b, namely: ∫ ∞

−∞
e−i ax2+i bx d x =

√
π

i a
e

i b2
4a (56)

Here a,b ∈R.

36



rearrange the terms in the sum so that we recover the phase S/ħ. For this, we just remove iϵ
ħ

from the brackets in the sum, which gives us:

i

ħϵ
(

1

2
m

(xi+1 −xi

ϵ

)2
−V (xi )

)
= i

ħϵL
(xi+1 −xi

ϵ
, xi

)
(61)

Thus, we have found the Lagrangian for an infinitesimal time-displacement. Of course,
we could just replace its second argument xi → xi+1+xi

2 , so that it looks exactly like the La-
grangian we were introduced to. Since we eventually take the limit ϵ→ 0, this is fine, as we
argued back then that the difference between the two will disappear in that limit.
Incorporating these last little changes, we have:

U (A,B) = lim
ϵ→0

1

C (ϵ)

N−1∏
k=1

∫ ∞

−∞
e

∑N−1
i=0

i
ħ ϵL

(
xi+1−xi

ϵ ,
xi+1+xi

2

)
d xk

C (ϵ)
(62)

And on the right-hand side we have recovered (7) exactly8.
This means that the matrix element of the time-evolution operator U (A,B) in the language
of the Schrödinger picture in Dirac notation is equivalent to the kernel K (A,B) in the way it
was defined by Feynman9. Formally:

〈xB |Û (tA, tB )|xA〉 ≡ K (xA, tA, xB , tB ) (63)

Finally, we could multiply the Lagrangian with ϵ. Taking it to zero will recover the action
functional S[x(t )], such that we also recover the more general (3):

K (A,B) =
∫ B

A
e

i
h S[x(t )]Dx(t ) (64)

This concludes the second direction of our proof. With this, it has been shown that the
path integral formulation of quantum mechanics is indeed equivalent to the more famil-
iar Schrödinger formulation for a particle moving in a potential. As was the case when going
from the path integral to the Schrödinger equation, this derivation also provides us with
more things of interest than just result of the proof itself. For one, we found the relationship
between U (A,B) and K (A,B), we used new mathematical tricks, and most of all, we discov-
ered a new way of formulating the path integral. This last point, however, will certainly need
some elaboration, which we will provide in the next part.

2.2.3 The phase space representation of the path integral

In chapter 4.1, we discussed how besides the coordinate space path integral over Dx(t ) we
have occupied ourselves with so far, it is also possible to adopt a phase space representation

8Except for the minor difference resulting from assuming a time-independent Hamiltonian at the beginning
of our derivation, the consequence of which is that the Lagrangian is now also time-independent.

9The kernel is often understood as specifically an integral operator as opposed to an exponentiated differ-
ential one, but it was shown through the derivation of (18) how this all connects.
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in which we also sum over all momenta, i.e., there is also Dp(t ). This is important, since the
phase space representation will provide a natural bridge to the path integral formulation of
quantum field theory.
Still, one may wonder about the claim that we supposedly already discovered this. The key
lies in equation (55). Here, rather than calculating the N momentum integrals, we leave
them be and just create one big exponential. This leaves us with:

K (A,B) = lim
ϵ→0

N−1∏
k=1

N∏
i=1

∫ ∞

−∞

∫ ∞

−∞
e− iϵ

2ħm p2
i + i

ħ (xi−xi−1)pi− iϵ
ħ V (xi−1) d pi

2πħd xk (65)

Where some things have been rearranged for convenience. Just like how in the coordinate
space representation we wrote d xk

C (ϵ) , we now place the 2πħ factors beneath the d pi ’s. More-
over, U (A,B) has been replaced by K (A,B) since we already discovered their equivalence
anyway and we are now focused more so on extending our understanding of the path inte-
gral than on the Schrödinger picture.
Now, we will do some small manipulations of the exponent:

− iϵ

2ħm
p2

i +
i

ħ (xi −xi−1)pi − iϵ

ħ V (xi−1) = i

ħϵ
(

xi −xi−1

ϵ
pi −

(
p2

i

2m
+V (xi )

))
(66)

One may already recognize some familiar expression in the brackets, which also explains the
bracket placement. We will return to this point shortly.
One might also notice that we substituted V (xi−1) → V (xi ). As has been mentioned before,
in the limit as ϵ→ 0, it does in this case not matter10 whether we take as the argument xi ,
xi−1, xi+1+xi

2 , or even 3xi−1+xi
4 . In this case, V (xi ) is, however, the nicer choice.

Just like we did before, we can in principle multiply all of the exponentials together from
i = 1 up and including i = N , and as a result have a sum in our exponent. This time, however,
we are not doing the integrals over the momenta, so the product over the i ’s still remains for

the
∫ ∞
−∞

d pi
2πħ terms. Therefore, we use a new subscript j for the sum. We get:

K (A,B) = lim
ϵ→0

N−1∏
k=1

N∏
i=1

∫ ∞

−∞

∫ ∞

−∞
e

∑N
j=1

i
ħ ϵ

(
x j −x j−1

ϵ p j−
(

p2
j

2m +V (x j )

))
d pi

2πħd xk (67)

10The reality is a little more complicated. In fact, these different possibilities give rise to the path integral
version of the so-called ’ordering problem’. Let us consider how it manifests in the operator formalism. A
term like xp in the classical Hamiltonian can be written as either xp or px yet it is still the same Hamiltonian,
but due to the canonical commutation relations in the operator formulation of QM, this does not fly there:
x̂ p̂ ̸= p̂ x̂. This leads to the question how one quantizes a Hamiltonian operator with such products, if the same
Hamiltonian classically would lead to different quantum Hamiltonians. In the path integral, the same problem
manifests in a different way. Currently, we changed from H(pi , xi−1) to H(pi , xi ). This difference becomes
relevant when working with interactions originating form coupling to gauge fields or in the presence of curvi-
linear spaces. Usually the Weyl quantization procedure or ’midpoint rule’, which averages the successive x-
coordinates, is applied. Note that we have already been applying this rule by insisting on the position argument
of the Lagrangian and Hamiltonian being xi+1−xi

2 many times before. In the current setting though, the ordering
problem does not show itself.

38



We now return to the identification of the exponential. First of all, given the limit ϵ → 0,
we identify

x j−x j−1

ϵ
= ẋ j by definition. Thus, we are left with the product of velocity and

momentum for each j -value. In the second pair of brackets, we find the sum of the classical
kinetic energy and the potential energy, i.e., the classical Hamiltonian:

K (A,B) = lim
ϵ→0

N−1∏
k=1

N∏
i=1

∫ ∞

−∞

∫ ∞

−∞
e

∑N
j=1

i
ħ ϵ(ẋ j p j−H(x j ,p j )) d pi

2πħd xk (68)

This is the phase space representation of (7).

Again, we can multiple ẋ j p j −H(x j , p j ) by the ϵ in front of it and eventually take ϵ→ 0. Thus,
we can again replace this by a functional integral over time, just as we did in the coordinate
space integral.
A final accompanying change, then, is to recognize that through the products of the integrals
of position and momenta from −∞ to +∞, we are doing a sum over all paths and, this time,
momenta too. Thus, we can reformulate our formula in terms of the general and briefer D

notation. We define: ∫ B

A
D′x(t ) ≡ lim

ϵ→0

N−1∏
k=1

∫ ∞

−∞
d xk (69)

∫ B

A
Dp(t ) ≡ lim

ϵ→0

N∏
i=1

∫ ∞

−∞
pk

2πħ (70)

Here, we note three important differences.
Firstly, note the apostrophe in D′x(t ). This is there for good reason, as in the phase space in-
tegral this term is different from the Dx(t ) one in coordinate space. After all, it does not come
with the constants C (ϵ) now, which originate precisely because in the coordinate space inte-
gral we do integrate away the momenta, leaving us with a constant. Here, it is Dp(t ) which
contains constants (2πħ)−1 when written out in its discrete lattice regularization.
Secondly, there is a further difference, namely that the sum over all momenta ends at i = N ,
while the sum over all paths ends at k = N − 1. Mathematically, we saw how this logically
came about. But there is a physical argument here too. The consequence of the i = N term
is integration over pN , which in prior notation we could also write as pB . We are thus not
free to choose a definite final momentum, i.e., we are not writing K (p A, xA, tA, pB , xB , tB ). In-
stead, by integrating d pB from −∞ to +∞, we consider all possible momenta for the system.
This is no surprise, as the simultaneous specification of both xB and pB entails a violation of
the uncertainty principle.
Lastly, we may wonder about the interpretation of the phase space kernel. In coordinate
space we calculate as if a particle takes all possible paths between two points, which we could
visualize in diagrams. Should we now consider the particle to take all possible paths, each
path having to be considered with all possible momenta that the particle could have travelled
along the path with? Perhaps we should speak of every possible path in phase space instead.
But since there is no end point for the momentum, what do these paths look like? And clas-
sically, a point in phase space represents a path, and a line therefore does not. Therefore,
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while mathematically just as solid, some of the conceptual clarity of the coordinate space
representation of the path integral is surely lost here.

Concluding, however, we can write the coordinate space representation of the path integral
as in (3):

K (A,B) =
∫ B

A
e

i
ħ

∫ tB
tA

L[ẋ(t ),x(t )]d t
Dx(t ) (71)

While the phase space representation of the path integral looks like this instead:

K (A,B) =
∫ B

A

∫ B

A
e

i
ħ

∫ tB
tA

[ẋ(t )p(t )−H [x(t ),p(t )]]d t
D′x(t )Dp(t ) (72)

The latter thus employs a Hamiltonian, replacing velocities by momenta.
For all of the above, extensions to more dimensions are straightforward, in line with what
was described in chapter 4.1.

The phase space representation of the path integral also has its counterpart in quantum field
theory, and as such it will return in some form there. For now, it is time to apply the path inte-
gral formulation to a concrete physical problem, to give an example of how one can actually
calculate these seemingly complicated integrals. This is the topic of the next subchapter.

2.3 Calculating path integrals

While its formulation can be said to contain a certain elegance, calculations with the path
integral are often rather laborious. While there are, especially in QFT, plenty of other advan-
tages we will speak of in later subchapters, computational ease is something that is found
more so in wave mechanics. Still, for now and later in this thesis, it is important to have
some understanding of the ways in one can concretely use the path integral to handle phys-
ical problems. In order to achieve this, this subchapter will derive the kernel for a specific
physical setting and discuss in general what and how physical systems can be analyzed by
use of the path integral. For the former, we will consider the free particle. This is a rare case
for which the path integral can be solved in a relatively straightforward matter, and without
the need for lengthy advanced methods or approximations. For the latter, we will primarily
discuss the application of perturbation theory to the path integral, an incredibly important
approximation method for dealing with small deviations in a potential, that is also the key to
the famous Feynman diagrams when used in QFT. While these two goals may seem remote,
the free particle solution will be seen to play a pivotal role in the application of perturbation
theory to the path integral.

2.3.1 The free particle

The following is, again, a derivation that is worked out further but is based on the treatment
of Feynman and Hibbs (Feynman and Hibbs, 1965, p. 42-43).
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The Lagrangian of a free particle is L = 1
2 mẋ2. Substituting this directly in formula (7) yields:

K (A,B) = lim
ϵ→0

1

C (ϵ)

N−1∏
k=1

∫ ∞

−∞
e

i m
2ħϵ

∑N−1
i=0 (xi+1−xi )2 d xk

C (ϵ)
(73)

Where from the previous subchapter we know that each C (ϵ) =
√

2πiħϵ
m .

The above still looks quite messy. In the following, we start by looking only at the term k = 1
and i = 0,1, i.e., the values of i that will lead to x1 terms in the exponential. After all, when
k = 1, we integrate over d x1. Lastly, we also drop the limit for later. We find the following
term:

m

2πiħϵ
∫ ∞

−∞
e

i m
2ħϵ ((x1−x0)2+(x2−x1)2)d x1 (74)

Where we have multiplied the constant in the front and the one associated with d x1.

In this way, the integral starts looking somewhat more manageable. When working out the
brackets and moving the exponentials independent of x1 out of the integral, we find:

m

2πiħϵe
i m
2ħϵ (x2

0+x2
2)

∫ ∞

−∞
e− m

iħϵ x2
1+ m

iħϵ (x0+x2)x1 d x1 (75)

Note that we made use of the identity i = −i−1 to change the signs of the two terms in the
exponential in the integral.
More importantly, however, the integrand was written in a format allowing us to use the
standard integral (57) introduced in the previous subchapter again. In our current case, a =
m

iħϵ and b = a(x0 +x2).
Using this identity to work out our integral equation, we eventually find the following term:√

m

2πiħ·2ϵ
e

i m
2ħ·2ϵ (x2−x0)2

(76)

Here, the explicit 2ϵ part rather than just putting a 4 at the beginning of the term might look
awkward, but will make more sense after the next step.
Since ultimately we need to multiply every one of the integrals over the d xk , and we have the
result from one of them now, we now multiply that result with the second integral term, i.e.,
the one over d x2. This will of course also come with another factor C−1(ϵ). In addition, we
also let this integral contain the entry of the exponential sum corresponding to i = 2, since
this includes another factor x2 that will have to be integrated over. The result is as follows:√

m

2πiħ·2ϵ
·
√

m

2πħϵ
∫ ∞

−∞
e

i m
2ħ·2ϵ (x2−x0)2 ·e

i m
2ħϵ (x3−x2)2

d x2 (77)

This expression, where we ’tacked on’ the k = 2 and i = 2 terms to our existing k = 1 and
i = 0,1 result, looks structurally very similar to the integral that followed from the k = 1 and
i = 0,1 terms. When writing it as we did in the case of the term (75), we find:

m

2
p

2πiħϵe
i m

2ħ·2ϵ (x2
0+2x2

3)
∫ ∞

−∞
e− 3m

4iħϵ x2
2+ m

2iħϵ (x0+2x3)x2 d x2 (78)
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Due to the extra factor of 2 in the denominator of the first exponential in the integral (77)
from our previous calculation, the coefficients are different this time. Nevertheless, the
form allows for the use of the standard integral (57) again, where this time a′ = 3m

4iħϵ and
b′ = 2

3 a′(x0 +2x3). When after using the standard integral, one carefully works out the new
constant and the brackets in the exponential, this results in the expression:√

m

2πiħ·3ϵ
e

i m
2ħ·3ϵ (x3−x0)2

(79)

This looks very similar to the previous result (76). The only changes are that x2, now having
been integrated over, is replaced by x3, and that the factors 2ϵ in the coefficient and expo-
nential have been replaced by 3ϵ. In fact, we notice a particular pattern:

1

C (ϵ)

p−1∏
k=1

∫ ∞

−∞
e

i m
2ħϵ

∑p−1
i=0 (xi+1−xi )2 d xk

C (ϵ)
=

√
m

2πiħ·pϵ
e

i m
2ħ·pϵ (xp−x0)2

(80)

We can prove that this is true for all p using induction. The base case has already been
verified, which leaves the induction step. Assuming that the above pattern holds for k = p−1,
we show that it holds for k = p too. We write:

1

C (ϵ)

(p+1)−1∏
k=1

∫ ∞

−∞
e

i m
2ħϵ

∑(p+1)−1
i=0 (xi+1−xi )2 d xk

C (ϵ)
(81)

We ’break off’ the k = p and i = p part of the product and sum. Since we assumed the truth of
our statement for the p−1 case, we can simply substitute according to equation (80). What is

left is the integral over d xp , the exponential corresponding to i = p and the C−1(ϵ) =
√

m
2πiħϵ

corresponding to the k = p term of the product. All together, we find:√
m

2πiħϵ ·
√

m

2πiħ·pϵ

∫ ∞

−∞
e

i m
2ħϵ (xp+1−xp )2 ·e

i m
2ħ·pϵ (xp−x0)2

d xp (82)

From here on, we proceed as before. We work out the brackets, use the standard integral
(57), use algebra to collect all terms neatly in both the exponential and the constant, and
when working this out we ultimately find:√

m

2πiħ· (p +1)ϵ
e

i m
2ħ·(p+1)ϵ (xp+1−x0)2

(83)

Which completes the induction step. Therefore, we have proven equation (80) by induction.
We can use this new relation to figure out what happens when p = N . What changes here, is
that twice a term Nϵ will appear. However, by definition this is equal to tB − tA. Similarly, we
know that x0 = xA and xN = xB . Formally, we still need to take the limit ϵ→ 0, but this will
not affect our final result. In summary, we find that the kernel of our free particle K f p is:

K f p (A,B) =
√

m

2πiħ(tB − tA)
e

i m(xB−xA )2

2ħ(tB−tA ) (84)
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One may recall from subchapter 4.1 that the generalization of this result to many dimensions
is quite straightforward. The constant, now a power of 1/2, simply needs to be replaced with
D/2, where D is the number of spatial dimensions.

To some, this way of presenting the free particle may not look all that familiar. After all, when
solving the one-dimensional Schrödinger equation directly for the V (x, t ) = 0 case, one finds:

ψ(x, t ) =Ce
i
ħ (px−Et ) (85)

With C an integration constant.
Moreover, our free particle result is clearly not normalizable. After all:∫ x2

x1

|K f p (0,0; x, t )|2d x = m

2πħt

∫ x2

x1

d x = m(x2 −x1)

2πħt
(86)

Here, we have a particle that starts at t = 0 at the origin so that A = (0,0), and we consider
the probability of it, after a time t , being found somewhere between x = x1 and x = x2, where
x1, x2 ∈R. Clearly, since the interval x2−x1 can be made arbitrarily large, the probability dis-
tribution is not normalized.

However, both observations, that of non-normalizability and of the unfamiliar form, can be
addressed without much difficulty. The former is actually not surprising, as we already know
that the free particle system is not normalizable in the usual way from wave mechanics. This
follows trivially from the free particle solution provided above, which leaves one with a prob-
ability density |C |2d x. The path integral just reproduces this known fact.
This then leads us to the question of form, as our free particle kernel and the above wave
function look rather different. In spite of looks, though, the two can be connected in a

straightforward manner. First, let us remember that we can substitute E = p2

2m . Moreover,
we know that the general solution of the free particle wave function is given as a linear com-
bination over all continuous momenta, i.e., we integrate the above wave function over d p
from −∞ to ∞. In the case where all momenta are taken as equally likely11, we simply end

up integrating e
i
ħ

(
px− p2

2m t

)
over all momenta. This is the Gaussian integral (57) again, and ac-

counting for the right constant, one can trivially show that we end up with K f p after this.

11This has the effect of getting rid of the p-dependent weighing factor one can expect in the integral. This
reminds us of our previous discussion of the phase space integral, where we also observed that the final mo-
mentum integral d pB was integrated over all possible values. This is no coincidence. Here above, we show
how the K f p expression we derived from coordinate space can obtained by performing the integral over all
momenta over the free particle wave function from the Schrödinger equation. But it can also be done the other
way around, meaning that the general solution of the free particle from the Schrödinger equation, including
the integral over momenta, can be retrieved from the path integral formulation. For this purpose, however, one
needs to start from the phase space representation. Here, one performs all the integrals over the d xk , result-
ing in δ-functions allowing one to determine the integrals over the d pi . However, as explored in the previous
subchapter, k goes from 1 to N −1 while i from 1 to N . This final integral over d pN ≡ d pB retrieves the general
solution one finds from wave mechanics.
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This, then, concludes our discussion of the free particle, having derived the result and ar-
guing its equivalence to the way one is more likely familiar with it. Yet, there are many more
cases for the path integral to be confronted by that do have a potential energy term in the
Lagrangian. For many, we require the use of perturbation theory. We cover this in the next
part.

2.3.2 Perturbation theory and the path integral

Since we have established the equivalence between the Schrödinger equation and the path
integral, it is to be expected that both are able to solve the same few cases analytically, while
for many others requiring perturbation theory. Before getting into this, one should note that
the typical introductory quantum systems such as the infinite square well, the harmonic os-
cillator and the hydrogen atom can therefore all be solved analytically with the path integral
too.
A decent class of Lagrangians can, in fact, be solved analytically relatively easily. Feynman
showed this for those of the following type:

L(ẋ(t ), x(t ), t ) = a(t )ẋ2 +b(t )ẋx + c(t )x2 +d(t )ẋ +e(t )x + f (t ) (87)

He refers to the integrals resulting from Lagrangians like this as Gaussian integrals (Feyn-
man and Hibbs, 1965, p. 58). They include many of the well-known cases. As an example, to
see that this Lagrangian also includes the case of the harmonic oscillator, take b(t ) = d(t ) =
e(t ) = f (t ) = 0, a(t ) = m/2 and c(t ) = mω2.
To come to this conclusion, Feynman uses a trick whereby he expresses a path in terms of
a sum of the classical path and a path deviating from the classical path, i.e., x(t ) = xcl (t )+
∆x(t ). Substituting this into the general path integral, he uses it to split off an exponential
with an action purely depending on the classical path from the rest. The other term depend-
ing on∆x(t ) has integral boundaries that are both 0, because at the boundaries xA and xB , all
paths will have the same value and thus there is no difference between x(t ) and the classical
path xcl (t ) with respect to these points. Therefore, that term is only a function of the initial
and final times. Due to this, he arrives at the following expression for the kernel (Feynman
and Hibbs, 1965, p. 59-60):

K (A,B) = e
i
ħS[xcl (t )]χ(tA, tB ) (88)

Here, χ is a function depending on the known coefficients of the Lagrangian and the known
initial and final time. Other than that, one only needs the action corresponding to the clas-
sical path. He therefore shows that all kernels with Lagrangians of the type above can be
determined exactly.
It should be noted that not all Lagrangians that allow for analytical solutions are of the above
form. The hydrogen atom, for instance, is not. Since it took more than 30 years after the path
integral’s introduction to the wider community by Feynman in 1948 for it to successfully
describe the hydrogen atom, this was not known at the time he wrote the book (Duru and
Kleinert, 1979).
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Thus, while there are quite some analytic solutions to many quantum systems with the path
integral, many nevertheless require the use of approximation methods. These entail not just
perturbative ones, as others, such as the semiclassical approximation dealing with slowly
changing potentials, exist. Yet, perturbation theory is certainly the most prevalent. This is
true all the more so in QFT, where applying perturbation theory to the path integral is the
most straightforward way to derive Feynman diagrams.

One may remember the basis of perturbation theory in ordinary quantum mechanics. The
central idea is as follows. Suppose a quantum particle is subject to a potential that looks
quite similar to another potential for which we can solve the Schrödinger equation to arrive
at the wave function and associated energy levels of a particle. The potential of the system
under consideration, however, deviates slightly from this ’known’ potential. Then we can
approximate the wave function and associated energy levels of this system by using the de-
viation and the known solution of a quantum system where the deviation is absent, i.e., the
unperturbed state (Griffiths, 2014, p. 251-322).

While applying perturbation theory to the path integral there are certainly differences in the
way it plays out mathematically and even in its interpretation, we shall see that this basic
philosophy remains the same. For one last time, we follow the methodology employed in
Feynman & Hibbs, but it will include more explanation, derivations and reflections (Feyn-
man and Hibbs, 1965, p. 120-125). One can in principle start both from the coordinate space
or the phase space representation, but we will follow Feynman and consider the somewhat
less messy coordinate space option. In the following, we will assume that the unperturbed
potential is simply zero, with the perturbation now being a small potential.
Let us then consider the general one-particle path integral kernel in the coordinate space
representation:

K (A,B) =
∫ B

A
e

i m
2ħ

∫ tB
tA

ẋ2(t )d t e− i
ħ

∫ tB
tA

V (x(t ),t )d t
Dx(t ) (89)

Here, we have written out the Lagrangian and split the exponential in a purely kinetic and
purely potential one. Both the velocity in the kinetic term and the position argument of the
potential have been explicitly written as functions of time, as it is important to keep this in
mind in this derivation. It also shows that the potential can of course admit a double time-
dependence: both an explicit one and an implicit one in the change of position of a particle
over time. An analogy would be that of a little ball moving on an electric stove, where we as-
sume that the ball is always immediately in thermal equilibrium with the stove regardless of
temperature varying on the stove’s surface. The temperature of the ball is then both a func-
tion of time due to the stove heating up, as well as a function of position due to a point near a
pit being hotter. But, since the ball is in motion on the stove, and this motion can be written
as a function of time, we conclude that T = T (x(t ), y(t ), t ).
As was laid out, perturbation methods apply to small deviations in the potential. It is impor-
tant to be clear about what must be small and how ’small’ is to be quantified. These questions
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can be succinctly answered by the condition below:∣∣∣∣∫ tB

tA

V (x(t ), t )d t

∣∣∣∣≪ħ (90)

The key, thus, as Feynman and Hibbs note, is that the phase of the potential exponential is
small (Feynman and Hibbs, 1965, p. 121). In that case, once we expand the exponential, it
is actually the case that each subsequent order will contribute significantly less to the result
than the previous. The expansion looks as follows:

e− i
ħ

∫ tB
tA

V (x(t ),t )d t =
∞∑

n=0

1

n!

(−i

ħ
)n (∫ tB

tA

V (x(t ), t )d t

)n

(91)

Substituting this into our kernel, we find:

K (A,B) =
∞∑

n=0

1

n!

(−i

ħ
)n ∫ B

A

(
e

i m
2ħ

∫ tB
tA

ẋ2(t )d t
(∫ tB

tA

V (x(t ′), t ′)d t ′
)n)

Dx(t ) (92)

For clarity’s sake, brackets have been added inside the path integral, as these contain func-
tions that are integrated over. Moreover, to avoid possible confusion between the two time
integrals later on, the one over the potential has been labelled by a time variable t ′.

Notation wise, we can denote each term as Kn(A,B), the sum over all n yielding the full ker-
nel:

K (A,B) =
∞∑

n=0
Kn(A,B) (93)

In the following, we will consider the terms n = 0,1,2 to get some idea of how these terms
can be evaluated, but perhaps more importantly, how an interpretation related to scattering
can be ascribed to each term.

The n = 0 term simply denotes the unperturbed result, just as we see in perturbation the-
ory applied to ordinary quantum mechanics. In our case, this zeroth term of the expanded
kernel (92) lacks a potential term in the path integral and thus simply reduces to:

K0(A,B) =
∫ B

A
e

i m
2ħ

∫ tB
tA

ẋ2(t )d t
Dx(t ) = K f p (A,B) =

√
m

2πiħ(tB − tA)
e

i m(xB−xA )2

2ħ(tB−tA ) (94)

Which is, of course, our free particle kernel.
When we consider the n = 1 term, things get more interesting:

K1(A,B) =− i

ħ
∫ B

A

(
e

i m
2ħ

∫ tB
tA

ẋ2(t )d t
(∫ tB

tA

V (x(t ′), t ′)d t ′
))

Dx(t ) (95)

Let us take a moment to consider what the above actually tells us. A first thing we imme-
diately notice is the above described philosophy of perturbation theory in action: the free
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particle kernel is still in here, but is now being changed in some way by the presence of the
small potential. There is a way of writing the above that makes this point much more obvi-
ous. For this, we interchange the order of the time and path integration in K1(A,B) above,
yielding:

K1(A,B) =− i

ħ
∫ tB

tA

(∫ B

A
V (x(t ′), t ′)e

i m
2ħ

∫ tB
tA

ẋ2(t )d t
Dx(t )

)
d t ′ (96)

Feynman denotes the function in the brackets as F (t ′), i.e.,

F (t ′) =
∫ B

A
V (x(t ′), t ′)e

i m
2ħ

∫ tB
tA

ẋ2(t )d t
Dx(t ) (97)

and

K1(A,B) =− i

ħ
∫ tB

tA

F (t ′)d t ′ (98)

In F (t ′), the point about the free particle kernel being changed by the small potential be-
comes clear, and a nice way of handling and interpreting the expression will come with it.
We note that F (t ′) is just an expression for the sum over all paths given the free particle La-
grangian, except that for each path it is multiplied by V (x(t ′), t ′). In other words, each term
in the sum associated with a particular path xC (t ) is ’weighted’ by a scalar in form of the
potential. The exact scalar value of this potential is, of course, found when evaluating it for
the particular path xC (t ) under consideration at the particular time t = t ′, i.e., V (xC (t ′), t ′).
Therefore, the identification of this ’weighing factor’ requires only one point on the path.

This insight can be used to derive an expression allowing for a convenient and elegant in-
terpretation of the quantum mechanical perturbation series. Consider the formula for the
kernel resulting from discrete lattice regularization (7).12 Translating our above formula for
F (t ′) into these terms, we have:

F (t ′) = lim
ϵ→0

1

C (ϵ)

N−1∏
k=1

∫ ∞

−∞
V (xp , tp )e

i m
2ħϵ

∑N−1
i=0 (xi+1−xi )2 d xk

C (ϵ)
(99)

This potential V (xp , tp ) is what we get when we express V (x(t ′), t ′) in the language of discrete
lattice regularization. After all, we slice up the time in N intervals of ϵ. Since tA < t ′ < tB , we
can express t ′ as the p-th time increment on the lattice. That is, given the limit ϵ→ 0, there
exists some 1 < p < N −1 such that pϵ= t ′ ≡ tp , corresponding to an xp .
Consider now the integrals. We can simply perform the ones corresponding to d x1 up and
including d xp−1. After all, V (xp , tp ) is a constant with respect to these integrals. This, by def-
inition, results in K f p (A,P ), where we have abbreviated P = (xp , tp ) as usual. Moreover, the
same can be done for the integrals over d xp+1 up and including d xN−1, which yield K f p (P,B).
That leaves only the integral corresponding to d xp , thus we find:

F (t ′) =
∫ ∞

∞
K (A,P )V (xp , tp )K (P,B)d xp (100)

12Feynman and Hibbs directly write down this result, but I think it can more easily be seen in this way (Feyn-
man and Hibbs, 1965, p. 122).
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Two points of explaining still need to be done here. Firstly with regards to the bookkeeping
of the constants C−1(ϵ). All is well in this regard if we suppose that the constant which ap-
peared after the limit is absorbed into the K (A,P ), and that the constant corresponding to
the d xp integral plays this role for K (P,B). This is why the above expression shows d xp rather

than
d xp

C (ϵ) . The second point one may wonder about concerns the bookkeeping of the sum in
the exponential. The above expression does not show the term for i = p. Again, this term is
absorbed into K f p (P,B). After all, K (A,P ) contains the terms i = 0 up and including i = p−1,
while K (P,B) contains the terms i = p (the ’i = 0’ of this sum) up and including i = N −1.

Therefore, the above F (t ′) is the correct result when taking the bookkeeping of our terms
and constants into account. If we now remember that we stated tp ≡ t ′, correspondingly
that xp ≡ x(t ′), and we write out A, P and B , we can identify the following result:

F (t ′) =
∫ ∞

−∞
K f p (xA, tA; x ′, t ′)V (x ′, t ′)K f p (x ′, t ′; xB , tB )d x ′ (101)

Since similar, longer expressions will follow, we have introduced x(t ′) ≡ x ′ as a shorthand.
If one so desires, one could even write out the free particle kernels, yielding:

F (t ′) = m

2πiħ
√

(tB − t ′)(t ′− tA)

∫ ∞

−∞
V (x ′, t ′)e

i m
2ħ

(
(x′−xA )2

t ′−tA
+ (xB−x′)2

tB−t ′
)
d x ′ (102)

But since this is not exactly prettier and since we will soon see that (101) is not only a more
general but also rather insightful way to write it down, we will stick to that. Before discussing
the result, we note that for the first order of the perturbation series we have now found that:

K1(A,B) =− i

ħ
∫ tB

tA

(∫ ∞

−∞
K f p (xA, tA; x ′, t ′)V (x ′, t ′)K f p (x ′, t ′; xB , tB )d x ′

)
d t ′ (103)

With this result, it is clear how one is to calculate K1(A,B). In the problem of interest, the
form of the potential is known. Since we also know the free particle kernel, the calculation
comes down to two integrals of a then known function K f p (xA, tA; x ′, t ′)V (x ′, t ′)K f p (x ′, t ′; xB , tB ).

More interestingly though, let us spend a few words on the interpretation thereof. Feyn-
man interprets the above result as a scattering process (Feynman and Hibbs, 1965, p. 122-
123). In particular, it is taken to express a situation whereby a particle is at one point on
its free particle trajectory scattered by the potential. This changes its trajectory, such that
it follows a different free particle one afterwards. There is a way in which one can read this
from the integrand of K1(A,B), i.e., K f p (xA, tA; x ′, t ′)V (x ′, t ′)K f p (x ′, t ′; xB , tB ). Starting from
left to right, we have a particle moving from (xA, tA) to (x ′, t ′) as a free particle, symbolized
by K f p (xA, tA; x ′, t ′). Then, at (x ′, t ′), it is scattered, which is expressed by V (x ′, t ′). Finally,
it proceeds as a free particle from (x ′, t ′) to its final state (xB , tB ). Since in the expression
F (t ′) we integrate over all possible x ′, we can take this as taking into account all possible
positions where the one-time scattering event can happen. Finally, to arrive at K1(A,B) the
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time-variable t ′ is also integrated over, which allows us to consider all possible times be-
tween tA and tB where this scattering could happen. Note how space and time are treated
on equal footing in this way.

The above description likely rings a bell to the reader familiar with calculating S-matrix ele-
ments from Feynman diagrams in the context of QFT. Indeed, that procedure is simply the
QFT version of the very process laid out here. While in QFT, scattering often entails the cre-
ation and annihilation of different particles, the perturbation terms of the matrix element
one is interested in can be derived from the consideration of all possible scattering events
that can happen between the asymptotically free initial and final particle states.

This thought naturally leads us to consider the second order of the perturbation expansion
(92). Because where K0(A,B) corresponds the particle moving from state A to B as a free
particle without scattering, and K1(A,B) symbolizes the situation where a scattering event
can happen at any time or place in-between A and B , we will find that K2(A,B) represents
the situation one step up where two intermediary scattering events are considered. Logi-
cally, KN (A,B) then corresponds to N scattering events. A graphical illustration of this can
be found in figure 4. The sum of all these possible number of scattering events each be-
ing possible at all places and all times, then yields the exact kernel of the system. Luckily,
however, due to the smallness of the potential, these calculations will not need to go up to
arbitrary order to be accurate enough for practical purposes.
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Figure 4: A graphical illustration of the scattering interpretation of the quantum mechanical path inte-
gral perturbation series in two spatial dimensions. Picture (1) represents K0(A,B), the unscattered free
particle scenario. This role is played for K1(A,B) by picture (2), which represents the particle scattering
and one point in space and time from its otherwise free particle paths before and after. Similarly, (3)
displays K2(A,B) and (4) displays K6(A,B). One only need to count the number of scatterings to arrive
at this conclusion. The potential may here be drawn for, e.g., the space-time region where it is strongest,
but it can in principle be nonzero over all of space and time (Feynman and Hibbs, 1965, p. 123).

As an example of the generalized interpretation provided above, let us briefly consider how
K2(A,B) is indeed of a mathematical form consistent with what we would expect from this in-
terpretation. Following the above line of thought, we expect to find the integrand of K2(A,B)
to look like K f p (xA, tA; x ′, t ′)V (x ′, t ′)K f p (x ′, t ′; x", t")V (x", t")K f p (x", t"; xB , tB ), where (x", t")
is the space-time coordinate where a second scattering event happens due to the potential
V (x", t") acting on the particle.

The n = 2 term of (92) yields:

K2(A,B) =− 1

ħ2

∫ tB

tA

(∫ tB

t ′

(∫ B

A
V (x(t ′), t ′)V (x(t"), t")e

i m
2ħ

∫ tB
tA

ẋ2(t )d t
Dx(t )

)
d t"

)
d t ′ (104)

Here, the integration over paths and integration over times has already been exchanged, as

before. Of course, when directly looking at (92), we see a term
(∫ tB

tA
V (x(t ), t )d t

)2
, but to use

the integration variable exchange trick we get rid of the square and just consider the product
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of the two integrals. Again, for the sake of clarity, we label one t ′ and the other t".

A more substantial, but also the final significant, point to consider are the integration bounds
on the time integral over d t ′ (from tA to tB ) and those over d t" (from t ′ to tB ). We assume
that the ’second scattering’ happens after the ’first scattering’, such that we establish t" > t ′,
a dependency relation between the integrals’ bounds. If we do not introduce this condition,
we have double counting. The point is that two scatterings must happen. If we consider all
the times t ′ at which a first one can possibly happen and given each of these, all the possi-
ble later times t" for a second one, we have exhausted all physical options for two scattering
events to happen. Adding on top of that situations where t" < t ′ would lead to more scatter-
ings than that, i.e., we would make a bookkeeping error leading to double counting.
However, while this makes perfect sense in our interpretive scheme, the term we find in the

original Taylor expansion is simply
(∫ tB

tA
V (x(t ), t )d t

)2
. Since we made a product out of this

and, crucially, changed the integration bounds of one of the two resulting integrals, the re-
sult will be different from this original squared one in the perturbation series. Luckily, we
can infer what this difference is by noting the following:∫ tB

tA

∫ tB

tA

(...)d t"d t ′ =
∫ tB

tA

∫ t ′

tA

(...)d t"d t ′+
∫ tB

tA

∫ tB

t ′
(...)d t"d t ′ =

∫ tB

tA

∫ tB

t"
(...)d t ′d t"+

∫ tB

tA

∫ tB

t ′
(...)d t"d t ′

(105)
The first equality follows from general rules of integrals. The second equality is found when
for the first of the two integrals on the left-hand side (with respect to the second equality)
the order of integration is switched: the integral over d t" is now performed before the one
over d t ′. Just as when doing a double integral over the area of a right-handed triangle, there
is a dependency relation between the bounds, and this makes it so that we mathematically
retain the same quantity if we change the boundary values as above.
Note that the integrand, in accordance with the n = 2 term of the perturbation series (92), is
just V (x(t"), t")V (x(t ′), t ′) in all cases. The arising symmetry then, makes it so that if we were
to interchange t ′ and t" in the first double integral of the final rightest-hand side above, it
would just be equal to the second one. Concretely, we get:∫ tB

tA

∫ tB

tA

V (x(t"), t")V (x(t ′), t ′)d t"d t ′ = 2
∫ tB

tA

∫ tB

t ′
V (x(t"), t")V (x(t ′), t ′)d t"d t ′ (106)

And therefore, the second order term of the perturbation theory (104) contains an extra fac-
tor of 2 due to these integration bounds. The reason that we do not see it in (104), is that this
2 cancels against the factor 1

2 that is introduced by the factor 1
n! in (92) for the case n = 2. In

fact, for each order n, the term 1
n! is cancelled due to the emergence of a term n! from re-

peating the above logic of the integration bounds for higher orders. With this, we have fully
accounted for (104). To those familiar with QFT, the above reasoning was likely recognizable,
as identical reasoning appears when dealing with perturbative methods in QFT.

At this point, we are as good as done. The above expression (104) of K2(A,B), by the ex-
act same argument that made use of the discrete lattice regularization form employed for

51



K1(A,B), will simply allow us to do the integrals for all d xk except those corresponding to x ′

and x" in the lattice. It follows that:

K2(A,B) =− 1

ħ2

∫ tB

t ′

∫ tB

tA

F (t ′, t")d t ′d t" (107)

with

F (t ′, t") =
∫ ∞

−∞

∫ ∞

−∞
K f p (xA, tA; x ′, t ′)V (x ′, t ′)K f p (x ′, t ′; x", t")V (x", t")K f p (x", t"; xB , tB )d x ′

(108)
And thus, what we have shown is in line with what was expected from the interpretation pro-
vided by Feynman. The same goes for all higher orders. With that, we have solved our quest
as to how terms in the perturbation series can both be calculated and interpreted, the latter
paving the way for a quantum field theoretical approach.

This, finally, completes our discussion on the path integral formulation of quantum mechan-
ics. We have gained a broad understanding of the fundamentals of the formulation, shown
the equivalence with the more familiar formulation of Schrödinger and described how cal-
culations can be done with the path integral. The latter has been demonstrated directly for
the case of the free particle, which could subsequently be used when analyzing how terms in
the crucially important perturbation series of a path integral with a Lagrangian including a
small potential can be handled.
The establishment of these facts, and the techniques discovered along the way, provide us
with the ability to understand the development of the description of fermionic systems in
quantum mechanics through the path integral. This does, however, not yet translate directly
to the QFT-context. While the next subchapter will not be a full repetition of the foregoing,
we will discuss how the quantum mechanical path integral carries over to quantum field the-
ory. In fact, the foregoing makes it so that this endeavour ends up being relatively straightfor-
ward, as has, e.g., already been foreshadowed when discussing the scattering interpretation
of the perturbation terms above.

2.4 The path integral in quantum field theory

While QM had been well-established by the time Feynman wrote his thesis and published
his 1948 article, QFT and, especially, the Standard Model were still in full development. The
path integral formulation has played an instrumental role in this, and chapter 5 will directly
show important examples of this.
In this subchapter, we will therefore introduce the path integral formulation of QFT. First, the
fundamentals will be laid out and it will be laid out how things change in comparison to the
foregoing subchapters. As we will see, assuming some basic QFT knowledge, nothing here
will be all too surprising. Then, in analogy to the free particle case and to see how the QFT
path integral can be used in practice, we will calculate it for the case of the free Klein-Gordon
field. Finally, we turn to what perturbation theory now looks like.
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In this subchapter, we will leave (Feynman and Hibbs, 1965) as our main guidepost behind.
Their book contains a chapter of quantum electrodynamics, and some attention will be paid
to this in chapter 5. The pair, however, does not formally treat QFT. This is not because they
did not know how to do this, as the general setup was already around by the time. See for
example the later to be covered (Matthews and Salam, 1955) in chapter 4. Therefore, we will
here base us on a number of secondary sources as our goal here is to establish a working
knowledge for later chapters, with (Peskin and Schroeder, 2019, §9.2). The next subchapter
will comment some more on the historical state of affairs until the mid-50s.

On a physical level, the biggest change is that we are now dealing with relativistic fields and
their spacetime configurations rather than nonrelativistic particles and their paths. This on-
tological shift will inform most that follows below. For now, we will just speak of real scalar
fields, but generalizations are possible, some of which will be discussed down the line.
The familiar one-particle Lagrangian now becomes a field Lagrangian, such as the one cor-
responding to the classical Klein-Gordon field13. In fact, to treat space and time on equal
footing, we exchange the Lagrangian for the Lagrangian density such that L = ∫

L d x⃗, with
d x⃗ denoting that we integrate over all three spatial dimensions. Moreover, this Lagrangian
density is subject to more constraints than it was in the QM-case before, viz., we want them
to contain only local interactions (e.g., φ4(x), rather than φ(x)2φ(y2)) and to correspond to
renormalizable theories (e.g., not all powers φn(x) are allowed).
At the same time, the path integral is now taken over the (functional) space of all field config-
urations, rather than all paths. The term ’path’ integral thus becomes somewhat redundant,
and many textbooks switch to the more general term ’functional integral’ instead (Peskin
and Schroeder, 2019, p. 282). Other than naming convention, a final side-point is that one
may note that this new integration measure still lends itself to a somewhat concrete inter-
pretation, albeit more abstract than particle paths. ’We must sum over all paths the particle
can take’ just becomes ’we must sum over all configurations the field can be in’. We will see
later in this thesis whether this view holds up.
The above implies the following main changes:

x⃗(t ) →φ(t , x⃗), p⃗(t ) →π(t , x⃗) ≡ ∂L

∂(∂tφ(t , x⃗))
(109)

Thus, rather than position and conjugate momentum, we now have the ’position’ field and
its conjugate ’momentum’ field. Because a field has not just one, but an infinite number of
degrees of freedom, it is also a function of three-dimensional space. Due to special relativity
being built into QFT, the fields are therefore often also written as a function of spacetime
four-vectors φ(xµ), or even abbreviated as φ(x).
It straightforwardly follows that the QFT version of (3) now becomes

K (A,B) =
∫ B

A
e

i
ħ

∫ tB
tA

∫
L (∂µφ,φ)d x⃗d t

Dφ(t , x⃗) (110)

13One may at this point already start to wonder how the Dirac field, which is generally not understood to
have a classical counterpart, can then be worked with in the path integral formalism. This observation is in fact
fundamental for the central problem covered in this thesis, and it will get extensive coverage later.
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and similarly, the phase space representation (72) of the functional integral is now

K (A,B) =
∫ B

A

∫ B

A
e

i
ħ

∫ tB
tA

∫
(πφ̇−H (φ,⃗∇,π))d x⃗d t

Dφ(t , x⃗)Dπ(t , x⃗) (111)

where H is the Hamiltonian density, i.e., H = ∫
H d x⃗.

First, a few smaller comments are in order. For one, note that initial and final state A and B
now no longer refer to points in time and space for a particle, but to an initial and final field
configuration. For example, A = (tA, x⃗A) → φA(tA, x⃗). If one wants to phrase the connection
to the QM path integral as it was discussed in a very explicit manner, one could say that each
of the (now not one but infinite number of) degrees of freedom of the field has a final ’posi-
tion’. Secondly, L and H are predictably related through the QFT version of the Legendre
transformation and, thirdly, the integral over d x⃗ in the exponent is meant to be taken over
all space.

Given the above kernels, we may wonder whether there is, again, a way to express these
functional integrals as a product of ’normal’ ones so that we can directly calculate. Consid-
ering the coordinate space representation for a moment14, we wish to find the analogue of
the kernel resulting from discrete lattice regularization (7) for (110). The relativistic character
of the treatment might already give a hint as to what must be done: we must ’slice space’ in
addition to time. Figure 5 below provides a visualization of this process, similar in function
to figure 2.

14The Lagrangian method is preferred over the Hamiltonian one in QFT anyway, due to its manifest Lorentz
invariance. While the Hamiltonian certainly has its use for the particle interpretation of fields in the canonical
quantization approach, the preferred treatment of time in the definition of π(t , x⃗) above makes it less suitable
for these relativistic requirements.
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Figure 5: Three-dimensional space discretization can be visualized as above (Rischke, 2021, p. 79). We
introduce M small boxes, or cells, with infinitesimal volumes δ (in the picture δV ). The total volume
is then V = Mδ, where at the end of the calculation we take V , M → ∞ and δ→ 0. Before the limit
is taken, any real scalar field over space thus has M degrees of freedom, the field value at the r -th box
being φr ≡φ(⃗xr ).

Let us consider a field at a specific snapshot in time, so that we only need to concern our-
selves with its spatial component, i.e, φ(⃗x). How are we now to perform an integral over all
configurations of this field at this time? The answer starts by imposing a lattice structure on
space, discretizing it into small cube-shaped cells with volume δS in the notation of figure
5. Let us now also suppose that the total volume of space considered is finite, denoting it
with V . In that case, we are left with V /δ = M cells. As a consequence, the field φ now has
M degrees of freedom. This is because these cells are the smallest unit of space where the
field can take some value. Thus, we can now substitute φ(⃗x) →φ(⃗xr ) ≡φr ,r ∈ {1, . . . , M } with
the latter being a subset of natural numbers. If the entire volume of space V is a cube, one
could also have written φ(⃗xr ) =φ(xi , y j , zk ) with i , j ,k ∈ {1, . . . , 3

p
M }. To go back to the actual

continuous field φ(⃗r ), we at the end of the calculation take the limits δ→ 0 and V →∞, i.e.,
that of non-discretized space and infinite space, respectively. While these limits do not fol-
low from each other individually, M →∞ follows from any one of them.

Heuristically, we may again look back at figure 2. There, after each time interval ϵ = tB−tA
N ,

a straight-line path could be taken to anywhere on the one-dimensional spatial line x. In
our new framework, we can think of this picture happening M times, i.e., at each spatial cell.
The only difference is that we are now not dealing with paths. It is therefore not that af-
ter each subsequent ϵ we consider every possible element of the one-dimensional position
line, but rather, that after each subsequent ϵ and at each spatial cell x⃗r , we consider every
possible value of the amplitude the field can take. This ’consideration’ means, of course,
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integration from −∞ to +∞. Given that we currently limited our discussion to real scalar
fields, the underlying set is the same. Therefore, we just find that given a particular spatial
cell, each time-increment introduces a new integral

∫ ∞
−∞ in the eventual N −1 integral prod-

uct of them, the difference being an integral over d xk before while over dφ(tk , x⃗r ) ≡ dφk,r

currently (k ∈ {1, . . . , N −1}). Summarized, ϵ = tB−tA
N is to time-slicing as δ = V

M is to ’space-
slicing’.
As one may suspect from the similarity between the QM and QFT discrete lattice regular-
ization method, the relativistic symmetry of space and time also allows one to discretize
spacetime as a whole. One would then consider spacetime volumes rather than talking sep-
arately about spatial cells and time increments. This methodology differs per source (Peskin
and Schroeder, 2019, p. 285)(Rischke, 2021, p. 79). While this latter approach may be more
proper with regard to the spirit of relativity, we opted for the more traditional one for didactic
reasons.

Simply applying all the above lessons to (7) yields, simplified:

K (A,B) = lim
ϵ,δ→0

N−1∏
k=1

M∏
r=1

∫ ∞

−∞
e

i
ħ ϵδ

∑N−1
j=0

∑M
l=1 L

(
φ j+1,l −φ j ,l

ϵ ,
φ j ,l+1−φ j ,l

δ ,φ j ,l

)
dφk,r (112)

The result was to be expected from our discussion. Basically, we just get M times more in-
tegrals, as we are more or less doing what we did in the QM case in M spatial cells now. The
’simplified’ adjective before the expression, though, applies to three things. For one, this is
the discretized kernel for one-dimensional space, as to simply compare it to (7) and avoid
needlessly cumbersome arguments for the Lagrangian density. That also means that the
above relation implicitly redefines δ as a small spatial line segment rather than a volume.
Secondly, as was the case in QM, one can argue about the regularization of the discretized
argument φ j ,l , in the sense that taking the average between two consecutive times or line
segments could at this point just as well have been done. We will not repeat this discussion
here though, and have just opted for the simplest option. Thirdly, we have left out the ana-
logues of the constants C−1(ϵ) that were so prominent in the quantum mechanical setting.
The reason for this is that we will not need these and thus will not derive them later either,
which means that they would just clutter the expression. We do not need them because, as
we shall see in a moment, the practice of QFT will make sure that they always divide away.

The final point, however, brings us to the topic of the equivalence with the QFT-formulation
students tend to be introduced to: the one following from canonical quantization, with its
operator-valued fields, creation and annihilation operators and commutation relations. It
was the proof of this equivalence that allowed us to identify C (ϵ), after all. The reason for not
repeating the proof in the QFT case is that it is virtually identical (Rischke, 2021, p. 78-82),
and would just take up space. Again, we would start from transition amplitudes carrying the

field from one time to a later one 〈φB |e− i
ħ Ĥ(tB−tA)|φA〉. We would then slice up the time and

insert completeness relations
∫ |φk,r 〉〈φk,r |dφk,r = Î and its momentum field |πk,r 〉 counter-

part. We would now just have more integrals, as this process happens for each one of M

56



spatial cells. Again, the relation (53) also has a field theoretical analogue and at that point we
would be able to detect the Lagrangian density of the Klein-Gordon field in the exponent, the
latter which will be discussed more later. Thus, we end up (111), and the functional integral
formulation has been derived from canonical quantization. Needless to say, it can also be
done the other way around15.

We want this different formulation to again be able to calculate everything the other one
can. In the context of QFT, it is therefore important to be able to deal with correlation func-
tions, as these are instrumental to be able to derive scattering amplitudes and decay rates.
Moreover, they will feature regularly in later chapters. Relating the expression for the n-point
correlation function to the functional integral yields the following:

〈0|T (φ̂(xµ1 ) · · · φ̂(xµn ))|0〉 = lim
t±→±∞

∫
φ(xµ1 ) · · ·φ(xµn )e

i
ħS[φ(xµ)]Dφ(xµ)∫

e
i
ħS[φ(xµ)]Dφ(xµ)

(113)

where here four-vector notation for the argument has been used for brevity. Note that this
expression justifies our ignoring of the constants in our expression for the discrete lattice
regularization: these will be the same for the numerator and denominator and therefore be
divided out. Moreover, the S-matrix elements we can compute using this expression make
use of asymptotically free states, so we now have the limit whereby we integrate over all times
in addition to all space. This topic will briefly return in the next subchapter.
The object on the left should be recognizable to any student familiar with introductory QFT:
the correlation function through which we can detect our Feynman propagators. On the
right however, we find it expressed in the language of functional integrals. For the same rea-
son as in the previous paragraph, we will not derive it explicitly, but refer to a source and
briefly comment on it (Peskin and Schroeder, 2019, p. 283-284). The proof again uses com-
pleteness relations, but also another before-seen trick. Just like how we would sometimes
have the path integral go to an intermediary point B = (tB , xB ) from A, before going to a final
point C , this proof also splits up the functional integral so that intermediate field configu-
rations are involved. These are the specific field configurations found on the left-hand side
of (113). Using the eigenvalue equation in reverse, φ(⃗x)|φ〉 = φ̂(⃗x)|φ〉, and these Schrödinger
picture operators become Heisenberg picture operators when squished between the oper-

ators e± i
ħ Ĥ t , + left and - right. In this way, one can imagine how the fields φ(xµi ) on the

right-hand side above may be turned into the operators as seen on the left-hand side. The
denominator then arises at the end as a normalization factor resulting from the partial over-
lap between the ground state and arbitrary field states, i.e., it acts as a normalization factor.
In this rough way, the n-point correlation function can be expressed in terms of functional
integrals.

One more useful property of the functional integral to be mentioned is its invariance to shift
of the integration variables. A simple example would be to add some real-valued scalar func-
tion F (xµ) to our real field, so that φ(xµ) → φ′(xµ) = φ(xµ)+F (xµ). This will then change

15Dyson famously proved the equivalence of these formulations. For this, see (Schweber, 1994, 527-551).
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Dφ→Dφ′. Yet, if we think of the functional integral in terms of a product of regular integrals
through discrete lattice regularization, we realize that this just shifts each variable dφk,r a
bit, which is itself integrated from −∞ to +∞. The Jacobian is then equal to 1, and the (func-
tional) integration measure does not change. More heuristically: if we are going to sum over
all possible field configurations anyway, such shifts do not affect the functional integral, as
’everybody gets their turn anyway’.
This property is used plenty when derivations are performed with the functional integral (Pe-
skin and Schroeder, 2019, p. 291,295). Its use will become more apparent in chapters 4 and 5.

At this point, it is finally time to introduce a Lagrangian density. One reason for this ’tak-
ing a while’ is that in QFT, things are not so simple as in QM. In the latter, we could just focus
on the one-particle Lagrangian, with a kinetic term minus an unspecified and free to choose
potential. While in QFT not all ’potentials’ are allowed, even the kinetic term depends on the
type of field under consideration, e.g., the Klein-Gordon versus the Dirac field. To get a grip
on the path integral, however, we will start with the easiest of all: the free real Klein-Gordon
field. This field is associated with spinless particles, and once the corresponding interaction
terms are added to its corresponding Klein-Gordon field, it describes real particles such as
the pion or the Higgs particle. It is also a familiar choice to the student with basis QFT knowl-
edge, as almost any source about it starts with it. A last point before proceeding is that now
that we are moving to actual calculations, we will following the convention typical in the field
and use natural units ħ= c = µ0 = ϵ0 = 1. So far, SI-units have been used to keep the physics
familiar and in plain sight, but in QFT, ’familiar’ is often natural units, and the authors to be
covered in chapter 4 and 5 almost exclusively use them.
The Lagrangian density of one free real Klein-Gordon field φ(xµ) can be written as

LKG = 1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 (114)

where if one applies the Euler-Lagrange equation

∂µ

(
∂L

∂(∂µφ)

)
= ∂L

∂φ
(115)

this yields
(∂µ∂

µ+m2)φ= 0 (116)

where the ’mostly minus’ convention for the metric is used so that the contravariant deriva-
tive is ∂µ = (∂t ,−∇⃗), and ∂µ∂µ = ∂2

t −∇⃗2.
Using the Legendre transformation

H (φ,∇⃗φ,π) =πφ̇−L (φ,∂µφ) (117)

with the definition of π(xµ) mentioned at the beginning of the subchapter, it is easy to show
that the corresponding Hamiltonian density of the field is

HKG = 1

2
π2 + 1

2
(⃗∇φ)2 + 1

2
m2φ2 (118)
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Let us now substitute the Hamiltonian density in the phase space kernel (111), so that we
find

K (A,B) =
∫ B

A

∫ B

A
e i

∫ tB
tA

∫
(πφ̇− 1

2π
2− 1

2 (⃗∇φ)2− 1
2 m2φ2)d x⃗d t

DφDπ (119)

Earlier, we have used (27) and (57) to deal with Gaussian integrals. The ’finishing touch’ in
this trilogy will be to add a final constant c:∫ ∞

−∞
e−(ax2+bx+c)d x =

√
π

a
e

b2

4a −c (120)

Having set this up, a small first ’application’ can be shown in the following way. We note that
the phase space kernel for the Klein-Gordon Hamiltonian density is exactly of this Gaussian
form in π. If we take a = 1

2 , b = −φ̇ and c = 1
2 (⃗∇φ)2 + 1

2 m2φ2, and we ignore the constant
as before, we will actually find that the above Gaussian integral is going to be proportional
to the exponential of 1

2 φ̇
2 − 1

2 (⃗∇φ)2 − 1
2 m2φ2, which is exactly LKG . One might reasonably

protest that the Gaussian standard integral is not defined for functional integration, yet it is
being applied to the functional integral over Dπ above right now. Yet, discrete lattice reg-
ularization does not change the structure of the exponent, and we merely get a product of
Gaussians resulting from momentum field integrals that will ultimately yield an exponential
of the Lagrangian density in the limit. Therefore, by extension, (120) still holds in this case,
and we have proven that the coordinate space representation of the functional integral fol-
lows from the phase space one for this Hamiltonian density.

More interesting, though, will be to directly calculate

K (A,B) =
∫ B

A
e i

∫ tB
tA

∫ ( 1
2 (∂µφ)(∂µφ)− 1

2 m2φ2
)
d x⃗d t

Dφ (121)

This is the QFT-equivalent for the calculation of the free particle kernel, at least for 0-spin
bosons. Working it out will be important for three reasons. For one, it is a direct demon-
stration of how a functional integral can be calculated in QFT. Secondly, its result will be
important to contrast against a core development in the later story of this thesis. Finally, free
field calculations provide the basis for perturbation theory, which means that by doing this
we can unlock the full power of the widely relied upon perturbative methods in QFT for an
important class of fields.

The derivation of the kernel of the free real Klein-Gordon field is usually done in a quite
different way than we saw in its quantum mechanical counterpart in subchapter 2.3. We
shall get to these much more efficient methods in a moment, but to connect these subchap-
ters first show that it is in principle possible to simply use the same method to perform the
derivation.
Consider (112) (and thus the case of one spatial dimension, since there are already plenty of
terms and generalization is straightforward). Let us for a moment forget about the limit and
pick out just the integral over dφ2,2 (corresponding to k = r = 2). With regards to the sum in
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the exponent, we now just need the terms containing all occurring φ2,2. Therefore, we con-
sider the j = 1,2 and l = 1,2 terms. As can be seen, the same step-by-step method is being
set up as in the case of the quantum mechanical free particle. We will then find the following
object: ∫ ∞

−∞
e iϵδQ(φ j ,l )dφ2,2 (122)

where

Q(φ j ,l ) = 1

2

(
φ2,2 −φ1,2

ϵ

)2

+ 1

2

(
φ3,2 −φ2,2

ϵ

)2

− 1

2

(
φ2,2 −φ2,1

δ

)2

− 1

2

(
φ2,3 −φ2,2

δ

)2

− 1

2
m2φ2

2,2

(123)
Here, we have already thrown away mass terms such as −1

2 m2φ2
1,2, since we are integrating

only over dφ2,2 for now. When working out all of the brackets, these will also produce terms

such as
φ2

1,2

2ϵ2 that will likewise be discarded. Rearranging in the suggestive Gaussian form, we
find that

Q(φ j ,l ) =−
(

1

ϵ2
− 1

δ2
− m2

2

)
φ2

2,2 −
(
φ1,2 +φ3,2

ϵ2
+ φ2,1 +φ2,3

δ2

)
φ2,2 (124)

Substituting this into our integral yields∫ ∞

−∞
e
−i

(
δ
ϵ− ϵ

δ− ϵδm2

2

)
φ2

2,2−i
(
δ(φ1,2+φ3,2)

ϵ + ϵ(φ2,1+φ2,3)
δ

)
φ2,2 dφ2,2 (125)

At this point, we can invoke (57) and solve the integral:

√√√√ iπ
δ
ϵ − ϵ

δ − ϵδm2

2

e

i

(
δ(φ1,2+φ3,2)

ϵ + ϵ(φ2,1+φ2,3)
δ

)2

4δ
ϵ − 4ϵ

δ
−2ϵδm2

(126)

Note that π in this expression is the familiar constant, not the momentum field.
Clearly, the above is not quite as pretty as the analogous result that was found in the quantum
mechanical case. But at least the proof of principle is here. Structurally, the two problems
are the same, and we can see that there answers are subsequently similar as well in a to be
expected way (Peskin and Schroeder, 2019, p. 286).

Luckily, however, there are ways to find compute the functional integral of the free Klein-
Gordon field that are much simpler then the messy expression above16. We introduce one

16At this point an elephant in the room can be addressed. In general, direct computations as above are
never done, and physicists opt fro the use of the ’generating functional’, in scalar field theory defined as

Z [J ] ≡ ∫
e i

∫
(L+J (xµ)φ(xµ))d 4xDφ(xµ), with

∫
d 4x being shorthand for

Î
d x⃗d t (nevermind

∫
d x⃗ itself already

being shorthand). Here, a source term is added to the Lagrangian density, and one can use functional deriva-
tives of the generating functional to derive correlation functions far more easily (Peskin and Schroeder, 2019,
289-292). This will be discussed some more in chapter 4. However, as important and interesting as this tech-
nique is, we strictly speaking do not need it here, as moreover this thesis is not a course in path integrals and
the line needs to be drawn somewhere.

60



important one below, as it will be of importance in chapter 4 and 5.
Consider again the action

S =
∫ (

1

2
(∂µφ)(∂µφ)− 1

2
m2φ2

)
d 4x (127)

We can use integration by parts by noting the product rule ∂µ(φ(∂µφ)) = (∂µφ)(∂µφ)+φ(∂µ∂µφ)
so that we get instead

S = 1

2

∫
(−φ∂µ∂µφ−m2φ2)d 4x + 1

2

∫
∂µ(φ(∂µφ))d 4x (128)

Here, the second term is zero due to being a surface term, since it can through the divergence
theorem be turned into an integral over the boundary of our infinite spacetime volume. For
the first term, we can do a final bit of rearranging. As the squared mass is a scalar, we can
write φmφ, so that the integral in its entirety can be rewritten was

S = 1

2

∫
φ(−□−m2)φd 4x (129)

with d’Alembert operator □≡ ∂µ∂µ = ∂2

∂t 2 −∇⃗2.
We will now switch gears somewhat and exchange the functional integral we would have
with this action for a very closely analogous set of integrals. This switch is written below:∫

e
i
2

∫
φ(−□−m2)φ d 4xDφ→

n∏
l=1

(∫
dul

)
e−∑n

i=1

∑n
j=1 ui Bi j u j (130)

This might seem like a strange thing move. Yet, it will make a lot of sense once we reach
chapter 4 and, moreover, one can see that the two are not so different. The right-hand side
is simply an easier way of writing the left-hand side after discrete lattice regularization, but
it is all we need for now. The most radical departure is that the aforementioned operator has
now been replaced by an nxn symmetric matrix B . This matrix operator is the analogue of
the differential operator above. Solving the above product of integrals will therefore clearly
tell us something about the free Klein-Gordon functional integral we have been attempting
to address.

Our first step will be to diagonalize the matrix B . Given that it is Hermitian, the spectral
theorem tells us that this is possible through unitary transformations. This process will also
entail substituting ui = ∑n

i=1Ui k vk (and u j = ∑n
j=1U j k vk ). Upon substitution, we will then

find
n∏

l=1

(∫
dul

)
e−∑n

i=1

∑n
j=1 ui Bi j u j =

n∏
l=1

(∫
d vl

)
e−∑n

k=1λk v2
k (131)

Here, the λk are then the eigenvalues of the matrix B .
While the above is general linear algebra that will seem familiar to anyone with a background
in QM, this may have been a bit fast compared to earlier derivations. Firstly, we ought to
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conserve some space for the many important things to come, but more practically, a similar
derivation for fermionic fields will take place at the end of chapter 4. Due to its immense im-
portance within this thesis, the choice was made to be as complete and precise as possible
there, and not repeat the same thing here. For now, we will therefore do with this and look at
the result.

Since each element of the sum can now be nicely paired to an element of the product, we
can absorb the role of the sum into the product and rewrite the above to

n∏
l=1

(∫
d vl

)
e−∑n

k=1λk vk 2 =
n∏

l=1

(∫
eλl v2

l d vl

)
(132)

These are integrals that we can handle. In fact, since we are still working on ’kernel’ of the
free real Klein-Gordon field, we could have expected such Gaussian integrals to come up
again. Using (27) one more time, we find

n∏
l=1

(∫
eλl v2

l d vl

)
=

n∏
l=1

√
π

λl
(133)

We note that the denominator inside of the root contains the determinant of the matrix B ,
since that is equal to the product of its eigenvalues. Thus, we conclude:

n∏
l=1

(∫
dul

)
e−∑n

i=1

∑n
j=1 ui Bi j u j =p

π(detB)−
1
2 (134)

If desired, one can get rid of the constant
p
π by inserting π in front of integral in the expo-

nent on the left-hand side.
It is sometimes convenient (see chapter 5) to write this determinant as an exponential with
the exponent being the trace of the logarithm of the matrix (Peskin and Schroeder, 2019,
p. 304):

detB =
n∏

l=1
λl = e

∑n
l=1 log(λl ) = eTr (log(B)) (135)

As mentioned before, our original functional integral of the free real Klein-Gordon field was
precisely of this form, the difference being that the matrix B is the differential operator (−□−
m2), and so we may write∫

e
i
2

∫
φ(−□−m2)φ d 4xDφ∝ (det(□+m2))−

1
2 (136)

We provide a proportionality, neglecting the constant, because it would in practice be di-
vided away anyway due to (113).
The above object is a ’functional determinant’. We will see it again in chapter 5. It can be
written in terms of Feynman diagrams, e.g., through using the trace-format above (Peskin
and Schroeder, 2019, p. 304-305).
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Given that we have now addressed the functional integral of the free real Klein-Gordon field,
the road is now open for treating perturbation theory. Let us extend the Klein-Gordon La-
grangian with the most straightforward interaction term that everybody knows: theφ4-theory.
This is not just a toy model, as this interaction prominently features in the Lagrangian den-
sity for the Higgs field. We write:

L =L f r ee +Li nt = 1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ

4!
φ4 (137)

Here λ ∈ℜ is a coupling constant.
Like in the quantum mechanical case, let us consider the QFT-kernel and start by splitting
the exponential containing the free Lagrangian density and the interacting one:

K (A,B) =
∫ B

A
e i

∫ tB
tA

∫
L f r ee d x⃗d t ·e−i

∫ tB
tA

∫
λ
4!φ

4d x⃗d t
Dφ (138)

Here, we write the somewhat longer
∫ tB

tA

∫
d x⃗d t rather than

∫
d 4x because the time bound-

aries are relevant for the perturbation series.
Technically, we are already done now. We could now note that given the lack of field deriva-
tives in the interaction term, i

∫
Li nt d x⃗ = −i Hi nt . But that would result into the exact ex-

ponential that provides the basis for the Ŝ-matrix, and that we have thereby shown that one
can proceed with perturbation theory just as is done in the canonical quantization proce-
dure. We will venture a bit further though, as seeing how the interpretation changes in the
functional integral formulation from QM to QFT is important and interesting.

Our next step is to again expand the second exponential. Our ’smallness condition’ now
translates into ∣∣∣∣∫ tB

tA

∫
λ

4!
φ4d x⃗d t

∣∣∣∣≪ 1 (139)

where we should remember that the second integral is over all space.
Although technically we expand the entire integral, and we thus want its contributions to
get progressively smaller with each order so as to be able to apply perturbative methods,
some books (Peskin and Schroeder, 2019, p. 289) limit the condition to the coupling con-
stant λ≪ 1. Moreover, now that we are working in natural units, the object must be suffi-
ciently smaller than 1, rather than ħ as we saw in the quantum mechanical case. In SI-units,
however, ħ would still play this role. Lastly, we may note that λ is a dimensionless coupling
constant. The φ4-interaction is a so-called ’marginal interaction’, i.e., it is equally important
at all energy scales. The above condition thus holds universally for this interaction, indepen-
dent thereof17. Case in point, λ ≈ 1/8 in the Lagrangian density of the Higgs field, so that
higher powers rapidly make contributions be of lower orders of magnitude.

17Let [Q] denote the mass-dimension of Q. Since the action S = ∫
L d 4x is dimensionless, and [d x] = 1, it

follows that [L ] = 4. Given the m2φ2 term in the Lagrangian density, we can infer that [φ] = 1. This means
that given a term λnφ

n in the Lagrangian density, [λn] = 4 − n. As can be seen, φ4-theory thus leads to a
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Upon expanding, we find

K (A,B) =
∞∑

n=0

(−i )n

n!

∫ B

A

(
e i

∫ tB
tA

∫
L f r ee d x⃗d t

(∫ tB

tA

∫
λ

4!
φ4(t ′, x⃗)d x⃗d t ′

)n)
Dφ (140)

with again

K (A,B) =
∞∑

n=0
Kn(A,B) (141)

Let us briefly assess the situation. Again, we want to find the kernel of a functional integral
between an initial and final state, although we are now looking at a situation where a small
potential is also present. In the quantum mechanical case, the order of the above sum cor-
responded to the number of scatterings a particle would undergo on the path from A to B .
How does this picture hold up in QFT?

Below will treat the zeroth and first order, as these already provide us with the insight we
need, and higher orders quickly lead to messy expressions. Derivations will not be done in
full, as there are faster ways of doing these18. More on the full derivation of propagators from
the functional integral can be found in (Peskin and Schroeder, 2019, p. 284-289).
Now first, consider the zeroth order:

K0(A,B) =
∫ B

A
e i

∫ tB
tA

∫
L f r ee d x⃗d t

Dφ= K f f (A,B) (142)

Here, K f f (A,B) stands for ’free field’, as the analogue of the ’free particle’ K f p (A,B) in the
QM-case. Just as then, we know the expression for it, viz., a functional determinant.

The first order is already more interesting. We have

K1(A,B) =−i
∫ B

A

(
e i

∫ tB
tA

∫
L f r ee d x⃗d t

(∫ tB

tA

∫
λ

4!
φ4(t ′, x⃗)d x⃗d t ′

))
Dφ (143)

To get the interpretation right, we cannot just look at the Kn(A,B) terms though. As is typical
of QFT, we need to be looking at correlation functions (113). Let us consider the two-point

dimensionless coupling constant. Yet, for n > 4, [λn] < 0. If we then have a process at energy scale E , where
we get dimensionless combinations λnE n−4, we note that we have positive powers of E in the n > 4 case. That
means perturbation theory only works at low energies, since then the interaction term is small. If n < 4, we find
that λnE n−4 combinations will lead to negative power energies, meaning that at low energies, the interaction
term is high. Thus, in that case, perturbation theory only works at high energies.

18It was previously mentioned how working with the generating functional is the generally preferred and
more convenient method of deriving correlation functions through the functional integral formulation. This
also holds for terms in the perturbation series. Other than this, one can work with discrete lattice regularization
directly and moreover expand the discretized field into a Fourier series. This, however would take up a lot of
space, and now that the basics of the path integral from the foregoing chapters are clear enough, and since
we will not actually need much of this derivation later, we will instead refer to literature where this is clearly
described.
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correlation function below:

〈0|T (φ̂(xµ1 )φ̂(xµ2 ))|0〉 = lim
t±→±∞

∫
φ(xµ1 )φ(xµ2 )e i (S f f +Si nt )Dφ(xµ)∫

e i (S f f +Si nt )Dφ(xµ)
(144)

Since we are currently working on the first-order expansion of our perturbative series, we
expand the exponential of the interacting part of the action and keep only the n = 1 term,
realizing that we have the n = 0 term if we just plug in 1 for the brackets in the right-hand
side of the expression below. We obtain

lim
t±→±∞

∫
φ(xµ1 )φ(xµ2 )e i (S f f +Si nt )Dφ(xµ)∫

e i (S f f +Si nt )Dφ(xµ)
= lim

t±→±∞

∫
φ1φ2

(
−i

∫ t+
t−

∫
λ
4!φ

4d x⃗d t ′
)

e i
∫ t+

t−
∫

L f f d x⃗d tDφ∫ (
−i

∫ t+
t−

∫
λ
4!φ

4d x⃗d t ′
)

e i
∫ t+

t−
∫

L f f d x⃗d tDφ

(145)
where on the right-hand side, we have defined φ1 ≡φ(xµ1 ).
Due to the asymptotically free initial and final states that can be described through free field
states, limits have been added. That means that the integral over space and time are now
over all times and all space, respectively. Therefore, we might as well write one integral over
the spacetime volume d 4x. Remembering this, we drop the limit for now, as we take it to be
implicit in this notation for here. Lastly, like in QM, we switch the integral over spacetime
with the functional integral over all field configurations. We find:

lim
t±→±∞

∫
φ1φ2

(
−i

∫ t+
t−

∫
λ
4!φ

4d x⃗d t ′
)

e i
∫ t+

t−
∫

L f f d x⃗d tDφ∫ (
−i

∫ t+
t−

∫
λ
4!φ

4d x⃗d t ′
)

e i
∫ t+

t−
∫

L f f d x⃗d tDφ
=

∫ (
−i λ4!

∫
φ1φ2φ

4e i
∫

L f f d 4xDφ
)

d 4x∫ (
−i λ4!

∫
φ4e i

∫
L f f d 4xDφ

)
d 4x

(146)
The next move is to makeφ1 andφ2 part of the discrete lattice regularization. These will play
the role of the potential in the quantum mechanical case, where this time a particular dφk,r

integral will remain. Eventually, we will find that we can identify19

∫
φ1φ2e i

∫
L f f d 4xDφ∫

e i
∫

L f f d 4xDφ
= DF (x1 −x2) (147)

Here, we abbreviated xµ1 ≡ x1.
In other words, the zeroth order correlation function is just the Feynman propagator. As is
well known, this can diagrammatically be drawn as a line between two external points. In
the spirit of Feynman’s diagrammatic particle processes interpretation: we have our ’unscat-
tered particle’.

19Since we are not working in the operator formalism, we do not directly use Wick’s theorem by considering
all possible contractions, thus giving us Feynman propagators. Rather, in the functional integral formulation,
a procedure analogous to this is used based on the properties of Gaussian integrals to systematically handle
products of fields. This method results in the same combinatorial factors that Wick’s theorem would provide in
the operator formalism, and we can interpret the resulting terms as diagrams.
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In the n = 1 case, we then find a number of these propagator terms. In the end, we get∫ (
−i λ4!

∫
φ1φ2φ

4e i
∫

L f f d 4xDφ
)

d 4x∫ (
−i λ4!

∫
φ4e i

∫
L f f d 4xDφ

)
d 4x

= (148)

− iλ

8
DF (x1 −x2)

∫
D2

F (x −x)d 4x − iλ

2

∫
DF (x1 −x)DF (x −x)DF (x2 −x)d 4x (149)

The above terms can again be interpreted like a superposition of scattering events, but now
in QFT, where much more is possible. After all, particles are not conserved and can partake
in all kinds of (but limited) interactions that were not part of the quantum mechanical inter-
pretation. This is the biggest difference between the work in subchapter 2.3 and the current
situation.
The first term of our answer represents again a free particle propagation and, elsewhere, at
some point and time, a vacuum bubble. After all, the latter is integrated over all time and
space. The second term can be interpreted as a particle traveling from x1 to x, then we have
a closed loop interaction at x, after which the particle freely keeps travelling to x2. Again, the
integral over the spacetime volume d 4x tells us that we are dealing with a superposition such
that this could happen at any place, any time. In this way, the perturbation series that can be
derived from the functional integral forms the foundation of and rules for the famous Feyn-
man diagrams. Treating quantum field theories is made enormously easier by just drawing
all diagrams for a certain order and summing these, turning them into mathematical ex-
pressions for scattering amplitudes through the Feynman rules. In this way Feynman’s path
integral, and especially the diagrams he originally derived from this formulation, brought
QFT ’to the masses’.

Now that we have a good view of what the basic changes for the functional integral formula-
tion between quantum mechanics and quantum field theory entails, we are ready to proceed
on our journey. In the next and final subsection of this chapter, we take stock of where we
are.

2.5 The pros and (fermionic) cons of the path integral

In the foregoing subchapters, we have built a basic understanding of the functional integral
formulation in quantum theory as it was around the mid-50s. We saw that it provides an al-
ternative to the operator formulation resulting from canonical quantization. While zooming
in on the content, however, some overview-context has been left undiscussed. We may won-
der: why do physicists in some contexts opt to use one over the other? What are the unique
advantages the functional integral brought to the table? Does its use also have drawbacks?
And, most importantly for our purposes, what challenges did the development of the at that
point still "not readily accepted" (C., 2011, p. 13-14) formulation still have to overcome?
Starting with its strengths, and moving on to its drawbacks, it is these questions that we will
address in this final subchapter. While these lists will surely not cover every single positive or
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negative thing one can say about the functional integral formulation, all the most prominent
talking points on both sides will be touched upon. Crucially, we will end by laying out the
initial inability of the functional integral to deal with fermionic fields. The process of solving
this problem will inform most of the remainder of this thesis.

The functional integral has numerous advantages that eventually made it grow into the pre-
ferred formalism to do QFT in for many. Some of these we have already briefly passed by,
while others may require some more explanation. Below, we list five of these most promi-
nent advantages:

• Built-in Lorentz covariance. Because it works with the Lagrangian (density) as its main
object, the functional integral provides a relativistically covariant framework. The op-
erator formalism lacks this due to its insistence on the Hamiltonian, which in its def-
initions gives a preferred role to time over space. Since QFT, but not QM, has special
relativity baked in, this advantage is prominent in QFt and one reason for its extensive
use there especially (Peskin and Schroeder, 2019, p. 79).

• Convenient generalizability to different quantum field theories. The operator formal-
ism starting from canonical quantization can look radically different depending on
the field and Lagrangian under consideration. For example, quantization of the elec-
tromagnetic field is well-known to be extremely difficult in this formulation. The func-
tional integral makes this comparatively easy to do, as we will see in chapter 5. In
general, it is easy to apply it to all kinds of different quantum field theories. Especially
in the case of non-Abelian gauge theories, the functional integral is a popular tool as it
makes this process far more straightforward (Peskin and Schroeder, 2019, p. 79, 275).

• Easy to work with (especially in QFT). The functional integral is in many ways far less
mathematically-demanding than the operator formalism, in particular within the con-
fines of QFT. There are a number of examples for this. For one, working with regular
commuting numbers and classical Lagrangians is simpler than an operator algebra.
Renormalization is also less troublesome to formulate. Moreover, ordering ambigui-
ties of quantities in classical expressions that otherwise have to be quantized do not
appear in this way. Plenty of other examples could be given, with one famous histor-
ical case study being the relative ease with which Feynman calculated the Lamb shift
on Bethe’s request. He was able to do this much faster than others working with more
traditional methods (Schweber, 1994, p. 206-247). Nevertheless, as will be mentioned
below, some nuance and counterexamples can also be presented, especially concern-
ing quantum mechanics.

• Unified framework for quantum and statistical physics. In the first subchapter, it was
briefly mentioned that by switching to imaginary time, the functional integral resem-
bles the partition function of statistical physics. In brief, we can derive statistical physics
and do work in the field using much of the methodology here developed, again adding
to its overall power. We therefore find a case of methodological unification between
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two different fields of physics. As interesting as this is, we will not pursue this connec-
tion here further. The interested reader is referred to (Feynman and Hibbs, 1965, §10),
where Feynman and Hibbs contemplate about this relation extensively.

• Intuitive interpretation. While this final entry is more subjective than the others, it
is often expressed that the functional integral, especially in the quantum mechani-
cal case of a very visualizable path integral, is a more intuitive way of doing quantum
physics. It is an often expressed sentiment that bachelor students first learning about
quantum mechanics come away from it wondering where between all Hilbert space
vectors, commutation relations between hermitian operators and unitary transforma-
tions, the physics is to be found20. In the path integral, there are no operators. One
can still use their familiar classical Lagrangian with commuting variables. We now
just have to deal with that rather than one path, a particle between two points will
in fact take every possible path. While we here certainly find a difference with classical
physics, it is conceptually often not found to be an insurmountable one. Moreover, it
is nicely visualizable and the classical limit argument shows a clear connection with
the classical world.
As a critical side note, I personally do not fully agree with this picture, for a number of
reasons. Some have already been laid out in the foregoing, such as a possible critique
on the validity of the argument on the classical limit. But moreover, as we will later see
later in this thesis and explicitly mention, the clear pictorial interpretation of the path
integral breaks down the deeper we get into it. The upcoming integral over fermionic
fields, supplied with a Lagrangian containing anticommuting numbers, contains a real
challenge to this. Lastly, this view of the path integral arguably undersells the intuitive-
ness of the operator formalism. That is not to say canonical quantization is not a signif-
icant paradigm shift in our physical thinking, but that the rift between it and classical
physics is not as monumental as it is often thought to be. This argument will come by
in chapter 4.5, when discussing the relationship between the often overlooked Poisson
brackets in classical Hamiltonian mechanics and the Heisenberg equation of motion.

With five advantages of the functional integral formulation being clear, we will be democratic
and turn our attention to five challenges now. More so here, the historical context will be
accentuated. This is because while all of these problems were evident by the mid-50s, some
of them have by now been solved, or at least greatly diminished.

• Obscure unitarity of the Ŝ-matrix. The Ŝ-matrix is an essential quantity in QFT. It de-
scribes how an asymptotically free initial state evolves into a final state after a scatter-
ing process, i.e., 〈 f |Ŝ|i 〉. Mathematically, its unitarity means that ŜŜ† = Î . Physically,
it is this property that ensures that the sum of the probability of all possible scatter-
ing processes is equal to unity. In the functional integration we are not dealing with
operators, and showing this is notoriously far more difficult (Weinberg, 1995, p. 377).

20For the reader in need of a brief break, this April fool’s video of a physics Youtube channel lays out this
sentiment in a humorous manner https://www.youtube.com/watch?v=jm7jVi8akcc.
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Nevertheless, since the formulation is equivalent to the operator formulation starting
from canonical quantization, the fact that unitarity is still preserved is not surprising.
Therefore, the impact of this disadvantage has more to do with an important property
being opaque, rather than shaking the functional integral’s foundations or showing
that it cannot do certain things.

• Mathematically ill-defined. The path integral was anything but a mathematically rig-
orous approach to quantum physics upon its introduction. While the operator formal-
ism had been rooted in solid mathematical ground thanks to the work of mathemat-
ical physicists like John von Neumann (1903-1957), Feynman came up with the path
integral mostly because it just seemed to work. Yet some problems are immediately
apparent. The problem of Lagrangians featuring accelerations was already described
before. More generally, the Lagrangian the QM path integral features the velocity, yet
many of the paths considered in the discrete lattice regularization will have all kinds
of discontinuities, and one may wonder if it is at all certain that of all functions that
have to be integrated over, the set of ones with continuous derivatives in x(t ) is not of
measure zero. Moreover, how does one choose the correct time-slicing procedure and,
perhaps even more important, how does one know if the product of integrals even
uniquely converges in the limit anyway? Actual mathematicians will be able to, and
have, pointed out many more problems with Feynman’s path integrals. While this the-
sis is not about delving into these finer details, let us briefly comment on some devel-
opments.
One extremely influential one in the development of a mathematically rigorous ac-
count of functional integrals was Cécile DeWitt-Morette (1922-2017). In fact, she was
the first person to publish on the path integral after its ’48 introduction to the broader
public by Feynman (Morette, 1951). Together with a fellow mathematician Pierre Émile
Cartier (1932), she wrote an entire book on the topic setting out to give a robust ac-
count to functional integration, as they for example aim to

"...do away with N-tuple [the lattice discretization] integrals and to identify
the function spaces which serve as domains of integration for functional in-
tegrals."
(Cartier and DeWitt-Morette, 2006, p. 6)

More than half a century after her first paper on the topic, she wrote in a small book
contribution on the problems and possible remedies for the functional integral that

"from a heuristic tool, functional integration is gradually becoming a math-
ematical tool. Path integrals are by now a well-defined, robust tool. [...] A
number of functional integrals in Quantum Field Theory are mathematically
reliable."
(Morette-DeWitt, 2009, p. 246)
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Therefore, while the mathematical underpinnings of the functional integration formu-
lation remain a dodgy topic, much work has been done on the issue. Although where
exactly on puts the emphasis with regard to the justification of a certain physical for-
malism is also a matter of philosophy, we can say that insofar empirical progress is not
the sole measure of things, real mathematical progress has also been made.

• Difficult to work with (especially in QM). While, as the previous list stated, it is generally
agreed upon that the functional integral formulation is the more convenient way of do-
ing QFT, this conclusion need not to be extended to QM. If the path integral was truly
so much easier to interpret and to work with, one would wonder why it has not com-
pletely replaced canonical quantization procedures. The free particle calculation in
subchapter 2.3 already served as a foil to this notion. While it was by no means impos-
sible, it cannot compete with just solving a wave equation. It has also been mentioned
before how it took over three decades after Feynman’s introduction of the formalism
to finally solve the hydrogen atom system (Duru and Kleinert, 1979), which was not
without reason. As a final example, spin operators are also relatively easy to work with,
the spin-1/2 system often being used as the easiest possible instance of a quantum
state in a superposition. Yet, as the next bullet point will address, doing calculations
on spin is highly nontrival with the path integral. To close of with a point of nuance,
the above separation between convenience with regard to QFT and the lack thereof
concerning QM is not a black or white matter, as one might very well think of some
cases where the operator formalism is easier in QFT and vice versa. Yet, it is not hard
to conjure up plenty of examples supporting this way of thinking about the application
of the formulations in general.

• Hiding essential concepts. Some concepts in quantum physics seem, at first glance, to
be absent in the functional integral formulation. Here, we will specifically consider the
case of quantum states and spin operators. Clearly, ’concepts’ might even be putting it
mildly, as these can be considered elements of the very ontology we engage with from
the moment we start to learn QM.
Let us first consider the quantum state |ψ〉. In QM, the state plays an essential role in
the formalism for representing systems, doing calculations, and even being a widely
discussed objects in interpretation debates. In QFT, however, the focus is more so on
processes such as scatterings and decays, even in the operator formalism of canonical
quantization. The state is of course still there, for example in calculating vacuum ex-
pectation values 〈Ω|T (φ1φ2)|Ω〉 as we saw earlier or ’creating a particle at position x⃗’

with the Schrödinger picture operator φ̂(⃗x)|0〉 = ∫ d p⃗
(2π)3

e−p⃗ ·⃗x
2ωp⃗

|p⃗〉, but the importance of

its role in the formalism is greatly diminished. This shift in the "paradigmatic problem
that was to be calculated from this [theoretical] basis" has been extensively explained
in (Blum, 2017, p. 1-3).
Feynman had, through his path integral, initially attempted to get rid of the quantum
state entirely in this ’42 thesis. However, as we know from the Feynman diagram ap-
proach, he still later came to realize that he still required the idea of asymptotic free
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states at t± →±∞ (Blum, 2017, p. 54-60). Therefore, while the functional integral does
not fully abolish the state, it is much harder to find it in comparison with the operator
formalism, especially in QM.
We now turn our attention to spin operators. Feynman and Hibbs write in the conclu-
sion of their book that:

"With regard to application to quantum mechanics, path integrals suffer most
grievously from a serious defect. They do not permit a discussion of spin op-
erators or other such operators in a simple and lucid way. They find their
greatest use in systems for which coordinates and their conjugate momenta
are adequate. Nevertheless, spin is a simple and vital parat of real quantum-
mechanical systems. It is a serious limitation that the half-integer spin of the
electron does not find a simple and ready representation. It can be handled
if the amplitudes and quantities are considered as quaternions instead of or-
dinary complex numbers, but the lack of commutativity of such numbers is a
serious complication."
(Feynman and Hibbs, 1965, p. 355)

The above quotation is a goldmine for this thesis, so a few comments are in order. First
of all, this paragraph might lead one to mix up two related but distinct problems. One
problem, the one we aim to discuss right now, is that spin operators such as the Pauli
matrices cannot be represented in the language of path integrals. This is a problem, as
these allow one to make verifiable, empirical predictions about experimental systems
involving spin. A second problem is that of how the functional integral differentiates
between bosonic particles/fields and fermionic particles/fields. Clearly, the difference
must manifest itself somewhere. On this, we will come to speak in the next point.
Secondly, note that they mention quaternions as noncommuting objects having the
potential to describe half-integer spin particles. That they were thinking along these
lines is certainly something to keep in mind for later chapters.
Thirdly, and finally, we observe the authors’ conviction that the path integral just can-
not deal with spin operators, and is in this sense incomplete compared to the oper-
ator formalism. While they were certainly right that it is hard to find them in there,
they technically turned out to be wrong on this. With a quote as explicit as the above,
many people quickly rose to the challenge (Schulman, 1968). The modern account of
how spin operators feature in the language of functional integrals, is that it can be de-
rived from classical geometric considerations (Altland and Simons, 2010, p. 134-142).
In conclusion, it is possible to represent them, but it might raise an eyebrow that such a
typical quantum property was that ’hidden’ away. For both the case of quantum states
and spin operators one may arguably prefer a formulation wherein these fruitful con-
cepts and, depending on one’s perspective, essential elements of the theory’s ontology,
are not so opaque.

That concludes our discussion of the first four challenges for the path integral. As with some
of the advantages, it is clear that any such list contains some degree of subjectivity, with per-
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ceptions also changing over the years. There is, however, one of the five problems still miss-
ing, and it happens to be one that is nowadays generally understood to have been definitively
solved. This fifth and final problem is essentially the subject of the remainder of this thesis,
and a mere bullet point would therefore not do it justice. Its description is therefore the log-
ical endpoint of this entire chapter.

Before formulating the problem clearly, we need a brief recap. In QFT, there are two types
of fields. On the one hand, there are bosonic fields. Bosonic field operators obey canonical
commutation relations [Â, B̂ ] ≡ ÂB̂ − B̂ Â and the quanta of the field will collectively obey
Bose-Einstein statistics. Through the spin-statistics theorem, one can show that these will
always have integer spin. On the other hand, we have fermionic fields. These obey canonical
anticommutation relations {Â, B̂} ≡ ÂB̂ + B̂ Â and their quanta will collectively obey Fermi-
Dirac statistics. This leads to the famous Pauli exclusion principle for fermions. In the case
of fermionic fields, the spin-statistics theorem tell us that we are dealing with objects that
have half-integer spins (Peskin and Schroeder, 2019, p. 52-58).
The Klein-Gordon Lagrangian density that we saw before, corresponds to spin-zero particles
such as the Higgs, i.e., to a subset of bosons. Fermions, most famously the electron, however,
are described by the Dirac Lagrangian density, an integral part of the QED-Lagrangian den-
sity.

Now the functional integral readily generalizes to systems of identical bosons. Yet we may
now wonder, what about systems with half-integer spins? For bosonic fields in the opera-
tor formalism, we saw that we could quantize the classical action by imposing commutation
relations on classically commuting fields. But that correctly presupposes that we have a clas-
sical action (Blum, 2017, p. 60-61). One is then left to wonder how we go about this for Dirac
fields. While we can impose anticommutation relations on these fields, what classical action
forms their analogue? The Dirac equation has no classical real scalar field, but it deals with
spinors. Although the formulation of this problem is hard to detect in any explicit manner in
the book of Feynman and Hibbs, When you read between the lines, it appears that they were
aware of it, writing

"...for a relativistic particle with spin (described by the Dirac equation), the quan-
tity [...] cannot be described by a simple path integral based on any reasonable
action. However, it is possible to calculate by other means, for example, from the
Dirac equation." (Feynman and Hibbs, 1965, p. 264)

Thus, solutions from the Dirac equations are invoked as an external addition to the path inte-
gral formulation to get things to work. Clearly, important quantum behavior such as the Pauli
principle as not yet derivable from the integral itself. This might leave one to wonder how
Feynman, famous for getting QED to work through the path integral, was still able to do this.
After all, QED contains fermionic Dirac fields that the path integral was thus ill-equipped
to handle. Remembering the minus signs resulting from the permutation of two electrons
in a many-body wave function, and the anticommutation of the corresponding fields, it is
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to be expected that perturbative expansions of correlation functions involving Dirac fields
will involve a sum with pluses as well as minuses. What Feynman did was to basically ad
hoc see whether things would work if he were to run with pluses or minuses in certain cases.
He therefore derived his QED rules through what was later sometimes called ’the intuitive
method’, rather than being able to do so from first principles (Blum, 2017, p. 62-63).

Yet, this state of affairs is unsatisfactory. It makes the functional integral formulation weaker
than the operator formulation based on canonical quantization. Therefore, we need a way
to be able to do functional integrals over fermionic fields. In other words, can we find a clas-
sical counterpart for the action of a quantum mechanical spin-1/2 system?

Since this problem was most prominent in QFT, it is developments on it on this front that
we will focus on. Nevertheless, it is good to realize that the problem also exists for the QM
path integral. In fact, there is a nice way of visualizing our central problem in terms of paths
in there, published in a journal based on physics education (Styer et al., 2002, p. 290-291).
Early in this chapter, it was explained how we can find a generalized kernel for many parti-
cles (11). This works for bosons, but some additional rules need to be imposed for fermions.
For this, consider figure 6 below:
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Figure 6: Four graphs showing different paths two identical fermions can take between an initial time
ti and a final time t f . They provide a useful visualization for thinking about how Pauli’s exclusion
principle can be incorporated into the path integral formulation (Styer et al., 2002, p. 291).

Above, we find four different pairs of paths with which two identical fermions move from
an initial time ti (we usually wrote tA) to a final time t f (" tB ). The horizontal axis can be
thought of as the one-dimensional x-axis. While in the first and second graph these paths
do not intersect, this does happen in the latter two. The additional rule is now to insert a
minus before amplitudes associated with interchanging paths. Thus, in the sum over paths,
some contributions will now have an opposite sign as they would have had if we were deal-
ing with bosons (or even distinguishable fermions such as in the case of a path integral for
an electron and a muon). This procedure actually guarantees the Pauli principle. The paper
explains why we can think of the rule in this way. First of all, by the Pauli principle we do not
want two identical fermions to move to the exact same final state (x f , t f ). The authors now
ask us to, for example, slide the two particles at t f toward each other to some middle xM in
picture I and III (in these two pictures, both have the same initial position). Given this limit,
the amplitudes associated with I and III are identical. But this limit itself is forbidden, so only
through a minus sign can we make sure the amplitudes of such a duo of path configurations
cancel and we obey the Pauli principle (Styer et al., 2002, p. 290).
This minus sign insertion procedure, in fact, carries over to the Feynman rules, when adding
diagrams that while different are indistinguishable. The question that remains is how the
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path integral can itself incorporate this sign-bookkeeping, a troublesome task that presents
itself in QFT too. We will eventually see how an algebra was devised that efficiently takes care
of this.

In this chapter, we have thoroughly introduced the functional integral formulation. We
started by going over the fundamentals in the case of quantum mechanics. After this, we
showed how the formulation is equivalent to the more familiar operator methods resulting
from canonical quantization. We moved on to show how the path integral can be used in
practice, with specific attention to the free particle and its application in perturbation the-
ory, the latter being found to have an elegant interpretation coming along. In the next step,
we discussed how all of this carries over to quantum field theory, which can be done rel-
atively straightforwardly but unlocks much more of the advantages of the now functional
integral over fields. These advantages were then finally summarized in the final part, as well
as the challenges and shortcomings of the formulation. We ended by laying out the func-
tional integral’s inability to deal with fermionic fields.

The remainder of this thesis will be occupied with showing how this problem was eventually
solved during the latter half of the 1950s, and how this greatly strengthened the functional in-
tegral to definitively push it into the mainstream. Before we get to this, however, some more
theoretical and historical context is required, albeit on first view quite different (and shorter)
than that of this chapter. As it turned out that the anticommutative ’Graßmann algebra’ was
instrumental in fixing the functional integral’s fermionic defficiency, it is this topic that we
shall turn our attention to in the next chapter.
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3 The History and Content of Graßmann Algebra

Graßmann numbers are the key to unlocking a path integral description for fermionic fields.
However, since Hermann Günther Graßmann lived from 1809 until 1877, the mathematics
named after him obviously has a history that goes back much further than their (re)appearance
in addressing the problem at hand, which occupied people in mostly the 1950s. Therefore,
in this chapter, first some historical background to the work of Graßmann is provided, based
to a large degree on the book on the topic by historian of science Michael J. Crowe (1936).
Later the focus turns more to the general workings of the algebra these Graßmann numbers
are elements of. These investigations are not just interesting, but are relevant for providing
context and knowledge contributing to a swifter understanding of the developments during
the 1950s to be considered in the next chapter. For example, the mathematics will be rec-
ognizable, and we will also be able to explain why Graßmann’s name did not immediately
come up during this period.

3.1 A brief history of vector analysis

The study of vector quantities and their development into what most contemporary physics
students are taught and generically understand them to be has, to a large degree, been a
19th century project. Numerous mathematicians and physicists contributed to the creation
of distinct vector formalisms (Crowe, 1967). The competition between these has by some
authors been dubbed the ’vector algebra war’ (Chappell et al., 2015). Most of this subchap-
ter will be dedicated to this ’warring period’, in which Graßmann, while not necessarily the
main character, played a role through the introduction of his own formalism.

Before getting to the 19th century though, it is important to understand that the vector con-
cept did not appear out of nowhere, and that some of the formalisms alluded to directly
build on earlier constructions. The earliest use of what we might consider ’vectorial quan-
tities’ dates back to ancient Greece, such as their use of the parallelogram law (reducing to
the Pythagorean theorem in the rectangular case). Jumping all the way to the 17th century,
we find an extensive appendix called La Géométrie in Descartes’ famous Discourse on the
Method (1637). In it, he introduces new ideas and methods combining algebra and geometry,
rather than treating them independently 21. Consider an operation like addition. Descartes
notes that this operation need not be limited to the numbers of algebra, but can also ap-
ply to the length of lines and the areas of geometry. In fact, he argues that all basic arith-
metic operations (addition, subtraction, multiplication, division, and root extraction) seen
in basic algebra have a geometrical interpretation. We must realize that while these ideas
were instrumental for the eventual development of the vector, we are here not yet dealing
with the object in its modern sense. In modern terms, we can roughly say that Descartes’

21In reality, the history of mathematics is not a clear-cut, universally agreed upon story. While some authors
indeed view the origin of the combination of algebra and geometry to lie in Descartes work (Chappell et al.,
2015), others already consider some form of this to already be present in Ancient Greece (Blåsjö, 2016).
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ideal was that the same operations used for scalars could also be used for vectors (Domski,
2022)(Crowe, 1967, p. 1-3).

While La Géométrie had its shortcomings, its vision was realized through the geometrical
representation of complex numbers. These had themselves been around for centuries, through
for example the work of Cardan. It was, however, only around the beginning of the 19th cen-
tury that they, through the work of figures like Wessel, Argand and Gauß, grew to be repre-
sented as arrows in a plane with an imaginary and real axis (Crowe, 1967, p. 5-10). To see
how this satisfies Descartes’ aforementioned vision, consider the addition of two complex
numbers z1 = a1 + i b1 and z2 = a2 + i b2, resulting in z1 + z2 = (a1 +a2)+ i (b1 +b2). Here, the
’+’ clearly acts both on the real numbers a1, a2,b1 and b2, but it is also applied to the (in this
geometrical interpretation) ’vectorial’ quantities z1 and z2 themselves. Geometrical addition
is then expressed in terms of algebraic addition. Moreover, as may be expected, the result is
identical to the parallelogram law for line segments. After all, |z1+z2|2 = (a1+a2)2+(b1+b2)2,
which is of course the Pythagorean theorem due to component-wise analysis of the complex
numbers producing a rectangular form.

The success of complex numbers led to the ambition of finding a vector formalism appli-
cable to three-dimensional space and suitable to all the sciences. This ambition kickstarts
the vector algebra war that was to last for most of the remaining century.

A first major contender came in the form of the quaternionic vectors of William Rowan
Hamilton (1805-1865) in 1843 (Crowe, 1967, p. 19-46). Being the same Hamilton we know
from his formulation of classical mechanics and ’the Hamiltonian’, he was already rather fa-
mous by the time he came up with them. His ideas were controversial, but broadly discussed,
them gaining hardcore followers such as Peter Guthrie Tait22 (1831-1901) as well as equally
passionate detractors such as Oliver Heaviside23 (1850-1925). In any case, the influence of
Hamilton and his quaternions on the further development of vector analysis is direct and
undeniable, so let us at least get a very slight idea of what it looked like.

Hamilton’s idea was to generalize the complex numbers z = a + bi through quaternions
q = a + bi + c j + dk. This had the advantage of leaning on the solid mathematical work
on the complex numbers and likewise adhering to Descartes’ ideal. The a +bi part can be
viewed as an ordinary complex number, with the c j+dk part as the extension. Consequently,
a,b,c,d ∈ R and i 2 = j 2 = k2 = −1. One might then further wonder how i , j and k relate to
each other. Firstly, these symbols mutually anticommute, e.g., i j =− j i . Secondly, multiply-
ing two of them yields the remaining one, such that i j = k, j k = i and ki = j . One may notice
the same structure to it as the cross products of basis vectors, which as we will see is no co-

22In 1863, Tait wrote the following in the Proceedings of the Royal Society of Edinburgh: "...the next grand
extensions of mathematical physics will, in all likelihood, be furnished by quaternions." (Crowe, 1967).

23In 1891, Heaviside wrote the following in ’The Electrician’: "But I came later to see that, so far as the vec-
tor analysis I required was concerned, the quanternion was not only not required, but was a positive evil of no
inconsiderable magnitude..." (Crowe, 1967).
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incidence as quaternions inspired the development of this more familiar vector formalism.
From these two rules, it follows that the product of the three of them will always produce
positive or negative unity, e.g., i k j =−i j k =−kk =−k2 = 1.
In the development of his quaternionic formalism, Hamilton invented words and notation
still in use today. For example, the unit vectors î , ĵ and k̂ one comes across in calculus are
derived from it. More importantly, he introduced the world ’scalar’ and ’vector’ to refer to the
a and bi + c j +dk part of a quaternion, respectively. Just as one may now write Im(z) = b
for a complex number, Hamilton wrote Sq = a and V q = bi + c j +dk to refer to the scalar
and vectorial component of any given quaternion. The V q part was then meant to be used
to encode points in three-dimensional space.
Using all of the above, consider the product of the vectorial part of two quaternions:

(V q1)(V q2) = (b1i + c1 j +d1k)(b2i + c2 j +d2k) = (150)

−(b1b2 + c1c2 +d1d2)+ (c1d2 − c2d1)i + (b2d1 −b1d2) j + (b1c2 −b2c1)k (151)

Now, one may notice that the above looks suspiciously like the sum of the dot and cross prod-
uct of two ’familiar’ vectors. This is no coincidence, as the quaternionic vector formalism in-
fluenced both William Kingdon Clifford’s (1845-1879) geometric or Clifford algebra (1878) as
well as Josiah Willard Gibbs’ (1839-1903) and Heaviside’s now mainstream vector calculus24

(1881). Both of these directions took inspiration from Hamilton, but also wanted to solve
some of the problems plaguing quaternions (Chappell et al., 2015, p. 1998-2003). The prob-
lem that Clifford (and to a lesser extent Gibbs and Heaviside too) tackled, as well as a brief
description of his ideas, will be discussed later. The work of Gibbs and Heaviside did much
to address issues with the efficiency of notation and applicability to physics. The latter was
especially true for the up and coming theory of electromagnetism, with especially Heaviside
doing much work to popularize vector calculus for this branch of physics. With success, as
it emerged to mainstream. The anticommutativity of i , j and k in the quaternionic formal-
ism was unfamiliar to many, as well as the necessity of inclusion of the scalar component a
arguably being unnecessary. More importantly, in Hamilton’s notation, the fact that S(q1q2)
above has a negative sign is rather inconvenient. Suppose we represent the velocity of a par-
ticle with the following quaternion: qv = vi , i.e., a particle traveling in one dimension. Then
q2

v = v2i 2 = −v2, and we are consequently are left with a negative kinetic energy. In other
matters too, physics is troubled by the negative square of i , j and k (Chappell et al., 2015,
1998-1999).

The work that Gibbs and Heaviside did to right their wrongs with quaternions led to the vec-
tor calculus that fist year physics student are now taught all over the world. Gibbs introduced
the familiar three-vector r⃗ = xî + y ĵ + zk̂ with î , ĵ and k̂ being unit vectors. On quaternions,
he wrote to fellow mathematician Victor Schlegel25 (1843-1905) in 1888:

24The development of vector calculus by Gibbs and Heaviside was not a collaborative effort, but done mostly
independently.

25More on him later!
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""In regard to the product of [quaterionic] vectors, I saw that there were two impor-
tant functions (or products) called the vector part & the scalar part of the product,
but that the union of the two to form what was called the (whole) product did not
advance the theory as an instrument of geometrical investigation... I therefore be-
gan to work out ab initio, ..., the three differential operations ∇⃗ applied to a scalar,
& the two operations to a vector,...""
(Crowe, 1967, p. 152)

Thus, one could say that Gibbs saw the product of two quaternions and felt that it was more
useful to promote the scalar and vectorial part to two separate operations, viz., the dot prod-
uct r⃗1 · r⃗2(∼=−Sq1q2) and the cross product r⃗1 × r⃗2(∼=V q1q2). In addition, he made use of the
familiar26 ∇⃗ = ∂

∂x î + ∂
∂y ĵ + ∂

∂z k̂. In this formalism, there was no longer a negative square, as

î · î = 1. Moreover, Gibbs’ vectors required no scalar part, and while the cross product anti-
commutes, the dot product restored familiar commutativity. In summary, the relatively easy
to use notation and the aforementioned wide application in especially electromagnetism
quickly led to the result whereby the vector algebra wars were definitively won by the vector
calculus Gibbs and Heaviside (Crowe, 1967, p. 150-181).

Yet, even vector calculus has its shortcomings. For one, it is certainly not enough to describe
all physical quantities. We also need Pauli matrices, Minkowski four-vectors, Weyl spinors,
etc. While these are not necessarily difficult to use once one grasps the Gibbs-Heaviside
three-vector, they make up many different mathematical objects nonetheless. This flies
in the face of the ealier-stated ambition to find a vector formalism of universal applicabil-
ity. A second point is that with regards to multiplication, vector calculus does depart from
Descartes’ ideal about (in contemporary terms) the same operations applied to scalars also
being applicable to vectors. Not only have we exchanged multiplication for the dot and
cross product, basic operations like division also do not apply to the Gibbs-Heaviside three-
vectors. Lastly, the formalism does not distinguish between vectors that display different be-
havior. In particular, one can hardly tell whether one is dealing with a vector or pseudovector.
As a brief refresher on this distinction, consider the following. When a particle in front of a
mirror travels upwards, it also does so in its mirror reflection. The upward vector is invariant
under this parity transformation. But now consider an electron rotating in clockwise fashion
in front of a mirror. The magnetic field vector in the center of the electron’s orbit points up.
Yet, in the mirror image, the electron moves counterclockwise. Consequently, the magnetic
field vector flips under this parity transformation, i.e., it now points downwards. While ve-
locity and the magnetic field are represented by the same mathematical object, they behave
differently under this transformation. We say that while velocity is a vector, the magnetic
field is a pseudovector (or, equivalently, an axial vector). The Gibbs-Heaviside formalism not

26It should be mentioned that Tait, the hardened supporter of Hamilton’s methods, had introduced the oper-
ator ∇= i ∂

∂x + j ∂
∂y +k ∂

∂z as a part of quaternionic analysis. Maxwell even referred to him as the "Chief musician
upon Nabla". Moreover, as Tait already often worked with just Sq or V q , the way that he handled quaternions
already started to look a little bit like modern vector calculus. This makes it easy to see how Gibbs and Heaviside
could translate ∇ into their language, even though Tait was not happy with their vector calculus.
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being able to account for this difference is, in fact, connected to what was stated earlier to be
something addressed by Clifford. It is a symptom of a larger issue we shall return to in a later
subsection, as it will be easier to explain by diving deeper into the content of formalisms
(Chappell et al., 2015, p. 2001-2003).

The shortcomings of vector calculus may motivate one to still zoom in on the war some-
what further. While it is true that the largest ’front’ in this war was that between quaternions
and vector calculus, more ’factions’ were involved. It turns out that already in 1844, just after
Hamilton and his quaternions, another formalism was proposed that was praised by Gibbs
as superior27 to quaternions and was the most significant influence on Clifford’s later ef-
forts. While initially receiving little attention, the importance of Graßmann’s exterior algebra
(sometimes also just called ’Graßmann algebra’) is, therefore, not to be underestimated. The
next subsection will discuss the historical context of Graßmann’s work, after which we will
move on to a basic description of its content.

3.2 Graßmann and die Ausdehnungslehre

Graßmann was born in Stettin, Prussia (modern-day Poland) as the son of a father who was
a moderately well-known theologian and math teacher at a local gymnasium. It would turn
out that Graßmann (the son!) would take after his father. He first went to study theology
in Berlin, after which he returned to Stettin and self-taught himself mathematics to also be-
come a high school math teacher. In 1840, during the exams he needed to take to become
one, he wrote a long essay on tidal physics. This was only published posthumously, but it
already contained core ideas of his vector formalism. In fact, it contains the fundamentals
of what would later become linear algebra, and it may have been the first body where these
ideas were applied. With them, Graßmann was able to simplify many of efforts by Lagrange
and Laplace on the topic (Crowe, 1967, p. 54-62).

Graßmann got the teaching position, and while being a teacher at the gymnasium in Stet-
tin, published his mathematical magnum opus: the Lineale Ausdehnungslehre28 (1944). The
Ausdehnungslehre laid out Graßmann’s vector formalism and contained the foundational
concepts and ideas of what we now know as linear algebra. While the book is nowadays
widely praised for being ahead of its time, introducing all kinds of innovations such as his
formalism working for an arbitrary number of N dimensions, it was largely ignored at its
time. Very few mathematicians read or where acquainted with it, bar some exceptions such

27While Gibbs did not use the work of Graßmann in the development of his vector calculus, he wrote the
following in the same 1888 letter to Schlegel: "I have no doubt that you consider, as I do, the methods of Graß-
mann to be superior to those of Hamilton. It thus seemed to me that it might be interesting to you to know how
commencing with some knowledge of Hamilton’s methods & influenced simply by a desire to obtain the simplest
algebra for the expression of relations of geometric physics & calculus I was led essentially to Graßmann’s algebra
of vectors, independently of any influence from him or any one else."

28In English: "The Linear Theory of Extension", which explains the denotation of his system as ’exterior
algebra’.
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as Möbius. It even got to the point that Graßmann’s publisher let him know that 600 copies
had been used as waste paper. Later editions did little to change this, and one may see why
Graßmann eventually abandoned mathematics in favor of a (successful) career as a linguist
(Crowe, 1967, p. 63-88).

Figure 7: A photocopy of the title page of the Ausdehnungslehre (Graßmann, 1844).

Given the paradoxical situation of the Ausdehnungslehre on the one hand here being claimed
to be a highly innovative work of mathematics and on the other hand something that was
mostly ignored, this invites the obvious question as to the reason for the latter. Crowe iden-
tifies two main reasons for this. Firstly, unlike figures like Hamilton, Graßmann was a high
school teacher with no significant resume to speak of. One can imagine that this must not
have put him at the top of everyone’s reading list. But secondly, and perhaps even more
importantly, Graßmann’s mode of presentation in the Ausdehnungslehre has much to do
with this. The book is notoriously obscure. It is highly abstract and contains few examples,
which, especially in combination with its radically novel content and notation, does little to
help accessibility. It was also very philosophical. The book contains much of Graßmann’s
philosophical thoughts on the subject matter29. This is of course anything but wrong per se,

29One interesting example of Graßmann’s many philosophical analyses in his book is his separation of geom-
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but by using this as a means of justifying his lehre, it could make it harder to resonate with
the dispositions of many readers. Moreover, other than just discussing philosophical con-
tent, there was even an explicit philosophy to the very writing style of the book. Following
the philosopher Friedrich Schleiermacher (1768-1834), Graßmann felt that his mathematical
work had to be presented through a ’dialectic of contrast’, meaning that the reader ought to
be in a position where they can recognize always simultaneously the specific and the whole,
the real and the formal, the discrete and continuous, etc. The uncommonness of this mode
of presentation was yet another factor in the Ausdehnunglehre’s scarcely received attention.
It was only from the 1870s onwards that his work started gaining more recognition. One of
his strongest supporters was the earlier mentioned Schlegel, also a colleague of Graßmann
at the gymnasium. Schlegel published many papers using exterior algebra, and also wrote a
biography on Graßmann that drew more attention to his ideas. Moreover, as was mentioned
before, Clifford was also heavily inspired by Graßmann in his work (Crowe, 1967, p. 63-95).
On his influence, mathematician Fearnley-Sander states the following:

"Even in those cases where forerunners may be discerned, his results, and espe-
cially his methods, were highly original. All mathematicians stand, as Newton
said he did, on the shoulders of giants, but few have come closer than Hermann
Graßmann to creating, single-handedly, a new subject."
(Fearnley-Sander, 1979, p. 816)

Yet even though the Ausdehnungslehre contained deep insights and later gained more recog-
nition, Graßmann is not the ’household name’ for fields of math like linear algebra that New-
ton and Leibniz are for calculus. Math education researcher Jean-Luc Dorier explains this
through his description of Graßmann and the Ausdehnungslehre as an "isolated singularity"
(Dorier, 1995). In Dorier’s own words:

"In many ways, Graßmann’s theory remains a singularity. Even if all its results
correspond to modern concepts and theories, it contributed to the creation of very
few of them. For the theory of vector spaces, it played an important role in the dis-
covery of the axiomatic theory, but most of the concepts of this theory were reestab-
lished independently of Graßmann’s work."(Dorier, 1995, p. 246)

Dorier goes on to explain that nevertheless, Graßmann’s analyses still offer a valuable per-
spective on these topics with respect to our current understanding thereof.
The reason for the choice to cite Dorier’s characterization of Graßmann’s work as an iso-
lated singularity here in full is not only because his own words are a clearer way of putting it

etry from the rest of mathematics, with his exterior algebra being the way to do geometry. In modern western
epistemology, mathematics was usually classified as a strictly a priori science. This means that the truths of
mathematics are not established through observations of reality, but rather through logical relations of ideas. A
trivial example would be that the truth value of the sentence "a triangle has three corners" does not require any
form of experience. Descartes, a well-known rationalist, also thought this way, and since he wanted to bring
algebra and geometry together he certainly differs from Graßmann in this respect. Graßmann rejects the idea
of geometry as an a priori science, as he thinks physical reality can at least partly be used to verify the theorems
of geometry.
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than mine would be, but also as a bit of foreshadowing for what is to come in the next chap-
ter. Specifically, I will argue that the exact same thing happened regarding the use of ’Graß-
mann numbers’ to address the problem of the path integral’s inability to describe fermionic
fields. The authors will be shown to independently rediscover an algebra isomorphic to that
of Graßmann, and it is only later that it is identified to be as such.

Before we get to this though, we must first learn more about the exact contents of Graß-
mann’s exterior algebra. The next subchapter will introduce this in its modern formulation,
both for reasons for clarity as well as the fact that this formulation will make it easier to con-
nect Graßmann algebra to the’s fermionic Fock space discussed in the next chapter. This,
however, leaves one with a final question related to this subchapter. The fact that a ’modern’
formulation of Graßmann algebra exists, implies that the subject is nowadays introduced
in a quite different manner than in the Ausdehnungslehre. The combination of significant
progress in abstract algebraic methods over the last century, as well as the aforementioned
obscurity of Graßmann’s work, explains this rift. Yet, we may still wonder what his work con-
cretely looked like. In the remainder of the current subchapter, we will therefore very briefly
investigate two more things. Firstly, we will tip our to into the Ausdehnungslehre to ’see what
the fuzz is all about’. More directly relevant for our story, we will fill in the explanatory gap
between exterior algebra as introduced by Graßmann, and exterior algebra as can these days
be found in mathematics textbooks (including in the work of the most well-known author in
the next chapter).

In the Ausdehnungslehre, the objects of algebraic manipulation are called extensive magni-
tudes. These are abstract symbols that can stand for anything that can be assigned a numer-
ical amount. We shall denote them below with a, b and c. Graßmann defines two types of
verknüpfungen (’connections’) between such magnitudes. The first is a synthetic connection,
which he defines by means of the following two relations (Graßmann, 1844, p. 3-5):

a ⌢ b = b ⌢ a (152)

(a ⌢ b)⌢ c = a ⌢ (b ⌢ c) = a ⌢ b ⌢ c (153)

Here, we recognize what we would now refer to as commutativity and associativity.
The second connection introduced by Graßmann is the analytic connection, defined through
(Graßmann, 1844, p. 6-8):

(a ⌣ b)⌢ b = a (154)

a ⌣ b ⌣ c = a ⌣ c ⌣ b = a ⌣ (b ⌢ c) (155)

a ⌣ (b ⌣ c) = a ⌣ b ⌢ c (156)

While we need not do a deep dive into the Ausdehnungslehre, nor fully grasp the above for-
mulae, it is interesting to see his notation and to note that Graßmann’s description of how
these magnitudes combine eventually leads him to a structure that we would now associate
with the axioms of vector spaces. He is, in a different language, introducing concepts like
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closure, distributivity, and the like. Later in the book, he also introduces the wedge product
as a higher-dimensional generalization of multiplication, and this we will treat in the next
subsection. Yet, looking inside the Ausdehnungslehre, one also sees far more philosophical
elaboration than such formulae, seemingly supporting the earlier covered points on acces-
sibility. In conclusion, while the spirit of his work is certainly still in there, the modern for-
mulation of his exterior algebra looks quite different from what we find in his own book.

This, then, finally leaves us with the question where this modern formulation comes from.
Geographically, the answer is mostly France. Especially important in the further develop-
ment of exterior algebra30 and its application to differential forms was the French math-
ematician Élie Joseph Cartan (1869-1951), who was aware of Graßmann’s work (Bourbaki,
1974, p.663-664). An overview of the state of exterior algebra by the middle of the 20th cen-
tury was written down in (Vivier, 1956). The many contributions of Cartan, as well as Graß-
mann and his soon to be discussed wedge product, are established from the offset (Vivier,
1956, p. 203-204). It is also this overview that is later directly cited as a "well-developed differ-
ential calculus on the Graßmann algebra" by a key author in the next chapter (Berezin, 1966,
p. 49), who also did work on the translation of Graßmann’s legacy into modern form himself.
This, then, gives us some sense of the bridge between the work of Graßmann, undershad-
owed at its time, and the extensive use of it we shall see in the next chapters. Before contin-
uing with introducing modern exterior algebra, we conclude this subsection with an in this
regard perhaps fitting quote from Graßmann in the preface of the 1962 Ausdehnungslehre:

I remain completely confident that the labour I have expended on the science pre-
sented here and which has demanded a significant part of my life as well as the
most strenuous application of my powers, will not be lost. It is true that I am aware
that the form which I have given the science is imperfect and must be imperfect.
But I know and feel obliged to state (though I run the risk of seeming arrogant)
that even if this work should again remain unused for another [referring to the
gap between the first and second version] seventeen years or even longer, without
entering into the actual development of science, still that time will come when it
will be brought forth from the dust of oblivion and when ideas now dormant will
bring forth fruit. I know that if I also fail to gather around me (as I have until now
desired in vain) a circle of scholars, whom I could fructify with these ideas, and
whom I could stimulate to develop and enrich them further, yet there will come a
time when these ideas, perhaps in a new form, will arise anew and will enter into
a living communication with contemporary developments. For truth is eternal
and divine.
(Fearnley-Sander, 1979, p. 817, Translation of Graßmann.)

30In this regard, Henri Poincaré (1854-1912) and Giuseppe Peano (1848-1932) may also be mentioned (Bour-
baki, 1974, p. 663-664).
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3.3 The basics of exterior algebra

Let us start with two brief paragraphs on how the material below is to be covered.
This subchapter provides a basic understanding of Graßmann’s exterior algebra. It is, as
mentioned, based on contemporary economical secondary sources rather than the (in)famous
Ausdehnungslehre itself. Most of the content below is derived from (Mac-Lane and Birkhoff,
1999, §16.5-16.10), with some visual help from (Chris, 2023). Our primary goal with exte-
rior algebra here is to get a good grasp on its content insofar required for the problem of
fermionic path integral description, and make the connection thereto as transparent as pos-
sible. We also go slightly beyond this and see what the underlying mathematical structure
is about. This is best done with a modern formulation using tensor products that also show
up in the next chapter. A logical place to start would be the definition of an exterior (or
Graßmann) algebra. Yet, here another conundrum appears. On the one hand, a full formal
treatment would take up some time and require definitions of definitions of definitions that
are, like mathematical analysis for a calculus student who just wants to solve a simple inte-
gral, not a precondition for the goal at hand. On the other hand, leaping into applications
without any idea of the structure one is standing on can also halt understanding. We will
therefore go down the middle of the road, explaining necessary concepts albeit not with the
rigor and precision an expert in the field would require.

With the previous paragraph in mind, let us proceed with a definition of exterior algebra
(Mac-Lane and Birkhoff, 1999, Paraphrased from §16).

Definition: Let there be a tensor algebra over a vector space (as usual over a field F ) T (V ). The
exterior algebra Λ(V ) is then the quotient algebra of the tensor algebra by a particular ideal
I , denotedΛ(V ) ≡ T (V )/I . This ideal is two-sided and generated by all elements v ⊗ v ∈ T (V ),
with v ∈V .

The above contains plenty of mathematical jargon that might not be all that familiar to the
average physics student. After this, a much more visual and application-focused picture will
emerge, but let us briefly go through it. I assume familiarity with the definition of a vector
space over a field. Let us start with the tensor product v⊗w . This is an abstract operation we
will not take apart further, but one can very bluntly think of it as a generalization of the mul-
tiplication of a column vector with a row vector, conserving properties such as distributivity.
It is a mapping that takes a vector v ∈ V , w ∈ W , and outputs an element v ⊗ w ∈ V ⊗W .
Let us get a more concrete picture by example. Let us consider purely the vector space V of
dimension 2, described by the orthonormal basis vectors ê1 and ê2. Now consider the tensor
product of this vector space with itself, V ⊗V . The basis elements (’elementary tensors’) in
the tensor product of V with itself are ê1 ⊗ ê1, ê1 ⊗ ê2, ê2 ⊗ ê1 and ê2 ⊗ ê2. As usual, linear
combinations can be formed between them. We can keep going and introduce V ⊗V ⊗V ,
containing 23 basis elements such as ê2 ⊗ ê1 ⊗ ê1.
Now the tensor algebra T (V ) can be thought of as the direct sum of all these tensor products
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of the vector space, i.e.,

T (V ) = F ⊕V ⊕ (V ⊗V )⊕ (V ⊗V ⊗V )⊕ ... (157)

The F can be viewed as the set of scalars.
An example of an element of the above tensor algebra would be 10− 2ê1 + 4ê2 ⊗ ê1 − 3ê1 ⊗
ê1 +72ê1 ⊗ ê2 ⊗ ê1 ⊗ ê1, where I have taken one element F , one of V , two of V ⊗V and one of
V ⊗V ⊗V ⊗V .

From such a tensor algebra we can now derive the exterior algebra. For this, we still need
to understand the idea of a quotient algebra, an ideal and the exterior product.
A quotient algebra can be thought of as a subalgebra of T (V ), incorporating only a subset of
the elements of T (V ). The ideal I is then what we use to construct the quotient algebra, as
it fills us in on what elements we are to remove from T (V ) to end up with the quotient alge-
bra. It is a special subalgebra of T (V ) that always obeys closure and absorption. The former
refers to the property that when applying the operation(s) associated with the tensor algebra
to elements of the ideal, the resulting element will still be an element of the ideal. The latter
refers to the property that when we operate on an element of the ideal with an element of
the greater tensor algebra, the resulting element will still be an element of the ideal. If this
happens regardless of whether we apply the element of T (V ) from the left or the right, the
ideal is two-sided. A consequence of these properties is that we cannot ’accidentally’ find
elements of the ideal back in our quotient algebra after doing operations on elements of the
later.

The above definition considered the ideal generated by all elements v ⊗v ∈ T (V ) with v ∈V .
For us, this means that our exterior algebra Λ(V ) is the quotient algebra of T (V ) from which
we have removed all elements that are the tensor products of vectors with themselves, i.e.,
v ⊗ v . This can be done by just setting v ⊗ v ≡ 0.
Consider the effect of this on our previous example of the two-dimensional vector space V
with the orthonormal basis vectors ê1 and ê2, and the tensor algebra we constructed from
this. The scalars in F will be unaffected, and so too the vectors in V . However, when we re-
member that the elementary tensors of V ⊗V were ê1⊗ ê1, ê1⊗ ê2, ê2⊗ ê1 and ê2⊗ ê2, we note
that the first and last of these are not elements of the exterior algebra. Moreover, all elements
of V ⊗V ⊗V and those of higher orders go to zero. This is easy to see for elements such as
ê2 ⊗ ê1 ⊗ ê1, but not immediately obvious for other examples such as ê2 ⊗ ê1 ⊗ ê2. This can,
however, still be proven to be zero in the following way. Since v ⊗ v = 0 for all v ∈ V , we can
state the following:

(ê1 + ê2)⊗ (ê1 + ê2) = 0 (158)

Due to the distributivity of the tensor product, we find:

ê1 ⊗ ê1 + ê1 ⊗ ê2 + ê2 ⊗ ê1 + ê2 ⊗ ê2 = 0 (159)

Now note that again the first and last terms are already known to be zero. This, finally, results
in:

ê1 ⊗ ê2 =−ê2 ⊗ ê1 (160)
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Therefore, due to imposing our condition v ⊗ v ≡ 0, the tensor product is now anticommu-
tative.

Because of that, we can say that ê2 ⊗ ê1 ⊗ ê2 = −ê1 ⊗ ê2 ⊗ ê2 = 0, and it follows that indeed
all elements of V ⊗V ⊗V and those of higher orders are zero.

For the case of the example above, we can thus conclude that our exterior algebra Λ(V ) has
four basis elements: {1, ê1, ê2, ê1⊗ ê2}, with the operation being anticommutative. Consistent
with its roots in the tensor algebra, the elements of the exterior algebra are linear combina-
tions of these basis elements. In just a moment, we will introduce a sensible vocabulary for
these (basis) elements.
This then concludes our surface level detour into abstract algebra. We can now see that from
the viewpoint of contemporary mathematics, exterior algebra does not come from nowhere
and can be derived from existing concepts. Let us now fully switch back to operating as
physicists and consider how the algebra can be employed.

First, note that by imposing the condition v ⊗v ≡ 0, we now have a tensor product subject to
a restraint it is in general not restrained to. It is now also always anticommutative, which was
not assumed for the general tensor algebra T (V ). Moreover, let us take a step back and real-
ize that much of the above mathematical language was not around at the time of Graßmann,
but what we did was derive an algebra that is isomorphic to his system. For these reasons, let
us talk of a different operation and thereby introduce the key operation of exterior algebra:
the exterior (or wedge, or sometimes, perhaps confusingly, also outer) product. The exterior
product of two vectors v and w is denoted as v ∧w . Luckily, it has a very clear geometrical
interpretation. With that, we will be able to see how Graßmann’s exterior algebra can be em-
ployed and visualized.

We will start simple with the two-dimensional case and slowly build up from there in com-
plexity and dimensionality. For the sake of clarity, we will reintroduce the arrows for vectors.
The exterior product of two vectors v⃗ and w⃗ is the oriented plane segment v⃗ ∧ w⃗ , called a
bivector. The negative of this expression, i.e., w⃗ ∧ v⃗ by the anticommutation rule, is the same
plane segment with the opposite orientation. For a visual picture of this, see 8.
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Figure 8: A simple visualization of the exterior product for vectors u⃗ and v⃗, resulting in two bivectors.
Two possible orientations emerge that can be derived from following the direction of the first vector in
the exterior product (Chris, 2023).

Bivectors are characterized by their magnitude (area) and their orientation31. The orienta-
tion of a bivector can be found simply by starting to walk around the area in the direction
of the first vector in the exterior product. Algebraically, however, keeping track of the ori-
entation is just a matter of keeping track of the order of the vectors in the exterior product
(or, equivalently, whether or not there is a minus sign in front of it). Adding two bivectors
can therefore add or subtract to the magnitude of the resulting bivector, depending on them
having the same or different orientation respectively. The determination of the magnitude
of a bivector can be done by taking the exterior product of vectors expanded in terms of their
basis vectors. Returning to our earlier example of the two-dimensional vector space, we may
have something like:

(a1ê1 +b1ê2)∧ (a2ê1 +b2ê2) (161)

Using the distributive property of the exterior product then yields:

a1a2(ê1 ∧ ê1)+a1b2(ê1 ∧ ê2)+a2b1(ê2 ∧ ê1)+a2b2(ê2 ∧ ê2) (162)

We know that the exterior product of a vector with itself is zero: something that also makes
sense with our geometric interpretation, as no parallelogram can be constructed from par-
allel vectors. Therefore, the first and last terms are zero. Moreover, we can flip the order of
the basis vectors in the third term and gain a minus sign. This ultimately yields the following
expression for the exterior product of two vectors written out in their basis vectors:

(a1b2 −a2b1)(ê1 ∧ ê2) (163)

Here, the coefficient a1b2 − a2b1 acts as a sort of scaling factor for the unit bivector ê1 ∧ ê2.
The coefficient is then equal to the total magnitude, or area, of the bivector. This is hardly

31A perhaps curious consequence of this is that the left bivector in 8 is equivalent to, for example, a counter-
clockwise oriented circle of the same area.
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surprising, as this is in agreement with what we would expect.

While bivectors are certainly Anschaulich, one may wonder whether they contain any con-
crete physical application. They in fact do, as exterior products are sometimes argued to be
a good replacement for cross products in physics. Consider angular momentum. While an-
gular momentum concretely relates to rotation, we normally represent it with just another
vector. The bivector, when for example displayed as an oriented circle, may be argued to
more naturally represent the nature of angular momentum. Perhaps more importantly, an-
gular momentum being a bivector removes the vector-pseudovector ambiguity. As opposed
to vectors, bivectors do invert their orientation when mirrored, just like the pseudovectors
appearing in physics. Graßmann may therefore be said to, at least in this respect, have found
a better vector system with which to describe physical quantities.

We can climb one dimension higher and consider the three-dimensional case. While in one
dimension our exterior algebra trivially has the two basis elements {1, ê1}, and in two dimen-
sions we saw that we had the four basis elements {1, ê1, ê2, ê1 ∧ ê2}, the three-dimensional
case has the following eight basis elements: {1, ê1, ê2, ê3, ê1 ∧ ê2, ê2 ∧ ê3, ê3 ∧ ê1, ê1 ∧ ê2 ∧ ê3}.
That is, one scalar, three vectors, three bivectors and, finally, a trivector. Note that it simply
follows from our abstract algebra discussions that these are simply the only eight basis ele-
ments we can construct for our exterior algebra given the vector space V with basis vectors
ê1, ê2 and ê3. Other orderings are just linear combinations of what is already in here. For ex-
ample, ê2∧ê1∧ê3 =−ê1∧ê2∧ê3, and therefore the former is not a linearly independent basis
element. Also note that by the same logic seen for the tensor algebra, any element contain-
ing three wedge symbols would (perhaps after taking out a minus sign) contain an exterior
product of identical basis vectors, and thus be zero.

Although the number of basis elements makes sense, the trivector ê1∧ ê2∧ ê3 may not yet. As
one may guess, however, a trivector is simply a volume with two possible orientations. Like
bivectors, they find use in physics, with monopole charge being an example of trivector. A
visualization can be found in 9 below:
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Figure 9: A simple visualization of a trivector with its two possible orientations. Note that overlapping
edges of the squares on the cube will always have opposite orientations (Chris, 2023).

The above trivector can be thought of to have been conceived by taking the exterior product
of a square and a vector in its perpendicular direction. From this, one does not construct a
square, but a cube, where the orientation again follows the direction of the exterior product
vectors in order.
This shows that the exterior product is not limited to two elements of identical dimension-
ality. In general, the exterior product outputs an object whose dimensionality is the sum of
the operation’s arguments.

Elements of our exterior algebra are usually not just vectors, but add objects with different di-
mensionality. For example, we may have the element 4−6ê2−7ê1∧ê2+2ê3∧ê1−3πê1∧ê2∧ê3.
We call these elements of the exterior algebra multivectors. Although different in many ways,
quaternions and exterior algebra are alike in that unlike vector calculus, they have no prob-
lem with adding objects of different dimensionality. This is just another, and certainly not
less effective, way of doing physics.

At this point, we may finally say something about Graßman numbers or Graßmann vari-
ables. If we take the field F in the definition of the exterior algebra to be C, then a Graßmann
number is simply an element of the exterior algebra. Most important for now is to realize that
these elements anticommute and are zero when operating upon themselves, as we saw with
v⃗ ∧ w⃗ =−w⃗ ∧ v⃗ and v⃗ ∧ v⃗ = 0. With the foreknowledge we now possess, this is really all that
is needed to be able to detect them in the next chapter.

With that, we now have a basic understanding of exterior algebra, as well as to how it came to
be and how we arrived at its modern formulation. In combination with our familiarity with
the path integral formulation, that means that we are now ready to get started on our histor-
ical quest. In the next chapter, we shall see how Graßmann’s algebra was (re)discovered to
solve the problem that was formulated in chapter 2.5.
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4 The (Re)Discovery of Graßmann Algebra to Formulate Fermionic
Path Integrals

In the previous two chapters, we have learned about the path integral formulation, Graß-
mann algebra and the central problem of why the path integral could not yet deal with
fermions. In this chapter, the historical line that led to the eventual solution thereof will
be investigated.

Before getting started on this, we will very briefly consider the standard narrative found
in most textbooks. The Soviet physicist Felix Alexandrovich Berezin (1931-1980) is usually
the name that appears with regard to the breakthrough in the problem of fermionic path
integrals, as can, among others, be seen in (Peskin and Schroeder, 2019, §9.5)(Cartier and
DeWitt-Morette, 2006, §9.3)(Weinberg, 1995, §9)(Itzykson and Zuber, 1980, §9)32. He pub-
lished a small but decisive paper on the issue in the early sixties (Berezin, 1961), and further
developed his work on this and other topics in a well-known book that came out a few years
later (Berezin, 1966). Because of these works, he is credited with being the first to explicitly
introduce ’Graßmann calculus’, with which he derived the following result.∏

l

(∫
dθ∗l dθl

)
e−θ∗i Bi jθ j = detB (164)

Here, the summation convention is implied in the exponent, and the standardized notation
of (Peskin and Schroeder, 2019, p. 301) has been employed. This integral, with θ∗ and θ be-
ing Graßmann variables, and B a Hermitian matrix (both to be defined more clearly later),
lies at the heart of the solution to our central problem. It is still used in this form. In fact,
in most QFT applications, one does not need more than the above result when concerned
with fermionic path integrals. After all, it is the type of Gaussian integral one gets for not
just a free bosonic field, but also a free fermionic field. That means that if we can solve these
for fermionic fields, we have all we need to apply perturbation theory and derive Feynman
diagrams.
Another often used factoid related to this integral is that we note that its result is the inverse
of its bosonic counterpart of the same form appearing in chapter 2.4. We will see how exactly
this comes to be over the course of the papers discussed below, with a direct proof of it being
included at the end of this chapter.

To the historian, however, this leaves many questions unanswered. We may wonder how
Berezin came to this insight, whether he had any preceding influences and if he is indeed the
sole name deserving of this discovery. As it turns out, many mathematicians and physicists
had been working on the topic during the 50s. While Berezin and his Soviet influences will
be considered, it turns out that lots of developments on this front took place in the United
Kingdom. In fact, the search for a single person or country that can be credited with the dis-
covery of Graßmannian path integrals will turn out to be a blurry one, with plenty of room

32As one may notice, Berezin has the tendency to be mentioned in the ninth chapter of books!
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for priority disputes.

Therefore, this chapter will give an overview of all the noteworthy contributions to the even-
tual solution of our problem, ending with Berezin’s 1961 paper on the issue. For each of these
papers, the following questions will, insofar possible, be touched on each time:

• Who is the author? What is their background and who are they influenced by?

• What problem is the author trying to address in their paper? What are their goals?

• What novelty does the author bring? How do they attempt to solve the problem?

• What is the impact of the author’s accomplishments? How do they compare to others?

Each question has a clear function in advancing our understanding of the papers, their con-
text, and our evaluation of their relevance in the bigger picture. At the end of the chapter,
some concluding remarks will be presented.
We will go through, in total, 6 key papers on the topic, starting in ’55 and ending in ’61, in
order of submission date. These papers are interconnected and I have found them in partic-
ular to together make up a main post-Feynman storyline of how the problem of fermionic
path integrals was eventually resolved. Of course, a boundary has to be drawn somewhere,
and one can also name authors orbiting around this main body. These authors, for exam-
ple, can be credited with contributions such as doing relatively early work on the theo-
retical basis of the path integral in QFT and with such or other research inspiring the au-
thors in the main line, or themselves noticing the problem but not pursuing it further /
doing so in a way that did not ultimately contribute to the main line of resolution of in-
terest. Examples of such authors are (Schwinger, 1953)(Gel’fand and Minlos, 1954)(Fradkin,
1954)(Polkinghorne, 1955)(Davison, 1954)(Edwards and Peierls, 1954)(Burton and De Borde,
1956)(Symanzik, 1954). Some will be mentioned or (particularly Schwinger) briefly discussed
in the next few subchapters. With our setup clear, let us proceed with the first author.

4.1 "The Representation of Green’s Function in Quantum Electrodynam-
ics in the Form of Continual Integrals" (1955) by I.M. Khalatnikov

Isaak Markovich Khalatnikov (1919-2021) was a Soviet physicist, working on many areas in
the field. His doctoral advisor being the famous Lev Landau (1908-1968), quantum field
theory was certainly among these33. In this 1955 paper, Khalatnikov aims to

"...present an expression for Green’s function in the form of continual integrals in
the space of ψ and A functions." (Khalatnikov, 1955, p. 568)

33Landau is also credited for "participation in the investigation" leading to the to be discussed paper (Kha-
latnikov, 1955, p. 570).
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This did not come out of nowhere. While perhaps not as well-known to your average physi-
cist, the also widely acclaimed mathematicians Robert Adol’fovich Minlos (1931-2018) and,
especially so, Israel Moiseevich Gel’fand (1913-2009), had published a paper doing precisely
this for Bose fields earlier that year (Gel’fand and Minlos, 1954). Khalatnikov wanted to ex-
tend their work to electron fields, i.e., fields of the anticommutative fermions.

Khalatnikov’s mission statement may warrant some commentary and backstory. First of all,
Green’s functions themselves are a well-known tool utilized in many subfields of physics,
certainly including QFT. Once the Green’s function associated with a differential operator
acting on a field is known, we can easily solve for the field by having the Green’s function act
on the source term. For the path integral formulation, it would therefore be worthwhile to
also express Green’s functions in this way.
A particular fan of Green’s functions in QFT was Julian Seymour Schwinger (1918-1994).
While Feynman had formulated QED in terms of a functional integral, Schwinger preferred
to formulate QFT in terms of functional differentials of fields. Therefore, we are not integrat-
ing over functions, but differentiating with respect to them, writing for example δ

δφ(xµ) F [φ(xµ)]
where δ denotes that the derivative is taken with respect to a function like D does for func-
tional integration. A typical way of taking a functional derivative is to add a small deviation
function δφ(xµ) toφ(xµ), expanding the resulting functional F [(φ(xµ)+δφ(xµ)] to first order
in δφ(xµ) and considering this linear term’s coefficient.
With that, Schwinger occupied a sort of ’third way’, working neither with the operator formal-
ism of canonical quantization, nor with the path integral, although it certainly shares some
things with the latter. As Schwinger lays out in his Nobel lecture, both Feynman and him
are inspired by Dirac’s work on the quantum Lagrangian, although Schwinger took this in a
differential rather than integral direction (Schwinger, 1965, p. 1-2). Central to his formalism
is what is now known as the ’Schwinger action principle’

δ〈t1|t2〉 = 〈t1|δŜ|t2〉 (165)

Here, 〈t1|t2〉 is a transition function, and Ŝ is a quantum action operator, and thus not the
classical action we see in Feynman’s path integral. We therefore have a quantum principle
of stationary action. We may wonder if we can also find a quantum version of the Euler-
Lagrange equations through this. This is indeed the case, and these are called the Schwinger-
Dyson equations. They are the equation of motion whose solutions are the Green’s functions
for quantum fields. It should however be noted that ’Green’s functions’ here may be more of
a metaphor. These Green’s functions are not literally those associated with, e.g., the Klein-
Gordon or Dirac equation differential operators, as they are actually the ’Green’s function’
of a differential operator with an extra term. For example, we may have something like(
□+m2 + δ

δJ (xµ)

)
G(xµ, (x ′)µ) = δ(xµ − (x ′)µ), where the usual Klein-Gordon operator is ex-

tended by the functional derivative with respect to a source field34. They can be formulated

34Schwinger was particularly fond of using such source fields, and the source theory he later developed took
up an important part of his work. Like Feynman’s operator calculus, however, this idea did not catch on as
much as others of his.

93



as follows (Peskin and Schroeder, 2019, p. 306-308):

T

((
δ

δφ(xµ)

∫
d 4x ′L

)
φ(xµ1 ) . . .φ(xµn )

)
=

n∑
i=1

T
(
φ(xµ1 ) . . . (iδ(xµ−xµi ) . . .φ(xµn )

)
(166)

Here, T denotes the usual time-ordering operator. We are thus left with a ’tower’ of an in-
finite number of coupled functional differential equations, because every n-point Green’s
function involves the (n +1)-function, and so on. The terms on the right-hand side are the
so-called ’contact terms’. These make up the essential difference with the classical Euler-
Lagrange equations and encode the quantum nature of the equation.
While the Schwinger-Dyson equations are non-perturbative and exact, they cannot be solved
analytically, but only approximated through perturbation theory. Dyson found how one can
also derive the equations carrying his and Schwinger’s name from the path integral formula-
tion, and showed how the resulting Green’s functions can be related to Feynman diagrams,
i.e., terms of a perturbation series, through the LSZ reduction formula.
In the early days of the path integral, when it was not yet known that well and still plagued
by some problems such as the one at the center of this thesis, Schwinger’s methods as de-
scribed above were more popular than they are now. They ultimately lost out to the easier
to work with methods of Feynman, though35. Nevertheless, this all also explains some of the
background of Khalatnikov’s work, who at this time wanted to give formal solutions to the
Schwinger-Dyson equations in terms of path integrals.

35The same goes for their person. While the charismatic Feynman is widely known, this seems to be much
less so the case for Schwinger. This seems to be the case despite his enormous impact on the development of
QED and other areas of physics, and his simultaneous Nobel prize with Feynman. To test this, I asked students
at the end of their Master’s in Astro and Particle Physics at my own university whether they know who Feynman
is and whether they know who Schwinger is. The results can be found below in figure 10.

Figure 10: A poll (N = 40) under Master’s students in Particle and Astrophysics near the end of their degree, on
whether they know who Feynman and Schwinger are.

As can be seen, 100% of the N = 40 students who answered the poll knew who Feynman was, but only 25%
could say the same about Schwinger. While the first result is no surprise, the second is rather shocking, even
though it confirms the above hypothesis. The fact that three in four students even in a particle physics track
do not know who Schwinger is, shows that his fame has fallen off as a result of his methods being somewhat
marginalized by those of Feynman.
Of course, the above is by no means a scientific survey, as it is just a strawpoll in a WhatsApp group chat of one
particular university. Nevertheless, the discrepancy is extremely strong, and it seems unlikely to fully disappear
even if an international survey of the key demographic was taken.
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With this context in mind, we can carry on to a second aspect of Khalatnikov’s mission state-
ment worthy of commentary. This has to do with what Khalatnikov calls ’continual integrals’,
and how these relate to path integrals. A continual integral can be viewed as a more math-
ematically formal generalization of the by now familiar path integral, viz., an integral over a
function which is defined in terms of the infinite limit with respect to the number of regular
integrals in a product36, like in (1) (Berezin, 1966, p. 38). Thus, while the path integral evokes
the image of a sum over physical paths or field configurations, the continual integral is de-
void of such physical interpretations and is just about the general mathematical aspects of
the object and procedure used to perform such a sum over paths. In other words, the path
integral is a continual integral, but not every continual integral is a path integral like the one
used by Feynman in quantum theory.
A last comment on the mission statement is that ’the space ofψ and A functions’ refers to the
electron and photon field, as the paper’s title already establishes Khalatnikov is considering
QED. With this, it is clear what he sets out to do.

To find the Green’s function for a single electron,
When considering the electron field, Khalatnikov is confronted with the following ex-

ponent that we will turn our attention to first, given it is particularly relevant for our story.
Resulting from turning the Schwinger-Dyson equation into an integral exponent by previous
authors (Khalatnikov, 1955, p. 568), it can be written as:

1

4

∫ ∞

−∞
d x

∫ ∞

−∞
d x ′SFαβ(x −x ′)

δ2

δψα(x)ψ̄β(x ′)
(167)

The spinor functions in the functional derivatives are stated to anticommute, which is by it-
self not yet surprising (Khalatnikov, 1955, p. 569).
Khalatnikov now introduces a coordinate lattice with N points, whereby SFαβ(xi−xk ) = Sαβ(i k).
This is just a discretizaton process, as was also done when we introduced discrete lattice reg-
ularization, even though that was a different context. For Khalatnikov, this is useful to do as it
allows for the use of sums instead of integrals, and partial derivatives rather than functional
ones.
He then aims to circumvent the difficulty that comes with anticommuting spinors in the now
partial derivative, by rewriting the above exponent as

Šαβ(i k)
δ2

δψα(i )ψ̄β(k)
(168)

Note that the integral is now replaced by an implicit sum, as one can invoke the summation
convention here.

36As we will see, it appears that while Western authors prefer to use ’functional integral’, the Soviet authors
seem to opt for ’continual integral’ instead. One reason may be that the mathematically-minded Soviet authors

we here discuss may have thought ’functional integral’ to be too vague, as the object
∫ b

a f (x)d x is technically
also a functional ’F ( f (x))’, the difference being that the function is here integrated over rather than being the
integration ’variable’.
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The operator Šαβ contains not just Sαβ(i k) but, crucially, absorbs the anticommutative prop-
erties of the spinors. The spinors are now demoted to "ordinary functions which commute"
(Khalatnikov, 1955, p. 569). The anticommutativity is instead ’moved to’ a new matrix oper-
ator ηi k , whereby Š(i k) = S(i k)ηi k . A crucial property of this matrix for our purposes is that
ηi i =−1.

The Green’s function for a single electron looks like (Khalatnikov, 1955, p. 568):

Gαβ(x, x ′) = 〈T (ψα(x)ψ̄β(x ′)S/Svac〉 (169)

To solve it, Khalatnikov needs the vacuum expectation value. This can be written as Svac =
e−i ∫H (xµ)d 4x , which after entering the QED Hamiltonian density yields, among others, the
exponential of (167). Again, looking at the part of the derivation most interesting to us, this
leads to the inclusion of the following integral (Khalatnikov, 1955, p. 570):

I =
∫

e−ψ̄(i )Š−1(i k)ψ(k)δψδψ̄, δψ=∏
i

dψ(i ), δψ̄=∏
k

dψ̄(k) (170)

It is important to note that here the symbol δ is used to display the functional integration
measure of the ’continual’ integral, rather than the symbol D we used in chapter 2, which
came around later.
One might also note that this continual integral looks very similar to (164). One crucial dif-
ference is that, as was just noted, ψ and ψ̄ are regular, commuting functions. Still, this is
not merely a regular bosonic path integral either, due to the matrix operator ηi k implicitly
present in the exponent. Also note that Khalatnikov takes the integral over these functions,
and that he, in familiar manner, writes them as the product of discretized parts.
While this takes more effort than later approaches, Khalatnikov can evaluate this integral,
and does so by introducing a limiting trick and expanding the exponential.

I (α) = lim
α→0

∫
e−αψ̄(i )ψ(i )

∞∑
n=0

1

n!
(ψ̄(i )Š−1(i k)ψ(k))nδψδψ̄ (171)

Thus, we can see that the extra exponential disappears in the limit, and the previous ex-
ponential is now in the form of a sum. Performing the leftover Gaussian integral, he then
establishes

I (α) = lim
α→0

πN

αN

∞∑
n=0

(−1)n+P 1

αN
S−1(1i1) · · ·S−1(nin) (172)

Here, the P is the parity of the permutation of the second indices. It is effectively a book-
keeping device for the minus signs related the matrix ηi k . Further, the above follows from
the contraction of the S−1(i k) and ηi k , as results from the definition of Š(i k) above. What is
left over now, however, is by definition the determinant, so that he establishes

I (α) = lim
α→0

= πN

αN
det

(
δi k +

S−1(i k)

α

)
(173)
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While the Gaussian integral over the ’defermified fields’ thus still gives a determinant, it is
not quite the elegant expression as seen in (164). In fact, the determinant blows up in the
limit introduced to derive it. For the resolution of this, he refers to another paper.

Returning to the vacuum expectation value, Khalatnikov does seem to be able to success-
fully calculate it, and he even writes it as the familiar seeming result below (Khalatnikov,
1955, p. 570):

Svac =
∫

e i
∫

L(x,ψ,A)d 4xδψδψ̄δA∫
e i

∫
L0(x,ψ,A)d 4xδψδψ̄δA

(174)

Here, L0 is the Lagrangian of the electron’s spinor field without interaction terms, while L
does include interaction with the photon field.

After formulating Svac , Khalatnikov can use it to derive the Green’s function for a single
electron using (169). Given that Svac is indeed formulated in terms of continual integrals,
Khalatnikov’s efforts in trying to express Green’s functions in QED in terms of continual inte-
grals seem to be successful. These results are not new physics material, but reconstructions
of perturbation results of QED in the orthodox formalism, incorporating the minus signs
more directly present in the operator language of canonical quantization through different
methods. He also considers anticommuting objects that are not operators. His methods
are, however, far less efficient than later authors’, and include awkward limiting procedures.
Moreover, Graßmann numbers are not yet utilized in his derivation. Six years later, however,
Berezin would do so, and Khalatnikov would in fact be the only citation in his paper (Berezin,
1961, p. 314). His influence on the man who would come to be known as the one to introduce
Graßmann calculus to solve fermionic path integrals is, therefore, explicitly clear.

4.2 "Propagators of Quantized Field" (1955) by P.T. Matthews and A. Salam

In the same year as Khalatnikov the British physicist Paul Taunton Matthews (1919-1987) and
one of his students, the Nobel prize winning Pakistani physicist Mohammed Abdus Salam
(1926-1996), also published a paper on the issue (in some ways, as we shall see, also being
comparable to Khalatnikov’s in content) (Matthews and Salam, 1955). The doctoral advi-
sor of both was Nicholas Kemmer (1911-1998), the Russian-British physicist famous for his
work on the British nuclear program. Their paper was inspired not just by the work of Feyn-
man37, but also by the work of and discussion with Gordon Feldman (1929-2014), Rudolf
Ernst Peierls (1907-1995) and in particular Samuel Frederick Edwards (1928-2015). The lat-
ter two had published a paper on finding the Green’s function of a nucleon (i.e., a spin-1/2
particle) moving in an external field starting from Schwinger’s functional equations a year
earlier (Edwards and Peierls, 1954). This is not entirely surprising, as Edwards was a doctoral
student of Schwinger.

37Feynman is, however, taken as the explicit starting point of their paper, unlike in the case of Khalatnikov.
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At the beginning of their paper, Matthews and Salam state that fermionic fields have to anti-
commute. This is again an interesting comment, as since they are talking about Feynman’s
functional integrals, they are not talking about operator valued fields. They continue with
the following important remark:

"In view of the apparant difficulty of functional integrals over anticommuting
functions, this direct approach has always been avoided in the past. It is the pur-
pose of this paper to show that such integrals can be defined and evaluated, and
lead in a simple and unified way to compact expressions for the many particle
propagators, from which scattering cross sections and energy levels may, in prin-
ciple, be deduced." (Matthews and Salam, 1955, p. 121)

With this, the detected problem and subsequent goal of the paper is clear. Three further
interesting claims are made by the authors. Firstly, they want to make explicit the connec-
tion between Schwinger’s action principle and Feynman’s path integral, noting that while
Schwinger provides functional differential equations for propagators, Feynman provides the
solutions to them in terms of functional integrals. This relationship can then be utilized Sec-
ondly, they state that while Feynman had taken Pauli’s exclusion principle as a given and
then just applied it to the path integral formalism, the principle will follow naturally "as a
consequence of the anticommutation of the fields" in their case. Thirdly, they already claim
that in the fermionic case, they will find a determinant, while they will find its inverse in the
bosonic case (Matthews and Salam, 1955, p. 121).

As we are concerned with the relevance of these papers for the eventual solution of fermionic
path integrals through Graßmann numbers, there is a relevant anecdote to note about this
one. In letters between Peierls and Dyson, the latter objects to the publishing of Matthews’
and Salam’s paper, on the grounds of their results not being novel enough. He claims that
these results are already implicit in Feynman and had been established by a Russian physi-
cist. On their behalf, Peierls replies in the following way:

"In this I explain that we now accept the statement that the main result of the pa-
per is implicit in Feynman’s papers, though I still maintain that it is very hard to
recognize and the result is also obtained in the Russian paper which you men-
tioned to me, but there it is derived in a rather round about way through the
Schwinger equation. I still believe the Matthews-Salam paper is still worth pub-
lishing, but since some redrafting will be necessary to acknowledge the connection
with earlier papers and to emphasize what is really new there would be a good
deal of delay involved in having the amended version referred again and we are
therefore proposing to withdraw the paper from the Physical Review and have it
published in this country.
I still believe that it should be published somewhere and I am strengthened in this
both by the fact that the recent paper by Klein using functional methods still jug-
gles around with the most complicated Schwingeresque formalism and still misses
the simplicity of the whole matter and also by a remark in one of Feynman’s earlier
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papers in which he says that nobody has ever worked out how to do the integration
over spinor fields and that this ought to be done." (Lee, 2009, p. 483)

A few interesting statements appear in these two paragraphs. On the one hand, it is acknowl-
edged by all parties involved that Matthews and Salam do not yet bring revolutionary results,
as its implicit presence in Feynman’s earlier work is acknowledged, as well as the work of a
Russian author. The Russian author eventually cited in their work is Efim Samoilovich Frad-
kin (1924-1999), another physicist working on functional analysis in QFT (Matthews and
Salam, 1955, p. 132). But his approach is, as stated by Peierls, more based on Schwinger’s
work. Nevertheless, it again shows the Russo-British occuptation with the issue at hand.
In any case, the innovation of using Graßmann variables is not yet present in the work of
Matthews and Salam. This does not mean their influence is nill though, as their focus on the
issue made it so that they are directly cited by later British authors continuing work on this
issue.
A second interesting point is Feynman’s very explicit statement about integrals over spinor
fields, which I have unfortunately not been able to find in this language. The paragraph in
Appendix C in a ’51 paper may come closest (Feynman, 1951, p. 127). More importantly, the
path integral’s originator clearly posing the problem like this may have contributed to the
many attempts to find a simple and satisfactory way of doing this.

With that background, let us go back to what Matthews and Salam actually do in their pa-
per. They start by stating that the general sum over histories for an interacting nucleon
(fermionic) and meson (bosonic) field is

(ξ′,σ1|T (A(1), ...,B(n))|ξ",σ2) = 1

N

∫ ξ′

ξ"
A(1) · · ·B(n)e i

∫ σ1
σ2

L(φ,ψ,ψ̄)d 4xδφδψ̄δψ (175)

Here, ξ′ and ξ" are "eigenvalues of a complete commuting set of operators, which specify
the state of the system on the two surfaces", which is why they serve as the boundaries for
the path integral. Then σ1 and σ2 are two space-like surface the Lagrangian is typically in-
tegrated over in QFT. The A(1), ...,B(n) are a set of field operators that are time-ordered by
T (). Lastly, φ and ψ,ψ̄ are the meson and (anti)nucleon fields, respectively (Matthews and
Salam, 1955, p. 122).
They go on to first derive the propagator of a free meson. Next up is the propagator of the
quantized Dirac field ψ given the interaction with external bosonic field φex . To find it, they
must calculate the following propagator (where vacuum effects have been filtered out):

S(1,1′,φex) = 1

N (φex)

∫
ψ(1)ψ̄(1′)e−i In (φex )δψδψ̄ (176)

where,

N (φex) =
∫

e−i In (φex )δψδψ̄ (177)

Here, In is the action, which here depends on the external field φex . Remember that this
integral is to be taken over anticommuting fermionic fields. This is a problem, as no such in-
tegral is defined. While later authors will tackle this question more directly, the approach of
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Matthews and Salam is to introduce a complete set of anticommuting functions ψa(x) =∑
n anψn(x) and ψb(x) = ∑

n bnψn(x). Thus, while an and bn are regular c-numbers, the
ψn(x) anticommute, i.e., ψnψm = −ψmψn . These relations are then substituted into the
propagator integral, leading to the expression (Matthews and Salam, 1955, p. 127):

S(1,1′,φex) = 1

N (a)N (b)

∑
i
ψi (1)ψ̄i (1′)

∫
(a2 +b2)e−i (a2+b2)d a db =−i

∑
i
ψi (1)ψ̄i (1′) (178)

Note that N (φex) is now separated into N (a)N (b). More importantly, we see how the inte-
gral is not taken over anticommuting functions ψi , but rather, over the regular commuting
c-numbers a and b. In this way, Matthews and Salam can express the Dirac propagator in
terms of a well-defined integral. However, since the anticommutativity has to be moved
somewhere, the result is a sum over the anticommuting ’eigenfunctions’. In this sense, what
they are doing is similar to Khalatnikov: the anticommutativity is involved in the compu-
tation through the introduction of an object, but there is no direct integration over these
anticommuting objects.

Now in the case of a two-nucleon propagator S(1,2,1′,2′,φex), summation over all permu-
tations of these functions is required. Due to their anticommutativity, this sum will naturally
include many terms with a minus sign. As we are well aware, the end result is again a deter-
minant (Matthews and Salam, 1955, p. 129).

The final and most important case Matthews and Salam build up to is that of two inter-
acting quantized fields. That is, the Bose field is no longer an external, unquantized field,
and the factor Dφ now also appears in the propagator integral. The one-nucleon propagator
becomes:

S′(1,1′) = 1

N

∫
ψ(1)ψ̄(1′)e−1(In (φ)+Im )δψδψ̄δφ (179)

where,

N =
∫

e−1(In (φ)+Im )δψδψ̄δφ (180)

Here, Im and In are the meson and nucleon action, respectively. Also note that we now have
a primed S, to differentiate the propagator in this case from the previous one with the exter-
nal, unquantized bose field.
Now Feynman does the integration over φ first, and probably for this reason what Matthews
and Salam do is already implicit in his work (Matthews and Salam, 1955, p. 130). They, how-
ever, argue that the integrals over ψ,ψ̄ are more difficult and better to do first. They do this
by simply expressing the above integral in terms of the results in the case of the external bose
field. The end product is then:

S′(1,1′) =
∫

S(1,1′,φ)N (φ)e−i Imδφ∫
N (φ)e−i Imδφ

(181)

Where the unprimed S(1,1′,φ) was given before and N (φ) is another factor that can pre-
dictably be expressed in terms of results of their previous case. Therefore, implicitly, the
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integral over fermionic fields is dealt with through their previous method of substituting in a
complete anticommuting set and doing the actual integration over regular c-numbers.

The above formula can be generalized for an arbitrary number of nucleons and mesons, and
determinants will appear again because of the sum over anticommuting functions (Matthews
and Salam, 1955, p. 130). According to Matthews and Salam, the above expression S′(1,1′) is
the main result of their paper. They do not carry out the final integration over φ, for which
they point the aforementioned paper of Edwards and Peierls, as well as Fradkin’s (Matthews
and Salam, 1955, p. 132). This, however, is no trivial endeavour, and requires approximation
to prevent divergences in the resulting series of that calculation.

Ultimately, Matthews and Salam seemingly successfully express the sought-after propaga-
tor in the language of functional integration, even though it concerns fermionic fields, and
correctly point out the resulting determinant. The results are thereby not new physics, as
one can already formulate these propagators in the operator language of canonical quanti-
zation, but they are a new way of expressing the same thing in the path integral formulation.
At the same time, while the work of Matthews and Salam is a step forward, there was reason
to continue research. One reason for this is that the expansion in terms of anticommuta-
tive functions, rather than directly integrating over such functions, is still far from efficient.
Another reason is that they do not yet give us a path integral for fermionic fields as a first
principle and telling us how to directly calculate it. Yet, they were thinking about the issue,
and as we will see later, inspiring others to do the same. The next three authors to be consid-
ered thus directly take up their mantle, many citing them for this reason.

4.3 "Transition Amplitudes as Sums over Histories" (1956) by W. Toboc-
man

While Matthews and especially Salam are well-known figures, this is less so the case with the
British authors we discuss from now on. Information on them is hard to come by, which
makes it a bit harder to answer the first question at the beginning of this chapter in a way
that goes beyond what is given in their papers. We shall nevertheless proceed with the infor-
mation that is given to us.

For Tobocman specifically, we know first of all that he is aware of the work of Matthews and
Salam, as they are included in this third citation (Tobocman, 1956, p. 1214). Just before doing
so, he makes the historical point that Schrödinger already noted that in some cases that the
solution to the equation bearing his name could be written as an exponential of the action,
which is interesting as most narratives start with Dirac, if not Feynman directly.
At the end, we see that Tobocman has been a guest at the Instite for Advanced Study at the
time of the writing of this paper. Like Matthews and Salam before him, he thanks (among
others) Feldman for discussions surrounding his paper (Tobocman, 1956, p. 1228). Toboc-
man, however, is not just influenced, but also has a clear influence on later authors. The next
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two authors directly cite him and continue his line of thinking.

As for the paper itself, Tobocman wants to start from the operator formalism of canonical
quantization and then express transition amplitudes as functional integrals. He claims that
once doing this, one will find Feynman’s functional integral as long as one quantizes in terms
of commutators. In the case of anticommutators, which makes more sense when describing
fermionic fields, this ’Feynman principle’ will however not follow (Tobocman, 1956, p. 1215).

Before getting into the why of this, we will first need to introduce a distinction made by
Tobocman. He differentiates between the ’Feynman principle’ and the ’sum over histories’.
While these are nowadays sometimes used interchangeably, Tobocman claims that they only
coincide in the case of bosons. He does not define these terms explicitly, but their meaning
can be derived implicitly from the text. For example, Tobocman derives the phase space path
integral (72) just as we did and then notes that "...we have succeeded in writing the transition
amplitude in the form of a sum over histories" (Tobocman, 1956, p. 1217). It is only after in-
troducing a Gaussian Hamiltonian that we get to the coordinate space representation, as,

e.g. in our case, H(x, p) = p2

2m +V (x, t ) allows one to perform the momentum integrals. The
remaining coordinate space path integral with a Lagrangian in the exponent (3) is then what
Tobocman refers to as "the Feynman principle" (Tobocman, 1956, p. 1217). When he later
repeats the procedure of going from the operator formalism to, this time, fermionic QFT,
we get a further hint. As we will see, he comes to the conclusion that time-slicing and then
eventually taking the limit to zero defines the sum over history representation, but that this
does not yield a Feynman principle because there is no exponential with an integral over
the Lagrangian involved (Tobocman, 1956, p. 1222,1225). In this sense, we may say that the
’sum over histories’ is whatever follows from the procedure whereby we start from the oper-
ator formalism, slice up the time, and see what we get when we later sum over all the terms,
eventually taking the limit to zero. The Feynman principle stands on itself (as a possible re-
sult of this procedure) whereby it can be expressed as an exponential with the action in terms
of an integral over the Lagrangian as its argument. Yet, if the path integral formulation is to
be the equal of the canonical quantization operator formulation, we would want every pos-
sible quantum system to be addressable directly from a Feynman principle as starting point.
If the two formulations are equivalent, that principle needs to be derivable from canonical
quantization not just in the case of bosonic fields, but also in that of fermionic ones.

Now the most interesting part of the paper consists of Tobocman’s attempt to construct the
sum over histories starting from anticommutation relations associated with the Dirac field.
After setting up the method, Tobocman makes the following observation:

"Since the operators in this theory anticommute with each other, they can be si-
multaneously diagonal only if their eigenvalues also anticommute. Thus we must
use for the base field of our Hilbert space a field which has a noncommutative
algebra rather than the field of complex numbers." (Tobocman, 1956, p. 1219)

First, one may wonder why we would need operators to be simultaneously diagonalized.
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For this, remember that one of the strengths of Feynman’s path integral is the ability to use
the classical action, no quantization required. Diagonal matrices act like normal c-numbers
and always commute, in this sense being ’classical’. In the action, many operators can be
present. Therefore, simultaneous diagonalization guarantees the classical action we want
for our functional integral formulation of QFT.
Perhaps more interestingly, Tobocman’s idea of replacing the field of complex numbers with
an algebra that does not commute is a key step on the road to Graßmann integration, be-
cause that is precisely the kind of field38 one integrates over in such cases.
In order to realize this, Tobocman replaces the components of Hilbert space vectors with in-
finite dimensional matrices. This takes after the occupation number representation, where
we also find infinite rows with entries that can just be 0 or 1, as the exclusion principle forbids
more in the case of fermions. He calls the kind of vector resulting from this a ’hypervector’.
Similarly, he defines ’hypermatrices’ as matrices whose elements are also matrices. The hy-
permatrices mutually anticommute, but square to the identity matrix.

After this complete and innovative setup, he then works out the transition amplitude through
the familiar time-slicing procedure but even though he is left with an expression for the sum
over histories, it does not contain the Feynman principle. The complete expression, includ-
ing terms such as 〈ζ(0)t0|ζ(1)t1〉, are just expressed in terms of products and sums over hy-
pervectors and hypermatrices39. Note, by the way, that this algebraic construction therefore
also does not involve integration over this noncommutative field (Tobocman, 1956, p. 1222).
While the sum over histories can be performed, and the moves Tobocman makes along the
way are a huge step in the right direction, we therefore still do not have a path integral way of
doing it. He himself concludes that a Feynman principle of transition amplitudes for Dirac
fields cannot be given when trying to establish this from a sum over history procedure start-
ing from the operator formalism. While perhaps a somewhat pessimistic conclusion, it mo-
tivated later authors to defy these odds after all.

4.4 "On Sums over Trajectories for Systems with Fermi Statistics" (1956)
by D.J. Candlin

The third entry in the British line is by David John Candlin (1928-2019), who we will see
makes very key contributions. Like Tobocman, he was a guest at the Princeton Institute for
Advanced Studies. Unfortunately, he eventually quit physics and moved on to computing
science.
In his paper, he cites Matthews and Salam as well as Tobocman, with particularly frequent
reference to the latter. Candlin mentions how Tobocman showed how the path integral (in
Tobocman’s terms: the Feynman principle) arose from the opreator formalism when a sys-
tem’s conjugate variables satisfy the typical commutation relations. Now he sets out to do

38Note that we here refer to the mathematical notion of a field, not a physical quantum field.
39The analogue of such a term in our derivation of chapter 2.2 was a term like 〈x1|e− iϵ

2ħm p̂2 · e−
iϵ
ħ V (x̂)|x0〉. In

Tobocman’s term, however, the ζ’s are hypervectors.
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the same for anticommuting conjugate variables, where he explicitly mentions that this in-
volves "integration over anticommuting quantities" (Candlin, 1956, p. 231-232).

Candlin starts by considering a single Fermi oscillator. In QFT, the vacuum can be pictured
as at each mode in momentum-space being an oscillator. While one is usually led to think
of a harmonic oscillator, the excitations of these correspond to bosons. Fermions then cor-
respond to excitations of Fermi oscillators, which are described by a different Hamiltonian.
Candlin provides the Hamiltonian Ĥ = mη†η, where ηη†+η†η= 1. These operators η,η† now
have the following matrix representations:

η=
(
0 0
1 0

)
(182)

and

η† =
(
0 1
0 0

)
(183)

Candlin explains that he ideally wants a completeness relation based on the eigenstates of
these matrices, as these can then be inserted in the familiar way into the sum-over-histories
approach. The trouble is that η and η† cannot be diagonalized and thus have no eigenstates.
However, this is (almost) possible if one uses eigenstates with anticommuting eigenvalues
(Candlin, 1956, 232). He provides eigenstate equations η|a〉 = a|a〉 and40 η†|a∗〉 = a∗|a∗〉. He
now, crucially, notes the following:

"The quantities a and a∗ are generalized numbers which all anticommute with
each other and have zero squares. We shall call such quantities ’a-numbers’."
(Candlin, 1956, p. 232)

These ’a-numbers’ are extremely important. While no rigorous mathematical definition lies
beneath them at this point, such anticommuting numbers with zero squares will turn out
to be isomorphic to the elements of the one-dimensional exterior algebra. While discussing
this more extensively when we get to Berezin, this is easy to see when we interpret the op-
eration between two a-numbers that are being squared as being the wedge product, i.e.,
a2 ∼= a ∧ a = 0. We also observe that the wedge product is anticommutative, just like the a-
numbers.
Candlin was probably either not intimately aware of the work of Graßmann, or he did not
think it necessary to connect this a-numbers with elements of the one-dimensional exte-
rior algebra. After all, the latter is a much larger algebraic structure, while Candlin very
simply needs anticommuting numbers with zero squares. The mathematical background
of Berezin perhaps made him more inclined to embed these numbers in a pre-existing un-
derlying mathematical structure. Nevertheless, it is of great importance to note that this is
the earliest point where we see Graßmann numbers being explicitly introduced.

40Note that a∗ here just refers to the eigenvalue of an eigenstate of η†, i.e., it does not denote the complex
conjugate of a as usual.
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Candlin solves the eigenstate equations and now, as stated, wants to sum over |a(∗)〉〈a(∗)|
for all possible eigenvalues to find the identity operator. In other words, he wants to find a
discrete version of (46) for the eigenstates with a-number eigenvalues. After all, we ourselves
saw in chapter 2.2 how useful this is for getting from canonical transition amplitudes to the
path integral. Candlin, however, states that getting the identity operator in this way is not
possible due to the anticommutativity of the a-numbers. What is possible is to construct the
unit operator multiplied by some a-number ρ(∗), i.e., ρ(∗) Î . With this, Candlin essentially
goes on to compute:

〈Φ(T )|
N−1∏
n=0

(1− iϵH(tn)|Ψ(0)〉 (184)

Here,Ψ is the initial state andΦ the final state. This is just the first order expansion in ϵ of the
time-evolution operator we used in chapter 2.2, with eventually the limit ϵ→ 0 being taken.
Candlin largely goes through the same familiar sum over history steps, setting up the whole
procedure without explicitly calculating the end result. Instead, he moves on to the more
realistic case of the Dirac oscillator with the four operators ψα,ψ

β
,ψ†

α,ψ†
β

. In contrast to the

Fermi oscillator, this model is a relativistic version of the harmonic oscillator (reproducing
it in the classical limit), obeying Fermi-Dirac statistics (Moshinsky and Szczepaniak, 1989).
Candlin now introduces the anticommutation relations and Hamiltonian as follows (Can-
dlin, 1956, p. 235):

{ψα,ψβ} = 0 (185)

{ψα,ψ†
β

} = δαβ (186)

Ĥ = 1

2
(ψ†

αQαβψβ−ψβQ∗
βαψ

†
α) (187)

Here, δαβ is the Kronecker delta, which from now on may be assumed whenever this sym-
bol occurs unless explicitly stating otherwise. Moreover, {A,B} ≡ AB +B A is, of course, the
anticommutator. The summation convention is adopted for α and β, and Q is a Hermitian
matrix. Again, he defines eigenstates such as |u〉 = |u4u3u2u1〉 with double the degrees of
freedom as in the Fermi case (as expected) and a-numbers as eigenvalues. He proceeds, like
in the Fermi oscillator case, to set up the sum over histories approach starting from 〈Φ|Ψ〉,
but again does not directly calculate the whole. Interestingly, he now wants to consider a
continuous realization of the completeness relation considered above, with an integral in-
stead of a sum. Defining F̂ as an operator of the system, he comes to the following expres-
sion: ∫ λ

−λ
|u∗〉〈u∗|F̂ |u〉〈u|du∗du = ρ∗ρF̂ +O (λ−1) (188)

Here, the integration bounds λ are related to the numerical constant in front of the eigen-
states. Since u and u∗ are a-numbers, we here have an integral over anticommutative vari-
ables. This is another key step towards the eventual identity (164), yet it is still somewhat un-
clear. From the earlier stated completeness relation whereby

∑ |a(∗)〉〈a(∗)| = ρ(∗) Î the right-
hand side seemingly makes sense, yet it is still not quite clear how the actual integration over

105



these anticommutative variables is being performed in a rule-based manner (Candlin, 1956,
p. 237).

Perhaps if Candlin had worked out his ideas in a more thorough way, we would nowadays
speak of the ’Candlin integral’ rather than the ’Berezin integral’. In fact, some would say the
paper under consideration is already plenty of reason to do so. For one, this viewpoints floats
around in small corners of the internet, including on his Wikipedia page41. But moreover, at
least one well-known professional physicist appears to credit Candlin with fermionic inte-
grals as well, namely Stanley Mandelstam (1928-2016), who in one of his papers stated the
following:

"For an interpretation of the wave function of ’classical anticommuting variables’,
and for a treatment of the functional integral over such variables, we refer the
reader to the work of Candlin." (Mandelstam, 1973, p. 449)

Whether one is of the opinion that Candlin in this paper solves the problem of fermionic
path integrals or not quite yet, it is undeniable that his work marks a significant step forward
towards this end, by both introducing a-numbers and the idea of an integral being taken
over them. Nevertheless, this could have been explained better, and it is moreover unclear
where exactly the Feynman principle is at the end of his paper that he had set out to obtain
for anticommuting fields. We will see how his work is taken up by the next author.

Finally we shall end with an interesting point Candlin makes in the discussion at the end
of his paper that connects back to earlier themes in this thesis. Candlin notes that the inter-
pretation of the path integral is altered as a conclusion of the work in this paper. He states:

"The presence of a-numbers seems to make it impossible to interpret the expression
for the transition amplitude as a sum over trajectories. In our picture, we cannot
say that the field has such a strength at such an intermediate time in a given clas-
sical trajectory, for obviously no a-number can be the result of a measurement."
(Candlin, 1956, p. 238)

The pretty picture at the beginning of this thesis where we sum over clear classical paths or
field configurations is thus behind us. We are now summing of anticommutative numbers
that do, as Candlin points out, not correspond to the numbers with which we represent mea-
surement results of physical observables. All the way back in chapter 2.1 it was already noted
that the classical limit interpretation is severely lacking, and in combination with the fore-
going one may say that while the path integral demonstrably has many uses, the strength of
a straightforward interpretation appears under further inspection not be one of them.

41Examples are to be found on the physics forum StacksExchange here https://physics.stackexchange.
com/questions/29475/what-happened-to-david-john-candlin and Candlin’s Wikipedia page here
https://en.wikipedia.org/wiki/David_John_Candlin.
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4.5 "The Feynman principle for a Fermi system" (1959) by J.L. Martin

Like Tobocman, almost nothing is known about J.L. Martin. At the time he was occupied
with the subject at hand, he worked at the Tait Institute of Mathematical Physics in Edin-
burgh42, to later move on to the Mathematics Division at the National Physical Laboratory in
Teddington (London). His papers, published in the Proceedings of the Royal Society A, were
communicated by Kemmer (the aformentioned doctoral advisor of Matthews and Salam). In
these relevant works, Martin refers directly to Tobocman and Candlin, and aims to continue
their line of work.

As one may note, we referred to ’papers’ in the plural above. This is because Martin pub-
lished his work in a ’part 1’ and ’part 2’ that immediately follow each other in the same jour-
nal, but are technically different papers (Martin, 1959a)(Martin, 1959b). As we will see, it
makes sense content wise, but we care about the entire story. While the title of this sub-
section is that of the most directly relevant second paper, the first one is titled "generalized
classical dynamics, and the ’classical analogue’ of a Fermi oscillator". We will start with this
first one and then flow into the second one.

Quantum physics is often thought (and taught!) to be a revolutionary departure from classi-
cal physics, where everything is turned on its head. While some key distinctions inevitably
exist, others may upon inspection not be so ’strange’43, and some ’strangeness’ may be said
to disappear if one looks at these theories through different formulations. It is another possi-
ble reason for Feynman’s statement on the merit of knowing many formulations of the same
thing at the beginning of chapter 2.2. Feynman’s path integral is itself a good example, as
it only requires the classical action and talks about physical paths, thereby arguably being
closer to classical mechanics than its counterparts. Yet, perhaps an even better example can
be found. In Hamiltonian classical mechanics, one of his equations of motion is that the time
derivative of some observable quantity Q is equal to the Poisson bracket of that observable
with the Hamiltonian of the system, i.e., dQ

d t = (Q, H), where the normal brackets denote the
Poisson brackets44. Heisenberg’s equation of motion in his matrix mechanics formulation of

quantum mechanics though, is dQ̂
d t = 1

iħ [Q̂, Ĥ ], with the rectangular brackets just being the
familiar commutator. Therefore, we note that the jump from this particular formulation of
classical mechanics to another particular one in quantum mechanics simply involves adding
a factor (iħ)−1 and replacing the Poisson brackets with a commutator. This is a rather sim-
ple quantization procedure, and certainly less radical than jumping from Newton’s world of
forces and F = ma into Schrödinger’s world of wave functions and Ĥψ = iħ∂tψ. We may
say that Hamilton’s equation of motion is the classical analogue of Heisenberg’s equation of
motion, where before we may have imagined that such an analogue did not exist.

42The institute is named after the very same Tait that was discussed in chapter 3!
43For example, the phenomenon of entanglement itself is not so strange. It is rather that the correlations

between states are stronger than classically predicted that is strange.
44It is often the case that curly brackets are used for the Poisson brackets, but I (and, it turns out, also Martin)

avoid these here because the same can be said for the anticommutator.
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This small story is very relevant for the goal of Martin’s first paper. In chapter 2.5 we dis-
cussed how half-integer spin objects are generally thought not to have classical analogues.
Yet Martin, who has read Candlin’s work, thinks that the Fermi oscillator there discussed very
much does. This line of reasoning then eventually leads him to the formulation of a Feyn-
man principle for fermionic fields.
Before we explain how he does this, let us first briefly remind ourselves of Tobocman’s (who
Martin has also read) distinction between the sum over histories and the Feynman princi-
ple. While Tobocman (and Candlin) carry out the sum over history procedure, they do not
arrive at a Feynman principle for fermionic fields, i.e., they do not compute time-ordered
correlation functions by from first principles taking an integral over fermionic fields with as
its argument an exponential of the (integral over the) classical Lagrangian. If Martin is able
to show that you can do that after all, and that that canonical quantization and path integral
formulation can be connected even in the case of fermionic fields, that would be a big deal.

Let us consider Martin’s first paper. He is very clear about what he wants to achieve in it,
and wants to show that

"(a) it is possible to set up classical Hamiltonian dynamical systems in which fun-
damental sets of variables of canonical form cannot be found;
(b) there exists a more general type of classical dynamics in which the fundamen-
tal variables are not c-numbers, but belong to some other ring, not necessarily
commutative; and
(c) such generalized systems can properly be regarded as ’classical analogues’ of
certain quantum systems, even though these quantum systems do not possess clas-
sical analogues in the accepted sense. This will be illustrated by the particular case
of a Fermi oscillator."
(Martin, 1959a, p. 536)

We shall briefly consider the meaning of the above. In Hamiltonian mechanics, we are used
to working with canonical coordinate pairs (q1, p1), (q2, p2), and so on. Martin thus claims
in part (a) that such pairings are not possible in every physical system.
Claim (b) states that the complex numbers we usually work in are too restrictive to capture
all classical physical systems. We should adopt a more general ring algebra, which will result
in a ’dynamics algebra’. Elements of a ring, however, need not commute under multiplica-
tion, which is interesting for our fermionic purposes.
The final part then refers back to the earlier paragraph about classical analogues of quantum
systems. Martin here claims that adopting the dynamics algebra will unlock descriptions of
classical systems that will turn out to provide classical analogues to quantum mechanical
systems thought not to have one, like the classical harmonic oscillator to the quantum har-
monic oscillator.

Martin starts by briefly repeating the Poisson bracket and corresponding equation of mo-
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tion in classical mechanics. He goes on to explain how one cannot always go from a Hamil-
tonian description to a Lagrangian one, in particular in cases where it is not possible to pair
the canonical variables. That this is the case, is because going from ’H ’ to ’L’ requires the
inverse of a matrix45, but this matrix is antisymmetric and is odd when the number of dy-
namical variables of the system is uneven. In the latter case, the matrix necessarily has a
zero-determinant, i.e., it is singular, and singular matrices do not have inverses.
He also gives an example of this, which is that of a rotation system characterized by the three
(=odd!) variables r1,r2 and r3 with (ri ,r j ) = ϵi j k rk , where ϵi j k is the Levi-Civita symbol. The
Hamiltonian may look like H = r⃗ · ω⃗(t ) and the equation of motion found by entering this
into Hamilton’s equations is then ⃗̇r = (⃗r , H) = ω⃗∧ r⃗ . This system, Martin states, then has no
Lagrangian (Martin, 1959a, p. 537-538).

He now goes on to introduce his dynamics algebra. In particular, since he is interested in
showing that the above system is actually the classical analogue of a Fermi system, he will
use an anticommutative ring and refers to the system he will know develop as ’anticommut-
ing classical dynamics’.
The dynamical variables here are defined as n symbols ψ1, ...,ψn that satisfy ψ2

i = 0 and
ψiψ j =−ψ jψi . In this, we recognize Candlin’s a-numbers.
One can make polynomials with complex coefficients out of these variables. What is new is
that Martin defines explicit derivatives with respect to these anticommuting variables (Mar-
tin, 1959a, p. 539). He calls these ’partial antiderivatives’ ∂i . Since it is a linear operator we
only need to state the rules for how it acts on monomials. It does so as follows:

(∂iψ jψkψl · ··) = δi jψkψl −ψ jδi kψl + ... (189)

(ψ j · · ·ψmψn) =ψ j · · ·ψmδni −ψ j · · ·δmiψn + ... (190)

This definition makes intuitive sense, as it is just a product rule whereby every term will be
zero unless the derivative ∂i actually gets to act onψi . More interestingly is that the whether
we end up with a minus or plus sign now depends on the position of ψi in the monomial, as
when interchanging two neighbouring ψk in the effort to move ψi to the derivate, will each
time produce a minus sign. This is not something to worry about in the case of commuting
complex numbers.

Martin moves on to lay out the Poisson bracket and equations of motion for this alternative
classical dynamics, which is a straightforward modification of what he laid out at the start of
the paper. However, due to the anticommutativity of the dynamical variables ψi , the matrix
that was mentioned in footnote 45 is now guaranteed to have an even number of entries [I
don’t always write down all of the math they do because it is not all equally relevant, but I may
want to add a little proof here.]. It is now possible to pair canonical variables, enabling us to

45The Poisson bracket is usually defined as ( f , g ) ≡∑N
i=1

(
∂ f
∂qi

∂g
∂pi

− ∂ f
∂pi

∂g
∂qi

)
, but this can also be done in terms

of a matrix. Martin writes (u, v) =∑
r,s

∂ f
∂φr

αr s
∂g
∂φs

, with the φi being the dynamical variables of the system and
αr s the matrix (also known as the ’Legendre matrix’) under consideration.
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always go from ’H ’ to ’L’.
Thus, he now returns to the example of the rotation system, this time with the three anti-
commuting variables ρ1,ρ2 and ρ3 with (ρi ,ρ j ) = −1

2 iδi j . Taking as the Hamiltonian H =
−iωi (t )ρ jρkϵi j k , the equations of motion become ⃗̇ρ = (ρ⃗, H) = ω⃗∧ ρ⃗. We now can formulate
a Lagrangian through the usual procedure.

However, now another interesting part appears, as Martin attempts to quantize the above dy-
namics algebra. He does this precisely in the way described in the beginning of this subsec-
tion, by replacing the Poisson brackets with a commutator and tacking on (iħ)−1. Since Mar-
tin adopts natural units (ħ= 1), we find that (q, p) = 1 becomes −i [q̂ , p̂] = 1. He now does this
for the specific example of the anticommuting rotation system, where he replaces the Pois-
son brackets with an anticommutator instead, i.e., (ρi ,ρ j ) =−1

2 iδi j becomes {ρ̂i , ρ̂ j } = 1
2δi j ,

where the minus sign disappears given the −i factor involved in switching to the anticom-
mutator. As it turns out, the matrix realization for ρ̂i = 1

2σi , with σi a Pauli matrix. He states
that the quantum system we now have has two independent states, it is a Fermi system.

Martin ends the first paper by laying out that this has achieved two things (Martin, 1959a,
p. 542). For one, the rotating system that was introduced turns out to be a classical analogue
of a Fermi system, i.e., against expectation, this exists after all. Secondly, the dynamics al-
gebra employed by Martin makes it so that this classical rotation system has a Lagrangian
formulation. Since we need the classical Lagrangian of a system to set up the Feynman prin-
ciple with which its quantum version can be obtained, this means that the path integral rep-
resentation for a Fermi system has been unlocked. How exactly this is done is what Martin
describes in the second paper, that we now move on to.

Here, Martin starts by describing the Feynman principle as follows (Martin, 1959b, p. 543):

〈q"
1...q"

n ,T |q ′
1...q

′
n ,0〉 =

∫ q"

q ′ δq
∫
δ

( p

2π

)
e i

∫ T
0 (

∑
r pr q̇r −H(q,p))d t (191)

He credits the above way of writing the path integral to Tobocman, who indeed writes the
same thing (Tobocman, 1956, p. 1216). In the above δq ≡Dq(t ), as the latter notation D was
not yet introduced. While rather obvious, due to being so central to Martin’s argument we
repeat that the object

∑
r pr q̇r −H(q, p) = L(q, q̇), and wish to write a fermionic path integral

in this way to realize the Feynman principle. Lastly, note that this is just the phase space
formulation of the path integral (72).

Martin now introduces the canonical description of the Fermi system we aim to describe
in the path integral formalism, namely

{ψr ,ψs} = {πr ,πs} = 0 (192)

{ψr ,πs} = δr s (193)
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πr =ψ†
r (194)

Like Candlin before, he wants to use the eigenvalues of a ’complete anticommuting set’, but
disagrees with Candlin who thought that this was impossible unless the identity operator is
multiplied by some a-(Grassmann)-number. Martin points to the work of Schwinger. While
the latter wanted to stay away from Feynman principles and did not take integrals over an-
ticommuting quantities, he does some years earlier indeed already introduce the idea of
complete anticommuting sets (Schwinger, 1953, p. 1284), which was after all also used by
Matthews and Salam.
The above is all Martin claims to need to derive the Feynman principle of a Fermi system
through a sum over histories procedure, thereby claiming to do what Tobocman and Can-
dlin (who he cites explicitly with regard to this goal) did not (Martin, 1959b, p. 543).

To derive the desired result (and we will see why) Martin first needs a mathematical frame-
work he calls ’eigensymbol theory’ (Martin, 1959b, p. 544-545). He first introduces λ, an
abstract symbol whose only property is that λn = 0. This symbol is used to provide an iso-
morphism to a usual column vector

|a〉 =


a0

a1
...

an−1

 (195)

by writing this instead as
n−1∑
r=0

arλ
r (196)

Thus, one could say that in the language of eigensymbol theory, |a〉 now becomes (λ|a〉,
where (λ| = (1,λ, . . . ,λn−1) is a row vector, where the curvy bracket is used to bring attention
to the fact that its entries are not c-numbers as is the case with |a〉. Martin calls this the "λ-
representation of the vector |a〉 by the polynomial (λ|a〉" (Martin, 1959b, p. 544). Similarly,
we can write 〈a| in the language of eigensymbol theory as 〈a|λ), where we note that the |λ)
starts with λn−1, i.e., 〈a|λ) =∑n−1

r=0 arλ
(n−1)−r .

With this basis established, two more useful operations in eigensymbol theory need to be
laid out. First is multiplication by an nxn matrix Λ̂ with ones on its subdiagonal, the rest
being zero. For example if n = 3:

Λ̂=
0 0 0

1 0 0
0 1 0

 (197)

Now consider the following expression:

(λ|Λ̂|a〉 = a0λ+a1λ+ . . .+an−2λ
n−1 =λ(λ|a〉 (198)
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This follows trivially from the above definitions and ordinary matrix multiplication. Note
that the above expression should also yield a term an−1λ

n in the sum, but λn = 0.
It follows that

(λ|Λ̂=λ(λ| (199)

Thus, while it is not, λ plays a role similar to that of an eigenvalue of the matrix operator Λ̂.
Similarly, one can find from the earlier introduced ’column vector’ |λ) that

Λ̂|λ) = |λ)λ (200)

With this in mind, the second useful operation to be defined is Ŝλ. It is a linear operator that
yields the coefficient in front of λn−1 in any polynomial in λ. That is,

Ŝλ

(
n−1∑
r=0

arλ
r

)
= an−1 (201)

With this operator, we can derive an important result. Consider the product

〈a|λ)(λ|b〉 =
n−1∑
r=0

ar brλ
(n−1)−rλr =

(
n−1∑
r=0

ar br

)
λn−1 = 〈a|b〉λn−1 (202)

such that
Ŝλ〈a|λ)(λ|b〉 = 〈a|b〉 (203)

Thus, it crucially follows that
Ŝλ|λ)(λ| = 1 (204)

And so, we find that Ŝλ acts like a sum over an ’eigenvector basis’: Martin has a way to ex-
press a completeness relation like (46) over the abstract symbol λ. This will turn out to be
important later.

With some basic eigensymbol theory covered, we will be able to see how Martin derives
the Feynman principle for a Fermi system, introducing Graßmann numbers and implicit
integration rules and comments on the way. To this end, he will reintroduce (192), explain-
ing how he will now apply eigensymbol theory to these canonical anticommuting variables
(Martin, 1959b, p. 546-548).
Martin introduces the dynamical variables for the Fermi system as:

ψ̂=
(
0 0
1 0

)
(205)

π̂=
(
0 1
0 0

)
(206)

He now introduces an abstract symbol ψ whose property is that ψ2 = 0. It is therefore like λ,
except that the other n where it becomes zero is equal to 2. Similarly, a 2x1 column vector
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|s〉 whose elements are a and b is now written in eigensymbol theory as (ψ|s〉 = a +bψ.
It is now basically possible to establish all the same relations that we saw in the general case
before, namely

(ψ| = (1,ψ), |ψ) =
(
ψ

1

)
(207)

(ψ|ψ̂=ψ(ψ|, ψ̂|ψ) = |ψ)ψ (208)

Ŝψ(a +bψ) = b, Ŝψ|ψ)(ψ| = 1 (209)

At this phase, a point of comparison with Tobocman and Candlin can be made. Unlike To-
bocman, Martin remarks that he does not need to introduce hypervectors and hypermatrices
for his anticommuting symbols (Martin, 1959b, p. 545). And unlike Candlin, the complete-
ness relation in the final expression above is actually possible. According to Candlin, this
was not the case, and the unit operator had to be multiplied by some a-number. This con-
tradiction can be reconciled through the fact that Ŝψ is not a sum as it is with Candlin. It is
a different operation altogether, whose effect just resembles a sum when acting on |ψ)(ψ|. It
should be noted that Martin also mentions that the first two of the above lines are already
present in Candlin. This is indeed the case, due to Candlin’s operators η,η† and his eigen-
states and their a-number eigenvalues |a(∗)〉, a(∗) (Martin, 1959b, p. 546).

To complete the description of a Fermi system in eigensymbol theory though, Martin moves
on to also introduce another symbol π that, in line with the anticommutation relations (192)
he wants to apply eigensymbol theory to in the first place, anticommutes with ψ. The sym-
bol itself naturally also has the property that π2 = 0. Similarly, the same vector |s〉 can now be
represented as (π|s〉 = aπ+b. Note, then, the interchange of the elements of (π| compared
to (ψ|. Repeating the above picture for ψ, we find:

(π| = (π,1), |π) =
(

1
π

)
(210)

(π|π̂=π(π|, π̂|π) = |π)π (211)

Ŝπ(aπ+b) = a, Ŝπ|π)(π| = 1 (212)

An interesting relation Martin notes between ψ and π is that

(ψ|π̂|s〉 = d

dψ
(ψ|s〉 (213)

This is easily verified by, on the left-hand side, just doing matrix multiplications, and on
the right side taking the derivative of a +bψ. Thus, p̂i is represented by d/dψ in ψ-space
representation. The analogy with the usual quantum mechanical x̂ and p̂ is not hard to see.
It follows that one can also write

(π|ψ̂|s〉 = d

dπ
(π|s〉 (214)
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Even more importantly for this derivation, Martin establishes that:

(ψ|π) = 1+ψπ= eψπ (215)

(π|ψ) = 1+πψ= eπψ (216)

where we note that
1+ψπ= 1−πψ= e−πψ = eψπ (217)

The final line simply makes the anticommutating behavior of our symbols explicit. The first
equality of the first two lines trivially follows from from matrix multiplication. More inter-
estingly, the second equality follows since the expansion of e±ψπ terminates at second order
since ψ2 =π2 = 0, and thus 1±ψπ is all that is left.

Lastly, it should be stated that all of the above can, again in line with (192), be generalized
to an arbitrary number of ’N ’ symbols ψk and πk in a straightforward manner. For example,
one will find that

(ψ1 . . .ψN |π1 . . .πN ) = e
∑N

k=1ψkπk (218)

and
Ŝππ1 . . .πN = 1 (219)

where in case of the later, we note that Ŝπ now picks out the coefficient in front of the
full monomial π1 . . .πN . All other terms in some polynomial in π, including something like
π2 . . .πN , will yield zero.

Martin now considers the transition amplitude (or "transformation function" as he calls it)
in the spirit of Tobocman as at the start of the second paper. He writes that for a small inter-
val46 ∆t we have:

(ψ′, t +∆t |ψ", t ) = Ŝπ′(ψ′, t +∆t |π′, t +∆t/2)(π′, t +∆t/2|ψ", t ) (220)

Here, he has directly used Ŝπ|π)(π| = 1. This is not surprising, as the derivation of Feynman
principles from sum over history approaches has until now always involved the use of such
relations. Except in Martin’s eigensymbol theory this is, unlike in the case of Candlin, now
possible for the case of a fermionic system. Next, we have

Ŝπ′(ψ′, t +∆t |π′, t +∆t/2)(π′, t +∆t/2|ψ", t ) = Ŝπ′e
∑

k ψ
′
kπ

′
k+

∑
k π

′
kψ"k−i∆t H(ψ′

k ,π′
k ,t ) (221)

Two relations are utilized in the above step. The first is that we note that

(ψ′, t +∆t |π′, t +∆t/2) = (ψ′, t +∆t/2|(1− i (∆t/2)H(ψ̂k , π̂k , t ))|π′, t +∆t/2) (222)

= (ψ′, t +∆t/2|π′, t +∆t/2)e−i H(ψ′
k ,π′

k ,t )∆t/2 (223)

46Supposedly Martin’s ’ϵ’, cf. chapter 2.
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Where, due to having ψ̂k and π̂k act on their eigenvectors on the left and right respectively47,
we get the ’eigenvalue’ symbols ψ and π, and thus an exponential with the classical Hamil-
tonian. The fact that the Hamiltonian in the above expression is followed by half of∆t rather
than its double is due to the fact that other than (ψ′, t +∆t |π′, t +∆t/2), we also get this ex-
ponential from (π′, t +∆t/2|ψ", t ), and these add up.
The second relation used in the step is relation (218) above, which yields the exponentials
with the sums. Martin’s final step for the discrete case is then

Ŝπ′e
∑

k ψ
′
kπ

′
k+

∑
k π

′
kψ"k−i∆t H(ψ′

k ,π′
k ,t ) = Ŝπ′e

∑
k ψ

′
kπ

′
k−i H(ψ′

k ,π′
k ,t )∆t (224)

Here, Martin seems to have first used the anticommutation relation between ψk and πk so
that

∑
k π

′
kψ"k = −∑

k ψ"kπ
′
k . Then, he takes ∆t ’outside of the brackets’, like A +∆tB =

∆t ( A
∆t +B). Subtracting the sums then results in

∑
k
ψ′

k−ψ"k

∆t π′
k where we thus have a ’velocity’

term in front of π′
k given the ’smallness’ of ∆t . This makes a lot of sense since if we want

the Lagrangian, we will need something analogous to
∑

ẋp − H . Yet, Martin just writes ψ′
k

for this ’velocity ψ̇k ’, probably at least partially since the ’time derivative of the abstract an-
ticommuting symbol ψk ’ has not been given any sort of mathematical basis yet, let alone
physical. Here, we shall honor Martin’s original notation, yet this comment is good to keep
in mind.
The last thing Martin does amounts to saying that eab = aeb . This is the one step I just don’t
get, so will still have to look at it (a =∆t , b =∑

k ψ
′
kπ

′
k − i H(ψ′

k ,π′
k , t )).

Bringing it all together, we have, in conclusion:

(ψ′, t +∆t |ψ", t ) = Ŝπ′e
∑

k ψ
′
kπ

′
k−i H(ψ′

k ,π′
k ,t )∆t (225)

Which, Martin says, "on a suitable limiting process" yields the Feynman principle:

(ψ′,T |ψ",0) =
∫ ψ"

ψ′
δψ′

∫
δπ′e i

∫ T
0 Ld t (226)

where,
L = i

∑
k
πkψk −H(ψs ,πk , t ) (227)

We have now arrived at the main result. Before commenting, let us consider Martin’s own
concluding remarks after deriving it, as it contains some important remarks.

"The ’functional integrals’ of [the result] are indefinitely repeated Ŝψ and Ŝπ op-
erations; their resemblance to sums-over-histories is as superficial as the resem-
blance of Ŝψ to a sum-over-eigenvalues. Nevertheless, there exists a complete the-
ory of ’classical anticommuting dynamics’ derived from the Lagrangian L (Mar-
tin, 1959a). It may be possible with the help of such a dynamics to reinterpret

47Martin says a bit more about the algebra behind ordering the operators in Ĥ in the appendix such that
the ’right’ ones can add left and right, and shows with relative ease that this leads to the classical Hamiltonian
(Martin, 1959b, p. 548-549).

115



[the result] as a sum-over-histories. This has yet to be considered." (Martin, 1959b,
p. 458)

Martin goes on to provide the classical Lagrangian for the Fermi system that can be substi-
tuted into the result, viz., L = iπψ−ω(ψπ− 1

2 ).

Now let us close by considering two aspects of Martin’s above quote in particular. Firstly,
since Ŝ was already seen to be working analogous to an ordinary sum, it makes heuristic
sense that the limit thereof would turn into an integral. However, Martin is quick to note
that it is, essentially, a fake integral, that ought not be taken literally. It is a wolf in sheeps’
clothing, except it will turn out to be a very helpful wolf. While Berezin will be seen to take
up this superficial symbol and give straightforward rules about how it can be computed for
any given Lagrangian, Martin has already done so implicitly, as the Ŝ it is composed of is
clearly defined. We will therefore see when discussing Berezin how his formal integral over
anticommuting variables basically does exactly what Martin’s Ŝ does. One could therefore
say that other than the mainstream ’Berezin integral’ or Mandelstam’s ’Candlin integral’, a
case for the ’Martin integral’ might just as well be made.
A second comment considers the interpretation that Martin is talking about. While most
of the paper is an abstract exercise in manipulating the symbols of eigensymbol theory, he
does connect it to the Fermi system at the end. Clearly, the algebra he here develops is well-
suited to describe physical (fermionic) systems. Both his papers herein nicely come together.
Fermi systems have classical analogues after all if anticommuting algebras are considered,
and these lead to a classical Lagrangian that serve as the input for the path integral descrip-
tion of this quantum Fermi system, where we ’integrate over’ these anticommuting dynam-
ical variables. In this anticommuting algebra, called the eigensymbol algebra by Martin, we
can indeed derive the Feynman principle for fermionic systems through the sum over histo-
ries procedure. In that sense, he finished what Tobocman started by considering that aside
of an anticommuting algebra one also needs alternative operations (e.g. Ŝ) to go alongside
with it. The end point of this development and its physical application will become apparant
in Berezin, where we will directly see fermionic fields being handled in this way. In any case,
it is not hard to see why Martin is the most acknowledged of all the aforementioned authors
by Berezin, as his contribution to the problem at hand above has been extremely important.
With that, it is time to finally cover Berezin.

4.6 "Canonical operator transformation in representation of secondary
quantization" (1961) by F.A. Berezin

At last (but not least), we have arrived at our subchapter on Berezin. As was laid out at the be-
ginning of this chapter, he is the one commonly credited with the true formulation of using
Graßmann numbers and integrating over them to solve the path integral’s initial inability to
address fermionic fields. As this subchapter will show, there is good reason for the historical
narrative having turned out this way.
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We will start with a brief introduction of Berezin the person. Together with Salam, he is prob-
ably the most well-known figure of all that have been covered in this chapter, and plenty has
been written about him. We will then move on to dig into his work on the topic at hand,
mainly through his short but dense article in the Proceedings of the USSR Academy of Sci-
ences in 1961 (received in 1960, a year after Martin’s articles), followed by his highly influ-
ential book containing a far more extensive and rigid mathematical basis of the theory, first
published in Russian in 1965, with an English translation following the year after. This will
also include the full realization of the derivation of (164).

The current paragraph is based on the brief scientific biographies about Berezin found in
(Shifman, 2007) and (Karabegov et al., 2013). The former of these is a book chapter that was
written by Minlos, who was well very acquainted with him (and refers to him by his nick-
name ’Alik’).
Berezin was a mathematical physicist, and a key figure in the development of the (sub)field
in the former USSR. His seminal works are to be found in a rigid development of (second)
quantization and the introduction of supermathematics. While some words will be spent on
this second pursuit in the next chapter, we here focus on his work on second quantization.
Although he performed well and was interested in mathematics from childhood onwards,
Berezin, born to a Jewish mother, was initially denied an academic career on the basis of Stal-
inist state antisemitism48. Like Graßmann, whose works he would later take to new heights,
he therefore spent the first years after his graduation as a high school teacher. Eventually
though, due to the relative liberalization brought about by Khrushchev, and the advocacy of
Gel’fand (whom Berezin had been a student of), he got a position at Moscow State University
that he would hold for all his life. This position was at the chair of the ’theory of functions
and functional analysis’, so it is safe to say that he had a strong background in working with
functionals. Gel’fand there also motivated Berezin to get into QFT. This set him on the path
to his work on (second) quantization. The heart of Berezin’s concept of quantization was
to understand it as a mathematical deformation of the algebra of observables of classical
physics, with Planck’s constant being the deformation parameter. His work on this topic
eventually led him to invoke Graßmann algebra to describe fermions in the theory of func-
tionals, which in turn brought him to the creation of the aforementioned supermathematics
to be discussed in the next chapter. The latter also left an influential legacy beyond just the
’Berezin integral’ (Karabegov et al., 2013, p. 23-24).
While Berezin enjoyed an intellectually stimulating and collegial atmosphere at the mathe-
matical seminars at the university, he unfortunately faced antisemitic discrimination from
party bureaucrats above him. Despite his increasingly appreciated research output inside
and outside of the USSR, he was withheld promotions, pay-raises and the opportunity to go
on scientific trips abroad. Tragically, Berezin died young, drowning on a 1980 summer trip
to east Siberia (Shifman, 2007, p. 47-50).

48Years earlier across the Atlantic, Feynman, also born into a Jewish family, similarly got denied entrance into
Columbia University, based on quota for the number of Jews allowed to be accepted.
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Let us now turn our attention to the highly relevant body of work Berezin has left us. Most
about his work on fermionic path integrals can be learned from his 1965 book. On the one
hand, this is for the positive reason that the book is an extensive and accessible body of
work laying out, among many other things, the theory behind fermionic path integrals, and
embedding it in a greater mathematical and physical project. On the other hand, there are
the negative reasons that the 1961 article on the matter is only available in Russian as well
as being rather short and dense. The former has been dealt with through use of the DeepL
AI PDF-file translator, which while far from perfect from both a linguistic and typesetting
perspective, at least makes the article somewhat decipherable. On the latter one may won-
der why the article should be written in this way, even though the book shows Berezin can
write much more clearly too. The answer to this is that it is a consequence of the journal
Doklady Akademii Nauk SSSR (English: The Proceedings of the USSR Academy of Sciences)
only allowing four pages (Karabegov et al., 2013, p. 10) for their articles. Nevertheless, some
paragraphs will be spent on the article regardless. Not only did it precede the book by four
years, it also already contains some novel results with respect to earlier articles in this chap-
ter. Lastly, the article contains just one citation, namely that of Khalatnikov that we started
with. Berezin after all, like Khalatnikov, is interested in ’continual integrals’.

The title of Berezin’s article already lays out the goal: he wants to show how canonical trans-
formations of operators can be represented in the method of second quantization. Canon-
ical transformations just change the canonical coordinates one deals with in Hamiltonian
mechanics. A straightforward example of classical physics is going from position and lin-
ear momentum to angular position and angular momentum. Such transformations are of
course useful to be able to do in any mathematical formalism that aims to capture a physical
theory. The ’method of second quantization’ is, not coincidentally, also the title of Berezin’s
later book. It can, for now, be taken to mean that we wish to represent these transformations
in the language of path (or ’continual’) integrals. This is stated to be far more convenient
than doing so in the orthodox operator formalism (Berezin, 1961, p. 311).

Berezin starts with the case for bosons, which he defines through operators ĉ(ξ) and ĉ∗(ξ′)
satisfying the commutation relation [ĉ(ξ), ĉ∗(ξ′)] = δ(ξ,ξ′), and then moves on to the case of
fermions, which he defines through such operators satisfying the anticommutation relation
{ĉ(ξ), ĉ∗(ξ′)} = δ(ξ,ξ′) instead. This is of course familiar, although one might note that the
delta-function with two arguments is defined in terms of

∫
δ(ξ,ξ′) f (ξ′)dξ′ = f (ξ).

Considering the bosonic case, Berezin wants to move from the operator A(c∗,c) in the lan-
guage of functional integrals to its canonically transformed counterpart Ã(a∗, a). We leave
out the hat on A as the expression in terms of functional integrals will mean expression in
terms of classical, non-operator quantities. He wants to look for this relation in the following
form (Berezin, 1961, p. 312):

Ã(a∗, a) =
∫

K (a∗, a|c∗,c)A(c∗,c)
∏
ξ

dc∗(ξ)dc(ξ) (228)
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We see how A(c∗,c) and Ã(a∗, a) are connected in a familiar way: by a path integral with the
recognizable large product of integration variables and the integral kernel taking the opera-
tor in one pair of canonical coordinates to another. Given the canonical coordinates (a∗, a)
and (c∗,c), the question that remains is how one finds the kernel. For bosons, it can be ex-
pressed as:

K (a∗, a|c∗,c) = (detπΨ∗Ψ)−1/2e− 1
2 ((Φ̄Ψ−1b,b)+(ΦΨ̄−1b∗,b∗)−2(b∗,b)) (229)

Berezin proceeds to prove this result. This will not be copied here, as a somewhat similar
and more important proof will be explicitly given here later. It suffices to know that b(ξ)
and b∗(ξ) can be constructed as linear combinations of a, a∗, e.g., b(ξ) = ∫

Φ(ξ,η)a(η)dη+∫
Ψ(ξ,η)a∗(η)dη− c(ξ), and that (b1,b2) = ∫

b1(ξ)b2(ξ)dξ.

Next, he moves on to the fermionic case, and this is essentially where we will see the final
ingredient for the completion of the fermionic path integral, the process of which we started
with Khalatnikov, after which each subsequent author (not necessarily intentionally) took
another step in this direction.
First, again, Ã(a∗, a) is sought after in the form (228). This time, though, the kernel will be dif-
ferent. This is not surprising. Bosonic and fermionic operators behave differently, so Ã(a∗, a)
is unlikely be the same for both of these systems. Another major difference is that the integra-
tion variables are now anticommuting numbers. Rather than invoking some tricks to replace
these with regular commuting c-numbers as we saw with earlier authors, Berezin bites the
bullet and takes the radical step to explicitly define integration over these anticommuting
numbers. He first introduces these numbers, but does not call them ’a-numbers’ (Candlin)
or ’elements of a noncommutative ring’ (Martin). Rather, he refers to them as generators
of a Graßmann algebra (Berezin, 1961, p. 314). For the first time, Graßmann is explicitly
invoked, as Berezin recognizes the algebraic structure the numbers he requires can be cou-
pled to. When covering his book, some more will be said on how he makes this connection.
In any case, Berezin provides the anticommutation relation of these generators x1, . . . , xn as
{d xi ,d xk } = {d xi , xk } = {xi , xk } = 0. Since this automatically implies that x2

i = 0, we have our
Graßmann numbers. Berezin also, like Martin, defines the left and right derivatives one can
take of monomials of these variables. Lastly, he takes the novel step of directly defining an
integration procedure over the Graßmann variables:∫

d xk = 0 ,
∫

xk d xk = 1 (230)

We will extensively discuss these ’integrals’ in a minute, but let us first briefly conclude
Berezin’s article. After establishing them, Berezin uses them to derive the integral kernel
in the fermionic expression for Ã(a∗, a). He derives that (Berezin, 1966, p. 314):

K (a∗, a|c∗,c) = (detπΨ∗Ψ)1/2e− 1
2 ((Φ̄Ψ−1b,b)−(ΦΨ̄−1b∗,b∗)+2(b∗,b)) (231)

Note that, compared to the bosonic kernel, some signs changed in the exponent. But, most
importantly, we now have the inverse of the previous determinant in front of the exponen-
tial. As has been mentioned before, this is a key result distinguishing bosonic and fermionic
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path integrals in QFT. We shall derive it later.
Berezin now concludes that he has successfully represented canonical transformations of
operators as functional integrals, as he has shown how to do it for both bosons and fermions.
He ends by remarking that the considerations of both cases are in this mathematical frame-
work altogether almost identical(Berezin, 1966, p. 314).

Having gone through Berezin’s 1961 article, and soon moving to his book where we can find
a more extensive analysis of the path integrals over anticommuting fermionic fields here
developed as well as the applications thereof, we first need a better understanding of the
’integrals’ (230). While Berezin refers to them approximately as ’fermionic integrals over a
Graßmann algebra’, the above are now commonly known as ’Berezin integrals’ or ’Graßmann
integrals’. Much can be said about the above integration rules, and they lie at the basis for
the derivation of equation (164). First, it is good to know that these are not your typical well-
defined integrals that can be found all throughout any physics degree. The above identities
are defined in this way, implying a certain freedom that is not there if one works with, e.g.,
the already rigidly defined Riemann integral. The symbol

∫
here should therefore be taken

to signify an analogy, rather than the real thing.

A next question may be why one would choose to define them in a way where they act just
like derivatives. After all, the integral over 1 yields 0 and the one over x yields 1. Most (other-
wise excellent) texts, including Berezin himself, do not comment on this much (e.g. (Grosche
and Steiner, 2019, p. 56)), which may initially leave the reader with a feeling of arbitrarity. A
good motivation, however, can be found in (Peskin and Schroeder, 2019, p. 299, 308), where
the choice for this definition is linked to the in chapter 2.4 noted property that the path
integral’s functional measure Dφ is invariant upon a shift of integration variable φ(xµ) →
φ′(xµ) = φ(xµ)+ ϵ(xµ) with ϵ(xµ) an infinitesimal variation. Thus, Dφ= Dφ′ upon this shift.
This may itself seem arbitrary on first hearing, but this property is essential in all kinds of
path integral derivations in both the bosonic and fermionic case. This includes the deriva-
tion of conservation laws and the Schwinger-Dyson equations from the path integral.

Let us see how this shift-invariance demand concretely leads to the above definition of Berezin
integration. First, note that since x2

k = 0, any polynomial in xk will terminate after the linear
order, and we can thus at most integrate over a linear formula f (xk ) = a +bxk , with a,b ∈C.
Since we can Taylor expand any function f (xk ) into this linear polynomial, this is all that
really needs to draw our interest. As one may note, the ease of manipulating the elements
of the one-dimensional exterior algebra extends to these integrals as well. We thus want to
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determine the integral49: ∫
d xk f (xk ) =

∫
d xk (a +bxk ) (232)

Now we invoke our demand of shift-invariance. We substitute xk → xk + xi and thus, by our
demand, we must find that∫

d xk (a +bxk ) =
∫

d xk (a +bxk +bxi ) (233)

The question now becomes: what linear function of a and b, resulting from this integral, has
the property that such a shift leaves it unchanged? The only possible answer is the product of
b with some constant (the latter of which we take as 1, as anything else would be redundant).
Therefore, the imposed shift-invariance demand leads us to the conclusion that∫

d xk (a +bxk ) = b (234)

Now the only further assumption we need to come to (230) is linearity, so that we can say
that

b =
∫

d xk (a +bxk ) = a
∫

d xk +b
∫

d xk xk (235)

And thus, we have completed our motivation for the choice of definition (230).

The above can all be extended to a multiple integral which, as one may imagine, will cer-
tainly be of use when handling path integrals. The aforementioned ordering plays an impor-
tant role here. We write Ï

d xi d xk xk xi =
∫

d xi xi = 1 (236)

The important thing to note is that we start the integration with respect to the integra-
tion variable farthest to the right and, if the monomial in the integral contains this vari-
able, it must be moved all the way to the left. These rules are essential for not getting the
signs wrong. For example, had xk and xi above been interchanged, we would have hadÎ

d xi d xk xi xk = −Î
d xi d xk xk xi = −1. The same would of course hold had d xk and d xi

been interchanged.
Let us summarize all these results for the case of two Graßmann variables xk and xi , with the
most general (Taylor expanded) formula that can then be integrated over being f (xk , xi ) =
a +bxk + cxi +d xk xi , a,b,c,d ∈C, as follows:Ï

d xi d xk f (xk , xi ) =
Ï

d xi d xk (a +bxk + cxi +d xk xi ) (237)

49One may note that while throughout this thesis, I have always put the function to be integrated over in front
of the integration variable, this is not done below. The reason for the former is simply aesthetic preference, but
from here on it will be more convenient and in line with general convention not do to this. This is because
due to the anticommutativity of the symbols involved, ordering everything correctly will turn out to be very
important, and it will be easier on both the reader and me to keep in line with existing convention on this.
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= a
Ï

d xi d xk +b
Ï

d xi d xk xk + c
Ï

d xi d xk xi +d
Ï

d xi d xk xk xi (238)

= 0+b
∫

d xi − c
∫

d xk +d
∫

d xi xi = 0+0+0+1 = 1 (239)

Where after the third equality, only the first-in-line of the two integrals is performed. While
the above surely has an overly large number of intermediate steps, it is at least safe to say that
no ambiguity in relation to this henceforth important operation remains. With the above, the
extension to the case of n generators x1, . . . , xn of the Graßmann algebra follows trivially.
It is possible to also define complex Graßmann numbers, which come in handy when deal-
ing with the Dirac field. They do, however, not change the above mathematics. As is typical
in QFT, a dynamical variable and its complex conjugate can be treated as independent dy-
namical variables, so that in the case of a Graßmann variable z and its complex conjugate z∗,
we just have

Î
d z∗d z zz∗ = 1. Lastly, we define (zk zi )∗ ≡ z∗

i z∗
k , as with applying the dagger

to a product of Hermitian operators.

More on what one can do with Berezin integrals will follow later. First, an interesting con-
nection with the work of Martin can here be detected. He defined the linear operation

Ŝλ

(
n−1∑
r=0

arλ
r

)
= an−1 (240)

where Ŝλ was defined as picking out the coefficient in front of the λn−1 symbol, the last
nonzero one as λn = 0. When applying his eigensymbol theory to the Fermi system, this
became

Ŝψ(a +bψ) = b (241)

thus picking out b, as this is now the coefficient of the last nonzero symbol, since ψ2 = 0 in
the Fermi system. He also showed this operation to be easily extendable to multiple symbols
ψk , when one just needs a product of operators for each k. Lastly, we remember Martin’s
statement that "The ’functional integrals’ of [the results] are indefinitely repeated Ŝψ and Ŝπ
operations..." (Martin, 1959b, p. 458).

It is therefore clear to see that Martin effectively already introduced the Berezin integral,
one of the inventions that made Berezin famous, in a different language. This is another
argument for the possible case for the ’Martin integral’. In any case, it is easy to insist that
the in general poorly known or credited Martin50 is certainly deserving of more recognition
than he got. Nevertheless, this is not to take away credit from Berezin, neither in person nor
achievements. It is likely that while writing the ’61 article, he was not yet aware of the work of
Martin, as was also claimed in one of the biographical articles (Karabegov et al., 2013, p. 17-

50Unfortunately, multiple attempts to get in touch both with the Tait Institute of Mathematical Physics and
the National Physical Laboratory of the UK, where Martin was active at the time of writing his papers, left me
empty-handed. The result is that I do not even know the names his initials ’J.L.’ are supposed to signify!
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18)51. Once Berezin did learn about Martin, he cited and/or credited him (as well as other
authors discussed in this chapter) on many occasions (Berezin, 1966, p. 225)(Berezin and
Marinov, 1976, p. 9, 22)(Berezin, 1979, p. 1670). Moreover, aside from the independent dis-
covery, Berezin contributed much more than just writing down the integral. He was the first
to connect the work on anticommuting numbers attempting to describe fermionic systems
to the larger algebraic structure of Graßmann algebra, and in his book he formulated a com-
plete, consistent and extensive mathematical formalism for describing bosons and fermion
using it. He also most clearly laid down the integration rules and concretely went on to use
them to derive now elementary results such as (164). We can, therefore, simultaneously hold
that, in particular, Martin deserves more credit, while continuing to believe the widely exist-
ing credit to Berezin’s accomplishments is justified.

At this point it makes sense to also look at Berezin’s book ’The Method of Second Quanti-
zation’, to consider direct applications of his new integrals as well as get some grasp on the
greater project Berezin is occupied with. For this, let us briefly recap the basis of second
quantization.
As is well known, one step to get from QM to QFT involves the incorporation of special rela-
tivity. The other step is, of course, to take a different physical concept as the basis for quanti-
zation. In QM, the particle is essentially fundamental, and quantization entails the subjuga-
tion of particle properties such as x and p to canonical commutation relations. In QFT, fields,
with their infinite number of degrees of freedom, make up the essential physical concept in-
stead. The quantization procedure is now applied to canonical variablesΦ(xµ) and Π(xµ) of
the classical field. This also explains the common understanding of second quantization as a
misnomer. The ’second’ in second quantization seems to imply that we are quantizing field
variables after already having quantizated the ’particle variables’, or, even worse, that the
particle wave function now becomes an operator. In reality, it is now the classical field that
serves as the quantization basis, rather than the classical particle. While Dirac came up with
the term, the procedure comes from Ernst Pascual Jordon (1902-1980), who was an impor-
tant figure in early QFT (Kuhlmann, 2020). It was later also developed by the famous Russian
physicist Vladimir Aleksandrovich Fock (1898-1974), whose work Berezin, as one might have
guessed, was certainly familiar with. He is taken as one of the starting points in the book
(Berezin, 1966, p. vii-ix). We shall therefore briefly discuss the concept of a Fock space.

In QM, we generally want to know which particle is in which state. However, since all par-
ticles of the same type are fundamentally identical, we know that in QM we should not be
able to distinguish between many-body quantum systems where two identical particles have
been interchanged.52 Thus, |Ψ(. . . , r⃗i , . . . , r⃗ j , . . .)|2 = |Ψ(. . . , r⃗ j , . . . , r⃗i , . . .)|2. Remember that it is

51In that article, which does describe Martin as a predecessor of Berezin and mentions his crediting of Martin,
it is stated that "Berezin learned about them [Martin’s two articles] only around 1976". It is, however, likely that
Berezin at least knew about him before that time, as Martin’s first paper appears in the bibliography of Berezin’s
book (Berezin, 1966, p. 225).

52The reality is a bit more complicated than this argument. Nevertheless, due to its familiarity, we shall stick
to it for now.
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only the square of the absolute value of the wave function that is measurable53. Therefore,
as for the wave function itself, it is allowed to either pick up a plus or minus sign upon ex-
change. Many of us are introduced to the concept of ’bosons’ and ’fermions’ by learning that
bosonic identical particles will in this situation have the plus sign, while for fermions one we
are left with a minus sign instead. Thus, we must be careful that any many-body wave func-
tion is constructed in such a way to obey these respective symmetrization requirements. In
atomic physics one often learns that the permanent here comes in handy for bosons, while
the Slater determinant does the job for fermions (Griffiths, 2014, p. 203-207).

In QFT, one is no longer interested in which state a particle is, as we are dealing with fields.
Keeping in mind that we can view fields as an infinite set of oscillators, what is still interest-
ing is the number of field excitations of particular energy level are present. In this sense we
may still speak of particles. However, due to this description doing away with individuality
of particles of shared typing entirely, we no longer need cumbersome symmetrization pro-
cedures to account for the nonexistence thereof. It is only the number of particles in a given
state that is of interest.

This is where Fock states and the Fock space come in (Fock, 1932). A Fock state can be written
as follows:

|n1,n2, . . .nk , . . .〉 (242)

It means that there are n1 particles in the state |1〉, n2 particles in the state |2〉 and, in gen-
eral, nk particles in the state |k〉. One can therefore see why the Fock state is sometimes also
referred to as the ’occupation number state’. The Fock state is associated with a particular
particle number N = ∑

k nk . This is, therefore, a very simple way to write down how many
particles we have in what state.
It is also possible to immediately differentiate between bosons and fermions through Fock
states in the following straightforward way: for bosons, ∀k nk ∈ N and for fermions, ∀k nk ∈
{0,1}, i.e., we impose the Pauli exclusion principle by noting that in the case of fermions no
more than one particle can be in any specific state |k〉.

Now of course in QFT, we are interested in the case where the number of particles is not
a constant N , but can be changed. Essential to the second quantization formalism is there-
fore the manipulation of Fock states through creation and annihilation operators â†

k and âk

acting on them to change the particle numbers. For example,

â†
k |n1,n2, . . .nk , . . .〉 =

√
nk +1|n1,n2, . . .nk +1, . . .〉 (243)

and
âk |n1,n2, . . .nk , . . .〉 =

√
nk −1|n1,n2, . . .nk −1, . . .〉 (244)

One could of course introduce specific bosonic and fermionic creation and annihilation op-
erators, but for now grasping the general principle will do. We just need to keep in mind the

53Not in one measurement of course, but it will reveal itself after many of them.
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difference that comes about when applying these operators for bosons and fermions. In case
of the former, one can apply indefinitely many creation operators, but applying âk to a Fock
state where nk = 0 will not result in another Fock state. There is, after all, nothing to annihi-
late in this case, and negative integers do not make sense here. In the case of fermions, all
we need to add is that having creation operators â†

k act on states where nk ̸= 0 (in practice,
nk = 1) will also not yield another Fock state.

The idea of using these Fock states in combination with having creation and annihilation
operators act upon them, leads to the concept of a Fock space. As we are well aware, we
can describe quantum mechanical particles through vectors in a Hilbert space. Consider
a one-particle Hilbert space of some type. To it correspond Fock states such as |1,0,0, . . .〉,
|0,1,0, . . .〉, and so on. When we take the tensor product of the Hilbert space with itself, we
are considering the space of two of such identical particles. This now corresponds to Fock
states like |1,1,0, . . .〉, |1,0,1, . . .〉, and so forth.
Of course, in the above case one problem arises. In the case for two identical bosons, the
space H ⊗ H should contain Fock states such as |2,0,0, . . .〉. Yet, as established before, it
should not in the case of identical fermions. The trick is to add an operator Ŝν that sym-
metrizes the tensor product of the Hilbert spaces if ν = b, where ’b’ stands for ’boson’, and
antisymmetrizes if ν = f , where ’ f ’ now predictably stands for ’fermion’. The result is that
the space now only allows for admissable Fock states.
Another note is that we can define a zero-particle Hilbert space corresponding to the empty
Fock state |0,0,0, . . .〉 as just being the field of complex numbers. But with that, we have all
the ingredients for our Fock space, and we can write it simply as

Fν(H) =C⊕H ⊕ (Ŝν(H ⊗H))⊕ (Ŝν(H ⊗H ⊗H))⊕ . . . (245)

Here, Fν(H) is the bosonic or femionic Fock space.
Therefore, the Fock space is the direct sum of the Hilbert space corresponding to n num-
ber of identical bosons or fermions, with that of the one corresponding to n +1 number of
them, and so on. Its elements are therefore linear combinations of Fock states with differ-
ent particle numbers, e.g., 2|1,0,0, . . .〉− 3i |0,4,9, . . .〉+ (9− 16i )|1,1,1, . . .〉 ∈ Fb(H), where in
this example we note that this is a bosonic Fock space. We see that the Fock space is ideally
suited for QFT, as it is a good way to deal with situations where the number of particles is not
conserved, as it paradigmatically the case in QFT. With this, we know all we need to about
the second quantization formalism to understand the background to Berezin and his book.

A final note before ending our Fock-prelude though is the suspicious structural equivalence
of the above definition of the Fock space and the definition of the tensor algebra (157) in the
previous chapter. There too, we start with a field and subsequently take the direct sums of
tensor products of vector spaces. In that case, we got the Graßmann algebra by looking at
a particular subset of the tensor algebra, just like here we get the fermionic Fock space by
setting ν = f for the unspecified Fock space. That Graßmann algebra just so happens to be
ideally suited as a mathematical structure for describing fermions, one of Berezin’s central
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theses, is therefore not entirely a coincidence, as one may already have had such suspicions
based on the mathematical formulations of these concepts above.

With the context above, Berezin’s title now makes more sense: he wants to discuss the method
of second quantization from his point of view as a mathematical physicist. In the prelude
already, he explains that it took a while for the method to become more popular, due to
some remaining mathematical problems. These were, however, not the typical mathemati-
cal problems associated with physics in the form of differential equations. Algebraic topics
are far more important and it is questions on them, from Lie group representations to mea-
sure theory, that compose the core of how Berezin discusses second quantization (Berezin,
1966, p. vii).
Earlier it was described how Berezin had an extensive background in functional analysis.
One core message of his book may be said to be that the answer to the mathematical diffi-
culties of the second quantization formalism is to realize the Fock space in terms of func-
tionals (Berezin, 1966, p. viii). Operators and Hilbert space vectors are to be expressed us-
ing functionals, something we actually already saw happening in (228) and also happens all
throughout this book (Berezin, 1966, p. 4). He introduces bosons as functionals in the space
that have as their input regular functions of the complex numbers, while for fermions we
have anticommuting functions instead. In Berezin’s methodology, the boson-fermion dis-
tinction is everything but some afterthought past already having introduced the basic con-
tent of his mathematical underpinnings of quantum theory. Rather, they are an essential
starting point, and I would argue that Berezin’s work lends itself well for an ontological view
wherein the boson-fermion categorization can be viewed as the most fundamental natural
kinds for physical entities.

Berezin mentions two distinct advantages of realizing a Fock space in terms of functionals.
The first is that these functionals do not just form some linear space, but also a multiplicative
ring, simplifying computations. Specifically, multiplications of functionals corresponding to
bosons commute, and to fermions anticommute, such that we have a commuting and anti-
commuting ring. While these are different, "all the basic formulas for them surprisingly show
an almost complete coincidence" (Berezin, 1966, p. viii), which we will see later in the case
of Gaussian path integrals. Moreover, the anticommutative ring for fermions will, as may be
suspected, be a Graßmann algebra. A second advantage of Berezin’s method has to do with
the infinite number of degrees of freedom typical for QFT. This is the fact that a functional
can be expressed as a function of an infinite number of variables. To get an intuitive feel for
this, one may remember how in chapter 2 the functional S[x(t )] is, through the discrete lat-
tice regularization process, effectively turned into a function S(x1, . . . , xN ) where at the end
N → ∞. This also allows for the interpretation of quantum mechanical problems with an
infinite number of degrees of freedom (Berezin, 1966, p. viii).

In the next few chapters (sub)chapters Berezin works out his program, in part by finding
functional representations of operators. For example, he expresses Fock states in terms of
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functional as (Berezin, 1966, p. 5):

Φn1,...,nk ,... = 1√
n1! · · ·nk ! · ··

(a∗
1 )n1 · · · (a∗

k )nk · ·· (246)

While the coefficient is related to the ordering, the most interesting part above are the factors
(a∗

k )nk for some k witih nk ∈N. These are (complex-valued or Graßmann-valued) functions
of a Hilbert space, with nk the number of identical particles in the state carrying that label.
For fermions, (a∗

k )nk = 0 if nk > 1.
Berezin also rigidly defines the continual integral, which was a more abstract and general
version of the path integral introduced when discussing Khalatnikov (Berezin, 1966, p. 38).

After setting up the basics like those above, he moves on to apply these concepts to bosons
and fermions, after which the next chapters consider how one applies this rigid and polished
version of second quantization to linear canonical transformations, quadratic operators and
Thirring’s four-fermion model. In the former part on bosons, we also see Berezin use his
methods to derive the bosonic Gaussian path integral that we saw in chapter 2.4 (Berezin,
1966, p.41-42).
When he gets to fermions, he (like in the paper) starts by introducing the Graßmann algebra
with n generators x1, . . . , xn . Here, he cites the work of Vivier who was noted in the previ-
ous chapter for playing a role in developing Graßmann algebra in its modern form. He lays
out the basics and then moves on to developing calculus on the Graßmann algebra, starting
with introducing the left and right derivatives in the same way we saw with Martin (189). He
goes a bit further though, by also introducing the Graßmann variants of concepts such as
the chain rule or higher-order derivatives (Berezin, 1966, p. 51-52). He moves on to discuss
the integrals on the Graßmann algebra (230), but again goes further by also considering, e.g.,
integration by parts.

Crucially, Berezin goes on to compute the Gaussian integral over Graßmann variables right
after introducing these new techniques, formulating it as (Berezin, 1966, p. 56-57)

I =
∫

e
∑

ai k xi xk d xn · · ·d x1 (247)

Here, ai k is a real, antisymmetric matrix, and the xi are again the Graßmann variables.
As we are well aware, the computation of these integrals is incredibly important to our story,
as being able to do so means that we can use perturbation theory for path integrals over
fermionic fields. Berezin goes over it rather quickly, but do the centrality of this effort for our
story with it being the ’endpoint’ (164) formulated at the beginning of this chapter where we
can finally do path integrals over fermionic fields, as well as this derivation when looked at
in detail being an excellent demonstration of how the Berezin integral can be applied, the
full derivation will be worked out here in detail. We will now turn our attention to this, after
which some concluding remarks on the current chapter will follow.
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As we want to prove (164), we will use that notation, as it is equivalent to Berezin’s with just
some differences in which (Greek) letters are used. Other than that, all that is needed for the
derivation are the Berezin integration rules we discussed above (latter half of the derivation)
and some messy but basic linear algebra required to show that the integral is invariant under
unitary transformations of its variables (earlier half). Thus, we are to calculate the following
integral over Graßmann variables θ1,θ∗1 , . . . ,θn ,θ∗n :

I =
n∏

l=1

(∫
dθ∗l dθl

)
e−∑n

i=1

∑n
j=1 θ

∗
i Bi jθ j (248)

Here, the product operatorΠ acts again on what is in the brackets, so that we end up with 2n
integrals over Graßmann variables.
Since B is an nxn Hermitian matrix, it follows from the spectral theorem that it can be diago-
nalized. We can write this as the unitary transformation D =U−1BU , with D the diagonalized
and U a unitary matrix so that U † = U−1. Given the sums in the exponent above, we write
Bi j = ∑n

k=1UkiλkUk j . Here, λ1, . . . ,λn are the diagonal entries of D , i.e., they are the eigen-
values of B .
The exponent in I will get quite messy now, as substituting this Bi j will result in

n∏
l=1

(∫
dθ∗l dθl

)
e−∑n

i=1

∑n
j=1 θ

∗
i Bi jθ j =

n∏
l=1

(∫
dθ∗l dθl

)
e−∑n

i=1

∑n
j=1

∑n
k=1 θ

∗
i UkiλkUk jθ j (249)

Note that Uαβ ∈ C, so these are just commuting numbers and we can make the following
substitutions:

ψk =
n∑

j=1
Uk jθ j , ψ∗

k =
n∑

i=1
Ukiθ

∗
i (250)

And with that we get the not so messy

n∏
l=1

(∫
dθ∗l dθl

)
e−∑n

i=1

∑n
j=1

∑n
k=1 θ

∗
i UkiλkUk jθ j =

n∏
l=1

(∫
dθ∗l dθl

)
e−∑n

k=1ψ
∗
kλkψk (251)

However, while the exponent is now simplified significantly, the change of variables that took
also means that the integration variables must change54. If we write the above substitutions
as a matrix equation ψ=Uθ (and similarly for ψ∗), we have, equivalently, θ =U−1ψ=U †ψ.
Thus, we find that

dθl =
n∑

j=1
U j l dψ j , dθ∗l =

n∑
i=1

Ui l dψ∗
i (252)

Changing the integration variables now yields

n∏
l=1

(∫
dθ∗l dθl

)
e−∑n

k=1ψ
∗
kλkψk =

n∏
l=1

(∫ n∑
i=1

n∑
j=1

Ui lU j l dψ∗
i dψ j

)
e−∑n

k=1ψ
∗
kλkψk (253)

54One may rightfully wonder if substitution of integration variables is allowed for integration on the Graß-
mann algebra. Berezin addresses just this case and, not coincidentally, states that this is perfectly fine (Berezin,
1966, p. 55).

128



Note that if we let the product operator act on the brackets, we also get 2n sums

n∏
l=1

(∫ n∑
i=1

n∑
j=1

Ui lU j l dψ∗
i dψ j

)
e−∑n

k=1ψ
∗
kλkψk = (254)

∫ (
n∑

i1=1

n∑
j1=1

Ui11U j11dψ∗
i1

dψ j1

)
· · ·

(
n∑

in=1

n∑
jn=1

Ui1nU j1ndψ∗
in

dψ jn

)
e−∑n

k=1ψ
∗
kλkψk (255)

At this point one may wonder how we get out of this mess of 2n sums and start applying the
Berezin integral. Below I explain how, in a semi-qualitative way where I somewhat sacrifice
the rigor of strict symbolic manipulation but hopefully create an easier intuitive understand-
ing in line with the goal of comprehensibility.
Consider the expression above. In each pair of brackets, we will have a sum of n2 terms. Mul-
tiplying all the pairs of brackets will then result in n2n terms. Luckily, most of these are zero,
for the following reason. Consider the term associated with i1 = r and j1 = s (r, s ∈ {1, . . . ,n})
in the first pair of brackets. This term will be dψ∗

r dψs with some complex number coef-
ficient. Now note that if we multiply out this particular term with all the other terms in
the n − 1 other pairs of brackets and look at the resulting integration variable monomials,
most of these will contain another dψ∗

r or dψs . Concretely, there will be far fewer monomi-
als dψs1 dψs2 · · ·dψsn where none of the subscripts will coincide, than those where at least
one pair does. Yet, every time that does happen, the whole thing is zero. For example,
dψ4dψ19dψ4 · · · = −dψ4dψ4dψ19 · · · = −(dψ4)2dψ19 · · · = 0, with a minus sign in front due
to the permutation of dψ19 and dψ4. After all: Graßmann variables square to zero. In con-
clusion: only a sum of terms where every integration variable subscript in the set {1, . . . ,n}
appears exactly once remains. The coefficients of these terms will be products of the com-
plex number unitary matrix coefficients.
The next realization is then that using the anticommutativity of the Graßmann integration
variables, all of these terms can be neatly ordered as dψ∗

1 dψ1dψ∗
2 dψ2 · · ·dψ∗

ndψn . Two
things here are important to note. Firstly, the thing in its totality can now be written as a
sum of products of matrix elements, i.e., (A −B + . . .)dψ∗

1 dψ1dψ∗
2 dψ2 · · ·dψ∗

ndψn , where A
and B look like, e.g., A =U51U91U22U71 · · · . Secondly, whether we find a plus or minus sign in
front of coefficients like A and B , depends on whether an even or odd number of permuta-
tions of integration variables was required to produce the neatly ordered monomial above,
respectively. Thus, rather than writing the coefficients as a messy sum with pluses and mi-
nuses, the sum of coefficients can neatly be expressed through a sum operator with as two
of its arguments the Levi-Civita symbols ϵi1···in and ϵ j1··· jn .
Incorporating this story into our expression leaves us with∫ (

n∑
i1=1

n∑
j1=1

Ui11U j11dψ∗
i1

dψ j1

)
· · ·

(
n∑

in=1

n∑
jn=1

Ui1nU j1ndψ∗
in

dψ jn

)
e−∑n

k=1ψ
∗
kλkψk = (256)

C
∫

dψ∗
1 dψ1dψ∗

2 dψ2 · · ·dψ∗
ndψne−∑n

k=1ψ
∗
kλkψk (257)
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where

C =
(

n∑
i1=1

· · ·
n∑

in=1
Ui11 · · ·Ui1n ϵi1···in

)(
n∑

j1=1
· · ·

n∑
jn=1

U j11 · · ·U j1n ϵ j1··· jn

)
(258)

Here, C has consciously been written in a suggestive form, as in the brackets we find the
definition of the determinant of an nxn matrix. We have

C = det(U †) ·det(U ) = det(U †U ) = det(I ) = 1 (259)

Here, the unitary of U , the fact that we integrate over pairs of Graßmann variables and their
conjugates, and general relations from linear algebra were used. Thus, we can conclude that

n∏
l=1

(∫
dθ∗l dθl

)
e−∑n

i=1

∑n
j=1 θ

∗
i Bi jθ j =

n∏
l=1

(∫
dψ∗

l dψl

)
e−∑n

k=1ψ
∗
kλkψk (260)

In a nutshell, we have established that the integral is invariant under unitary transformations
of the variables. With it established, we can now get to the ’second half’ where the actual in-
tegration over the Graßmann variables happens. The process will turn out to be rather easy,
due to the convenient properties of Graßmann numbers.

As a first step, we use the Taylor series for the exponential in the integral. Before doing so,
we interchange theψ∗

k andψk in the exponent to get rid of the minus sign, making the series
expansion a bit simpler. We find that

n∏
l=1

(∫
dψ∗

l dψl

)
e−∑n

k=1ψ
∗
kλkψk =

n∏
l=1

(∫
dψ∗

l dψl

) ∞∑
m=0

((∑n
k=1ψkλkψ

∗
k

)m

m!

)
(261)

To greatly simplify the above, let us consider the object
∑n

k=1ψkλkψ
∗
k =λ1ψ1ψ

∗
1+. . .+λnψnψ

∗
n .

This is the case m = 1. Now consider that in the case m = 2 we have (λ1ψ1ψ
∗
1+. . .+λnψnψ

∗
n)2.

We therefore get n2 terms with each term (aside from a complex coefficient that is the prod-
uct of eigenvalues) having some combination ψiψ

∗
i ψ jψ

∗
j , i , j ∈ {1, . . . ,n}. This way of think-

ing helps one to see the following three cases.

• m < n: In this case, we get monomials of Graßmann variables that are integrated over
the integration variables dψ∗

1 dψ1 · · ·dψ∗
ndψn . Yet, because we have a product of less

Graßmann variables than there are integration variables, these monomials will always
miss at least one Graßmann variable ψr that is present among the product of integra-
tion variables dψ1 · · ·dψr · · ·dψn (neglecting the conjugate counterparts for brevity).
But since the Berezin integral is defined as

∫
dψ(a + bψ) = b, and in such cases we

effectively have b = 0, this will just render the integral zero.

• m > n: In this case, (ψ1+ . . .+ψn)m (again neglecting eigenvalues and conjugate coun-
terparts for brevity) will produce monomials where one Graßmann variable appears
at least twice. This results in a squared variable, which is defined to always be zero.
Therefore, all entries of the sum over m in this range disappear.
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• m = n: Given the two earlier entries we realize that in this case there will be some num-
ber of monomials with both enough Graßmann variables for each to be integrated over
and not too much so that the monomial is zero because of the presence of more than
one of a particular variable in the monomial. Thus, let us rewrite the above formula for
this case and go further from here.

n∏
l=1

(∫
dψ∗

l dψl

) ∞∑
m=0

((∑n
k=1ψkλkψ

∗
k

)m

m!

)
=

∫
dψ∗

1 dψ1 · · ·dψ∗
ndψn

(ψ1λ1ψ
∗
1 + . . .+ψnλnψ

∗
n)n

n!
(262)

The object (ψ1λ1ψ
∗
1 + . . .+ψnλnψ

∗
n)n contains two pieces of information we still need. First,

for reasons clear from the above list, we need to know how many of the nn monomials this
object produces contains precisely one of each of the n Graßmann variables. Imagine that
one has n baskets, each with n differently colored marbles. One wonders in how many ways
it is possible to take just one marble from each basket, and end up with n differently colored
marbles at the end. For the first basket, it we have n options, as it does not matter yet which
we pick. For the second basket, we have n −1 options, as it is only the color that we already
picked from the previous basket that we do not want from this one. Given the two already
taken colors, there are n−2 options left for the third basket, and so on. Since the ’baskets’ are
just the (n-times multiplied) sums over k, and the ’marbles’ are just the Graßmann variables
with the n’colors’ being the n subscripts, the situations are identical, and we conclude that
there are n! of the monomials we are looking for. Conveniently, this n! cancels against the 1

n!
in our expression.
But hold on! Even if we have n! monomials, we cannot just add them up to get a n! coeffi-
cient, as these monomials will not all be neatly ordered like ψ1λ1ψ

∗
1ψ2λ2ψ

∗
2 · · ·ψnλnψ

∗
n . All

possible orderings of the subscripts will appear. Of course we interchange these variables
using the anticommutation relation, but if the number of permutations is odd this will leave
the total resulting monomial with a minus sign, and we will not get n! as a coefficient.
Luckily, there is a second important piece of information we can draw from the object (ψ1λ1ψ

∗
1+

. . .+ψnλnψ
∗
n)n . Namely, because all individual terms ψrλrψ

∗
r contain two Graßmann vari-

ables, and we always want to move these terms as a whole, there are no even permutations
in this case. In other words, these terms as a whole commute, i.e., (ψrλrψ

∗
r )(ψsλsψ

∗
s ) =

(ψsλsψ
∗
s )(ψrλrψ

∗
r ). More generally, if a,b,c,d are Graßmann numbers, then (ab)(cd) =

−acbd = cabd =−cadb = (cd)(ab). Therefore, in general, products of two Graßmann num-
bers commute. The consequence here is that all of the n! monomials and their different
ordering can be ordered in any way we want as long as we respect the terms they are made
up of. This means that rather than having to do integrals for n! monomials, we only have to
do them for one with a coefficient n! in front that cancels with its already present inverse.

Thus, we can now write∫
dψ∗

1 dψ1 · · ·dψ∗
ndψn

(ψ1λ1ψ
∗
1 + . . .+ψnλnψ

∗
n)n

n!
=

∫
dψ∗

1 dψ1 · · ·dψ∗
ndψnψnλnψ

∗
n · · ·ψ1λ1ψ

∗
1

(263)
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Where the terms have been ordered such that we can directly apply (236). Therefore, what
we end up with is simply the product of all the λ’s∫

dψ∗
1 dψ1 · · ·dψ∗

ndψnψnλnψ
∗
n · · ·ψ1λ1ψ

∗
1 =

n∏
k=1

λk (264)

Let us remember that these are the eigenvalues of the nxn Hermitian matrix B . Moreover,
the determinant of a matrix is the product of its eigenvalues. With that, we arrive at our final
result:

n∏
l=1

(∫
dθ∗l dθl

)
e−∑n

i=1

∑n
j=1 θ

∗
i Bi jθ j = detB (265)

This is, of course, precisely (164).

While the above has been somewhat lengthy and detailed due to it being intended as a first
exposition for starting Master’s students, one may note that the underlying rules are, in fact,
rather easy, and one will probably be quick to get used to them. Getting used to them is
important, as in QFT, a one-dimension Graßmann algebra and how Gaussian integrals can
be done in terms of that is all that is needed to correctly and reliably derive propagators of
fermionic fields. After all, free fermion propagators require the computation of Gaussian in-
tegrals like we just handled. With these Gaussian (free propagator) integrals lying at the basis
of perturbation theory, this result is essentially the key to unlock the full power of perturba-
tive methods of fermionic fields, including the Feynman diagrams that can be derived from
them.
Moreover the aforementioned near complete coincidence of the basic formulas for bosons
and fermions that Berezin spoke of can be perfectly exemplified here. After all, the Gaussian
integral over bosonic fields computed in chapter 2.4 results in the inverse of the above result
for fermionic fields. This is a quite remarkable result. In fact, symmetries like this inspired
Berezin’s program of ’supermathematics’, although this is a story for the next chapter.

For now, let us round off by concluding that Berezin’s contribution to the problem of fermionic
path integrals has been enormous, and marks the endpoint of that story. While, as discussed,
the integral over anticommuting functions is not unambiguously attributable to him, it can
hardly be denied that he is responsible for embedding it into a greater mathematical struc-
ture underlying second quantization, expanded greatly on its properties and uses, made the
link with Graßmann algebra explicit, introduced the clearest and now mainstream notation
and used all of this to directly derive the now indispensible result (164).

In this chapter, we have started by considering the standard narrative on the origin of fermionic
path integrals. While naming some adjacent authors, we then systematically went through
six bodies of work around the second half of the fifties, that were found to be most important
in this development. Each time, I have aimed to answer the question posed about them at
the beginning of the chapter. What was found, is that in general it can be said that against
the standard narrative, the fermionic path integral was not the result of one author in one
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country, nor did that particular author even claim anything of the sort. In reality, we saw a
gradual line of innovation upon innovation of many authors taking as a starting point the
work of predecessors. One could imagine assigning several phases to this development. For
example, we have the detection of the problem, the introduction of anticommuting func-
tions, turning integrals over anticommuting functions into ones over real number commut-
ing functions, introducing a minimal algebra of anticommuting numbers, and developing
rules for explicit differentiation and, in particular, integration over them.
It has been argued that, especially in the case of figures like Martin and Candlin, the contri-
butions of a number of these authors have been severely underappreciated. Moreover, the
developments on this topic have not only played out in the Soviet Union, as the United King-
dom also had scientists making major contributions.

At the end of this thesis, further concluding remarks on the subject will be made. For now,
one main question remains, namely, what developments were made possible by the innova-
tions laid out in this chapter. The impact of them turns out to be momentous. This will be
the topic of the next and final chapter.

133



5 From Ghosts to Strings: Reaping the Rewards of the Fermionic
Path Integral

The previous chapter showed us how after a long chain of contributions, the problem of
fermionic path integrals was ultimately solved. This culminated in a calculation of the Gaus-
sian integral over Graßmann variables (164). Now, it is time to cash in and see what we can
do with this.

In this chapter, we will start by considering two very direct applications of this new tool-
box. The first of these will be the functional integral over the Dirac field. Being able to set
this up directly and derive the Feynman rules in this way is a clear step forward, as the Graß-
mann variables take care of any minus signs between diagrams in the sum. After all, as was
seen in chapter 2.5, Feynman himself was stuck on this issue, and had to resort to artificially
inserting minus signs to get his QED to work. The second application we shall look at is the
quantization of (non)-Abelian gauge theories. Both cases are convincing demonstrations of
the strength of the path integral formulation, but especially the non-Abelian case will directly
use integrals over Graßmann fields in the form of the famous Faddeev-Popov trick, and also
leave some interesting new ’fields’ in its wake. This second application can also be taken
to usher in the end of the dark ages of the path integral formulation. That is why the third
and final topic to be discussed in this chapter will be about the developments from the 70s
onwards. Albeit in a more qualitiative matter, we shall briefly discuss the renormalization of
non-Abelian gauge theories and supersymmetry.

5.1 The functional integral of the Dirac field

With Graßmann algebra at our disposal, we may now wonder how we can represent, e.g., the
Dirac field. We may suspect that the left-hand side of the Gaussian fermionic integral (164)
may be written as a general functional integral of a fermionic field, as with equation (110) for
bosons. This, as it turns out, is indeed the case.

First, we have to move from a Graßmann variable to a Graßmann field. The following draws
heavily on (Peskin and Schroeder, 2019, p. 301-303). Moreover, for the remainder of this
chapter, we shall again write xµ ≡ x for the four-vector, as we will be needing these a lot. A
Graßmann field ξ(x) can then be written as

ξ(x) =∑
i
ξiχ(x) (266)

Here, the coefficients ξi are Graßmann variables as we have seen many times up until now.
The χ(x) on the other hand, are complex number functions.

Due to the Dirac spinors featuring in the Dirac equation, it seems unlikely that the Dirac
field can be represented in this case. This suspicion is indeed correct, as the right way of
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doing so involves replacing the χ(x) as here defined with Dirac spinors. With that, we now
have a theoretical representation for the Dirac field and its adjoint ψ(x) and ψ̄(x): they are
implicitly sums of products of Graßmann numbers and spinors. We do not explicitly need
this decomposition from here on out, but it is good to note that this is the underlying basis
of a Graßmann field.

Thanks to the power of anticommuting numbers, we can now represent a spin-1/2 system
through a classical Lagrangian, which was such a problem before. Let us write down the
Lagrangian density of the free Dirac field:

LD = ψ̄(i /∂−m)ψ (267)

where /∂≡ γµ∂µ, that is, the contraction of the gamma matrices with the contravariant deriva-
tive. The abbreviation is called the ’Feynman slash notation’.
With this, we can now write down the two-point correlation function (113) for the free Dirac
field

〈0|T (ψ(x1)ψ̄(x2))|0〉 = lim
t±→±∞

∫
ψ(x1)ψ̄(x2)e i

∫
ψ̄(i /∂−m)ψ d 4xDψ̄Dψ∫

e i
∫
ψ̄(i /∂−m)ψ d 4xDψ̄Dψ

(268)

Consider first the denominator. The hard work for figuring out what this is has already
been done in chapter 2.4 and 4.6. Just like how equation (134) gave us equation (136) in
the bosonic case as we simply replaced the matrix by a differential operator, equation (164)
will now give us ∫

e i
∫
ψ̄(i /∂−m)ψ d 4xDψ̄Dψ∝ det(i /∂−m) (269)

After all, the product of Graßmann variables that is integrated over to find the Gaussian inte-
gral over (164) is just the result of the discrete lattice regularizaton of Dψ̄Dψ. Another close
similarity (one can see why this distinction was such a central starting point to Berezin) be-
tween our previous bosonic discussions and the fermionic one now, is that the correlation
function giving rise to the Feynman propagator for the free Klein-Gordon field (147) now
translates into the Dirac Feynman propagator

lim
t±→±∞

∫
ψ(x1)ψ̄(x2)e i

∫
ψ̄(i /∂−m)ψ d 4xDψ̄Dψ∫

e i
∫
ψ̄(i /∂−m)ψ d 4xDψ̄Dψ

= SF (x1 −x2) (270)

This means that if one now possesses the Feynman rule of the photon propagator too (see
next subchapter), the full capacity of perturbative quantum electrodynamics is unlocked.
Let us write down its full Lagrangian density:

LQED =LD +LM +Li nt = ψ̄(i /∂−m)ψ− 1

4
FµνFµν−eψ̄γµψAµ (271)

Here, LM is the Lagrangian density of electromagnetism, i.e., it corresponds to the Maxwell
action. Accordingly, Fµν ≡ ∂µAµ−∂νAµ is the electromagnetic field tensor, with Aµ the elec-
tromagnetic four-potential. The final term Li nt represents the interaction Lagrangian den-
sity of QED, with the coupling constant e. It can be viewed as the most famous Feynman dia-
gram in existence: the coupling of the photon propagator to that of the electron and positron.
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Perturbation theory will now require the expansion of the interaction part of the action in
the correlation function expression (113). Given the Feynman propagators of the Dirac and
electromagnetic field, this allows one to derive the Feynman rules for QED in the expected
fashion. Due to the functional integral over the Dirac field being expressed in terms of the
anticommutative Graßmann algebra, the required minus signs for adding up Feynman dia-
grams in the perturbative contributions are now automatically taken care of. In other words,
no arbitrarily imposed bookkeeping regime for minus signs is required. Thanks to the power
of the functional integral formulation and its extension with Berezin’s integration rules for
fermionic fields, the entire process has now become easier than any other known formula-
tion could provide. Let us therefore end the chapter with the full functional integral kernel55

for QED, in the language of how this was introduced for real scalar fields by expression (110)
(Feynman and Hibbs, 1965, p. 236)(Feynman, 1949):

K (A,B) =N

Ñ
e i

∫
(ψ̄(i /∂−m)ψ− 1

4 FµνFµν−eψ̄γµψAµ)d 4xDψ̄DψDA (272)

we note that N is a normalization constant and DA ≡D A0D A1D A2D A3, as this is the func-
tional integral over the four-potential. This comes down to being a more complicated appli-
cation of expression (9).
With this, we have completed our discussion of the functional integral of the Dirac field.

5.2 Context to Faddeev Popov quantization

When describing perturbative QED above, we assumed that the photon propagator was al-
ready known. Yet, this is no trivial result. Canonical quantization of Aµ(x) is (in)famously
extremely difficult. This difficulty originates from the gauge invariance involved in the elec-
tromagnetic field (Peskin and Schroeder, 2019, p. 79). As we will see, the path integral formu-
lation is much better equipped to derive the photon propagator and thereby find out how to
quantize electrodynamics. In this subchapter, we will consider this problem and see how it
can be addressed with the help of the functional integral. After this, these techniques will be
applied to deal with similar problems in non-Abelian gauge theories, specifically Yang-Mills
theory (all to be defined shortly). In the latter case, the integral over fermionic fields will play
a major role.

The mathematical tricks below, including those using Berezin integrals, have first been in-
troduced by Ludvig Dmitrievich Faddeev (1934-2017) and Victor Nikolaevich Popov (1937-
1994), and the objects carrying their name will thus appear later (Faddeev and Popov, 1967).

55The notion of the kernel is at this point somewhat obsolete. Yet, we will express it in the tradition of chap-
ter 2 and that of Feynman and Hibbs, who also expressed the path integral for the Maxwell action in this way
(Feynman and Hibbs, 1965, p. 236), just this once. In reality, we are expression the denominator of the general
expression for calculating time-ordered correlation functions in any QFT in the language of functional inte-
grals. It is then also good to keep in mind that we are dealing with asymptotically free states, so that the initial
and final state A and B are implicitly defined in the limits.
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They were both aware of Berezin’s work and had even published with him before (Berezin
and Faddeev, 1961). The background to their work can actually be found in the 1962 Confer-
ence on Relativistic Theories of Gravitation in Jabłonna (near Warsaw, Poland). This was
an early conference that gave an impulse to the field of quantum gravity. Feynman and
Bryce Seligman DeWitt56 (1923-2004) played an important role in this. Starting with a con-
ference talk by Feynman, they realized that Yang-Mills theory with zero mass is quite sim-
ilar to their attempted model at quantum gravity. Yet, both contain divergences resulting
from closed loops in their associated diagrams. While the two were able to combat this to
some degree, Faddeev and Popov took up their mantle to, in the context of Yang-Mills the-
ory, "propose a sipmle method for calculation of the contribution from arbitrary diagrams."
(Faddeev and Popov, 1967, p. 29). This, essentially, involved addressing problems result-
ing from gauge freedom as we will see below. Thus, two different lines of development in
physics here, namely that of quantum gravity and our story so far, interacted and fruitfully
cross-pollinated.
As in the Soviet style we have seen before, the paper of Faddeev and Popov was extremely
short, although not unclear 57. It will be cited below, yet at times the help of secondary
sources will also be enlisted (Peskin and Schroeder, 2019, p. 295-297).

First, some key terms will be defined. We remember that in classical electromagnetism, we
have

B⃗ = ∇⃗× A⃗ (273)

with B⃗ the magnetic field and A⃗ its associated vector potential (in fact, the latter three com-
ponents of the four-potential used earlier).
Since in general the curl of the gradient of some function Λ(x⃗) is zero, i.e., ∇⃗× (⃗∇Λ) = 0, we
note that we can add any such term to the vector potential yet not change the magnetic field:

B⃗ = ∇⃗× (A⃗+∇⃗Λ) (274)

From the classical idea that only the electric and magnetic field are observable, but not their
potentials, this means that the addition of this new term has no observable effects on the
physics58. We can simply choose whatever is most convenient for us. The transformation
A⃗ → A⃗ = ∇⃗Λ is then called a gauge transformation, and by selecting a particular function Λ
through some condition we are imposing a choice of gauge.

While this is the source of the ’gauge terminology’ in QFT, it there takes on a much deeper
meaning than just a mathematical manipulation. By demanding that the Lagrangian den-
sity of a quantum field theory is invariant under local gauge transformations, one is actually

56As we have briefly discussed the work of Cécile DeWitt-Morette before, note that Bryce Dewitt is ’the hus-
band of’!

57It helps that, thanks to a reading group session I was able to participate in during my time at the MPIWG
thanks to dr. Blum, I had read and discussed the transcript of Feynman’s talk at the conference on quantum
gravity. This made it easier to contextualize the work of Faddeev and Popov.

58This assumption no longer holds in quantum mechanics, as it was shown through the Aharonov-Bohm
effect that a change in potential can affect charged particles even if the fields themselves do not change.
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able to derive the underlying structure of such theories. A theory making use of this prin-
ciple is then a gauge theory. One example is QED. We note that the free Dirac Lagrangian
density (267) is invariant under a global phase transformationψ→ e iαψ (and, consequently,
ψ̄→ e−iαψ̄). Since α ∈ℜ, these are just numbers. We can multiply the exponentials and just
get 1, so that the total Dirac Lagrangian density is unchanged. A local phase transformation
now adds some extra, viz., that the number α is a function of the spacetime four-vector x,
i.e.,

ψ→ e iα(x)ψ, ψ̄→ e−iα(x)ψ̄ (275)

Under this transformation, it seems that LD is not invariant, due to the derivative involved
in /∂ now also acting on α(x). This produces an extra term (∂µα(x))ψ̄γµψ. Yet, the principle
telling telling us to demand that this is the case. The way out is now to introduce a new field
called a gauge field that transforms in such a way that it cancels the extra term that comes
about from this transformation. This, wonderfully, turns out to be exactly the electromag-
netic field Aµ(x), which then must transform according to the rule Aα

µ(x) = A+µ(x)+1
e ∂µα(x).

Thus, one can derive the QED Lagrangian and the Maxwell and interaction terms by de-
manding that the Dirac Lagrangian is invariant under a local phase transformation. Since the
latter is a number, we could also refer to it as a 1x1 matrix. In fact, we could write the gauge
transformations discussed above as a multiplication by such a matrix, namelyψ→Uψ, with
U satisfying the property that U †U = 1. If we now consider these matrices as a representation
of a group, then the collective of them forms what is called the U (1) group, or the ’unitary
group of dimension 1’. The elements of this group commute because they are numbers. In
group theory, a group whose elements commute is called an ’Abelian group’. Thus, we can
summarize by saying that QED has the special U (1) gauge symmetry, and we can refer to it
as an Abelian gauge theory.

The above terminology seems a bit much given we are just multiplying by numbers. The
reason for adopting it anyway is that it provides a language suitable for all the other Stan-
dard Model interactions too. For example, the strong interaction has a Lagrangian density
that obeys the SU (3) (special unitary group of dimension 3) symmetry. The ’special’ means
that the determinant of the matrices that from the representation of this group is always
equal to 1. Keeping in with the above logic, this means that we can derive the gluon field
by demanding invariance of the quark Lagrangian upon applying a local transformation of
an exponential with this times matrices, rather than numbers, as its argument. Although
understanding the Standard Model in this way only came around during the 70s, the princi-
ple of local gauge invariance provides a powerful tool for deriving its interactions. With this
context, we can turn our attention to the quantization of the electromagnetic field.

5.3 Gauge fixing the electromagnetic field

With the jargon contained in the rest of this chapter cleared up, let us turn our attention
to the quantization of the Abelian fields first. As a pratical goal, we want to know how the
photon propagator can be derived, something that was stated to be extremely difficult in the
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operator formalism. It is therefore good to state that what follows below does not necessitate
the methodology we employ, but in any case, it will serve as a good introduction to the more
difficult case that follows.

Above, the motivation behind why it is that the electromagnetic field leaves the physics un-
variant under a transformation

Aα
µ(x) = Aµ(x)+ 1

e
∂µα(x) (276)

was explained. It can therefore be thought of as the QFT-version of the gauge freedom we had
in choosing some function λ(⃗x) to our liking in classical electromagnetism. This is by itself
fine, but introduces a problem into the functional integral. To see this, let us first realize
that to derive the photon propagator, we need to calculate correlation functions like (268).
Since we know that the fields in the numerator will then be products of A(x1)A(x2) · · · , we
abbreviate this with the functional quantity O [A], so that

〈0|T (Ô [Â])|0〉 = lim
t±→±∞

∫
O [A]e− i

4

∫
FµνFµνd 4xDA∫

e− i
4

∫
FµνFµνd 4xDA

(277)

Combining the wish to compute this expression with the gauge freedom inherent through
the transformation rule of the electromagnetic field, the main problem presents itself. That
is, we now have a degenerate functional integral, infinitely degenerate even. The reason
is that because of the gauge freedom in DA, we are constantly integrating over physically
equivalent field configurations. After all, any two different choices of gauge for Aµ(x) will
yield the same physics, so we are ’double counting’ the contribution of that field configura-
tion. Since one can theoretically write down an infinite number of gauges for the same field
configuration, the consequent degeneracy of this freedom is infinite, and our functional in-
tegral will diverge. In the jargon, we say that if two fields can be related through some gauge
transformation, they share a gauge orbit. In the words of Faddeev and Popov:

"In fact, we can say, using the natural geometrical language, that the integrand is
constant on the "orbits" Aµ → AΩµ of the gauge group in the manifold of all fields
Aµ(x)." (Faddeev and Popov, 1967, p. 30)

In the above, their notation has been cast into ours. The Ω represents a certain choice of
gauge.
In our integration, we therefore want to ’pass’ each gauge orbit only once, i.e., we wish to
integrate only over all physically inequivalent fields. This will hopefully leave us with a di-
verging functional integral once more.

Many terms in the form of ’gauge x’ have been introduced, but we need one more. Namely, to
solve the aforementioned problem, we need to gauge fix our electromagnetic potential field.
If we can in some way force the functional integral to only consider field configurations of
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the field for one specific choice of gauge, we can remove the infinite degeneracy. There is a
useful trick for this. Let us introduce the following functional:

G[A] = ∂µAµ(x)−w(x) (278)

Here, w(x) can be any scalar function. We now want G[A] = 0 to be a gauge fixing condition.
The result can be related to the Lorentz gauge as introduced in classical electromagnetism.
A clever way to incorporate this into the functional integral, and in that way force it to only
consider physically inequivalent field configurations, is to then embed this function into a
delta-functional δ(G[A]) in the functional integral. To think intuitively about this, one may
think back to the discrete lattice regulariztion in QFT introduced in chapter 2.4, in the sense
that we have a product of delta functions at each spacetime point.
Yet, we cannot just plug this delta-functional into our correlation function expression. This
is where the so-called first Faddeev Popov trick comes in59 (Faddeev and Popov, 1967, p. 30):∫

δ(G[Aα])det

(
δ[Aα]

δα

)
Dα= 1 (279)

Here, Aα denotes our earlier introduced expression for the gauge transformed electromag-
netic field (276), so that G[Aα(x)] = ∂µ(Aµ(x)+ 1

e ∂µα(x))+w(x) = ∂µAµ(x)+ 1
e□α(x)+w(x).

Moreover, I wrote G with square brackets as it is technically also a functional, and it would
make little sense to functionally differentiate it otherwise60. Moreover, the above equation
contains a functional determinant, as we have seen from earlier chapters.

The good thing about ’1’ is that it can always be inserted into any equation. Yet, the first
Faddeev Popov trick kind of ’falls out of the air’ if we were to stoically proceed from here. As
has often been the case, lattice discretization whereby we express the functional integral as
a product of many integrals over some dαi will aid us. We can roughly express it as

N∏
i , j=1

(∫
δ(n)(Gi (α j ))det

(
∂Gi

∂α j

)
dαi

)
= 1 (280)

Here, we are working with n-dimensional vectors, which explains the breaking up of the δ-
functional and the fact that we do not just discretize in index i but also need to account
for vector components through j . The functional derivative becomes a regular partial one
relating to the change of Gi , a function of numerous α j ’s, in one specific spacetime degree
of freedom of the discretized field. The easiest way to make this intuitively ’click’ is to just
consider N = 1 for both indices. The above will then turn into∫ ∞

−∞
δ(G(α))

dG(α)

dα
dα= 1 (281)

59This is again translated into our notation, with the help of secondary literature (Peskin and Schroeder, 2019,
p. 295).

60This is therefore an easily forgivable yet small notational mixup in Peskin & Schroeder.
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where since G is now a function of only one variable, ∂→ d , and the determinant of a one-
dimensional matrix is just the element itself.
Consider the standard scaling property of the δ-function:∫ ∞

−∞
δ(g (x)) f (x)d x =∑

i

f (xi )

|g ′(xi )| (282)

where the xi are the roots of g (x).
With regards to the right-hand side, in our situation, we have f (x) → dG(α)

dα and g ′(x) →
d

dαG(α). Thus, whatever the root may be αi may be, the numerator and denominator are
both the derivative of G(α) evaluated at α= αi . Therefore, we have 1. Do note though, that
we have implicitly assumed that G(α) has only one root, which is the shortcoming of this
intuitive N = 1 case.

Nevertheless, having motivated the origin of the Faddeev Popov trick, we shall proceed. We
shall substitute it in the correlation function (277). Specifically, we will consider the numera-
tor of this expression. Once we know that, we can figure out the denominator by substituting
[A](A) = 1. Moreover, since we do not need to do anything with the Maxwell Lagrangian den-
sity right now, We shall write SM [A] = ∫ −1

4 FµνFµνd 4x for brevity. We then find∫
O [A]e i SM [A]DA =

∫ (∫
δ(G[Aα])det

(
δG[Aα]

δα

)
O [A]e i SM [A]Dα

)
DA (283)

There are a number of manipulations we can now do. Let us start by considering the de-
terminant inside of the integral. Earlier, we wrote that G[Aα(x)] = ∂µAµ(x)+ 1

e□α(x)+w(x).
That means that our functional derivative is not actually that difficult at all, since

δ

δα(x)
G[Aα] = 1

e
□ (284)

Therefore, we end up with a functional determinant. Given our discussion on such an object
in chapter 2.4, this will be relevant in the eventual derivation of the photon propagator. For
the remainder of this derivation, however, it is mostly just useful to know that the determi-
nant is not a function of any of the fields the functional integral is taken over. Because of
that, we can move it out of there. This step is good to keep in mind, as this will not be so easy
when discussing the non-Abelian Yang-Mills theory later on.

The next move is somewhat subtle, but functionally and conceptually important. Note that
we now have three functionals of the field: the gauge transformed functional quantity G[Aα]
in the δ-function and the untransformed O [A] and S[A]. Then, there is also the actual inte-
gration measure DA. We can now gauge transform all of these quantities. For the action, we
know that it is gauge invariant, as the electromagnetic field was derived by demanding this
for the Dirac action. We can therefore just substitute S[A] → S[Aα] without any changes. The
same can be said for the measure DA → DAα, as we have accentuated many times that it is
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shift-invariant. Lastly, we have O [A]. Here, we do not have an a priori reason to say that it
is gauge invariant (although in practice typical correlation functions will be). Therefore, one
assumption behind the current proof is that this quantity is, in fact, gauge invariant. If it is,
everything is now ’on one line’, and the δ-function can do what it was set out to do to only
consider physically inequivalent field configurations. With everything being Aα now comes
to convenience that it now acts as a dummy function, and it no longer matters for the in-
tegral if we write A or Aα since the whole thing is gauge invariant anyway, therefore, at this
point we may as well switch back to A altogether. There is, however, still the issue of

∫
Dα,

which now seems to be left as a divergent constant. Yet, we remember that all of the above
still holds if O [A] = 1, which means that the denominator of our time-ordered correlation
function (277) will also carry this same factor. This means that Dα will at the end of the cal-
culation just be divided out.

Technically, we are now done. Yet, there is a trick for writing the above in a far more appeal-
ing way, whereby this whole gauge fixing process ultimately manifests itself as an extension
to the action. Let us first take stock of where our expression is currently at. In the following,
we ignore Dα because of the above argument, although we should keep in mind that it is
technically still there. We write:∫

O [A]e i SM [A]DA = det

(
1

e
□

)∫
δ(G[A])O [A]e i SM [A]DA (285)

For this trick, it is useful to remember our definition (278), since it involves using this free
function w(x). It entails the following:∫

e−i
∫ w2

2ξ d 4x
Dw

∫
O [A]e i SM [A]DA = det

(
1

e
□

)∫ (∫
δ(G[A])O [A]e−i

∫ w2

2ξ d 4xe i SM [A]Dw

)
DA

(286)
That is, we add a functional integral over w(x) on both sides of our equation. On the left
hand side, there is no further presence of w(x) at all, so we just wrote it to the left of the main
expression to be calculated. Since it is a Gaussian integral, it will result into some function
ξ. Here, ξ is an as of yet unspecified number, we have the freedom to choose it as we see fit
later. In any case, we move the resulting constant on the left-hand side to the right-hand side
and call it N (ξ). We know how to calculate it, but this would be a wasteful exercise, as it will
again likewise be produced when applying the same trick to the denominator of (277).

The more interesting side is the right-hand side itself. We again note that the δ-functional
reads δ(∂µAµ(x)−w(x)). We can then take the following step:∫

δ(∂µAµ−w)e−i
∫ w2

2ξ d 4x
Dw = e−i

∫ 1
2ξ (∂µAµ)2d 4x (287)

Here we simply used the definition of the δ-functional.

But this means that our original right-hand side is now contains the product exp
(
−i

∫ 1
2ξ (∂µAµ)2d 4x

)
·
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exp(i SM [A]). We can therefore add the exponents, and define the gauge fixed Maxwell action
SGF M [A] as follows

SGF M [A] =
∫

LGF M [A]d 4x =
∫ (

−1

4
FµνFµν− 1

2ξ
(∂µAµ)2

)
d 4x (288)

This means that we can now finally express our initial integral as∫
O [A]e i SM [A]DA = N (ξ)det

(
1

e
□

)∫
O [A]e i SGF M [A]DA (289)

and the full gauge fixed correlation function (277) as:

〈0|T (Ô [Â])|0〉 = lim
t±→±∞

∫
O [A]e i SGF M [A]DA∫

e i SGF M [A]DA
(290)

In brief, thanks to Faddeev and Popov, we have found a modified Maxwell action that pre-
vents diverging functional integrals due to the infinite degeneracy caused by the gauge free-
dom of the electromagnetic field. From here on out, it is relatively easy to derive the photon
propagator: one can simply use the same perturbative methods as discussed in chapter 2.4.
We will not derive it explicitly, but state the result here61 (Peskin and Schroeder, 2019, p. 297):

D̃µν

F (k) = −i

k2 + iϵ

(
gµν− (1−ξ)

kµkν

k2

)
(291)

The most interesting part of this for our current purposes is to note the added bonus of being
able to choose whatever value of ξmakes one’s work easier in any given context. After all, the
functional integration over Dw with the Gaussian including ξ was done on both sides of our
equation. Three defined use cases are (Peskin and Schroeder, 2019, p. 297, 513):

• ξ= 0: Landau gauge

• ξ= 1: Feynman-’t Hooft gauge

• ξ= 3: Yennie gauge

As may be expected, each has its own particular calculations where it is useful to adopt.

With that, we have finished our discussion of the quantization of the electromagnetic field
and the resulting photon propagator. With the Faddeev Popov trick to fix the gauge, one can
proceed as one always does with the path integral to derive the propagator. This is one in-
stantiation of the often mentioned advantage that the path integral has the great advantage
of readily generalizing to different gauge theories. That introduces the question of whether
this same gauge fixing method also works for non-Abelian gauge theories. With a slightly
extended toolbox, including fermionic path integrals, we shall see that it does, although we
pay a spooky price.

61To give some idea of where this comes from: one can use integration by parts to rewrite the action SGF M in
the same structure as was done in chapter 2.4 (operator between the fields). Then, one can go to momentum
space (explaining the occurrence of k over x) and use the Euler-Lagrange equation to solve for the photon
propagator.
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5.4 Gauge fixing the Yang-Mills field

In 1954 Chen-Ning Yang (1922) and Robert Laurence Mills (1927-1999) attempted to extend
the idea of local phase invariance for QED, with its underlying U (1) gauge symmetry, to a
proton-neutron system. These gauge transformations this time collectively made up the
SU (2) Lie group. As mentioned before, the representation of this group consists of 2x2 uni-
tary matrices with unity determinant (the special part). Crucially, the elements of this group
do not commute, i.e., we are now dealing with an example of a non-Abelian gauge theory.
The Yang-Mills model for the proton and neutron itself ultimately did not work out, but their
idea of demanding invariance under local gauge transformations of SU (n) groups turned
out to be very influential, and had an important role in the eventual creation of the SU (3)
symmetry of the strong force and the SU (2)L ⊗U (1) symmetry of the electroweak force.

We, however, will now work with the general Yang-Mills Lagrangian density to see how we
can fix the degeneracy again originating from gauge freedom of the involved field. Much of
this derivation will be very similar to the electromagnetic case, until it will not be. Again,
we base ourselves on Faddeev and Popov, but most certainly get some help from secondary
literature (Peskin and Schroeder, 2019, p. 512-517). We introduce LY M as follows:

LY M (A) =−1

4
Fµν

a F a
µν (292)

where
F a
µν = ∂µAa

ν−∂νAa
µ+ g f abc Ab

µAc
ν (293)

while there are certainly some structural similarities with the Maxwell action, we are now
dealing with matrix-valued fields running over the generators of the Lie group. We can write
Aµ = Aa

µta , with Aµ our vector field and ta the group elements, e.g., the Pauli matrices in the

case of SU (2). The structure constants f abc relate these generators through [t a , t b] = i f abc t c .
Lastly, g , rather than e, is now our coupling constant (Peskin and Schroeder, 2019, p. 486-
491). From here on, we proceed as before.

First, we again introduce the gauge transformed field as

(Aα)a
µ = Aa

µ+
1

g
∂µα

a + f abc Ab
µα

c = Aa
µ+

1

g
Dµα

a (294)

Like in the QED case, this transformation rule for the gauge field results from demanding lo-
cal gauge invariance, this time under SU (n) transformations. It looks similar, except for the
addition of the third term in the second equality, which will be the source of extra trouble
later. The symbol Dµα

a ≡ ∂µα
a + g f abc Ab

µα
c (it thus implicitly employs the above intro-

duced structure constant relation).
The gauge freedom involved here will again lead to the same problem of infinite degener-
acy due to the functional integral including all physically equivalent field configurations on
identical gauge orbits. This leads to divergences and there an inability to calculate correla-
tion functions. We again set out to fix the gauge.
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For this, we introduce a functional G[A] that, combined with a δ-functional, can get us on
the correct road to this end. We have

G[A] = ∂µAa
µ+w a (295)

and, gauge transformed,

G[Aα] = ∂µAa
µ+

1

g
Dµα

a +w a (296)

We also again want to calculate the same object at the end:

〈0|T (Ô [Â])|0〉 = lim
t±→±∞

∫
O [A]e− i

4

∫
F
µν
a F a

µνd 4xD A∫
e− i

4

∫
F
µν
a F a

µνd 4xD A
(297)

From now on, we will again abbreviate the exponent by just writing the action SY M [A], and
work with the numerator first and foremost. Immediately using the first Faddeev Popov trick
on the numerator, we may write∫

O [A]e i
∫

SY M [A]D A =
∫ (∫

δ(G[Aα])det

(
δG[Aα]

δα

)
O [A]e i SY M [A]Dα

)
D A (298)

Retracing our previous strategy, we will now consider the functional derivative in the deter-
minant. Taking it amounts to

δ

δα(x)
G[Aα] = 1

g
∂µDµ (299)

While at first sight it may seem like we are proceeding as in the Abelian case, here we are
actually confronted with the troublesome third term in the gauge transformed field (294).
As we could read from its definition just now, the covariant derivative Dµ contains the field
variable Aµ. Thus, we can take the determinant out of the Dα functional integral and at least
use that, but not out of the D A one. In the words of Faddeev and Popov:

"It is the nontriviality of [the functional determinant] which distinguishes the
theories of Yang-Mills and gravitational fields from quantum electrodynamics."
(Faddeev and Popov, 1967, p. 30)

To keep oversight, we will briefly postpone this issue and continue with other steps that are
the same as in the former case, to return to it later.

Three familiar steps are now in order. Firstly, we have some fields that have been gauge
transformed and some that have not been. Assuming O [A] is a gauge invariant quantity,
we can once more gauge transform these quantities without changing anything about the
functional integral, and are consequently left with a dummy index Aα that we will replace
with A. A second move we can already make is to isolate the factor

∫
Dα and ignore it for

the remainder of the derivation, as it will ultimately cancel yet again in the fraction of (297).
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Thirdly and finally for now, we can functionally integrate both sides of our equation over a
Gaussian distribution in w again. Because we went from Aα→ A, we just have δ(∂µAa

µ+w a),

and the δ-functional over the functional integral Dw will set w 2 = (∂µAα
µ)2 on the right-hand

side. It is then once more convenient to multiply the exponentials.
Combining these three familiar steps, we find:∫

O [A]e i
∫

SY M [A]D A = N (ξ)
∫

det

(
1

g
∂µDµ

)
O [A]e

i
∫ (

− 1
4 F a

µνF
µν
a − 1

2ξ (∂µAa
µ)2

)
d 4x

(300)

Now the million dollar question is how we can rid ourselves of the functional determinant.
The answers to this riddle was a great innovation of the short ’67 paper by Faddeev and
Popov. Given the end of the previous and start of this current chapter, we may actually be
able to guess it. After all, we have a determinant to the power of unity (and not, e.g., -1/2).
That, of course, reminds us of the fermionic Gaussian integral (269). While this was a pro-
portionality rather than an equality, any constants will be divided out by the denominator of
(297), so this will not matter. We therefore introduce the second Faddeev Popov trick as62

det

(
1

g
∂µDµ

)
=

∫
Dc̄Dc e i

∫
d 4x c̄(−∂µDµ)c (301)

These functional integrals are, as anticipated, taken over anticommuting Graßmann fields.
We do not need to motivate the second Faddeev Popov rule, as we have essentially already
done so in another context.
To obey Lorentz invariance, these are (complex) scalars fields c̄(x) and c(x). Furthermore, we
note that the inverse coupling constant 1

g is missing. This is because it has been absorded
into the definition of the new fields.
Before thinking more about the possible nature of these fields, let us first finish our process
of gauge fixing the Yang-Mills field so that we can compute correlation functions. Using
the second Faddeev Popov trick, we can again multiply exponentials. This then allows us to
define a new action like we did in the electromagnetic case, now with one more term. We
write this gauge fixed Yang-Mills action SGF Y M as

SGF Y M [A, c̄,c] =
∫

d 4x LGF Y M [A, c̄,c] =
∫

d 4x

(
−1

4
F a
µνFµν

a − 1

2ξ
(∂µAa

µ)2 + c̄(−∂µDµ)c

)
(302)

Given our modified action, we can formulate the functional integral we started with as∫
D A O [A]e i SY M [A] = N (ξ)

Ñ
D ADc̄Dc O [A]e i SGF Y M [A,c̄,c] (303)

and the full gauge fixed correlation function (297) as:

〈0|T (Ô [Â])|0〉 = lim
t±→±∞

∫
D ADc̄Dc O [A]e i SGF Y M [A,c̄,c]∫

D ADc̄Dc e i SGF Y M [A,c̄,c]
(304)

62Since we are now dealing with anticommuting objects again, the integration measures will be put in the
front as to avoid any confusion due to possible minus signs arbitrarity.
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That is, Faddeev and Popov succesfully fixed the gauge and prevented diverging correlation
functions due to the infinite degeneracy caused by the gauge freedom of the Yang-Mills field.
The result is that one must now use a modified action, this time extended not just by another
term of the same field (again giving us a convenient choice of gauge through ξ), but by two
new fields. While it is unsurprisingly the case that we can use perturbation theory to derive
the propagators of this modified Yang-Mills theory, the question remains what the physics
behind the fermionic fields c̄(x) and c(x) and their Feynman rules entails.

Ultimately, there is no physical reality to these fields. In fact, they are called ghost fields
or Faddeev Popov ghosts for this reason. We can say this because the ghosts violate the spin-
statistics theorem discussed in chapter 2.5. On the one hand, these fields obey an anticom-
mutation relation, and their ghost particle quanta will collectively obey Fermi-Dirac statis-
tics. On the other hand, they were introduced as a scalar field, which has the property of
having zero spin. Thus, we have fields with integer spin while satisfying anticommutation
relations, i.e., the ghost fields are incompatible with the spin-statistics theorem. Moreover,
in derived Feynman diagrams, ghost particles always only apppear as internal lines. This also
makes them unobservable in principle. In conclusion, the ghost quanta are thus not phys-
ical particles, they are an instrument, a mathematical artifact used to enable perturbative
methods for Yang-Mills theories. Nevertheless, they are benevolent ghosts. While not fully
getting into this, it is good to know that they play an important role in the so-called BRST
symmetry. The ghosts act as ’negative degrees of freedom’ to effectively annul the effects of
unphysical polarization states of gauge bosons, a property also exploited by the authors in
the next subsection. The underlying reason for this symmetry can be found in a geometrical
analysis of gauge fields.

This, then, concludes our discussion of the quantization of the Yang-Mills theory by fix-
ing the gauge. The functional integral formulation once again readily generalizes to even
non-Abelian gauge theories, and the power of this method was therefore increasingly being
noticed by physicists around the early end-60s early-70s. As we have seen, this would not
have been possible without the advent of the fermionic path integral. In the next and final
subchapter, we shall (more qualitatively) investigate how the functional integral, with spe-
cial attention to the fermionic version, truly broke into the mainstream, and consider two
important research fields.

5.5 Beyond the dark ages

By solving the degeneracy problem that came with the gauge freedom inherent in gauge the-
ories, Faddeev and Popov successfully applied the functional integral to non-Abelian gauge
theories. This had a significant effect on the status of the functional integral formulation.
Nobel prize winner (together with Salam) on the electroweak unification Steven Weinberg
(1933-2021) refers to this as follows:

"The path integral approach was revived in the late 1960s, when Faddeev and
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Popov and DeWitt showed how to apply it to non-Abelian gauge theories and gen-
eral relativity. For most theorists, the turning point came in 1971, when ’t Hooft
used path integral methods to derive the Feynman rules for spontaneously bro-
ken gauge theories. [...] Since then, the path integral methods described here have
become an indispensable part of the equipment of all physicists who make use of
quantum field theory."
(Weinberg, 1995, p. 376-377)

The word ’revived’ seemingly implies that the path integral formulation was ’dead’ before.
Although we have seen that there were still quite some papers published on it, it is never-
theless true that it was not used all that much, certainly not the degree it has been since the
1970s. More interesting for our current purposes, however, is the second sentence of the
quote. We shall turn our attention to it now.

Around the 1970s, Gerardus ’t Hooft (1946) and his doctoral advisor Martinus Justinus Gode-
fridus Veltman (1931-2021) successfully proved that Yang-Mills theory is renormalizable, i.e.,
they were able to deal with the infinities that show up when using perturbation theory with
it using dimensional regularization (Veltman, 1968)(’t Hooft, 1971b)(’t Hooft, 1971a)(’t Hooft
and Veltman, 1972). Since the electroweak interactions are just a type of Yang-Mills theory,
they received the 1999 Nobel prize for their elucidation thereof. To achieve this, extensive
use was made of the functional integral (’t Hooft, 1971b, p. 180)(’t Hooft, 1971a, p. 167-169),
as well as the previously discussed tricks and ghost fields of Faddeev and Popov (’t Hooft,
1971b, p. 197)[p. 173](’t Hooft, 1971a). Since the now renormalized Yang-Mills theory lies at
the basis of the Standard Model of particle physics, this work has been extremely important.
Most interesting for our purposes that it was made possible through the functional integral,
now that it was finally able to incorporate fermionic fields. Initially, colleagues (including
Weinberg) had been highly sceptical of Veltman’s and ’t Hooft’s use of these methods (Close,
2011, p. 203-229). But, luckily, they pushed ahead. Faddeev and Popov had already made
an important contribution by gauge fixing the Yang-Mills field. Add to that the mainstream
attention the work of ’t Hooft and Veltman got, one can understand how this was indeed the
"turning point" that definitively ended the dark decades for the path integral formulation.

The functional integral, and its variety over fermionic fields using Graßmann algebra, are still
widely used in contemporary theoretical physics. We shall consider one example, namely
that of supersymmetry. It has particularly nice continuity with regards to our story, seeing
as after his work on second quantization, Berezin went on to play an important role in its
conception.
Supersymmetry is an extension of the Standard Model by a new (spacetime) symmetry whereby
each elementary particle is accompanied by a ’superpartner’. In the case of a fermion, this
partner is a boson, and vice versa. As they could potentially be very helpful with addressing
the hierarchy problem or acting as dark matter candidates, these superpartners have long
been sought after. Yet, as of now, none have been found. Supersymmetry does not consti-
tute one particular theory, but may rather be thought of as a property contained in many
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Beyond the Standard Model theories. String theory is an example of this.

The history of supersymmetry intertwines with the story of Berezin. As is stated Mikhail Shif-
man (1949), a theoretical physicist having done much work on supersymmetry, in a book on
the topic:

"Next, it is worth mentioning [...] Felix Berezin, an outstanding mathematician
who created a mathematical apparatus used in supersymmetric field theories.
The integral over the anticommuting Graßmann variables that he introduced in
the 1960s paved the way for the path integral formulation of quantum field the-
ory with fermions, the heart of modern supersymmetric field theories and super-
strings."
(Shifman and Kane, 2000, p. 4)

Let us remember the centrality of the fermion-boson distinction in the system devised by
Berezin in his book on Second Quantization discussed in chapter 4.6. There, it was also
mentioned that Berezin was the father of supermathematics. On the topic, he reflects in the
following way:

"The striking coincidence of the main formulas of the operator calculus in the
Fermi and Bose variants of the second quantization method... led to the idea of
the possibility of a generalization of all the main notions of analysis so that gener-
ators of a Graßmann algebra would be on an equal footing with real or complex
variables."
(Karabegov et al., 2013, Translated from Berezin.)

This ’generalization’ constitutes supermathematics. The mathematical system underlying
many supersymmetric models thus directly flowed out of Berezin’s work on applying Graß-
mann algebra to fermionic systems. About this system one could say, somewhat simpli-
fied63, that it is one mathematical framework that can describe both types of fields in nature
(bosonic and fermionic ones) rather than using complex numbers for the former and Graß-
mann numbers for the latter. A ’superfield’Φ(x,θ), for example, would be a function of both
a complex-valued object x and a Graßmann-valued θ. Unsurprisingly, supersymmetric ex-
tensions of the Standard Model often make use of functional integrals. These may feature
integration measures over both bosonic and fermionic fields, so that the Berezin integral is
an essential ingredient in the supermathematical description of functional integrals in su-
persymmetric models. One can in any case see how such a mathematical system would be
well-suited for supersymmetry, given its core idea just mentioned.

Many of the early contributors to supersymmetry (including, again, Salam) were keenly aware
of Berezin and his supermathematics. For example, physicists Vladimir Akulov and Dmitrij
Volkov make reference to the idea of supermathematics and explicitly thank and cite Berezin

63Slightly more technically, it is a Z2-graded Lie Algebra. The algebra then contains both commuting and
anticommuting elements, or an even and odd subalgebra describing, respectively, bosons and fermions.
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in their paper (Akulov and Volkov, 1974, p. 29, 35). Even in the work of well-known contem-
porary theoretical physicists working on supersymmetric theories, such as Edward Witten
(1951) through string theory, handily make use of functional integrals over Graßmann vari-
ables (Witten, 1988, p. 540). It shows that the functional integral, Graßmann’s algebra, and
the results of the fruitful combination of the two, are alive and well in contemporary mathe-
matics and physics.

Thus, we now have a clearer image of what followed from the invention of the fermionic
functional integral over Graßmann-valued fields. We saw that it provides a way to express
half-integer spin fields such as the Dirac field, allows us to fix the gauge for Abelian and non-
Abelian theories alike, and it is even an instrumental part of the mathematical formalism un-
derlying work on supersymmetry. Most importantly, the ability to describe fermionic fields
can through what it made possible be seen to have initiated the end of the dark decades of
the path integral formulation, propelling it into the mainstream ever since. With that, we
have come to the end of our long story. It is therefore time to move to the conclusion of this
thesis, to zoom out and harvest.
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6 Conclusion

The research question of this thesis was introduced as follows:

How did the modern formulation of fermionic path integrals over anticommuting Graßmann
variables come to be introduced around the late 1950s to allow for breakthroughs in the devel-
opment of the path integral formulation of QFT?

To come to a concise answer to it, we first summarize our findings throughout this body
of work.

We started with chapter 2, where Feynman’s path integral formulation that the question is
about was extensively laid out. This started with the foundations, after which proofs were
given to show the equivalence to the operator formalism following from canonical quanti-
zation. We then derived the free particle kernel, that would subsequently play an important
role in the application of perturbative methods to the path integral. The step to QFT was
then made, where we showed how the foregoing changed in the context of relativistic fields.
This provided the tools to do and understand later calculations. The chapter was closed with
a list of strengths and challenges for the path integral. Most important was that it was held
back through its inability to deal with systems of fermions, as these did not have a classical
counterpart that could serve as the Lagrangian for the path integral.
We then moved on to the third chapter, that was about the background and content of the
Graßmann variables that would ultimately be employed to solve this ’fermionic impasse’.
This started with a brief history of vector analysis, to eventually end up at Graßmann and his
Ausdehnungslehre. While much of his work was ignored during most of his life, we saw that
it was eventually revived, as his anticommuting and zero square algebra turned out to be a
suitable language for describing fermionic systems.

With adequate knowledge of the path integral and Graßmann’s anticommuting algebra, we
could get to work on the historical core of the research question in chapter 4. It was estab-
lished that the mainstream historical narrative to the introduction of fermionic path inte-
grals often came down to crediting Berezin and introducing the integral named after him.
Careful literature study, however, resulted in the discussion of six different key articles that
played a role in getting to this end state. Each was analyzed through a historical approach
centering around four questions, that can here be summarized as the ’who’, ’why’, ’how’
and ’what then’ of the article. The considered contributions were by Khalatnikov (1955),
Matthews & Salam (1955), Tobocman (1956), Candlin (1956), Martin (1959) and, finally, Berezin
(1961, 1965). Through this list, we saw that the search for a formulation of the fermionic path
integral was mainly a British and Russian endeavour, despite the American origin of the path
integral itself with Feynman. Within each country, we observed a significant amount of con-
tinuity in the research of each consecutive author, although Berezin was even well aware of
his British counterparts. A very nice conclusion that can be drawn based on the work of these
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authors is that each was able to bring something new to the table, with the endpoint of these
developments being our modern formulation of dealing with fermionic fields by describing
these in terms of Graßmann variables.

Khalatnikov aimed to derive a functional integral representation of the electron propagator
but, by starting from an approach closer to Schwinger’s differential methods, first had had
to work with functional derivatives of Dirac spinors. The anticommuting behavior therein
was then absorbed into a matrix. The functional integral was then itself done using regular
commuting fields, with the matrix taking account of the minus sign bookkeeping.
The work of Matthews and Salam was not incomparable to that of Khalatnikov. The two
saw the problem with integrals over fermionic fields clearly. Their way of deriving the one-
particle electron propagator was to expand the Dirac field in a sum of the product of com-
muting coefficients and anticommuting functions. The functional integral is then performed
over the regular-numbered coefficients, with the permutations over the sum of anticommut-
ing functionals doing the rest.
Tobocman argues that these indirect methods, as well as his own arguments, nevertheless
show that it is not possible to lay down a Feynman principle for fermionic fields. The sum-
over-histories approach does not yield an exponential with a classical action as its phase. In
his approach to showing this, he also introduces the idea of anticommuting eigenvalues of
operators. His work can be seen as a bridge from the earlier two authors to the latter three.
Candlin (and, later, Martin) takes up this challenge. He introduces eigenstates of the Dirac
oscillator with anticommuting eigenvalues. He calls these a-numbers, and like Graßmann
numbers, they mutually anticommute and square to zero. He does hold that it is not possible
to set up a completeness relation using these states, although he does find an approximate
action by using the sum-over-histories regardless. At the end, Candlin ends by giving an in-
tegral over anticommuting numbers as a continuous realization of sums over them, but does
not comment on it much further.
Martin goes on to establish a system that can be viewed as the classical analogue of a fermionic
system, using his ’eigensymbol’ theory that like a-numbers is isomorphic to those of Graß-
mann. He defines a completeness relation whereby a unit operator indeed comes out, and
successfully derives a classical fermionic Lagrangian. He also introduces both derivatives
over anticommuting values as well as integrals. He characterizes his functional integrals as
an indefinite repetition of an operation Ŝ, which is effectively the Berezin integral.
Finally, Berezin was seen to recognize Graßmann’s exterior algebra in all of this, and for-
mulated a rigid mathematical framework to deal with bosonic and fermionic fields using
functional integrals. He introduced the Berezin integral over Graßmann variables, includ-
ing the rules about how it can be used. He also explicitly derived (164). His clear and all-
encompassing formulation is the endpoint of the development of fermionic integrals and is
still used today, as well as having the most direct influence on later developments.

The process from clearly formulating the central problem and using indirect ways of adress-
ing it to ultimately ending up with a new ’integral’ over anticommuting Graßmann-valued
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fields, and all inbetween steps such as the introducing of anticommuting numbers, show
the gradual process towards the contemporary path integral formulation for bosonic and
fermionic fields. The potential impact of this on the mainstream narrative will be covered
in the discussion, but we can conclude that the reality was that the fermionic path integral
was a British-Russian effort that had many contributors, without one name appearing and
solving it all himself.

In chapter 5, we saw that the advent of the fermionic functional integral, in particular its
formulation by Berezin, has had great impact on the development of both the path integral
formulation and QFT as a whole. Not only was it easier to directly express the Dirac field, but
more revolutionary, Faddeev and Popov were able to use these results to gauge fix Yang-Mills
theory. Having dealt with the degeneracy resulting from the gauge freedom in that theory,
Yang-Mills could finally be successfully quantized by means of the path integral formulation.
Their ’trick’, after all, employed exactly the path integral over Graßmann variables (164) de-
rived by Berezin. These developments made their way to ’t Hooft and Veltman, who used
(fermionic) path integral methods to prove that Yang-Mills theory is renormalizable. This
definitively ended the ’dark decades’ of the path integral formulation, which is today used
ubiquitously in fields from statistical mechanics to supersymmetry.

In summary, we can answer the research question as follows. The modern formulation of
fermionic path integrals over anticommuting Graßmann variables came to be introduced
around the late 1950 through the work of British and Russian mathematicians and physicists
who initially wanted to be able to describe the Dirac field with it. Through the efforts of nu-
merous subsequent authors, they eventually (re)discovered that Graßmann numbers were
a suitable means of doing so, and later extended this with calculus for these numbers. By
expressing the classical Lagrangian as well as the integration measure in terms of this anti-
commuting algebra, they were able to handily perform integrals over fermionic fields. These
could be directly used to deal with the degeneracy resulting from the gauge freedom inher-
ent in Yang-Mills theory, which in turn later led to the renormalization proof thereof. These
results thus strengthened the capabilities of the path integral as well as paved the way to the
construction of the Standard Model of particle physics.

While this answers the research question, there is plenty of room for several categories of
reflection. This will now be done in the discussion.
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7 Discussion

This final chapter will contain a few evaluative undertakings. We shall start by considering
what may conceivably follow from this research. After this, its methodological limitations
will be discussed. These shall subsequently be turned into suggestions for future research.
The chapter ends with personal evaluation and acknowledgements.

7.1 Implications of the research

The most direct implication that arguably flows out of this thesis, is a new way in which the
story of the discovery of the fermionic path integral in terms of Graßmann numbers ought
to be told. As was shown, current textbooks most often leave it at mentioning Berezin. As
follows from the conclusion, however, multiple authors contributed to this final result in in-
cremental but important ways.

The most concrete example that could be discussed is the attribution of the ’Berezin inte-
gral’. After all, most textbooks are understandably not concerned with a deep dive into this
history, but just introduce the integration rules for Graßmann variables, equation (164), and
get on with it. Therefore, with regard to this history, the Berezin integral is what most will
be acquainted with. This is simply because this is all they will be confronted with in their
studies and research insofar the history of these ideas is concerned. Thus, to the degree that
we are engaged with the attributions of the contributions discussed in this thesis, textbook
references such as these are very impactful.

Given the fourth chapter, it is certainly not an indefensible position that instead of ’Berezin
integral’ or the sometimes appearing ’Graßmann integral’, it should be called the ’Candlin in-
tegral’ (as did Mandelstam) or ’Martin integral’. While Candlin was the first to explicitly put
an integral over anticommuting variables on paper, Martin was the first to work out the cal-
culus to an adequate extent, defining the integral through his operator Ŝ. I believe a genuine
case can be made for all four of them. Perhaps the most neutral option is to use ’Graßmann
integral’, as he is the mind behind the algebraic structure but is not involved in the poten-
tial priority dispute on who actually first devised the integral on that structure. The later,
however, can also be submitted as a reason not to name it after him. If one wants to divide
the credit among the three devisors of the integral, the historical chronology might lead one
to the name ’CMB-integral’.64 Ultimately, there is no objective answer to this question, as it
simply depends on one’s own standards related to from what point onward what any of these
authors devise ’fits the bill’.
If I were to have to give my own opinion on the issue, I would certainly say that at the very
least Martin deserves some recognition for his work. While Berezin clearly went further and
provided a more elegant mathematical structure, Martin, as we saw, already provides all the
tools needed to perform functional integration over fermionic fields, and in a highly com-

64Although, perhaps astrophysicists would not like this much.
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prehensible manner too. While Candlin gets at least some recognition through the work of
Mandelstam who is himself a well-known physicist, Martin is never cited on the topic out-
side of the works of Berezin himself. In any case, that is one reason for there being no need
for a Newton-Leibniz style ugly priority dispute. This is not only the case due to the magni-
tude of the discovery which, while being high, nevertheless not being the creation of all of
calculus. But it is also good to reiterate that, as we discussed, Berezin indeed gave generous
references to these authors, with even his fellow countrymen explicitly recognizing Martin
as his predecessor (Karabegov et al., 2013, p. 15-16).

With the attribution-dilemma of the functional integral over fermionic fields aside, there
are conceivably some more minor implications of the research that may also briefly be men-
tioned. One of these concerns the interpretation of the path integral. Throughout the thesis,
this was somewhat of a side-issue that turned up every so often. The instigator of this is the,
as described in chapter 2.1 and 2.5, commonly held belief that the path integral can be char-
acterized as a very intuitive formulation of quantum theory, a clearly visualizable one, and
one where the classical limit is exceptionally insightful. Generally, I have been critical of this.
As argued in chapter 2.1, I believe that the postulates of the path integral formulation, when
taken to their logical conclusion, do not at all make the classical limit as obvious as it is often
taken to be. The core of this argument was that this belief confuses the dominant contribu-
tion of near-classical paths to the probability amplitude of a particle to, after starting out at a
spacetime point A, appear at B after measurement, with the likelihood of the manifestation
of these particular paths in physical reality itself. The postulates of the path integral are, after
all, not about ’which path is a particle likely to take’.
While the topic appeared at some other places too, one other that may be mentioned here is
a point made by Candlin. As was discussed, he noted that his anticommuting, zero square a-
numbers cannot be the outcome of a measurement of field strength (or any other observable
for that matter). This connects the interpretation debate to the topic of this thesis, because it
shows that the introduction of anti-commuting numbers to describe fermionic path integral
problematizes the interpretation thereof. An implication of this research can therefore be a
more critical look regarding the interpretation of the path integral formulation.

A final small implication I wish to mention concerns the more didactical goals of clarity,
thoroughness of derivations and original analysis mentioned in the Approach section at the
beginning of this thesis. These were specifically devised for chapters containing primar-
ily theoretical background necessary to answer the research question, without themselves
containing novel results per se. It is my hope that the reader has come across some fruitful
descriptions that contribute to the realization of these goals. Examples of these attempts
include the visualization of the abstract exterior algebra for physicists in chapter 3.3 in re-
lation to clarity, the proof of the equivalence of formulations in chapter 2.2 in relation to
thoroughness and the interpretation issue in relation to original analysis. At least some pos-
itive feedback has been received on this front, from one Bachelor’s student who was able to
use and cite this work for his own thesis and emailed me that he found it to be the "clearest
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explanation of the path integral that he had seen so far". Nevertheless, N = 1, and perhaps
he had not consulted enough other sources! On a more serious note, there are also critical re-
marks to be made that extend to these goals, as will be discussed near the end of this chapter.

In summary, the research in this thesis may have implications for the attribution of recogni-
tion relating to the invention of functional integration over fermionic fields, the interpreta-
tion debate surrounding the path integral formulation and the way in which required fore-
knowledge on these topics could be conveyed. With that clear, we now move to the limita-
tions that were also present in the research.

7.2 Limitations of this research

In this subsection, the focus will be on limitations of this research project relating to its his-
torical methodology. Limitations of other type will be discussed in the final subsection.

In the Approach section, as well as in the beginning of chapter 4, we described that the story
of the invention of the fermionic path integral would be researched mainly through a set
of carefully crafted questions to be applied to the selected articles. This by itself I believe
to be an adequate methodology, as these questions were designed to be able to analyze the
primary sources through a historical lens as best as possible. Its effectiveness was further
enhanced by a partial presence at the MPIWG during this project, allowing for very fruitful
discussions, supplementary relevant courses and otherwise unavailable resources such as
its extensive and highly-specialized library.

This single-handed focus on interrogating the primary sources did, however, have its lim-
itations. As was also mentioned, many of these papers were written in a history of physics
context one is not intimately familiar with. These contain sometimes dense and difficult
physics in (out)dated notation, while simultaneously being a niche in the sense that not
much supporting secondary literature is available that directly engages with the primary lit-
erature. This all combines to, sometimes, make it difficult to understand everything there is
to understand about these papers and their context, as well as being a more time-consuming
endeavour than the mere number of pages that tend to be involved may have one suspect65.

Related limitations of this research regarding historical methodology comes in the form of
the absence of methods such as interviews and extensive archival research of correspon-
dences. Not only could such undertakings aid in understanding and contextualizing the
examined articles, it would also have the epistemic advantage of exchanging my fallible in-
terpretation for the direct experiences of the people involved66. Some exploratory efforts
have been made in both categories. For example, to get more information on Martin, I have

65Naturally, this also has to do with the level of experience of the researcher involved, which is in this case
still very much in development.

66Of course, people’s memory is also fallible, and historians still need to be highly critical of possible personal
incentives of interviewees, such as a desire to be featured in history in a certain way. Yet even in given these
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on multiple occasions reached out to the two institutes he was aligned with at the time of
writing his articles: the Tait Institute of Mathematical Physics and the National Physical Lab-
oratory in the UK. Unfortunately, neither could help. I also had access to a letter archive. This
yielded some results, as with the example of Peierls in chapter 4.2, but in general many of the
discussed authors were hard to find. These outcomes are related to the fact that the authors
discussed in this thesis are all no longer alive and, in some cases, were not that well-known.
Direct interviews were therefore not possible, and especially in the case of Tobocman, Can-
dlin and Martin, it is hard to even find who one would reach out to to learn more about them.
In the case of the Russian authors, the language barrier also makes for a higher threshold for
such enquiries.

This is all not to say that it would be impossible to find some relevant letters or knowledge-
able descendants of these authors open to conversation, but more so that these research
methods would in this context be especially time-consuming, and therefore be better suited
for another research project. This then brings us to the next subsection.

7.3 Suggestions for further research

Directly continuing with the final remark in the previous subsection: one first suggestion for
possible future research would be to do extensive archival research and conduct interviews
with people involved. Even if no direct writings of someone like Tobocman can be found,
this may still be done through the letters of other, related experts. For example, we were able
to extract some greater context to the work of Matthews and Salam not through their own
letters, but through those of Peierls and Dyson. Moreover, given the post-1955 time period
we focused on, it is not at all unlikely that more information on the discussed authors could
be retrieved from interviews with descendants, younger research colleagues and formal in-
quiries at the institutes were they worked. For example, Candlin passed away as recently as
2019, so many people who directly knew him are bound to be alive and well.
Efforts making use of these suggested methods could, for reasons already suggested in the
previous subsection, greatly contribute to a more in-depth answer to the research question
than could be reached in the confines of this thesis.

If one wants to focus on the developments after the introduction of the fermionic path inte-
gral, the possibilities become even greater. Whether it would be ’t Hooft who renormalized
Yang-Mills using path integral methods or Witten doing so with supersymmetry, many of
these physicists are both alive and active. This also relates to the possibilities for future re-
search on adjacent topics to the one in this thesis. The following list contains, perhaps, a
’lucky 7’ suggestions:

• How exactly did research on quantum gravity and on the fermionic path integral cross-
pollinate, as we saw in our discussion of the conference on Relativistic Theories of

issues, being able to speak with the researchers directly involved would undeniably be a great asset to the
research of this thesis.
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Gravitation and the motivation of Faddeev and Popov?

• What mathematical inventions have resulted from efforts of putting the path integral
formulation on solid mathematical ground?

• How did the mainstream interpretation of the path integral end up being what it is, and
what role has it played in the debate on the interpretation of quantum mechanics?

• To what degree did Berezin’s supermathematics determine the developmental trajec-
tory of supersymmetry?

• Why did Feynman eventually become less-enthusiastic about his own increasingly
popular formulation, and why did the time-ordered operator calculus he thought to be
more promising instead never catch on like that? (Feynman and Hibbs, 1965, p. 355-
356)(Feynman, 1951)(Blum, 2017, p. 63)

• Who was, in detail, responsible for what modification of exterior algebra since its con-
ception by Graßmann, to eventually arrive at the modern day formulations of it?

• Why did the path integral formulation, despite its dominant position in advanced QFT
and beyond, never become fully integrated into the QM-curriculum at most universi-
ties?

An even more ambitious topic would be expand the current research to eventually encom-
pass a full account of the development of the path integral formulation in the ’dark decades’
between Feynman’s thesis and ending at Faddeev Popov quantization or ’t Hooft’s renormal-
ization of Yang-Mills theory. Several periods could be distinguished, as well as several lines of
development (e.g., mathematical rigor, fermionic systems, application to QM-systems, etc.).
While this would be an enormous undertaking, nothing on that scope currently exists.

Lastly, it is also not unrealistic to say that a more experienced historical researcher, better
schooled in (especially around 1950s) QFT, could probably extract more useful information
from the papers discussed in this thesis. One final suggestion could thus be to apply the
methodology of this research project again, using this written thesis as a stepping stone and,
hopefully, adequate introduction. This, however, already touches on personal evaluation.
This will be the final subsection that we now move to.

7.4 Personal evaluation and acknowledgements

To end this thesis, I will conduct some introspection and evaluate both on the many things I
learned during this thesis as well as lessons for what could be improved on. I will end with a
word gratitude.

Working on this research project the past academic year has been an immensely valuable
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experience, whether it be with regard to knowledge, competencies or not directly physics-
related points. Starting with the first category, I have without a doubt been able to pick up
on much knowledge of physics and mathematics. Before starting this project, I had only the
most superficial understanding of the path integral formulation, and I doubt that I had even
heard of exterior algebra. Moreover, it has greatly added to existing knowledge I had of quan-
tum physics by being able to consider things from the perspective of another formulation,
as well as being introduced to some new applications and topics in the field. For example,
I did not know too much about gauge fixing, and found this topic to be clearer in the con-
text of the path integral. Lastly, new physics knowledge did not only come through direct
research that ended up in this thesis. I also read plenty that did not end up being included
but was nevertheless useful, as well as being able to participate in interesting colloquia at
the MPIWG, following the course ’Cultures of Modern Physics’ and ’Knowledge and its Re-
sources’ in Berlin and participating in the reading group sessions of the RCNP.

As for competencies, I have been able to expand these in both the area of physics as well
as history. Starting with the former, doing previously unfamiliar derivations myself and dis-
covering new techniques along the way has added to my physical repertoire. As a simple ex-
ample, while I knew about the completeness relations, being able to practice applying these
myself in this way has certainly made it easier to recognize when this could be a useful trick
in other settings. More novel to me were the historical research methods. While I obviously
still have much to learn, it was a good experience to learn to think like a historian and know
what kind of questions to ask when confronted with a given text. More indirectly, seeing how
people approached their research projects at the MPIWG and chatting with them about this
was also very much valuable. This ranges from the type of questions they ask to smart ways
of finding the right papers.

The most prominent lessons unrelated to physics itself manifest in the time I was able to
spend in Berlin. Some of these have little to nothing to do with the research project, such as
being immersed in another culture and ’building a new life’ in a city where you initially do
not know anyone. Yet, such social experiences are undeniably valuable. Somewhat closer
to doing research itself was seeing how an institute other than Radboud University, where I
have spent my entire academic life, operates. Other categories include practicing scientific
writing, working in two research groups and thinking about how to convey new concepts as
clearly as possible given a particular target audience.

Of course, there are also lessons to be learned from what could have gone better. For ex-
ample, I could have reached out to even more possible contact points to get information
on Martin. However, to me, by far the most prevalent lesson of this research project is time-
management, from which I feel most of the problems this body of work (still) has stem. While
on the one hand any thesis can always be better and a line has to be drawn at some point,
I do think I should have better anticipated time-constraints which have led me to not be-
ing able to do everything I would have wanted to. I also tended to be too optimistic on how
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much I could do in a given time, where I should have known better. As for anyone, these
time-constraints were not without reason, so I shall limit myself to three important ones.
For one, given the combination of two Master’s programs, there was still other academic
work that needed to be done that could draw away attention from this research projects at
inopportune moments. A second factor was the amount of time spent on my student job but
especially post-graduation job hunt, which was eventually successful, yet this position did
already demand substantial time investment especially in the final period of this research
project. This job also came with a required graduation deadline at the end of June, the strict-
ness of which I had not had in mind most of my time working on this project. And while
one could always think of external reasons, I should also say that settling in Berlin and back
home afterwards took me some time to adjust.

While this has had only a very limited impact on writing the content I had set out to write, it
ultimately did affect my ability to reflect on what was already in place. I would have liked to
fine-tune these chapters much more and, in particular, would have wanted to take far more
time to carefully go through the many insightful points of feedback I have received.
Through better time-management, many of these issues could have been mitigated. This
does not just mean ’being more productive’, but also making different choices within the
research project. For example, I spent a lot of time reading about Clifford algebra and had
written many notes on it, to ultimately not really do much with it because its relevance was
very much secondary. When the deadline approached, I could also have chosen to drop, e.g.,
some of the less relevant parts of chapters 2, 3 and 5, instead investing this in perfecting what
is there and especially allocate optimal attention to the historical core of chapter 4.
Therefore, I have been able to draw concrete lessons out of this about carefully consider-
ing what amount of time one realistically has, and then choosing accordingly, rather than
not daring to make a choice meaning that time will choose for you. And time, as it turns
out, does not necessarily make the best choice either. As a final note on the topic, perhaps
the project can be further developed in my spare time, which would ultimately entail giving
more attention to these issues after all.

To close, I would like to extend some words of gratitude.

The first half of this research project took place at the MPIWG, under the supervision of dr.
Alexander Blum. You were always open for a chat, whether it would be for a quick question
or long technical discussion. Thanks to your general involvement and enthusiasm I always
left those with fruitful new ideas about physics, history and clever methods you proposed. I
am very grateful for being able to have been a part of the research group on the final theory
program and all that it entailed, from interesting guest lectures to fun group activities.

The second half of the project took place at the new RCNP, under the supervision of prof.
dr. Klaas Landsman. It was always a fun start of the week to work with you and the oth-
ers at the office on Mondays. Our conversations on the varying topics related to this thesis
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have been indispensable to this project and incredibly instructive for myself. It has been
an honour to have played a small role in the first year of the RCNP, and there is no doubt in
my mind that it will grow into a successful, intellectually stimulating and fun research group.

Lastly, I want to thank my girlfriend, family and friends for their support and patience in
this ninth and final year of my studies. With that, it is now time for a new phase of life.
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