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The cohomological descent method

Abstract. In this thesis we provide an algebraic approach to the cohomo-
logical descent method, which is used in gauge field theories to investigate
anomalies. In pursuit of this, an algebraization of the principal bundle set-
ting is put forward. Several concepts known from principal bundle theory
are generalized to Lie algebra operations, and in particular we prove that
the Weil homomorphism can be generalized. Finally, we introduce the
Weil-B.R.S. algebra, and prove that the cohomological descent method is
surjective and injective under certain circumstances, which was indicated
by Dubois-Violette in [6].
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Preface

In this thesis, we consider the mathematical background to the so-called descent
equations, which are used in physics (specifically in gauge field theories) to in-
vestigate possible anomalies. Gauge field theories are used in theoretical physics
to describe interactions between particles and fields (e.g. the electromagnetical
field), and to describe a certain physical situation one can apply either classi-
cal gauge field theory or quantum gauge field theory, as appropriate. When a
certain symmetry or invariance is lost when passing from classical gauge field
theory to quantum gauge field theory, one speaks of an anomaly.

In one particular case the anomalies can be interpreted as elements of a cer-
tain cohomology class and there exists an algorithm, known as the cohomological
descent method which supplies elements of this cohomology class. The descent
method can be considered from a purely mathematical point of view and the
first part of our thesis introduces all the mathematical concepts needed for the
framework of the descent method. Not only do we provide an introduction to
mathematical concepts like principal bundles, connections, curvature, charac-
teristic classes, the group of gauge transformations and its Lie algebra, but we
also generalize these concepts to a more abstract theory of Lie algebra opera-
tions. This turns out to be useful when calculating some specific cohomology
groups, which can be described using two universal objects: the Weil algebra
and the Weil-B.R.S. algebra. We closely follow Dubois-Violette [6] in this, but
hope to enhance his article by including (almost) all proofs of theorems used,
and in being more thorough in our explanation and motivation. Furthermore,
we hope to bridge the gap between the concrete example of a principal bun-
dle and the constructions made in Dubois-Violette, by indicating clearly what
motivates the specific generalizations.

Our main result will be the proof of a statement made in Dubois-Violette: the
descent equations, which yield certain cohomology classes, provide all the classes
of the cohomology considered, and the method is in this respect “surjective”.
However, the restrictions and assumptions made by Dubois-Violette also have
their consequences for the validity of this statement. These consequences are
the subject of our research.
As we indicated, this thesis may be divided in two parts; the first part consists
of three chapters which deal with the generalization of several concepts known
from the theory of principal bundles and an additional chapter on Lie algebra
cohomology. The second part is formed by the last two chapters, and concerns
the complexes which accommodate the cohomological descent method. At the
end of the last chapter we have included our conclusion, in which we summa-
rize the results achieved in this thesis and discuss some questions left open by
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Dubois-Violette’s article. On various occasions we have also included references
to recent articles which make use of the concepts we introduced or which provide
further generalizations.

Finally we would like to inform the reader that we have included a page sum-
marizing our notation, preceding the bibliography, for his or her convenience.
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Chapter 1

A brief introduction to
principal bundles

1.1 The principal bundle

Though we will assume the principle bundle construction known, we will start
with a concise treatment in order to generalize later on. Let P (G, M) be a
principal bundle

G ↪→ P
π−→ M (1.1)

where P and M are smooth manifolds. G is a Lie group, which acts on P by a
smooth free right-action (Rg : p 7→ pg) and M has a covering {Uα} such that
each inverse image π−1(Uα) ⊂ P is diffeomorphic to Uα×G. The diffeomorphism
should satisfy certain local trivialisation conditions (§1.1.4). Also, the action of
G on P preserves fibers, so we have π(p) = π(pg), and each fiber is diffeomorphic
to G.

In the following we will call G the structure group, P the total space and M
the base manifold.

1.1.1 Fundamental and vertical vector fields

Since G is a Lie group, it has a Lie algebra Lie (G). With every element X
in the Lie algebra Lie (G) we can associate a vector field X# on P , which we
call the associated fundamental vector field. If we take a particular p ∈ P and
consider the mapping σp : G → P given by σp(g) = Rgp = pg, we notice that
this mapping is smooth and has a derivative (σp)T

e at the identity e ∈ G. We
define X#

p in the tangent space TpP at p ∈ P as

X#
p = (σp)T

e =
d

dt

(
p · exp(tX)

)∣∣∣
t=0

, (1.2)

with exp:Lie (G) → G the exponential mapping of the Lie group G.

Furthermore, we define the vertical subspace Vertp(P ) ⊂ Tp(P ) as the kernel
of πT , with πT : TpP → TmM the tangent mapping of the projection π : P →
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M . A vertical vector field Y is then a vector field on P such that Yp ∈ Vertp(P )
for all p ∈ P . So,

Y is vertical ⇔ πT (Y ) ≡ 0 on M. (1.3)

The mapping X → X#
p supplies an isomorphism of Lie (G) onto Vertp(P ), and

we also have [X,Y ]# = [X#, Y #]. Proofs of these statements are not too hard,
but can be found in Naber [15] (Th. 4.7.8, Cor. 4.7.9). We show the following:

Lemma 1.1.1 A fundamental vector field X# is vertical.
Proof: Since G preserves fibers we have π(p · exp(tX)) = π(p) for all t. So

πT (X#
p ) =

d

dt
π(p · exp(tX))

���
t=0

=
d

dt
π(p)

���
t=0

= 0 (1.4)

and this is the definition of a vertical vector field. Because G acts along the fibers (in
“vertical” direction) the fundamental vector field is vertical. �

1.1.2 The connection form and horizontal subspaces

On a principal bundle one can define a connection form as a Lie(G)-valued
one-form on P, i.e. ω ∈ Lie (G)⊗ Ω1(P ), with the following properties:

1. ω(X#) = X, by which we mean ωp(X#
p ) = X ∀p ∈ P , for all fundamen-

tal vector fields X# associated with X ∈ Lie (G).

2. (Rg)∗ω = Adg−1 ◦ ω for all g ∈ G.

Here Adg denotes the adjoint action Adg : Lie (G) → Lie (G) of the Lie group
G on the Lie algebra Lie (G), that is defined for an element g ∈ G as1

Adg(X) =
d

dt

(
g · exp(tX) · g−1

)∣∣∣
t=0

. (1.5)

One can also view the connection as an assignment of horizontal subspaces
Horp(P ) ⊂ TpP in every tangent space TpP such that TpP = Vertp(P ) ⊕
Horp(P ).2 Given a connection form as described above, we can define

Horp(P ) := {v ∈ TpP | ωp(v) = 0 }. (1.6)

When we use the decomposition of a tangent vector in horizontal and vertical
parts, we will write for v ∈ TpP

v = vH + vV with vH ∈ Horp and vV ∈ Vertp. (1.7)

Horizontal vector fields are defined in the same way as vertical ones: a vector
field X ∈ X(P ) is called horizontal iff. Xp ∈ Horp ∀p ∈ P .

In later chapters we will consider the space of connections on a principal bundle
P (G,M), and we will denote this space with C (P ). As a consequence of condi-
tion (1.) above, C (P ) cannot be a vector space, e.g. 2 · ω(X#) = 2 ·X 6= X. It
is an affine space, however, so for any two connections ω1, ω2 ∈ C (P ) we have
(1− t)ω1 + tω2 ∈ C (P ) for all t ∈ R.

1See the appendix §A.3 for a brief treatment of Lie groups, Lie algebras and adjoint actions.
2With the assignment of these subspaces there is a smoothness condition involved: for

every p ∈ P there should be a neighbourhood U ⊂ P and smooth vector fields {Xi}i∈I such
that the vector fields span Horp for every p ∈ U . When this condition is met, the assignment
p 7→ Horp is called a smooth distribution on P.
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1.1.3 Curvature

Once one has a connection on a principal bundle, it is possible to define the
curvature of the chosen connection.

Let ω ∈ Lie (G)⊗Ω1(P ) be a connection form on the principal bundle P (G,M).
The curvature Ω ∈Lie(G)⊗Ω2(P) of the connection ω is defined by

Ωp(v, w) def= dωp(vH , wH) ∀v, w ∈ TpP. (1.8)

It is the exterior derivative of the connection ω, working on the horizontal parts
(vH , wH) of the vectors. For those unfamiliar with differential forms taking
values in some kind of vector space and the differential on such forms, we refer
to the appendix. In particular, if Ω ≡ 0 the connection ω is called flat.

The curvature (or curvature form) Ω satisfies a couple of properties we would
like to note. To begin with, it is clear from the definition that Ω(v, w) = 0 if v
or w is vertical (since v = vV implies vH = 0).

Secondly, the right action Rg : p 7→ pg of the structure group G on the
total space P induces an action on the differential forms on P by means of the
pull-back (Rg)∗. The curvature satisfies the following transformation property
under the pull-back (Rg)∗:

(Rg)∗Ω = Ad(g−1) ◦ Ω. (1.9)

Notice the connection form ω has exactly the same transformation property (see
1.1.2). In section §1.1.5 we will see this is called Ad-equivariance.

Theorem 1.1.1 Let ω be a connection, and Ω its curvature. Then the Cartan
structural equation holds, which asserts

Ω = dω + 1
2 [ω, ω]. (1.10)

Proof: This is Theorem 2.1.3, [2]. See §A.2.2 for definition of dω and [ω, ω ].

We will see that this formulation of the curvature will be used in subsequent
chapters to provide the generalization to algebras.
Equipped with a curvature form Ω on a principal bundle P (G,M) it is possible
to define the Chern class of the bundle. The Chern class is a cohomology
class in the de Rham cohomology HDR(M) of the base manifold M . It is
called a characteristic class because it turns out that the cohomology class that
is obtained, is independent of the connection chosen on the bundle (and its
curvature). Thus it is truly characteristic of the principle bundle itself.

We will come back to this issue later in chapter 3.

1.1.4 Local sections and gauge potentials

A local section or cross-section of a principal bundle is a smooth map s : U → P
with U ⊂ M an open set in the base manifold, such that

π ◦ s ≡ idU on U ⊂ M.
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A section associates with every m ∈ M an element s(m) ∈ π−1(m) in the fiber
above m in the total space P , and that in a smooth way. Since we have a covering
{Uα} of the base manifold M , such that the inverse images π−1(Uα) ⊂ P are
diffeomorphic to Uα ×G, we have on each of these Uα a local section: consider
such a Uα ⊂ M , and let

Φα : π−1(Uα) → Uα ×G

be the given diffeomorphism, also called a local trivialisation. This map
should satisfy two conditions (the local trivialisation conditions):

1. π ◦ Φ−1
α (u, g) = u for u ∈ Uα.

2. Φ−1
α (u, gh) = Rh ◦ Φ−1

α (u, g) for u ∈ Uα and g, h ∈ G.

Now we can define a section sα : Uα → P as

sα(u) = Φ−1
α (u, e), u ∈ Uα ,

and the first condition (1.) on Φα makes sure this is truly a section.

Transition functions

From the trivializing cover {Uα} of a principal bundle, one can extract the
so-called transition functions gαβ : Uα ∩ Uβ → G.

These are defined in the following way: let sα : Uα → P and sβ : Uβ → P
be local sections subordinate to the trivializing cover. For any x ∈ Uα ∩ Uβ

the elements sα(x), sβ(x) ∈ P will both in the same fiber π−1(x). Since G
acts transitively on the fibers in P , there exists an element g ∈ G such that
sα(x) = Rgsβ(x) = sβ(x)g. Defining this element for every x ∈ Uα ∩ Uβ

provides us a smooth map gβα : Uα ∩ Uβ → G, such that we have

sβ(x) = sα(x)gαβ(x) for x ∈ Uα ∩ Uβ .

The functions {gαβ} are called the transition functions of the bundle.3

Gauge potentials

Suppose one has a connection form ω ∈ Lie (G)⊗Ω1(P ) on the principal bundle
P (G,M). Using the local sections, one can obtain Lie (G)-valued 1-forms {aα}
on the open sets {Uα} by defining4

aα = s∗α(ω) ∈ Lie (G)⊗ Ω1(Uα),

with sα : Uα → P a local section.
For principal bundles figuring in Yang-Mills gauge theories, these forms have

a physical interpretation and are called (local) gauge potentials. The gauge
potential aα depends on the chosen section sα (hence the subscript α) and aα

is called a gauge potential in gauge sα.5

3One can verify that the transition functions satisfy a so-called cocycle condition: for
x ∈ Uα ∩Uβ ∩Uγ one has gγβ(x)gβα(x) = gγα(x). Furthermore gαα(x) = e and gαβ(x)−1 =
gβα(x). See §1.3 [2].

4Usual notation for the gauge potentials is Aα = s∗α(ω), but we follow the notation in [6].
5In physics literature a local section s : Uα → P is often called a local gauge.
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Given a gauge potential aα on Uα one can define the (local) field strength
fα ∈ Lie (G)⊗ Ω2(Uα) (in gauge sα) as

fα = d(aα) + 1
2 [ aα, aα ],

or equivalently
fα = s∗α(Ω),

with Ω = dω + 1
2 [ ω, ω ] the curvature associated with the chosen connection

form ω. In physics literature, the curvature form Ω is called a gauge field.6

Both the (local) gauge potentials as the (local) field strength depend on the
chosen section s. The dependency on the chosen section can be made explicit
by certain compatibility conditions, which we will first introduce for the gauge
potentials. If we consider a neighborhood on M for which we have different sec-
tions, such as Uα∩Uβ with sections sα and sβ , the gauge potentials aα = s∗α(ω)
and aβ = s∗β(ω) will generally not coincide (and hence do not provide a global
Lie (G)-valued 1-form on M). Instead they satisfy the following compatibility
condition:

aβ,x(v) = Adg−1
αβ (x)aα,x(v) + Θαβ, x(v), (1.11)

for x ∈ Uα ∩ Uβ and v ∈ TxM .
Remark: gαβ is the transition function related to the sections sα, sβ on Uα ∩Uβ ; Ad
the adjoint action of the group G on its Lie algebra Lie (G) according to eq. (1.5)
(also §A.3.1); Θαβ is a Lie (G)-valued 1-form on Uα ∩ Uβ associated to the transition
function gαβ defined as

Θαβ, x(v) = (L−1
gαβ(x))

T d(gαβ)x(v),

for x ∈ Uα ∩ Uβ and v ∈ TxM . Here d(gαβ) : TxM → Tgαβ(x)G is the differential

of gαβ : Uα ∩ Uβ → G; using the tangent mapping of L−1
gαβ(x) gives us an element of

TeG = Lie (G) (see section §A.3 for details). For a proof of the compatibility condition

(1.11) we refer to Theorem 2.1.1 in de Azcárraga and Izquierdo [2].

In sloppy (but common) notation the compatibility condition of equation (1.11)
is referred to as

aβ = g−1
αβ

aα gαβ
+ g−1

αβ
dgαβ

.

This is actually correct if G is a matrix Lie group.
We just state here without proof that for the (local) field strength we have

f β,x = Adg−1
αβ (x)fα,x, (1.12)

for x ∈ Uα ∩ Uβ ; with again gαβ the associated transition function and Ad the
group representation of G on Lie (G). Again the local field strengths fα defined
on Uα ⊂ M do not coincide on intersections Uα ∩ Uβ , and thus do not piece
together a global 2-form on M . However, from equation (1.12) it follows that
if G is abelian they do, since in this case Adg = idLie (G) ∀g ∈ G. This is a
peculiarity of abelian gauge field theories.
The above discussion of gauge potentials and the local field strength is very
brief, but it is not our intention to treat the subject in depth here. We just
need above definitions in later chapters, and this knowledge will suffice for our
goals. We refer to Naber [15](both volumes) and Chapter 2 of de Azcárraga
and Izquierdo [2] for more background information.

6Cf. [15] Vol. II, Ch. 1.
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1.1.5 Some terminology

Before going on, we will formalize some properties which we encountered so
far. For instance, the curvature Ω of a connection ω was defined as the exterior
derivative working only on the horizontal parts of the arguments. This can be
defined for arbitrary forms, and is called (exterior) covariant differentation.

Definition 1.1.1 Let P (G,M) be a principal bundle, with a connection ω.
The (exterior) covariant derivative Dα of a differential form α ∈ Ωn(P ) is
defined by

Dα(v1, . . . , vn+1) = dα(vH
1 , . . . , vH

n+1). (1.13)

Since the definition of the “horizontal parts” depends on the connection ω (i.e.
on Horp), the derivative D is in fact dependent on the chosen connection on the
principal bundle. When, for clarity, we wish to stress this dependence we will
write Dω instead of D.

Corollary 1.1.1 The curvature is the exterior covariant derivative of the con-
nection form, Ω = Dωω.

Also some terminology has been invented to describe the properties of the con-
nection and curvature form.

Definition 1.1.2 Let P (G,M) be a principle bundle, and let D : G → GL(V)
be a representation of G on a vector space V. If α is a V-valued form on P , i.e.
α ∈ V ⊗ Ω(P ), then it is called (D)-equivariant if we have7

(Rg)∗α = D(g−1) ◦ α ∀g ∈ G. (1.14)

Such a form is also called pseudotensorial of type (D,V).
We call α ∈ Ω(P ) (or in V⊗Ωn(P )) invariant if the pull-back (Rg)∗ doesn’t

affect it:
(Rg)∗α = α ∀g ∈ G.

Furthermore, a differential form α ∈ Ωn(P ) (or α ∈ V ⊗ Ωn(P )) is called
horizontal if it is zero when one of the arguments is a vertical tangent vector.
So, if for all p ∈ P

Xi(p) ∈ Vertp for some i ⇒ αp(X1(p), . . . , Xn(p)) = 0.

Notice this equivalent with saying

αp(v1, . . . , vn) = αp(vH
1 , . . . , vH

n ) ∀p ∈ P, vi ∈ TpP.

Finally, a differential form that is both pseudotensorial of type (D,V) and
horizontal is called tensorial of type (D,V).

We will concern ourself with the case V = Lie (G), the Lie algebra of the
structure group G, on which we have the adjoint representation Ad : G →
GL(Lie (G)) given by (1.5). We note the following.

Corollary 1.1.2 The connection form ω is pseudotensorial of type (Ad, Lie(G)),
i.e. Ad-equivariant, by definition (see (1.1.2), property 2).

7For a V-valued form ω one defines (Rg)∗ = idV ⊗ (Rg)∗ : V ⊗ Ω(P ) → V ⊗ Ω(P ).
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Corollary 1.1.3 (Claim) The curvature form Ω is tensorial of type (Ad, Lie(G)),
i.e. it is Ad-equivariant and horizontal. Horizontality was implied by the def-
inition, but we haven’t shown Ad-equivariance. We will prove both properties
in a more general setting in Lemma 1.2.4.

Now we are also interested in a special class of differential forms on P , namely,
the forms which are the pull-back of a differential form on the base manifold
M .

Definition 1.1.3 Let P (G,M) be a principal bundle, and π : P → M the
projection map. A differential form α ∈ Ω(P ) is called basic (or projectable)
if

α = π∗(ᾱ) (1.15)

for some ᾱ ∈ Ω(M). We will use the bar ᾱ to denote the differential forms on
M which are projections of basic forms α on P .

In the following lemma necessary and sufficient conditions are given for a form
to be projectable.

Lemma 1.1.2 A form α ∈ Ωn(P ) is basic (projectable) iff. it is invariant and
horizontal.

Proof: (⇐) Let m ∈ M and p ∈ π−1(m) an arbitrary element in the fiber above m.
Let X1(m), . . . , Xn(m) be tangent vectors in TmM . Since π : P → M is a submersion,
we know there are vectors Y1(p), . . . , Yn(p) ∈ TpP such that πT (Yi(p)) = Xi(m) (the
vectors Yi project on the Xi). Now we define ᾱ ∈ Ωn(M) as

ᾱm(X1(m), . . . , Xn(m)) = αp(Y1(p), . . . , Yn(p)). (1.16)

Of course we need to check this is independent of the choices we made (p ∈ π−1(m)
and the Yi(p)). Suppose p̃ ∈ π−1(m) and p̃ 6= p, and Ỹi(p̃) ∈ Tp̃P project also on
Xi(m). Since p and p̃ are both in the same fiber, we have p̃ = pg = Rgp for some
g ∈ G. By invariance of α we have

αp(Y1(p), . . . , Yn(p)) = (Rg)∗αp(Y1(p), . . . , Yn(p))

= αpg(RT
g Y1(p), . . . , RT

g Yn(p))

= αp̃(RT
g Y1(p), . . . , RT

g Yn(p))

= αp̃(Ỹ1(p̃), . . . , Ỹn(p̃)),

which proves ᾱ is well-defined. The last equality holds because the difference RT
g Yi(p)−

Ỹi(p̃) between RT
g Yi(p) and Ỹi(p̃) (which are both vectors in Tp̃P ) is a vertical vector,

and α is a horizontal form that is zero on vertical vectors by definition. We show
RT

g Yi(p)− Ỹi(p̃) is vertical, i.e. it is projected to zero by πT :

πT (RT
g Yi(p)− Ỹi(p̃)) = πT (RT

g Yi(p))− πT (Ỹi(p̃))

= (π ◦Rg)T (Yi(p))− πT (Ỹi(p̃))

= πT (Yi(p))− πT (Ỹi(p̃))

= Xi(m)−Xi(m)

= 0,

where we used π ◦Rg = π for the projection π : P → M .
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(⇒) We know α is basic, say α = π∗(ᾱ) with ᾱ ∈ Ωn(M). Then α is invariant
since we have

(Rg)∗α = (Rg)∗π∗ᾱ = (π ◦Rg)∗ᾱ = (π)∗ᾱ = α.

Secondly, α is horizontal since

αp(X1(p), . . . , Xn(p)) = ᾱπ(p)(π
T X1(p), . . . , πT Xn(p)),

and if any Xi(p) ∈ TpP is vertical, it means by definition πT Xi(p) = 0 and hence ᾱ
and α will be zero. �

1.2 Generalizations

1.2.1 Lie algebra operations

A first step in generalizing the constructions made so far, is considering them
from a purely algebraic point of view. We notice that the differential forms on
the total space P , denoted by Ω(P ), form a graded-commutative differential al-
gebra (abbreviated as GCDA; definitions can be found in §A.1 in the appendix).

On any GCDA one can introduce the notion of a Lie algebra action or Lie alge-
bra operation. For this one needs a finite-dimensional Lie algebra g which maps
linearly into graded derivations of the algebra by means of two maps i and L.
The graded derivations should satisfy special commutation properties with the
differential. To be precise:

Definition 1.2.1 Let (A ,d) be a graded-commutative differential algebra (with
differential d) and g a finite-dimensional Lie algebra. An action of g on A is
a pair (i, L) of linear mappings from g to the graded derivations Der(∗)(A ) on
the algebra A

i : g → Der(−1)(A ), i : X 7→ iX ,

L : g → Der(0)(A ), L : X 7→ LX ,

such that

LX = diX + iXd, (1.17)
L[X,Y ] = [LX , LY ] = LXLY − LY LX , (1.18)
i[X,Y ] = LX iY − iY LX , (1.19)

(iX)2 = 0, (1.20)

for all X, Y ∈ g.
So, for all X ∈ g we have an anti-derivation iX of degree -1, and a derivation LX

of degree zero on A . If these conditions are met, the pair (A , i, L) (or simply
A ) is called a g-operation. One also says g operates on A .
Remark: This notion is due to H. Cartan [5]. Unfortunately, there is no agreement
upon the terminology as yet. Instead of g-operation, one can also encounter a Cartan
operation[6] or g-differential algebra [1].
Remark II: This definition is taken from Kastler&Stora [11]. Since the derivation
LX is expressed by (1.17) as a combination of the differential d and anti-derivation
iX one could also define a g-operation by a mapping i : g → Der(−1)(A ) for which
diX + iXd results in a derivation of degree zero satisfying equations (1.18) and (1.19).
This equivalent definition is used in Dubois-Violette [6]. �
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On the algebra Ω(P ) of differential forms on P several graded derivations
are known. We have the interior product iX of a vector field X ∈ X(P ) with a
form α ∈ Ωn(P ) that is defined as iXα(X2, . . . , Xn) = α(X, X2, . . . , Xn). It is
a anti-derivation of degree -1 on Ω(P ). And we have the Lie derivative LX of
forms by vector fields, which can be defined as LX = diX + iXd. That supplies
us with an derivation of degree zero on Ω(P ). Now, as we have seen, there is
a way to extend elements of Lie (G) to vector fields on P , by means of the
fundamental vector field. This is all we need to make Ω(P ) into a Lie (G)
-operation, which we state as the following corollary.

Corollary 1.2.1 Let P (G,M) be a principal bundle. The GCDA Ω(P ) is a
Lie (G) -operation, with the action

i : X ∈ Lie (G) 7→ iX# ∈ Der(−1)(Ω(P )),

L : X ∈ Lie (G) 7→ LX# ∈ Der(0)(Ω(P )),

with X# ∈ X(P ) the fundamental vector field associated with X ∈ Lie (G), iX#

the interior product of differential forms with vector fields, and LX# the Lie
derivative of forms by vector fields.
Proof: For the definition of the fundamental vector field, see (1.2) in §1.1.1. The
interior product iX and Lie derivative LX are defined in §A.2.1 in the appendix.
We know iV : Ωn(P ) → Ωn−1(P ) is an anti-derivation on Ω(P ) for any vector field
V ∈ X(P ), so this is certainly true for the fundamental vector fields X#. Linearity of
i follows from the definitions of the fundamental vector field (1.2) and properties of
the interior product (§A.2.1):

c ·X 7→ i(c·X)# = ic·X# = c · iX# (c ∈ R)

and
X + Y 7→ i(X+Y )# = iX#+Y # = iX# + iY # .

Furthermore we know the Lie derivative LV is expressed as LV = diV +iV for V ∈ X(P )
(eq. (A.35) appendix) and that this is a derivation on Ω(P ). So L : X 7→ LX# is a
linear mapping of Lie (G) to Der(0)(Ω(P )) by linearity of i and d.

Conditions (1.18)-(1.20) correspond to the relations described in §A.2.1, and this
proves Lie (G) operates on Ω(P ). �

1.2.2 Algebraic formulation of equivariance, invariance and
horizontality

Now, having shown that the algebra Ω(P ) of differential forms on the total space
P of a principal bundle P (G,M) is a Lie (G) -operation, we can translate several
properties defined on differential forms to elements of general g-operations, in
particular equivariance,invariance and horizontality. Since on an arbitrary g-
operation we just have the graded derivations iX and LX we will need to express
equivariance, invariance and horizontality in terms of these operations. This is
the content of the following three lemmas.

Lemma 1.2.1 Let P (G,M) a principal bundle with G connected, g = Lie (G),
and α ∈ g⊗Ω(P ) a g-valued form on P . For X ∈ g, let X# denote the associated
fundamental vector field. Then the following are equivalent:

1. α is Ad-equivariant, i.e. (Rg)∗α = Adg−1 ◦ α.
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2. LX#α = [α,X], ∀X ∈ g;
by which we mean (LX#α)p(vp) = [αp(vp), X] ∀p ∈ P, vp ∈ TpP and the
bracket is the ordinary Lie bracket in g.

Remark: (1 ⇒ 2) still holds if G is not connected, but for the converse we need
connectivity.

Proof: (1 ⇒ 2) For this we recall the definition of the Lie derivative LX# by the
vector field X# ∈ X(P ), described in the appendix §A.2.1 by (A.24)

LX#α = lim
t→0

φ∗t α− α

t
=

d

dt
φ∗t α

���
t=0

.

Since the vector field X# is defined in p ∈ P as

X#
p =

d

dt

�
p · exp(tX)

����
t=0

=
d

dt

�
Rexp(tX) p

����
t=0

,

it follows the flow of X# is given by φt = Rexp(tX), and we get for p ∈ P and vp ∈ TpP ,

(LX#α)p(vp) =
d

dt
φ∗t αp(vp)

���
t=0

=
d

dt
(Rexp(tX))

∗αp(vp)
���

t=0

=
d

dt
Ad(exp(tX)−1) αp(vp))

���
t=0

=
d

dt
Ad(exp(−tX)) αp(vp)

���
t=0

= ad(−X) αp(vp)

= [−X, αp(vp) ]

= [ αp(vp), X ].

We used (1) the Ad-equivariance of α which states (Rexp(tX))
∗α = Ad(exp(tX)−1) ◦α

and (2) the differential in e of the adjoint mapping Ad : G → GL(g) is the adjoint
action ad : g → gl(g) of g on itself given by ad(X)(Y ) = [X, Y ] (see §A.3.1). It follows
that

d

dt
Ad( exp(−tX) )

���
t=0

= ad(−X).

A proof of these facts can be found in Duistermaat&Kolk [8], §1.1. We have now
shown that LX#α = [α, X] for any Ad-equivariant differential form α ∈ g⊗ Ω(P ).

(1 ⇐ 2) See Kastler and Stora [11]. �

Lemma 1.2.2 Let P (G,M) a principal bundle with G connected, g = Lie (G),
and α ∈ g⊗Ω(P ) a g-valued form on P . For X ∈ g let X# denote the associated
fundamental vector field. Then the following are equivalent:

1. α is invariant, i.e. (Rg)∗α = α.

2. LX#α = 0, ∀X ∈ g.

Remark: Again, (1 ⇒ 2) still holds if G is not connected, but for the converse we
need connectivity.

Proof: (1 ⇒ 2) The proof is similar to Lemma 1.2.1 above. This time we get

LX#α =
d

dt
φ∗t α

���
t=0

=
d

dt
(Rexp(tX))

∗α
���

t=0
=

d

dt
α
���

t=0
= 0.
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(1 ⇐ 2) Following the equations the other way around shows us

d

dt
(Rexp(tX))

∗α
���

t=0
= 0,

for all X ∈ Lie (G). Now this holds not only at t = 0, but at t = t0 for any t0 ∈ R:

0 = (Rexp(t0X))
∗(0)

= (Rexp(t0X))
∗� d

dt
(Rexp(tX))

∗α
���

t=0

�

=
d

dt
(Rexp(t0X))

∗(Rexp(tX))
∗α
���

t=0

=
d

dt
(Rexp((t+t0)X))

∗α
���

t=0

=
d

dt
(Rexp(tX))

∗α
���

t=t0
.

Since (Rexp(0))
∗α = (Re)

∗α = α this implies (Rexp(tX))
∗α = α for all t ∈ R and

X ∈ Lie (G). Since we assumed G to be connected it is generated by the image of exp
([8], Th. 1.9.1), and hence (Rg)∗α = α for all g ∈ G. �

Lemma 1.2.3 Let P (G,M) a principal bundle with G connected, g = Lie (G),
and α ∈ g ⊗ Ωn(P ) a g-valued form on P . For X ∈ g let X# denote the
associated fundamental vector field. Then the following are equivalent:

1. α is horizontal, i.e.
Vi(p) ∈ Vertp for some i ⇒ αp(V1(p), . . . , Vn(p)) = 0 Vi ∈ X(P ).

2. iX#α = 0, ∀X ∈ g.

Proof: (1 ⇒ 2) This follows from the fact that fundamental vector fields are in
particular vertical vector fields (Lemma 1.1.1) and horizontal forms are zero on vertical
vector fields by definition.

(1 ⇐ 2) Suppose Vi(p) ∈ V ert(p). In section 1.1.1 we claimed that the map
X 7→ X#(p) is in fact an isomorphism between g and V ert(p) ([15], Corollary 4.7.9).
So for every Vi(p) ∈ V ert(p) there is a X ∈ g such that X#(p) = Vi(p). Then
iX#α = 0 implies

αp(V1(p), . . . , Vi(p), . . . , Vn(p)) = αp(V1(p), . . . , X#(p), . . . , Vn(p))

= ± αp(X#(p), V1(p), . . . , Vn(p))

= ± (iX#α)p(V1(p), . . . , Vn(p))

= 0,

which proves the horizontality of α. �

These three lemmas lead us to the generalization of equivariance, invariance
and horizontality to arbitrary g-operations. Since Ad-equivariance is defined on
Lie (G) -valued differential forms (i.e. elements of Lie (G)⊗Ω(P )) we generalize
this notion for elements of g⊗A , with A a g-operation. From Lemma A.1.1 in
the appendix we know that if A is a GCDA and g is a Lie algebra, g⊗A is a
differential graded Lie algebra (DGLA). Thus there is a graded Lie bracket on
g⊗A defined by [X ⊗ α, Y ⊗ β] = [X,Y ]⊗ (α · β) for X, Y ∈ g and α, β ∈ A ,
and in particular there is a differential d defined on g⊗A by d(X⊗α) = X⊗dα
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for X ∈ g, α ∈ A . Now if A is a g -operation we can make g ⊗ A into a g
-operation as well by defining in the same way

LY (X ⊗ α) = X ⊗ LY α, X, Y ∈ g, α ∈ A

and
iY (X ⊗ α) = X ⊗ iY α, X, Y ∈ g, α ∈ A .

With this taken care of we are ready to define equivariance on arbitrary g -
operations. Invariance and horizontality cause less trouble since these notions
are defined on elements of A itself.

Definition 1.2.2 Let (A , i, L) be a g-operation, then an element A ∈ g ⊗ A
is equivariant if we have

LXA = [A,X] ∀X ∈ g. (1.21)

Furthermore we define the set I (A ) of invariant elements of A , the set H (A )
of horizontal elements of A , and the set B(A ) of basic elements of A by

I (A ) = { α ∈ A | LXα = 0, ∀X ∈ g },
H (A ) = { α ∈ A | iXα = 0, ∀X ∈ g },
B(A ) = { α ∈ A | LXα = 0 and iXα = 0, ∀X ∈ g }.

Remember we defined the basic forms on Ω(P ) as the subset π∗(Ω(M)) ⊂ Ω(P )
of differential forms on P which were the pull-back of forms on M . We proved
in Lemma 1.1.2 that an element α ∈ Ω(P ) was basic iff. it was invariant and
horizontal. This motivates the definition of B(A ).

In Lemma B.2.2 we prove I (A ) is a graded differential subalgebra of A ;
H (A ) is graded subalgebra of A , that is stable by LX and furthermore B(A )
is a differential subalgebra of I (A ) as well as A .

1.2.3 Algebraic connections and covariant derivatives

Now we wish to introduce corresponding notions of connections and curvature
to arbitrary g-operations. With the properties of the connection form ω and
curvature Ω expressed in the operations iX and LX on Ω(P ), we can generalize
this directly to arbitrary g -operations.

First consider a connection form ω ∈ g ⊗ Ω1(P ) as defined in section 1.1.2.
The first property ω(X#) = X for X ∈ Lie (G) can be translated directly to

iX#ω = X, X ∈ Lie (G).

The second property (Rg)∗ω = Adg−1 ◦ ω states the equivariance of ω, which
can be expressed as

LX#ω = [ω,X], X ∈ Lie (G),

by Lemma 1.2.1. So we can define for arbitrary g -operations the notion of an
algebraic connection.
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Definition 1.2.3 Let (A , i, L) be a g-operation, then an element A ∈ g⊗A 1

is called an (algebraic) connection on A if we have for all X ∈ g

iXA = X and LXA = [A,X ].

Now for the corresponding notion of curvature. For the generalization we use
the Cartan Structure Equation (1.10) which states Ω = dω + 1

2 [ω, ω]. We define
the curvature of an algebraic connection A ∈ g ⊗ A 1 to be the element
F ∈ g⊗A 2 given by

F = dA + 1
2 [ A,A ]

We claimed in Corollary 1.1.3 that the curvature form Ω ∈ g ⊗ Ω2(P ) is hori-
zontal as well as equivariant, which means

iX#Ω = 0 and LX#Ω = [Ω, X], X ∈ Lie (G),

by Lemma 1.2.3 and Lemma 1.2.1. Now we will prove these claims for the
generalized curvature F on an arbitrary g -operation, from which it follows that
it holds for the curvature form Ω on a principal bundle as well since this is a
Lie (G) -operation with A = Ω(P ).

Lemma 1.2.4 Let A ∈ g⊗A 1 be an algebraic connection on the g -operation
A and let F = dA + 1

2 [A,A] ∈ g⊗A 2 be its curvature. Then F satisfies

iXF = 0 and LXF = [F, X] ∀X ∈ g. (1.22)

Proof: This proof relies heavily on the fact that g⊗A is a DGLA. In the appendix
(§A.1.1) we have listed the basic properties of a DGLA, and proven several lemmas we
will use now. For instance, by Lemma A.1.2 we know that iX defined on g⊗A as above
is also an anti-derivation of degree -1 on g⊗A . Similarly, LX is a derivation of degree
zero. We use this in the following, where we have e.g. iX [ A, A ] = [ iXA, A ]−[ A, iXA ]
since A has degree 1. Furthermore we use (i) [ X, A ] = −[ A, X ] by the commutativity
of the graded Lie bracket (A.11) (ii) d(X) = 0 for X = X ⊗ 1 ∈ g⊗A 0 by Cor. A.1.2
(iii) [ [A, X], A ] + [ A, [A, X] ] = [ [ A, A ], X ] by the graded Jacobi identity (A.12).

We have iXA = X and LXA = [A, X] for A, so

iXF = iX
�
dA + 1

2
[ A, A ]

�

= (LX − diX)A + 1
2

�
iX [ A, A ]

�

= LXA− d(X) + 1
2

�
[ iXA, A ]− [ A, iXA ]

�

= [A, X]− 0 + 1
2

�
[ iXA, A ]− [ A, iXA ]

�

= [A, X] + 1
2

�
[ X, A ]− [ A, X ]

�

= [A, X] + 1
2

�−[ A, X ]− [ A, X ]
�

= [A, X]− [A, X]

= 0,
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which proves horizontality, and

LXF = LX(dA + 1
2

[A, A])

= LX(dA) + 1
2

LX [A, A])

= d(LXA) + 1
2

�
[LXA, A] + [A, LXA]

�

= d([A, X]) + 1
2

�
[ [A, X], A ] + [ A, [A, X] ]

�

= [ dA, X ] + [A, d(X)] + 1
2

[ [ A, A ], X ]

= [ dA, X ] + [A, 0] + 1
2

[ [ A, A ], X ]

= [ dA, X ] + 0 + 1
2

[ [ A, A ], X ]

= [ dA + 1
2

[ A, A ], X ]

= [ F, X ],

which proves equivariance. �

Continuing our generalizations, we follow Kastler&Stora [11] by defining the no-
tion of covariant derivatives for an arbitrary g-operation.8 If A is a g-operation,
then in general any element of g⊗A 1 defines a covariant derivative.

Definition 1.2.4 Let A ∈ g⊗A 1. We define the covariant derivative by A
of an element ω ∈ g⊗A , by

DA(ω) = dω + [A, ω ],

and thus defined DA : g⊗A k → g⊗A k+1 is an anti-derivation of degree +1.
Proof: it is clearly a homogeneous endomorphism of degree +1, and since d and
ad(A) = [A, · ] are anti-derivations of degree +1 (see Lemma A.1.4) so is DA. �

Lemma 1.2.5 Let A ∈ g⊗A 1, and let F = dA+ 1
2 [A,A ]. Then

DAF = 0

and this is known as the (generalized) Bianchi identity.
Proof: We have

DAF = dF + [A,F ]

= d
�
dA+ 1

2
[A,A ]

�
+ [A, dA+ 1

2
[A,A ] ]

= 1
2
[ dA,A ]− 1

2
[A, dA ] + [A, dA ] + 1

2
[A, [A,A ] ]

= − 1
2
[A, dA ]− 1

2
[A, dA ] + [A, dA ]

= 0,

since [ dA,A ] = −[A, dA ] by (A.11) and [A, [A,A ] ] = 0 by the graded Jacobi identity
(A.12).�

Notice that there is a slight difference with the definitions as given in §1.1.5.
In that section we defined the covariant derivative of a differential form α by
D(ω)α(X1, .., Xk) = dα(XH

1 , .., XH
k ). We saw the curvature form Ω ∈ Lie (G)⊗

Ω2(P ) was equal to the covariant derivative Dωω of the connection form ω. In
the generalized case above, for a connection form A, we have DAA = dA+[ A,A ]

8For this definition we do not need the derivations iX and LX , so in fact the following
definition and lemma are valid for any differential graded Lie algebra (DGLA).
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which is almost, but not quite, equal to dA + 1
2 [ A,A ], the curvature of A. So

in the general (algebraic) case, we have F 6= DAA.9

The finishes the first part of generalizing concepts taken from the principal
bundle setting to Lie algebra operations on graded-commutative differential al-
gebras. One might wonder if this is particularly useful. The use will become
apparent when we will turn our attention to Lie algebra operations which are
not of the form Ω(P ) for some manifold P . We will show that in the category
of g-operations with a connection on it, there is a universal object known as the
Weil algebra. We will introduce the Weil algebra in chapter 3, but first we will
turn to principal bundle homomorphisms and gauge transformations and their
generalizations in the next chapter.

1.3 Notes

The entire construction of principal bundles is thoroughly treated in Naber [15]
(Vol. I) and de Azcárraga and Izquierdo [2]. Asides from stressing the topo-
logical background, Naber also goes into the problems encountered in physics
which motivated these mathematical constructions. There is much more to be
said about this then we have done in this chapter, and we just sketch a few
interesting theorems. Some terminology (e.g. trivial bundles and equivalent
bundles) which we use in these notes will be introduced in Chapter 2.
From the trivializing cover {Uα} of a principal bundle, one can extract the so-
called transition functions gαβ : Uα ∩ Uβ → G as we have seen. It turns out
that these transition function contain all the “essential” information about the
bundle. To be precise: given a manifold M , a covering {Uα}, and transition
functions gαβ : Uα∩Uβ → G one can construct a principal bundle G ↪→ P → M .
If one took the transition functions belonging to a certain principle bundle, this
Reconstruction Theorem (Th. 3.3.4 in Naber [15] Vol. I) will turn out an
equivalent bundle.10

After having introduced the concept of a principal bundle, one might wonder
how one obtains a principal bundle. A very important theorem in this context
is the following: let P be a smooth manifold and G a Lie group acting on it. If
the action is effective and proper the orbit space M = P/G will be a smooth
manifold, and so G ↪→ P → M , or in shorthand P (G,M), will be a principal
bundle (Theorem 1.11.4 in Duistermaat and Kolk [8]).

Examples are given by the Hopf bundles. For the complex Hopf bundle we
have P = SU(2), G = U(1),M = S2, so

U(1) ↪→ SU(2) → S2.

Identifying U(1) ∼= S1, SU(2) ∼= S3 and S2 ∼= CP 1 (the complex projective
space), one can also describe this as S1 ↪→ S3 → CP 1. Replacing complex
numbers by the quaternions gives the quaternionic Hopf bundle

S3 ↪→ S7 → S4 = HP 1.

Both bundles are described in §1.3 [2] and [15].
9This curious discordance is present in de Azcárraga[2] (compare eq. (2.1.17) with (2.1.11)

and Def. 2.1.4) as well as Kastler&Stora [11](see eq. (B.1) and (B.2)).
10The equivalence of bundles is a notion which will be introduced in Chapter 2.
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Another important remark to make is that fiber bundles (and in particular
principal bundles) over a contractible base manifold are trivial.11 Bundles with
a sphere M = Sn as base manifold (called sphere bundles, like e.g. the Hopf
bundles) can thus be seen as the simplest non-trivial bundles. For sphere bundles
there is a powerful classification theorem: the equivalence classes of bundles with
Sn (n ≥ 2) as base manifold and G (a pathwise connected topological group) as
structure group are in bijective correspondence to the homotopy group πn−1(G)
(Theorem 3.4.3 in Naber [15] Vol. I).

More generally, for principal bundles with a matrix Lie group as structure
group one has a classification theorem based on the classification of complex
vector bundles.12 The theorem uses the construction of a so-called universal
bundle and a classifying map to this universal bundle. Equivalence classes of
bundles are then in bijective correspondence to homotopy classes of classifying
maps. We refer to Chapter 2 §7 in Walschap [18] for further details.13

11We will introduce the formal notion of a trivial principal bundle in the next chaper.
12From a principal bundle one can construct associated vector bundles and vice versa. See

§1.3 in de Azcárraga and Izquierdo [2] and (even better) Chapter 2 of Walschap [18].
13For the similar classification of complex vector bundles, also see Chapter IV §23 in

Bott&Tu [4].
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Chapter 2

The group of gauge
transformations and its
generalization

This chapter will start off with briefly defining the concept of principal bundle
mappings in general, and then quickly move on to the notions of equivalence
maps and bundle automorphisms. In particular the group of vertical bundle
automorphisms is of interest to us. This group is also known as the group of
gauge transformations. The group is of great importance for physicists, and its
Lie algebra will play a central role in the cohomological descent method. We will
introduce the group of gauge transformations and its most important properties
in §2.3, and define its generalization with respect to g-operations.

When dealing with descent equations the considered principal bundle is usu-
ally assumed to be trivial. Therefore we will also pay some attention to the
trivial bundle and its group of gauge transformations.

2.1 Principal bundle mappings

With the definition of a principal bundle comes also an appropriate definition
of a principal bundle mapping which is as follows:

Definition 2.1.1 Let P (G,M) and P ′(G′,M ′) be two principal bundles, with
right actions R, R′ and projections π, π′. A principle bundle mapping (or
principal bundle homomorphism) f is a triple f = (fgr, fts, fb) with

fgr : G → G′, fts : P → P ′, fb : M → M ′,

such that

1. fgr is a group homomorphism.

2. fts commutes with the right action: fts(Rgp) = R′g′( fts(p) ) with g′ =
fgr(g). This implies that fts maps fibers to fibers.

3. fb is the map induced by fts and the projections: fb(π(p)) = π′(fts(p)).
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In particular, we can consider mappings between principal bundles with the
same structure group and base manifold (i.e. G = G′ and M = M ′). This leads
to the following notion.

Definition 2.1.2 An equivalence or isomorphism between two principal
bundles P (G,M) and P ′(G,M) with the same structure group G and base
manifold M , is a principal bundle mapping f = (fgr, fts, fb) for which

1. fgr ≡ idG : G → G, i.e. fgr is the identity map on G.1

2. fts : P → P ′ is a diffeomorphism.

3. fb ≡ idM : M → M , i.e. fb is the identity map on M .

As usual, this defines an equivalence relation on all principal bundles; two bun-
dles are called equivalent if there exists an equivalence map between them. An
important equivalence class is given by the trivial bundles, i.e. the principal
bundles P (G,M) equivalent to the trivial bundle described in the following
section.

Now we would like to consider equivalence maps of a principal bundle P (G,M)
onto itself. One would suppose they are called automorphisms of the bundle
following usual group terminology. They are, however, known as the vertical
bundle automorphisms of the bundle, and denoted Autv(P )2. They are de-
termined by (and often identified with) the diffeomorphism fts : P → P , so we
have

Autv(P ) = { f ∈ Diff (P ) | f ◦Rg = Rg ◦ f and π ◦ f = π }.
The bundle automorphisms, denoted Aut(P ), are defined as the diffeomor-
phisms on P commuting with the right action.

Aut(P ) = { f ∈ Diff (P ) | f ◦Rg = Rg ◦ f }.

Any element f ∈ Aut(P ) maps fibers to fibers, and thus induces a diffeomor-
phism fM ∈ Diff (M). If f ∈ Autv(P ), each fiber is mapped onto itself, so
fM ≡ idM ∈ Diff (M). We can summarize this in the following short exact
sequence

1 → Autv(P ) → Aut(P ) → Diff (M) → 1.

Later in this chapter we will change the notation and denote Autv(P ) with G ,
but first we will briefly discuss trivial bundles.

2.2 The trivial principal bundle

In this section we give the definition of a trivial principal bundle, and record
some special properties of a trivial bundle.

Definition 2.2.1 The trivial bundle is the principal bundle P (G,M) where
the total space P is the Cartesian product of the base manifold and the structure
group, P = M ×G.

1In some references (notably [2]) fgr may be any group isomorphism. We will follow the
majority and assume fgr = idG however.

2Sometimes denoted with AutM(P ).
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Remark: The projection π : P = M × G → M is then given by the ordinary
Cartesian projection π : (m, g) 7→ m, and the right action Rg of G on P = M ×G by
Rg : (m, h) 7→ (m, hg).

It is quite easy to check that this bundle satisfies all conditions of a principal
bundle: π commutes with the right action Rg and P is globally diffeomorphic to
M ×G, so certainly locally trivial.

A principal bundle P ′(G,M) is called trivial if it is equivalent to the trivial
bundle P (G,M) with P = M ×G. Concerning the trivial bundle, we would like
to prove some essential propositions.

Proposition 2.2.1 A bundle is trivial iff. it admits a global section s : M → P .
Proof: ([2], Th. 1.3.1)
(⇒) On the trivial bundle define s : M → M × G to be s(m) = (m, e). On a bundle
P (M, G) equivalent with the trivial bundle, compose this map with the inverse of the
diffeomorphism fts : P → M ×G.
(⇐) Let P (G, M) a principal bundle, and let s : M → P be a global section. Because
of the local trivialisations, each fiber is diffeomorphic to G, and G acts transitively and
free on each fiber. If p ∈ P , and π(p) = m ∈ M , then p and s(m) are in the same fiber.
Hence there is a unique g ∈ G such that p = s(m)g. So we have a map φ : P → G
such that p = s(m)φ(g), and it is smooth since the right-action Rg is smooth. Now
we define

Φ : P → M ×G as Φ(p) = (π(p), φ(p)),

and this supplies us with the diffeomorphism P ∼= M ×G.�

Notice this proposition only holds in the case of principal bundles. For vector
bundles for instance, where the fiber is a vector space, there is always a global
section (namely the zero section) but this does not imply the triviality of the
bundle.

The following proposition shows the Maurer-Cartan form ΘMC on G (see
appendix §A.3) supplies a connection form for the trivial bundle.

Proposition 2.2.2 On a trivial bundle there is a canonical flat connection.
Proof: Consider the trivial bundle P (M, G) with P = M × G. Let ΘMC be the
Maurer-Cartan form on G, and let πG : M × G → G be the ordinary Cartesian
projection on G, i.e. πG : (m, g) 7→ g. Then the pull-back ω = (πG)∗ΘMC is a
connection form on M ×G.

Let p = (m, g) ∈ P = M × G; a careful look at the definition of the fundamental
vector field (1.2) and the right-action defined on the trivial bundle in Def. 2.2.1 shows
that (πG)T X#

p = XL
g , so for all X ∈ Lie (G)

ωp(X#
p ) = (π∗GΘMC)p(X#

p ) = ΘMC(g)(XL
g ) = X.

By Lemma A.3.2 we have (Rg)∗ΘMC = Adg−1 ◦ΘMC , from which it follows that for
g ∈ G we have

(Rg)∗ω = (Rg)∗π∗GΘMC

= (πG ◦Rg)∗ΘMC

= (πG)∗(Adg−1 ◦ΘMC)

= Adg−1 ◦ (πG)∗ΘMC

= Adg−1 ◦ ω,

and so ω = (πG)∗ΘMC is connection on M ×G.
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By Lemma A.3.1 we know ΘMC. + 1
2

[ ΘMC , ΘMC ] = 0, and hence for the curvature
of ω we have

dω + 1
2
[ ω, ω ] = d(πG)∗ΘMC + 1

2
[ (πG)∗ΘMC , (πG)∗ΘMC ]

= (πG)∗
�
dΘMC + 1

2
[ ΘMC , ΘMC ]

�

= 0,

since the pull-back (πG)∗ is natural with the exterior derivative d and the bracket of
forms. Thus the curvature Ω = dω + 1

2
[ ω, ω ] = 0 and ω is flat. �

Finally, we wish to consider gauge potentials on a trivial bundle. By Proposition
2.2.1 we know that for a trivial bundle P (G,M) there exist global sections.
Hence each global section s : M → P defines a global gauge potential

a = s∗(ω) ∈ Lie (G)⊗ Ω1(M),

with ω a connection form on P . Naturally a different connection form will lead
to a different gauge potential, and we define the space of gauge potentials (for
a trivial bundle) by

apot(M) = { a ∈ Lie (G)⊗Ω1(M) | a = s∗(ω) for some ω ∈ C (M×G) }. (2.1)

It turns out that apot(M) ∼= Lie (G) ⊗ Ω1(M) ∼= C (M × G), which we will
formalize in the following proposition.

Proposition 2.2.3 For the trivial bundle P (M, G) with P = M ×G one has

apot(M) ∼= Lie (G)⊗ Ω1(M) ∼= C (M×G).

Proof: We prove that every element a ∈ Lie (G)⊗Ω1(M) defines a connection form ω
on P = M ×G, and that a = s∗(ω) where s : M → P is the canonical global section.
This proves the proposition.

Let a ∈ Lie (G) ⊗ Ω1(M). Since P = M × G we have TpP = TmM ⊕ TgG at
p = (m, g) and (using the splitting of horizontal and vertical subspaces) for v ∈ T(m,g)

we have v = vH + vV with vH ∈ TmM, vV ∈ TgG. We define

ω(m, g)(v
H + vV ) = Adg−1am(vH) + (ΘMC)g(vV ),

with ΘMC the Maurer-Cartan form on G (§A.3). From the definition it follows that
ω is a connection form and also we have a = s∗(ω).�

2.3 The group of gauge transformations

We have defined a vertical automorphism of a principal bundle P (G,M) as a
diffeomorphism of P commuting with the right-action and inducing the identity
on M . The vertical automorphisms were denoted with Autv(P ), but we now
abbreviate this to G = Autv(P ), i.e.

G = { f ∈ Diff(P ) | f ◦Rg = Rg ◦ f and π ◦ f = π }.

Naturally, G is a group with the composition and inverse of mappings, and idP

as identity. We call G the group of gauge transformations.
We now record some special properties of this group.
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2.3.1 Correspondence with Ad-equivariant maps

First of all, notice that f ∈ G preserves fibers (i.e. π ◦ f = π), and since the
right-action of G on P is transitive and free on the fibers, we can express the
map f : p 7→ f(p) for any element p ∈ P by

f(p) = (Rφ(p))p = p · φ(p),

where φ : P → G is a smooth map; smooth because f and the right-action are
smooth. This map φ : P → G has the following property:

φ(Rgp) = Adg−1 ◦ φ(p),

where φ(Rgp) = φ(pg) and Adg−1 ◦ φ(p) = g−1φ(p)g.
Proof: Since f commutes with Rg, i.e. f(pg) = f(p)g, we have

p · g φ(pg) = pg · φ(pg) = f(pg) = f(p)g = p · φ(p)g,

so g φ(pg) = φ(p)g and hence φ(pg) = g−1φ(p)g = Adg−1 ◦ φ(p). �
This property is called Ad-equivariance in analogy with the definition of Ad-
equivariance for differential forms (Def. 1.1.2), with the difference that here Ad
means the action of the Lie group G on itself by conjugation:

Ad : G → Aut(G) given by Adg(h) = ghg−1 for g ∈ G.

Following the argument the other way around, one can verify that any smooth
Ad-equivariant map defines a gauge transformation. The correspondence be-
tween automorphisms f : P → P with f ∈ G and Ad-equivariant maps
φ : P → G is in fact a bijection ([2], Th. 10.1.1).

Since the set MapAd (P, G) of Ad-equivariant maps is also a group with
pointwise multiplication (i.e. for φ, ψ : P → G we have (φ ·ψ)(p) = φ(p) ·ψ(p) )
we can check this bijection is a group isomorphism.
Proof: Let f, g ∈ G and let φ, ψ : P → G be the associated Ad-equivariant maps
such that we have the identifications f ↔ φ and g ↔ ψ. Thus f(p) = p · φ(p) and
g(p) = p · ψ(p). Then for f · g = f ◦ g ∈ G we have

f ◦ g(p) = f(g(p))

= g(p) · φ(g(p))

= (p · ψ(p)) · φ(pψ(p))

= (p · ψ(p)) · ψ(p)−1φ(p)ψ(p)

= p · φ(p)ψ(p)

= p · (φ · ψ)(p),

so f ◦ g ↔ φ · ψ and hence the bijection is a group isomorphism. �

2.3.2 Action on differential forms and connections

Since elements f ∈ G are diffeomorphisms f : P → P there is a natural action
of G on the differential forms Ω(P ) on P by means of the pull-back. Now if we
want this action to be a representation, we should define a group homomorphism
R : G → Aut(Ω(P )).3

3Aut(Ω(P )) denotes the group of automorphisms of the graded-commutative differential
algebra Ω(P ). Its automorphisms are linear mappings Ω(P ) → Ω(P ) which commute with
the differential, and are homogeneous of degree zero; i.e. they map Ωn(P ) on Ωn(P ). See
Def. A.1.7 in the appendix.

21



This can be done if we define R(f) ∈ Aut(Ω(P )) as

R(f) : ω 7→ (f−1)∗ω, ω ∈ Ω(P ).

We need to use the inverse (f−1)∗ instead of f∗ because the pullback is con-
travariant, and otherwise R would not be a group homomorphism.4 Since the
pull-back commutes with the differential, and maps n-forms onto n-forms, R(f)
is indeed an algebra automorphism of Ω(P ).
We now wish to concentrate on special kinds of differential forms on P , namely
the basic forms defined in §1.1.5 and the connection form (§1.1.2), and consider
the action of G on these forms. The results are stated in the following two
propositions.

Proposition 2.3.1 The action of G on Ω(P ) leaves basic forms invariant; i.e.
for a basic form ω = π∗(ω̄) with ω̄ ∈ Ω(M) and f ∈ G we have

f∗ω = ω.

Proof: Since f ∈ G we have π ◦ f = π, or what is the same, the map f : P → P
which maps fibers into fibers, induces the identity map on M . Hence we have

f∗ω = f∗(π∗ω̄) = (π ◦ f)∗ω̄ = π∗ω̄ = ω,

which shows ω is invariant under f ∈ G . �

The action of G on Ω(P ) by pull-back extends naturally to Lie algebra valued
forms in g⊗Ω(P ), see the appendix §A.2.2. Since connection forms are elements
of Lie (G)⊗Ω1(P ), the group of gauge transformations G acts on them too. We
have the following proposition.

Proposition 2.3.2 The action of G on g ⊗ Ω(P ) maps connections onto con-
nections; i.e. for a connection form ω ∈ Lie (G) ⊗ Ω1(P ) and f ∈ G the form
f∗ω ∈ Lie (G)⊗ Ω1(P ) will again be a connection.
Proof: Let ω ∈ Lie (G) ⊗ Ω1(P ) be a connection form, so that we have ω(X#) = X
for X ∈ Lie (G) and (Rg)∗ω = Adg−1 ◦ ω. Now we need to prove these two properties
for f∗ω.
(I) We need to prove f∗ω(X#) = X. Let p ∈ P and X#

p ∈ TpP , and remember X#
p

was defined as (cf. (1.2))

X#
p =

d

dt

�
p · exp(tX)

����
t=0

=
d

dt

�
Rexp(tX) p

����
t=0

.

If we consider the image of this vector under the tangent map fT : TpP → Tf(p)P we
get

fT (X#
p ) =

d

dt
f
�
Rexp(tX) p

����
t=0

=
d

dt
Rexp(tX)

�
f(p)

����
t=0

= X#
f(p) ,

by commutativity of f with the right-action Rg. It follows that

(f∗ω)p(X#
p ) = ωf(p)( fT (X#

p ) ) = ωf(p)( X#
f(p) ) = X for X ∈ Lie (G).

4Now we have R(f ◦ g) = ((f ◦ g)−1)∗ = (g−1 ◦ f−1)∗ = (f−1)∗ ◦ (g−1)∗ = R(f) ◦R(g).
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(II) We need to prove (Rg)∗(f∗ω) = Adg−1 ◦ (f∗ω). This follows easily, since

(Rg)∗(f∗ω) = (f ◦Rg)∗ω

= (Rg ◦ f)∗ω

= f∗((Rg)∗ω)

= f∗(Adg−1 ◦ ω)

= Adg−1 ◦ f∗ω,

which proves the equivariance of f∗ω. �

This proposition leads to an important notion: two connections ω1, ω2 on a
certain principal bundle P (G,M) are called gauge equivalent if there is a
gauge transformation f ∈ G such that ω2 = f∗ω1. As the name suggests, gauge
equivalence defines an equivalence relation on connections.

In the so-called Yang-Mills (gauge) theories in physics, connections on a
bundle are used to obtain the field strength of certain fields; for instance the
electro-magnetic field. Gauge equivalent connections prescribe the same field,
so physicists are more interested in the equivalence classes of connections. We
already introduced the space of connections C (P ) on a bundle in §1.1.2, and
remarked this was an affine space. Above proposition gives us an action of G
on C (P ), and the space of equivalence classes C (P )/G is called the orbit space
or moduli space of connections. It is possible to define on this space a topology,
and to construct a bundle G ↪→ C (P ) → C (P )/G ; all this in order to study the
properties of the moduli space.

This is of course just a sketch of the situation to motivate the concepts we are
discussing. We recommend the two books by Naber [15] for a (mathmatical)
introduction to gauge theories, and the use of principal bundles, connections
and group of gauge transformations in these theories. There is quite a lot of
current research on moduli spaces; theorems in this field are published by famous
mathematicians as Donaldson, Atiyah and Singer.

For an introduction to moduli spaces we refer to the first volume by Naber
[15] (chapter 5 in particular) and §10.1 in [2].

2.3.3 Gauge transformations on a trivial bundle

The cohomological descent method, which will be treated in later chapters, is
usually applied to a principal bundle that is assumed to be trivial. An important
reason for this is that, aside from being the simplest example of a principal
bundle, the trivial bundle also has a convenient group of gauge transformations.
It can be shown that the group of gauge transformations G on a trivial bundle
is in fact Map (M, G).

Following this proposition we will show how the group of gauge transforma-
tions G acts on gauge potentials. This explains the origin of the terms gauge
equivalent and gauge transformation. In particular we will discuss the action on
the space of gauge potentials apot(M) in the trivial bundle case.

Proposition 2.3.3 On a trivial bundle, the group of gauge transformations G
identifies with Map (M, G), i.e. the group of smooth mappings from M to G:

G ∼= Map (M, G) = { F : M → G | F smooth }.
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Proof: Let P (G, M) be a principal bundle. In §2.3.1 we saw that we could identify
the group of gauge transformations G = { f ∈ Diff(P ) | f ◦Rg = Rg ◦ f and π ◦ f = π }
with the smooth Ad-equivariant maps from P to G

MapAd (P, G) = { φ : P → G | φ(Rgp) = Adg−1 ◦ φ(p) }.
Now assume P (G, M) is trivial. By Proposition 2.2.1 there exists a global section
s : M → P . Let f ∈ G be a gauge transformation, and let φ : P → G be the
Ad-equivariant map equivalent with it. We define the map F : M → G as

F = φ ◦ s,

and it will be smooth since s and φ are smooth. Hence F ∈ Map (M, G).
Now suppose we have a map F ∈ Map (M, G). We would like to define an Ad-

equivariant smooth map φ : P → G, and we can do this in the following way. Take
p ∈ P , and let π(p) = m ∈ M . Then s(m) and p will be in the same fiber, hence there
is a unique g ∈ G such that p = Rgs(m). Now define

φ(p)
def
= Adg−1 ◦ F (m) = g−1F (m)g.

One easily checks that φ is Ad-equivariant by definition.
Geometrically we can see it like this: the global section supplies us with an image

s[M ] ⊂ P , which we can identify with M . We can define the value of φ on this image,
since we can use the map F : M → G. Now we use Ad-equivalence to extend this map
from s[M ] → G to P → G. An equivalent definition would thus be

φ(s(m)g)
def
= Adg−1 ◦ F (m).

Since P is trivial every p ∈ P can be written as s(m) · g for some m ∈ M and g ∈ G,
and hence φ : P → M is a well-defined Ad-equivariant map.

It is smooth because s, F and the right-action are smooth. So φ defines a gauge
transformation. Since the φ we constructed satisfies φ ◦ s = F , we have established a
bijection between G and Map (M, G). Just like the Ad-equivariant maps MapAd (P, G),
Map (M, G) is a group with pointwise multiplication. And again the bijection is a
group isomorphism: let f, g ∈ G with associated Ad-equivariant maps φ, ψ : P → G,
and F1, F2 : M → G the associated elements of Map (M, G). Then (F1 · F2) =
(φ ◦ s) · (ψ ◦ s) = (φ · ψ) ◦ s. So we have the correspondences f ◦ g ↔ φ · ψ ↔ F1 · F2,
and hence the bijection is a group homomorphism; hence a group isomorphism. �

Action of G on gauge potentials

In section §2.4.1 we introduced the action of the group of gauge transformations
on the space of connections C (P ): for ω ∈ C (P ) and f ∈ G we had

R(f) : ω 7→ (f−1)∗ω.

In general, this will give an action of G on the gauge potentials. Let aα be a
gauge potential defined on a neighborhood Uα ⊂ M through a section (gauge)
sα : Uα → M . We can set

R(f) : aα = s∗α(ω) 7→ a ′α = s∗α((f−1)∗ω) = (f−1 ◦ sα)∗ω.

Notice the following: instead of interpreting a ′α = s∗α((f−1)∗ω) as a gauge po-
tential obtained by applying the section sα : Uα → M to the newly defined
connection form (f−1)∗ω, we can also interpret a ′α as a gauge potential ob-
tained from the same connection form ω as before, but using another section,
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namely f−1 ◦ sα : Uα → P . This is an important observation, since for physi-
cal theories the specific choice of a section (gauge) should not be relevant (the
gauge-invariance principle). It explains why connection forms in the same orbit
under G are called gauge equivalent and why G is called the group of gauge
transformations.
Let us now consider the trivial bundle P = M×G. In this case gauge potentials
are globally defined on M and we could identify apot(M) ∼= Lie (G)⊗Ω1(M) as
we saw in §2.3.3. For a ∈ apot(M) we still can define (s the canonical global
section)

R(f) : a = s∗(ω) 7→ a ′ = s∗((f−1)∗ω).

However, we can use Proposition 2.3.3 which showed G ∼= Map (M, G) to give
an alternative description of this action. If f ∈ G corresponds to a map g :
M → G such that f(p) = p · g(π(p)), the section s′(x) = (f−1 ◦ s)(x) satisfies
s(x) = s′(x)g(x). In section §1.1.4 we discussed the compatibility conditions
that a change of section induces, and as an extension of equation (1.11) we have

a ′(x) = Adg(x)−1a + (L−1
g(x))

T (dg)x , (2.2)

which is often sloppily denoted as a ′ = g−1ag + g−1dg. Taking g ∈ Map (M,G)
we obtain the representation

R : G = Map (M, G) → Aut(apot(M)), R : g 7→ R(g),

with R(g) : a 7→ a ′ = Adg−1(a) + (L−1
g )T (dg).

(2.3)

In following sections we will derive representations of the Lie algebra Lie (G )
from these group representations, but first we will briefly discuss Lie theory for
infinite-dimensional Lie groups such as G .

2.3.4 Interlude: infinite-dimensional Lie groups

Before we can go on examining the group of gauge transformations associated
with a principal bundle, we must first spend a few words on the theory of
infinite-dimensional Lie groups. The reason is that the gauge group is such an
infinite-dimensional Lie group, with a corresponding infinite-dimensional Lie al-
gebra which will be very important in the following. The cohomological descent
method which we will discuss involves this Lie algebra in an essential way.

For a thorough introduction to infinite-dimensional Lie groups (and algebras)
we refer to the lecture of Milnor in Relativity, Groups and Topology II [14].5 Also
Chapter 9 of de Azcárraga and Izquierdo [2] provides a concise introduction to
this subject.

A finite-dimensional Lie group is a group G, which is also a smooth manifold
such that the group multiplication g ·h 7→ gh is a smooth map (·) : G×G → G.

To generalize this to infinite-dimensional groups, we first need to define the
infinite-dimensional analogue of an ordinary finite-dimensional manifold. Now
an n-dimensional manifold M is locally homeomorphic to an open subset of Rn

by means of coordinate charts, usually designated with {Uα, ψα}. The transition

5The same volume contains the lecture of Bruno Zumino on chiral anomalies and differential
geometry, one of the first articles which presents and discusses the descent equations and the
cohomological descent method for obtaining anomalies.
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functions ψβ ◦ψ−1
α on Rn are required to be smooth if M is a smooth manifold.

Furthermore, the tangent space at each point in M can be identified with Rn

as well, since the tangent space of any point in Rn is Rn itself. For this reason
one says that finite-dimensional manifolds are modelled on Rn.

When generalizing to spaces of infinite-dimension, one substitutes an infinite-
dimensional topological vector space E for Rn, such that an infinite-dimensional
manifold M̃ is locally homeomorphic to E by means of coordinate charts. One
can define the tangent space in an analogue way, and for each point in M̃ it will
be isomorphic to E. However, there are some difficulties: (I) what should be the
choice for the infinite-dimensional topological vector space E? (II) what should
be the analogue for smooth manifolds? How should one define smoothness for
the transition maps in E?

In answer to (I): there are several possibilities, and the definition of an
infinite-dimensional manifold should specify which choice for the model space
E is made. The most common choices for E are Hilbert spaces, Banach spaces
or locally convex spaces.6 The former two have the advantage of a norm, and
therefore some properties of finite-dimensional manifolds (and Lie groups) are
easily transferred to their infinite-dimensional counterparts, e.g. the Inverse
Function Theorem and Existence and Uniqueness Theorems for ordinary dif-
ferential equations. Unfortunately, many of the infinite-dimensional groups one
would like to consider, e.g. the group of gauge transformations, are not modelled
on Banach spaces.

There is an answer to question (II). On locally convex topological vector
spaces one can define a notion of smooth mappings, and introduce differential
calculus. This is done for instance in §2,3 of Milnor [14].
Once one has a definition of infinite-dimensional manifolds, the notion of an
infinite-dimensional Lie group is clear; it is an infinite-dimensional manifold
with group structure, such that the group multiplication is smooth. As a special
kind, we have the Banach Lie groups which are infinite-dimensional Lie groups
modelled on a Banach space.
Now let us summarize some of the most important differences between Lie
groups of finite and infinite dimension.

1. For infinite-dimensional Lie groups that are not Banach Lie groups, the
exponential map is in general no longer locally a diffeomorphism. Hence
there can be elements arbitrary close to the identity, which are not in any
one-parameter subgroup.

2. Lie’s Third Fundamental Theorem does not hold for infinite-dimensional
Lie algebras. This theorem states that for any finite-dimensional real Lie
algebra g there is always a simply connected Lie group G with the given
Lie algebra as its Lie algebra, i.e. g = Lie (G). Even when g is a infinite-
dimensional Banach Lie algebra, this need not hold.

3. There are no classification theorems for infinite-dimensional Lie algebras,
like the ones known for finite-dimensional Lie algebras.

6A Banach space is a complete normed vector space. A topological vector space is locally
convex if every point has a convex neighboorhoud U , i.e. for all x, y ∈ U and t ∈ [0, 1] :
(1− t)x + ty ∈ U . A Hilbert space is a Banach space with an inner product, from which the
norm is derived.
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Now let us consider a couple of examples which are of interest to us.

Diffeomorphism groups

Let Diff (M) be the group of diffeomorphisms on a smooth compact finite-
dimensional manifold M , without boundary. Remember it has a natural group
structure, since we can compose mappings, take the inverse and have the identity
map on M as identity in Diff (M). This group can be made into an infinite-
dimensional Lie group modelled on the locally convex topological vector space
X(M) of vector fields on M . This is done in §6 of Milnor [14], by construct-
ing a coordinate chart around id ∈ Diff (M), and using the group structure of
Diff (M) to extend this to coordinate charts on all of Diff (M).

A consequence of this is that the Lie algebra diff (M) identifies with X(M).7

We would like to make this identification explicit.
The Lie algebra of Diff (M) is identified with the tangent space Tid(Diff (M)),
which in turn can be identified with all the velocity vectors of smooth curves
through id ∈ Diff (M). The smooth curves having the same velocity vectors
on chart are declared equivalent, and for any vector in Tid(Diff (M)) one can
always find a curve representing it. (This construction is the same for finite-
dimensional and infinite-dimensional Lie groups.) Such a curve is given by a
map φ : R → Diff (M), with φ : t 7→ φt and φ0 = idM . Since φ also depends
smoothly on t ∈ R, one can also see this as a smooth map φ : R × M → M .
Now define the vector field Xφ ∈ X(M) at m ∈ M as

Xφ
m =

∂

∂t
φ(t,m)

∣∣∣
t=0

. (2.4)

Thus Xφ ∈ X(M) is the vector field associated with an element of φ ∈ diff (M).

On Diff (M) we can define one-parameter subgroups as usual. They are the
curves φ : R → Diff (M) satisfying the condition φt+s = φt ◦ φs, and it is
again possible to define an exponential mapping exp : X(M) → Diff (M) which
associates a one-parameter subgroup with an element of X(M) = diff (M). This
is a bijective correspondence, just like in the finite-dimensional case. However,
X(M) is not a Banach space, and hence Diff (M) is not a Banach Lie group.
In particular the Inverse Function Theorem does not hold for exp : X(M) →
Diff (M) at the identity, with the consequence that the exponential mapping
is not longer locally a diffeomorphism. It implies that there are elements in
Diff (M) arbitrary close to the identity id ∈ Diff (M) which are not in the image
of exp, or what is the same, which are not contained in any one-parameter
subgroup. (For details see Milnor [14].)

Why is this important for us? As we have seen, the group of gauge transfor-
mations G is a subgroup of the diffeomorphisms on P , so G ⊂ Diff (P ). Hence
G can be made into an infinite-dimensional Lie group modelled over Lie (G ),
where Lie (G ) is a subalgebra of X(P ).

7As usual with this notation, diff (M) = Lie (Diff (M)).
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The group Map (M,G)

Now we consider the group Map (M, G) of smooth mappings from a manifold
M to a Lie group G.8 Since G is a group, Map (M, G) is a group by point-
wise multiplication. With suitable topology and coordinate charts one can turn
it into a infinite-dimensional Lie group modelled on Map (M, Lie (G)); with
Map (M, Lie (G)) the smooth mappings from M to the Lie algebra Lie (G) of G.
Map (M, Lie (G)) is a locally convex complete infinite-dimensional vector space,
which inherits its vector space structure from Lie (G).

Now the identity in Map (M, G) is given by 1 : M → G with 1(m) ≡ e
∀m ∈ M , with e ∈ G the identity element in G. Again we can explicitly
identify T1(Map (M, G)) with the Lie algebra Map (M, Lie (G)).
Let φ : R→ Map (M,G), with φ(0) = 1, be a curve representing a tangent vector
in T1(Map (M, G)). φ depends smoothly on t ∈ R, so we can also interpret φ
as a smooth map φ : R × M → G. Now we associate with φ an element
ξ ∈ Map (M, Lie (G)) by defining for all m ∈ M

ξ(m) =
∂

∂t
φ(t,m)

∣∣∣
t=0

. (2.5)

Notice that since φ(0,m) = e for all m ∈ M the map t 7→ φ(t,m) : R → G is
in fact a curve in G through the identity e. Hence the right-hand side of the
equation supplies an element of Te(G) = Lie (G).

Examples of infinite-dimensional Lie groups of the form Map (M, G) which are
of studied in mathematical physics are the loop group LG = Map (S1, G) of a
Lie group G, and its higher dimensional analogue, the sphere groups LnG =
Map (Sn, G). For us, when studying a principal bundle P (G, M), with base
manifold M and (finite) structure group G the group Map (M, G) will be in-
teresting. The reason is given by Proposition 2.3.3 in the previous section:
when P (G,M) is trivial, the group of gauge transformations G identifies with
Map (M, G). We have now shown that the Lie algebra Lie (G ) identifies with
Map (M, Lie (G)) in that case.

2.4 Infinitesimal gauge transformations

As we remarked in the previous section, the Lie algebra Lie (G ) of the group of
gauge transformations G will be very important to us. This Lie algebra is also
known as the algebra of infinitesimal gauge transformations, since an element
of Lie (G ) can be considered as the derivative of a gauge transformation, i.e. an
infinitesimal gauge transformation.

We saw that Lie (G ) is an infinite-dimensional Lie algebra, since G is an
infinite-dimensional Lie group. The identifications made in the previous sec-
tions give us the freedom to look at the Lie algebra of the group of gauge
transformations in different ways.

1. First of all, we defined the group of gauge transformations G as a subgroup
of Diff (P ), the diffeomorphisms on P . In §2.3.4 we saw diff (P ) = X(P )
so apparently we can identify Lie (G ) with a subalgebra of X(P ).9

8If we make no reference to the dimension of a manifold or Lie group in the following, then
they are always meant to be finite-dimensional.

9To be precise, one can show Lie (G ) = {X ∈ X(P ) |(Rg)T X = X and πT X = 0} ⊂ X(P ).
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2. In §2.3.1 we proved that for an arbitrary bundle G could be identified
with the Ad-equivariant mappings P → G, and hence the Lie algebra is a
subalgebra of Lie (Map (P, G)) = Map (P, Lie (G)).

3. For a trivial bundle P (G, M) we had G ∼= Map (M,G) so consequently
Lie (G ) ∼= Map (M, Lie (G)).

The second point of view will be the most useful to us. The following lemma
identifies the subalgebra of Lie (Map (P, G)) = Map (P, Lie (G)) which corre-
sponds with the Lie algebra of the group MapAd (P, G) of Ad-equivariant maps.

Lemma 2.4.1 For the infinite-dimensional Lie group MapAd (P, G) we have
Lie (MapAd (P, G)) = MapAd (P, Lie (G)), with

MapAd (P, Lie (G)) = { ξ : P → Lie (G) | ξ(Rgp) = Adg−1ξ(p) }.
Here Adg−1 is denoting the adjoint action of the Lie group G on its Lie algebra,
cf. (1.5).
Proof: The elements of Lie (MapAd (P, G)) are in one-one correspondence with the
one-parameter groups in MapAd (P, G). Now let φt = exp(t · ξ) ∈ MapAd (P, G) be a
one-parameter group in MapAd (P, G). This is of course also a one-parameter group in
Map (P, G), and therefore corresponds to a Lie algebra element ξ ∈ Map (P, Lie (G)) =
Lie (Map (P, G)), cf. (2.5)

ξ(p) =
d

dt
φt(p)

���
t=0

.

We will show ξ is in fact an element of MapAd (P, Lie (G)).
The {φt} are Ad-equivariant for each t ∈ R, which means φt(Rgp) = g−1φt(p)g for

all g ∈ G. Also, by definition, one has φt(p) = exp(t · ξ(p)). It follows that

ξ(Rgp) =
d

dt
φt(Rgp)

���
t=0

=
d

dt
g−1φt(p)g

���
t=0

=
d

dt
g−1 exp(t · ξ(p))g

���
t=0

= Adg−1( ξ(p) ),

and hence ξ is Ad-equivariant with Ad here denoting the adjoint representation of G
on Lie (G), cf. (1.5). We denoted these Ad-equivariant maps with MapAd (P, Lie (G))
and thus established Lie (MapAd (P, G)) = MapAd (P, Lie (G)).�

Corollary 2.4.1 Since we could identify G and MapAd (P, G) (see §2.3.1), we
have Lie (G ) ∼= MapAd (P, Lie (G)).

The bracket on the Lie algebras Map (P, Lie (G)) (and MapAd (P, Lie (G))) is
given by the pointwise Lie bracket of Lie (G). Thus for ξ1, ξ2 ∈ Map (P, G) we
have

[ξ1, ξ2](p) = [ξ1(p), ξ2(p)].

(This stems from the fact that the multiplication in Map (P, G) and MapAd (P, G)
was given by pointwise multiplication in G.)
We now continue the observations made in §2.3.2, and consider the action of
Lie (G ) on connections and gauge potentials.
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2.4.1 Representations of Lie (G )

In this section, we will describe two representations of the Lie algebra Lie (G )
of infinitesimal gauge transformations. These representations can be obtained
from the group representations of G which we described in the previous sections.
In general a linear representation R : G → GL(V) of a Lie group G leads to
an associated representation ρ = dR : Lie (G) → gl(V) = Lie (GL(V)) of its Lie
algebra Lie (G), called the derived or induced representation, defined as

ρ(X) def=
d

dt
R(exp(tX))

∣∣∣
t=0

, X ∈ Lie (G),

with exp : Lie (G) → G the exponential mapping of G.10

We start off with the action on the space of connections C (P ), where

C (P ) = { ω ∈ Lie (G)⊗ Ω1(P ) | iX#ω = X and LX#ω = [ω, X] }.

Now we remark the following. Any smooth map P → Lie (G) can be seen as
an element of Lie (G) ⊗ Ω0(P ), since the elements of Ω0(P ) are just the real-
valued functions on P . Hence Lie (G)⊗Ω0(P ) consists of smooth Lie (G)-valued
functions on P , i.e. smooth maps P → Lie (G).

Since we have identified Lie (G ) ∼= MapAd (P, Lie (G)) we can thus interpret
any element ξ ∈ Lie (G ) as an element of Lie (G)⊗Ω0(P ). The advantage is that
we can apply the exterior differential to ξ and obtain an element dξ ∈ Lie (G)⊗
Ω1(P ). Remembering that connection forms are also elements of Lie (G)⊗Ω1(P )
we have the following theorem.

Theorem 2.4.1 The representation of G on C (P ) induces a representation of
Lie (G ) on C (P ) given by

ρ(ξ) : ω 7→ −dξ − [ω, ξ], (2.6)

or more explicitly,

(ρ(ξ)ω)p(vp) = −(dξ)p(vp)− [ωp(vp), ξ(p)] p ∈ P, vp ∈ TpP,

for ξ ∈ Lie (G ) and ω ∈ C (P ).
Proof: A deduction of this formula is given in Kastler&Stora [11]; see equations
(1.19),(1.20),(2.4),(2.5) and (2.12). �

A similar formula describes the action of Lie (G ) on the space of gauge potentials
on a trivial bundle. In the case of a trivial bundle we had

G ∼= Map (M,G), Lie (G ) ∼= Map (M, Lie (G)), and apot(M) ∼= C (M×G).

(cf. Proposition 2.3.3 and Proposition 2.2.3)
10We already have encountered an (infinite-dimensional) example of this. Let P (G, M) be a

principal bundle; the right-action of the structure group G on the total space P by Rg : p 7→ pg
induces a fundamental vector field by

X#
p =

d

dt
Rexp(tX) p

���
t=0

.

The group homomorphism R : G → Diff (P ), with R : g 7→ Rg , thus results in a Lie algebra
homomorphism X 7→ X# : Lie (G) → X(P ) = Lie (Diff (P )).
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The representation R : G → Aut(apot(M)) was given by (2.3), i.e.

R : G = Map (M, G) → Aut(apot(M)), R : g 7→ R(g),

with R(g) : a 7→ a ′ = Adg−1(a) + (L−1
g )T (dg),

and from this we obtain the following Lie algebra representation.

Proposition 2.4.1 For a trivial principal bundle P (G,M) with P = M × G
the representation of Lie (G ) on apot(M) induced by the action of G on apot(M)
described by (2.3) is given explicitly by

ρ(ξ) : a 7→ −dξ − [ a, ξ ], (2.7)

for ξ ∈ Lie (G ) (identified with Lie (G)⊗ Ω0(M) = Map (M, Lie (G))) and with
a ∈ apot(M) a gauge potential on M .
Proof: Notice the similarity between (2.7) and (2.6) is no coincidence, in the view
of Proposition 2.2.3 which identified C (M× G) and apot(M). The above formula is
derived as Proposition 10.3.1 in de Azcárraga and Izquierdo [2]. �

2.5 The generalized group of gauge transforma-
tions

In this section we will continue the generalizations we began in §1.2 of Chapter 1.
There we remarked that for a principal bundle P (G,M) the graded-commutative
differential algebra Ω(P ) can be considered as a Lie (G)-operation. We defined
an arbitrary g-operation as a graded differential algebra with a Lie algebra g
operating on it. Futhermore many notions from the principal bundle setting
could be generalized: horizontality, equivariance, basic elements, connection
forms and curvature. In this section we will add two notions to this list, namely
the (generalized) group of gauge transformations of a g-operation, and its Lie
algebra: the Lie algebra of infinitesimal gauge transformations.

We would like to remark that the generalizations put forward in this sec-
tion are not used in the rest of the thesis; they are just included to round off
our general approach of generalizing concepts from the principal bundle setting.
However, as Dubois-Violette remarks in his article, the generalized Lie algebra
of infinitesimal gauge transformations can be used to construct a more general
complex accommodating the cohomological descent method (which we will de-
scribe in Chapters 5 and 6). This generalization lacks a physical interpretation
however, and we will not pursue it here.11

2.5.1 Mappings of g-operations

First of all we need to define a homomorphism of g-operations. This is
simply a homomorphism of differential algebras which is natural with respect
to the action of g. Thus, for two g-operations (A1, i

1, L1), (A2, i
2, L2) and a

homomorphism of graded differential algebras Ψ : A1 → A2 we should have (for
α ∈ A1)

Ψ(i1Xα) = i2XΨ(α) and Ψ(L1
Xα) = L2

XΨ(α).

11See [6] §2.2, pp. 547-551, for a brief sketch of these generalizations.
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Isomorphisms and automorphisms are now defined in the usual way: an iso-
morphism of g-operations is a bijective homomorphism of g-operations. An
automorphism of a g-operation A is an isomorphism onto itself. The group of
automorphisms for a g-operation A is denoted with Aut(A ).
If we have a homomorphism of g-operations Ψ : A1 → A2 this can be naturally
extended to a linear map from g⊗A1 → g⊗A2, denoted also by Ψ, by declaring

Ψ(X ⊗ α) = X ⊗Ψ(α).

Suppose now A1 ∈ g⊗A 1
1 is a connection on A1, and A2 a connection on A2.

If Ψ(A1) = A2 then Ψ is called a homomorphism of g-operations with
connections, with respect to the chosen connections of course. Note that in
general the image Ψ(A1) of a connection A1 on A1 will be a connection on A2.

2.5.2 Gauge transformations of a g-operation

After the work we did in the previous sections, the generalizations do not cost
much effort. We recall the result stated in §2.3.2 by Proposition 2.3.1: the group
of gauge transformations G of a principal bundle P (G,M) leaves basic forms
in Ω(P ) invariant. Following Dubois-Violette [6], we will take this as a defining
property.

Definition 2.5.1 Let (A , i, L) be a g-operation, with B(A ) denoting the basic
forms. An automorphism Ψ : A → A which leaves invariant every element of
B(A ) is called a gauge transformation of the g-operation A . The group of
gauge transformations of the g-operation A is denoted by

AutB(A ) = {Ψ ∈ Aut(A ) |Ψ(α) = α ∀α ∈ B(A ) }.
Remark: This definition leaves an important question unanswered however. Does

AutB(A ) coincide with the usual group of gauge transformations G if we take A =

Ω(P )? In [6] p.549 Dubois-Violette remarks that “AutM (P ) identifies with AutB(Ω(P ))”,

where AutM (P ) is another notation for the group of gauge transformations G . This

is however not clear at all. The gauge transformations f ∈ G are automorphisms

f : P → P , whereas the elements of Ψ ∈ AutB(Ω(P )) are differential algebra auto-

morphisms Ψ : Ω(P ) → Ω(P ). Of course an automorphism f : P → P induces a GDA

automorphism by its pull-back f∗ : Ω(P ) → Ω(P ), but does this hold the other way

around? Is every element Ψ ∈ AutB(Ω(P )) : Ω(P ) → Ω(P ) the pull-back of some

gauge transformation f ∈ G ? These questions are not easily answered, and should

certainly require a proof.

For the Lie algebra of infinitesimal gauge transformations, we take the following
generalization (cf. [6]):

Definition 2.5.2 The Lie algebra autB(A ) of infinitesimal gauge transfor-
mations of the g-operation A is defined as

autB(A ) = { θ ∈ Der(0)(A ) | iXθ = θiX ∀X ∈ g and θ(α) = 0 ∀α ∈ B(A ) }.

Thus autB(A ) is a Lie subalgebra in Der(0)(A ) consisting of the derivations
of degree zero which are zero on basic elements and which commute with the
“contractions” iX .
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This generalization may not seem that straightforward. We identified Lie (G )
with MapAd (P, Lie (G)), which we can rephrase as

Lie (G ) = { α ∈ Lie (G)⊗ Ω0(P ) | LX#α = [α,X ] }.
Since all our generalizations originate from the case where A = Ω(P ) this
generalizes easily to arbitrary g-operations A :

aut(0)B (A ) = { ξ ∈ g⊗A 0 | LXξ = [ ξ, X ] }. (2.8)

In Dubois-Violette [6] this is put forward as a kind of alternative definition of
the Lie algebra of gauge transformations, and aut(0)B (A ) relates to autB(A ) in
the following way.

Lemma 2.5.1 There exists a Lie algebra homomorphism L : ξ ∈ aut(0)B (A ) 7→
Lξ ∈ autB(A ) defined for ξ = Eα ⊗ ξα as

Lξ(ω) = ξαLEα
(ω) + (dξα)iEα

(ω) for ω ∈ A . (2.9)

Proof: First we check Lξ is a derivation. Let ω, η ∈ A , then

Lξ(ωη) = ξαLEα(ωη) + (dξα)iEα(ωη)

= ξαLEα(ω)η + ξαωLEα(η) + (dξα)iEα(ω)η + (−1)deg ω(dξα)ω iEα(η)

= Lξ(ω)η + ω ξαLEα(η) + ω (dξα)iEα(η)

= Lξ(ω)η + ω Lξ(η).

So Lξ ∈ Der(0)(A ), but for Lξ ∈ autB(A ) we also need to check (1) Lξ iX = iX Lξ

and (2) Lξω = 0 for ω ∈ B(A ). (2) follows immediately from the definition in eq.
(2.9). For (1) we first prove (A) ξαi[Eα,X]ω = iX(dξα)iEαω.

Using LX = diX + iXd and iX(ξα) = 0 (since ξα ∈ A 0) we have

iX(dξα)iEαω = (LX − diX)ξαiEαω

= (LX − diX)ξαiEαω

= LXξαiEαω

= [ ξ, X ]αiEαω

= Cα
βγ ξβXγiEαω

= ξβi(Cα
βγ

Xγ Eα)ω

= ξβi[Eβ ,X]ω

= ξαi[Eα,X]ω,

where we used ξ ∈ aut
(0)
B (A ) ⇒ LXξα = [ ξ, X ]α. Since i is linear, and Xγ , Cα

βγ ∈ R
we also used Cα

βγ Xγ iEα = i(Cα
βγ

Xγ Eα) = i[Eβ ,X].

Now, using (A) we can prove property (1) Lξ iX = iX Lξ. From Def. 1.2.1 we also
use i[X,Y ] = LX iY − iY LX , and iX iY = −iY iX which follows from (iX)2 = 0.12

Lξ(iXω) = ξαLEα(iXω) + (dξα)iEα(iXω)

= ξα� i[Eα,X]ω + iXLEαω
�− (dξα)iX iEα(ω)

= iX(dξα)iEαω + ξαiXLEαω − (dξα)iX iEα(ω)

= iX
�
ξαLEαω

�
+ iX

�
(dξα)iEα(ω)

�

= iX
�
ξαLEαω + (dξα)iEα(ω)

�

= iX(Lξω).

12By 0 = (i(X+Y ))(i(X+Y )) = (iX +iY )(iX +iY ) = i2X +iX iY +iY iX +i2Y = iX iY +iY iX .
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This concludes our proof of Lξ ∈ autB(A ). We still have to prove that L : aut
(0)
B (A ) →

autB(A ) is a Lie algebra homomorphism, i.e. L[ ξ,ζ ] = [ Lξ, Lζ ]. This is a tedious
but straightforward calculation, which we have included in the appendix as Lemma
B.4.1.�

The action of Lie (G ) on C (P ) which we described in the previous section gen-
eralizes to aut(0)B (A ) and the space of algebraic connections on A , which we
denote

C (A ) = { A ∈ g⊗A 1 | iXA = X and LXA = [A, X ] }.
We thus have the following lemma.

Lemma 2.5.2 There is a representation of aut(0)B (A ) on C (A ) given by ρ :
ξ ∈ aut(0)B (A ) 7→ ρ(ξ) ∈ Aut(C (A )) with13

ρ(ξ) : A 7→ −dξ − [A, ξ ] for A ∈ C (A ).

Proof: We must prove ρ(ξ)A ∈ C (A ). Obviously −dξ − [A, ξ ] ∈ g⊗A 1. Now

iX(−dξ − [A, ξ ]) = −iX
�
dξ − [A, ξ ]

�

= −(LX − diX)ξ − [ iXA, ξ ] + [A, iXξ ]

= −LXξ − [ X, ξ ]

= −[ ξ, X ] + [ ξ, X ]

= 0,

and

LX(−dξ − [A, ξ ]) = LX

�−dξ − [A, ξ ]
�

= −d(LXξ)− [ LXA, ξ ]− [A, LXξ ]

= −d([ ξ, X ])− [ [A, X ], ξ ]− [A, [ ξ, X ] ]

= −[ dξ, X ])− [ ξ, dX ]− [ [A, X ], ξ ]− [A, [ ξ, X ] ]

= −[ dξ, X ])− [ [A, ξ ], X ]

= [−dξ − [A, ξ ], X ]),

where we used the graded Jacobi identity in [ [A, X ], ξ ] + [A, [ ξ, X ] ] = [ [A, ξ ], X ].
We checked the verticality and equivariance of−dξ−[A, ξ ], which makes it an algebraic
connection.�

The definition of the generalized Lie algebra of infinitesimal gauge transforma-
tions aut(0)B (A ) for a g-operation A , and its action on the algebraic connections
C (A ) on A , can be used to construct for any g-operation A a bigraded com-
plex which functions as the framework for the cohomological descent. This is
indicated in [6].

We will turn our attention to the specific complex used in Dubois-Violette
[6] to investigate possible anomalies in gauge field theories in Chapters 5 and 6.
But first, in the next chapter, we will continue our generalization of the principal
bundle setting by describing the classical Weil homomorphism for arbitrary g-
operations.

13In Dubois-Violette [6] there is a sign difference. There ρ(ξ) : A 7→ dξ + [A, ξ ] (on p.550).
This defines ρ as a Lie algebra anti-homomorphism.
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Chapter 3

The Weil algebra and Weil
homomorphism

The theory of characteristic classes was developed in 1930-1950 and can be
applied to both vector bundles and principal bundles.1 This is not so surprising,
since one can associate a principal bundle to a vector bundle, and vice versa.
Connections are defined on vector bundles and principal bundles in different
ways, but for associated bundles they are in correspondence. E.g. a connection
on a vector bundle will define a connection form on the associated principal
bundle.2 We will pay no attention to vector bundles however, and describe the
Weil homomorphism for principal bundles. On a principal bundle P (G, M)

G ↪→ P → M,

one chooses a connection form ω on P , with curvature Ω. If one takes an Ad-
invariant3 symmetric polynomial F on Lie (G), i.e. F : Lie (G)× . . .×Lie (G) →
R such that for g ∈ G and Xi ∈ Lie (G),

F (AdgX1, . . . , AdgXk) = F (X1, . . . , Xk),

one can insert the curvature form in F , and thus obtain a (real-valued) differ-
ential form on P ,

F (Ω) = F (Ω, . . . , Ω) ∈ Ω(P ).

One can show this form is basic, so it corresponds to a differential form on M .
It is also closed, so it defines an element of HDR(M), the de Rham cohomology
of the base manifold M . Furthermore it turns out this cohomology class, known
as the Chern class of the bundle, is independent of the chosen connection ω.
Hence this construction yields a homomorphism, the Weil homomorphism from
the algebra of symmetric invariant polynomials on Lie (G), denoted I(G), to the
de Rham cohomology HDR(M).

This, in a nutshell, is the idea of the Weil homomorphism and of characteris-
tic classes for principal bundles. Under certain circumstances the characteristic

1See the introduction in Bott&Tu [4]. It includes a sketch of the history of mathematical
developments on the subject of differential forms and algebraic topology.

2This and more about characteristic classes is described in detail in Walschap [18].
3Where Ad : G → GL(Lie (G)) is the adjoint action of the group G on its Lie algebra.
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classes provide a powerful tool in classifying (principal) bundles. The proce-
dure described above is treated in detail in §2.4-§2.6 of de Azcárraga&Izquierdo
[2] and Ch. 6 of Naber [15](Vol. II). The books of Bott&Tu [4] (Ch. IV) and
Walschap [18](Ch. 6) put the theory of characteristic classes in a broader (func-
torial) perspective.
In this chapter we generalize the Weil homomorphism (also known as the Chern-
Weil homomorphism) to arbitrary g-operations. What we obtain is a homo-
morphism of the invariant polynomials (Sg∗)inv in Sg∗ to the basic cohomology
HB(A ) = H(B(A )) of a g-operation A . The original Weil homomorphism as
described above follows from this generalization if we take A = Ω(P ). In
this case the Ad-invariant polynomials on Lie (G) identify as (Sg∗)inv with
g = Lie (G), and the basic cohomology HB(Ω(P )) is HDR(M), the de Rham
cohomology of the base manifold M .
We just note here that these generalizations can be pursued even further. In
our definition of a g-operation, we assumed the underlying differential algebra
A to be graded-commutative. One can define the notion of a g-operation for
non-commutative differential algebras as well. In that case one can construct
a non-commutative analogue of the Weil algebra, and again obtain a unique
Weil homomorphism. This is done in the article “Lie theory and the Chern-
Weil homomorphism” of Alekseev and Meinrenken [1], which starts off almost
precisely at our final point.

3.1 Preparations

(In what follows, let g denote a finite-dimensional real Lie algebra, and let g∗ be its

dual space, i.e. g∗ = {ω : g → R |ω linear }. If {Eα} is a basis of g, then {Eα} denotes

the cobasis in g∗. The structure constants Cα
βγ are given by [ Eβ , Eγ ] = Cα

βγ Eα.)

In the subsequent sections and chapters we will make extensive use of the sym-
metric algebra Sg∗ and exterior algebra Λg∗ = Λ(g∗) over g∗. Therefore we
briefly recall some basic properties of these algebras.4

3.1.1 The symmetric algebra

The symmetric algebra Sg∗ over g∗ can be interpreted as the graded algebra
Sg∗ = ⊕k∈N Skg∗, where Skg∗ consists of the symmetric multilinear functions
on gk (the k-fold Cartesian product of g with itself)

Skg∗ = { ω : g× . . . g︸ ︷︷ ︸
k times

→ R | ω symmetric and multilinear }.

The product is denoted by ∨ and defined as the symmetrizing product of two
mappings, for ω ∈ Skg∗ and η ∈ Slg∗ given by

ω ∨ η (X1, .., Xk+l) =
1

(k + l)!

∑

σ∈Sk+l

ω(Xσ(1), .., Xσ(k)) · η(Xσ(k+1), .., Xσ(k+l)).

(3.1)
Obviously this product is commutative, i.e. ω ∨ η = η ∨ ω.

4A reference for this section is Greub, Halperin and Vanstone [10], Vol. III, §0.4-§0.5. We
also remark that the exterior algebra is sometimes called the Grassmann algebra.
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As with any algebra which has a commutative product and a grading, we
can make Sg∗ into a graded-commutative algebra by applying an even grading
to it. That is: we define

(Sg∗)2k = Skg∗ (Sg∗)2k+1 = {0} for k ∈ N.

Hence all elements will have an even degree, and therefore the product will
always satisfy graded-commutativity.

Furthermore notice that Sg∗ is generated by the (co)basis elements {Eα} in
degree one (degree two if one applies the even grading).

The elements of Sg∗ as A -valued polynomials on g⊗A

If we consider an arbitrary algebra A , we can interpret the elements of Sg∗ as
multilinear maps which take g-valued algebra elements (i.e. elements of g⊗A )
as arguments, and map these on an algebra element of A . We do this by
defining, for P ∈ S1g∗ = g∗ and A = X ⊗ α,

P (A) = P (X ⊗ α) = P (X)α (∈ A ).

We can extend this to arbitrary P ∈ Sg∗ by using formula (3.1) but reading
the dot (·) there as the algebra product. To be precise: let P ∈ Skg∗. We can
interpret this as a multilinear map

P : (g⊗A )× . . .× (g⊗A )︸ ︷︷ ︸
k times

→ A

by defining

P
(
X1 ⊗ α1, .., Xk ⊗ αk

)
=

1
k!

∑

σ∈Sk

P (Xσ(1), .., Xσ(k)) ασ(1) · · ·ασ(k) . (3.2)

We used in this definition X1 ⊗ α1 as an element of g ⊗ A , but in general
an element of g ⊗ A will be a finite sum

∑
i(X1)i ⊗ αi

1. However, since P is
linear it is defined now for general elements of g ⊗ A . Notice that as a map
P : (g ⊗ A ) × .. × (g ⊗ A ) → A the polynomial P is again symmetric, and
if the algebra elements {α1, .., αk} commute then P (X1 ⊗ α1, .., Xk ⊗ αk) =
P (X1, .., Xk)α1 · · ·αk.

3.1.2 The exterior algebra

The exterior algebra Λg∗, by which we mean Λ(g∗), has a similar interpretation
as Sg∗. It is the the graded algebra Λg∗ = ⊕k∈N Λkg∗, where Λkg∗ consists of
antisymmetric multilinear functions on gk:

Λkg∗ = { ω : g× . . . g︸ ︷︷ ︸
k times

→ R | ω antisymmetric and multilinear }.

The product is the well-known wedge product ∧: the antisymmetrizing product
of two mappings, for ω ∈ Λkg∗ and η ∈ Λlg∗ given by

ω∧η (X1, .., Xk+l) =
1

(k + l)!

∑

σ∈Sk+l

ε(σ)ω(Xσ(1), .., Xσ(k)) η(Xσ(k+1), .., Xσ(k+l)),

where ε(σ) denotes the sign of the permutation σ ∈ Sk+l. This product makes
Λg∗ into a graded-commutative algebra, generated by any (co)basis {Eα} of g∗.
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3.1.3 The coadjoint action of g

On the finite-dimensional Lie algebra g we have the adjoint representation given
by the Lie algebra homomorphism ad : g → gl(g), with

ad : X 7→ ad(X), ad(X) : Y 7→ [X, Y ], X, Y ∈ g.

This naturally leads to an representation of g on its dual g∗, denoted by the Lie
algebra homomorphism ad∗ : g → gl(g∗) with

ad∗ : X 7→ ad∗(X), ad∗(X) : ω 7→ ω ◦ ad(−X), X ∈ g, ω ∈ g∗,

which means (ad∗(X)ω)(Y ) = ω(−[X, Y ]) = ω([Y,X]) for Y ∈ g.
This is called the coadjoint action or coadjoint representation of g on g∗. We
will adjust our notation here, and write L for ad∗, and LX for ad∗(X).

Since we have S1g∗ = Λ1g∗ = g∗ and both algebras are generated by the
elements {Eα} in g∗, we can extend this representation of g on g∗ to a represen-
tation of g on the algebras Sg∗ and Λg∗. We define this representation as above
on the elements of S1g∗ and Λ1g∗, and extend it as an derivation of degree zero
to homogeneous spaces of higher order.
If we consider the action of LX on a monomial from Sg∗, with Ei ∈ g∗, we see

LX

(
E1 ∨ E2 ∨ .. ∨ Ek

)
= LX(E1) ∨ E2 ∨ .. ∨ Ek +

E1 ∨ LX(E2) ∨ .. ∨ Ek +
. . .

+ E1 ∨ E2 ∨ .. ∨ LX(Ek).

Thus for ω ∈ Skg∗ interpreted as a mapping g× ..× g → R we have

(LXω)(Y1, Y2, ..., Yk) = ω([Y1, X], Y2, .., Yk) +
ω(Y1, [Y2, X], .., Yk) +
. . .

+ ω(Y1, Y2, .., [Yk, X]).

Since ω ∈ Skg∗ is symmetric we can rewrite this to

(LXω)(Y1, Y2, ..., Yk) =
∑

1≤i≤k

ω([Yi, X], Y2, .., Ŷi, .., Yk). (3.3)

For the exterior algebra, exactly the same story holds. The only difference is
that η ∈ Λkg∗ interpreted as a mapping g × .. × g → R is antisymmetric, so
(3.3) becomes

(LXη)(Y1, Y2, ..., Yk) =
∑

1≤i≤k

(−1)i+1 η([Yi, X], Y2, .., Ŷi, .., Yk). (3.4)

We conclude this section by defining the subalgebras of invariant elements in
Sg∗ and Λg∗ as

(Sg∗)inv = { ω ∈ Sg∗ | LXω = 0 ∀X ∈ g },
(Λg∗)inv = { ω ∈ Λg∗ | LXω = 0 ∀X ∈ g }.

These subalgebras will already play an important role in the next section, and
we will see the notation LX for the coadjoint action is not chosen by accident
similar to the notation of a Lie action on an algebra.
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3.1.4 Λg∗ as a g-operation

The exterior algebra Λg∗ with the wedge product ∧ is a graded-commutative al-
gebra. It is possible to make this into a graded-commutative differential algebra
(GCDA) by defining the Koszul differential

dη(X, Y ) = η([Y, X]), X, Y ∈ g, (3.5)

for elements η ∈ Λ1g∗ = g∗. Since the Lie bracket is antisymmetric, dη is
antisymmetric, and we have dη ∈ Λ2g∗. We extend d as an anti-derivation (of
degree +1) to whole Λg∗; we can do this since Λg∗ is generated in degree 1 by
any cobasis {Eα} of g∗. The only thing left to check is that d2 = 0. It turns
out this is equivalent to the Jacobi identity on g (Appendix, Lemma B.3.3).

Furthermore, we already defined the coadjoint action LX for X ∈ g on Λg∗

as a derivation of degree zero. Now we set

iXη = X, X ∈ g,

for elements η ∈ Λ1g∗ = g∗, and extend this as an anti-derivation of degree -1 on
Λg∗. One can verify LX = diX + iXd this way, and hence Λg∗ is a g-operation.

Remark 1: Λg∗ has a canonical connection given by idg, i.e. Eα ⊗ Eα ∈ g ⊗ Λ1g∗,
since iX(idg) = idg(X) = X and LX(idg)(Y ) = idg(LXY ) = [ Y, X ] = [ idg(Y ), X ].

Remark 2: Note that we can define iX on Sg∗ in a similar way. Still Sg∗ is not a

g-operation, since it cannot be made into a differential algebra.

Remarks on the geometrical interpretation of Λg∗

In Dubois-Violette [6] Λg∗ is put forward as an example of a g-operation not
of the form Ω(P ), with P the total space of a principal bundle.5 This is true,
but notetheless Λg∗ has a geometric interpretation. As a consequence of Lie’s
Third Fundamental Theorem, there is a simply connected Lie group G with g =
Lie (G). We can identify Λg∗ as the subalgebra of left-invariant forms ΩLI(G)
on G. The Koszul differential will correspond to the exterior derivative on these
forms, as we will show in chapter 4 (this forms the basis of the Chevalley-
Eilenberg approach to Lie algebra cohomology). If we identify elements X ∈ g
with the left-invariant vector fields XL ∈ X(G), then the anti-derivation iX
on Λg∗ coincides with the contraction iXL on ΩLI(G), and LX with the Lie
derivative LXL . Now the Maurer-Cartan form ΘMC ∈ g ⊗ ΩLI(G) supplies a
canonical connection on ΩLI(G), since it satisfies iXLΘMC = ΘMC(XL) = X
and LXLΘMC = [ ΘMC , X ] (see appendix §A.3.3). ΘMC corresponds to the
canonical connection idg on Λg∗.

3.2 The Weil algebra W(g)

In section 2.5.1 we defined a homomorphism of g-operations with connections,
and hence we can consider the category of g-operations with a connection on it.
In this category there is a universal object, known as the Weil algebra which we
will now describe.

5On p.537: “Notice that,.., we already met a g-operation which is not of the type Ω(P ),
namely Λg∗,..”
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The idea behind the construction of the Weil algebra is the following: let A
be any g-operation with a connection A ∈ g ⊗A 1. We can set A = Eα ⊗Aα,
so the elements Aα are the Eα-components of the algebraic connection A. We
can do this in same way for the curvature F = Eα ⊗ Fα. Now we can look
at the subalgebra in A generated by these elements Aα and Fα. Every g-
operation will have such a subalgebra, and the elements in it satisfy simple
properties: the Aα’s anti-commute with each other since they are of degree one,
and the Fα’s commute since they are of degree two. Furthermore we have the
relation F = dA + 1

2 [A,A]. This simple observation leads us to the definition
of the Weil algebra, which will be modelled upon this subalgebra. The unique
homomorphism of the Weil algebra to any g-operation A will map it exactly
onto the subalgebra we just described. This defines the Weil algebra as an
universal initial object in the category of g-operations with connection.
Let us define the Weil algebra. As we saw in the previous section the exterior
algebra Λg∗ and the symmetric algebra Sg∗ are both graded-commutative al-
gebras (if we use the even grading for Sg∗). Now the tensor product of two
graded-commutative algebras (described in Def.A.1.5) will again be a graded-
commutative algebra. We therefore define the Weil algebra W(g) as a graded
commutative algebra by

W(g) = Λg∗ ⊗ Sg∗.

Example: the first few homogeneous spaces of W(g) are given by

W0(g) = Λ0
g
∗ ⊗ (Sg

∗)0 = K⊗K = K,

W1(g) = Λ1
g
∗ ⊗ (Sg

∗)0 ⊕ Λ0
g
∗ ⊗ (Sg

∗)1

= Λ1g∗ ⊗K ⊕ K⊗ {0}
= Λ1g∗ ⊗K, (∼= Λ1g∗)

W2(g) = Λ2
g
∗ ⊗ (Sg

∗)0 ⊕ Λ1
g
∗ ⊗ (Sg

∗)1 ⊕ Λ0
g
∗ ⊗ (Sg

∗)2

= Λ2
g
∗ ⊗K ⊕ Λ1

g
∗ ⊗ {0} ⊕ K⊗ S1

g
∗

= Λ2
g
∗ ⊗K ⊕ K⊗ S1

g
∗, (∼= Λ2

g
∗ ⊕ S1

g
∗)

. . . (etc.) . . .

Since Λg∗ and Sg∗ are both generated by cobasis elements {Eα} of g∗, W(g)
is generated by the elements Eα ⊗ 1 and 1 ⊗ Eα. Therefore we introduce the
elements Aα ∈ W1(g) and Fα ∈ W2(g) as

Aα = Eα ⊗ 1 and Fα = 1⊗ Eα.

Thus W(g) is the free, connected, graded-commutative algebra generated by the
{Aα} in degree one, and the {Fα} in degree two.
We wish to define a differential d on W(g) which makes it a graded-commutative
differential algebra (GCDA). Since W(g) is generated by the Aα and Fα it
suffices to define d(Aα) and d(Fα). We do this by introducing two elements in
g⊗W(g) and using the bracket that is defined on elements of g⊗W(g) by

[X ⊗ α, Y ⊗ β] = [X,Y ]⊗ (α · β),

where X ⊗ α, Y ⊗ β ∈ g⊗W(g) with X,Y ∈ g and α, β ∈ W(g).

40



Consider the elements A ∈ g⊗W1(g) and F ∈ g⊗W2(g) defined by6

A =
∑
α

Eα ⊗Aα and F =
∑
α

Eα ⊗ Fα

We define d(Aα) as the Eα-component of dA, i.e. d(Aα) = (dA)α where dA =
Eα ⊗ (dA)α. We now need to define dA of course, so let dA ∈ g ⊗ W2(g) be
given by

dA = − 1
2 [A,A] + F. (3.6)

In the same way we define d(Fα) as the Eα-component of dF , i.e. d(Fα) =
(dF )α with dF = Eα ⊗ (dF )α, where dF ∈ g⊗W3(g) is defined as

dF = −[A,F ]. (3.7)

We have now defined d(Aα) and d(Fα) and extend this as an anti-derivation to
the whole algebra W(g). It is clear that d is a homogeneous linear mapping of
degree +1, and hence it is a differential on W(g), if we check d2 = 0. This is
done in the following lemma.

Lemma 3.2.1 Thus defined, d2 = 0 on the Weil algebra W(g).
Proof: By Lemma B.1.1 in the appendix we only need to check d2(Aα) = 0 and
d2(F α) = 0, since they generate W(g). Since d2(Aα) = (d2(A))α we check

d2(A) = d(− 1
2
[ A, A ] + F )

= − 1
2

[ dA, A ] + 1
2

[ A, dA ] + dF

= − 1
2

[ dA, A ]− 1
2

[ dA, A ]− [ A, F ]

= −[ dA, A ] + [ F, A ]

= −[− 1
2

[ A, A ] + F, A ] + [ F, A ]

= 1
2

[ [ A, A ], A ]− [ F, A ] + [ F, A ]

= 0,

where we used a couple of properties of the bracket on g⊗W(g) which are described in
§A.1.1 in the appendix. E.g. the commutation rule [ B, C ] = (−1)(deg B·deg C)+1[ C, B ],
which implies [F, A] = −[A, F ], and the graded Jacobi identity (A.12), which im-
plies [ [ A, A ], A ] = 0. We also used Lemma A.1.2, which assures us d([B, C]) =
[dB, C] + (−1)deg B [B, dC]. Now for F α/F .

d2(F ) = d(−[ A, F ])

= −[ dA, F ] + [ A, dF ]

= −[− 1
2

[ A, A ] + F, F ] + [ A,−[ A, F ] ]

= 1
2

[ [ A, A ], F ]− [ F, F ]− [ A, [ A, F ] ]

= 1
2

[ [ A, A ], F ]− 1
2

[ A, [ A, F ] ]− 1
2

[ A, [ A, F ] ]

= − 1
2

[ F, [ A, A ] ]− 1
2

[ A, [ A, F ] ]− 1
2

[ A, [ F, A ] ]

= 0,

where we again used the graded Jacobi identity (A.12) for the last conclusion. �
6We will omit the sum

P
α from now on.
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Thus W(g) is a graded-commutative differential algebra (GCDA), which is free
and connected. It is now straightforward to make W(g) into a g-operation. For
X = Eα ·Xα ∈ g we define iX on the {Aα} and {Fα} as

iX(Aα) = Xα and iX(Fα) = 0, (3.8)

and extend this as an anti-derivation on W(g). We define LX as LX = diX +iXd
and this will be a derivation of degree zero on W(g) for all X ∈ g. Furthermore
(iX)2 = 0 on W(g) by Lemma B.1.1. Hence W(g) is a g-operation.
The definitions made so far can seem confusing, but the true reason for them
appears at this moment. The differential d on W(g) and the above operations
iX and LX were defined in such a way that we can now remark that A is an
(algebraic) connection on W(g) with curvature F .

Lemma 3.2.2 W(g) is a g-operation with connection A and curvature F .
Proof: The only thing perhaps not straightforward to check is that A = Eα⊗Aα ∈ g⊗
W1(g) satisfies the connection properties, especially equivariance. From iX(Aα) = Xα

it follows that iX(A) = iX(Eα ⊗Aα) = Eα ⊗ iX(Aα) = Eα ⊗Xα = X. Now we check
the equivariance of A:

LXA = (diX + iXd) A

= diX(A) + iXd(A)

= d(X) + iX(− 1
2
[ A, A ] + F )

= 0− 1
2
[ iXA, A ] + 1

2
[ A, iXA ] + iXF

= − 1
2
[ X, A ] + 1

2
[ A, X ] + 0

= 1
2
[ A, X ] + 1

2
[ A, X ]

= [ A, X ].

Hence A satisfies the properties of an algebraic connection, as given in §1.2.3. In the
same section the curvature associated with A was defined as dA + 1

2
[ A, A ]. So for

W(g) we indeed have F = dA + 1
2
[ A, A ] as the curvature of A, again by definition.

Finally we proved in that same section (in Lemma 1.2.4) that the curvature F satisfied
iXF = 0. This is in concordance with our definition iX(F α) = 0. �

After this conclusion and our earlier motivational remarks, the following theo-
rem should not come as a surprise.

Theorem 3.2.1 The Weil algebra W(g) is a universal object in the category
of g-operations with connections. Thus for any g-operation A with algebraic
connection A ∈ g⊗A 1, there is a unique homomorphism of g-operations with
connections ΨW : W(g) → A .
Proof: The requirement for such a homomorphism is that it maps A (the connection
of W(g)) onto A, the connection of A . Thus ΨW(A) = A, and if A is given by Eα⊗Aα

it follows that ΨW(Aα) = Aα. Furthermore the homomorphism ΨW should be natural
with respect to the differential and bracket. Thus ΨW(F ) = ΨW(dA + 1

2
[ A, A ]) =

d(ΨW(A) + 1
2
[ ΨW(A), ΨW(A) ] = dA + 1

2
[A,A ] = F : the curvature F of W(g) is

mapped onto the curvature F of A , and ΨW(F α) = Fα. Since W(g) was generated by
the elements {Aα} and {F α} the homomorphism ΨW is now defined on any element.
The homomorphism is obviously unique, since we had no choice in defining ΨW.�

The above homomorphism ΨW : W(g) → A is called the canonical homo-
morphism of W(g) in A .
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3.3 Subalgebras of the Weil algebra

Having introduced the Weil algebra, we will now study it in some more de-
tail. The most important subalgebras of the Weil algebra are identified, and
we define the basic cohomology which will be the key to the generalized Weil
homomorphism.
Since W(g) = Λg∗ ⊗ Sg∗, the symmetric algebra Sg∗ is naturally embedded
in W(g) als 1 ⊗ Sg∗. Similarly Λg∗ is embedded as Λg∗ ⊗ 1 ⊂ W(g). The
generating cobasis element Eα ∈ Λ1g∗ corresponds to Aα = Eα ⊗ 1 in W(g),
and Eα ∈ S1g∗ to Fα = 1 ⊗ Eα. We now argue these subalgebras are stable
under the derivation LX defined on W(g) and that in fact LX coincides with
the coadjoint action on Λg∗ and Sg∗, as defined in §3.1.3.

Lemma 3.3.1 The action of LX in W(g) on Λg∗ ⊗ 1 and 1 ⊗ Sg∗ coincides
with the coadjoint action LX/ad∗ on Λg∗ and Sg∗.
Proof: For clarity we use the notation ad∗ for the coadjoint action on Λg∗ and Sg∗

in this proof. We defined the coadjoint ad∗ on Λg∗ for Eα ∈ Λ1g∗ as ad∗(Eα)(Y ) =
Eα([Y, X]), cf. equation (3.3). Now consider LX on Aα = Eα ⊗ 1 ∈ W(g), that
is defined as LX(Aα) = [A, X]α. But A = Eα ⊗ Aα interpreted as an element of
g ⊗ Λ1g∗ = g ⊗ g∗ is Eα ⊗ Eα: the identity idg considered as a g-valued map on g.
So we have LX(Aα)(Y ) = [A, X]α(Y ) = [A(Y ), X]α = [Y, X]α = Eα([Y, X]). Thus
LX(Aα) = LX(Eα ⊗ 1) = (ad∗(Eα))⊗ 1 like we needed to prove.

For Sg∗ the proof is identical, since also ad∗(Eα)(Y ) = Eα([Y, X]) for Eα ∈ S1g∗,
and we have LX(F α) = [F, X]α. �

Corollary 3.3.1 The subalgebras Λg∗ ⊗ 1 and 1 ⊗ Sg∗ of W(g) are stable by
the derivation LX (for all X ∈ g).

In section §1.2.2 we defined the subalgebras of horizontal elements H (A ), in-
variant elements I (A ) and basic elements B(A ) of a g-operation A . We now
identify these subalgebras for the Weil algebra.

Notation: we will use the abbreviations IW
def
= I (W(g)), HW

def
= H (W(g)) and

BW
def
= B(W(g)).

Recall we defined iX(Aα) = Xα and iX(Fα) = 0, or equivalenty: iX(A) = X
and iX(F ) = 0. It follows that the subalgebra of horizontal elements HW is

HW = { α ∈ W(g) | iXα = 0 ∀X ∈ g } = 1⊗ Sg∗ ⊂ W(g).

The invariant elements IW were defined by

IW = { α ∈ W(g) | LXα = 0 ∀X ∈ g }.
From Lemma 3.3.1 it follows that the invariant elements (Λg∗)inv and (Sg∗)inv

of Λg∗ and Sg∗ embedded in W(g) are certainly in IW, i.e.

(Λg∗)inv ⊗ 1 = (Λg∗ ⊗ 1) ∩IW,

1⊗ (Sg∗)inv = (1⊗ Sg∗) ∩IW,

and hence (Λg∗)inv⊗ (Sg∗)inv ⊂ IW, but this inclusion is strict. However, since
we defined the basic elements as B(A ) = H (A ) ∩I (A ) we have

BW = HW ∩IW

= (1⊗ Sg∗) ∩IW

= 1⊗ (Sg∗)inv .
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We need one more lemma, before we can summarize these results in Corollary
3.3.2.

Lemma 3.3.2 For any ω = 1⊗ P ∈ Λg∗ ⊗ Sg∗ = W(g) we have

dω = Aα · LEα
ω.

Thus dω = Eα ⊗ LEαP since LEαω = 1⊗ LEαP , by Lemma 3.3.1.
Proof: by induction. If ω = F α, then P = Eα ∈ S1g∗. We have

d(F α) = −[A, F ]α = −Cα
βγ AβF γ = Aβ [F, Eβ ]α = Aβ LEβ (F α).

Now we suppose the lemma is true for ω = (1⊗P ) and η = (1⊗Q), with P, Q ∈ Sg∗.
Noticing (1) that d and LX both act as a derivation, (2) the degree of all elements in
1⊗ Sg∗ is even and (3) for this reason Aα commutes with ω, we have

d(ω · η) = d(ω) · η + ω · d(η)

= Aα · LEα(ω) · η + ω · �Aα · LEα(η)
�

= Aα · �LEα(ω) · η + ω · LEα(η)
�

= Aα · LEα(ω · η).

So the lemma holds for all ω = 1⊗ P ∈ W(g), since the F α generate 1⊗ Sg∗.�

Corollary 3.3.2 For α ∈ W(g) the following are equivalent7

1. α is basic.

2. α is of the form 1⊗ P with P ∈ (Sg∗)inv .

3. α is of the form 1⊗ P and dα = 0.

3.3.1 Basic cohomology

For any g-operation A , the graded subalgebra of basic elements BW is a differ-
ential subalgebra (Lemma B.2.2), and therefore we can consider the cohomology
of it, termed the basic cohomology, denoted with HB(A ).
For the Weil algebra W(g) we have BW = 1 ⊗ (Sg∗)inv, but since we applied
even grading to Sg∗ we have for k ∈ N:

B2k
W = 1⊗ (Sg∗)2k

inv = 1⊗ (Skg∗)inv .

B2k+1
W = 1⊗ (Sg∗)2k+1

inv = {0}.

From Corollary 3.3.2 it follows that all elements of BW are cocycles, thus for
the basic cohomology HB(W(g)) we have

H2k
B (W(g)) = 1⊗ (Skg∗)inv

∼= (Skg∗)inv ,

H2k+1
B (W(g)) = {0}.

7This is Theorem 3 in [6].
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3.4 The generalized Weil homomorphism

Let A be a g-operation and let A1 be any connection on A . By the universal
property of the Weil algebra we have a canonical homomorphism Ψ1 : W(g) →
A , with Ψ1(A) = A1. Since Ψ1 is in particular a homomorphism of differ-
ential algebras it induces a homomorphism8 from the cohomology of W(g) to
the cohomology of A . Now Ψ1 is also a homomorphism of g-operations, and
thus commutes with the graded derivations iX and LX on W(g) and A . This
implies Ψ1 maps basic elements onto basic elements, and hence induces a homo-
morphism from the basic cohomology of W(g) (which is isomorphic to (Sg∗)inv)
to the basic cohomology of A . This is the Weil homomorphism w. The map
Ψ1 : W(g) → A clearly depends on the chosen connection, but it can be proven
that the induced homomorphism in basic cohomology does not.

The theorem stating this result is presented as Theorem 4 in the article by
Dubois-Violette [6]. However, the proof is only sketched in a few lines and, as is
apparent from this rather long section with preliminary results, it leaves quite a
lot of problematic details to be solved by the reader. By including these results
and treating the theorem in such detail we hope to satisfy the reader who is left
puzzled by the sketch-of-proof presented in Dubois-Violette’s article.

Preliminary results

Before proving the generalized theorem concerning the Weil homomorphism,
we need some preliminary results. We turn to them now. Suppose A is a g-
operation, and A1 and A2 are two algebraic connections on A . Since the space
of connections is affine, At = (1− t)A0 + tA1 will also be a connection on A for
t ∈ [0, 1]. We denote the corresponding curvature Ft = dAt + 1

2 [At,At ], and

we introduce the element η
def= A1 −A0, such that At = A0 + tη.

Lemma 3.4.1 Defining the covariant derivatives by the elements At as Dt
def=

DAt where DAtω = dω + [At, ω ] (Def. 1.2.4); we have the following

1. Ft = F0 + tD0η + t2

2 [ η, η ].

2. d
dt Ft = Dtη.

Proof: (1.) We have

Ft = dAt + 1
2
[At,At ]

= d(A0 + tη) + 1
2
[A0 + tη,A0 + tη ]

= dA0 + tdη + 1
2
[A0,A0 ] + t[A0, η ] + 1

2
· t2[ η, η ]

= F0 + tD0η +
t2

2
[ η, η ].

(2.) Using (1.) we have

d

dt
Ft = D0η + t[ η, η ] = dη + [A0, η ] + t[ η, η ]

= dη + [A0 + tη, η ] = dη + [At, η ] = Dtη,

which completes the lemma.�
8See §A.1.7.
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By Definition 1.2.4 the covariant derivatives Dt are anti-derivations of degree +1
on g⊗A , but they are not defined on A itself. We can define them on a certain
subalgebra of A however. Fix a basis {Eα} of g and consider the components
of the elements At and Ft in g ⊗ A relative to this basis, i.e. At = Eα ⊗ Aα

t

and Ft = Eα ⊗Fα
t . Let us denote the set of these components with

Acomp
def= { Aα

t1 ,Fβ
t2 | t1, t2 ∈ [0, 1] and α, β = 1, .., dim g }.

Now we can define the covariant derivatives Dt on the subalgebra Asub ⊂ A
generated by the set of components Acomp, i.e.

Asub
def= 〈Acomp〉 = 〈 Aα

t1 ,Fβ
t2 | t1, t2 ∈ [0, 1] and α, β = 1, .., dim g 〉.

We do this by defining

Dt(Aα
s ) = (DtAs)α and Dt(Fα

s ) = (DtFs)α,

and extending this as an anti-derivation of degree +1 on Asub.
An important consequence is that by definition we have P (Dtω) = DtP (ω)

for ω = As or ω = Fs with P = Eα ∈ S1g∗, which generalizes to arbitrary
P ∈ Sg∗ as demonstrated in the following lemma.

Lemma 3.4.2 Let P ∈ Skg∗, interpreted as a polynomial on g⊗A as described
in §3.1.1. Then for elements ω1, .., ωk ∈ g ⊗ A with ωi = Eα ⊗ ωα

i such that
Dtωi = Eα ⊗Dtω

α
i we have

DtP (ω1, .., ωk) =
∑

1≤i≤k

P (ω1, ..,Dtωi, .., ωk).

Proof: We first consider the case that ω1 = X1 ⊗ α1, . . . , ωk = Xk ⊗ αk. Using the
definition of P as polynomial on g⊗A cf. (3.2), we have

DtP
�
X1 ⊗ α1, .., Xk ⊗ αk

�
=

1

k!

X
σ∈Sk

P (Xσ(1), .., Xσ(k))Dt

�
ασ(1) · · ·ασ(k)

�

=
1

k!

X
σ∈Sk

X

1≤i≤k

P (Xσ(1), .., Xσ(k)) ασ(1) · · · Dtασ(i) · · ·ασ(k)

=
X

1≤i≤k

P
�
X1 ⊗ α1, .., Xi ⊗Dtαi, .., Xk ⊗ αk

�
.

Now by linearity of P and Dt we have for general ωi =
Pdim g

αi=1 Eαi ⊗ωαi
i with Dtωi =

Eαi ⊗Dtω
αi
i the following:

DtP
�
ω1, . . . , ωk

�
= DtP

�X
α1

Eα1 ⊗ ωα1
1 , ..,

X
αk

Eαk ⊗ ω
αk
k

�

=
X

α1,..,αk

DtP
�
Eα1 ⊗ ωα1

1 , .., Eαk ⊗ ω
αk
k

�

=
X

α1,..,αk

X

1≤i≤k

P
�
Eα1 ⊗ ωα1

1 , .., Eαi ⊗Dtω
αi
i , .., Eαk ⊗ ω

αk
k

�

=
X

1≤i≤k

P
�X

α1

Eα1 ⊗ ωα1
1 , ..,

X
αi

Eαi ⊗Dtω
αi
i , ..,

X
αk

Eαk ⊗ ω
αk
k

�

=
X

1≤i≤k

P
�
ω1, ..,Dtωi, .., ωk

�
,

this proves the lemma.�
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If we again interpret Sg∗ as the symmetric multilinear mappings from g ⊗ A
to A , we can view this last lemma as saying that we could have equally well
defined Dt on Sg∗ by Dt : Eα 7→ Eα ◦Dt and extending it to Sg∗ as a derivation
of degree zero. We could have taken this as a definition; however, in that case
we would have to prove that Dt is a derivation on Asub.
Things done as we did, we now turn to the following lemma, which gives an
explicit form of Dt defined on Asub.

Lemma 3.4.3 For ζ ∈ Asub we have

Dtζ = dζ +Aβ
t · LEβ

ζ.

Proof: We first prove this for the generators Acomp of Asub. Since connections and
curvatures are equivariant, we have LXAs = [As, X ] and LXFs = [Fs, X ] for all
s ∈ [0, 1]. Since LX(Aα

s ) = LX(As)
α, we have (using structure constants) LX(Fα

s ) =
Cα

βγ Fβ
s Xγ , e.g. for X = Eβ this results in LEβ (Fα

s ) = Cα
βγ Fβ

s ; and the same for As

of course. Taking Fα
s as example, we have

DtFα
s =

�DtFs

�α

=
�
dFs + [At,Fs ]

�α

= d(Fα
s ) + Cα

βγ Aβ
t · Fγ

s

= d(Fα
s ) +Aβ

t · LEβFα
s .

The same proof holds for Aα
s of course. We have proven Dtζ = dζ + Aβ

t · LEβ ζ for

ζ ∈ Acomp, so if we prove ζ 7→ dζ +Aβ
t ·LEβ ζ is an anti-derivation (of degree +1) like

Dt we are finished. Let ζ, ξ ∈ Asub, then

d(ζξ) +Aβ
t LEβ (ζξ) = (dζ)ξ + (−1)deg ζζ(dξ) +Aβ

t

�
LEβ (ζ)ξ + ζLEβ (ξ)

�

= (dζ)ξ + (−1)deg ζζ(dξ) +Aβ
t LEβ (ζ)ξ + (−1)deg ζζAβ

t LEβ (ξ)

=
�
dζ +Aβ

t LEβ ζ
�
ξ + (−1)deg ζζ

�
dξ +Aβ

t LEβ (ξ)
�
.

Since Asub is generated by Acomp, Dtζ and dζ +Aβ
t · LEβ ζ coincide on Asub.�

There are two more lemmas to go. The following lemma proves LX(P (ω1, .., ωk))
is equal to (LXP )(ω1, .., ωk): something which seems to be obvious and therefore
could be easily overlooked. Yet the LX on the lefthand side is the LX defined
on A , and in the r.h.s. LX is defined on Sg∗ (as the coadjoint action). The
second lemma proves d

dt acts as a derivation on P (Ft, ..,Ft).

Lemma 3.4.4 Let P ∈ Skg∗, interpreted as a polynomial on g⊗A . Then for
elements ω1, .., ωk ∈ g ⊗A with ωi = Eα ⊗ ωα

i such that LXωi = [ ωi, X ] and
LXωi = Eα ⊗ LXωα

i we have

LX

(
P (ω1, .., ωk)

)
= (LXP )(ω1, .., ωk).

Proof: By following exactly the same proof as in Lemma 3.4.2, we have

LX

�
P (ω1, .., ωk)

�
=
X

1≤i≤k

P (ω1, .., LXωi, .., ωk).
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Continuing from this, and using LXωi = [ ωi, X ] we obtain

LX

�
P (ω1, .., ωk)

�
=
X

1≤i≤k

P (ω1, .., LXωi, .., ωk)

=
X

1≤i≤k

P (ω1, .., [ ωi, X ], .., ωk)

=
X

α1,..,αk

X

1≤i≤k

P
�
Eα1 ⊗ ωα1

1 , .., [ Eαi , X ]⊗ ωαi
i , .., Eαk ⊗ ωαk

k

�

=
X

α1,..,αk

X

1≤i≤k

P ( Eα1 , .., [ Eαi , X ], .., Eαk ) ωα1
1 · · ·ωαk

k

=
X

α1,..,αk

(LXP )( Eα1 , .., Eαk ) ωα1
1 · · ·ωαk

k

= (LXP )(ω1, .., ωk)

.

This proves the lemma.�

Lemma 3.4.5 For P ∈ Skg∗ we have

d

dt
P (Ft,Ft, ..,Ft) = k · P (

d

dt
Ft,Ft, ..,Ft).

Proof: This is essentially due to the product rule. We prove the lemma by induction.
For P = Eα ∈ S1g∗ it holds, since d

dt
Ft = Eα ⊗ ( d

dt
F α

t ). Now suppose it holds for

Q ∈ S(k−1)g∗. We prove the lemma holds for Eα ∨Q. It follows that the lemma holds
for all monomials in Sg∗, and since d

dt
is linear it thus holds for all P ∈ Sg∗. In the

first and last line we use the definition of the symmetric (∨) product on Sg∗ given by
equation (3.1) in §3.1.1.

d

dt
(Eα ∨Q)(Ft, ..,Ft)

=
d

dt
Eα(Ft) ·Q(Ft, ..,Ft)

=
� d

dt
Eα(Ft)

� ·Q(Ft, ..,Ft) + Eα(Ft) ·
� d

dt
Q(Ft, ..,Ft)

�

=
�
Eα(

d

dt
Ft)

� ·Q(Ft, ..,Ft) + Eα(Ft) ·
�
(k − 1)Q(

d

dt
Ft, ..,Ft)

�

= Eα(
d

dt
Ft) ·Q(Ft, ..,Ft) + Eα(Ft) ·

�
Q(

d

dt
Ft,Ft, ..,Ft)+

Q(Ft,
d

dt
Ft, ..,Ft) + . . . + Q(Ft, ..,

d

dt
Ft)

�

= Eα(
d

dt
Ft) ·Q(Ft, ..,Ft) + Eα(Ft) ·Q(

d

dt
Ft,Ft, ..,Ft)+

Eα(Ft) ·Q(Ft,
d

dt
Ft, ..,Ft) + . . . + Eα(Ft) ·Q(Ft, ..,

d

dt
Ft)

= k · (Eα ∨Q) (
d

dt
Ft,Ft, ..,Ft).

Let us explain the appearance of the last factor k. The symmetrizing product sums
over k! permutations and includes a factor 1/k!, but since in the fifth line (k − 1)
arguments of (Eα ∨Q) are the same, (k− 1)! of these permutations turn out the same
element. Thus we obtain a factor 1/(k− 1)! · k! = k. Notice also that we used the fact
that Q is symmetric in the fourth and fifth line. As we remarked at the end of §3.1.1,
we can use the less complex definition of P because the arguments { d

dt
Ft,Ft, ..,Ft}

all commute.�
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Theorem and proof

With these preliminary results behind us, we are finally in the position to state
and prove the theorem which generalizes the Weil homomorphism to general
g-operations.

Theorem 3.4.1 For a g-operation A that admits connections, one has an al-
gebra homomorphism

w : (Sg∗)inv → HB(A )

such that w[(Skg∗)inv] ⊂ H2k
B (A ). This homomorphism is called the Weil

homomorphism.
Proof: The proof is an exact imitation of the specific case of the Weil homomorphism
for a principal bundle. That the proof generalized to arbitrary g-operation seems to
have been noticed already by H. Cartan [5]. We need to prove the following claim:
let A1 and A2 be two different connections on A , and Ψ1 and Ψ2 the corresponding
canonical homomorphisms of W(g) into A ; such that Ψ1(A) = A1 and Ψ2(A) = A2.
Then
(Claim) The induced maps Ψ#

1 , Ψ#
2 : HB(W(g)) → HB(A ) are identical: Ψ#

1 ≡ Ψ#
2 .

Let us define At, Ft, η and Dt as we did in the preliminary paragraph. We denote
Ψt : W(g) → A with Ψt(A) = At the canonical homomorphism corresponding to
the connection At. If we restrict these Ψt to BW = 1 ⊗ (Sg∗)inv ⊂ W(g) we get

homomorphisms eΨt : (Skg∗)inv → B2k(A ). The image of eΨt consists of cocycles in
A , since the elements of 1⊗ (Sg∗)inv are cocycles in W(g) and Ψ is a homomorphism
of differential algebras. In order to prove the claim (and theorem), we first establish
the following results.

(A) For P ∈ (Skg∗)inv we have eΨt(P ) = P (Ft, . . . ,Ft).
A polynomial P ∈ (Skg∗)inv is in general a sum of monomials, and the monomials are

products of the cobasis elements Eα ∈ S1g∗. Now the homomorphism eΨt maps the
cobasis elements Eα onto Fα

t ∈ A , and hence maps P onto the element in A that is
obtained from P by substituting every Eα in P by Fα

t . This is exactly P (Ft, ..,Ft)
as defined in §3.1.1.

(B) d
dt
eΨt(P ) = k dP (η,Ft, ..,Ft).

We prove this using the preliminary results:

d

dt
eΨt(P ) =

d

dt
P (Ft, . . . ,Ft) (by (A))

= k P (
d

dt
Ft,Ft, . . . ,Ft) (by Lemma 3.4.5)

= k P (Dtη,Ft, . . . ,Ft) (by Lemma 3.4.1)

= kDtP (η,Ft, . . . ,Ft) (by Lemma 3.4.2 and since DtFt = 0

by the Bianchi identity, Lemma 1.2.5)

= k
�
d +Aα

t LEα

�
P (η,Ft, . . . ,Ft) (by Lemma 3.4.3)

= k
�
dP (η,Ft, . . . ,Ft) +Aα

t · LEα P (η,Ft, . . . ,Ft)
�

= k
�
dP (η,Ft, . . . ,Ft) +Aα

t · (LEαP )(η,Ft, . . . ,Ft)
�

(by Lemma 3.4.4)

= k dP (η,Ft, . . . ,Ft). (since P was invariant)

(C) P (η,Ft, . . . ,Ft) is basic, i.e. element of B(A ).
By Lemma 3.4.4 we have LX(P (η,Ft, . . . ,Ft)) = (LXP )(η,Ft, . . . ,Ft) = 0 since P is
invariant. For Ft and η = A1 − A0 we have iXFt = 0 and iXη = iXA1 − iXA0 =
X − X = 0, thus iX will be zero on all the components of η and Ft as well. Since
P (η,Ft, . . . ,Ft) ∈ A consists of these components iX(P (η,Ft, . . . ,Ft)) will be zero.
Hence P (η,Ft, . . . ,Ft) ∈ B(A ).
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(Final proof) We already noticed that since eΨt(P ) with P ∈ (Sg∗)inv will be a basic
element of A , since 1⊗P is basic in W(g) and Ψt is a homomorphism of g-operations

which maps basic elements on basic elements. The elements eΨt(P ) are also cocycles,

since 1⊗P is a cocycle in W(g). We now show that eΨ1(P ) and eΨ0(P ) are in the same

basic cohomology class. Using (B) and (C) we have eΨ1(P )− eΨ0(P ) =
R 1

0
d
dt
eΨt(P ) =R 1

0
k dP (η,Ft, . . . ,Ft) = d

R 1

0
k P (η,Ft, . . . ,Ft) and thus eΨ1(P ) and eΨ0(P ) differ a

coboundary in B(A ). We conclude the induced maps in basic cohomology coincide:
Ψ#

1 ≡ Ψ#
2 . Hence we proved the claim and theorem.�

As we already noted in the introduction to this chapter, the classical theorem
on the Weil homomorphism follows from this generalization, which gives us the
following corollary.

Corollary 3.4.1 For a principal bundle P (G,M) there exists an algebra ho-
momorphism from I(G), the invariant symmetric polynomials on Lie (G), to the
de Rham cohomology HDR(M) of the base manifold M . This homomorphism
is called the Weil homomorphism or Chern-Weil homomorphism.9

3.5 Notes

Though Theorem 3.4.1 is not proved in the article by Dubois-Violette [6], we
later found a proof in Greub, Halperin and Vanstone [10](Vol. III) where the
theorem is stated in Chapter VIII, §4 (8.20 Theorem V). The proof of the
theorem there builds on a lot of work done in previous chapters and makes use
of spectral sequences.
On the particular case that one consider a complex vector bundle (or associated
principal bundle) and one has the classical Weil homomorphism from I(G) to
HDR(M), we would like to make a few remarks.

There are various choices for a basis of the symmetric invariant polynomial
I(G). On can define the total Chern form of the bundle by

c(Ω) def= det
(
1 +

i

2π
Ω) =

∑

l∈N
Pl(Ω),

where Ω is a curvature form on the bundle. The 2l-forms Pl(Ω) are projectable;
and one defines the Chern forms cl(Ω̄) as the forms for which one has π∗cl(Ω̄) =
Pl(Ω). The Chern forms are closed forms on M and thus define the Chern classes
in HDR(M) given by [cl(Ω̄)].

It turns out that the Chern forms cl(Ω̄) are of integer class: i.e. their
integral over any 2l-cycle on M with integer coefficients is an integer that does
not depend on Ω̄. Now from the algebra generated by the Chern forms, one
can pick the forms of degree dim M and integrate them over the base manifold
M : the resultant integers are topological invariants and are called the Chern
numbers of the bundle.

Under certain circumstances, these characteristic classes provide a powerful
tool in classifying principal bundles. As we remarked in the Notes at Chapter1,
for sphere bundles (i.e. bundles with base manifold M = Sn) we have an im-
portant classifying theorem. It states that the equivalence classes of bundles

9See e.g. Theorem 2.4.1. in de Azcárraga and Izquierdo [2].
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with M = Sn and structure group G are in bijective correspondence with the
homotopy group πn−1(G). For the particular example G = U(1) and M = S2

the equivalent bundles are indexed by π1(U(1)) = π1(S1) = Z. The classifying
integer is then supplied provided by the Chern number of the bundle (there is
only one such number since dim M = dim S2 = 2).

There is another definition that is important to us, since it is used in the
cohomological descent method. This is the definition of the Chern character
forms, which follow from taking another choice of invariant symmetric polyno-
mials in I(G). For this, one starts with the element

ch(Ω) = Tr
(
exp(

i

2π
Ω)

)
=

∑

l∈N
chl(Ω),

which is an inhomogeneous element of Ω(P ). Again the forms chl(Ω) project to
closed forms on M , denoted with chl(Ω̄). They are called the Chern character
forms chl(Ω̄), given explicitly by

chl(Ω̄) =
1
l !

( i

2π

)l Tr
(
Ω̄ ∧ . . . ∧ Ω̄︸ ︷︷ ︸

l times

)
.

As a final remark we wish to quote a theorem from Bott and Tu, which concerns
the fundamental role of the Chern classes in the theory of characteristic classes.
For the proof and implications of this theorem we refer to Bott&Tu [4] (Ch. IV)
and Walschap [18](Ch. 6), who both put the theory of characteristic classes in
a much broader (functorial) perspective.

Proposition 3.5.1 (Prop. 23.11 Bott&Tu [4]) Every natural transformation
from the isomorphism classes of complex vector bundles over a manifold of finite
type to the de Rham cohomology can be given as a polynomial in the Chern
classes.
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Chapter 4

Cohomology of Lie algebras

The cohomology of Lie algebras will occupy a prominent place in the subsequent
chapters, so therefore we will take some effort to treat different approaches to
this subject, and show how they generally coincide.

The standard treatment of Lie algebra cohomology starts with spaces of
cochains C∗(g) and the coboundary operator s defined on them, which acts like
a differential since s2 = 0. The advantage of this definition is that it can be
easily extended to allow cohomology with values in some vector space V. In this
case V should be a representation space of the Lie algebra.

A second, simple route to Lie algebra cohomology for finite-dimensional Lie
algebras g is described by Dubois-Violette in [6]. Instead of considering cochains
we consider the cohomology of Λ(g∗) as a differential algebra. Essentially, this
is of course the same, since a cochain ωn ∈ Cn(g) can also be interpreted as an
element of Λn(g∗) when dim g < ∞.

Finally, we also take what is called the Chevally-Eilenberg approach to Lie
algebra cohomology, which relates it to the more common de Rham cohomology
on a Lie group G. It relies on the fact that g can be identified with the left-
invariant vector fields on G and Λn(g∗) can be identified with the left-invariant
forms on G. It shows the definition of Lie algebra cohomology is quite natural
when related thus with HDR(G), and is in fact isomorphic with the de Rham
cohomology HDR(G) if G is a compact connected Lie group.

4.1 Standard approach to cohomology of Lie al-
gebras

Let g be a Lie algebra over K, not necessarily finite-dimensional. We will occupy
ourself mainly with real algebras (K = R) since Lie (G) is real for a Lie group
G. However the definitions are valid for K = C as well, so we will take a more
general approach.

We define the vector space Cn(g) of n-cochains as

Cn(g) = {α : g× . . .× g︸ ︷︷ ︸
n times

→ K | α multilinear and antisymmetric },

and call ωn ∈ Cn(g) a n-cochain on g. By convention one has C0(g) = K.
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We can now make the complex C∗(g) = ⊕n∈N Cn(g) into a graded-commutative
algebra by defining the product (ωr · ηs) for ωr ∈ Cr(g), ηs ∈ Cs(g) by

(ωr · ηs)(X1, .., Xr+s) =
1

(r + s)!

∑

σ∈Sr+s

ε(σ)ωr(Xσ(1), .., Xσ(r)) · ηr(Xσ(r+1), .., Xσ(r+s)),

(4.1)

where Sr+s is the permutation group on r + s elements, and ε(σ) = ±1 the sign
of the permutation σ. The second dot (·) is the multiplication in K.

On this complex we define the coboundary operator s : Cn(g) → Cn+1(g)
by

sωn(X0, .., Xn) =
∑

0≤i<j≤n

(−1)i+jωn([ Xi, Xj ], X0, .., X̂i, .., X̂j , .., Xn). (4.2)

On C0(g) one defines s ≡ 0. One can show s2 = 0 by direct computation, but
this is quite cumbersome. One can verify that s is in fact an anti-derivation of
degree +1 on the graded-commutative algebra C∗(g), which makes it a differ-
ential.

C∗(g) equipped with the coboundary operator s is now a GCDA, and we can
define its cohomology as usual (see Def. A.1.4).

The vector space Zn(g) of cocycles on g are defined as

Zn(g) = {ωn ∈ Cn(g) | sωn = 0 }.

The coboundary spaces Bn(g) are defined similarly

Bn(g) = s[Cn−1(g)],

and we have the n-th cohomology space Hn(g) defined as

Hn(g) = Zn(g)/Bn(g).

The complex H∗(g) = ⊕n∈NHn(g) is a graded-commutative algebra, since C (g)
was a GCDA. H∗(g) is the cohomology of g.

4.1.1 Cohomology with values in a vector space

We can generalize the definitions in the preceeding section, and consider coho-
mology with values in a representation space of g.

Let g be a Lie algebra over K, and V a vector space over the same field K.
A representation of g on V is a Lie algebra homomorphism ρ : g → gl(V), i.e. a
linear map that satisfies

ρ([X,Y ]) = ρ(X)ρ(Y )− ρ(Y )ρ(X), ∀X, Y ∈ g.

We define the vector space Cn(g,V) of n-dimensional V-cochains by

Cn(g,V) = {α : g× . . .× g︸ ︷︷ ︸
n times

→ V | α multilinear and antisymmetric }.
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Again, we have a coboundary operator s on Cn(g,V) which now includes a
new term using the representation ρ. For ωn ∈ Cn(g,V) we have

sωn(X0, .., Xn) =
∑

0≤i≤n

(−1)iρ(Xi)ωn(X0, .., X̂i, .., Xn)

+
∑

0≤i<j≤n

(−1)i+jωn([ Xi, Xj ], X0, .., X̂i, .., X̂j , .., Xn).

(4.3)

For ω0 ∈ C0(g,V) = V one sets sω0(X0) = ρ(X0)ω0. Again, one has s2 = 0,
and one defines cocycles Zn(g,V) and coboundaries Bn(g,V) in the same way
as before. We cannot define a product on C∗(g,V) however, since V is not
necessarily an algebra. So the cohomology space H∗(g,V) will in general be a
graded vector space (i.e. Hn(g,V) is a vector space for each n ∈ N). In case that
V is an algebra and ρ(X) is a derivation on V for every X ∈ g,1 we can define
a product on C∗(g,V) as in eq. (4.1), and H∗(g,V) will be a graded algebra,
graded-commutative if V is graded-commutative.

Notice we retrieve the original definitions from §4.1 if we take V = K and ρ the
trivial representation on K, i.e. ρ(X) = 0 for all X ∈ g.

4.2 An algebraic approach

(Let g be a finite-dimensional Lie algebra in what follows.)

An elegant and simple way to define the cohomology on a finite-dimensional
Lie algebra g is the following. Consider the dual space g∗ and take the exterior
algebra Λ(g∗) over it. Then Λ(g∗) is a graded algebra, and we can define a
differential on it by defining the Koszul differential

dη(X, Y ) = η([Y, X]), X, Y ∈ g, (4.4)

for elements η ∈ Λ1(g∗) = g∗. Since dη is antisymmetric, we have dη ∈ Λ2(g∗).
We extend d as an anti-derivation (of degree +1) to whole Λ(g∗); we can do
this since Λ(g∗) is generated in degree 1 by any cobasis {Eα} of g∗. The only
thing left to check is that d2 = 0. It turns out this is equivalent to the Jacobi
identity on g (appendix, Lemma B.3.3).

Now (Λ(g∗), d) forms a graded differential algebra, or more generally a differ-
ential complex, and we can consider the cohomology of this algebra as described
in the appendix, §A.1 (in Definition A.1.4). For a finite-dimensional Lie algebra
g we define its cohomology H∗(g) as the cohomology H∗(Λ(g∗), d) of Λ(g∗).
Notice that for finite dimensional Lie algebras g the complexes (Λ(g∗), d) and
(C (g), s) are isomorphic. An element η1 ∧ · · · ∧ ηn with ηi ∈ g∗ corresponds to
the n-cochain

(X1, . . . , Xn) 7→ η1(X1) · · · ηn(Xn) ∈ Cn(g).

1If ρ(X) is a derivation ∀X ∈ g, then ρ : g → Der(ev)(V) is in fact a Lie algebra homomor-
phism, since the derivations on any algebra form a Lie algebra. We write Der(ev) for the set
of derivations, by which we mean Der(ev) = ⊕k∈ZDer(2k), since Der(k) are anti-derivations if
k is odd.
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Vice versa, a cochain α ∈ Cn(g) defines an element of η ∈ Λn(g∗) by

η =
∑

I=(i1..in)

Ci1..in Ei1 ∧ . . . ∧ Ein ,

(the sum taken over all tuples I = (i1..in) of length n with i1 < i2 < .. < in,
ij ∈ {1, .., dim g} and {Eα} denoting a cobasis of g) with Ci1..in

= α(Ei1 , .., Ein
).

One can compare equations (4.4) and (4.2) to verify the differentials coincide.

Obstructions for infinite-dimensional Lie algebras

When we try to define the cohomology of an infinite-dimensional Lie algebra
g in this algebraic manner, we run into trouble when defining the differential
d : Λ1(g∗) → Λ2(g∗) as

dη(X, Y ) = η([Y, X]),

since in general d maps into Λ(g)∗ instead of Λ(g∗), which do not correspond
when g is infinite-dimensional2. When g is finite-dimensional we have Λ(g)∗ ∼=
Λ(g∗), but if g if infinite-dimensional we just have the inclusion Λ(g∗) ⊂ Λ(g)∗.
We will illustrate this with an example.

Example 4.2.1 Suppose the infinite-dimensional Lie algebra g has a countable basis
{Eα}, with cobasis {Eα}. Then the element η : Λ2(g) → K defined by

η =

∞X
i=2

E1 ∧ Ei ,

is an element of Λ2(g)∗ but not of Λ2(g∗) since the exterior algebra over any space
consists of finite sums of wedge products.

Suppose for this countable basis, g has structure constants Cα
βγ . Now it is also

clear that the differential d does not necessarily map into Λ2(g∗), since in general we
have by a natural extension of Lemma B.3.2

d(Eα) =

∞X

β,γ=1

Cα
βγ Eγ ∧ Eβ ,

and this will generally not be a finite sum (it depends on the structure constants Cα
βγ

of the Lie algebra).

4.3 Chevalley-Eilenberg cohomology

Let G be a connected Lie group, and let g = Lie (G) denote its Lie algebra.
Standard Lie theory shows g = TeG, the tangent space at the identity e ∈ G,
and we can identify the elements X ∈ g with left-invariant vector fields (LIVF’s)
XL on G by defining XL(g) = LT

g X. Here Lg denotes the left multiplication on
G. In the same way we can interpret an element ω ∈ Cn(g) as an antisymmetric
multilineair mapping

ω : TeG× . . . TeG︸ ︷︷ ︸
n times

→ R,

2By Λ(g)∗ we mean (Λ(g))∗ = { η : Λ(g) → K | η linear }, the dual space of Λ(g)
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and denote it ωe. We can make this a left-invariant form on G by defining

ωg(v1, . . . , vn) = ωe(LT
g−1v1, . . . , L

T
g−1vn), vi ∈ TgG,

for all g ∈ G. This is the same as saying ωg = (Lg)∗ωe, and so ω ∈ Ωn(G) is
left-invariant by definition.

Now on differential forms we have the exterior derivative d at our disposal,
which is given (cf. A.19) by

dω(X0, . . . , Xn) =
n∑

i=0

(−1)iXi · ω(X0, . . . , X̂i, . . . , Xn) +

∑

0≤ i<j≤p

(−1)i+jω( [Xi, Xj ] , X0, . . . , X̂i, . . . , X̂j , . . . , Xn) (4.5)

for Xi ∈ X(G). If we now take n left-invariant vector fields XL
i ∈ X(G), the

expression
ωg(XL

1 (g), . . . , XL
n (g))

will be constant on G, since ω was left-invariant itself. Hence the first part of
the exterior derivative

n∑

i=0

(−1)iXL
i · ω(XL

0 , . . . , X̂L
i , . . . , XL

n )

will vanish if XL
0 , .., XL

n are LIVF’s. In that case we are left with

dω(XL
0 , .., XL

n ) =
∑

0≤ i<j≤p

(−1)i+jω( [XL
i , XL

j ] , XL
0 , .., X̂L

i , .., X̂L
j , .., XL

n ). (4.6)

So dω is an element of Ωn+1(G), and by restricting it to the tangent space
TeG = g we have again a multilinear antisymmetric map

(dω)e : TeG× . . . TeG︸ ︷︷ ︸
n+1 times

→ R,

thus (dω)e ∈ Cn+1(g). One can verify the exterior derivative d : Ωn(G) →
Ωn+1(G) induces a differential d : Cn(g) → Cn+1(g) this way. Moreover, by
comparing equation (4.2) and (4.6) one sees that this differential is exactly the
one defined on C (g) in section 4.1.

Relation to de Rham cohomology

In the above section we considered the Lie algebra cohomology of a Lie algebra
g belonging to a Lie group G: that is, g = Lie (G). We identified n-cochains
ωn ∈ Cn(g) with left-invariant differential forms ω ∈ Ωn

LI(G) on the group G.
Since the differentials on Cn(g) and ΩLI(G) coincide under this identification,
we have an isomorphism

H(Lie (G)) ∼= H(ΩLI(G), d).

Here H(ΩLI(G), d) means the cohomology of the left-invariant forms on G with
the exterior derivative as differential.
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Since the left-invariant forms ΩLI(G) form a subset of the ordinary differen-
tial forms Ω(G), the inclusion map i : ΩLI(G) → Ω(G) induces a map between
the cohomology spaces:

i] : H(ΩLI(G), d) → H(Ω(G), d) = HDR(G).

In general this map will neither be surjective nor injective, but for compact
connected Lie groups G one can prove this map to be an isomorphism. A way to
prove this is to show that for such a Lie group every de Rham cohomology class
contains a bi-invariant differential form (this is Theorem 6.7.2 in de Azcárraga
and Izquierdo [2]). We just state the result and refer to a proof in Greub,
Halperin and Vanstone [10].

Theorem 4.3.1 For a compact connected real Lie group G, the de Rham co-
homology of G and the Lie algebra cohomology of g = Lie (G) are isomorphic.
That is

HDR(G) ∼= H(g), with g = Lie (G).

Proof: This is Theorem III of section IV (§4.10) in Volume II of Greub, Halperin and
Vanstone [10]. Another approach is included in §6.7 in de Azcárraga and Izquierdo
[2] as indicated.

4.4 Notes

We just note here that the cohomology classes of Lie algebras have various
interpretations. As an example, the cohomology classes of H2(g, a) correspond
to equivalence classes of extensions of g with the abelian algebra a. Many more
of such results can be found in Fuks [9]. Lie algebra cohomology can also be
linked to the cohomology of Lie groups. We refer to Fuks [9] and Chapter
6 in de Azcárraga and Izquierdo [2] for a more thorough treatment of the
cohomology of Lie algebras. The book by Fuks [9] pays attention in particular
to the cohomology of infinite-dimensional Lie algebras (as the title indicates).
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Chapter 5

B.R.S. algebras

In this chapter we will introduce the abstract notion of a B.R.S. algebra, named
after Becchi, Rouet and Stora.1 Just like the generalization of the algebra of
differential forms Ω(P ) on a principal bundle P to a g-operation, this abstract
notion of a B.R.S. algebra is inspired by a complex, denoted B ∗,∗ which we
will introduce in section 5.2. This complex, whose cohomology is linked to the
appearance of anomalies in gauge field theories, can be introduced in several
different ways which we will discuss in this section.

Following the introduction of the cohomology complex, we will explain the
argument applied by Dubois-Violette to motivate the constructions he makes
in his article[6], and also point out some weak points in his line of reasoning.
After this rather long section explaining the main strategy we will plunge into
a more detailed treatment of all constructions and theorems concerned.

Recapitulation

Let us return to the concrete example of the principal bundle P (G, M) as de-
scribed in chapter 1. We had a Lie group G acting on a total space P by a
right-action Rg : p 7→ pg,

G ↪→ P
π→ M,

such that the quotient M is locally, in a neighbourhood U ⊂ M , diffeomorphic
to the product U ×G. In the following we will assume the base manifold M is
a compact manifold without boundary.2

A connection on the principal bundle was denoted with ω, and the associated
curvature form with Ω = dω + 1

2 [ω, ω ]. In chapter 2 we defined the group of
gauge transformations G as

G = { f ∈ Diff(P ) | f ◦Rg = Rg ◦ f and π ◦ f = π }.
1Who also, including Tyutin, gave their name to the related B.R.S.T. transformations,

discussed in §6.8 [2].
2Cf. [11] (p. 473) and [2] (p. 398). The assumption that M is compact is necessary

to ensure that local functionals yield finite values. Moreover, the condition that M has
no boundary is essential for the cohomological descent method, which centers on δ-cocycles
modulo d. The ‘modulo d’-parts of these cocycles vanish because of Stokes theorem and
∂M = 0.
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As an infinite-dimensional Lie group (c.f. §2.3.4) it came with an infinite-
dimensional Lie algebra Lie (G ), which had multiple interpretations. The defini-
tion of Lie (G ) which we generalized to arbitrary g-operations was the following:

Lie (G ) = { α ∈ Lie (G)⊗ Ω0(P ) | LX#α = [α, X ] ∀X ∈ Lie (G) }.
So far, so good. We now move on to define the cohomology complex which
is of interest to us, but the motivation behind these definitions we can only
sketch, for it lies in the realm of physics. In Chapter 10 of [2] there is some
attention paid to the physics background, but it is hardly understandable for a
mathematician and does not really serve as an introduction. We more or less
quote the following section from the article by Dubois-Violette [6].

The cohomology space H1(Lie (G ),P loc)

In quantum gauge field theories one works with a so-called quantum action
functional, denoted Γ(a, ψ) in [6], which depends on a gauge potential a on the
quotient space M of a principal bundle P (G,M) and on field variables, which
are denoted by ψ. Now one of the main principles on which modern gauge
field theories are based, is the principle of gauge invariance. We encountered
this notion in section 2.3.2. In the theories of classical mechanics and special
relativity one principal notion is that all physics and laws of nature should
be independent of the chosen frame of reference; hence the theories should be
invariant under Galilei or Lorentz transformations. Gauge invariance can be
considered as a “gauge field theory” equivalent of this. We refer to the books
of Naber [15] for an introduction and historical background.

In some gauge field theories, the functional Γ(a, ψ) is not gauge invariant. If
the equivalent functional in classical field theory did possess gauge invariance,
this is called an anomaly : a particular kind of symmetry or invariance is lost in
the quantization process. Citing [6] (p. 526):

The lack of gauge invariance of Γ(a, ψ) manifests itself by the non-
vanishing of the variation ∆ = δΓ(a, ψ; ξ) of Γ under infinitesimal
gauge transformations (ξ are in the Lie algebra of the group of gauge
transformations). It turns out that δΓ = ∆, which is a linear func-
tional in ξ, only depends on a, (and ξ of course), and is local in the
sense that one has ∆(a; ξ) =

∫
Q(a; ξ), where the integral is taken

over the n-dimensional space-time M and where Q(a; ξ) is a n-form
on M (which is a functional of a and ξ) such that its value at x ∈ M
only depends on the values at x of a, ξ and a finite number of their
derivatives; i.e. (a, ξ) 7→ Q(a, ξ) is a differential operator which is
linear in ξ. By a finite renormalization, ∆ is modified by the addi-
tion of a term δΓ loc, where Γ loc(a) =

∫
L(a) is a local functional of

a. It follows that the obstructions to invariance is only ∆ modulo
such δΓ loc.

It is now possible to place these observations in the mathematical framework
which we have already developed. We start with the following definition.

Definition 5.0.1 We define P to be the vector space of polynomial functionals
on apot(M), the space of gauge potentials on the principal bundle P (G,M). I.e.

P = { F : apot(M) → C | F is linear and polynomial in a }.
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We now define a local functional as a polynomial functional that is defined
in terms of an integrated differential form; to be precise: an element Floc ∈ P
given by

Floc(a) =
∫

M

F̂loc(a) ,

(an element of C for every a ∈ apot(M), since M is assumed to be compact)
where F̂loc(a) ∈ Ω(dim M)(M) is a differential form of top degree on M , and

F̂loc : apot(M) → Ω(dimM)(M) is a linear mapping (differential operator) that is
dependent of a, local in the sense that the value of F̂loc in x ∈ M only depends
on the value in x ∈ M of a and derivatives of a up to finite order.3 The local
functionals of P we denote with Ploc.

Having defined the (local) functionals we can now use the constructions intro-
duced in Chapter 4 (on Lie algebra cohomology) to consider the Lie algebra
cohomology of Lie (G ). We are interested in the cohomology of Lie (G ) with
values in Ploc however. Remembering the definition of the coboundary operator
s in eq. (4.3) we first need to have a representation of Lie (G ) in Ploc in order
to define this cohomology.

In §2.4.1 we described the action of the Lie algebra of gauge transformations
Lie (G ) on the space of gauge potentials apot(M), by ρ(ξ) : a 7→ −dξ − [ a, ξ ]
for ξ ∈ Lie (G ) and a ∈ apot(M). This naturally leads to a representation of
Lie (G ) on P (and Ploc) by

ρ(ξ) : F 7→ F ◦ ρ(ξ)−1 for F ∈ P.

With this representation in hand we can define the cohomology of Lie (G ) with
values in P, as we defined in §4.1.1. One considers the space of s-cochains of
Lie (G ) with values in P, denoted Cs(Lie (G ),P), that was defined as

Cs(Lie (G ),P) =
{α : Lie (G )× . . .× Lie (G )︸ ︷︷ ︸

s times

→ P | α multilinear and antisymmetric }.

The complex C∗(Lie (G ),P) = ⊕s∈N Cs(Lie (G ),P) forms a graded-commutative
differential algebra, with the differential given by the coboundary operator s (see
§4.1.1). The cohomology with values in Ploc is now included as the following
subcomplex:
The subset Cs(Lie (G ),Ploc) ⊂ Cs(Lie (G ),P) can be defined as those α ∈
Cs(Lie (G ),P) that are defined as4

α(a, ξ1, .., ξs) =
∫

M

Q(a, ξ1, .., ξs) ,

such that Q : (a, ξ1, .., ξs) 7→ Q(a, ξ1, .., ξs) is a differential operator with values
in Ω(dim M)(M). We will see in the next section that this defines Q as an element
of a complex denoted with B̃ dim M,s.

3The local functionals that are obtained in the cohomological descent method are con-
structed as integrals of (wedge-product) polynomials in a (and da). With derivatives of a up
to finite order, one specifically means higher order derivatives of the functions aµ(x), where
a(x) = aµ(x)dxµ in local coordinates.

4For some reason Dubois-Violette takes a slightly different approach (see [6] p. 526), and
defines a sub-complex Cs

loc(Lie (G ),P), which is in fact the same as Cs(Lie (G ),P loc).

61



From the definition of the coboundary operator s it follows that Cs(Lie (G ),P loc)
is stable under s, and therefore determines a cohomology complex, that we de-
note H∗(Lie (G ),Ploc).
Returning to the part we literally quoted from Dubois-Violette, we notice that
the variation ∆(a; ξ) of the quantum action functional Γ we just described is
in fact an element of C1(Lie (G ),P loc). The δ appearing in the quote coin-
cides with our coboundary operator s, and since ∆(a; ξ) = δΓ(a, ψ; ξ) (in the
quote) we have s∆ = 0 which is known as the Wess-Zumino consistency condi-
tion.5 It asserts the variation ∆(a; ξ) is a cocycle, and hence defines an element
of H1(Lie (G ),P loc). The elements that can be added through finite renor-
malization were defined as δΓ loc with Γ loc ∈ C 0(Lie (G ),P loc): the elements
δΓ loc are precisely the coboundaries in C1(Lie (G ),P loc). Thus, if the varia-
tion ∆(a; ξ) persists and does not vanish by finite renormalization it defines
a non-trivial cohomology class in H1(Lie (G ),P loc). This explains the interest
in H1(Lie (G ),P loc): it can be interpreted as the space of possible (candidate)
anomalies.6

The B̃ complex

The approach employed by Dubois-Violette to investigate H1(Lie (G ),P loc)
makes use of the following complex:

1. The complex B̃ ∗, ∗. This complex is a bigraded algebra, whose homo-
geneous space B̃ r,s of bidegree (r, s) is given by the space of differential
operators of apot(M)×(Lie (G ))s in Ωr(M) that are polynomial in apot(M)
(i.e. as a function of a ∈ apot(M) only depending on finitely many deriva-
tives of a) and s-linear antisymmetric in (Lie (G ))s. Thus

B̃ r,s(P ) = { ω : apot(M)× (Lie (G ))s → Ωr(M) | with ω polynomial in

apot(M) and multilinear & antisymmetric in (Lie (G ))s }.

The link between this complex and the cohomology spaces discussed previously
is the observation that an element Q ∈ B̃ r,s with r = dim M supplies an cochain
α ∈ Cs(Lie (G ),P loc) by setting

α(ξ1, .., ξs)(a) =
∫

M

Q(a; ξ1, ..ξs).

Vice versa, every cochain α ∈ Cs(Lie (G ),P loc) defines an element of B̃ r, s, as
we already remarked: recall that α(ξ1, .., ξs) is an element of P loc for every set
of Lie algebra variables (ξ1, .., ξs), so that one has

α(ξ1, .., ξs)(a) =
∫

M

Q(a; ξ1, .., ξs),

with Q(a; ξ1, .., ξs) a differential form on M of top degree. The linear map
Q : (a; ξ1, .., ξs) 7→ α̂ loc(a) is then an element of B̃ r, s.

5Cf. [2] Ch. 10; Lemma 10.7.1 in particular. Also see [11](§6).
6We just note here that the second cohomology space H2(Lie (G ),P loc) has a similar

physical interpretation. According to Dubois-Violette “obstructions to the elemination of
anomalous Schwinger terms in the equal-time commutation relations of currents are elements
of H2(Lie (G ),P loc).” ([6], p. 526-527). This remark is Lemma 10.7.3 in de Azcárraga[2].
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We will treat the B̃ complex in more detail later, but here we give a general
outline of its structure and relate this to our discussion of the cohomology
H1(Lie (G ),P loc) of interest for anomalies.

On the B̃ complex one defines two differentials (and a product) which make
it a bigraded algebra. The first differential d : B̃ r,s → B̃ r+1,s is defined as an
extension of the exterior derivative on Ω(M):

(dω)(a; ξ1, .., ξs) = d
(
ω(a; ξ1, .., ξs)

)
.

The second differential δ : B̃ r,s → B̃ r,s+1 extends the coboundary operator s we
encountered in Chapter 4 (ρ is a representation of Lie (G ) which we will define
later on):

(δω)(a; ξ0, .., ξs) = (−1)r
( ∑

0≤ i≤s

(−1)i ρ(ξi)ω( a ; ξ1, .., ξ̂i, .., ξs)

+
∑

0≤ i<j≤s

(−1)i+j ω(a; [ ξi, ξj ], .., ξ̂i, .., ξ̂j , .., ξs)
)
.

The definition of these two differentials has important consequences. First of all,
if one considers an element α ∈ Cs(Lie (G ),P loc) with corresponding element
Q ∈ B̃ r, s, one has

sα(ξ1, .., ξs+1)(a) =
∫

M

δQ(a; ξ1, .., ξs+1),

with δQ ∈ B̃ r, s+1. In fact δ is defined by this equation.
Now consider a cocycle α ∈ Cs(Lie (G ),P loc) for which one has sα = 0. For

the corresponding element Q ∈ B̃ r, s this means
∫

M

δQ = 0.

Recall that we assumed M to be a compact manifold without boundary, so
Stokes theorem assures us that exact forms added to Q will vanish under the
integral. The above equation translates into the following condition on Q ∈
B̃ r, s: there is an element Q′ ∈ B̃ r−1, s+1 such that

δQ + dQ′ = 0.

An element satisfying this condition is called a δ-cocycle modulo d. It defines a
cohomology class in the cohomology space H(B̃ /dB̃ , δ).7 Suppose now that the
cocycle α ∈ Cs(Lie (G ),P loc) was a coboundary, thus there exists an element
β ∈ Cs−1(Lie (G ),P loc) such that sβ = α. Let L denote the element in B̃ r, s−1

corresponding to β, such that

β(a; ξ1, .., ξs−1) =
∫

M

L(a; ξ1, .., ξs−1). (5.1)

Notice that (again) one can modify L by adding an element dL′ with L′ ∈
B̃ r−1, s−1 and equation (5.1) will still hold. (We see that any element α, β ∈

7The modulo space eB /d eB has a well-defined cohomology space since it is stable under δ:
this is due to the anti-commuting of the (nilpotent) differentials d and δ (dδ = −δd).
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Cs(Lie (G ),P loc) in fact defines an element of the modulo space B̃ /dB̃ .) Now,
from sβ = α it follows that there exist L ∈ B̃ r, s−1 and L′ ∈ B̃ r−1,s−1 such that

δL + dL′ = Q,

which defines Q as a δ-coboundary modulo d.
The conclusion we derive from these observations is that one can equiva-

lently consider the cohomology space H(B̃ /dB̃ , δ) of the B̃ complex we intro-
duced above, instead of the cohomology space H1(Lie (G ),P loc), since they are
isomorphic.

The Weil-B.R.S. algebra

After describing the isomorphism between H1(Lie (G ),P loc) and H(B̃ /dB̃ , δ),
Dubois-Violette investigates the structure of B̃ . It turns out that B̃ is a partic-
ular kind of bigraded algebra: a so-called B.R.S. algebra. For such algebras one
has an universal initial object, which is called the Weil B.R.S. algebra A∗, ∗(g).

It is at this point that, in my opinion, Dubois-Violette takes a questionable
approach. He limits his considerations to a subalgebra B ∗, ∗ ⊂ B̃ ∗, ∗ and for
this subalgebra Dubois-Violette proves that the canonical homomorphism from
A∗, ∗(g) to B ∗, ∗ is in fact an isomorphism for the bihomogeneous spaces we wish
to consider. As a consequence we have

H(B /dB , δ) ∼= H(A(g)/dA(g), δ).

The last part of his article [6] deals with the H(A(g)/dA(g), δ) cohomology space.
This bigraded space is also suited to accommodate a double cohomological chain,
generated by the so-called descent equations.

Using this descent method one starts off with an element P (F ) ∈ A2k+2,0(g)
that is a (d + δ)-cocycle in A(g). Using cohomological properties of A(g) one
arrives at an element of H2k,1(A(g)/dA(g), δ). Dubois-Violette shows that in
this particular case, the descent method yields all the cohomology classes of
H2k,1(A(g)/dA(g), δ).

The implications of this result are not so clear, however. Since B is just a
subalgebra of B̃ , the cohomology spaces H(B /dB , δ) and H(B̃ /dB̃ , δ) are not
necessarily isomorphic. The inclusion i : B → B̃ yields a map

i] : H(B /dB , δ) → H(B̃ /dB̃ , δ),

which need neither be injective nor surjective. Thus, though H2k,1(B̃ /dB̃ , δ)
identifies with H1(Lie (G ),P loc) (the cohomology space of candidate anomalies),
the result of Dubois-Violette obtained for H(B /dB , δ) has no direct implications
for the surjectivity of the descent method in general.

Some criticism

The most important criticism we already put forward in the previous section,
where we noted that Dubois-Violette did not prove surjectivity of the descent
method in general. However, there is another point at which the article by
Dubois-Violette lacks a convincing proof. It concerns the generalization of all
constructions and theorems to the case that the underlying principal bundle P
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is not trivial. In almost all articles on the descent method the ambient principal
bundle P is assumed to be trivial (i.e. P = M× G), cf. [2][3][6][7][11]. In his
introduction Dubois-Violette claims he will include the non-triviality case in his
considerations, but the article lacks any argument concerning the case that P
is not trivial. In fact, an important theorem extends a result obtained for the
trivial bundle case to the non-trivial bundle case with the following justification
as proof:8

Since all this comes from local considerations (in fact jets of finite
orders) and since a principal G-bundle is locally trivializable one has
the following theorem. 9

According to my point of view, the theorem thus introduced is by no means
obvious. An exact indication of the use of ‘local considerations’ which can be
readily generalized to the non-trivial case is not easy to provide, and thus the
theorem remains unconvincing. The argument we cited above is referred to at
another point, which justifies another extension:10

Again, by the same argument as the one leading from lemma 1 to
theorem 7, one has the following extension of theorem 7.11

The lack of an explicit proof makes this statement rather unsatisfactory. In
general however, if one looks at other references, authors all agree that the
descent method can be extended to the non-trivial case, although a thorough
treatment is usually not included. We will return to this issue in section §6.2.1.

5.1 B.R.S. g-operations

Having discussed the main line of proof employed by Dubois-Violette, we will
now follow and exhibit his constructions, starting off with the definition of
bigraded g-operations, B.R.S. algebras and B.R.S. g-operations. We do this in
slightly more detail than is done in [6].

Bigraded g-operations

Let A be a bigraded commutative differential algebra, with differentials d and
δ, and let g be a finite-dimensional Lie algebra.12 A is also a ordinary graded-
commutative differential algebra with differential d + δ. Suppose now A is a
g-operation (A , i, L) considered as a singular graded GCDA. In principle, this
means that we have two linear maps

{
i : g → Der(−1)(A )
L : g → Der(0)(A )

In the case that iX is bihomogeneous of degree (−1, 0) and LX is bihomogeneous
of degree (0, 0), then A called a bigraded g-operation. From the relation LX =

8This is the theorem in which the isomorphism between Wr(Lie (G)) and B r,0(M×G) is
extended to the case of B r,0(P ): Theorem 7 in [6].

9[6], p. 544.
10Of an isomorphism A(g) ∼= B to A(g) ∼= B (P ): Theorem 11 in [6].
11[6], p. 554.
12For the definition of a bigraded algebra see definition A.1.8 in section §A.1 of the appendix.
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(d + δ)iX + iX(d + δ) it follows that
{

LX = diX + iXd,

0 = δiX + iXδ.

We record this in the following definition.

Definition 5.1.1 Let g be a finite-dimensional algebra, and A a bigraded com-
mutative differential algebra with differentials d and δ. A is called a bigraded
g-operation if there exists a pair (i, L) of linear mappings from g to the graded
derivations Der(∗, ∗)(A ) on the algebra A

i : g → Der(−1, 0)(A ), i : X 7→ iX ,

L : g → Der(0, 0)(A ), L : X 7→ LX ,

such that

LX = diX + iXd, (5.2)
0 = δiX + iXδ, (5.3)

L[X,Y ] = [LX , LY ] = LXLY − LY LX , (5.4)
i[X,Y ] = LX iY − iY LX , (5.5)

(iX)2 = 0, (5.6)

for all X, Y ∈ g.

Notice that for a bigraded commutative differential algebra (A , d + δ), the
subalgebra (A ∗,0, d) is a GCDA. If A is a bigraded g-operation, then (A ∗,0, d)
together with the mapping (i, L) forms an “ordinary” g-operation, since iX will
be a graded derivation of degree -1 on A ∗,0.

B.R.S. algebras

Using the previous concepts we can now define the general notion of a B.R.S.
algebra. This definition formalizes the special structure that appears in the
complexes used in the descent method. In these complexes one can identify
two elements A and χ (some authors use other symbols), that satisfy special
relations, dubbed the B.R.S. relations.13

Definition 5.1.2 Let g be a finite-dimensional Lie algebra. A B.R.S. alge-
bra over g is a bigraded commutative differential algebra A together with an
element ω ∈ g ⊗ A 1, that decomposes as ω = A + χ with A ∈ g ⊗ A 1,0 and
χ ∈ g⊗A 0,1 such that

(d + δ)ω + 1
2 [ ω, ω ] ∈ g⊗A 2,0 , (5.7)

where d and δ are defined on g ⊗ A as usual by d(X ⊗ α) = X ⊗ (dα) and
δ(X ⊗ α) = X ⊗ (δα); plus [X ⊗ α, Y ⊗ β ] = [ X, Y ]⊗ (α · β). We can use the
decomposition ω = A + χ and write this out in components to obtain

(d + δ)(A + χ) + 1
2 [ A + χ, A + χ ] = dA + 1

2 [ A,A ], (5.8)
13In the B complex we will discuss later on A will be identified as the identity operator

on the space of gauge potentials, while χ can be seen as the Maurer-Cartan form of the Lie
algebra Lie (G ). The element χ is also called a ghost (field) in many references.
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which is known in some literature as the Russian formula.14

By grouping the terms which belong to the same homogeneous space of A
one sees that (5.8) is equivalent with the following two equations, called the
B.R.S. relations {

δA = −dχ− [ A,χ ],

δχ = − 1
2 [ χ, χ ].

(5.9)

The element ω = A + χ is called the (algebraic) connection on A . The cor-
respondence to the notion of algebraic connections on g-operations will become
clear in the following subsection when we introduce B.R.S. g-operations.

B.R.S. g-operations

Definition 5.1.3 A B.R.S. g-operation is a B.R.S. algebra (A , ω) for which
A is a bigraded g-operation, such that ω = A + χ ∈ g ⊗ A 1 is an algebraic
connection on A considered as a g-operation.

In the following two small lemmas we establish the explicit form of the actions
iX and LX on a B.R.S. g-operation A .

Lemma 5.1.1 For a B.R.S. g-operation (A , ω) (with ω = A+χ) the following
relations hold for the anti-derivation iX

iY (A) = Y, (5.10)
iY (χ) = 0, (5.11)

iY (dA) = [ A, Y ], (5.12)
iY (dχ) = [ χ, Y ]. (5.13)

Proof: (i) Since iY has bidegree (−1, 0) it maps A 0,1 on A −1,1 = {0}, thus iY (χ) = 0
since χ ∈ g⊗A 0,1. (ii) Because ω = A+χ is a connection on A , we have Y = iY (ω) =
iY (A) + iY (χ) = iY (A). (iii) Invoking Lemma 1.2.4, and using equations (5.7) and
(5.8) we have 0 = iY ((d + δ)ω + 1

2
[ ω, ω ]) = iY (dA + 1

2
[ A, A ]) from which it follows

that

iY (dA) = −iY ( 1
2
[ A, A ])

= − 1
2
[ iY A, A ] + 1

2
[ A, iY A ]

= − 1
2
[ Y, A ] + 1

2
[ A, Y ]

= [ A, Y ].

(iv) Now using the first equation of (5.9) it follows that

iY (dχ) = iY (−δA)− iX( [ A, χ ] )

= δiY (A)− [ iY A, χ ] + [ A, iY χ ]

= δ(Y )− [ Y, χ ] + [ A, 0 ]

= [ χ, Y ],

which finishes our lemma. �
14Cf. Mañes, Stora and Zumino [13]: eq. (9) p. 159.
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Lemma 5.1.2 For a B.R.S. g-operation (A , ω) (with ω = A+χ) the following
relations hold for the anti-derivation LX

LY (A) = [ A, Y ], (5.14)
LY (χ) = [ χ, Y ], (5.15)

LY (dA) = [ dA, Y ], (5.16)
LY (dχ) = [ dχ, Y ]. (5.17)

Proof: (i-ii) ω is an algebraic connection on A , thus LY (A+χ) = LY (ω) = [ ω, Y ] =
[ A + χ, Y ]. Splitting this in bihomogeneous spaces gives us LY (A) = [ A, Y ] and
LY (χ) = [ χ, Y ]. For (iii) we use LY (dA) = (diY + iY d)(dA) = diY (dA) and

diY (dA) = d([ A, Y ]) = [ dA, Y ]− [ A, d(Y ) ] = [ dA, Y ],

since d(Y ) = 0 by Lemma A.1.3. The same reasoning gives (iv) LY (dχ) = [ dχ, Y ].�

The curvature F of a B.R.S. g-operation A

Following earlier definitions, we define the element F ∈ g⊗A 2, 0 as

F = dA + 1
2 [ A,A ].

Notice that by formula (5.8) we have F = (d + δ)ω + 1
2 [ω, ω ] as well. Thus

F fulfills a double role. The above observation means that F is the curvature
associated with ω interpreted as the algebraic connection on the g-operation
A (using the total grading). But moreover, F is also the curvature associated
with A, whereby A is interpreted as the algebraic connection on the g-operation
A ∗, 0 (which is a g-operation itself, as noted in §5.1).

5.2 The B̃ complex

We will now investigate the B̃ ∗,∗ complex which was introduced at the start of
this chapter in some more detail. We first recall the various parts which were
put together in the complex.

We start off with a principal bundle P (G,M), which we will assume to
be trivial. In this case we can identify the space of gauge potentials as

apot(M) = Lie (G)⊗ Ω1(M) ∼= C (M×G).

(This is Proposition 2.2.3.) Second, we had a representation of G (identified as
Map (M, G)) on the space of gauge potentials apot(M), given by (2.3):

R : G = Map (M, G) → Aut(apot(M)), R : g 7→ R(g),

R(g) : a 7→ a ′ = Adg−1(a) + (L−1
g )T (dg),

,

with g : M → G and a ∈ apot(M).

The complex B̃ as bigraded algebra

The homogeneous space of bidegree (r, s) of B̃ , i.e. B̃ r,s, we define as the space
of differential operators of apot(M)× (Lie (G ))s in Ωr(M) which are polynomial
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in apot(M) (i.e. as a function of a ∈ apot(M) only depending on finitely many
derivatives of a) and s-linear antisymmetric in (Lie (G ))s. We thus define the
complex B̃ ∗,∗ as

B̃ ∗,∗ =
⊕

r,s∈N
B̃ r,s ,

with

B̃ r,s = { ω : apot(M)× (Lie (G ))s → Ωr(M) | with ω a differential

operator, polynomial in apot(M) and multilinear & antisymmetric in (Lie (G ))s }.
We can turn this bigraded complex into a bigraded commutative algebra by
defining the following product of ω ∈ B̃ r,s and ω′ ∈ B̃ r′,s′ :

ω · ω′(a; ξ1, . . . , ξs+s′) =

(−1)r′s

(s + s′)!

∑

σ∈Ss+s′

ε(σ) ω(a; ξσ(1), .., ξσ(s)) ∧ ω′(a; ξσ(s+1), .., ξσ(s+s′)),
(5.18)

with, as before, Ss+s′ the permutation group of s + s′ elements, and ε(σ) = ±1
the sign of the permutation. One can check this product indeed satisfies graded-
commutativity, i.e. ω · ω′ = (−1)(r+s)(r′+s′) ω′ · ω.

The complex B̃ as differential algebra

We will now turn B̃ ∗,∗ in a bigraded commutative differential algebra by defining
two anti-commuting differentials on it. First we define

d : B̃ r,s → B̃ r+1,s

for ω ∈ B̃ r,s as the natural extension of the exterior derivative on Ω(M) to B̃ ,
by

(dω)(a; ξ1, .., ξs) = d
(
ω(a; ξ1, .., ξs)

)
. (5.19)

Thus in the r.h.s. d indicates the exterior derivative of the r-form on M given by
ω(a; ξ1, .., ξs). For the second differential, denoted δ, we extend the coboundary
operator s defined in §4.1.1. For this, we need a representation of Lie (G ) on
the space of operators B̃ ∗,∗. We obtain this representation by extending the
representation of G on apot(M) to a representation of Lie (G ) in the following
way; for ξ ∈ Lie (G ) we define ρ(ξ) : ω ∈ B̃ r,s 7→ ρ(ξ)ω ∈ B̃ r,s by

(ρ(ξ)ω) (a; ξ1, .., ξs) =
d

dt
ω(R(exp(tξ))a ; ξ1, .., ξs)

∣∣∣
t=0

,

where exp : Lie (G ) → G is the exponential mapping of the infinite-dimensional
group of gauge transformations G , and R : G → Aut(apot(M)) is the represen-
tation of G defined in §2.3.3. We obtain

δ : B̃ r,s → B̃ r, s+1

defined on ω ∈ B̃ r, s by

(δω)(a; ξ0, .., ξs) =
∑

0≤ i≤s

(−1)i+r ρ(ξi)ω( a ; ξ1, .., ξ̂i, .., ξs)

+
∑

0≤ i<j≤s

(−1)i+j+r ω(a; [ ξi, ξj ], .., ξ̂i, .., ξ̂j , .., ξs).
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Or, putting the common factor (−1)r in front,

(δω)(a; ξ0, .., ξs) = (−1)r
( ∑

0≤ i≤s

(−1)i ρ(ξi)ω( a ; ξ1, .., ξ̂i, .., ξs)

+
∑

0≤ i<j≤s

(−1)i+j ω(a; [ ξi, ξj ], .., ξ̂i, .., ξ̂j , .., ξs)
)
.

(5.20)

For ω ∈ B̃ r, 0 the second part of δ with the Lie bracket is omitted, and one
defines δω(a; ξ0) = (−1)rρ(ξ0)ω(a).
The two differential satisfy d2 = 0 and δ2 = 0 and anti-commute, i.e. dδ = −δd,
due to the factor (−1)r in the definition of δω. Together they define a differential
d + δ on B̃ considered as singular graded algebra using the total grading.

The complex B̃ as B.R.S. algebra

Since the definition of a general B.R.S. algebra by Dubois-Violette was modelled
on the special properties of the B̃ complex, it is no surprise that B̃ fulfills the
requirements of Definition 5.1.2, and can be considered as a B.R.S. algebra over
Lie (G). In order to prove this we need to designate an element ω ∈ Lie (G)⊗B̃ 1

that decomposes as
ω = A + χ,

with A ∈ Lie (G)⊗ B̃ 1,0 and χ ∈ Lie (G)⊗ B̃ 0,1, such that A and χ satisfy the
B.R.S. relations (5.9) {

δA = −dχ− [ A,χ ],

δχ = − 1
2 [ χ, χ ].

Decomposing A = Eα⊗Aα and χ = Eα⊗χα we have components Aα belonging
to B̃ 1,0(P ), and elements χα of B̃ 0,1(P ).15 Let us consider B̃ 1,0 and B̃ 0,1.
Elements of B̃ 1,0 are linear mappings η : apot(M) → Ω1(M), such that η(a) ∈
Ω1(M) depends on only finitely many derivatives of a ∈ apot(M). Elements
of B̃ 0,1 are linear mappings η : apot(M) × Lie (G ) → Ω0(M), also depending
polynomially on apot(M).

We first define the Aα’s. The gauge potentials a ∈ apot(M) are Lie (G)-
valued forms on M , i.e. a = Eα ⊗ aα with aα ∈ Ω1(M). Now set

Aα : a → Ω1(P ) with Aα(a) = aα. (5.21)

Notice we can identify Lie (G) ⊗ B̃ 1,0 with the linear mappings η : apot(M) →
Lie (G)⊗Ω1(M): Eα⊗ ηα (with ηα ∈ B̃ 1,0) corresponds to η : a 7→ Eα⊗ ηα(a)
and vice versa. Interpreted this way, A = Eα ⊗ Aα ∈ Lie (G) ⊗ B̃ 1,0 is simply
the identity map:

A(a) = a with A : apot(M) → Lie (G)⊗ Ω1(M).

It maps a ∈ apot(M) to itself, considered to be an element of Lie (G)⊗Ω1(M).

Similarly, we define the χα ∈ B̃ 0,1. Recall that we identified Lie (G ) as a the
Ad-equivariant Lie (G)-valued functions on M (see §2.4), that is, a subspace

15From now on {Eα} will designate a fixed chosen basis of Lie (G). All decompositions will
be with respect to this basis.
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of Lie (G) ⊗ Ω0(M). An element ξ ∈ Lie (G ) can therefore be decomposed as
Eα ⊗ ξα. We set

χα : apot(M)× Lie (G ) → Ω0(M) with χα(a; ξ) = ξα . (5.22)

Similar to the interpretation of A described above, we can identify χ = Eα⊗χα ∈
Lie (G) ⊗ B̃ 0,1 as a map from apot(M) × Lie (G ) to Lie (G) ⊗ Ω0(M). Since
we can interpret an element ξ ∈ Lie (G ) as an (Ad-equivariant) element of
Lie (G)⊗ Ω0(M), we have

χ(a; ξ) = ξ with χ : apot(M)× Lie (G ) → Lie (G)⊗ Ω0(M).

Having defined A ∈ Lie (G) ⊗ B̃ 1,0 and χ ∈ Lie (G) ⊗ B̃ 0,1, we can set ω ∈
Lie (G) ⊗ B̃ 1 as ω = A + χ. We need to check that ω satisfies the B.R.S.
relations. Instead of checking the Russian formula (5.7) directly, we check the
equivalent relations (i) δA = −dχ− [ A,χ ] and (ii) δχ = − 1

2 [ χ, χ ], c.f. (5.9).

Lemma 5.2.1 The complex B̃ ∗,∗ is a B.R.S. algebra. That is, the elements
A = Eα ⊗ Aα ∈ Lie (G) ⊗ B̃ 1,0, χ = Eα ⊗ χα ∈ Lie (G) ⊗ B̃ 0,1 and ω = A + χ
defined above, satisfy the B.R.S. relations

(i) δA = −dχ− [ A,χ ], (ii) δχ = − 1
2 [χ, χ ].

Proof: Consider δA = δ(Eα ⊗ Aα) = Eα ⊗ δAα, where δAα are elements of eB 1,1

defined by (5.20) as

δAα(a; ξ) = −ρ(ξ)Aα(a)

= − d

dt
Aα(R(exp(tξ))a)

���
t=0

= − d

dt
R(exp(tξ))aα

���
t=0

= ρ(ξ) aα

= −(dξ)α − [ a, ξ ]α .

This implies (i):

δA = Eα ⊗ (−(dξ)α − [ a, ξ ]α) = −dξ − [ a, ξ ] =
�−dχ− [ A, χ ]

�
(a, ξ).

(ii) Again applying the definition of δ on eB ∗,∗ we obtain

δχ(a; ξ0, ξ1) = ρ(ξ0)χ(a; ξ1)− ρ(ξ1)χ(a; ξ0)− χ(a; [ ξ0, ξ1 ])

=
d

dt
χ( R(exp(tξ0))a ; ξ1)

���
t=0

− d

dt
χ( R(exp(tξ1))a; ξ0)

���
t=0

− χ(a; [ ξ0, ξ1 ])

=
d

dt
ξ1

���
t=0

− d

dt
ξ0

���
t=0

− [ ξ0, ξ1 ]

= −[ ξ0, ξ1 ].

Now consider − 1
2
[ χ, χ ] (∈ Lie (G)⊗ eB 0,2). The computation

�− 1
2
[ χ, χ ]

�
(a; ξ0, ξ1) = − 1

2
Cα

βγ Eα ⊗
�
χβ · χγ(a; ξ0, ξ1)

�

= − 1
2

Cα
βγ Eα ⊗

�
χβ · χγ(a; ξ0, ξ1)

�

= − 1
2

Cα
βγ Eα ⊗

�
1
2

χβ(a; ξ0)χ
γ(a; ξ1)− 1

2
χβ(a; ξ1)χ

γ(a; ξ0)
�

= − 1
2

Cα
βγ Eα ⊗

�
1
2

ξβ
0 ξγ

1 − 1
2

ξβ
1 ξγ

0

�

= − 1
2

�
1
2

[ ξ0, ξ1 ]− 1
2

[ ξ1, ξ0 ]
�

= − 1
2

[ ξ0, ξ1 ],

proves the lemma. �
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Remark: Notice that χ ∈ Lie (G)⊗ eB 0, 1, interpreted as a map apot(M)× Lie (G ) →
Lie (G) ⊗ Ω0(M), was in fact the identity map on Lie (G ). The B.R.S. relation δχ =

− 1
2
[ χ, χ ] can be considered an analogue to equation (A.43) (appendix §A.3.3) i.e. the

structure equation for the Maurer-Cartan form on a Lie group. Since the Maurer-

Cartan form ΘMC was defined as idg ∈ g⊗ Ω1(G), the element χ can be regarded as

the infinite-dimensional analogue of this: the Maurer-Cartan form on G .

With this last lemma, we have established that B̃ ∗, ∗ is a B.R.S. algebra over
Lie (G). We now turn to a sub-complex of B̃ , denoted by B , which is also
a B.R.S. Lie (G)-operation. In the article by Dubois-Violette [6], the author
restricts himself to this sub-complex from the start. The reason for this is that
several isomorphism theorems are not valid for the bigger complex B̃ , and in
fact the sub-complex B is exactly chosen in such a way that the surjectivity of
several isomorphisms is trivial. This has its implications however for the validity
of the final results achieved by Dubois-Violette. We will come to speak of these
implications later on.

The sub-complex B of B̃
Following Dubois-Violette, we define B ∗,∗ as the smallest bigraded differential
subalgebra (with unit) of B̃ ∗,∗ containing the components of ω = A + χ. That
is, B ∗,∗ is the algebra generated by Aα, χα, dAα and dχα:

B ∗,∗ = 〈 1, Aα, χα, dAα, dχα 〉.

Because of the B.R.S. relations (5.9), i.e. (i) δA = −dχ − [ A,χ ] and (ii)
δχ = − 1

2 [ χ, χ ], this subalgebra is closed under δ as well (δAα and δχα are
expressible in the other generating elements). Obviously A ∈ Lie (G)⊗B 1,0 and
χ ∈ Lie (G) ⊗ B 0,1, and hence ω = A + χ ∈ Lie (G) ⊗ B 1, and it still satisfies
the B.R.S. relations. In other words, B ∗,∗ is also a B.R.S. algebra over Lie (G),
and is in fact a sub-complex of B̃ ∗,∗.

5.3 The Weil-B.R.S. algebra A(g)

In this section we will construct the Weil B.R.S. algebra, denoted A(g), over a
given finite-dimensional Lie algebra g, which is a universal object in the cat-
egory of B.R.S. algebras as well as the category of B.R.S. g-operations. The
construction is similar to the Weil algebra W(g) which we described in chapter
3. We start with defining a homomorphism of B.R.S. algebras and of B.R.S.
g-operations.

Definition 5.3.1 A homomorphism of B.R.S. algebras over g is a ho-
momorphism of the underlying bigraded differential algebras, that maps the
connection on the connection. A homomorphism of B.R.S. g-operations
is a homomorphism of B.R.S. algebras which is also a homomorphism of g-
operations.

Similar to the situation with the Weil algebra, described in section §3.2, a B.R.S.
algebra A has a certain subalgebra on which the Weil-B.R.S. algebra is mod-
elled. For this one considers the designated connection ω = A+χ ∈ g⊗A 1, with
A ∈ g⊗A 1, 0 and χ ∈ g⊗A 0, 1, and the elements F = dA + [ A,A ] ∈ g⊗A 2, 0
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and dχ ∈ g ⊗ A 1, 1. Now, one fixes a basis {Eα} of g, and decomposes these
elements as

A = Eα ⊗Aα, F = Eα ⊗ Fα, χ = Eα ⊗ χα, dχ = Eα ⊗ (dχ)α.

The characteristic subalgebra of A is the one generated by the elements {Aα,
Fα, χα, (dχ)α }. Again these elements satisfy certain relations to each other,
and on this subalgebra the Weil-B.R.S. algebra is modelled.

The Weil-B.R.S. algebra A(g) as GDA and B.R.S. g-operation

As a graded algebra, we define A(g) as the tensor product

A(g) = Λg∗ ⊗ Sg∗ ⊗ Λg∗ ⊗ Sg∗, (5.23)

where we apply the even grading to Sg∗ (see Def. A.1.5 in the appendix for
the definition of graded algebra tensor products.) Since Λg∗ and Sg∗ are both
generated by any cobasis {Eα} of g∗, we can easily identify a set of generators
of A(g) and denote these as

Aα = Eα ⊗ 1⊗ 1⊗ 1,

Fα = 1⊗ Eα ⊗ 1⊗ 1,

χα = 1⊗ 1⊗ Eα ⊗ 1,

ψα = 1⊗ 1⊗ 1⊗ Eα.

A(g) is thus the free connected graded-commutative algebra generated by the
Aα’s and the χα’s in degree one, and the Fα’s and ψα’s in degree two. Again,
we interpret these elements as the components of four elements in g⊗ A(g), to
wit

A = Eα ⊗Aα, F = Eα ⊗ Fα, χ = Eα ⊗ χα, ψ = Eα ⊗ ψα.

To define differentials d and δ on A(g) it suffices to define d and δ on the
generating elements of A(g). We do this by defining differentials d and δ on the
elements A, F, χ and ψ in g⊗ A(g), and declaring d(Aα) = (dA)α, . . . , d(ψα) =
(dψ)α. The definitions of dA, dF, dχ, dψ and δA, δF, δχ, δψ reflect the B.R.S.
relations we wish them to satisfy: we set

dA = − 1
2 [A, A ] + F, (5.24)

dF = −[A, F ], (5.25)
dχ = ψ, (5.26)
dψ = 0, (5.27)
δA = −ψ − [A,χ ], (5.28)
δF = [ F, χ ], (5.29)
δχ = − 1

2 [χ, χ ], (5.30)
δψ = [ ψ, χ ]. (5.31)

From equations (5.24) and (5.25) one can infer that A and F will play the
role of algebraic connection and curvature in the Weil-B.R.S. algebra A(g), just
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like they did in the Weil algebra W(g). One also notices that, by definition, the
B.R.S. relations are satisfied by A and χ, cf. equations (5.26), (5.28) and (5.30).

Being the tensor product of graded algebras, the Weil-B.R.S. algebra A(g) is
already equipped with a total grading. We define an underlying bigrading, such
that A(g) turns into a graded-commutative bigraded algebra. We do this by
assigning bidegree (1, 0) to the Aα’s, bidegree (2, 0) to the Fα’s, bidegree (0, 1)
to the χα’s and finally, bidegree (1, 1) to the ψα’s. One can easily check this is
compatible with the total grading, and with our definitions of the differentials d
and δ. It follows that A(g) is a bigraded commutative differential algebra, with
elements A ∈ g ⊗ A1,0(g), F ∈ g ⊗ A2,0(g) and χ ∈ g ⊗ A0,1(g) satisfying the
B.R.S. relations

F = dA + 1
2 [ A,A ] = (d + δ)(A + χ) + 1

2 [A + χ,A + χ ].

We conclude A(g) is a B.R.S. algebra over g with connection A + χ. We now
turn this into a B.R.S g-operation by defining iX and LX on the generating
elements: we set

iX(A) = X, iX(F ) = 0, iX(χ) = 0, iX(ψ) = [ ψ, X ],

and apply our usual convention iX(Aα) = iX(A)α, . . . , iX(ψα) = iX(ψ)α. Since
LX is defined as LX = diX +iXd it is not really necessary to define LX explicitly,
but one can verify LX is given by

LX(A) = [ A,X ], LX(F ) = [ F, X ], LX(χ) = [ χ,X ], LX(ψ) = [ ψ, X ].

Notice that these definitions are in accordance with Lemma 5.1.1 and Lemma
5.1.2, which gave the explicit form of iX and LX on the components of the
algebraic connection A + χ of any B.R.S. g-operation.

The universal property of the Weil-B.R.S. algebra A(g)

As stated in the beginning of this section, the Weil-B.R.S. algebra is a universal
object in the category of B.R.S. algebras as well as the category of B.R.S.
g-operations. Just as the construction of the Weil-B.R.S. algebra A(g) was
analogue to the construction of the Weil algebra W(g), the following proof of the
universal property is entirely similar to the proof of Theorem 3.2.1 concerning
the Weil algebra.

Theorem 5.3.1 The Weil-B.R.S. algebra A(g) over a finite-dimensional Lie al-
gebra g is a universal object in the categories of B.R.S. algebras and B.R.S.
g-operations. That is, for any B.R.S. algebra A over g, there is a unique homo-
morphism of B.R.S. algebras ΦA : A(g) → A . If A is B.R.S. g-operation, then
ΦA is a homomorphism of B.R.S. g-operations.
Proof: (This is Theorem 8 in Dubois-Violette [6].)
Since we will again use the symbols A, F and χ for the arbitrary B.R.S. algebra A ,
we will denote elements of A(g) with a subscript A for clarity, e.g. AA, FA, χA and ψA.

The condition for ΦA to be a homomorphism of B.R.S. algebras is that it maps the
connection on the connection, besides being a homomorphism of bigraded differential
algebras. Let A + χ be the connection on A . Then we have f(Aα

A) = Aα and
f(χα

A) = χα. Since FA = dAA + 1
2

[ AA, AA ] by (5.24) and ψ = dχ by (5.26), and
ΦA commutes with d and the Lie bracket, we have ΦA(F α

A ) = (dA + 1
2

[ A, A ])α and
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ΦA(ψα
A ) = (dχ)α. Being defined on the generating elements of A(g) the homomorphism

ΦA is clearly unique; it is determined by the simple requirement that is should be a
homomorphism of B.R.S. algebras.

Now in the case that A is a B.R.S. g-operation, g operates on A by iX and LX .
By Lemma 5.1.1 and Lemma 5.1.2 we know how iX and LX operate on the elements
A and χ of A and the differentials dA and dχ. This is identical to the action of g on
the elements AA, χA, dAA and dχA of A(g), thus ΦA will commute with respect to iX
and LX . This makes ΦA a homomorphism of B.R.S. g-operations.�

The close relationship between the Weil-B.R.S. algebra A(g) and the Weil alge-
bra W(g) is also evident in the following remark by Dubois-Violette: as graded
differential algebras we have A∗, 0(g) ∼= W(g)⊗1⊗1, and hence A∗, 0(g) is isomor-
phic to W(g) as g-operation. For any B.R.S. g-operation A the sub-complex
A ∗, 0 is an ordinary g-operation16 and hence ΦA : A(g) → A restricted to
A∗, 0(g) will yield the canonical homomorphism ΨW : W(g) → A ∗, 0 described
in §3.2.

5.3.1 Cohomology theorems concerning the Weil-B.R.S.
algebra

In this section we will deal with several cohomological properties of the Weil-
B.R.S. algebra A(g). These cohomological properties of A(g) will be related
to the cohomology of the B complex by an isomorphism theorem which we
introduce in the next section.

For a bigraded algebra such as the Weil-B.R.S. algebra A(g) there are several
cohomology spaces one can consider, for example:

1. H(A(g), d) = A(g)/d(A(g)),

2. H(A(g), δ) = A(g)/δ(A(g)),

3. H(A(g), d + δ) = A(g)/(d + δ)A(g).

These are all well-defined cohomology spaces. In fact, there is one more cohomol-
ogy space of interest to us, as we indicated in the introduction to this chapter:
the so-called δ-cohomology modulo d. For this one considers the modulo space
A(g)/dA(g). Since δ anti-commutes with d this modulo space is stable under δ,
and we can consider the following cohomology, which we call the δ-cohomology
modulo d:

H(A(g)/dA(g), δ).

This cohomology will be discussed in our last chapter, dealing with the descent
equations. We now quote two theorems from [6] which concern the d, δ and
(d + δ)-cohomology of A(g). We include quite detailed proofs: the reason for
this is that the proofs presented in [6] are a bit unsatisfactory and only consist
of a few short statements. Especially concerning Theorem 5.3.3, which will
be a crucial theorem for all further developments, we felt a detailed proof was
appropriate.

Theorem 5.3.2 The d-cohomology and (d+ δ)-cohomology of A(g) are trivial.
Proof: (This is Theorem 9 in Dubois-Violette [6])

16See the remark following the definition of a bigraded g-operation in §5.1.
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One notices that for any t ∈ R the elements Aα, (d + tδ)Aα, χα and (d + tδ)χα form a
free system of homogeneous generators of A(g): we can obtain our normal generators
F α and ψα by

dAα + 1
2
[ A, A ]α = F α

and
(d + tδ)χα + 1

2
t [ χ, χ ]α = dχα + tδχα − tδχα = ψα .

This shows A(g) equipped with the differential d+ tδ is isomorphic to the contractible
algebra

N
α C (Aα, (d + tδ)Aα)⊗ C (χα, (d + tδ)χα) and hence has trivial cohomology

(see Definition A.1.6 in the appendix). To explicitly show this, we construct a con-
tracting homotopy k̂t. We first define its precursor kt: it is the unique anti-derivation
satisfying

ktA
α = 0, kt(d + tδ)Aα = Aα,

ktχ
α = 0, kt(d + tδ)χα = χα.

One can check kt satisfies
�
kt(d + tδ) + (d + tδ)kt

�
(x) = gendeg(x) x for x ∈ A(g)

where gendeg(x) designates the degree of x in the generators {Aα, χα, (d+ tδ)Aα, (d+
tδ)χα}.17 Now if we set k̂t(x) = 1

gendeg(x)
kt(x) then k̂t(d + tδ) + (d + tδ)k̂t = idA, and

hence k̂t is a contracting homotopy for A(g) with differential d + tδ, and hence it has
trivial cohomology with respect to this differential.18 Inserting t = 0 and t = 1 gives
us the theorem. �

Theorem 5.3.3 As a bigraded algebra A(g) is isomorphic to the tensor product
of the contractible algebra ⊕αC (Aα, δAα) and the algebra Asub generated by
elements 1, Fα, χα ∈ A(g), i.e.

A(g) ∼=
(⊕αC (Aα, δAα)

)⊗ 〈1, Fα, χα〉, (5.32)

and the subalgebra Asub = 〈1, Fα, χα〉 identifies with the algebra C (g, Sg∗) of
Lie algebra cochains with values in Sg∗. For every r ∈ N we have

(Ar, ∗(g), δ) ∼= C∗(g, (Sg∗)r). (5.33)

As a consequence, the δ-cohomology of A(g) identifies with the Lie algebra
cohomology C (g, Sg∗) of the Lie algebra g with values in Sg∗. We have

H2k+1,s(A(g), δ) = 0 and H2k,s(A(g), δ) = Hs(g∗, Skg∗), (5.34)

for any k, s ∈ N.
Proof: (This is Theorem 10 in Dubois-Violette [6]. )
First notice that the Aα, δAα, χα and F α generate A(g): they form a free system of
bihomogeneous generators of A(g). To show this we construct the missing ‘ordinary’
generator ψα by ψα = −[ A, χ ]α − δAα (using the B.R.S. relation (5.28)). That gives
us equation (5.32).

Now consider the subalgebra Asub ⊂ A(g) (with unit) generated by the χα and F α:

Asub = 〈 1, χα, F α 〉.
It is stable under δ since we have δF = [ F, χ ] and δχ = − 1

2
[ χ, χ ], cf. equations (5.29)

and (5.30).
The Weil-B.R.S. algebra A(g) considered as a differential algebra with differential

δ is therefore isomorphic to the tensor product
N

α C (Aα, δAα)⊗ (Asub, δ).

17For example: gendeg(Aα1 · χα2 ) = 2 and gendeg( (d + tδ)χα1 ) = 1.
18See Definition A.1.6 in the appendix.
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Recall that the Weil-B.R.S. algebra A(g) was given as graded algebra by A(g) =
Λg∗ ⊗ Sg∗ ⊗ Λg∗ ⊗ Sg∗, and we had F α = 1⊗ Eα ⊗ 1⊗ 1 and χα = 1⊗ 1⊗ Eα ⊗ 1.
We conclude

Asub = 1⊗ Sg
∗ ⊗ Λg

∗ ⊗ 1 ⊂ Λg
∗ ⊗ Sg

∗ ⊗ Λg
∗ ⊗ Sg

∗ = A(g).

In chapter 4 we saw that C (g, Sg∗) identifies with Λg∗ ⊗ Sg∗ as algebra. The usual
grading Ck(g, Sg∗) = Λkg∗ ⊗ Sg∗, can be extended to a bigrading Ck,r(g, Sg∗) =
Λkg∗ ⊗ Srg∗; notice that in that case s is a differential of bidegree (1, 0).

We need to show however that (Claim:) the differential s defined on C (g, Sg∗) ∼=
Λg∗ ⊗ Sg∗ coincides with the differential δ defined on Asub

∼= Λg∗ ⊗ Sg∗.

Proof of the claim.
We check this for our generating elements χα and F α, which correspond to the elements
Eα⊗1 ∈ Λg∗⊗Sg∗ and 1⊗Eα ∈ Λg∗⊗Sg∗ respectively. These in their turn correspond
to (1) the element of C1(g, S0g∗) given by the linear mapping X ∈ g 7→ Xα ∈ R (which
we will designate with χα ∈ C1(g, S0g∗)), and (2) the constant map Eα ∈ C0(g, S1g∗)
(which we will designate with F α ∈ C0(g, S1g∗)).

First consider χα. In Asub we have δχα = − 1
2

[ χ, χ ]α = − 1
2

Cα
βγ χβ · χγ which

corresponds to − 1
2

Cα
βγ (Eβ ∧ Eγ)⊗ 1 ∈ Λ2g∗ ⊗ S0g∗. Considering this as an element

of C2(g, S0g∗), i.e. an antisymmetric multilinear map from g × g to S0g∗, we have
(inserting two basis vectors Ei and Ej)

− 1
2

Cα
βγ (Eβ ∧ Eγ)(Ei, Ej)⊗ 1 = − 1

2
Cα

ij + 1
2

Cα
ji = −Cα

ij . (∗)

Now consider sχα for χα ∈ C1(g, S0g∗). Recalling the definition of the coboundary
operator s cf. (4.2) and inserting two basis vectors Ei and Ej we have

sχα(Ei, Ej) = ρ(Ei)χ
α(Ej)− ρ(Ej)χ

α(Ei)− χα( [ Ei, Ej ] ).

The representation ρ of g on Sg∗ is given by the co-adjoint action described in §3.1.3,
and since χα(Ej) and χα(Ei) are both in S0g∗ the action of g will be trivial and we
have ρ(Ei)χ

α(Ej) = ρ(Ej)χ
α(Ei) = 0. We are left with

sχα(Ei, Ej) = −χα( [ Ei, Ej ] ) = −χα( Ck
ij Ek ) = −Cα

ij ,

which equals (∗). So the differentials coincides for the element χα.
In the same way we tackle F α = 1⊗Eα ∈ Λ0g∗⊗S1g∗. We have δF α = −[ χ, F ]α =

−Cα
βγ χβ · F γ which corresponds to the element −Cα

βγ (Eβ ⊗ Eγ) of Λ1g∗ ⊗ S1g∗.
Considering this as an element of C1(g, S1g∗), i.e. as a linear map from g to S1g∗ we
have (inserting a basis vector Ei)

−Cα
βγ Eβ(Ei)⊗ Eγ = −Cα

iγ Eγ .

This is an element of S1g∗. Inserting another basis vector Ej ∈ g gives us

−Cα
iγ Eγ(Ej) = −Cα

ij . (∗∗)

Now for F α ∈ C0(g, S1g∗). Following the definition of s we have sF α ∈ C1(g, S1g∗)
given by

sF α(Ei) = ρ(Ei)F
α = ρ(Ei)E

α .

This is an element of S1g∗, but to make clear that it equals δF α we insert the ba-
sisvector Ej ∈ g and obtain

ρ(Ei)E
α(Ej) = Eα(− [ Ei, Ej ] ) = Eα(−Ck

ij Ek ) = −Cα
ij ,

which equals (∗∗). The differentials therefore coincide on both χα and F α. Since they
generate Λg∗ ⊗ Sg∗, they coincide on the whole algebra. End of proof of the claim.
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We have shown s and δ coincide as differentials on Λg∗⊗Sg∗, and hence (Asub, δ) and
(C (g, Sg∗), s) are isomorphic as graded differential algebras. For every r ∈ N we have
an isomorphism (Ar,∗

sub , δ)
∼= C∗(g, (Sg∗)r), where Ar, s

sub = Ar, s(g) ∩ Asub. This proves
(5.33). By the Künneth formula we obtain the desired consequence

H2k+1,s(A(g), δ) = 0 and H2k,s(A(g), δ) = Hs(g∗, Skg∗).

Notice H2k+1,s(A(g), δ) = 0 since S2k+1g∗ = {0}: this because we applied the even
grading to Sg∗.�

Corollary 5.3.1 As a consequence of Theorem 5.3.3 we have, for k ∈ N

H2k, 0(A(g), δ) = 1⊗ (Skg∗)inv ⊗ 1⊗ 1, H2k+1, 0(A(g), δ) = {0}. (5.35)

(This result will be used in Chapter 6, Theorem 6.1.3.)

Proof: Let n ∈ N. It follows from Theorem 5.3.3 that if X ∈ An, 0(g) defines a non-
trivial cohomology class in [X] ∈ Hn, 0(A(g), δ) then X ∈ Asub. Now An, 0(g) ∩ Asub =
1 ⊗ Sg∗ ⊗ 1 ⊗ 1. Thus X is of the form 1 ⊗ P ⊗ 1 ⊗ 1, with P ∈ Sg∗. We conclude
n = 2k if P ∈ Skg∗; or X = 0 otherwise. By the isomorphism H2k,s(A(g), δ) ∼=
Hs(g, Skg∗) we have P ∈ H0(g, Skg∗). But by definition of s on C (g, Sg∗) we know
H0(g, Skg∗) = (Skg∗)inv, thus P ∈ (Skg∗)inv. Since H2k,0(A(g), δ) = Z(A2k,0(g), δ)
every cohomology class has an unique representative δ-cocycle, which proves (5.35).
�

We now finished our last cohomological theorem, and move on to the isomor-
phism theorem, which links the Weil-B.R.S. algebra A(g) to the B complex.

5.3.2 Isomorphism theorem

As we discussed in the introduction to this chapter, the approach taken by
Dubois-Violette is to concentrate on the Weil-B.R.S. algebra and link its coho-
mology to the δ-cohomology modulo d of the B complex by an isomorphism the-
orem. In this section we discuss the isomorphism theorem presented in Dubois-
Violette [7]. This is one of the few cases in which Dubois-Violette provides a
quite detailed proof, which we will quote here. There reason for including the
proof (instead of referring to it) is that we need to indicate the steps in the proof
that need to be generalized if one wishes to consider anomalies on a non-trivial
bundle.

Theorem 5.3.4 The unique canonical homomorphism ΦA : A(Lie (G)) → B
induces isomorphism of vector spaces

Ar, s(Lie (G)) ∼= B r, s ,

for any r, s ∈ N with r ≤ dim(M).
Proof: (This is Lemma 2 in [6]; Proposition 8.5 in [7])
In [6] there is no proof presented, but fortunately in [7] there is. We will more or less
quote it here.

The Weil-B.R.S. algebra A(Lie (G)) is freely generated by the elements {Aα, χα, }
plus their d and δ differentials, while B ∗, ∗ was defined as the subcomplex in eB ∗, ∗

generated by the elements Aα, χα ∈ eB (and closed under d and δ). Hence the homo-
morphism from A(Lie (G)) to B ∗, ∗ is surjective by the definition of B ∗, ∗ as subalgebra

of eB ∗, ∗. (This is the main reason for introducing B ∗, ∗ in the first place.) We will now
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prove the homomorphism is injective by proving that a basis for any bihomogeneous
space Ar,s(g) (r ≤ dim M) is mapped to a set of linear independent elements in B r,s.

Since we introduced elements A, F and χ both for the Weil-B.R.S. algebra A(Lie (G))
and the complex B , we will indicate all elements of A(Lie (G)) with a subscript A for
clarity. If we fix r, s ∈ N, r ≤ dim M a basis for Ar,s(g) is given by all elements of the
form

Aα1
A · · ·Aαa

A (F β1
A )m1 · · · (F βb

A )mbχγ1
A · · ·χγc

A (dχδ1
A )n1 · · · (dχ

δd
A )nd ,

where all exponents are such that this element is part of Ar,s(g), thus

a + 2

i=bX
i=1

mi +

j=dX
j=1

nj = r and c +

j=dX
j=1

nj = s ,

and α1 < α2 < .. < αa, β1 < β2 < .. < βb, γ1 < γ2 < .. < γc, δ1 < δ2 < .. < δd with
αa, βb, γc and δd smaller than dim(g).

We now need to show that the functional of the gauge potential and Lie algebra
elements (ghost fields) in B r,s corresponding to this basis element is linearly inde-
pendent from the other functionals. Remembering that an element of B r,s is a linear
map apot(M)× (Lie (G ))s → Ωr(M), we do this by choosing a point x0 ∈ M , a gauge
potential a ∈ apot(M) and a ghost field ξ ∈ Lie (G ) such that at x0 ∈ M we have

a(x0)
α1 · · · a(x0)

αa(f (x0)
β1)m1 · · ·(f (x0)

βb)mbξ(x0)
γ1 · · · ξ(x0)

γc

· (dξ(x0)
δ1)n1 · · · (dξ(x0)

δd)nd 6= 0,

while all the other products vanish (i.e. all functionals in B r,s corresponding to other
basis elements of Ar,s(g) vanish at x0 ∈ M when the same gauge potential a(x) and
ghost field ξ(x) are inserted). We thus must construct a gauge potential a and ghost
field ξ satisfying this condition. For this, we notice that apot(M) is identifiable with
g⊗Ω1(M) since we assumed the underlying principal bundle P (G, M) was trivial. Now,
given a g-valued 1-form a0 at x0 and a g-valued 2-form f0 at x0 there is a g-valued 1
form a(x) on M such that a(x0) = a0 and f (x0) = da(x0) + 1

2
[ a(x0), a(x0) ] = f0, and

that similar consideration applies to χ(x) and dχ(x). Thus, there is a gauge potential
a(x) ∈ apot(M) (with field strength f (x)) such that (i) aα1(x0) = dx1, .., aαa(x0) =
dxa and the other components of a(x0) vanish; (ii) for the corresponding field strength
f (x0) = da(x0) + 1

2
[ a(x0), a(x0) ] we have

f β1(x0) =
1

m1!

a+m1X

k=a+1

dxk ∧ dxk+m1 , .., f βb(x0) =
1

mb!

a+
Pb−1

i=1 2mi+mbX

k=a+
Pb−1

i=1 2mi+1

dxk ∧ dxk+mb

and the other components of f (x0) vanish; (iii) there is a Lie algebra element (ghost
field) ξ ∈ Lie (G ) (identified with Map (M, Lie (G))) such that ξγ1(x0) = ξγ1 , .., ξγc(x0) =
ξγc and the other components of ξ(x0) vanish, and (iv)

dξδ1(x0) =
1

n1!

a+2
Pb−1

i=1 2mi+n1X

k=a+2
Pb−1

i=1 mi+1

dxkξδ1
k , . . . ,

dξδd(x0) =
1

nd!

a+2
Pb−1

i=1 2mi+
Pd

j=1 njX

k=a+2
Pb−1

i=1 mi+
Pd−1

j=1 nj+1

dxkξ
δd
k

and the other components of dξ(x0) vanish. Here the xk are local coordinates around x0

on M , and the ξγλ and ξδσ
k are linearly independent. Such a configuration satisfies the

above conditions, and hence the functionals in B r,s corresponding to the basis elements
of Ar,s(g) are linearly independent. We conclude the canonical homomorphism ΦA :
Ar,s(g) → B r,s is an isomorphism for r ≤ dim M . �
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For those who wonder at the condition r ≤ dim M we just remark that B r,s =
{0} for r > dim M since Ωr(M) is trivial in that case. Since the canonical
unique homomorphism ΦA : A(Lie (G)) → B (described in Theorem 5.3.1) was
a homomorphism of bigraded algebras, we have the following corollary.

Corollary 5.3.2 The canonical homomorphism ΦA : A(Lie (G)) → B induces
isomorphisms of their δ-cohomology and their δ-cohomology modulo d in bide-
gree (r, s) for r ≤ dim M . (This is Corollary 8.6 in [7].)
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Chapter 6

Descent equations

The cohomological descent method is an algorithm used in gauge field theories to
obtain elements of the cohomology H1(Lie (G ),P loc). The method is described
in various articles and books; apart from Dubois-Violette [6][7] good references
are Kastler and Stora [11], and de Azcárraga and Izquierdo [2]. In fact the
construction of a double cohomological chain that is used in this process is
possible in any bigraded algebra with two nilpotent anti-commuting differentials
(d2 = 0, δ2 = 0 and dδ = −δd) which has trivial (d + δ)-cohomology.1

The Weil-B.R.S. algebra will serve as an example. We are interested in
elements of H2k,1(A(g), δ-mod d) with 2k = dim M . We start our cohomological
chain with an element P (F ) ∈ A2k+2, 0(g), an element of A2k+2(g) with respect
to the total grading, that is a (d + δ)-cocycle: (d + δ)P (F ) = 0.

Since the (d+δ)-cohomology is trivial, we know P (F ) is a coboundary, hence
there exists an element Q ∈ A2k+1(g) such that (d + δ)Q = P (F ). If we split
this element in its bihomogeneous components,

Q =
⊕

r+s=2k+1

Qr,s with Qr,s ∈ Ar,s(g),

the condition (d + δ)Q = P (F ) gives rise to a set of equations known as the
descent equations:2

dQ2k+1,0 = P (F ),
δQ2k+1,0 + dQ2k,1 = 0,

δQ2k,1 + dQ2k−1,2 = 0,

...
δQ1,2k + dQ0,2k+1 = 0,

δQ0,2k+1 = 0.

A schematic figure (Figure 1) may illustrate the situation.

1A recent article by Langmann [12] describes a generalization of the cohomological descent
method which can be applied in non-commutative geometry.

2Compare to [11] p. 473.
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Figure 1 A schematic illustration of the descent equations. In this
figure, the squares may be interpreted as the homogeneous spaces Ar,s(g) of
bidegree (r, s) of the Weil-B.R.S algebra A(g). The elements are all put in
their corresponding bihomogenous space. The element Q ∈ A2k+1(g) can be
considered as the diagonal running from Q0,2k+1 to Q2k+1,0, just like P (F ) ∈
A2k+2(g) (as an element in the singular graded algebra) can be seen as the
diagonal consisting of all the zero’s and the element P (F ) ∈ A2k+2,0(g).

These equations define the elements Q2k+1−p,p as δ-cocycles modulo d for 0 ≤
p ≤ 2k + 1, i.e. Q2k+1−p,p ∈ H2k+1−p,p(A(g), δ-mod d). The third relation is of
particular interest, since it defines Q2k,1 as an element of H2k,1(A(g), δ-mod d).
Since Ar,s(g) was isomorphic (as bigraded algebra) to B r,s for (r, s) ∈ N2 and
r ≤ dim M , this also provides an element Q2k,1 ∈ H2k,1(B , δ-mod d), the co-
homology that is also relevant to candidate anomalies according to Dubois-
Violette.

6.1 The cohomological descent in A(g)

The route which Dubois-Violette follows in order to prove the surjectivity of
the cohomological descent procedure in the Weil-B.R.S. algebra A(g) is to ap-
ply a fundamental theorem from homological algebra. The theorem is used to
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construct several long exact sequences which relate the H (A(g), δ-mod d) co-
homology and the H(A(g), δ) cohomology. Since we explicitly computed the
δ-cohomology of A(g) in §5.3.1 we can also identify most of the bihomogeneous
spaces of the H (A(g), δ-mod d) cohomology complex.

In the first subsection we prove several preliminary results, which are then
used in the second subsection where we deal with surjectivity theorem stated by
Dubois-Violette. This theorem entails that there exists an isomorphism from
(Sk+1g∗)inv, the invariant polynomials on g, to H2k,1(A(g), δ-mod d).

6.1.1 Preliminary results

We first briefly introduce the concepts from homological algebra which we will
need, and then move on and apply them to the Weil-B.R.S. algebra.

Homological algebra

Though the following concepts have more general definitions, we concentrate
on the case of interest to us and restrict ourselves to differential complexes; i.e.
graded vector spaces equipped with a differential (see §A.1.3).

Let us consider an infinite sequence of differential complexes { (Vi, di) }i∈Z,

. . .Vi−1
φi−1−→ Vi

φi−→ Vi+1
φi+1−→ . . . ,

where the φi are all homomorphisms of differential spaces (also called chain
maps). The φi are linear maps homogeneous of degree zero (φi(Vn

i ) ⊂ Vn
i+1)

and we have φi−1 ◦ di−1 = di ◦ φi−1 for all i ∈ Z. Such an infinite sequence
is called exact at Vi if im(φi−1) = ker(φi). If it is exact for every i ∈ Z than
the sequence is called a long exact sequence. In general a sequence (not
necessarily infinite) is called exact if it is exact at every space occurring in the
sequence.

In the long exact sequences we will encounter, we will try to identify exact
subsequences of the form

(. . . −→) 0 −→ A
φ−→ B −→ 0 (−→ . . .),

since this implies that A and B are isomorphic. Exactness at A states ker(φ) =
{0} (φ is injective); exactness at B states im(φ) = B (φ is surjective), hence φ
is an isomorphism.

A short exact sequence is a sequence of the form

0 −→ A
i−→ B

p−→ C −→ 0,

that is exact everywhere. Notice that, similar to the sequence above, exactness
at A implies the injectivity of i : A → B and exactness at C implies p : B → C
must be surjective.3 Exactness at B implies C is isomorphic to B/i(A).

3The i stands for inclusion, and p for projection.
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We assumed A,B and C were differential complexes: let dA, dB and dC

denote their respective differentials. Since both i and p are natural with respect
to the differentials, they induce maps in cohomology (see §A.1.7)

i] : Hn(A) → Hn(B), p] : Hn(B) → Hn(C). (for n ∈ N)

One now has the following theorem which puts the cohomology spaces H(A),H(B)
and H(C) together in a long exact sequence.

Theorem 6.1.1 Fundamental theorem of homological algebra. Given a
short exact sequence of differential space

0 −→ A
i−→ B

p−→ C −→ 0,

there exists a linear mapping ∂ : Hn(C) → Hn+1(A), called the connecting
homomorphism, such that the following long sequence is exact

. . . −→ Hn(A) i]

−→ Hn(B)
p]

−→ Hn(C) ∂−→ Hn+1(A) i]

−→ . . . .

Proof: (Dubois-Violette [6] Proposition 1; Bott and Tu [4] Ch. 1 §1.)
We just recall the definition of ∂. Let [c] be a cohomology class in Hn(C), and let
c ∈ Cn be a representative cocycle (dC(c) = 0). Since p : B → C was surjective there
is an element b ∈ Bn such that p(b) = c. Since c was a cocycle and p commutes with
the differential, we have p(dBb) = dCp(b) = dCc = 0, thus dBb ∈ ker(p). Exactness
at B implies ker(p) = im(i) thus ∃a ∈ An+1 such that i(a) = dBb. The element a is
a cocycle since i(dA(a)) = dB(i(a)) = d2

Bb = 0 and i was injective. Hence a defines
a cohomology class [a] ∈ Hn+1(A). We now set ∂([c]) = [a] ∈ Hn+1(A). One can
verify by a similar argument that this definition of ∂ is independent of the chosen
representative c of [c] ∈ Hn(C). �

Application to the Weil-B.R.S. algebra

In order to apply Theorem 6.1.1 to our situation, we first need to construct a
short exact sequence. In this sequence we put the following spaces:

1. A(g). Naturally, for every r ∈ N, Ar,∗(g) forms a differential complex with
differential δ.

2. dA(g). For every r ∈ N, (dA(g))r, ∗ = dA(g) ∩ Ar, ∗(g) is a graded vec-
tor space. It is closed under the nilpotent differential δ : (dA(g))r,s →
(dA(g))r,s+1 since d and δ anti-commute: if da ∈ dA(g), then δ(da) =
d(−δa) ∈ dA(g). Hence (dA(g))r,∗ is a differential complex for every
r ∈ N.

3. A(g)/dA(g). Since dA(g) was closed under δ, the modulo space A(g)/dA(g)
also is a differential space with differential δ. For every r ∈ N we set
(A(g)/dA(g))r, ∗ = Ar, ∗(g)/dA(g) as a graded vector space. This makes
(A(g)/dA(g))r, ∗ a differential complex for every r ∈ N.
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The chain maps connecting these spaces are obvious. We define i : dA(g) →
A(g) as the inclusion i(a) = a, and p : A(g) → (A(g)/dA(g)) is the projection
p(a) = [a] ∈ (A(g)/dA(g)). Hence we have the following short exact sequence

0 −→ dA(g) i−→ A(g)
p−→ A(g)/dA(g) −→ 0.

More precisely: for every r ∈ N we have

0 −→ (dA(g))r, ∗ i−→ Ar, ∗(g)
p−→ (A(g)/dA(g))r, ∗ −→ 0. (6.1)

By Theorem 6.1.1 this short exact sequence induces a long exact sequences for
every r ∈ N. In order to reduce notational weight, we will use the following
shorthands (cf. [6]) H(δ) = H(A(g), δ) and H (δ-mod d) = H (A(g), δ-mod d);
and write

. . . −→ Hr,s(dA(g), δ) i]

−→ Hr,s(δ)
p]

−→Hr,s(δ-mod d)
∂−→ Hr,s+1(dA(g), δ) i]

−→ . . . .

(6.2)

Now we use the following Lemma to identify certain parts of H (δ-mod d) and
H(dA(g), δ).

Lemma 6.1.1 There exists an isomorphism

(A(g)/dA(g))r,s ∼= (dA(g))r+1,s ,

for r + s ≥ 1, induced by the map Qr,s 7→ (−1)rdQr,s. The isomorphisms
commute with the δ-differential so one has

Hr,s(δ-mod d) ∼= Hr+1,s(dA(g), δ) for r, s ∈ N : r + s ≥ 1.

Proof: Take r, s ∈ N such that r + s ≥ 1. For d : Ar,s(g) → Ar+1,s(g) we have
ker(d) = d(Ar−1,s(g) since the d-cohomology of A(g) is trivial (we proved this in
Theorem 5.3.2). From Ar,s(g)/ ker(d) ∼= im(d) it follows that

Ar,s(g)/dAr−1,s(g) ∼= d[Ar,s(g)] = (dA(g))r+1,s .

If we include a factor (−1)r to the differential and define φ : Ar,s(g) → Ar+1,s(g) as
φ : Qr,s 7→ (−1)rdQr,s the isomorphism still holds, while the anti-commutativity of d
and δ turns into commutativity. Hence we have φ ◦ δ = δ ◦ φ and for the cohomology
spaces we have Hr,s(δ-mod d) ∼= Hr+1,s(dA(g), δ). �

We now insert this isomorphism in the long exact sequence given by (6.2)
and obtain (for r ∈ N)

. . . −→ Hr−1,s(δ-mod d) i]

−→Hr,s(δ)
p]

−→ Hr,s(δ-mod d)

∂−→ Hr−1,s+1(δ-mod d) i]

−→ Hr,s+1(δ)
p]

−→ . . . .

(6.3)

Since Ar,s(g) = {0} if r < 0 or s < 0, the cohomology spaces Hr,s(δ) and
Hr,s(δ-mod d) will be trivial as well in that case. It follows from (6.3) that if
we take r = 0 we have isomorphisms

H0, s(δ-mod d) ∼= H0, s(δ),
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for every s ∈ N (induced by p]). If we look at the starting point of these long
sequences, we can verify they start off with either

0 −→ H1,0(δ)
p]

−→ H1,0(δ-mod d) ∂−→ . . . ,

if r = 1; or

0 −→ Hr−1,0(δ-mod d) i]

−→ Hr,0(δ)
p]

−→ . . . ,

for r ≥ 2.
As we indicated in the previous section we can use subsequences of the form

0 → A → B → 0 to establish isomorphisms. Except from the observation that

Hr,s(δ) = Hr,s(δ-mod d) = {0} for r or s < 0,

we can use Theorem 5.3.3 on the δ-cohomology of A(g) which stated

H2k+1,s(δ) = {0} H2k,s(δ) ∼= Hs(g, Skg∗) for k, s ∈ N.

Using this knowledge we obtain the following isomorphisms from the long exact
sequences given by (6.3). This theorem also concludes our preliminary work,
and in the next subsection we turn to the descent equations in A(g).

Theorem 6.1.2 The following isomorphisms exist:

1. H0,s(δ-mod d) ∼= Hs(g), ∀s ∈ N (induced by p]).

2. H2k+2,0(δ-mod d) = {0}, ∀k ∈ N (induced by i]).

3. H2k+1,0(δ-mod d) ∼= H0(g, Sk+1g∗) = (Sk+1g∗)inv, ∀k ∈ N.
(induced by i]).

4. H2k+1,s(δ-mod d) = H2k,s+1(δ-mod d), ∀k, s ∈ N (induced by ∂).

Proof: (This is Theorem 12 in [6], but no proof/verification is included.)
First of all recall the long exact sequence given by (*) (6.3)

. . . −→ Hr−1,s(δ-mod d)
i]

−→Hr,s(δ)
p]

−→ Hr,s(δ-mod d)

∂−→ Hr−1,s+1(δ-mod d)
i]

−→ Hr,s+1(δ)
p]

−→ . . . .

(1.) Take r = 0, then Hr−1,s(δ-mod d) = {0} and Hr−1,s+1(δ-mod d) = {0}, thus (*)
gives us

. . . −→ {0} i]

−→ H0,s(δ)
p]

−→ H0,s(δ-mod d)
∂−→ {0} i]

−→ . . .

and hence H0,s(δ-mod d) ∼= H0,s. By Theorem 5.3.3 we have H0,s = Hs(g, S0g∗) =
Hs(g) (since S0g∗ = R) thus H0,s(δ-mod d) ∼= Hs(g) for s ∈ N.

(2.) Let k ∈ N. Use (*) with r = 2k + 3 and s = −1. Since H2k+3,−1(δ-mod d) = {0}
and H2k+3,0(δ-mod d) = {0} (by Theorem 5.3.3) we have

. . .
p]

−→ H2k+3,−1(δ-mod d) = {0} ∂−→ H2k+2,0(δ-mod d)
i]

−→ H2k+3,0(δ) = {0} p]

−→ . . . ,

from which it follows that H2k+2,0(δ-mod d) = {0}.
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(3.) Use (*) with r = 2k + 2 and s = −1. Since H2k+2,−1(δ-mod d) = {0} and
H2k+2,0(δ-mod d) = {0} (by 2.) we get

. . .
p]

−→ H2k+2,−1(δ-mod d) = {0} ∂−→H2k+1,0(δ-mod d)
i]

−→ H2k+2,0(δ)

p]

−→ H2k+2,0(δ-mod d) = {0} . . . ,

from which we obtain H2k+1,0(δ-mod d) ∼= H2k+2,0(δ). By Theorem 5.3.3 we know
H2k+2,0(δ) = H0(g, Sk+1g∗). But H0(g, Sk+1g∗) consists of all the elements in Sk+1g∗

that are mapped to zero by the coboundary operator s as defined in 4.1.1. Since this
coboundary operator was defined using the action of g on Sg∗, these elements are
precisely the invariant elements of {P ∈ Sk+1g∗|LXP = 0 ∀X ∈ g}, i.e. (Sk+1g∗)inv.
Thus we have H2k+1,0(δ-mod d) ∼= (Sk+1g∗)inv.

(4.) Use (*) with r = 2k + 1. We know H2k+1,s(δ) = {0} and H2k+1,s+1(δ) = {0} by
Theorem 5.3.3, thus (*) gives us

. . .
i]

−→ H2k+1,s(δ) = {0} p]

−→H2k+1,s(δ-mod d)
∂−→ H2k,s+1(δ-mod d)

i]

−→ H2k+1,s+1(δ) = {0} p]

−→ . . . ,

from which it follows that H2k+1,s(δ-mod d) ∼= H2k,s+1(δ-mod d) for all k, s ∈ N. This
finishes our proof. �

From this theorem, the fourth statement will be the most important to us: for
every k, s ∈ N the map induced by ∂ is an isomorphism

H2k+1,s(δ-mod d) ∼= H2k,s+1(δ-mod d).

In the following lemma we will identify the mapping ∂ : Hr,s(δ-mod d) →
Hr−1,s+1(δ-mod d) as being simply the map

[Qr,s] 7→ [Qr−1,s+1],

where Qr,sAr,s(g) is a representative of a cohomology class [Qr,s] ∈ Hr,s(δ-mod d),
and [Qr−1,s+1] is the cohomology class induced by the element Qr−1,s+1 ∈
Ar−1,s+1(g), for which we have

δQr,s + dQr−1,s+1 = 0.

Such an element exists since Qr,s is a δ-cocycle modulo d.

Lemma 6.1.2 Let Qr,s ∈ Ar,s(g) be the representative of a δ-modulo d coho-
mology class [Qr,s] ∈ Hr,s(δ-mod d). For every element Qr−1,s+1 ∈ Ar−1,s+1(g)
such that

δQr,s + dQr−1,s+1 = 0,

the element Qr−1,s+1 defines itself a δ-modulo d cohomology class

[Qr−1,s+1] ∈ Hr−1,s+1(δ-mod d).

Moreover, if Qr,s is a δ-coboundary modulo d, i.e. [Qr,s] = [0] ∈ Hr,s(δ-mod d),
than Qr−1,s+1 is a δ-coboundary modulo d as well.
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This defines [Qr,s] 7→ [Qr−1,s+1] as a well defined mapping between Hr,s(δ-mod d)
and Hr−1,s+1(δ-mod d), and it coincides with the connecting homomorphism

∂ : Hr,s(δ-mod d) → Hr−1,s+1(δ-mod d)

which we encountered in the long exact sequence given by (6.3) in the previous
subsection.
Proof: First we notice that since Qr,s is a δ-cocycle modulo d (by definition) there
always will exists an element Qr−1,s+1 ∈ Ar−1,s+1(g) such that

(∗) δQr,s + dQr−1,s+1 = 0.

We need to prove Qr−1,s+1 is a δ-cocycle modulo d. If we apply δ to (∗) we obtain

δ(dQr−1,s+1) = d(−δQr−1,s+1) = 0.

Since the d-cohomology of A(g) is trivial (Th. 5.3.2) there exists an element Qr−2,s+2 ∈
Ar−1,s+2(g) such that

dQr−2,s+2 = −δQr−1,s+1 ⇒ δQr−1,s+1 + dQr−2,s+2 = 0.

Thus Qr−1,s+1 is a δ-cocycle modulo d and defines an element [Qr−1,s+1] in the coho-
mology space Hr−1,s+1(δ-mod d).

Now suppose Qr,s is a δ-coboundary modulo d, i.e. there exist elements Lr,s−1 ∈
Ar,s−1(g) and Lr−1,s ∈ Ar−1,s(g) such that

Qr,s = δLr,s−1 + dLr−1,s.

If we apply δ we obtain (∗∗) δQr,s = δdLr−1,s = −dδLr−1,s. If we have an element
Qr−1,s+1 ∈ Ar−1,s+1(g) satisfying (∗), then combining (∗) and (∗∗) leads to

0 = dQr−1,s+1 − dδLr−1,s+1 = d
�
Qr−1,s+1 − δLr−1,s+1 �.

Hence, again by Th. 5.3.2, there exists an element Lr−2,s+1 ∈ Ar−2,s+1(g) such that
dLr−2,s+1 = Qr−1,s+1 − δLr−1,s+1. That is,

Qr−1,s+1 = δLr−1,s+1 + dLr−2,s+1 ,

which defines Qr−1,s+1 as a δ-coboundary modulo d. Hence [Qr−1,s+1] = [0] ∈
Hr−1,s+1(δ-mod d).

That the map Qr,s 7→ Qr−1,s+1 induces a well-defined map in δ-modulo d coho-
mology is now clear: let Qr,sAr,s(g) be a representative of [Qr,s] ∈ Hr,s(δ-mod d), and
let Kr,s be another representative. Then Kr,s = Qr,s + Lr,s with Lr,s a δ-coboundary
modulo d. We have

[Kr−1,s+1] =[Qr−1,s+1 + Lr−1,s+1] = [Qr−1,s+1] + [Lr−1,s+1]

= [Qr−1,s+1] + [0] = [Qr−1,s+1] ∈ Hr−1,s+1(δ-mod d)

and thus Kr,s and Qr,s define the same cohomology class in Hr−1,s+1(δ-mod d).
That the induced map is exactly the connecting homomorphism ∂ follows from

checking the definition of ∂, as given in Theorem 6.1.1. We will identify ∂([Qr,s])
with [Qr,s] a cohomology class in Hr,s(δ-mod d). Since Hr,s(δ-mod d) is the δ-
cohomology of the modulo space A(g)/dA(g) a representative is technically a class
〈Qr,s〉 ∈ (A(g)/dA(g))r,s. We usually pick an element Qr,s ∈ Ar,s(g) to represent
this class (this is possible because of the obvious surjectivity of p). For this element
we have δQr,s + dQr−1,s+1 = 0 for some element dQr−1,s+1 ∈ (dA(g))r,s+1, that
is a δ-cocycle in dA(g). Thus [dQr−1,s+1] ∈ Hr,s+1(dA(g), δ). By the isomorphism
Hr,s(δ-mod d) ∼= Hr+1,s(dA(g), δ) described in Lemma 6.1.1, this also gives an coho-
mology class in Hr−1,s+1(δ-mod d) defined by [Qr−1,s+1].

Thus ∂([Qr,s]) = [Qr−1,s+1] ∈ Hr−1,s+1(δ-mod d). �
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6.1.2 A description of the descent method in A(g)

We have now obtained all the results we need to describe the descent method
in A(g) and prove the surjectivity theorem.
As described in the introduction to this chapter, a cohomological chain is started
from an element P (F ) ∈ A2k+2, 0(g) that is a (d + δ)-cocycle: (d + δ)P (F ) = 0.

One obtains this element by choosing an invariant polynomial P ∈ (Sk+1g∗)inv.
Similar to the construction of the Weil homomorphism described in Chapter 3,
we insert the curvature F ∈ g ⊗ A2,0(g) in this polynomial which gives us the
element

P (F ) = P (F, . . . , F︸ ︷︷ ︸
k + 1 times

) = 1⊗ P ⊗ 1⊗ 1 ∈ A2k+2,0(g).

(Conform the interpretation of P as a map P : (g ⊗ A(g))k+1 → A(g)) as
described in §3.1.)

We will now show that P (F ) is a d-cocycle and δ-cocycle in A(g), and hence
a (d + δ)-cocycle as well. To prove this we will rely on the work we did in
Chapter 3 on the Weil algebra, which is imbedded in the Weil-B.R.S. algebra,
as we remarked in §5.3.

Lemma 6.1.3 Let P ∈ (Sk+1g∗)inv, and P (F ) = 1 ⊗ P ⊗ 1 ⊗ 1 ∈ A2k+2,0(g).
Then

dP (F ) = 0 and δP (F ) = 0.

Proof: Since (A∗, 0(g), d) is isomorphic to the Weil algebra (W∗(g), d), we can interpret
P (F ) as the element 1⊗ P ∈ W(g). Corollary 3.3.2 then assures us dP (F ) = 0.

For δP (F ) = 0 we go back to the definitions of δ and LX on A(g), as described in
§5.3. We notice that δ(F ) = [ F, χ ] and LXF = [ F, X ] from which it follows that

δ(F α) =
X

γ

χγ · LEγ (F α).

This holds for every element in the subalgebra 1⊗Sg∗⊗1⊗1 ⊂ A(g) generated by the
F α’s, since δ and LX both act as a derivation on this subalgebra (the elements of which
all have even degree). Since P was an invariant polynomial, we have LXP (F ) = 0 by
Lemma 3.4.4 and thus δP (F ) =

P
γ χγ · LEγ P (F ) = 0.�

We can now continue with the construction of the cohomological chain. Since
the (d + δ)-cohomology of A(g) is trivial (by Theorem 5.3.2), we know P (F ) is
a coboundary, hence there exists an element Q ∈ A2k+1(g) such that (d+δ)Q =
P (F ). If we split this element in its bihomogeneous components,

Q =
⊕

r+s=2k+1

Qr,s with Qr,s ∈ Ar,s(g),

the condition (d + δ)Q = P (F ) gives rise to the descent equations:

dQ2k+1,0 = P (F ),
δQ2k+1,0 + dQ2k,1 = 0,

δQ2k,1 + dQ2k−1,2 = 0,

...
δQ1,2k + dQ0,2k+1 = 0,

δQ0,2k+1 = 0.
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These equations define the elements Q2k+1−p,p as δ-cocycles modulo d for 0 ≤
p ≤ 2k + 1, i.e. Q2k+1−p,p ∈ H2k+1−p,p(A(g), δ-mod d).

The achievement of the previous section was the observation that the coho-
mology classes thus defined are related by

[Q2k−p,p+1] = ∂([Q2k+1−p,p]) for 0 ≤ p ≤ 2k,

with ∂ : H2k+1−p,p(δ-mod d) → H2k−p,p+1(δ-mod d) the connecting homomor-
phism. We will formalize this result in the following lemma.

Lemma 6.1.4 The procedure described above provides a well-defined map
j k,p+1 : (Sk+1g∗)inv → H2k+1−p,p(δ-mod d) given by

j k,p+1 : P 7→ [Q2k−p,p+1],

for 0 ≤ p ≤ 2k + 1, and we have j k,p+1 = ∂ ◦ j k,p.
Proof: (This is a lemma described at p. 561, [6])
That j k,p+1 is well-defined follows from the following observation: let Q, K ∈ A2k+1(g)
such that (d + δ)Q = (d + δ)K = P (F ). Then (d + δ)(Q − K) = 0 so there exists
an element L ∈ A2k(g) such that (d + δ)L = Q −K by Theorem 5.3.2. This implies
[Q2k+1−p,p] = [K2k+1−p,p] ∈ H2k+1−p,p(δ-mod d) for 0 ≤ p ≤ 2k + 1. That j k,p+1 =
∂ ◦ j k,p follows from Lemma 6.1.2. �

Now let us look at the start of the cohomological chain. It is the cohomology
class of H2k,1(δ-mod d) that is of interest to us, since it was linked to the δ-
modulo d cohomology class H2k,1(B , δ-mod d) by the isomorphism described in
§5.3.2. Theorem 6.1.2 parts (3)-(4) tells us

H2k+1,0(δ-mod d) ∼= (Sk+1g∗)inv and H2k+1,0(δ-mod d) ∼= H2k,1(δ-mod d).

We conclude H2k,1(δ-mod d) ∼= (Sk+1g∗)inv, and hence it is no surprise that the
map j k,0 : (Sk+1g∗)inv → H2k,1(δ-mod d) is an isomorphism. It is the content
of the following theorem.

Theorem 6.1.3 Surjectivity and injectivity theorem of the descent
method in A(g). The map

j k,1 : (Sk+1g∗)inv → H2k,1(δ-mod d)

given by
j k,1 : P 7→ [Q2k,1]

(with [Q2k,1] defined as above) is an isomorphism.
Proof: We know H2k+1,0(δ-mod d) ∼= H2k,1(δ-mod d) by Theorem 6.1.2 (4), thus we
only need to prove the map j k,0 : (Sk+1g∗)inv → H2k+1,0(δ-mod d) is an isomorphism.

Starting from an invariant polynomial P ∈ (Sk+1g∗)inv we could always ob-
tain a cohomology class in H2k+1,0(δ-mod d); the question to answer is if, start-
ing with a cohomology class Q2k+1,0 ∈ H2k+1,0(δ-mod d), there exists a polynomial
P ∈ (Sk+1g∗)inv such that dQ2k+1,0 = P (F ). The answer to this question is positive.

As the zeroth homology space of (A(g)/dA(g), δ), the space H2k+1,0(δ-mod d)
just consists of the δ-cocycles modulo d in (A(g)/dA(g))2k+1,0. Since there are no
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cohomologous elements, every cohomology class [Q2k+1,0] ∈ H2k+1,0(δ-mod d) has
just one unique representative 〈Q2k+1,0〉 ∈ (A(g)/dA(g))2k+1,0. By the nilpotency of
d (d2 = 0) the d-differential of this class, d(〈Q2k+1,0〉) = dQ2k+1,0, is a well-defined
element of A2k+2,0(g). Now, dQ2k+1,0 ∈ A2k+2,0(g) is a d-cocycle (by d2 = 0) as well
as an δ-cocycle: δdQ2k+1,0 = −d(δQ2k+1,0) = −d(0) = 0. We now refer to Corollary
5.3.1 to Theorem 5.3.3, which stated that

H2k+2,0(A(g), δ) = Z(A2k+2,0(g), δ) = 1⊗ (Sk+1g∗)inv ⊗ 1⊗ 1.

(Z(A2k+2,0(g), δ) denoting the δ-cocycles in A2k+2,0(g).) We conclude dQ2k+1,0 ∈
A2k+2,0(g) is of the form 1⊗P ⊗1⊗1 for some P ∈ (Sk+1g∗)inv; i.e. dQ2k+1,0 = P (F )
for this P ∈ (Sk+1g∗)inv. This finished our proof. �

It is this theorem that states the surjectivity and injectivity of the descent
method in A(g), and we will discuss the implications of the theorem in the last
two sections of this thesis.

6.2 Remarks

We have almost come to the end of this thesis, but before going on to the
conclusion, we would like to discuss two topics that might otherwise remain
unclear. First we look at a question left open up until now: we address the
case of the possible non-triviality of the ambient principal bundle P (G,M) and
investigate what is left of the cohomological descent method in that case. We try
to indicate what, in our opinion, is unsatisfactory in Dubois-Violette’s treatment
of this case and sketch his main line of argument. Second, we briefly comment
on some results obtained by Dubois-Violette in the articles [6][7] which we have
not included in our thesis.

6.2.1 Non-triviality of the bundle P (G,M)

For a non-trivial bundle P (G,M) on can still set up a cohomological descent
method, as is sketched at the end of §7 in Kastler and Stora [11] and §10.9 in
de Azcárraga and Izquierdo [2]. However, the only article that truly goes into
this case instead of just sketching how things could be done is the article by
Mañes, Stora and Zumino [13]. Since gauge potentials are not globally defined
anymore on a non-trivial bundle, one supposes all elements formerly depending
on a ∈ apot(M) now depend on a connection ω ∈ C (P ). To be able to use the
cohomological descent method one needs to fix a background connection ω0: the
physical interpretation of this is that there exists a background field (given by
ω0). One also assumes that all objects depending formerly on a ∈ apot(M) now
also depend on ω0: for instance, the quantum action functional Γ(a, ψ; ξ) turns
into Γ(ω, ω0, ψ; ξ). In this case the cohomology space of candidate anomalies is
still H1(Lie (G ),P loc), but these anomalies are anomalies in the presence of a
background field ω0.

In order to generalize his constructions to non-trivial principal bundles P (G,M)
Dubois-Violette introduces the following complexes:

1. The complex B̃ ∗, ∗(P ). This complex is very similar to the B̃ ∗ ∗ complex,
only with the space of gauge potentials apot(M) replaced with the space
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C (P ) of connections on P, and Ω(M) replaced by Ω(P ). The complex
B̃ ∗, ∗(P ) is also a bigraded algebra, whose homogeneous space B̃ r,s(P ) of
bidegree (r, s) is defined as the space of differential operators of C (P ) ×
(Lie (G ))s in Ωr(P ) which are polynomial in C (P ) (i.e. as a function of
A ∈ C (P ) only depending on finitely many derivatives of A) and s-linear
antisymmetric in (Lie (G ))s. We thus define the complex B̃ ∗,∗(P ) as

B̃ r,s(P ) = { ω : C (P )× (Lie (G ))s → Ωr(P ) | with ω polynomial in

C (P ) and multilinear & antisymmetric in (Lie (G ))s }.

2. The complex B̃ ∗, ∗(M×G). This is just the complex B̃ (P ) in the case that
the principal bundle P (G, M) is trivial (P = M×G).

For these complexes one defines a product and differential d and δ in exactly
the same way as for B̃ ∗, ∗ (only here one uses the representation of Lie (G ) on
C (P ) described in §2.4.1). Notice that for B̃ ∗, ∗(P ) one can define the elements
A and χ satisfying the B.R.S. relations in almost the same way as we did for
B̃ ∗, ∗. For P (G, M) non-trivial we had

G ∼= MapAd (P,G) and Lie (G ) ∼= MapAd (P, Lie (G)).

We can thus define A ∈ Lie (G) ⊗ B̃ 1,0(P ) interpreted as map A : C (P ) →
Lie (G)⊗ Ω1(P ) as

A : ω 7→ ω, ω ∈ C (P ).

(Since C (P ) ⊂ Lie (G)⊗ Ω1(P )).
Because we know MapAd (P, Lie (G)) ⊂ Lie (G) ⊗ Ω0(P ) we can set χ ∈

Lie (G)⊗ B̃ 0,1(P ), interpreted as a map χ : C (P )×Lie (G ) → Lie (G)⊗Ω0(P ),
as

χ : (ω, ξ) 7→ ξ, ξ ∈ Lie (G ).

The element A and χ thus defined will satisfy the B.R.S. relations and B̃ ∗, ∗(P )
(and B̃ ∗, ∗(M×G)) form B.R.S. algebras (over Lie (G)).4 Similar to the B̃ ∗, ∗
complex one can define sub-complexes B ∗, ∗(P ) ⊂ B̃ ∗, ∗(P ) and B ∗, ∗(M×G) ⊂
B̃ ∗, ∗(M×G) as the sub-complexes generated by the elements A and χ. The
sub-complexes are also B.R.S. algebras.

Being a B.R.S. algebra, there is a canonical homomorphism ΦA : A(Lie (G)) →
B ∗, ∗(P ) by Theorem 5.3.1. Now the difficulty lies in the fact that Dubois-
Violette claims that the isomorphism of A(Lie (G)) to B can be extended to
B (P ) without proving this result. First, he remarks that the isomorphism
Ar, s(Lie (G)) ∼= B r, s for r ≤ dim M extends to an isomorphism

Ar, s(Lie (G)) ∼= B r, s(M×G), r ≤ dim M.

This can be proved reasonably easy and is not so remarkable in view of Propo-
sition 2.2.3, which stated that for P (G,M) trivial apot(M) ∼= C (M×G): hence
we can substitute apot(M) by C (M× G) in the B ∗, ∗ complex and retain the
isomorphism.

4In fact one can show that eB ∗, ∗(P ) forms a B.R.S. Lie (G)-operation cf. Definition 5.1.3.
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However, the next step employed by Dubois-Violette is saying that the iso-
morphism Ar, s(Lie (G)) ∼= B r, s(M×G) can be extended to an isomorphism

Ar, s(Lie (G)) ∼= B r, s(P ), r, s ∈ N, r ≤ dim M, (6.4)

(Th. 11 in [6]) with the following justification as proof:

Since all this comes from local considerations (in fact jets of finite
orders) and since a principal G-bundle is locally trivializable one has
the following theorem. ([6], p. 544.)

As we noted earlier, the lack of an explicit proof makes this statement rather
unsatisfactory. If one looks closely at the proof of Theorem 5.3.4, one observes
that if one wishes to use the same structure of proof for (6.4) one needs to
construct a global connection ω fulfilling a whole set of conditions; that such an
ω ∈ C (P ) exists is by no means obvious.

Finally, we would like to remark that even if the isomorphism of (6.4) would
hold, then the result of Dubois-Violette for the surjectivity and injectivity of the
descent method would have the same limited validity as the trivial bundle case
due to the restriction of Dubois-Violette to the subcomplex B ∗, ∗(P ) ⊂ B̃ ∗, ∗(P ).
We will discuss the implications of this restriction in our Conclusion (§ 6.3).

6.2.2 Further results by Dubois-Violette

While studying the proofs presented in this chapter, one could possibly wonder
about the use of homological algebra. The results needed for Theorem 6.1.3
could probably be attained without resorting to homological algebra. However,
Dubois-Violette puts the homological algebra methods and results of Theorem
6.1.2 to a much broader use. His strategy is as follows: using Theorem 6.1.2 he
constructs what is called a exact couple; that is, an exact triangle of vector spaces
with two different vector spaces (one appearing twice) and linear mappings
between them. From such an exact couple one can construct a derived exact
couple and, repeating the process, one obtains for each r ∈ N the rth derived
exact couple. From this chain of derived exact couples one can construct a
spectral sequence: that is, a sequence of differential spaces (Er, dr)r∈N such that
Er+1 = H(Er, dr). Using all this theory, Dubois-Violette shows that for the
δ-modulo d cohomology of A(g) one has5

Hev, ∗
+ (A(g), δ-mod d) ∼=

⊕

r∈N
pr(Er) ,

where the pr are linear mappings and the Er are the vector spaces of a certain
spectral sequence.

In case of a reductive Lie algebra6 it is possible to give a explicit form of the
spaces pr(Er) such that one can ‘compute’ the H (A(g), δ-mod d) cohomology
space.

5[6], p. 559.
6A reductive Lie algebra is the direct product of a semi-simple Lie algebra and an abelian

Lie algebra.
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6.3 Conclusion

In this thesis we have attempted to give a thorough treatment of the generaliza-
tion of various concepts from the principal bundle setting to a more algebraic
theory of Lie algebra operations. These generalization were put forward in the
articles by the physicists Dubois-Violette [6], Kaster and Stora [11] without too
many proofs or motivational remarks, and we hope to have clarified most of
these definitions. In particular, we provided a proof of the generalized Weil
homomorphism in the algebraic setting, which was missing in [6]. On these
generalizations proposed by Dubois-Violette we only had one point of critique:
it is unclear to the author if the generalization of the group of gauge trans-
formations AutB(A ) for a g-operation A (Definition 2.5.1) supplies the usual
group of gauge transformations G if one takes the key example from which the
generalizations arise (that is, A = Ω(P ) for a principal bundle P (G,M)). To
provide a meaningful generalization this should be the case, of course.

The second part of our thesis concerned the cohomological descent method.
We followed the constructions proposed in Dubois-Violette [6] and proved an
isomorphism theorem (Theorem 6.1.3) which showed the cohomological descent
method is surjective (and injective) under certain conditions. The most impor-
tant question we had concerned the validity of this result and we will address
this question now.
At the beginning of Chapter 5 we gave a brief outline of the argument applied by
Dubois-Violette, which we will recapitulate here. After identifying the cohomol-
ogy space H1(Lie (G ),P loc) as the space of candidate anomalies, we showed that
we could equivalently consider the cohomology space H2k, 1(B̃ , δ-mod d) in the
δ-modulo d cohomology of the B̃ ∗, ∗ complex introduced by Dubois-Violette. In
this complex we identified a subcomplex B ∗, ∗ ⊂ B̃ ∗, ∗ and showed that it was
isomorphic to the Weil-B.R.S. algebra A(g) (with g = Lie (G)). As a conse-
quence the δ-modulo d cohomology H (B , δ-mod d) of B ∗, ∗ was isomorphic to
H (A(g), δ-mod d), the δ-modulo d cohomology of the Weil-B.R.S. algebra A(g).

In this chapter (i.e. Chapter 6) we discussed the cohomological descent
method: an algorithm used to obtain elements of the H2k,1(δ-mod d) coho-
mology space, starting off with an invariant polynomial P ∈ (Sk+1g∗)inv. We
saw that in the Weil-B.R.S. algebra A(g) we could accommodate the coho-
mological descent and for A(g) this method yielded all cohomology classes of
H2k,1(A(g), δ-mod d) (Theorem 6.1.3). By the established isomorphism, this re-
sult also holds for the B ∗, ∗ complex. The question left open is how to interpret
this result.

As remarked before, the inclusion i : B → B̃ yields a map

i] : H(B /dB , δ) → H(B̃ /dB̃ , δ),

which need not be injective nor surjective. Thus, at first sight, though the
space H2k,1(B̃ /dB̃ , δ) identifies with H1(Lie (G ),P loc) (the cohomology space
of candidate anomalies), the result of Dubois-Violette obtained for H(B /dB , δ)
has no direct implications for the surjectivity of the descent method in general.
Although the larger complex B̃ is also a B.R.S. algebra, and hence there exists
a canonical unique homomorphism of A(g) into B̃ it is clear from the proof of
Theorem 5.3.4 that this will never be an isomorphism; in fact the subcomplex
B could just as well be defined as the image of A(g) in B̃ . The results obtained
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for B ∗, ∗ are therefore not easily transferred to the larger B̃ ∗, ∗ complex, which
makes the application of Dubois-Violette’s surjectivity theorem quite difficult.

However, much depends on the exact form of the anomalies: if one could
show that the cocycles in H1(Lie (G ),P loc) representing anomalies correspond to
elements of the H2k,1(B , δ-mod d) cohomology space (instead of the more gen-
eral H2k,1(B̃ , δ-mod d) cohomology space), then Dubois-Violette’s result would
be applicable. Referring to our brief sketch at the start of Chapter 5, this would
mean that the variation of the quantum action functional ∆ = δΓ(a, ψ; ξ) and
the elements δΓ loc that could be added by finite renormalization, should all be
local functionals of a ∈ apot(M) and ξ ∈ Lie (G ) such that in the differential
forms that make up the local functionals only a, ξ and their d and δ derivatives
appear. This would imply that the elements corresponding to ∆(a, ψ; ξ) and
δΓ loc in B̃ ∗, ∗ are in fact in B ∗, ∗ and hence that it would be the cohomology
H2k,1(B , δ-mod d) that is of interest for anomalies.

Dubois-Violette himself has the following to say about this (in [7]):

We have computed all possible anomalous terms which are (exte-
rior) products of gauge potential 1-forms, ghost field and their d
and δ differentials. It would be desirable to extend these results
to more general expressions containing arbitrary derivatives of the
fields since, in principle, such expressions could occur in some models
(although no non-trivial examples are known up to now). We shall
apply our results to specific examples in a forthcoming publication.
(Conclusion of [7], pp. 121-122)

And in [6], following the definition of the subcomplex B ∗, ∗ he explains (here
H̃(δ,mod (d)) = H (B̃ , δ-mod d))

Of course the elements of B ∗, ∗ are very special types of differential
operators, for instance they are first order at most, and it would be
nice to compute H̃(δ,mod (d)); the H̃k, 0(δ mod (d)) contain more
elements than the ones coming from B k, 0, the Yang-Mills lagrangian
for instance, but one may expect that it is essentially all what is lost
by working with B ∗, ∗ instead of B̃ ∗, ∗. ([6], p. 529)

Our conclusion is that it depends on the physical model that is used and the
exact form of the anomalies whether the result of Dubois-Violette (concerning
the surjectivity and injectivity of the descent method) is applicable. The answer
to this question lies beyond our (mathematically oriented) knowledge and hence
we leave it to physicists to judge whether the results of Dubois-Violette on the
cohomological descent method are conclusive.
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Appendix A

Preliminaries

A.1 Algebras

In this section we define the different kinds of algebras we will encounter. As
in Dubois-Violette [6], all definitions are standard except that all algebras are
assumed to be associative and unital. So if we speak of an algebra we mean an
associative and unital algebra.1

Definition A.1.1 Algebras.
An algebra A is a vector space over a field K (with usually K = R or C),
together with a bilinear multiplication · : A ×A → A . We will assume all our
algebras to be associative, i.e. x · (y · z) = (x · y) · z ∀x, y, z ∈ A . We also
assume they are unital, i.e. ∃1 ∈ A : 1 · x = x · 1 = x ∀x ∈ A .

On a graded algebra there exists a direct sum decomposition

A =
⊕

n∈N
A n ,

and the multiplication satifies

A n ·A m ⊂ A n+m.

Elements of A n are called homogeneous elements of degree n, and we will
write deg x = n for x ∈ A n.
A graded-commutative algebra is a graded algebra with a multiplication
that satisfies

x · y = (−1)nmy · x, x ∈ A n, y ∈ A m,

or, which is the same, xy = (−1)(deg x)(deg y)yx.

Definition A.1.2 Graded algebra endomorphisms.
Consider a graded algebra A = ⊕A n. A linear mapping L : A → A is called
homogeneous of degree k (k ∈ Z) if

L[A n] ⊂ A n+k ∀n ∈ N.

1References for this section: [6], [10] (Vol. II, Ch. 0). For differential graded Lie algebras:
see appendix [11].
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A derivation of A is a homogeneous linear mapping of even degree of A into
itself (an endomorphism) which satisfies the Leibniz rule; also known as the
derivation property:

θ(x · y) = θ(x) · y + x · θ(y), ∀x, y ∈ A . (A.1)

An anti-derivation2 is a homogeneous linear endomorphism δ of A of odd
degree, satisfying

δ(x · y) = δ(x) · y + (−1)nx · δ(y), ∀x ∈ A n, y ∈ A . (A.2)

Derivation and anti-derivations are also called graded derivations. We denote
the set of graded derivations of degree k on A with Der(k)(A ); so if α ∈
Der(k)(A ) then it is a derivation if k is even, and an anti-derivation if k is
odd. We can merge equations (A.1) and (A.2) together in a general graded
derivation property for a graded derivation α ∈ Der(k)(A ) of degree k:

α(x · y) = α(x) · y + (−1)nkx · α(y), ∀x ∈ A n, y ∈ A . (A.3)

Definition A.1.3 Differential spaces and (co)homology
Let V be a vector space, and d : V → V a linear mapping. If d satisfies d2 = 0
then V is called a differential (vector) space. If V = A is an algebra and d
is a derivation, i.e. d satisfies (A.1), then A is called a differential algebra.
In any case d is called the differential.

Let (V, d) be a differential space. We can define the homology H(V, d)
of V by H(V, d) = (Ker d)/(Im d). In general this will be a vector space. If
V = A is a differential algebra, then H(A , d) will be an algebra, and is called
the cohomology of A . When A is a graded algebra the definitions of the
differential and cohomology are slightly different, so we treat this in the next
definition.

For a graded vector space V = ⊕NVn, a differential is nilpotent linear
map d : V → V, which decomposes as a set of nilpotent linear maps dn : Vn →
Vn+1. The pair (V, d) is also called a differential complex. The induced
cohomology is also a graded vector space given by H(V, d) = ⊕NHn(V, d) with
Hn(V, d) = (Ker dn)/(Im dn−1).

Definition A.1.4 Graded differential algebras. Cohomology algebras.
Let A be a graded algebra. A differential on A is an anti-derivation of degree
+1 which satisfies d2 = 0. A together with a differential d is called a graded
differential algebra, or GDA for short.

Now we can define the cohomology of A in the usual way. If dx = 0
(x ∈ kerd) for x ∈ A we call x a cocycle. The set of cocycles Z(A ) is a
graded subalgebra of A , with Zn(A ) = Z(A ) ∩A n. The set of coboundaries
is B(A ) = dA . It is a graded two-sided ideal in A with grading Bn(A ) =
B(A ) ∩A n. The graded algebra

H(A ) =
⊕

n∈N
Hn(A ), Hn(A ) = Zn(A )/Bn(A ),

is called the cohomology algebra of A , with Hn(A ) the n-th cohomology
space. If A is a graded-commutative differential algebra, then H(A ) is graded-
commutative as well.

2Sometimes called a skew-derivation.
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Definition A.1.5 The tensor product of graded algebras.

Let A1 and A2 be graded algebras. We can equip the vector space3A1 ⊗ A2

with the grading

(A1 ⊗A2)n =
n⊕

m=0

A m
1 ⊗A n−m

2 , (A.4)

and the product

(x1 ⊗ x2) · (y1 ⊗ y2) = (−1)mnx1y1 ,⊗x2y2 (A.5)

for x1 ∈ A1, x2 ∈ A m
1 , y1 ∈ A n, y2 ∈ A . With this grading and product

A1 ⊗ A2 has become a graded algebra called the tensor product of the
graded algebras A1 and A2. If A1 and A2 were graded-commutative, so is
A1 ⊗A2.

If A1 and A2 are differential algebras with differentials d1 and d2 respec-
tively, we can make A1 ⊗A2 a differential algebra by defining:

d(x1 ⊗ x2) = d1x1 ⊗ x2 + (−1)nx1 ⊗ d2x2 , (A.6)

for x1 ∈ A1 and x2 ∈ A2. For cohomology the Künneth formula holds, which
expresses the naturality of the cohomology functor w.r.t. the algebra tensor
product:

H(A1 ⊗A2) = H(A1)⊗H(A2). (A.7)

In particular, one has Hn(A1 ⊗A2) =
⊕n

m=0 Hm(A1)⊗Hn−m(A2).
If one calls to mind the algebra Ω(M) of (real or complex valued) differential

forms on a manifold M , one notices that this a graded-commutative differential
algebra, with the wedge product ∧ and exterior differential d. The cohomology
H(Ω(M)) is the de Rham cohomology, and often denoted H∗

DR(M). One of the
main aims of this thesis is to translate the machinery available for the algebra
Ω(P ) of differential forms on the total space P of a principal bundle P (G, M)
to arbitrary algebras A .

Definition A.1.6 Connected, free, minimal and contractible algebras.
Let A be a graded-commutative algebra over K. If A 0 = K and A = K⊕A +

with A + = ⊕n≥1A n we call A connected. This terminology comes from the
example above, when A = Ω(M) and H0

DR(M) = Kk, with k the number of
connected components of the manifold M .

A connected graded-commutative algebra A is called free if A is finitely
generated by a set of homogeneous elements {eα} of A + which are free of
algebraic relations except for graded-commutativity. If so, every element of A +

can be written as a linear combination of products of the eα’s.
Let A be a graded-commutative differential algebra which is connected and

free. If
dA ⊂ A + ·A + (A.8)

we call A minimal.
Next we consider the graded-commutative differential algebra C (x, dx) gen-

erated by one single element x. It is obviously free. If x has odd degree x2 = 0
3If A1 and A2 are algebras over the field K, the tensor product A1 ⊗K A2 is understood.

We will omit this notation, since confusion is unlikely.
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because of graded-commutativity. A basis for C (x, dx) is then given by the
elements

{1, x, dx, xdx, dx2, . . . , (dx)n, x(dx)n, . . .}.
If the degree of x is even, dx has odd degree, so (dx)2 = 0. In that case a basis
is the set

{1, x, dx, x2, xdx, . . . , xn+1, xndx, . . .}.
These two cases have in common that all cocycles in the algebra C (x, dx) are
coboundaries, whatever the degree of the generating element x. So the coho-
mology H(C (x, dx)) satisfies

H0(C (x, dx)) = K, Hn(C (x, dx)) = {0}, n ≥ 1. (A.9)

In [6] a contractible differential algebra C is defined as the tensor product of
algebras of the type above:

C = C (x1, dx1)⊗ . . .⊗ C (xp, dxp). (A.10)

For such algebra we also have (A.9), i.e. H0(C ) = K and H+(C ) = {0} because
of the Künneth formula (A.7). This terminology is also derived from the case
C = Ω(M) with M a contractible (homotopically trivial) manifold, in which
case H+

DR(M) = {0}.
To show a GDA (A , d) has trivial cohomology, one can construct a con-

tracting homotopy k : A n → A n−1. It is an anti-derivation of degree -1, for
which one has kd + dk = idA . Equipped with a contracting homotopy one can
prove every cocycle α ∈ A (dα = 0) is a coboundary by showing d(k(α)) = α.

Next we define the natural notions of algebra homomorphisms and isomor-
phisms, and the corresponding notions for differential algebras and graded al-
gebras.

Definition A.1.7 Algebra morphisms.
Let A and B be two algebras over the same field K. An algebra homomor-
phism Ψ : A → B is a K-linear mapping that is natural with respect to the
algebra multiplication:

Ψ(x · y) = Ψ(x) ·Ψ(y), ∀x, y ∈ A .

An algebra isomorphism is a bijective algebra homomorphism. An algebra
automorphism is an isomorphism of an algebra to itself.

For differential algebras these notions are defined in the same way, only
they should be commute with the differential d. Let (A , dA) and (B, dB) be
differential algebras. For Ψ : A → B we should have

Ψ(dA α) = dB Ψ(α).

For graded (differential) algebras the additional condition is that the homomor-
phisms should be homogeneous of degree zero.

Homomorphisms of differential algebras induce linear mappings in cohomol-
ogy. In our example we have Ψ] : H(A , dA) → H(B, dB), defined by

Ψ]([α]) = [Ψ(α)].
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One can easily verify this is a well-defined mapping. If the cohomology spaces
are algebras, then Ψ] will be an algebra homomorphism. If they are graded
algebras then Ψ] will be homogeneous of degree zero.
We denote the set of automorphisms of an algebra A with Aut(A ).

Definition A.1.8 Bigraded algebras.
A bigraded algebra is an associative algebra A which has a bigrading

A =
⊕

(r,s)∈N2

A r,s ,

and a product which respects this bigrading

A r,s ·A r′,s′ ⊂ A r+r′,s+s′ , ∀r, r′, s, s′ ∈ N.

We could also extend the definition to Z2-graded algebras, by allowing (r, s) ∈ Z2

instead of N2. However, in this thesis we deal with bigraded algebras A for
which A r,s = {0} if r < 0 or s < 0. We will take this as a general definition.

The definitions in Def. (A.1.1) and Def. (A.1.2) can be easily adjusted to
this situation. An element x ∈ A r,s is called bihomogeneous of bidegree
(r,s). If a linear mapping L : A → A satisfies

L[A r,s] ⊂ A r+k,s+l , ∀(r, s) ∈ N2,

it is called bihomogeneous of degree (k,l).
A bigraded algebra allows a natural total grading for which it is a “normal”

graded algebra. Take
A n =

⊕
r+s=n

A r,s .

The notions related to normal graded algebras therefore also apply to bigraded
algebras. The elements of A n will be called homogeneous of total degree
n, and an element x ∈ A r,s of bidegree (r, s) thus has total degree r + s.
Furthermore a bigraded algebra will be called (bigraded) commutative iff. it is
graded-commutative with respect to the total grading.

Now consider the case that there are two anti-commuting anti-derivations
d1,0 and d0,1 on the bigraded algebra A , with d1,0 : A r,s → A r+1,s of bidegree
(1, 0) and d0,1 : A r,s → A r,s+1 of bidegree (0, 1) satisfying (d1,0)2 = (d0,1)2 = 0.
If we define d = d1,0 + d0,1 then d will be a anti-derivation of degree +1 with
respect to the total degree:

d : A n → A n+1,

and since d1,0 and d0,1 anti-commute, i.e. d1,0d0,1 = −d0,1d1,0, we have

d2 = (d1,0 + d0,1)(d1,0 + d0,1)
= (d1,0)2 + d1,0d0,1 + d0,1d1,0 + (d0,1)2

= 0.

So d is a differential on A with respect to the total grading. If such d1,0 and
d0,1 (and hence d) exist, A is called a bigraded differential algebra.

Notice that for a bigraded algebra A the subspaces A ∗,0 = ⊕A n,0 and
A 0,∗ = ⊕A 0,n are closed under multiplication and hence are graded subalge-
bras. If A is a bigraded differential algebra, then (A ∗,0, d1,0) and (A 0,∗, d0,1)
are both graded differential algebras with differential d1,0 and d0,1 respectively.
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A.1.1 Differential graded Lie algebras

Definition A.1.9 Differential graded Lie algebra.
A differential graded Lie algebra L , or DGLA for short, is a graded differential
algebra (GDA) L which has a product [·, ·] : L ×L → L that satisfies

[x, y] = (−1)nm+1[y, x], x ∈ L n, y ∈ L m, (A.11)

and

(−1)np[x, [y, z]] + (−1)mn[y, [z, x]] + (−1)pm[z, [x, y]] = 0, (A.12)

with x ∈ L n, y ∈ L m, z ∈ L p.
Such a product is called a graded Lie bracket and is therefore denoted by

a bracket instead of a dot (·). Equation (A.11) generalizes the normal antisym-
metry of a Lie bracket on a Lie algebra, and property (A.12) is known as the
graded Jacobi identity.

The key example of a differential graded Lie algebra is the algebra g⊗Ω(M)
of g-valued differential forms on a manifold M , with g a Lie algebra. It is a
special case of the following lemma (with A = Ω(M)).

Lemma A.1.1 Let A be a graded-commutative differential algebra (GCDA),
with product (·) and differential d, and g a Lie algebra. Then g ⊗ A is a
differential graded Lie algebra (DGLA), with the following grading

(g⊗A )n := g⊗A n ∀n ∈ N, (A.13)

the following product [·, ·] : (g⊗A )× (g⊗A ) → (g⊗A )

[X ⊗ α, Y ⊗ β] = [X, Y ]⊗ (α · β), X, Y ∈ g, α, β ∈ A , (A.14)

(the dot in (α · β) denoting the product in A );
and differential d : (g⊗A )n → (g⊗A )n+1 defined by

d(X ⊗ α) = X ⊗ (dα), X ∈ g, α ∈ A n . (A.15)

Remark: Note that we just defined the product and differential on elements X⊗α ∈
g⊗A , but a general element S ∈ g⊗A is a finite sum of these elements:

S =
X

i

Xi ⊗ αi , Xi ∈ g, αi ∈ A .

The product and differential are defined on these general elements by linearity.

Proof: First we prove d is a differential on g⊗A . We still have d2 = 0 because this
is true for d on A . It is also obviously a homogeneous linear mapping of degree +1.
We only need to show it satisfies the anti-derivation property; so let A = X ⊗ α, B =
Y ⊗ β ∈ g⊗A with X, Y ∈ g and α, β ∈ A , then

d
�

[A, B]
�

= d
�

[X ⊗ α, Y ⊗ β]
�

= d
�
[X, Y ]⊗ (α · β)

�

= [X, Y ]⊗ � d(α · β)
�

= [X, Y ]⊗ � dα · β + (−1)nα · dβ
�

= [X, Y ]⊗ �dα · β�+ (−1)n[X, Y ]⊗ �α · dβ
�

= [X ⊗ (dα), Y ⊗ β] + (−1)n[X ⊗ α, Y ⊗ (dβ)]

= [d(X ⊗ α), Y ⊗ β] + (−1)n[X ⊗ α, d(Y ⊗ β)]

= [dA, B] + (−1)n[A, dB],
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which is exactly (A.2) for the graded Lie bracket as product (·).
Next we show the product satisfies (A.11). Take again A = X⊗α ∈ (g⊗A )n, B =

Y ⊗ β ∈ (g⊗A )m with X, Y ∈ g and α ∈ A n, β ∈ A m, then

[A, B] = [X ⊗ α, Y ⊗ β]

= [X, Y ]⊗ � α · β �

= −[Y, X]⊗ � α · β �

= −[Y, X]⊗ � (−1)mnβ · α �

= (−1)mn+1 [Y, X]⊗ �β · α �

= (−1)mn+1 [Y ⊗ β, X ⊗ α]

= (−1)mn+1 [B, A].

Now we are left with the graded Jacobi identity. Let A, B be as above, and let
C = Z ⊗ γ ∈ (g⊗A )p with Z ∈ g and γ ∈ A p. Now consider (A.12)

(−1)np[A, [B, C]] + (−1)mn[B, [C, A]] + (−1)pm[C, [A, B]] = 0.

For computational convenience we will start out with an equivalent expression that is
obtained from the above equation by multiplying the whole expression with (−1)np,
such that the first factor (−1)np disappears ((−1)np(−1)np = (−1)2np = 1) and we
get

(−1)np[A, [B, C]] + (−1)mn[B, [C, A]] + (−1)pm[C, [A, B]] = 0

⇔ [A, [B, C]] + (−1)np(−1)mn[B, [C, A]] + (−1)np(−1)pm[C, [A, B]] = 0

⇔ [A, [B, C]] + (−1)n(p+m)[B, [C, A]] + (−1)p(m+n)[C, [A, B]] = 0.

Now using αβγ = (−1)n(p+m)βγα and αβγ = (−1)p(m+n)γαβ (by graded-commutativity)
we can prove

[A, [B, C]] + (−1)n(m+p)[B, [C, A]] + (−1)p(m+n)[C, [A, B]]

= [X, [Y, Z]]⊗ αβγ + (−1)n(m+p)[Y, [Z, X]]⊗ βγα + (−1)p(m+n)[Z, [X, Y ]]⊗ γαβ

= [X, [Y, Z]]⊗ αβγ + [Y, [Z, X]]⊗ αβγ + [Z, [X, Y ]]⊗ αβγ

= ([X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]])⊗ αβγ

= 0⊗ αβγ

= 0,

in the end using the ordinary Jacobi identity [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0
of the Lie algebra g. This proves the algebra g⊗A is a DGLA. �

Corollary A.1.1 The algebra g ⊗ Ω(M) of g-valued differential forms on a
manifold M , with grading, product and differential defined as in Lemma (A.1.1)
is a DGLA, and satisfies properties (A.11) and (A.12).

We also prove the following useful lemma, which allows us to extend graded
derivations on A (a GDA) to g⊗A (a DGLA).

Lemma A.1.2 Let A be a GDA, g a Lie algebra.
Then if δ : A n → A n+k is a graded derivation of degree k on A we have:

id⊗ δ : (g⊗A )n → (g⊗A )n+k is a graded derivation of degree k on g⊗A .

If g is non-abelian the converse statement is also true.
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Proof: We assume δ ∈ Der(k)(A ). Let A = X⊗α ∈ (g⊗A )n and B = Y ⊗β ∈ (g⊗A )
with X, Y ∈ g and α ∈ A n, β ∈ A . Then, using the graded derivation property (A.3)
for δ we have

(id⊗ δ)( [A, B] ) = (id⊗ δ)( [X ⊗ α, Y ⊗ β] )

= (id⊗ δ)( [X, Y ]⊗ ( α · β ))

= [X, Y ]⊗ δ( α · β )

= [X, Y ]⊗ (δα · β + (−1)nkα · δβ)

= [X, Y ]⊗ (δα · β) + (−1)nk[X, Y ]⊗ (α · δβ)

= [X ⊗ δα, Y ⊗ β] + (−1)nk[X ⊗ α, Y ⊗ δβ]

= [(id⊗ δ)A, B] + (−1)nk[A, (id⊗ δ)B].

This proves the first part; now for the converse we can use the above equations. We
know

(id⊗ δ)( [A, B] ) = [(id⊗ δ)A, B] + (−1)nk[A, (id⊗ δ)B].

So if we chose X, Y ∈ g such that [X, Y ] 6= 0 (here we use g is non-abelian), and α ∈
A n, β ∈ A arbitrary (and take again A = X⊗α ∈ (g⊗A )n and B = Y ⊗β ∈ (g⊗A ))
it follows from above equations that

[X, Y ]⊗ δ( α · β ) = [X, Y ]⊗ (δα · β + (−1)nkα · δβ),

which implies δ(α · β) = δα · β + (−1)nkα · δβ for arbitrary α, β ∈ A . �

Notice that the condition that g should not be abelian necessary for the converse
statement in Lemma A.1.2 is the same as saying that the DGLA g⊗A should
not be trivial: if g were abelian (i.e. [X,Y ] = 0 ∀X, Y ∈ g) the product on
g⊗A (the graded Lie bracket) would be trivially zero, and so g⊗A would be
a trivial algebra on the vector space g⊗A .

Although the notation (id ⊗ δ) for the graded derivation on g ⊗A is more
precise, we will often abbreviate this to δ, and write

δ(X ⊗ α) := X ⊗ (δα),

just as we did for the differential d in Lemma A.1.1.

Furthermore we wish to point out that the Lie algebra g is imbedded in
g⊗A since we assumed A to be unital. Hence we have

X ∈ g ↪→ X ⊗ 1 ∈ g⊗A , ∀X ∈ g,

and we will often write X for X ⊗ 1. More generally, for any (unital) GDA A
over K we have the ground field K imbedded in A 0 by c ∈ K 7→ c · 1 ∈ A 0. We
prove the differential d is zero on these elements by the following small lemma.

Lemma A.1.3 Let A be a unital GDA over K, and let c := c · 1 ∈ A 0 for
c ∈ K. Then

d(c) = d(c · 1) = 0.

Proof: by definition the differential d is K-linear on A , and also an anti-derivation.
So we have for all x ∈ A (c ∈ K)

c · d(x) = d(c · x) = d(c) · x + c · d(x),

which implies d(c) = 0 for all c ∈ K. �
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Corollary A.1.2 d(X) = 0 for elements X = X ⊗ 1 ∈ g ⊗ A with g ⊗ A a
DGLA. This follows from d(X⊗1) = X⊗d(1) = X⊗0 by Lemma A.1.3 above.

Lemma A.1.4 4 Let L be a DGLA, and α ∈ L n. Then α defines a graded
derivation of degree n on L by

ad(α) : λ 7→ [α, λ ].

Proof: It is clear that ad(α) is homogeneous of degree +n. We need to prove the
graded derivation property (A.3). For λ ∈ L p, µ ∈ L q the graded Jacobi identity
(A.12) states

(−1)nq[ α, [ λ, µ ] ] + (−1)np[ λ, [ µ, α ] ] + (−1)pq[ µ, [ α, λ ] ] = 0,

or equivalently,

[ α, [ λ, µ ] ] = −(−1)n(p+q)[ λ, [ µ, α ] ]− (−1)q(n+p)[ µ, [ α, λ ] ].

Now, using [ µ, α ] = −(−1)nq[ α, µ ] and [ µ, [ α, λ ] ] = −(−1)q(n+p)[ [ α, λ ], µ ] we have

[ α, [ λ, µ ] ] = [ [ α, λ ], µ ] + (−1)np[ λ, [ α, µ ] ],

which proves ad(α) is a graded derivation of degree n.�

A.2 Differential forms

In the following (as in all of this document) we will often suppress the notion
smooth when speaking of manifolds, differential forms and vector fields. All
manifolds, forms and vector fields in this thesis are considered to be smooth.

We consider known the essential definitions of the calculus of differential
forms. In particular, the notions of push-forward and pull-back should be un-
derstood. If M and N are manifolds, and φ : M → N is a smooth diffeomor-
phism, we denote the push-forward φ∗ : X(M) → X(N). For the pull-back we
use φ∗ : Ω(N) → Ω(N). We reserve the notation φT : Tm(M) → Tφ(m)(N) for
the tangent mapping in the point m ∈ M , and for a vector field X ∈ X(M) we
have (

φ∗(X)
)
n

= φT (Xφ−1(n)), (n ∈ N). (A.16)

Note: The concepts defined below (such as the interior product and the Lie derivative)

can be given a still more general definition, defining them on arbitrary tensor fields

instead of differential forms (which are antisymmetric tensor fields). This is done for

instance in de Azcárraga[2] Sec. 1.4. We do not need this generalization however, and

therefore we omit it.

A.2.1 Derivations

Exterior derivative

Let M be a manifold, and Ω(M) the real vector space of all smooth differential
forms on M . The exterior derivative is the unique linear map d : Ω(M) → Ω(M)
satisfying ([18], Th. 11.1)

4This is part of the Proposition in Appendix B of Kastler&Stora [11]. We include the same
proof.
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1. d : Ωp(M) → Ωp+1(M).

2. d(α ∧ β) = (dα) ∧ β + (−1)pα ∧ (dβ), for α ∈ Ωp(M), β ∈ Ωq(M).

3. d2 = 0.

4. df is the differential of f for f ∈ C∞(M) = Ω0(M).

Above properties qualify d as a differential or anti-derivation of degree +1 on
the graded algebra of differential forms Ω(M).

Let α a p-form (p < dim M) expressed in local coordinates x = (x1, . . . , xn)
on M

α =
∑

I

aI(x)dxI , (A.17)

with the sum ranging over all p-tuples I, with I = (i1, . . . , in), with ij ∈ {1, . . . ,
dim M}. The exterior derivative d is usually defined as

dα =
∑

I

daI(x) ∧ dxI . (A.18)

There is however another definition of the exterior derivative, that is more prac-
tical to us.

A p-form is completely known if we know its value

α(X1, . . . , Xp) ∈ C∞(M)

on p arbitrary vector fields X1, . . . , Xp ∈ X(M), and inserting these vector fields
gives us a C∞-function on M . Therefore we can view α ∈ Ωp(M) as a mapping
α : X(M) × . . . × X(M) → C∞(M) that is C∞(M)-multilinear (X(M) is a
C∞(M)-module) and antisymmetric.

Also remember that a vector field X ∈ X(M) acts as a derivation on smooth
functions on M (i.e. C∞(M)), and X(M) is a Lie algebra (over C∞(M)) with
the commutator of vector fields [X, Y ] ∈ X(M) as Lie bracket. Now we use this
in order to give another (equivalent) definition of the exterior derivative d that
is as follows ([18] Th. 11.3, [11] §1.2)

dα(X0, . . . , Xp) =
p∑

i=0

(−1)iXi · α(X0, . . . , X̂i, . . . , Xp) +

∑

0≤ i<j≤p

(−1)i+jα( [Xi, Xj ] , X0, . . . , X̂i, . . . , X̂j , . . . , Xp). (A.19)

Interior product

The interior product iX of a p-form α ∈ Ωp(M) and a vector field X ∈ X(M) is
defined as

(iXα)(X2, . . . , Xp) := α(X, X2, . . . , Xp). (A.20)

As we can see, iX lowers the degree of the differential form by one, so iX :
Ωp(M) → Ωp−1(M). iX respects the vector space structure of Ω(M), since
iX(α + β) = iX(α) + iX(β) and iX(c · α) = c · iX(α). We also have, α ∈
Ωp(M), β ∈ Ωq(M)

iX(α ∧ β) = (iXα) ∧ β + (−1)pα ∧ (iXβ), (A.21)
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which qualifies iX as an anti-derivation of degree -1 on the graded algebra of
differential forms Ω(M). The interior product is also known as the interior
antiderivative [6], the contraction [2], or the interior multiplication [18].

Lemma A.2.1 The interior product is natural with respect to diffeomorphisms.
Let M,N be manifolds, and φ : M → N a smooth diffeomorphism. Let α ∈
Ωq(N), X ∈ X(M), Y ∈ X(N) be such that φ∗(X) = Y (Y is the push-forward
of X). Then

φ∗(iY α) = iX(φ∗α). (A.22)

Proof: As in [2] 1.4.32. Let m ∈ M and n = φ(m) ∈ N then

iX(φ∗α)(m)(X2(m), . . . Xq(m)) = (φ∗α)(m)(X(m), X2(m), . . . Xq(m))

= α(n)(φT (X(m)), φT (X2(m)), . . . φT (Xq(m)))

= α(n)(Y (n)), φT (X2(m)), . . . φT (Xq(m)))

= (iY α)(n)(φT (X2(m)), . . . φT (Xq(m)))

= (φ∗(iY α))(m)(X2(m), . . . Xq(m)),

which is equation (A.22). �

Lie derivative

The Lie derivative has a definition which gives an intuitive feeling of why this is a
derivative. Let us remind that for a vector field X ∈ X(M), and a point m ∈ M
the integral curve of X through m is given by the unique curve γ : I → M
which satisfies:

d

dt
γ(t)

∣∣∣
t=t0

= Xγ(t0) ∀t0 ∈ I. (A.23)

With I we refer to an open interval around 0 in R, and assume γ(0) = m. In
the case of M = G a Lie group, and a curve through the identity e, this interval
is extendable to whole R, and we get a one-parameter subgroup of G.

If, for t ∈ I, we define the diffeomorphism φt : M → M by m 7→ γ(t) with
γ the integral curve through m belonging by X, we get a one-parameter group
{φt} of diffeomorphisms of M . We have (φt)−1 = φ−t, and φ0 = idM . This
group of diffeomorphisms is called the flow of X.

Now, given a vector field X ∈ X(M) with flow φt, we can define the Lie
derivative of it on a differential form α ∈ Ωp(M) by

LXα = lim
t→0

φ∗t α− α

t
=

d

dt
φ∗t α

∣∣∣
t=0

. (A.24)

Notice that the limit is just an ordinary limit in R once we have inserted a point
m ∈ M and p tangent vectors from TmM in φ∗t α and α. So LXα is a p-form on
M , and we have LX : Ωp(M) → Ωp(M). Together with the property

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ) (A.25)

and the linearity LX(α + β) = LXα + LXβ, iX(c ·α) = c · iX(α) this makes LX

a derivation of degree zero on Ω(M).
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Now we would like to give an algebraic description of the Lie derivative, like
(A.19) for the exterior differential. It is given by ([2], 1.4.35)

(LXα)(X1, . . . , Xp) = Y · α(X1, . . . , Xp)−
q∑

i=1

α(X1, . . . , [Y, Xi], . . . , Xq),

(A.26)
with α ∈ Ωp(M), Y and Xi ∈ X(M).

Although we will be primarily concerned with the Lie derivative on forms,
we also want to note that the Lie derivative can be defined on vector fields
Y ∈ X(M) as well. In this case

LXY = lim
t→0

φT
−tYφ(t) − Y

t
(A.27)

and LX : X(M) → X(M). This limit can be shown to be equal to the commu-
tator of the vector fields X and Y (see [2], §1.4)

LXY = [X,Y ]. (A.28)

In the following LX will mean the derivative operating on forms unless explicitly
stated otherwise.

Relations between d, iX and LX

In the following we take X, Y ∈ X(M). For both iX and LX we have

iX+Y = iX + iY , (A.29)
LX+Y = LX + LY , (A.30)

which follows from the definition and the linearity of the forms on which iX and
LX act. On 0-forms f ∈ Ω0(M) = C∞(M) we have

iX(df) = df(X) = X · f, (A.31)
LX(df) = X · f. (A.32)

For iX the the antisymmetry of differential forms immediately implies

iX iX = 0. (A.33)

The Lie derivative LX commutes with the exterior derivative d

[LX , d] = 0, (A.34)

which follows immediately from the following equation, which is known as the
Cartan decomposition, and could be taken as a definition for LX :

LX = diX + iXd. (A.35)

This definition will be used to generalize the Lie derivative to arbitrary g-
operations. From (A.35) it also follows

[LX , iY ] = i[X,Y ], (A.36)
[LX , iX ] = 0, (A.37)
[LX , LY ] = L[X,Y ]. (A.38)
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A.2.2 Vector-valued differential forms

In this thesis we will make extensive use of differential forms with values in a
vector space (usually a Lie algebra). The connection form and curvature form
on a principal bundle are examples of Lie(G)-valued forms (with G the structure
group).

Let V be an arbitrary finite-dimensional real vector space. In principle, a
V-valued differential p-form ω on M (a manifold) means a multilinear mapping

ωm : Tm(M)× . . .× Tm(M)︸ ︷︷ ︸
p times

→ V,

for every m ∈ M . If we take any basis {Eα}dim V
α=1 of V we can project the form

ω on each Eα-axis to obtain a real valued differential form ωα = πEα
◦ ω and

write
ω = Eα · ωα,

were summation over α is understood (the so-called Einstein summation con-
vention). Since both V and Ω(M) are linear (vector) spaces over R we can
characterize ω as an element of V ⊗Ω(M). Now for an arbitrary vector space V
there will not be a wedge product for V-valued forms, unless there is a bilinear
map ρ : V × V → V (see [15](Vol II), §1.2). Therefore we will now concentrate
on the case V = g, with g a finite-dimensional real Lie algebra.

Definition A.2.1 A g-valued differential form ω on M is an element of g⊗ Ω(M).
If {Eα} is a basis for g we usually write

ω = Eα ⊗ ωα,

with ωα ∈ Ω(M) (Einstein summation used).

Since Ω(M) is a graded-commutative differential algebra, we can apply Lemma
A.1.1 (this is in fact Corollary A.1.1), which says g⊗Ω(M) is a differential graded
Lie algebra (DGLA). So we have a bracket on these g-valued forms defined by

[ω, η] = [Eβ ⊗ ωβ , Eγ ⊗ ηγ ] = [Eβ , Eγ ]⊗ (ωβ ∧ ηγ), (A.39)

for ω = Eβ ⊗ ωβ ∈ g⊗ Ωp(M) and η = Eγ ⊗ ηγ ∈ g⊗ Ωq(M).
This bracket is called the Schouten product ([11], §1.5), and can also be

expressed as

[ω, η](X1, .., Xp+q) =
1

p ! q!

∑

σ∈Sp+q

ε(σ)[ ω(Xσ(1), .., Xσ(p)), η(Xσ(q+1), .., Xσ(q+p)) ]

(A.40)
with Xi ∈ X(M), Sp+q the permutation group of p + q elements, and ε(σ) the
sign of the permutation.
Most other operations defined on differential forms have a natural extension
to vector-valued forms. For instance, the exterior differential d of a form ω ∈
g⊗ Ω(M) is defined as

dω = d(Eα ⊗ ωα) = Eα ⊗ (dωα),

in accordance with Lemma A.1.1.
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We will also often use the pull-back of a vector-valued differential form. If we
have a diffeomorphism f : M → N then the pull-back f∗ : Ω(N) → Ω(M) has
a natural extension to f̃∗ : g⊗Ω(N) → g⊗Ω(M) by defining f̃∗ = idg ⊗ f∗, or
equivalently

f̃∗ω = f̃∗(Eα ⊗ ωα) = Eα ⊗ (f∗ωα),

for ω ∈ g⊗ Ω(M). We will often write f∗ for f̃∗, and thus use the notation f∗

for both ordinary and vector-valued differential forms.

A.3 Lie group theory

(For background information on Lie group theory we recommend [8],[17] and [2].)

Let G be a (finite-dimensional) Lie group, i.e. G is both a group and a smooth
manifold such that the group multiplication (·) : G × G → G is smooth. It
follows that the left and right multiplication, denoted with Lg : h 7→ gh and
Rg : h 7→ hg, are also smooth.
Let TeG be the tangent space to the identity e ∈ G. Any element X ∈ TeG
can be extended to a left-invariant vector field XL ∈ X(G) by defining XL

g =
(Lg)T X. The commutator of such left-invariant vector fields (LIVF’s) is again
left-invariant, and thus defines a Lie bracket on TeG (with [X, Y ] = [X,Y ]Le =
[XL, Y L]e). This makes TeG into Lie algebra, and we therefore denote it with
Lie (G).

For any element X ∈ Lie (G) one can consider the integral curve γ(t) of the
vector field XL ∈ X(G) through γ(0) = e ∈ G. By defining exp(X) = γ(1)
one can define an exponential mapping exp : Lie (G) → G, such that we can
associate a one-parameter group in G with every element X ∈ Lie (G).

A.3.1 Adjoint actions

Another way to derive the Lie bracket on Lie (G) = TeG is the following. We
have the action of G on itself by conjugation, denoted by

Ad : G → Aut(G), Ad : g 7→ Adg, Adg : h 7→ ghg−1.

Take any g ∈ G and consider the tangent mapping AdT
g . Since Adg(e) = e for

any g ∈ G, and TeG = Lie (G), we have a linear map

AdT
g : Lie (G) → Lie (G).

We denote this map also by Adg : Lie (G) → Lie (G). For X ∈ Lie (G) it is
explicitly given by

Adg(X) =
d

dt
g · exp(tX) · g−1

∣∣∣
t=0

. (A.41)

On can show this is a group homomorphism Ad : G → GL(Lie (G)) by applying
the chain rule for tangent mappings (see §1.1 [8]), and Ad is called the adjoint
action of the group G on its Lie algebra Lie (G).

Now we can take the tangent mapping AdT of the map Ad : G → GL(Lie (G)),
and denote it with ad

ad : Lie (G) → gl(Lie (G)),
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where we substituted TeG = Lie (G) and Te(GL(Lie (G))) = gl(Lie (G)). One
can define a bracket on Lie (G) by [X, Y ] = (adX)(Y ). When a bracket is
already known, one reads this equation the other way around and defines ad :
Lie (G) → gl(Lie (G)) by (adX)(Y ) = [X, Y ]. Either way ad is a Lie algebra
homomorphism, and this is called the adjoint action of the Lie algebra Lie (G)
on itself:

ad : Lie (G) → gl(Lie (G)), ad : X 7→ (adX), (adX)(Y ) = [X, Y ].

A.3.2 Differential forms on G and the Maurer-Cartan form

For convenience let g = Lie (G) in the following, and let g∗ denote the dual
space of g, i.e.

g∗ = { ω : g → R | linear }.
We saw we could identify X ∈ g with left-invariant vector fields XL ∈ X(G).
In the same way we can identify elements ω ∈ g∗ with left-invariant differential
forms ωLon G by defining

ωL
g (vg) = ω(LT

g−1vg), vg ∈ TgG.

Now ωL ∈ Ω(G) is left-invariant by definition. From now on, let ΩL(G) denote
the LI forms on G, and XL(G) the LIVFs.
We now introduce the Maurer-Carter form on the Lie group G. It is the
unique Lie (G)-valued 1-form ΘMC ∈ Lie (G)⊗ Ω1(G) on G satisfying

ΘMC(XL) = X ∀X ∈ Lie (G),

by which we mean: ΘMC(g)(XL
g ) = X for all g ∈ G. ΘMC is thus completely

specified, since we have for arbitrary vg ∈ TgG,

ΘMC(g)(vg) = LT
g−1vg ∈ TeG = Lie (G),

or in other words ΘMC(e) = idg and ΘMC(g) = (Lg−1)∗ΘMC(e). This shows
ΘMC is left-invariant. We call ΘMC the Maurer-Cartan form on G.

A.3.3 Properties of the Maurer-Cartan form

Let {Eα} be a basis for g, and {Eα} the corresponding cobasis of g∗. Let {XL
α }

denote the LIVFs corresponding to the elements {Eα} in g. Since LT
g : TeG →

TgG supplies an isomorphism between any tangent space TgG and TeG = g, we
know the set {XL

α (g)} is a basis for TgG for each g ∈ G.
Similarly, we can extend each element Eα ∈ g∗ to a LI form θα ∈ ΩL(G),

and we have θα(XL
β ) = δα

β . With respect to this choice of basis we can write
the Maurer-Cartan form ΘMC ∈ g⊗ ΩL(G) as

ΘMC = Eα ⊗ θα.

We now consider the exterior derivative dθα of the LI form θα. In the previous
section d was defined in a coordinate-free way in (A.19), which for the 1-form
θα states

dθα(X,Y ) = X · θα(Y )− Y · θα(X)− θα([X,Y ]), X, Y ∈ X(G).
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Since for all g ∈ G, the LIVFs {XL
α } span the tangent space TgG we may assume

X = XL
β and Y = XL

γ , and since LI forms like θα are constant on LIVFs the
first two terms vanish. We are left with

dθα(XL
β , XL

γ ) = −θα([XL
β , XL

γ ]). (A.42)

Now we introduce the structure constants of the Lie algebra g with respect to
the chosen basis:

[Eβ , Eγ ] = Cα
βγ Eα , Cα

βγ ∈ R,

from which follows [XL
β , XL

γ ] = Cα
βγ XL

α . Inserting this in (A.42) results in

dθα(XL
β , XL

γ ) = −θα(Cα
βγ XL

α ) = −Cα
βγ Xα

and hence
dθα = − 1

2 Cα
βγ θβ ∧ θγ . (A.43)

This is known as the Maurer-Cartan structure equation. The factor 1
2

appears, because the summation is by convention taken over all β and γ in
{1, .., dim g}. We could also write

dθα =
∑

1≤ β<γ≤ dim g

−Cα
βγ θβ ∧ θγ ,

since Cα
βγ = −Cα

γβ and θβ ∧ θγ = −θγ ∧ θβ .
We prove two important properties of the Maurer-Cartan form ΘMC in the
following lemmas.

Lemma A.3.1 The Maurer-Cartan form ΘMC satisfies

dΘMC = − 1
2 [ ΘMC ,ΘMC ]. (A.44)

Proof: Using the Maurer-Cartan structure equation (A.43), and the definition (A.39)
of the bracket on g-valued forms, we have

dΘMC = d(Eα ⊗ θα)

= Eα ⊗ dθα

= − 1
2

Cα
βγ Eα ⊗

�
θβ ∧ θγ

�

= − 1
2

[ Eβ , Eγ ]⊗ � θβ ∧ θγ
�

= − 1
2

[ Eβ ⊗ θβ , Eγ ⊗ θγ ]

= − 1
2

[ ΘMC , ΘMC ],

QED.�

Lemma A.3.2 The Maurer-Cartan form on G is Ad-equivariant under the
right-action of G on itself, i.e.

(Rg)∗ΘMC = Adg−1 ◦ΘMC .
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Proof: Let h ∈ G and vh ∈ ThG. We have

((Rg)∗ΘMC)h(vh) = ΘMC(hg)((Rg)T vh)

= (L(hg)−1)
T (Rg)T vh)

= (Lg−1)
T (Lh−1)

T (Rg)T vh

= (Lg−1)
T (Rg)T (Lh−1)

T vh

= Adg−1
�
(Lh−1)

T vh

�

= Adg−1
�
ΘMC(h)(vh)

�
.

Where we used (I) (Lh−1)T (Rg)T = (Rg)T (Lh−1)T since the right and left actions
of G commute, and (II) (Lg−1)T (Rg)T : g → g corresponds to the adjoint action
Adg−1 : g → g as defined above in equation (A.41).�

We assumed G was a finite-dimensional Lie group, but in fact the constructions
above can be applied to infinite-dimensional Lie groups (and algebras) as well,
with some adjustments. When considering the infinite-dimensional Lie group G
of gauge transformations on a principal bundle, its Lie algebra Lie (G ), and their
role in the descent equations, we will see the so-called ghost fields that appear
there can be considered as the Maurer-Cartan forms on the infinite-dimensional
Lie algebra Lie (G ). See Chapter 5 §5.2.
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Appendix B

Additional proofs

B.1 General algebra lemmas

Lemma B.1.1 Let A be a graded algebra, generated by the elements {Eα}.
Suppose δ an anti-derivation on A of degree k (so k is odd), and we know
δ2(Eα) = 0. Then

δ2(η) = 0,

for all η ∈ A .
Proof: We will use induction on the length of a product. Suppose we know δ2(α) = 0
and δ2(β) = 0, then we know for α · β

δ2( α · β ) = δ( δ( α · β ) )

= δ( δα · β + (−1)deg αα · δβ )

= δ( δα · β ) + (−1)deg αδ( α · δβ )

= δ2α · β + (−1)deg α+kδα · δβ + (−1)deg αδα · δβ + α · δ2β

= 0− (−1)deg αδα · δβ + (−1)deg αδα · δβ + 0

= 0,

where we used that k is odd, and so (−1)deg α+k = −(−1)deg α.
Since A is generated by {Eα}, we know every element η of A can be written as

a linear combination of products of the {Eα}. Since δ2 = 0 on any Eα it will be zero
on any product of the Eα’s, as we just showed. Combining this with the linearity of
δ this proves δ2 = 0 on any arbitrary element η of A . �

B.2 Lie algebra operations

Let (A , i, L) be a g-operation, such that by Definition 1.2.1 we have linear
mappings

i : g → Der(−1)(A ), i : X 7→ iX ,

L : g → Der(0)(A ), L : X 7→ LX ,
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which satisfy (cf. (1.17)-(1.20))

LX = diX + iXd,

L[X,Y ] = [LX , LY ] = LXLY − LY LX ,

i[X,Y ] = LX iY − iY LX ,

(iX)2 = 0.

We now have the following lemmas.

Lemma B.2.1 [d, LX ] = 0.
Proof: We have LX = diX + iXd by (1.17) so

[d, LX ] = dLX − LXd

= d(diX + iXd)− (diX + iXd)d

= d2iX + diXd− diXd + iXd2

= 0 + diXd− diXd + 0

= 0,

since d2 = 0. �

The following lemma concerns the sets of invariant, horizontal and basic
elements which were defined in Def. 1.2.2 by

I (A ) = { α ∈ A | LXα = 0, ∀X ∈ g },
H (A ) = { α ∈ A | iXα = 0, ∀X ∈ g },
B(A ) = { α ∈ A | LXα = 0 and iXα = 0, ∀X ∈ g }.

Lemma B.2.2 For I (A ), H (A ) and B(A ) we have the following

1. I (A ) is a graded differential subalgebra of A .

2. H (A ) is graded subalgebra of A that is stable by LX

3. B(A ) is a differential subalgebra of I (A ) as well as A .

Proof: That I (A ), H (A ) and B(A ) are graded subalgebras of A follows from the
fact that A is graded and iX and LX are antiderivations, so LX(α · β) = LXα · β +
α · LXβ = 0 if α, β ∈ I (A ) and similarly for iX and H (A ).

(1.) Since LX commutes with the differential d by Lemma B.2.1 above, we have
for α ∈ I (A ) that LX(dα) = d(LXα) = d(0) = 0, for all X ∈ g.

(2.) Cf. (1.19) we have for α ∈ H (A ) and X, Y ∈ g

iY (LXα) = (LX iY − i[X,Y ])α

= LX(iY α)− i[X,Y ]α

= LX(0)− 0 = 0,

which proves LXα ∈ H (A ) ∀X ∈ g.
(3.) Let α ∈ B(A ). We already now LX(dα) = 0 by (1.) and now we show

iX(dα) = 0 as well (using (1.17))

iX(dα) = (LX − diX)α

= LXα)− d(iXα)

= 0− d(0) = 0

and this shows dα ∈ B(A ). Since B(A ) ⊂ I (A ) it is also a differential subalgebra
of I (A ). �
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B.3 Lie algebra cohomology

Let g be a finite-dimensional Lie algebra, with dual space g∗. Let {Eα}dim g
α=1 be

a basis of g , with cobasis {Eα} of g∗ such that Eα(Eβ) = δα
β . Let Cα

γβ denote
the structure constants of g in this basis, i.e. [Ei, Ej ] = Ck

ij Ek.
Let Λ(g∗) be the exterior algebra over g∗. If d is defined on Λ(g∗) by

dη(X, Y ) = η([Y,X]) for η ∈ Λ1(g∗) we have the following lemmas.

Lemma B.3.1 The Jacobi identity in structure constants, with respect to the
basis {Eα} of g is given by

Cl
kaCk

bc + Cl
kbC

k
ca + Cl

kcC
k
ab = 0, (B.1)

for all a, b, c and l in the set { 1, . . . , dim g }.
Proof:

0 = [ Ea, [ Eb, Ec ] ] + [ Eb, [ Ec, Ea ] ] + [ Ec, [ Ea, Eb ] ]

= [ Ea, Ck
bc Ek ] + [ Eb, C

k
ca Ek ] + [ Ec, C

k
ab Ek ]

= Ck
bc [ Ea, Ek ] + Ck

ca [ Eb, Ek ] + Ck
ab [ Ec, Ek ]

= Ck
bcC

l
ak El + Ck

caCl
bk El + Ck

abC
l
ck El

=
�
Ck

bcC
l
ak + Ck

caCl
bk + Ck

abC
l
ck

�
El

which implies for all l = 1, . . . , dim g

0 = Ck
bcC

l
ak + Ck

caCl
bk + Ck

abC
l
ck

= Cl
akCk

bc + Cl
bkCk

ca + Cl
ckCk

ab

= −Cl
kaCk

bc − Cl
kbC

k
ca − Cl

kcC
k
ab

= Cl
kaCk

bc + Cl
kbC

k
ca + Cl

kcC
k
ab

which completes the proof. �

Lemma B.3.2 d(Eα) = Cα
γβ Eβ ∧ Eγ .

Proof: We know {Eβ ∧Eγ } is a basis for Λ2(g∗), and for any element η ∈ Λ2(g∗) we
have

η = ηβγ Eβ ∧ Eγ ,

with ηβγ = η(Eβ , Eγ) a constant. So we consider the case η = Eα, and show
Eα(Eβ , Eγ) = Cα

γβ .

(dEα)(Eβ , Eγ) = Eα([Eγ , Eβ ])

= Eα(Ck
γβEk)

= Cα
γβ .

This proves d(Eα) = Cα
γβ Eβ ∧ Eγ . �

Lemma B.3.3 d2 = 0.
Proof: By Lemma B.1.1 we just need to prove d2 = 0 on an arbitrary cobasis element
Eα since Λ(g∗) is generated by them, and d is an anti-derivation. The condition d2 = 0
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turns out to be equivalent with the Jacobi identity on g, but unfortunately it is a messy
ugly proof.

d(dEα) = d(Cα
γβ Eβ ∧ Eγ)

= Cα
γβ

�
dEβ ∧ Eγ − Eβ ∧ dEγ �

= Cα
γβ

�
(Cβ

εδ Eδ ∧ Eε) ∧ Eγ − Eβ ∧ (Cγ
εδ Eδ ∧ Eε)

�

= Cα
γβCβ

εδ Eδ ∧ Eε ∧ Eγ − Cα
γβCγ

εδ Eβ ∧ Eδ ∧ Eε

= Cα
γβCβ

εδ Eδ ∧ Eε ∧ Eγ + Cα
γβCγ

εδ Eδ ∧ Eβ ∧ Eε . (B.2)

Up to this point we have just inserted the result from Lemma B.3.2 for dEβ and dEγ ,
making more or less natural choices for the index-symbols (α, β, γ, δ, ε). Unfortunately
we will have to regroup these expressions quite a bit before we are able to show that
(B.2) is in fact the Jacobi identity written out in the structure constants.

Consider the first term in the last equation (B.2), i.e. Cα
γβCβ

εδ Eδ ∧ Eε ∧ Eγ . By

using Ei ∧ Ej = −Ej ∧ Ei and Ck
ij = −Ck

ji we shuffle this around and get

Cα
γβCβ

εδ Eδ ∧ Eε ∧ Eγ

=− Cα
βγCβ

εδ Eδ ∧ Eε ∧ Eγ

=− Cα
βγCβ

εδ Eγ ∧ Eδ ∧ Eε

= Cα
βγCβ

εδ Eγ ∧ Eε ∧ Eδ .

Now we are going to make things worse by renaming all the indices. If we substitute
a = γ, b = ε, c = δ, k = β, l = α we get

Cl
kaCk

bc Ea ∧ Eb ∧ Ec .

Now for the second term in (B.2), i.e. Cα
γβCγ

εδ Eδ ∧Eβ ∧Eε. Again by rearranging we
get

Cα
γβCγ

εδ Eδ ∧ Eβ ∧ Eε

=− Cα
γβCγ

εδ Eβ ∧ Eδ ∧ Eε

= Cα
γβCγ

εδ Eβ ∧ Eε ∧ Eδ .

Now substituting a = β, b = ε, c = δ, k = γ, l = α we get

Cl
kaCk

bc Ea ∧ Eb ∧ Ec .

So after some work, we now see that the two terms are in fact the same. Now we
continue from equation (B.2), adding the terms up, then splitting this new term in
three pieces which will turn out to form the three terms in the Jacobi identity

d(dEα) = . . .

= 2 · �Cl
kaCk

bc Ea ∧ Eb ∧ Ec �

=
2

3

�
Cl

kaCk
bc Ea ∧ Eb ∧ Ec + Cl

kaCk
bc Ea ∧ Eb ∧ Ec + Cl

kaCk
bc Ea ∧ Eb ∧ Ec �

=
2

3

�
Cl

kaCk
bc Ea ∧ Eb ∧ Ec + Cl

kbC
k
ca Eb ∧ Ec ∧ Ea + Cl

kcC
k
ab Ec ∧ Ea ∧ Eb �

=
2

3

�
Cl

kaCk
bc Ea ∧ Eb ∧ Ec + Cl

kbC
k
ca Ea ∧ Eb ∧ Ec + Cl

kcC
k
ab Ea ∧ Eb ∧ Ec �

=
2

3

�
Cl

kaCk
bc + Cl

kbC
k
ca + Cl

kcC
k
ab

�
Ea ∧ Eb ∧ Ec

=
2

3

�
0
�
Ea ∧ Eb ∧ Ec

= 0,
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which finally completes our proof, since we retrieved the Jacobi identity as given in
Lemma B.3.1. Note that we again renamed some variables in the fourth equation; for
the second term b = a, c = b, a = c and for the third term c = a, a = b, b = c. �

B.4 Miscellaneous

Lemma B.4.1 The mapping L : ξ ∈ aut(0)B (A ) 7→ ÃLξ ∈ autB(A ) defined in
equation (2.9) as

Lξ = ξαLEα
+ (dξα)iEα

,

for ξ = Eα ⊗ ξα, is a Lie algebra homomorphism.
Proof: Let ξ = Eα ⊗ ξα and ζ = Eα ⊗ ζα in aut

(0)
B (A ) ⊂ g ⊗ A 0. We prove

[ Lξ, Lζ ] = L[ ξ,ζ ].

[ Lξ, Lζ ] = LξLζ − LζLξ

=
�
ξβLEβ + (dξβ)iEβ

��
ζγLEγ + (dζγ)iEγ

�

− � ζγLEγ + (dζγ)iEγ

��
ξβLEβ + (dξβ)iEβ

�

= ξβζγ�LEβ LEγ − LEγ LEβ

�
+ (dξβ)ζγ� iEβ LEγ − LEγ iEβ

�

+ ξβ(dζγ)
�
LEβ iEγ − iEγ LEβ

�
+ (dξβ)(dζγ)iEβ iEγ − (dζγ)(dξβ)iEγ iEβ .

Now the last two terms cancel since (dζγ)(dξβ) = −(dξβ)(dζγ) (both elements have
degree 1) and iEγ iEβ = −iEβ iEγ . We continue, using [ LX , LY ] = L[ X,Y ] and LX iY −
iY LX = i[ X,Y ], and obtain

. . . = ξβζγ�LEβ LEγ − LEγ LEβ

�
+ (dξβ)ζγ� iEβ LEγ − LEγ iEβ

�

+ ξβ(dζγ)
�
LEβ iEγ − iEγ LEβ

�

= ξβζγ�L[ Eβ ,Eγ ]

�
+ (dξβ)ζγ�−i[ Eγ ,Eβ ]

�
+ ξβ(dζγ)

�
i[ Eβ ,Eγ ]

�

= ξβζγ�L(Cα
βγ

Eα)

�
+
�
(dξβ)ζγ + ξβ(dζγ)

�
i(Cα

βγ
Eα)

= Cα
βγ ξβζγLEα + d(Cα

βγ ξβζγ)iEα

= [ ξ, ζ ]α LEα + d( [ ξ, ζ ]α )iEα

= L[ ξ,ζ ],

which finishes our proof.�
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Notation

Symbol Meaning

1 unit in an algebra
A algebra (possibly a GCDA, DGLA or g-operation)
a gauge potential
A algebraic connection
apot(M) space of gauge potentials on base manifold M for a trivial bundle
A(g) (universal) Weil-B.R.S. algebra over g

Autv(P ) vertical bundle automorphism on a principal bundle P (G, M)
AutB(A ) generalized group of gauge transformations for a g-operation A
autB(A ) generalized Lie algebra of infinitesimal gauge transformations for a g-operation A

aut
(0)
B (A ) generalized Lie algebra of infinitesimal gauge transformations

for a g-operation A (alternative definition)
B(A ) basic elements of a g-operation A
C (A ) space of algebraic connection forms on a g-operation A
C (P ) space of connection forms on principal bundle P (G, M)
Cn(g) space of n-cochains of a Lie algebra g

Cn(g,V) space of V-valued n-cochains of a Lie algebra g

Der(k)(A ) graded derivations of degree k on the algebra A
Eα element of a basis (usually of g)
Eα element of a cobasis (usually of g)
(...)α the α-component of some g-valued object,

with respect to some fixed basis {Eα}
F algebraic curvature
f field strength
G group of gauge transformations
g Lie algebra
g∗ dual of a Lie algebra g
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Symbol Meaning

H (A ) horizontal elements of a g-operation A
I (A ) invariant elements of a g-operation A
Lie (G) Lie algebra associated to a Lie group G
Lie (G ) Lie algebra of infinitesimal gauge transformations
Λg∗ exterior algebra over g∗

R(...) group representation
ρ(...) Lie algebra representation
Sg∗ symmetric algebra over g∗

(Sg∗)inv invariant elements of Sg∗ (under the coadjoint action of g)
ΘMC Maurer-Cartan form
X, Y, .. Lie algebra elements (usually of Lie (G)) or vector fields
X(P ) space of vector fields on a manifold P
W(g) (universal) Weil algebra over g

ω (i) arbitrary algebra element (ii) connection form on a principal bundle
ξ, ζ, .. elements of the Lie algebra Lie (G ) of infinitesimal gauge transformations
Ω curvature form associated to a connection form
V vector space
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