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The propositions are divided into problems

ond.  theorems

(Plako  ridicules the language of the

geomekers)

SPeu.scPPos: All propositions are theorems.

Menoechmos:  All propositions are

(construckion) problems.

Proclos: both are rcight

(The discovery of theorems  does

not Occur without  recourse Lo

"intelligible matber".

J s in imagination that construckons
take place whereas the contents of
our understonding all stand f xed

without any generoation or change.)
Cusanus:

Mens nostra  quae mathematicalia fabricat

ea, Qqui su¢ sunb offtcii, verws apud

se habet Quam sunt extra se (psam



Kant

T+S & 42

The outcome 12 con not be found from
the definitions of 7 5 and +  alone

One has to invoke the help of intuition

- L 3 & 5§ & P 1 % 85 N°
IR R A R A e g
g 9 10 ui2

The third perpendicular bisector will go
fhrough the point of (ntercection of the fist two.



Brouwer:
The statement of a Ltheorem s an
incomplefe communication.

Jts true and full meaning (s revealed
only by the proof

Every one knows this sequence as @

sequence without end

One should preserve one's sense of wonder

ok this cnfinity and our ability to hanmdle it

Eunclid [X, 20

There are infinitely many prime numbers
The prime nrumbers are more than oany

previously given multitude Of prime humbers

F("o:"n---."{g) # no
F.("o» nn'":"ﬁ.) F N F(ﬂo,n,,,-..,'\g_) prime

F Mg, Moy mg) #1y



Euclid's theorem (s exemplowry.

It shows ws how to use the word " infenite”

(Is such coinage of Cerms logic )

V. W sets

V (s an infinibe  subset of W .

Flw,.... w,) ¢ w
: ; = # ! F(wp...,w‘_) e V

AT AR

Theorem: (IN s the smallest (nfinite set)

let V fe infcnite  subset of W
Then IN may be embedded (nto v




November 24, 1858

\<)

Ewdoxos Eucl. EL.
A L1 B = C H D

For all mn in N
either mA <nB and m-C< n-D
or mA=nB and mC=n D

or mA >nB and mC>nD

(Definition (n conteXE)

Dedekind .
A-B = {.'V"T | m- A <n-B}

Proportéor\s / rakios aS objec(‘s.

Cantor | Bronwer:

A real number (s an CnFCm.'ée, sequ.e.nce.

x(0) x(1) 2(2), of paurs of rakowal
x (0) - % ‘(0) 2" (0)

x(1) ' (1) x"(1)
: x‘(n) € %'(n+l) € 2(nt0) ¢ 2“(n)

For each m, there extsts n s.t.

' (n) — 2'(n) < zl;‘



© = %(0) 2 (1) 2 (2)

The real number (s continuclly growéas
and pever finished. |

- 3 Wiy
x(n) = (—;‘L, —"q) (F n« ‘qu
= tee) t e
ond ‘;99 s even
2 (—1—99) —';9) e
and &99 s odd
x <O Wl n= fc” — n g oda] ?
x >0 Vn [n= 3.93 — n is even] ¢

The e,xe.mplcwj proof of o Statement
Av B provides one with o proof of A

or with o proof of B. -



Cantor 1873
The real numbers are more than
every previously given infinite Sequence

of real numbers

L & 8 be an infinite

Sequence of real numbers.

q9="="

There exists  x =  x(0), x()),...
Such that x+4a,, x#a,

Choose X (0) such that

a, ¢ (x'(0, x"(o)
Choose  x ()  Such that
a, 4 (xU X" (1)

The proof s beautifd and exemplary

VW V s an uncountable subset of W:

For every infinite sequence Wy, W, ,...
Flw,w,...) e V

F(wo; w«)"") ‘# Wi ) FOV" each 1:



The
/iR

set of all real humbers

Car\tor*-.
We form o set by takin?

cerbtain earlier constructed
o a new whole

Brouwer:

Make the fo“owéha picture.:

bogether
objects

The real numbers are the nfinite

paths in this Cree

J have to think of them as
infinite  paths

possible



Let F fe a funckon from R to R

Then F  must be conbinnous.

Theorem: ', {0, I}N is the smallest uncouvntable
set

Letk V be an uncountable subset of R
Then  $0, I}N may be embedded inbo A4

Pf_‘.?of"
e . .

) % %
Fin . o8 @

F o ) = § F (Rt | ot yy) e R

Fl%n ) # Flyoy.), then
there excts m £5 [+ (xo, ...,zm\ n IF(Z”"" %,\\ = ¢
Eln x5 09 D) #

F (x,-i%, et B 08

foif ——> R
wct — G £ G(t)

F(Gluedod) n FBluxet)) = @



