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Abstract

In this thesis, we investigate the mathematical development of the
Hirzebruch–Riemann–Roch theorem and its predecessor, the Riemann–
Roch theorem. First, we describe the emergence of the theory of Abelian
integrals. Then we study how the Riemann–Roch theorem originated from
the theory of Abelian integrals. Lastly, we we examine the synthesis of
new mathematical methods that culminated in the Hirzebruch–Riemann–
Roch theorem.
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1 Introduction

The Riemann–Roch theorem (Theorem 4.7) forms one of the pillars of the theory
of Riemann surfaces and is the result of a synthesis between algebra, analysis
and topology. The first part of this thesis describes how the Riemann–Roch the-
orem formed by describing its historic roots in the theory of Abelian integrals.
The second part describes how mathematicians tried to generalise Riemann’s
theory to any dimension. It describes a split between the different branches of
mathematics and shows how the reunion of them gave the necessary insights
to put the pieces together. The resulting Hirzebruch–Riemann–Roch theorem
(Theorem 9.18) was not only a milestone in intself but had an important im-
pact on later mathematics. In particular, Grothendiek generalised it to the
Grothendiek–Riemann–Roch theorem (see §10), inventing K-theory along the
way. Subsequently, the quest to generalise the Hirzebruch–Riemann–Roch the-
orem to differentiable manifolds (it was first proven for algebraic varieties) gave
the fundamental insights to formulate and prove its far reaching generalisation:
the Atiyah–Singer index theorem (an outline of this development is given in
[At88]). The last theorem was actually the start of this project. But by asking
questions I went far back in time into a very beautiful story.

In this thesis we will only cover the mathematical history of the subject.
We will not cover the lives of the mathemacians. Although it would give even
more perspective on the history of the mathematics, this is not within the limits
of this thesis. The main sources of this thesis are of course the original works
in which the mathematics was published, but also the secondary sources that
already existed served as a great guide where to search. Most secondary sources
used are cited in the text. I would highly recommend, reading this thesis, to
also take a look in the original works, with this thesis serving as a guide. As
one of our key players, Abel, stated1 [Sø10]:

“It seems to me that if one wants to make progress in mathematics
one should study the masters and not the pupils.”

In particular, I would recommend the works of Jacobi, Riemann, Severi, Serre
and Hirzebruch, but also the historical or biographical memoirs written by
the great players of this story (e.g. [At77], [At96], [CE97], [Hi96], [Ho49] and
[Lef68]).

This thesis can roughly be divided into two parts. The first part covers
the history of the Riemann–Roch theorem (Theorem 4.7) ending at chapter 4.
The second part is on the history of the Hirzebruch–Riemann–Roch theorem
(Theorem 9.18). There are some gaps between these two parts that we won’t
cover in detail, such as the important work of the Italian geometers (Enriques,
Castelnuovo and Severi), Lefschetz, Hodge and Kodaira. Some important results
and references are given in §5.4. The work of Kodaira is sketched in §9.1.

First, we explore the path that led to the development of Riemann’s the-
orem (Theorem 4.2) and its extension by Roch (Theorem 4.7). In particular,

1Translation from [Sø10]. Original: “il me parait que si l’on veut faire des progres dans les
mathématiques il faut étudier les maitres et non pas les écoliers.”
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we explore why Riemann developed his inequality. Although Riemann’s paper
[Ri57] is known today for its revolutionary methods in the theory of complex
functions, at the time it was important because it solved a then famous, but
now practically forgotten inversion problem of Jacobi (§3.3). This problem was
posed in the context of Abel’s addition theorem (§3.2). We will investigate the
early history of the addition theorem (§2.5), which led to Abel’s general addi-
tion theorem, and explain why people were interested in addition theorems in
the first place (§2.3). We will then investigate Jacobi’s reasons for posing his
inversion problem and see why Riemann developed his inequality (§4).

In the second part (from §5 onwards) we will describe how the different
aspects of the Riemann–Roch formula (Theorem 4.7) were generalised. First,
we give a brief outline of the algebraic attempts to generalise the Riemann–Roch
theorem just after Riemann (§5), then we will develop, in their historic context,
the necessary tools to formulate the Hirzebruch–Riemann–Roch theorem. In
particular we will treat the development of sheaf cohomology.

Enjoy!

2 The emergence of Abelian integrals and Ad-
dition formulas

2.1 Paracentric isochrone

In 1689, Leibniz published an article titled “The Isochronic Line, on which a
heavy object descends without acceleration, and the controversy with mr. Ab-
bate de Conti.”2 [Lei89] In this article, Leibniz considered a curve, called the
isochronic line, to support his earlier arguments that the quantity of potential is
conserved. This argument seemed to oppose the Cartesian view that the quan-
tity of motion was conserved. Today we call the quantity of potential the energy
of the system, while the conservation of the quantity of motion has developed
into the conservation of momentum.

Let’s interpret what is meant by the title with the isochronic line (see Figure
1).

Definition 2.1. The isochronic line is a plane-curve such that, if a heavy object
is restricted to descend along this curve and the only external force is gravity
as measured on earth, the object experiences no vertical acceleration.
Alternatively, Leibniz noted, an object having no vertical acceleration may be
interpreted as moving away from (or towards) a horizontal line at a constant
speed.

With the interpretation that the object on a paracentric isochrone (Defi-
nition 2.1) moves away from (or towards) a horizontal line, it may be natural

2My translation with the assistance of ChatGPT. Original: “De Linea Isochrona, in qua
Grave sine Acceleratione descendit, et de Controversia cum dn. Abbate de Conti.”
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Figure 1: The isochronic line. The curve along which an object descends due
to gravity such that its vertical velocity, vy, remains constant.

to pose the following alternative problem, which Leibniz did at the end of his
article:

“If anyone, however, complains that their already settled solution
has been taken away from them, let them seek another isochronous
one nearby, in which, unlike before, the weight does not uniformly
deviate from the horizontal (or approach it), but from a specific
point. Hence, the problem will be to find a line along which the
falling weight uniformly deviates from the given point or approaches
it.”3

This line came to be called the paracentric isochrone (see Figure 2 and for an
original drawing by Bernoulli see Figure 3).4

Definition 2.2. The paracentric isochrone is a plane-curve such that, if a heavy
object is restricted to descend along this curve and the only external force is

3My translation using ChatGPT. Original: “Si quis tamen praereptam sibi jam solutionem
queratur, petarit aliam isochronam huic vicinam quaerere, in qua non, ut hactenus, grave
uniformiter recedat ab horizontali (vel ad eam accedat), sed a certo puncto. Unde problema
erit tale, invenire lineam, in qua descendens grave recedat uniformiter a puncto date, vel ad
ipsam accedat.”

4Here ds etc. are seen by Jacob Bernoulli as the infinitesimals of Leibniz. They can also be
interpreted as a paramater free way to write a differential equation. If we have an expression
with squares such as ds2 = dx2 + dy2, it means that if the quantities s, x and y depend on a

parameter such as time t, then
(

ds
dt

)2
=

(
dx
dt

)2
+

(
dy
dt

)2
. Note we work here with quantities

(or variables) instead of functions. s can depend different on x than on y, giving 2 different
functions.

6



x

y

heavy object

gravity

dr (constant relative to dt)

ds
dn

ds0 = dr

r

O

Figure 2: Paracentric isochrone with specific point (0, 0) and the y-axis pointing
downwards. This is the curve along which an object descends due to gravity
such that the distance to the origin increases at a constant velocity, i.e. dr is
constant relative to dt.

gravity as measured on earth, the object moves away from a specific point at a
constant speed.

This problem of finding the paracentric isochrone became one of the favourite
problems of Jacob and Johann Bernoulli. Jacob found a way to construct the
curve using another curve in his article dated June 1694: “The solution to the
Leibnizian problem. On the Curve of Uniform Approach and Recession from a
Given Point, through the rectification of the Elastic Curve.”5[Ber94a] In his own
words the paracentric isochrone was “The most elegant problem of Leibniz.”6

Jacob says that in a “Gallorum Diario”, Johan Bernoulli derived the differ-
ential equation corresponding to the problem. Below we give a derivation along
the lines of Jacob Bernoulli. Let the paracentric isochrone be represented by
cartesian coordinates (x, y), the y-direction pointing downwards. Let the origin
be the specific point from which the weight deviates (or which it approaches)

and let r =
√
x2 + y2 be the distance from the origin to the point (x, y) on the

curve, also called the radius. Let ds2 = dx2 + dy2 represent an infinitesimal

5My translation with the assistance of ChatGPT. Original: “Solutio Problematis Leibniz-
tiani. De Curva Accessus et Recessus aequabilis a puncto dato, mediante rectificatione Curvae
Elasticae.”

6My translation with the assistance of ChatGPT. Original: “elegantissimi problematis
Leibnitiani”
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Figure 3: In fig. 3 the paracentric isochrone (curva accessus et recessus aequa-
bilis) is drawn. [Ber44]
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arc length. For clarity, we may write e.g. ds0 for the infinitesimal at the origin
and dsp for the infinitesimal at an arbitrary point p. Let t be the time and
define the constant a such that 2ga is the square of the speed of deviation or

approach.
(
dr
dt

)2
= 2ga. The defining property of the curve (Definition 2.2)

is that the speed of deviation from the origin is constant, i.e. dr
dt = constant,

which is equivalent to saying a is a constant.

Theorem 2.3. The paracentric isochrone satisfies the differential equation

(xdx+ ydy)
√
y = (xdy − ydx)

√
a, (2.1)

Proof. Jacob Bernoulli coined a law of a descending mass, stating that the
square of the velocity gained is proportional to the difference in altitude, which

follows directly from our conservation of energy. Namely we get g∆y = 1
2∆
(
ds
dt

)2
,

so

ydt2 =
1

2g
(ds2p − ds20). (2.2)

At the origin the velocity is in the same direction as dr, so ds0 = dr. Therefore,
ds20 = dr2 = 2gadt2. Equation (2.2) gives now

ydt2 =
1

2g
ds2p − adt2,

(a+ y)dt2 =
1

2g
ds2p. (2.3)

This gives, with dr2 = a2dt2, that

2gads2p = a(a+ y)dt2 = (a+ y)dr2,

a(ds2p − dr2) = ydr2. (2.4)

From dr = xdx+ydy√
x2+y2

= xdx+ydy
r we derive that at p = (x, y) we have

r2(ds2p − dr2) = (x2 + y2)(dx2 + dy2)− (xdx+ ydy)2

= x2dy2 + y2dx2 − 2xydxdy = (xdy − ydx)2. (2.5)

Equations (2.4) and (2.5) give

y(xdx+ ydy)2 = yr2dr2 = ar2(ds2p − dr2) = a(xdy − ydx)2. (2.6)

Theorem 2.3 follows.

Jacob Bernoulli found a clever way to change the variables of equation (2.1)
such that the differential equation becomes separable. Define the new variables
w := a

rx and z := a
r y. Geometrically w and z can be interpreted as the co-

ordinates on the circle when the curve is projected by the line from the origin
through the curve on the circle of radius a.
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Theorem 2.4. With w = a
rx, z =

a
r y, the differential equation of the paracen-

tric isochrone transforms to the seperated differential equation

dr√
r
=
a

w

dz√
z
=

adz√
a2z − z3

(2.7)

Proof. Define dn =
√
ds2 − dr2, measuring the change of (x, y) in the direction

normal to the radius. The differential equation (2.1) of the paracentric isochrone
(as can be seen using equation (2.4)) is equivalent to

dr2

dn2
=
a

y
=
a2

rz
(2.8)

Let dN measure the change of (z, w) in the direction tangent to the circle at
(z, w). By proportionality we have dn = r

adN . We can draw similar triangles in
which the sides dN , dz correspond to a, w respectively, since the angle between
the normal and the z direction is equal to the angle of the radius and the w-
direction and the change dz is the projection on the z-direction of the change
dN and w is the projection of the radius on the horizontal axis. So we conclude
that dN = a

wdz. Therefore dn = r
wdz. So our differential equation can be

transformed into

dr√
r
=

adz

w
√
z
. (2.9)

We can rewrite this in terms of z by noting that w2 + z2 = a2(x2+y2)
r2 = a2.

The left-hand side of (2.9) can be integrated. Analogously, we may attempt
to integrate the right-hand side with respect to dz√

z
= 2d

√
z, as Jacob Bernoulli

did.

Theorem 2.5. Let az = u2, with u ≥ 0. Then the differential equation (2.1)
is equivalent with7

√
ar =

∫
a2du√
a4 − u4

(2.10)

Proof. We have adz = 2udu and so adz
2
√
z
=

√
adu. Therefore equation (2.7) can

be transformed into

√
r =

∫
dr

2
√
r
=

∫ √
adu

w
=

∫ √
adu√

a2 − u4

a2

, (2.11)

where we used w2 + z2 = a2 again. The statement follows.

7Here the integral is an indefinite integral: z =
∫
ydx would mean that z is a solution to

dz
dx

= y. In terms this functions this means that if f and F represent the dependance on x

of the quantities y and z respectively, we get the indefinite integral F (x) =
∫
f(x)dx as a

solution to F ′ = f . Note therefore the integral
∫
ydx can still be regarded as a function of x.
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2.2 Lemniscate

Jacob Bernoulli continued his study in an article dated September 1694, called
“Uniform Approach and Recession, Through the Rectification of a certain Alge-
braic Curve: Additions to the June Solution.”8 First Jacob discusses the pros
and cons of methods of constructing curves. This helps us understands why he
continues to investigate the problem of the paracentric isochrone. He recognized
three methods of constructing these curves which he ordered from least to best.
For this ordering he uses criterea of how practical these methods are.

The first construction is through the surface areas, i.e. through integrals.
But he says it is better done through the rectification of an algebraic curve (i.e.
by using the arclength of another curve), since curves can be rectified more
accurately and with more speed and efficiency by means of a thread wrapped
around them, than surface area can be measured. Alternatively he considers
curves that are not constructed by rectification or squaring, but simply through
the description of a curve, such that on a dense set, the points can be geo-
metrically found (using straight edge and compass), e.g. via the logarithmic
description (he refers to the functional equation of the logarithm). But the best
method, he says, is by means of a curve which nature itself produces on the
command of the geometer. The reason is that in contrast to the previous meth-
ods, this does not need the invention of many points, which is a slow process.
An example of such a curve is the catenary, which is the curve nature attains if
you hang a chain on its two ends.

Jacob said the problem of the paracentric isochrone deserved to be con-
structed by all three methods. He had constructed it by integration. He was
not able to find a construction through the last method, since he would do it
using the elasticity property (he noted in [Ber94a] that the integral is the recti-
fication of a curve with such a property) and he did not find the right tension or
stretching forces in nature, and even if he found them, he would not be certain
of this law. So the best method seems to him the second method. And he was
successful!

Jacob constructs an algebraic curve of which the arc length is given by9∫
a2du√
a4 − u4

, (2.12)

where a is a constant. In other words, this integral gives the rectification of an
algebraic curve. In [Ber94a] he showed the paracentric isochrone can be con-
structed using this integral. So he solved it using the second method.

Bernoulli does not just state the equation of the curve and derives its arc length.

8My translation with the assistance of ChatGPT. Original: “Constructio Curvae. Accessus
et Recessus aequabilis, Ope Rectificationis Curvae Cujusdam algebraicae: Addenda nuperae
solutioni Mensis Junii.”

9Here the integral should be interpreted as an indefinite integral that represents a quantity

s. It is defined as a solution to the differential equation ds
du

= a2√
a4−u4

. The arc length

between points on the curve corresponding to u0 and u1 is |s(u1)− s(u0)|

11



He derives the curve from its integral. However, how he found some steps is still
obscure and I will try to make each step more natural to see. Bernoulli gives
the following derivation of the algebraic curve of which the arc length is given
by (2.12).

Theorem 2.6. The integral ∫
a2du√
a4 − u4

. (2.13)

gives the arc length of an algebraic curve given by the equation

x2 + y2 = a
√
x2 − y2, (2.14)

where u2 = x2 + y2.

Proof. We are searching to split ds2 into dx2 + dy2. By a generalised version of
the partial fraction decomposition

1

1− u4
=

1− p(u)(1− u2)

2(1− u2)
+

1 + p(u)(1 + u2)

2(1 + u2)
, (2.15)

with p an arbitrary function, Jacob is able to decompose the square of the
integrand of (2.13) such that the numerators are perfect squares,

ds2 =
a4

a4u4
du2 =

a4 − 4a2u2 + 4u4

2(a4 − a2u2)
du2 +

a4 + 4a2u2 + 4u4

2(a4 − a2u2)
du2. (2.16)

In order to get the dx and dy we need to take the square roots of the terms:

dx =
a2 − 2u2√
2a4 − 2a2u2

du, dy =
a2 + 2u2√
2a4 + 2a2u2

du. (2.17)

These terms we can integrate by trigonometric or hyperbolic substitutions to

y :=
u
√
a2 − u2

a
√
2

, x :=
u
√
a2 + u2

a
√
2

. (2.18)

The equations 2.18 give two equations

2a2y2 = a2u2 − u4, 2a2x2 = a2u2 + u4. (2.19)

Now we can eliminate u by adding and substracting the equations, which give

x2 + y2 = u2 (2.20)

and

a2(x2 − y2) = u4 = (x2 + y2)2. (2.21)

This gives the equation of the curve of which integral 2.13 determines the arc
length.

12



Jacob also gives a name to this algebraic curve in [Ber94b]:
“quaeque circum axem BG (see fig 3) constituta formam refert jacentis notis
notae octonarii ∞, seu complicatae in nodum fasciae, sive lemnici, d’un neud
de ruban Gallis.”10

Definition 2.7. The curve given by the equation

x2 + y2 = a
√
x2 − y2 (2.22)

is called the lemniscate.

2.3 Addition theorems

In the introduction we noted the importance of Abel’s addition theorem. We
will now investigate simple addition theorems that we are familiar with. The
addition theorem of the sine and cosine in particular motivated Euler to dis-
cover the addition theorems for the lemniscate. The addition theorem of the
lemniscate was the first in a series of addition theorems with led to Abel’s far
reaching generalisation.

The addition formulas of the sine and cosine,

c(φ+ θ) = c(φ)c(θ)− s(φ)s(θ), (2.23)

s(φ+ θ) = c(φ)s(θ) + c(θ)s(φ), (2.24)

with c and s real functions, enable us to algebraically determine the values of
c and s on a dense set, if we assume that the functions s and c have a period
equal to 2π. Together with the assumption of continuity, the addition formula
and the period of 2π, therefore, define the sine and cosine.

We will demonstrate the procedure using the simpler example of a continuous
function f : R → R that satisfies

f(x+ y) = f(x)f(y). (2.25)

This example is even very similar to the trigonometric functions if you consider
it in the form

cos(φ+ θ) + i sin(φ+ θ) = (cos(φ) + i sin(φ)) (cos(θ) + i sin(θ)) . (2.26)

Taking y = x we derive a duplication formula

f(2x) = f(x)2. (2.27)

Therefore f is positive and rewriting this in a half argument formula we can
inductively derive11

f

(
1

2n

)
= f(1)

1
2n , (2.28)

10My translation with the assistance of ChatGPT: “which placed around the axis BG looks
like the lying sign 8, ∞, or as a ribbon twisted into a knot, that is, a lemniscate, or as the
French call it, a ribbon knot.”

11We could have taken y = (n− 1)x to determine all values f( 1
n
) immediately using induc-

tion, but this procedure will give values not constructable by straightedge and compass.
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From the addition formula (take e.g. x = k
2n and y = 1

2n ) we can inductively
derive for all positive dyadic numbers the equation

f

(
k

2n

)
= f(1)

k
2n (2.29)

(dyadic numbers are numbers of the form x = k
2n with k ∈ Z and n ∈ N).

Taking y = 0, we see f(0) = 1, which gives the reflection formula f(−x) = 1
f(x)

by taking y = −x. So the function f can be determined from the value f(1) on
all dyadic numbers. Since these numbers lie densely in R, continuity of f implies
that we can determine the value of f everywhere using the value on f(1):

f(x) = f(1)x. (2.30)

The procedure above can be generalized to many functional equations which
often arise as addition formulas (formulas determining the value at x+ y from
the values at x and y). They are important since they often enable us to
algebraically determine the values of the corresponding functions on a dense set.
Combined with the condition of continutity, they uniquely define the function
(often up to a parameter, which in the case above was f(1)).[Cau21] To the
mathematicians of the 18th century, these formulas held special importance,
as they often allowed the construction of values of functions on a dense set
using only straightedge and compass. This motivated the search for addition
formulas for functions associated with other curves then the cicle. The first
curve for which a simple addition formula was found was the lemniscate.

2.4 Addition formulas arising from integrals of algebraic
functions

Transcendental functions are functions that are not algebraic. The first tran-
scendental functions known to humans are the trigonometric functions and their
inverses, but also areas under curves. With the invention of calculus people were
able to say much more about functions that arise as areas under curves, i.e. as
integrals.

The sine and cosine do not arise from integrals of algebraic functions, but
their inverses do. Namely, they are defined to give the arc length of the algebraic
curve x2+y2 = 1. For example we have arcsin(x) =

∫ x

0
1√
1−t2

dt. Using calculus

we can determine the addition formula for the sine and cosine from the integral
expressions of their inverses. We will illustrate this type of argument with a
simpler example. The question is then if we can do something analogous for
our lemniscate integral. To demonstrate this we go back again to our earlier
example f(x + y) = f(x)f(y). Like the sine and cosine, the inverse of such an
f arises as an integral of an algebraic function. Let g be an inverse of f (the
domain of g being equal to the range of f). These inverses g are multiples of

ln(x) :=

∫ x

1

dt

t
. (2.31)
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For these inverse functions g, the addition formulas appear in the form

g(x) + g(y) = g(xy). (2.32)

Formulas similar to these, in which a sum of the function of some arguments is
given by the function at an algebraic expression of the arguments, we will also
call addition formulas.

The integral formula enables us to derive the addition formula. However, it is
often easier to find the duplication formula. For example, using the substitution
u2 = t, which gives 2udu = dt, so 2du

u = dt
t , we get the duplication formula

2

∫ x

1

du

u
=

∫ x2

1

dt

t
, (2.33)

so 2 ln(x) = ln(x2).
In order to find the full addition formula, we have to do more work. First

we transform the integral ∫ xy

1

dt

t
(2.34)

by a substitution u = t
x , to get∫ xy

1

dt

t
=

∫ y

1
x

du

u
. (2.35)

So ln(xy) = ln(y)− ln( 1x ). We can transform ln( 1x ) by the substitution ut = 1,

so tdu+ udt = 0, i.e. du
u = −dt

t . This gives

−
∫ 1

x

1

dt

t
=

∫ x

1

du

u
, (2.36)

so − ln( 1x = ln(x). All in all12, ln(xy) = ln(x) + ln(y).

Analogously for the inverse of the sine, the formula

arcsin(u) + arcsin(v) = arcsin(w) (2.37)

can be found where w = u
√
1− v2+v

√
1− u2. This can be seen to be equivalent

to the addition formula of the sine using the identity cos2 φ + sin2 φ = 1. Is it
possible to find such a formula for the lemniscate integral?

12The essence of this formula was discovered in [SV47] in the form of an equivalent theorem.

15



2.5 Measuring the lemniscate

The arc length of the lemniscate is given by a transcedental function arising
from an integral of an algebraic function (Theorem 2.6). Setting a = 1 this
integral is ∫

1√
1− u4

. (2.38)

Like the elliptic and hyperbolic integrals, the integral associated with the lem-
niscate doesn’t seem able to being transformed into an integral of a rational
function like the circle integrals. In order to determine its values exactly how-
ever, it would be nice to have an addition formula for its inverse analogous to
the addition formulas for the sine and cosine, as explained in section 2.3. As we
saw for the logarithm in section 2.4, instead of looking directly for the addition
formula, a duplication formula can often be found using simpler substitutions.
Indeed, in part II of his article titled “Method for Measuring the Lemniscate”13

[Fa18], Fagnano discovered the duplication formula for the lemniscate. In this
paper he proved several theorems on the lemniscate integral including its rela-
tions with the elliptic and hyperbolic integrals. How he found this particular
duplication formula remains unknown, although people have speculated in an
attempt to reproduce his reasoning [Si59].

Theorem 2.8 (Fagnano). If

z =
2u

√
1− u4√

1 + u4
, (2.39)

then

dz√
1− z4

=
2du√
1− u4

. (2.40)

Euler was ordered to edit the works of Fagnano. Upon encountering this
theorem of Fagnano, he immediately recognized its significance. He reasoned
by anology of the addition formulas of the sine and cosine that there could be
an addition formula, and he found it by trial and error. [Eu61]

Theorem 2.9 (Euler). If

x =
c
√
1− u4 + u

√
1− c4√

1 + c2u2
, (2.41)

then

dx√
1− x4

=
dc√
1− c4

+
du√
1− u4

. (2.42)

13My translation with the assistance of ChatGPT. Original: “Metodo per misurare la lem-
niscata”
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In subsequent papers, Euler was able to find addition formulas for elliptic
and hyperbolic integrals. Here there is still an algebraic relation between the
variables like equation (2.41), but the sum of the integrals will be equal to an
integral plus an integral of an algebraic function.

The integrands of these lemniscate, elliptic and hyperbolic integrals are irra-
tional only due to a square root under which lies a polynomial of at most the 4th
degree. These functions where classified into three different kinds by Legendre
in [Lef11], since they could be transformed into three standard forms by rational
transformations. Altogether they came to be known as elliptic integrals.

3 Abel’s theory

3.1 Abel’s integrals

In 1826, Abel presented a memoir to the French Academy of Sciences [Ab26]
on a far reaching generalisation of an addition formula for a very broad class
of integrals. However, this paper was not taken seriously until Jacobi wrote a
letter to the Academy. In the meantime, Abel had published a simpler piece
covering the addition formula for a special class called hyperelliptic functions
in Crelle’s journal [Ab26]. This work along with its succesors had the greatest
historical impact.
The general class of integrals Abel considered are integrals of the form

ψ(x) :=

∫
f(x, y)dx, (3.1)

where x and y are complex variables that are related by an algebraic equation
F (x, y) = 0 and f is a rational function. We will call these integrals Abelian
integrals. The integral ψ was thought of by Abel as a multivalued complex func-
tion satisfying ψ′(x) = f(x, y), where y was considered a multivalued function
of x. But since to any x there can correspond multiple y we have to refine the
meaning of this indefinite integral. Before we refine this meaning that, note
elliptic integrals form a special case: elliptic integrals such as the lemniscate
integrals are integrals

∫
f(x, y)dx such that x and y are related by an equation

y2 − p(x) = 0, where p is a polynomial of at most the 4th degree. In case of the
the lemniscate integral we have that y2 − (1− x4) = 0 and the integral is given
by

ψ(x) =

∫
1

y
dx. (3.2)

According to Gray[Gr15], “it is clear that in the first phase of the creation
of a theory of elliptic functions there was no theory of complex integrals. Fur-
thermore, the fact that Cauchy’s theory of complex integrals made no mention
of multi-valued integrands was to drive people, including Jacobi in the 1830s,
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to seek other foundations for elliptic functions altogether, and to abandon the
starting point of elliptic integrals.”

So Abel did not have a theory of complex integrals. However, we can give
these integrals exact meaning. Abel considers the algebraic equation F (x, y) = 0
as a polynomial equation px(y) = 0 in the variable y with coefficients depending
on x. Let the degree of this polynomial be n. For any x, the polynomial equation
has n solutions of y with two exceptions. The leading coefficient can become
0, which can also only happen a number of points of at most the degree of
the leading coefficient. The other exception is when there is multiple root, i,e.
when p′x(y) = Fy(x, y) = 0. Abel called these n solutions the different forms
for the function y.14 We can also regard y as a multivalued function of x. We
can represent a multivalued function set theoretically by a relation, i.e. a set of
pairs (x, y). So when y is considered a multivalued function of x it is given by
the set of pairs

{(x, y) ∈ C× C|F (x, y) = 0}. (3.3)

In order to get a notion of differentiation and integration, the multivalued
functions need to be locally single valued functions. We will achieve this using
the implicit function theorem15. Let

D := {(x, y) ∈ C× C|px(y) = 0, p′x(y) ̸= 0}. (3.4)

Take a point (x0, y0) ∈ D. At this place Fy(x0, y0) ̸= 0, so we can apply the
implicit function theorem: There exists a unique differentiable function φ such
that y0 = φ(x0) and f(x, φ(x)) = 0 in a neighbourhood U of x0.

We can define any integral locally: Define the local integral of f on U0, ω0,
to be a singlevalued function of x defined upto a constant by the differential
equation ω′

0(x) = f(x, φ(x)).
To define the integral globally we want to glue these local integrals together.

We say two pairs of a neighbourhood and a local integral are glueable, and we
will write (U, ω0) ∼ (U ′, ω0′), if U ∩ U ′ ̸= ∅ and the corresponding local ex-
pressions of y and the integral match on their overlap, i.e. φ|U∩U ′ = φ′|U∩U ′

and ω0|U∩U ′ = ω0′ |U∩U ′ . Now we define a new relation on the local integrals,
(U, ω0) ≃ (U ′, ω0′), if there exists a sequence of glueable local integrals connect-
ing the two:

(U, ω0) ∼ (U1, ω1) ∼ · · · ∼ (Un−1, ωn−1) ∼ (U ′, ω0′). (3.5)

For our remaining purposes we omit the neighbourhoods in our notation of
(U, ω0) and we say ω0′ is a prolongation of ω0 if ω0 ≃ ω0′ .

14Abel stated: “Cette equation (...) donne pour la fonction y un nombre n de formes
différentes.”[Ab26]

15The implicit function theorem was not known to Abel in this form and is due to Cauchy
who published it after Abel’s paper [Ab26]. Mathematicians before Cauchy had an intuitive
notion of the implicit function theorem as can be seen in the work of Newton and Lagrange
used special cases of the implicit function theorem. An exposition of the history of the implicit
function theorem can be found in [KP13].
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Now we can define a multivalued function Ω, consisting of the prolongations
of an initial local integral ω0, depending on a pair of two complex variables
(x, y), via the set of pairs

{(x′0, y′0), ω0′(x
′
0)|(x′0, y′0) ∈ D, ω0′ ≃ ω0} (3.6)

Since y is a multivalued function of x we can also create the multivalued function
ψ(x) = Ω(x, y(x)). In the eyes of Abel, but even in the eyes of Riemann,
the integral (depending on the initial local integral) should be intepreted as a
quantity ∫

f(x, y)dx (3.7)

which we can regard both as a function Ω of (x, y) and as a function ψ of x.
Abel considered the integral mainly as a function ψ of x, Riemann uses both
intepretations, but we will see in §4.2 that Ω can directly be translated into
a function on T . Note that we only defined the integral as a function of x
on D, but it can be extended continuously to a multivalued function on C with
possibly a pole or a logarithmic infinity. We can show that

∫
f(x, y)dx is defined

up to a constant by considering the different choices of intitial local integral.

3.2 Abel’s addition theorem

Abel considers the integral as a function of x:

ψ(x) =

∫
f(x, y)dx, (3.8)

where x and y satisy F (x, y) = 0 and the integral should be intepreted as defined
in §3.1.

Using a partial fraction decomposition we see that, if f is a rational function
of x only, an integral ψ(x) can be expressed as a sum of a rational function
and a logarithm of a rational function. A sum16 ψ(x1) + · · · + ψ(xµ) of these
integrals is therefore expressible in the form

ψ(x1) + ψ(x2) + · · ·+ ψ(xµ) = u(x1, x2, . . . , xµ) + ln v(x1, x2, . . . , xµ), (3.9)

where u and v are algebraic functions. A sum ψ(x1) + · · · + ψ(xµ) of similar
elliptic integrals is also expressible in the same form, provided a certain algebraic
relation is established between the variables. In the example of two lemniscate
integrals we can establish the relation x1

√
1− x42 + x2

√
1− x41 = 0 by setting

x = 0 in Theorem 2.9 to get that ψ(x1) + ψ(x2) = constant. This analogy
led Abel to investigate if analogous properties hold for more general integrals
[Ab26]. He arrived at the following theorem to which I will refer to as Abel’s
relations theorem according to [Kl04]:

16Abel distinguishes the integrals by a subscript, i.e. writes ψ1x1, ψ2, . . . , ψµxµ to denote
the integrals. Using this subscript he is able to consider integrals where different integration
constants are chosen. This is not important for the resulting theorems since the constants can
be absorbed in the functions on the right hand side of equations (3.10) and (3.11)
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Theorem 3.1 (Abel’s relations theorem). Let i = 1, . . . , n and let xi and yi be
complex variables related by an algebraic equation F (xi, yi) = 0 and let f be a
rational function. Furthermore, let there be µ integrals ψ(xi) =

∫
f(xi, yi)dxi

for i = 1, . . . , µ. Then there exists a particular number p of certain algebraic
relations constraining the variables x1, . . . , xµ such that

ψ(x1) + ψ(x2) + · · ·+ ψ(xµ) = u(x1, x2, . . . , xµ) + ln v(x1, x2, . . . , xµ), (3.10)

where u and v are algebraic functions. The number p does not depend on the
number of integrals, but only on the nature of the particular integrals being
considered.

For elliptic integrals such as the lemniscate integral, p = 1. The number p
is what is now known as the genus of the curve F (x, y) = 0.

Abel’s relations theorem (3.1) also holds if the integrals are multiplied by
arbitrary rational numbers. From this it follows the following theorem, which
we will call Abel’s addition theorem or simply Abel’s theorem:

Corollary 3.2 (Abel’s addition theorem). Let i = 1, . . . , n and let xi and yi
be complex variables related by an algebraic equation F (xi, yi) = 0 and f be a
rational function. Let there be α integrals ψ(xi) =

∫
f(xi, yi)dxi for i = 1, . . . , α

and let h1, h2 . . . , hα ∈ Q. Then there exist a particular number p of algebraic
functions x′1, x

′
2, . . . , x

′
p of the x1, x2, . . . , xα such that

h1ψ(x1) + h2ψ(x2) + · · ·+ hαψ(xα)

= V (x′1, x
′
2, . . . , x

′
p) + ψ(x′1) + ψ(x′2) + · · ·+ ψ(x′p), (3.11)

where V is the sum of an algebraic function and the logarithm of an algebraic
function.

An important special case is when h1, h2, . . . , hα = 1, which includes the
addition formulas of the elliptic functions (for elliptic functions p = 1). In the
particular case of the lemniscate, V = constant.

The way Abel came up with theorems had been investigated by e.g. Brill
and Noether [BN94]. Abel’s addition theorem was not just important since it
generalised the addition theorem of elliptic functions to a very broad class of
integrals, the Abelian integrals. It also connected algebra and analysis, and it
would later appear that Abel’s theorem had deep connections with algebraic ge-
ometry and topology. This theorem kick started the development of the theory
of Abelian integrals, which had a great historical impact as we will see in §3.3
and §4. The importance of his addition theorem was noted particulary by Jacobi
who said [Jac32]: “It is pleasing to bestow the name of the Abelian theorem on
the preceding theorem as a most beautiful monument to the admirable genius
snatched away by premature death.”17 But it was also noted by other mathe-

17My translation with the assistance of ChatGPT. Original: “Theoremati antecedenti ut
monumento pulcherrimo ingenii admirabilis morte praematuri abrepti theorematis Abeliani
nomen omponere placet.”
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maticians: Legendre called it a [Bi73] “monument lasting longer than bronze”18

and Picard said that “perhaps never in the history of science has so important
a proposition been obtained using such simple considerations.”19

3.3 Jacobi’s inversion problem

In the first paragraph of his paper, where Jacobi poses his famous inversion
problem [Jac32], he motivates the search for the inverses to Abelian integrals.
He begins by recalling his and Abel’s successes in inverting elliptic integrals:

“However, the nature and character of these transcendents could not
be fully understood by considering only this transcendent Π(x) (an
elliptic integral) (...) Instead, one had to consider the function for
which Π(x) is the inverse.”20

Jacobi notes this idea can be motivated by the analogy with the trigonometric
functions, which represent at the same time a special case:

“For indeed, if we consider the analogy with trigonometric functions,
into which elliptic functions degenerate in a special case, we also see
that, by setting21

u(x) =

∫ x

0

dt√
1− t2

, (3.12)

Analysts consider the interval x as a function of the integral u, which
they call the sine. We know that this function enjoys very important
properties, which make its use and application exceedingly frequent
throughout analysis. For example, to mention just a few, for any
value of the argument u, the function has a unique and determined
value; it can be expanded into a series progressing according to pow-
ers of u, which converges for all real and imaginary values of the
argument; it can be factored into linear factors determined by the
values of u for which the function vanishes; finally, it possesses all
the properties of a polynomial of u. On the other hand, analysts con-
sider the function u merely as the inverse of the function x = sin(u),
saying it is that for which sin = x, or writing u = arcsin(x). This
function, however, cannot be expanded into an always-convergent
series, nor is it determined, but has an infinite number of values,

18My translation with the assistance of chatGPT. Original:“monumentum aere perennius”
19Translation from [Bi73]. Original: [Pi93] Sous cette forme, le tliéoreme parait tout à

fait élémentaire, et il n’y a peut-être pas, dans l’histoire de la Science, de proposition aussi
importante obtenuc à l’aide de considérations aussi simples.

20My translation with the assistance of ChatGPT. Original: “Neque tamen harum transcen-
dentium indoles atque natura plane pernocsi poterat, consderando hanc solam transcendentem
Π(x) (...) sed considerari debuit functio, euius ipsa Π(x) inversa est”

21Here I changed the variable of integration according to modern notation.
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since its nature is that of the root of an algebraic equation of infi-
nite order, u = sin(x). Hence, neither a special name nor a suitable
symbol was thought necessary to assign to it.”22

Jacobi and Abel discovered that elliptic inverses do indeed enjoy “all the
properties of a rational function.” Jacobi refers to his Fundamenta nova theoriae
functionum ellipticarum [Jac29]. Abel’s researches are mostly layed out in his
Recherches sur les fonctions elliptiques [Ab27].

In paragraph 3 of [Jac32], Jacobi poses the more general question:

“what are the more general cases of those functions, whose inverses
are the Abelian transcendentals, and how does the Abelian theorem
relate to these?”23

Jacobi only considers the special class of Abelian integrals called hyperelliptic
integrals. They are integrals of the form∫

f(x, s)dx, (3.14)

where x and s are related by the polynomial equation F (x, s) = s2 −X(x) = 0,
where X is a polynomial and f is a rational function. Jacobi wrote upper and
lower bounds at the integral. It clear from [Jac32] what he means by this,
however it could be interpreted as follows: Let

ψ(x) =

∫
f(x, s)dx (3.15)

where x and s are related by the polynomial equation F (x, s) = 0, as defined in

22My translation with the assistance of ChatGPT. Original: “Entenim si analogiam func-
tionum trigonometricarum respicimus, in quas casu speciali functiones ellipticae abeunt, etiam
videmus, posito

u =

∫ x

0

dx
√
1− x2

, (3.13)

considerari ab Analystis intervallum x tanquam functionem integralis u, oui nomen sinus
tribuunt. Quam functionem scimus proprietatibus gravissimis gaudere, quae eius isum et
applicatiunem per totam analysin frequentissimam reddunt. Quippe quae, ut de aliss taceam,
pro quolibet valore argumenti u valorem unicum ac determinatum habet; evolvi potest in
seriem secundum dignitates ipsius u progredientem, quae pro omnibus argumenti valoribus
et realibus et imaginariis convergit; discerpi potest in factores lineares, qui determinantur
valoribus ipsius u, pro quibus functio evanescit; denique gaudet illa proprietatibus omnibus
functionis ipsius u rationalis integrae. E contra functionem u considerant analystae tantum
ut inversam functionis x = sin(u), dicentes eam esse cuius sinus = x aut scribentes u =
arcus sinus x; neque ea functio ullo modo evolvi potest in seriem sempet convergentem,
neque determinata est, sed nemerum valorum infinitum habet, quippe cuius eadem est natura
atque radicis aequationis algebraicae ordinis infiniti, u = sin(x). Unde nec nomen nec signum
peculiare ei tribuere, idoneum putabatur.”

23My translation with the assistance of ChatGPT. Original: “quaenam sint casu gener-
aliori functiones illae, quarum inversae sunt transcendentes Abelianae, et quomodo de hisce
exhibitum audiat theorema Abelianum.”
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3.1. Then we could define∫ b

a

f(x, s)dx := ψ(b)− ψ(a).

To answer the question above, Jacobi reformulates Abel’s addition theo-
rem into a system of linearly independend simultaneous equations because “the
Abelian theorem, if you wish to correctly grasp its power and nature, should be
proposed in the following manner:”

Theorem 3.3. “Let X be a polynomial function of the fifth or sixth order and
let24 ∫ x

0

dt√
X(t)

= Φ(x),

∫ x

0

tdt√
X(t)

= Φ1(x). (3.16)

Then there are two simultaneous equations,

Φ(a) + Φ(b) = Φ(x) + Φ(y) + Φ(z)

Φ1(a) + Φ1(b) = Φ1(x) + Φ1(y) + Φ1(z). (3.17)

such that the quantities a and b are algebraically determined by the given quan-
tities x, y, and z.”25

Jacobi sets out to propose the inverse functions related to the integrals of
equation (3.16) and provide an addition formula for them as a consequence of
Abel’s theorem. He only suggests what mapping these inverse functions should
inverte but he does not prove the existence of these functions. The existence of
these functions will be called Jacobi’s inversion problem.

He proceeds for the more general class of hyperelliptic integrals: Let X
denote a polynomial function of order (2m − 1) or 2m, and define for i ∈
{0, 1, . . . ,m− 2} the integrals

Φi(x) :=

∫ x

0

tidt√
X(t)

. (3.18)

In the hyperelliptic case the number p from Abel’s theorem 3.2 (the genus)
is equal to m − 1. According to Abel’s theorem 3.2 we have the system of

24The integral was originally notated as
∫ x
0

dx√
X

25My translation with the assistance of ChatGPT. Orginal: “Designante X functionem
ipsius x integram rationalem ordinis quinti aut sexti, sit∫ x

0

dt√
X(t)

= Φ(x),

∫ x

0

tdt√
X(t)

= Φ1(x),

propositis duabus simul aequationibus,

Φ(a) + Φ(b) = Φ(x) + Φ(y) + Φ(z)

Φ1(a) + Φ1(b) = Φ1(x) + Φ1(y) + Φ1(z).

quantitates a, b e datis quantitatibus x, y, z algebraice determinantur.”
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simultaneous equations

m−2∑
i=0

Φ0(yi) =

m−2∑
i=0

Φ0(xi) +

m−2∑
i=0

Φ0(x
′
i)

m−2∑
i=0

Φ1(yi) =

m−2∑
i=0

Φ1(xi) +

m−2∑
i=0

Φ1(x
′
i)

...

m−2∑
i=0

Φm−2(yi) =

m−2∑
i=0

Φm−2(xi) +

m−2∑
i=0

Φm−2(x
′
i) (3.19)

such that the yi are determined algebraically by the xi and the x′i. Now define

(u0, u1, ..., um−2) :=

(
m−2∑
i=0

Φ0(xi),

m−2∑
i=0

Φ1(xi), . . . ,

m−2∑
i=0

Φm−2(xi)

)
,

(u′0, u
′
1, ..., u

′
m−2) :=

(
m−2∑
i=0

Φ0(x
′
i),

m−2∑
i=0

Φ1(x
′
i), . . . ,

m−2∑
i=0

Φm−2(x
′
i)

)
, (3.20)

and

(u0 + u′0, u1 + u′1, ..., um−2 + u′m−2) =

(
m−2∑
i=0

Φ0(yi),

m−2∑
i=0

Φ1(yi), . . . ,

m−2∑
i=0

Φm−2(yi)

)
.

(3.21)

Now Jacobi proposes the following inverse functions:

xi = λi(u0, u1, . . . , um−2)

x′i = λi(u
′
0, u

′
1, . . . , u

′
m−2)

yi = λi(u0 + u′0, u1 + u′1, . . . , um−2 + u′m−2) (3.22)

Thus, Abel’s theorem relates to these inverse functions as follows:

Theorem 3.4 (Abels theorem inverted by Jacobi). Let X denote a polynomial
of x of order (2m− 1) or 2m, and let

Φi(x) :=

∫ x

0

tidt√
X(t)

. (3.23)

With these given, let there bem−1 functions x0, x1, . . . , xm−2, each depending on
the m− 1 quantities u0, u1, . . . , um−2 in such a way that the following equations
hold simultaneously:

(u0, u1, ..., um−2) =

(
m−2∑
i=0

Φ0(xi),

m−2∑
i=0

Φ1(xi), ...,

m−2∑
i=0

Φm−2(xi)

)
, (3.24)
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and the functions are given by:

xi = λi(u0, u1, . . . , um−2). (3.25)

The functions

λ(u0 + u′0, u1 + u′1, . . . , um−2 + u′m−2),

λ1(u0 + u′0, u1 + u′1, . . . , um−2 + u′m−2),

...

λm−2(u0 + u′0, u1 + u′1, . . . , um−2 + u′m−2) (3.26)

can be expressed algebraically by the functions

λ(u0, u1, . . . , um−2),

λ1(u0, u1, . . . , um−2),

...

λm−2(u0, u1, . . . , um−2), (3.27)

and

λ(u′0, u
′
1, . . . , u

′
m−2),

λ1(u
′
0, u

′
1, . . . , u

′
m−2),

...

λm−2(u
′
0, u

′
1, . . . , u

′
m−2). (3.28)

Jacobi, therefore, answered part of his question: how does the Abelian theo-
rem relate to the inverse functions of Abelian integrals? However, the possibility
of indeed inverting these integrals is not yet clear and will be called by the name:
Jacobi’s inversion problem. That is, can we invert the mapping

(x1, . . . , xp) 7→

(
m−2∑
i=0

Ψ0(xi),

m−2∑
i=0

Ψ1(xi), . . . ,

m−2∑
i=0

Ψm−2(xi)

)
? (3.29)

We will see in the next section that Riemann is able to prove this is possible in
the general case of Abelian integrals using revolutionary methods.

4 From Jacobi’s inversion problem to Riemann–
Roch

“The period we reach now is without any doubt the most important
of all in the history of algebraic geometry to this day. It is entirely
stamped by the work of one man, Bernhard Riemann, one of the

25



greatest mathematicians who ever lived, and also one of those who
have had, most profoundly, the perception (or divination) of the es-
sential unity of mathematics.”26 - Dieudonné

Our goal is to describe the history of Riemann–Roch (Theorem 4.7). And
although Riemann is now famous, among other things, for his contribution to
this theorem, i.e. Riemann’s inequality (Theorem 4.2), this was not his goal.
Rather, this inequality was a byproduct of his reasoning in order to achieve the
solution to Jacobi’s inversion problem. Jacobi’s inversion problem gave Rie-
mann the right ingredients. Riemann’s inequality turns out to be an immediate
consequence of these. Even more, as we will see, the attainment of equality
sheds some light on the uniqueness of the inversion. As the first ingredient,
Riemann considered the totality of Abelian integrals belonging to a complex
polynomial equation F (x, y) = 0, rather than restricting attention to a single
integral. These integrals are all integrals of rational functions f ,∫

f(x, y)dx, (4.1)

as defined in §3.1, such that x and y are related by the same polynomial equa-
tion F (x, y) = 0. We will see this equation defines a Riemann surface. This
ingredient was already known to Jacobi, as he considers the inversion of the

system of integrals Φi(x) =
∫ x

0
tidt√
X(t)

(equation (3.18)), which turn out to span

all everywhere finite integrals with variables connected by y2 −X(x) = 0. This
consideration of the totality of Abelian integrals with the variables connected
by the same algebraic equation is a direct consequence of Jacobi’s efforts to
invert the hyperelliptic integrals. The second ingredient is Riemann’s original
contribution: Riemann developed a geometric interpretation of complex func-
tion theory, the theory of Riemann surfaces. This geometric theory enabled him
to add a third ingredient: defining functions on the surface through a boundary
value problem. By a clever topological procedure, Riemann used this bound-
ary problem to relate spaces of integrals on the surface to the topology of the
surface. We will now treat these ingredients in more detail.

4.1 Riemann’s physical perspective on complex functions

In his doctoral disseration [Ri51], Riemann revolutionized our understanding
of complex functions. Inspired by Gauss, who represented complex numbers
as coordinates in a plane, Riemann viewed complex functions as relationships
between surfaces, treating them as functions of position. This approach enabled
him to reduce arguments in complex function theory, which were traditionally

26Translation from [Die85]. Original[Die74]: “La période à laquelle nous arrivons est sans
aucun doute la plus importante de toute l’histoire de la Géométrie algébrique à ce jour. Elle est
tout entière marquée par l’œuvre d’un seul homme, Bernhard Riemann, un des plus grands
mathématiciens qui ait jamais vécu, un de ceux aussi qui ont eu le plus profondément le
sentiment (ou la divination) de l’unité essentielle de la mathématique.”
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based on the simple algebraical and analytical laws, to arguments of analysis
situs, what is now known as topology.

In his dissertation, Riemann deals only with meromorphic functions, because
he argues, these are exactly the functions that arise from a combination of the
simple laws of dependence between variables arising from algebraic operations.
Therefore, if we refer to a function, as Riemann did, we mean a meromorphic
function.

In paragraph 20 of his dissertation, Riemann emphasizes how these simple
laws motivated the introduction of complex numbers:

“The introduction of complex quantities into mathematics has its
origin and immediate purpose in the theory of simple27 laws of de-
pendence between variables arising from algebraic operations. For
if the field of these laws of dependence is extended by permitting
the variable quantities to have complex values, a formerly hidden
harmony and regularity emerges.”28

On the other hand, Riemann noted in his table of contents “the earlier method
of determining a function through operations on quantities contains superfluous
components.” However, “via the treatment carried out here, the extent of the
matter that determines a function is reduced to the necessary minimum.”29

Here Riemann refers to his method of defining complex functions through the
boundary value problem corresponding to the Cauchy–Riemann equations:

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
. (4.2)

Although Riemann motivates the well-posedness of this problem in his paper
[Ri51] by Dirichlet’s principle, Klein argues [Kl82b] it is the physical interpre-
tation of functions representing flows of fluids that convinced Riemann of the
well-posedness of this problem:

27Here Riemann considers the elementary operations to be addition, substraction, multipli-
cation, division, integration and differentiation: and simpler dependence indicates that fewer
elementary operations are required. In fact, all functions used up to now in analysis can be
defined via a finite number of these operations.

28Translation from [Ri92]. Orginal [Ri51]: “Die Einführung der complexen Grössen in die
Mathematik hat ihren Ursprung und nächsten Zweck in der Theorie einfacher (Wir betra-
chten hier als Elementaroperationen Addition und Subtraction, Multiplication und Division,
Integration und Differentiation, und ein Abhängigkeits gesetz als desto einfacher, durch je
weniger Elementaroperationen die Abhängigkeit bedingt wird. In der That lassen sich durch
eine endliche Anzahl dieser Operationen alle bis jetzt in der Analysis benutzten Functionen
definiren.) durch Grössenoperationen ausgedrückter Abhängigkeitsgesetze zwischen veränder-
lichen Grössen. Wendet man nämlich diese Abhängigkeitsgesetze in einem erweiterten Um-
fange an, indem man den veränderlichen Grössen, auf welche sie sich beziehen, complexe
Werthe giebt, so tritt eine sonst versteckt bleibende Harmonie und Regelmässigkeit hervor.”

29Translation from [Ri92]. Orginal [Ri51]: “Die frühere Bestimmungsweise einer Function
durch Grössenoperationen enthält überflüssige Bestandtheile. Durch die hier durchgeführten
Betrachtungen ist der Umfang der Bestimmungsstücke einer Function auf das nothwendige
Mass zurückgeführt.”
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“But I have no doubt he started from precisely those physical prob-
lems [treated in Klein’s book], and then, in order to give what was
physically evident the support of mathematical reasoning, he after-
wards substituted Dirichlet’s principle. Anyone who clearly under-
stands the conditions under which Riemann worked in Göttingen,
anyone who has followed Riemann’s speculations as they have come
down on us, partly in fragments, will, I think, share my opinion.”30

In his book, Klein tries to follow Riemann’s “true train of thought” developing
his function theory.

Dirichlet’s principle, in the form Riemann used, states that given an arbi-
trary function β : T → R on a compact surface T (a surface that we will specify
in §4.2), there is a function u : T → R depending on the complex variable
z = x+ iy that minimizes a certain surface integral∫

T

((
∂u

∂x
− ∂β

∂y

)2

+

(
∂u

∂y
+
∂β

∂x

)2
)
dT, (4.3)

and that we can use this minimizer to obtain a solution to the boundary prob-
lem (equation 4.2). Here does dT denote a surface element. Even though
Riemann attempted to use Dirichlet’s principle to support the mathematical
reasoning, this principle was later critizised by Weierstrass [Weie95] as it was
unclear whether the infinum of Dirichlet’s integral was actually attained by any
function, i.e. whether there is a function minimzing this integral. This issue
was later resolved by Hilbert [Hil04]. Prior to Hilbert, Schwarz and Neumann
invented their alternating process, which provided the mathematical support to
what was physically evident [Sc90][Ne70][Ne84].

4.2 The concept of a Riemann surface

The Abelian integrals (see §3.1) take the form31∫
f(s, z)dz,

where f is a rational function and s and z are related by a polynomial equation
F (s, z) = 0. In his article where he solves the inversion problem [Ri57], Rie-
mann considered an irreducible polynomial equation F (s, z) = 0 of two complex

30Translation from [Kl82b]. Original [Kl82a]: “Aber ich kann nicht zweifeln, dass er
genau von jenen physikalischen Problemen ausgegangen ist, und ihnen nur hinterher, um
die physikalische Evidenz durch einen mathematischen Schluss zu stützen, das Dirichlet’sche
Princip substituirt hat. Wer sich die Bedingungen klar macht, unter denen Riemann in Göttin-
gen arbeitete, wer die Speculationen Riemann’s verfolgt hat, wie sie zum Theil in Fragmenten
auf uns gekommen sind, wird, denke ich, diese Meinung theilen.”

31Note that Riemann not only changes the names of the variables s = y, z = x with respect
to Abel’s notation. He also interchanges the places of s, z in the rational function f , i.e. Abel
wrote f(x, y) for the rational function and Riemann f(s, z). The integral should be interpreted
in the sense of §3.1.
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variables. If s is thereby considered a function of z, this function may be multi-
valued. Look, for example, at the equation s2 − z = 0. Here s is a two-valued
function of z except at z = 0. Consider F (s, z) to be a polynomial pz(s) in s
with coefficients being polynomials in z and let’s call the degree of pz to be n.
If the leading coefficient is non-zero, s has n solutions. If these solutions are
different, we have that ∂F

∂s ̸= 0. So by the implicit function theorem s is locally
a holomorphic function of z (as we saw in §3.1).

Riemann, inspired by Gauss, saw the complex numbers as a plane. At places
where ∂F

∂s ̸= 0, since s is locally a holomorphic function of z, Riemann visualized
the n different solutions of z to form n different layers. These layers are called
the branches of s. The branches come together at points in which s is a multiple
root of the polynomial pz, which points are called branch points. Let’s once again
consider the example of the multivalued function s given by s2 − z = 0. We see
that z = 0 is a branch point and at any other place s forms two branches.

It may happen that the leading coefficient of pz becomes 0; then s has a pole
at a branch. An example of this phenomenon is given by the equation sz−1 = 0.
Here, s has a pole at z = 0. So in general, s is locally a meromorphic function
of z except at the branch points.

Riemann imagined a surface formed by the branches and the branch points.
Riemann understood the notion of a surface in an intuitive sense. We will,
however, make Riemann’s surface, which is represented by the multi-valued
function s, more precise. Let’s keep F (s, z) as above and keep the degree of pz
equal to n. Let’s define the set

U :=

{
(s, z) ∈ C× C|F (s, z) = 0,

∂F

∂s
̸= 0

}
.

Let’s also define the function φ : (s, z) 7→ z. We already saw that locally s is
a holomorphic function on U , so locally φ is invertible and so the restrictions
of φ to sufficiently small neighbourhoods can be used to define an atlas on U .
We can now extend this surface to a surface T containing the branch points
and poles of s (for details, see e.g. theorem 8.9 of [Fo81]). This surface is a
connected one-dimensional complex manifold. Such manifold is now called a
Riemann surface.

Any meromorphic function of s and z is now a meromorphic function on T .
In particular the integral, ∫

f(s, z)dz,

as defined in §3.1 where f is a rational function, is a multivalued function
on T . Riemann calls the different values of

∫
f(s, z)dz on a point T different

prolongations of the integral. Geometrically these give rise to different sheets,
since locally they are single valued function on T (see §3.1). Riemann uses
the terms “Zweig” and “Blat” interchangeably. In accordance with modern
terminology I will consider a branch as a special case of a sheet, when the two
sheets come together in a branch point [Wey55].
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The first modern definition of a manifold using charts was published by Weyl
in 1913 in his book on Riemann surfaces [Wey13].

4.3 Integrals defined through a boundary value problem.

“The principal significance of the inversion problem to us today lies
primarily, not in its intrinsic value, but in the splendid developments
created by Riemann and Weierstrass in their efforts to solve the
problem.”32 - Weyl

In 1857, Riemann published his paper solving the inversion problem of Jacobi
[Ri57]. In order to solve the inversion problem, he had to develop his theory of
integrals on Riemann surfaces. In paragraph 2 of the introduction he noted:

“When examining the functions arising from the integration of closed33

differentials, some of the propositions belonging to the analysis situs
are almost indispensable. With this name used by Leibniz, albeit
perhaps not entirely in the same sense, a part of the doctrine of con-
tinuous quantities cannot be considered as existing independently of
position and measurable by each other, but rather, completely dis-
regarding the proportions, only subjects their position and surface
situation to investigation.”34

Closed differentials on the xy-plane are differentials gdx + hdy such that
∂g
∂y = −∂h

∂x and which correspond physically to fluid flows. Complex functions
correspond to closed differentials since they satisfy the Cauchy–Riemann equa-
tions. Namely, let f(z) = u(z)+v(z)i and z = x+yi, then the Cauchy–Riemann
equations (4.2)

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
. (4.4)

are equivalent to saying the differential fdz is closed.
We will now illustrate how Riemann derived his topological theorems on the

integrals of T . Riemann, in fact, considered a more general surface than a surface
arising from a equation F (s, z) = 0. But for simplicity we keep considering the
Riemann surface corresponding to such an equation. Riemann first defined

32Translation from [Wey55]. Original [Wey13]: “Die große Bedeutung des Umkehrproblems
liegt für uns Heutige nicht nur (und wohl nicht einmal überwiegend) in seinem Wert an sich
als in den großartigen Gedankenreihen, zu deren Schöpfung Riemann und Weierstraßdurch
die Bemühungen um seine Lösung getrieben wurden.”

33Originally translated as ‘complete’.
34Translation from [Ri92]. Original [Ri57]: “Bei der Untersuchung der Functionen, welche

aus der Integration vollständiger Differentialien entstehen, sind einige der analysis situs ange-
horige Sätze fast unentbehrlich. Mit diesem von Leibnitz, wenn auch vielleicht nicht ganz
in derselben Bedeutung, gebrauchten Namen darf wohl ein Theil der Lehre von den stetigen
Grössen bezeichnet werden, welcher die Grössen nicht als unabhängig von der Lage existirend
und durch einander messbar betrachtet ; sondern von den Massverhältnissen ganz absehend,
nur ihre Orts- und Gebietsverhältnisse der Untersuchung unterwirft.”
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integrals of meromorphic functions f on T as integrals of the corresponding
closed differentials fdz along a path. He considered the starting point of the
paths to be fixed. This way the integral becomes a multivalued function of the
end point, the multiple values depending on the path taking. Two paths with
the same end and starting point give the same value if they enclose a simply
connected domain. Central to his theory is his alternative definition of the
integral as a boundary value problem, so this is the definition on which we will
eleborate.

First of all, Riemann regarded the surface T as a closed (i.e. compact and
without a boundary) surface T by adding the points corresponging to z = ∞,
Using 2p cuts, Riemann cut the surface into one simply connected piece T ′. The
cuts then form the boundary of the surface. Riemann calls the 2p cuts needed to
cut the surface into one simply connected piece the connectivity of the surface.
The number p was later called the genus by Clebsch [Cl68]. To illustrate this
procedure of cutting up a surface, take a torus T = C/(Z+Zi). This is a closed
surface. If we now cut the surface using a cut along the real and a cut along
the imaginary axis, we obtain a simply connected surface

T ′ = {q ∈ C | 0 ≤ Re(q), Im(q) ≤ 1}. (4.5)

We noted in §3.1 that an Abelian integral can be a multivalued function
of s and z. Therefore, it is multivalued on T . Locally, however, the different
local integrals in the definition of §3.1 corresponding to one pair (s, z) define
different sheets. For any Abelian integral, Riemann chooses one sheet so the
Abelian integral becomes single valued on the surface T ′. The values of different
prolongations of the Abelian integral can only differ by constants, since their
derivatives with respect to z are equal. The value of an integral on the new
surface on the two sides of the cut differs therefore by a number depending on
the specific cut, known as the modulus of periodicity. To be more precise, the
map φ : (s, z) 7→ z induces an orientation on T . Choosing a direction of cutting,
the left-hand sides of the cut is then called positive and the other side negative.
The moduli of periodicity is then the value of at the positive side of the cut
minus the value at the negative side of the cut. These moduli of periodicity
correspond to the difference in the value of the Abelian integral if we traced its
values along a loop on T that only crosses that cut once and that crosses no
other cuts.

The cuts form the boundary of the simply connected surface T ′. Therefore,
by considering an Abelian integral a single valued function ω : T ′ → C on
the simply connected surface T ′, Riemann shows that ω satisfies the Cauchy
Riemann equations (where ω = u+ vi)

∂u

∂x
=
∂v

∂y
;

∂u

∂y
= −∂v

∂x
, (4.6)
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and that u satisfies the periodic boundary conditions

u+ = u− +Re(k(ν)),

dv+

dz
=
dv−

dz
(4.7)

with ν = 1, 2, . . . 2p. Here u+ and u− denote the value of u at the positive
and negative side of the νth cut respectively (same for v). The constant kν

denotes the modulus of periodicity of ω at the νth cut. Riemann showed that,
up to a constant and the conditions on its poles or logarithmic infinities, any
ω is defined by this boundary value problem. Therefore, Riemann showed that
ω is defined by the real parts of its moduli of periodicity and the condition on
its poles and logarithmic infinities. This function can then be extended to a
multivalued function on the uncut surface T . The values of the different sheets
of the multivalued integral above the same point can only differ by combinations
of the moduli of periodicity. Therefore any Abelian integral is defined by its
moduli of periodicity.

From now on we will consider integrals as defined by it’s boundary value
problem. This definition of an Abelian integral has an immediate generalisa-
tion to any compact Riemann surface (a connected one-dimensional complex
manifold). We will call a multivalued function defined by the boundary value
problem just described an integral on the surface.

Let’s consider the torus T = C/(Z + Zi). We will show the multivalued
function ω : T → C given by z 7→ az + b, where a and b are constants is an
integral on the torus. Firstly, ω is complex differentiable and therefore satisfies
the Cauchy–Riemann equations (4.2). The first cut we make is from 0 to 1,
and the second from 0 to i, the resulting surface is a simply connected surface
T ′ = {q ∈ C|0 ≤ Re(q), Im(q) ≤ 1}. The line from 0 to 1 is the positive edge
of the first cut, since the surface lies along the left-hand side of this edge with
respect to the direction of cutting. The line from i to i+ 1 is the negative edge
if the first cut. The line from 1 to 1 + i is the positive edge and the line from 0
to i is the negative edge of the second cut. The moduli of periodicity of ω are
k(1) = az+ b− (a(z+ i)+ b) = −ia and k(2) = a(z+ i)+ b− (az+ b) = a. These
are indeed constants, so ω is indeed a solution to the Riemann’s boundary value
problem (equation (4.6)). Therefore we call ω an integral.

Since the solution of the boundary value problem (equation (4.6)) is unique,
all everywhere finite integrals, i.e. without poles or a logarighmic infinities, are
determined upto a constant by the real parts of the moduli of periodicity k(ν).
We find in our example that a can be determined from Re(a) = Re(k(2)) and
image(a) = Re(k(1)), so all everywhere finite integrals are of the form z 7→ az+b.

4.4 The space of integrals on a surface

Riemann now goes on to consider the space of integrals on T (the totality of
integrals), which forms a complex vector space. First he divides the integrals
into three kinds. Integrals of the first kind are everywhere finite, integrals of
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the second kind may have poles and integrals of the third kind may have a
logarithmic discontinuity, i.e. they are integrals of a meromorphic function with
a simple pole.

The number of conditions that determine the integrals of the first kind, i.e.
the number of moduli of periodicity 2p, depends only on the topology of the
surface T . From this Riemann derives that all integrals w of the first kind are
of the form:

w = α1w1 + α2w2 + · · ·+ αpwp + const., (4.8)

where w1, w2, . . . wp together with the constant term give a basis of the inte-
grals of the first kind and α1, α2, . . . αp are complex numbers. This can be
reformulated in the following theorem, of which we give a proof along the lines
of Riemann:

Theorem 4.1. On a compact Riemann surface of genus p, the dimension of
the space of integrals of the first kind is p+ 1.

Proof. Let w and w1, w2, . . . , wq be integrals of the first kind connected by
w = α1w1 + α2w2 + · · ·+ αqwq + const., where α1, α2, . . . αq are complex num-

bers, and let’s call k(ν) and k
(ν)
1 , k

(ν)
2 , . . . k

(ν)
q the moduli of periodicity of w

and w1, w2, . . . , wq. Denote αµ = γµ + δµi for µ = 1, . . . , q. We then have the
following system of equations for the:

Re(k(1))
...

Re(k(2p))

 =


Re(k

(1)
1 ) · · · Re(k

(1)
q ) −Im(k

(1)
1 ) · · · −Im(k

(1)
q )

...
. . .

...
...

. . .
...

Re(k
(2p)
1 ) · · · Re(k

(2p)
q ) −Im(k

(2p)
1 ) · · · −Im(k

(2p)
q )





γ1
...
γq
δ1
...
δq


(4.9)

If q < p, since the possible numbers of (Re(k(1)), . . . , Re(k(2p)) form a vec-
torspace of a higher dimension then the possible numbers of (γ1, . . . γqδ1 . . . δq),
we see that there is a combination of (Re(k(1)), . . . , Re(k(2p)) that is not a so-
lution of the system (4.9). These real parts of the moduli of periodicity give an
integral linearly independend of w1, . . . , wp and a constant function. Therefore
we can find integrals w1, . . . , wp such that they are, together with a constant
function, linearly independend. Let’s choose such integrals.

If there exist γ1, . . . , γp, δ1, . . . , δp such that Re(k(1)), . . . , Re(k(2p)) = 0.
Since the real parts of the moduli of periodicity determine w uniquely upto
a constant we get that w is a constant function. Therefore w1, . . . wp and a
constant function are linearly dependend, which is contrary to our assumption.
Therefore the kernel of our matrix is 0, so it’s surjective (since it’s a square
matrix). So any combination of (Re(k(1)), . . . , Re(k(2p)) can be attained and
thefore any integral can be determined as a linear combination of w1, . . . , wp

and a constant function. This proves Riemann’s theorem.
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More generally, if ω is an integral that has a simple pole at points ϵ1, . . . , ϵm,
and t1, . . . , tm are arbitrary functions which only have a simple pole on these
points respectively, then ω is of the form (Riemann writes ω to denote a general
integral and w to denote an integral of the first kind):

ω = β1t1 + β2t2 + · · ·+ βmtm + α1w1 + α2w2 + · · ·+ αpwp + const. (4.10)

We can view the space of meromorphic functions on T as a subspace of
the space of integrals, with functions on T being integrals whose moduli of
periodicity are 0. This gives the following system of 2p equations with p +m

variables: Denote the modulus of periodicity of a wµ at the νth cut by k
(ν)
µ ,

the modulus of periodicity of a tk at the νth cut by ℓ
(ν)
k and the modulus of

periodicity of ω at the νth cut by r(ν). The moduli of periodicity r(ν) of ω are
given by the equations

r(ν) =
∑
k

βkℓ
(ν)
k +

∑
µ

αµk
(ν)
µ . (4.11)

Setting the moduli of periodicity of ω equal to zero gives a system of equations
whose solution space gives the space of meromorphic functions on T ,


ℓ
(1)
1 · · · ℓ

(1)
m k

(1)
1 · · · k

(1)
p

...
. . .

...
...

. . .
...

ℓ
(2p)
1 · · · ℓ

(2p)
m k

(2p)
1 · · · k

(2p)
p





β1
...
βm
α1

...
αp


= 0. (4.12)

Since this is a 2p×(p+m) system of equations, the dimension of the solution
space of equation (4.30) is at least m− p. Including the additive constant from
equation (4.10), the space of meromorphic functions is at least m− p+ 1. This
is called Riemann’s inequality. In fact, Riemann notes that a pole of the nth
order can be viewed as n coincident simple poles (section 2 of [Ri57]), so there
is an inequality for poles of any order.

Theorem 4.2 (Riemann’s inequality). Let T be a compact Riemann surface of
genus p. The space of meromorphic functions on T that may only have poles
at designated points and designated maximal order, such that the sum of the
maximal orders is m, has a dimension of at least m− p+ 1.

As we see, proving Riemann’s inequality was a small step when the ingredi-
ents were there.

4.5 Divisors

In 1882, Dedekind and Weber introduced methods of algebraic number theory
into Riemann’s theory [DW82]. By working strictly in an algebraic setting
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Dedekind and Weber were able to make the non-rigorous methods of Riemann
fully rigorous and were able to reveal a deep analogy between number fields and
function fields. In our thesis one object introduced in their work is of particular
importance: the notion of a divisor.

Definition 4.3. Let T be a compact Riemann surface. A divisor D on T is
defined to be a finite formal sum

D =
∑
p∈T

app, (4.13)

with ap ∈ Z. We also define degD :=
∑

p∈T ap.

The notion of a divisor enables us to encode the poles and zeroes of a mero-
morphic function f , counted with multiplicity. Namely define for any f not
everywhere vanishing

div(f) :=
∑
p∈T

ordp(f)p, (4.14)

where ordp(f) is the order of the zero at p or minus the order of the pole at p.
The number of points p at which ordp(f) > 0, i.e., at which f has a zero, is finite.
Namely, suppose f has an infinite number of zeroes. Then, by compactness of
T , the set of zeroes of f has a limit point. By the identity theorem f vanishes
everywhere, which is a contradiction with our assumption. So f has indeed a
finite number of zeroes. Similarly we can show f has a finite number of poles
by considering the zeroes of 1

f . Therefore div(f) indeed defines a divisor.
We can now define the space of functions with poles no worse than described

by D to be

L(D) := {f ∈ M(T ) | div(f) +D ≥ 0}, (4.15)

where M(T ) is the set of meromorphic functions on T . The inequality is defined
coefficientwise, that is, ∑

p∈T

app ≥
∑
p∈T

bpp (4.16)

if and only if ap ≥ bp for all p ∈ T . Using this notation we are able to reformulate
Riemann’s inequality symbolically.

Theorem 4.4. If T is a compact Riemann surface of genus p and if D is a
divisor, then

dimL(D) ≥ deg(D)− p+ 1. (4.17)

In fact, this is a slight generalisation of Riemann’s original statement (The-
orem 4.2), since he only considers D ≥ 0. That is, Riemann only designates the
possible poles. If there is a coefficient of a point p in D that is less then 0, then
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the functions L(D) have a zero at p. This gives rise to extra equations. Details
of this generalisation can be found in [Wey55].

Now we will develop some extra notation to be able to set Roch’s addition
(Theorem 4.7) in this modern framework of divisors. In their work Dedekind
Weber, Dedekind and Weber lack a differential structure to perfom integration,
therefore they reformulated everything in terms of differentials. The differentials
of Dedekind and Weber would not be introduced analytically, but in a fully
algebraic setting. Nowadays, differentials can also rigorously described in an
analytic way via differential 1-forms. Let a differential 1-form η be locally
expressed via fidzi, with zi being the ith coordinate of the atlas {(Ui, φi)}i∈I ,
and with fi being meromorphic. If p ∈ Ui define ordp(η) = ordp(fi), so that we
can define

Ω1(D) := {η ∈ Ω1|
∑
p∈T

ordp(η) +D ≥ 0}, (4.18)

where Ω1 denotes the set of all meromorphic 1-forms.

4.6 Riemann’s solution to the inversion problem

In part 2 of his paper [Ri57], Riemann addresses the inversion problem. Riemann
starts with the everywhere finite integrals u1, u2, . . . , up such that together with
a nonzero constant function these integrals form a basis of the space of integrals
(this is possible by Theorem 4.1). Riemann sets out to invert the tuple of sums

(ϵ1, . . . , ϵp) :=

(
p∑

ν=1

u1(qν), ...,

p∑
ν=1

up(qν)

)
, (4.19)

that depends on p points q1, . . . , qp on the surface. That is, he wants to find
functions λ1, . . . , λp : Cp → T such that for all ν

λν(ϵ1, . . . , ϵp) = qν . (4.20)

This is the right generalisation of the inverse functions Jacobi wanted to find in
§3.3. To any point qν correspond multiple prolongations of the integrals. These
different choices of prolongations give different ϵ1, . . . , ϵp corresponding to the
same points q1, . . . , qp. Therefore we define the following congruence:

Definition 4.5. Tuples (a1, . . . , ap) and (b1, . . . , bp) are called congruent (with
respect to the choice of integrals u1, u2, . . . , up and therefore giving per integral

uπ the 2p moduli of periodicity k
(ν)
π ), written

(a1, . . . , ap) ≡ (b1, . . . , bp), (4.21)

if there are m1, . . .mp ∈ Z such that for all π we have aπ = bπ +
∑2p

ν=1mνk
(ν)
π
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Using the definition of the moduli of periodicity, we see that any congruent
tuple (ϵ1, . . . , ϵp) ≡ (ϵ′1, . . . , ϵ

′
p) give for any ν that

λν(ϵ1, . . . , ϵp) = qν = λν(ϵ
′
1, . . . , ϵ

′
p), (4.22)

so the moduli of periodicity give the periods of the inverse functions λν .
We will only give a very short sketch of Riemann’s solution of the inversion

problem. Riemann inverts the integrals u1, u1, . . . up by cutting up the surface
again into a simply connected surface and he chooses one sheet per integral. To
invert the integrals, it is then enough to show that for any tuple of constants
(e1, e2, . . . , ep) there exists a tuple q1, . . . qν such that (e1, e2, . . . , ep) is congruent
to a tuple (

∑p
ν=1 u1(qν), ...,

∑p
ν=1 up(qν)), since (e1, e2, . . . , ep) is then equal to

(
∑p

ν=1 u1(qν), ...,
∑p

ν=1 up(qν)) in another choice of sheets.
In order to solve the inversion problem, Riemann defines a theta function

that depends on complex variables v1, . . . vp and complex coefficients aµ,µ′ ,
where µ, µ′ = 1, 2, . . . , p, ensuring that aµ,µ′ = aµ′,µ and ensuring that for
all m1, . . .mp ∈ Z the real part of aµ,µ′mµmµ′ is negative. Up to a constant
factor, the theta function is defined by the 2p relations

θ(v1, v2, . . . , vµ, . . . , vp) = θ(v1, v2, . . . , vµ + πi, . . . , vp), (4.23)

θ(v1, v2, . . . , vp) = e2vµ+aµ,µθ(v1 + a1,µ, v2 + a2,µ, . . . , vp + ap,µ).
(4.24)

Riemann also shows that such a function exists.
Riemann cuts the surface T into a simply connected surface T ′ using 2p spe-

cific cuts a1, . . . ap and b1, . . . , bp. He selects a basis u1, u2, . . . up of everywhere
finite integrals such that the moduli of periodicity of uµ at aµ is equal to πi and
equal to 0 at the other a. The moduli of periodicity of uµ at bν are called aµ,ν .
Riemann defines the coefficients of the theta function to be equal to aµ,ν and
shows this is possible by his specific choice of his cuts aν and bν . The integrals
u1, u2 . . . up are holomorphic on T ′.

Let (e1, e2, . . . , ep) denote arbitrary constants for which we want to find a
λν(e1, e2, . . . , ep). Since the uµ are holomorphic functions on T ′, the composition
θ(u1 − e1, u2 − e2, . . . , up − ep) becomes a holomorphic function on T ′. By the
choice of moduli of periodicity of the u and the defining relations of the theta
function, θ(u1 − e1, u2 − e2, . . . , up − ep) is only discontinuous at the cuts bν
(when considered a function on T). By considering the integral

∫
d log θ along

the boundary of the simply connected piece consisting of both sides of the cuts,
Riemann shows that θ(u1 − e1, u2 − e2, . . . , up − ep) has p zeroes η1, η2 . . . , ηp.

Next, Riemann cuts up the surface T ′ even further into a surface T ∗ such
that log θ can be regarded as single valued through a choice of branch. He goes
on to analyse the integrals

∫
log θduµ along the boundary of T ∗. Riemann shows

that

p∑
ν=1

uµ(ην)− eµ + kµ ≡ 0, (4.25)
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where the kµ are constants that only depends on the original choice of uµ and
≡ is the congruence from Definition 4.5.

Riemann then shows he can make a new choice of uµ such that each new uµ
differs by a constant from the old uµ and kµ = 0. The new integrals u1, . . . , up
still form, together with a constant function, a basis of the space of integrals.
Using this choice of additive constants, Riemann solves the inversion problem
in paragraph 24. The above proof fails, however, when θ is the zero function. In
that case Riemann shows there are infinitely many solutions. Riemann refined
his treatment of the second case in a later article [Ri65]. To summarize:

Theorem 4.6 (Jacobi’s inversion problem). There exist integrals of the first
kind u1, . . . up such that, together with a constant, these form a basis of the
space of integrals of the first kind on a Riemann surface and any arbitrarily
given tuple (e1, . . . , ep) is congruent to either a unique tuple of the form(

p∑
ν=1

u1(ην), . . . ,

p∑
ν=1

up(ην)

)
, (4.26)

or to infinitely many.
In other words, either there exist unique functions λ1, . . . , λp : Cp → T such

that

(e1, . . . ep) =

(
p∑

ν=1

u1(λν(e1, . . . , ep)), . . . ,

p∑
ν=1

up(λν(e1, . . . , ep))

)
, (4.27)

or there are infinitely many such functions.

Riemann did not directly use Riemann’s inequality (Theorem 4.2) to solve
Jacobi’s inversion problem. However in solving the inversion problem, Riemann
examined the equations associated with the 2p moduli of periodicity, which are
often linearly independent. Riemann’s inequality serves as a simple application
of these equations. However, Riemann observed that infinite solutions to the
inversion problem arise when the equality in his inequality is not attained due
to the presence of a non-constant meromorphic function on T with fewer than
p+1 poles. (paragraph 10, 16, 23 & 24 of [Ri57]). This stresses the importance
of his inequality and the search for the exact conditions when the equality in
his inequality is violated. And although Riemann aimed to prove the inversion
problem, it were the developments, such as Riemann’s inequality, for which this
work is famous today.

4.7 Work of Roch

In paragraph 10 of [Ri57], Riemann provided a condition for the existence of
a non-constant meromorphic function on a surface T that has a simple pole at
fewer then p + 1 points. The corresponding divisor has degD < p + 1. This
would imply that some of the equations in the proof of his inequality (Theorem
4.2) (arising from setting the moduli of periodicity equal to 0) are, in that case,
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dependent on each other. Namely, dimL(D) ≥ 2, since L(D) contains a constant
and a non-constant function, and so dimL(D) is more then the lowerbound

deg(D)− p+ 1 < p+ 1− p+ 1 = 2. (4.28)

The condition on the existence of such a function was about zeroes of the sec-
ond order of the integrals, i.e., on the first order zeroes of the corresponding
differentials. Roch, a student of Riemann, recognized this and, utilizing Rie-
mann’s tools, began to investigate the precise relationship between dimension
of the space of functions with specific poles and the dimension of integrals with
designated zeros in his 1865 paper [Roc65]. We will now treat this paper in
detail.

Roch considers the same cuts a1, . . . , ap and b1, . . . , bp as we saw Riemann do
in §4.6 to reduce the surface T to a simply connected surface T ′. By strategically
selecting the integrals tk and wµ = uµ to ensure that many moduli of periodicity
already vanish, Roch simplifies equation (4.30) to a p ×m system. To achieve
this, he first chooses a new basis of the space of integrals of the first kind uµ
such that it’s moduli of periodicity are equal to πi at aµ, equal to zero at the
other aν , and equal to aµ,ν at bν (like we saw Riemann do in §4.6). Let’s denote
the modulus of periodicity of tk at aν by τk,ν and at bν by ρk,ν . By taking new
integrals of the second kind t′k = tk − 1

πi (τk,νu1 + · · ·+ τk,pup) which moduli of
periodicity are equal to zero, we get the new system of equations determining
the space of meromorphic functions

πi 0

0
. . .

0 πi
ρ1,1 · · · ρm,1 a1,1 · · · ap,1
...

. . .
...

...
. . .

...
ρ1,p · · · ρm,p ap,1 · · · ap,p





β1
...
βm
α1

...
αp


= 0. (4.29)

This gives α1, . . . , αm = 0, so we get a reduced p×m system of equationsρ1,1 · · · ρm,1

...
. . .

...
ρ1,p · · · ρm,p


β1

...
βm

 = 0. (4.30)

Now Roch considers the same p integrals
∫
∂T ′ uµdv along the boundary of

T ′ consisting of the cuts as Riemann did in paragraph 20 of [Ri57]. Here is v is
an arbitrary integral and therefore in the form

v = β1t
′
1 + · · ·+ βmt

′
m + const. (4.31)

and we call it’s moduli of periodicity Aν and Bν at aν and bν respectively.
The integral

∫
∂T ′ uµdv was only understood intuitively by Riemann and Roch,

but it can now also be interpreted as a combination of a path integral and a
Riemann–Stieltjes integral.
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Riemann showed these p integrals have expressions in terms of the moduli
of periodicity of s if the cuts are chosen in a specific way, namely start with
an arbitrary loop a1 not dividing the surface in two pieces. Let b1 go from the
positive side of a1 to the corresponding point on the negative side of a1. Then
we inductively define the next pair by taking a new cut consisting of a loop aν+1

and a continuation part cν linking it to the previous cuts a1, b1, . . . , aν , bν , and
a loop bν+1 going from the positive side of aν+1 to the corresponding point on
the negative side of aν+1. The integral along the boundary is an integral along
the positive edges minus an integral along the negative edges. Their difference
of uµ along these edges is the moduli of periodicity corresponding to the cuts.
So we get ∫

∂T ′
uµdv =

∫
aµ

πidv +

∫
bν

Aνdv. (4.32)

But the integral
∫
dv along a curve just equals the difference of v between the

values at the starting point and end point of the curve. Since any loop aν starts
and ends at the opposite side of the loop bν , the difference of v between the
values at the starting and end point of aν is the moduli of periodicity of v at
bν , and vice versa. So we have∫

∂T ′
uµdv = πiBµ +

p∑
ν=1

Aνaµ,ν . (4.33)

Roch noted that for each µ = 1, . . . , p the integral equals the sum of integrals
among the poles ϵk of v, that Roch assumes for simplicity to not lie at the
branch points or at infinity (the points ϵk are the poles of tk as defined in §4.3).
This gives an expression for

∫
∂T ′ uµdv in terms of the differentials of uµ using

Cauchy’s integral formula. Namely, if we write the uµ as an Abelian integral35

uµ =
∫
fµ(s, z)ds where f is a rational function. Since locally uµ and tk are

singlevalued functions of z in a neighbourhood ϵk = (sk, zk), we can expand them
in powers of z−zk: we get uk(z) = uµ(zk)+f(sk, zk)(z−zk)+(z−zk)2g(z) and
tk = 1

z−zk
+ h(z), where g and h are holomorphic functions in a neighbourhood

of ϵk. Then we get that the integral among the pole ϵk is equal to∫
uµdv =

∫ (
− u(zk)

(z − zk)2
− f(sk, zk)

(z − zk)
+ j(z)

)
dz = −2πif(sk, zk) (4.34)

with j a holomorphic function in a neighbourhood of zk. Therefore we have∫
∂T ′

uµdv = −2πi

m∑
k=1

βkfµ(sk, zk). (4.35)

35Roch even wrote f in the form f(s, z) =
φ(s,z)
∂F (s,z)

∂s

, where φ is a polynomial. This expression

was proved by Riemann in §9 of [Ri57].
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The vanishing of the moduli of periodicity of v provides Roch with a system
of equations related to the values of the differentials of uµ:

m∑
k=1

βkfµ(sk, zk) = 0, (4.36)

or equivalently f1(s1, z1) · · · f1(sm, zm)
...

. . .
...

fp(s1, z1) · · · fp(sm, sm)


β1

...
βm

 = 0. (4.37)

The space of differentials with zeroes at least at the points ϵk are the solutions
to the transposed system f1(s1, z1) · · · fp(s1, z1)

...
. . .

...
f1(sm, zm) · · · fp(sm, sm)


γ1...
γp

 = 0. (4.38)

The solution of this system of equations is the space of differentials that vanish
at least in the points ϵk. We will call the dimension of the solution space of
equation (4.38) q. By observing the system (4.38) is the transpose of system
(4.37), we can relate q to the dimension of the space of functions which have
at most simple poles in the points ϵk. Namely, the dimension of solution space
to the system of equations (4.37) is m− p+ q. Including the additive constant
from equation (4.10), this gave Roch’s addition to the Riemann–Roch theorem:
dimL(D) = m− p+ 1 + q.

Theorem 4.7 (Riemann–Roch). Let T be a Riemann surface of genus p. Let
the dimension of the space of meromorphic one-forms that vanish at least in m
designated points be q. Then the dimension of the space of functions that have
at most simple poles in those points is equal to m− p+1+ q. That is using the
notation of equation (§4.5)

dimL(D) = deg(D)− p+ 1 + dimΩ1(−D).

Riemann’s inequality (Theorem 4.2) is a direct consequence of the Riemann–
Roch theorem (Theorem 4.7) since dimΩ1(−D) ≥ 0.

4.8 The arithmetical determination of the genus.

In paragraph 7 of [Ri57], Riemann calculates the genus p using the number of
sheets and the number of branch points. Consider the equation F (s, z) = 0.
We saw in §4.2 that the number of sheets (except at branch points) is equal to
degree of F with respect to the variable s, that we defined as n.

Let’s consider a banch point (z0, s0) connecting two branches. Let s1 and s2
be the two values corresponding to a value of z in these two branches. Making
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a loop in the z-plane enclosing only this branch point results in interchanging
the values of s1 and s2. We will call such branch point a simple branch point.

Consider for example the equation F (s, z) = s2 − z = 0, the branch point
(0, 0) and the two pairs (1, 1) and (−1, 1). Consider the loop t 7→ e2it with
t ∈ [0, π] in the z-plane. The corresponding loops on the Riemann surface are
t 7→ (±eit, e2it) and send s = −1 to s = 1 and vice versa, i.e. they interchange
s1 and s2.

Riemann considers all other branch points as coinciding simple branch points.
There are two cases: Let a1, . . . aµ be simple branch branch points on a anti-
clockwise loop such that aj interchanges sj and sj+1. A circuit enclosing all
branch points results in an anticlockwise loop results in an transformation of
s1, s2, . . . sµ+1 to s2, s3, . . . , s1. A branch point with this transformation is said
to be of order µ and is considered a coincidence of µ simple branch points.
Any other coincidence of branch points interchanging different sheets can be
transformed to this case by relabeling the branches. The other case is that two
branch points interchange the same two branches. A loop in the z-plane around
these two points will not result in an interchange of branch. If they coincide
we consider the sheets as disconnected. Indeed, the extension of U used in §4.2
gives rise to two points corresponding to the coinciding branch points in the
two different sheets. Therefore we say that the branch points cancel. Coincid-
ing branch points therefore either cancel or give rise to an higher order branch
points.

Riemann defines w to be the number of branch points (considering a branch
point of higher order as multiple simple branch points and excluding the cancel-
ing the canceling branch points) and r the number of pairs of canceling branch
points. Riemann proved the following theorem relating the number of sheets
and the number of branch points to the genus p.

Theorem 4.8. Consider the Riemann surface T defined by a multivalued func-
tion s of z given by a polynomial equation F (s, z) = 0. Let p be the genus of T
and let n be the degree of F with respect to s and let w equal the number of true
branch points. Then the following relation holds:

w − 2n = 2(p− 1). (4.39)

This formula was later generalised to the Riemann–Hurwitz formula [Hur93].
Using this formula, Riemann also derived a formula including the degree of

F with respect to z, which we call m.

Theorem 4.9. Consider the Riemann surface T defined by a multivalued func-
tion s of z given by a polynomial equation F (s, z) = 0. Let p be the genus of
T and let n and m be the degree of F with respect to s and z respectively, and
let r equal the number of pairs of canceling branch points. Then the following
relation holds:

p = (n− 1)(m− 1)− r. (4.40)
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Consider the example of the Riemann surface corresponding to hyperelliptic
integrals, i.e. let F (s, z) = s2 − p(z) = 0 with p a polynomial of degree m.
We will show how to determine the genus using both formulas. Considered as
a polynomial in s, F has a multiple root in at s = 0 or s = ∞. To s = 0
correspond p(z) = 0, and the behaviour at s = ∞ depends on the degree of
p. The degree of p is equal to m, i.e. the degree of F with respect to z. Let’s
consider the case in which p has m distinct roots. Then there are m simple
branch points at z ̸= ∞. If m is even, we can consider the point (z, s) = (∞,∞)
as a coincidence of r = m

2 pairs of canceling simple branch points, so in this case
w = m. If m is odd, we can consider the point (z, s) = (∞,∞) as a coincidence
of r = m−1

2 pairs of canceling simple branch points and a true simple branch
point, so in this case w = m+ 1.

The formula of Theorem 4.8 gives for the m even m − 2 · 2 = 2p − 2, so
p = m

2 − 1. For m odd it gives m+ 1− 2 · 2 = 2p− 2 so p = m−1
2 . The formula

of Theorem 4.9 gives for m even p = (2−1)(m−1)− m
2 = m

2 −1 and for m odd
p = (2− 1)(m− 1)− m−1

2 = m−1
2 . This is in accordance with our statement in

§3.3.

5 Developments initiated by Riemann’s theory

Riemann achieved a synthesis between topological, algebra-geometric and ana-
lytical (also called transcendental) methods in his theory of Riemann surfaces.
In the remainder of this thesis, we will investigate how the concepts of Riemann’s
theory developed in order to generalise his theory to multiple dimensions. In
particular we follow the development of the Hirzebruch–Riemann–Roch theorem
(Theorem 9.18), a generalisation of the Riemann–Roch theorem. We will focus
on the immediate history of the Hirzebruch–Riemann–Roch theorem. But first,
we will give a brief outline of the developments between Riemann’s theory and
the Hirzebruch–Riemann–Roch theorem.

5.1 Projective geometry as a natural framework

In 1863, Clebsch and Roch began making connections between Riemann’s theory
and projective geometry36 [Cl64][Die89]. This way the point at infinity Riemann
used to close his complex plane (see §4.3) could be treated algebraically and in a
symmetric way. Furthermore, it suggested the right generalisation of the point
at infinity to algebraic varieties of higher dimension. Before we will elaborate on
the introduction of projective geometry, let’s define what is meant by a complex
projective space:

Definition 5.1. We write x ∼ y, with x, y ∈ Cn+1, if there exists a c ∈ C \ {0}
36I was not able to find the paper of Roch nor a reference of the paper of Roch, but

Dieudonné stated in [Die89] (without reference) that Roch also made connections between
Riemann’s theory and projective geometry.
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such that x = cy. The complex37 projective space is then defined to be

Pn := Cn+1 \ {0}/ ∼ . (5.1)

The elements of Pn that are represented by (x0, x1 . . . , xn) ∈ Cn+1 are written
[x0 : x1 : · · · : xn].

The colons in [x0 : x1 · · · : xn] indicate that it’s the ratio between the
coordinates that matter. Clebsch and Roch observed that there is a natural
embedding Cn ⊂ Pn via

[x1, x2, . . . , xn] 7→ [1 : x1 : x2 · · · : xn]. (5.2)

In the special case of the complex plane C we have

z 7→ [1 : z] (5.3)

and the point [0 : 1] can be thought of as the point at infinity. The behaviour
in a neighbourhood of ∞ = [0 : 1] can now be treated in a symmetric way by
considering the open neighbourhood

{[z : 1] ∈ P | z ∈ C}. (5.4)

Riemann considered a complex polynomial equation F (s, z) = 0 (see 4.2). The
only polynomials well defined in the projective space are the homogenous poly-
nomials, i.e. each term has equal degree. In order to transform a polynomial
equation between complex variables F (x1, . . . , xn) = 0 to a homogeneous poly-
nomial equation of the projective coordinates f(x0, x1 . . . , xn) = 0 we set

f(x0, x1, x2 . . . xn) := xn0F

(
x1
x0
,
x2
x0

. . . ,
xn
x0

)
. (5.5)

In the special case where the multivalued functions s of z defined via F (s, z) = 0,
the points corresponding to z = ∞ are the solutions of f(0, s, 1) = 0, where
f(x0, s, z) is the homogeneous polynomial corresponding to F (s, z) via equation
(5.5). A set is called a projective curve if it is the zero set of a homogeneous
polynomial of three variables in P2.

Riemann studied the genus as a topological and therefore also as a complex
diffeomorphic invariant (although not in that language). In the algebraic setting
of the transformations between two projective curves given by equations of the
form f(x, y, z) = 0, where f is a homogeneous polynomial in P2, complex diffeo-
morphic transformations are exactly the birational transformations, that is, the
rational transformations with a rational inverse on a dense set (only on a dense
set since this is not possible to algebraically distinguish the singular points, i.e.,
the coinciding branch points of Riemann described in §4.8). In section 11 of
[Ri57], Riemann provides a proof for the non-projective setting). A quantity

37We only need the complex numbers, but the complex numbers can be replaced with any
field.
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invariant under birational transformations is called a birational invariant. Note
that every projective transformation, i.e. a transformation induced by a linear
transformation, is a birational transformation. Therefore all birational invari-
ants are projective invariants, but not the other way around. The study of the
algebraic geometers after Riemann focused on birational invariants.

5.2 Generalising the genus

In Riemann’s theory, there is only one important invariant of a Riemann surface:
the genus p. The genus can be described in multiple ways: First of all, the
genus can be described topologically, and this may be the most fundamental
way of looking at it. The genus p of a closed surface can be defined as half
the number of cuts needed to cut a surface into one simply connected piece.
The second way Riemann described the genus is analytical. He described the
genus p via the dimension of the space of integrals of the first kind, which is
p + 1 (Theorem 4.1). Lastly the genus could be described algebraically by an
arithmetical formula (Theorem 4.9). This was reformulated by Clebsch [Cl64] to
a formula for a projective curve defined by a homogeneous polynomial of degree
n with d double points (the double points are the canceling branch points of
Riemann):

p =
(n− 1)(n− 2)

2
− d. (5.6)

These three descriptions of the genus have all been subject to attempts of
generalisation, with success. In 1870, Betti, inspired by Riemann, published a
paper [Bet70] in which he generalised Riemann’s topological description of the
genus into what now are called Betti numbers. On an n-dimensional manifold
there are Betti numbers pm for 0 ≤ m ≤ n. These topological ideas were taken
up by Poincaré in his famous papers on “analysis situs” [Po04]. Poincaré’s
papers on analysis situs were motivated both by Riemann’s theory and his in-
vestigations into the theory of partial differential equations. In his first paper,
he gave an alternative definition of the Betti numbers that Poincaré believed to
be equivalent. However, as Heegaard pointed out in [He98], these two definitions
of the Betti numbers can differ. This motivated Poincaré to write his two sup-
plements [Po04]. In his second supplement, he discovered torsion numbers. The
word torsion refers to the fact that it only appears in non-orientable manifolds,
that are twisted in some way, like the Möbius band.

Later it was discovered that the Betti and torsion numbers were better ex-
pressed in terms of homology groups. This was discovered by E. Noether [No26]
and independently by Vietoris [Vi27] (details on the discovery of homology
groups are given in [Hi96]). Hopf, unaware of the papers by Vietoris, states
in one of the first articles using the group viewpoint [Ho28] that:

“I was able to make my original proof of this generalisation of the
Euler–Poincaré formula much clearer in the course of a lecture I
gave in Göttingen in the summer of 1928 by using group-theoretical
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concepts under the influence of Miss. E. Noether to make it much
clearer and simpler.”38

In [Hi96], Hirzebruch cites a letter of Vietoris where he states that the group-
theoretical viewpoint was not entirely new but that the older topologist consid-
ered this viewpoint superfluous:

“Of course, topologists already knew before this work that they were
dealing with Abelian groups when adding cycle classes. However, be-
cause they knew that these groups were characterised by rank and
elementary divisors (torsion numbers), they considered it superflu-
ous to deal with the groups. S. Lefschetz still takes this view in
his excellent book Topology (1930). He writes there on p. 29: ‘In-
deed everything that follows in this section can be, and frequently is,
translated into the theory of groups. It is of course a mere question
of a different terminology.’39”

Later however, Lefschetz emphasised at the end of a congress [Dic81] “the great
value that Emmy Noether’s ideas had for the development of modern topology.”

The second description of the genus was through the dimension of the space
of integrals of the first kind (Theorem 4.1). In 1868, Clebsch adjusted this
concept of the description of the genus through the dimension of the space of
integrals to apply for projective surfaces in a short note, where he also noted
the invariance of this genus [Cl68]. Clebsch’ generalisation was to consider the
dimension of the space of double integrals of the first kind (i.e. everywhere finite
integrals) ∫ ∫

f(x, y, z)dydz, (5.7)

where x, y and z are complex numbers that are related by a polynomial equation
F (x, y, z) = 0. Here the integral could be interpreted analogously40 to the

38My translation using the assistance of DeepL. Original: “Meinen ursprünglichen Beweis
dieser Verallgemeinerung der Euler–Poincaréschen Formel konnte ich im Verlauf einer im
Sommer 1928 in Göttingen von mir gehaltenen Vorlesung durch Heranziehung gruppentheo-
retischer Begriffe unter dem Einfluß von Fräulein E. Noether wesentlich durchsichtiger und
einfacher gestalten.”

39My translation using the assitance of DeepL. Original: ‘Selbstverständlich wußten die
Topologen schon vor diesen Arbeiten, daßsie es bei der Addition von Zykelklassen mit
Abelschen Gruppen zu tun hatten. Weil sie aber wußten, daßdiese Gruppen durch Rang-
und Elementarteiler (Torsionszahlen) charakterisiert sind, hielten sie die Beschäftigung mit
den Gruppen für überflüssig. Diesen Standpunkt vertritt noch S. Lefschetz in seinem ausgeze-
ichneten Buch Topology (1930). Er schreibt dort auf S. 29: ‘Indeed everything that follows
in this section can be, and frequently is, translated into the theory of groups. It is of course
a mere question of a different terminology’’

40To be more precise, if ∂F
∂x

̸= 0 at (y0, z0), we can define an implicit function φ in a

neighbourhood of (y0, z0) such that F (φ(y, z), y, z) = 0. Then the local integrals ω : C2 → C
can be defined via the differential equation ∂2ω

∂x∂y
= f . The gluing process is identical to the

process of §3.1.
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interpration of §3.1. If you read Clebsch’ note, however, you won’t see any
reference to integrals. In contrast to Riemann, who used geometry as a tool in
the theory of Abelian integrals, Clebsch used the theory of Abelian integrals as
a tool in geometry, as can for example be seen from the title of [Cl64]: “On
the application of Abel ian functions in geometry41”. In order to be able read
Clebsch’ paper we have to go back to §9 of Riemann’s paper on Abelian functions
[Ri57]. Here Riemann proved that the integrals of the first kind are of the form∫

φ(s, z)
∂F
∂s

ds (5.8)

where F is the polynomial of degree n in s and m in z that restricts the complex
variables s and z via F (s, z) = 0 and φ is a polynomial of degree n− 2 in z and
m − 2 in s that vanishes in the singularities of F (s, z) = 0 (in Riemann’s case
the singularities are the pairs of cancelling branch points). The dimension of
the space of polynomials φ of degree n − 2 in z and m − 2 in s that vanish in
the singularities of F (s, z) = 0 is therefore equal to the dimension of the space
of integrals of the first kind minus one, due to the integration constant, and
hence is equal to the genus. In the projective case, for a surface in P3 given by
a polynomial equation of degree n, the space of polynomials that corresponds
with the double integrals of the first kind (or 2-forms of the first kind) contains
the polynomials of degree n − 4 that vanish in the singularities of the surface
(see [No70]). That is why Clebsch talks about surfaces of order n − 4 passing
through the singularities in [Cl68]. The double integrals were explicitly studied
in [No70]. In this paper, M. Noether proved the invariance of the dimension of
the space of n-fold integrals of the first kind. This theorem was announced in
[No69]. Interpreted in the sense of Clebsch, we could also think of this definition
of the genus as a geometrical one.

By considering the dimension of spaces of polynomials, and therefore not
counting the degree of freedom created by the integration constant, Clebsch
effectively considered the space of differential 1-forms of the first kind, i.e.,
holomorphic 1-forms (Clebsch did not have the concept of a differential form).
In fact, when the Italian algebraic geometers were talking about “the number
of integrals” they meant the dimension of the space of the corresponding poly-
nomials and therefore the dimension of the space of differential forms.

We will now treat the third definition of a genus: via the arithmetical for-
mula. In his note [Cl68], Clebsch already noted that, if there are no singularities,
his geometrical genus of a surface given by an equation f(w, x, y, z) = 0 of an
nth degree homogeneous polynomial f , is equal to

(n− 1)(n− 2)(n− 3)

1 · 2 · 3
, (5.9)

since this is the number of coefficients in a homogenous polynomial of degree
n − 4. That there are no singularities means that there are no restrictions

41My translation using Google Translate. Original: Ueber die Anwendung der Abelschen
Functionen in der Geometrie
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on the homogeneous polynomials other than the degree. Like in the case of a

curve, this genus is lower than (n−1)(n−2)(n−3)
1·2·3 when the surface has singularities.

Building further on results obtained by M. Noether in [No70], Cayley collected
the different kinds of singularities into the formula and obtained a formula that
was true if the order n of the surface was sufficiently high [Cay71]. In this
paper, Cayley also showed this formula failed in some cases. Nevertheless, in
his example Cayley showed that for certain surfaces that give a curve of genus
q when intersected with a plane, the formula gives exactly −q, an invariant of
the curve. This result was generalised by M. Noether in [No71]. Furthermore,
Zeuthen showed in 1871 that the formula also determined a birational invariant
[Ze71b], following an announcement [Ze71a].

The definition of the genus by Clebsch defined via polynomials of degree
n − 4 vanishing in the singularities of the surface, geometrically representing
surfaces that pass through the singularities of the surface, came to be called
the geometric genus pg. The arithmetical formula shown to be invariant by
Zeuthen came to be called the arithmetical genus pa. It turned out that the
most important invariant of the surface was their difference q = pg − pa, the
irregulariy of the surface. (for more details see [Ba13] and [CE97]).

The breakthrough towards the unification of these concepts of the genus
came in 1884 when Picard began to study the simple integrals of the first kind
(i.e. everywhere finite integrals)∫

P (x, y, z)dx+Q(x, y, z)dy, (5.10)

where x, y and z are complex variables related by a polynomial equation
f(x, y, z) = 0 and P and Q are rational functions [Pi84a]. The integral can
be interpreted analogously42 to the interpretation of Abelian integrals in §3.1.
Subsequently, Poincaré and Picard published two other notes [Po84][Pi84b] on
the subject and the second note of Picard, he announced his first [Pi85] of
multiple memoirs on the subject (see [Pi80]). The Italian geometers Enriques,
Castelnuovo and Severi showed that the dimension of the space of the corre-
sponding differential 1-forms of the first kind43 was equal to the irregularity
q = pg − pa of the surface [Ba13]. The proofs of the Italian geometers were
not rigorous, but this was normal in Italian algebraic geometry (see [GB12] or
[TF22]). Enriques once stated that intuition is the aristocratic way of discov-
ery, rigour the plebian way [Ho49]. And according to Goodstein and Babbitt
[GB12]:

“Severi, perhaps more than any other major mathematician of his
day, stated more true theorems whose proofs were ‘irreparable’ by

42To be more precise, if ∂F
∂z

̸= 0, we can define an implicit function φ in a neighbourhood

of (x0, y0) such that f(x, y, φ(x, y)) = 0. Then the local integrals ω : C2 → C can be defined
via the system of differential equations ∂ω

∂x
= P and ∂ω

∂y
= Q. The gluing process is identical

to the process of S3.1
43When the Italian geometers said that they were counting the number of linearly inde-

pendent integrals they actually meant the number of differential 1-forms, without having the
terminology for it. In doing so, they excluded the constant of integration.
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modern standards or ‘almost true’ theorems that required modifica-
tions to make them true or that were just plain false ‘theorems’.”

The first rigorous (and the first analytic) proof of the equality between the
dimension of the space of simple integrals of the first kind and the irregularity
came from Poincaré [Po10].

The arithmetic genus was generalised in 1909 by Severi to k-dimensional
algebraic surfaces [Se09]. Severi defined the arithmetic genus algebraically and
conjectured on the last page an expression of the algebraic genus in terms of
the dimension of the spaces of differential forms of the first kind44, namely

pa = ik − ik−1 + ik−2 − · · ·+ (±1)k−1i1, (5.11)

where iℓ is the dimension of the space of holomorphic ℓ-forms. Thereby Severi
generalised the statement for surfaces that pa = pg − q, where q was shown to
be equal to the dimension of the space of simple integrals of the first kind45.

5.3 Unity in mathematics

Riemann, in his theory of Riemann surfaces, fully grasped the unity of mathe-
matics. As Lefschetz stated [Lef29]:

“When A is a curve, we are dealing with systems of points on the
curve (linear or algebraic series, etc.), and one encounters a chapter
of Geometry that has reached a high degree of perfection in all its
phases: purely geometric, transcendental (abelian integrals), and
topological (Riemann surfaces).46”

For higher dimensions however, mathematicians had difficulty generalising the
unity of Riemann’s theory, as Lefschetz continued to explain:

“For surfaces, the approach via algebraic geometry has been far more
successful than strictly transcendental methods. This is hardly sur-
prising when one considers how recent and incomplete our knowledge
still is concerning analytic functions of several variables and topology
in more than two dimensions.47”

44As stated before, Severi called the dimension of the space of differential forms the number
of integrals.

45Again, we neglect the degree of freedom arising from the integration constant.
46See next footnote.
47My translation using the assistance of DeepL. Original: ‘Lorsque A est une courbe, on a

affaire aux systèmes de points sur la courbe (séries linéaires ou algébriques, etc.), et l’on se
trouve en présence d’un chapitre de la Géométrie qui a atteint un haut degré de perfection-
nement sous toutes ses phases: purement géométrique, transcendante (intégrales abéliennes),
topologique (surfaces de Riemann). Pour les surfaces, l’attaque par voie algébro-géométrique
a eu bien plus de succès que les méthodes strictement transcendantes. On ne peut guère
s’en étonner quand on se rappelle combien sont encore récentes et incomplètes nos connais-
sances sur les fonctions analytiques de plusieurs variables et sur la topologie à plus de deux
dimension.’

49



Around 1900, we have the Italian school of algebraic geometry, the analytical
works of Picard, and the topological works of Poincaré. Although they were all
inspired by Riemann’s theory, they diverged. But as Baker put it [Ba13]:

“As so often happens in the progress of science, these have come
about by the union of two subjects, which, though their origin was
largely identical, had drifted somewhat apart.”

This was also noted by the Italian geometers Castelnuovo and Enriques, but
they noted [CE97]:

“However, one must remember that such a vast horizon cannot be
embraced from a single point of view. On the contrary, it is through
the combined efforts of several researchers following different paths,
through the skillful application of all the resources that geometry and
analysis place at our disposal today, that we may hope to deepen
the theory of surfaces and enrich it with new discoveries.48”

Indeed, the unification of these methods turned out to be fruitful. In 1910 and
1911 Poincaré published two memoirs [Po10][Po10] rediscovering results of the
Italian geometers using analysis and topology in a very direct way. Poincaré’s
research was continued by Lefschetz [Lef17][Lef21][Lef24] who greatly simplied
Poincaré’s discoveries, introducing new analytical and topological tools. Ac-
cording to Lefschetz [Lef29]:

“Through this approach we arrive in a simple and quick way to the
very core of surface theory.49”

Although Lefschetz brought back the unity in the theory, Riemann’s theory
was not yet developed to the same degree of perfection as it had for complex
curves. Our main goal for the rest of this thesis is to describe the history of
the Hirzebruch–Riemann–Roch theorem. We will only describe the immediate
history and we will see that the unity of mathematics plays a big role. To
bridge the gap towards these developments, I will try to give references to the
secondary literature in §5.4.

5.4 References to help bridge the gap

In this section we saw how the genus was generalised in different ways to higher
dimensional varieties. An outline of the developments by the Italian algebraic
geometers, such as linear systems, can be found in [Die85]. More details on

48My translation using the assistance of DeepL. Original: Il faut pourtant se rappeler que
ce n’est pas d’un seul point de vue qu’on peur embrasser un horizon si vaste. C’est au
contraire par les efforts réunis de plusieus travailleurs suivant des voies différentes, c’est par
l’application savante de toutes les ressources que la géometrie et l’analyse mettent aujourd’hui
à notre disposition, qu’on peut espérer d’approfondir la théorie des surfaces, et de l’enrichir
de nouvelles découvertes.

49My translation using the assistance of DeepL. Original: ‘Par cette voie on arrive de
manière aussi simple que rapide au cœur même de la théorie des surfaces.’
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Italian geometry are given in [CE97] and in [Ba13]. To get into the mathemetics
the Italian geometers used you may use the classical textbook [Za35] or [SR49].
More specific mathematics on projective geometry is described in [To65].

An outline of the developments from Poincaré onwards, including the Hirzebruch–
Riemann–Roch theorem can be found in [Die89]. More specifically, the motiva-
tions for Poincaré to develop his analysis situs are described in the translator’s
introduction of [Po04] and in [JW20]. Lefschetz writes on his own contributions
on topology and its applications in algebraic geometry in his autobiography
[Lef68]. A great collection of articles on the history of the topology is [Jam99].
Atiyah wrote two biographical papers, on the developments of Hodge [At77],
including Hodge’s research on differential forms in algebraic geometry, and of
Todd [At96], that we will briefly treat in §8.1. The history of first homology
groups can be found in [Hi96]. A summary of the contributions of Steenrod on
algebraic topology is given in [Pe70]. The main source for the investigations of
the history of the Hirzebruch–Riemann–Roch theorem is the book of Hirzebruch
[Hi56], which gives excellent references to the original works.

6 Sheaves and cohomology groups

The goal of the rest of this thesis is to analyse the generalisation of the concepts
appearing in the Riemann–Roch theorem (Theorem 4.7). First of all we will gen-
eralise the space in which we work. In Riemann’s theory we mainly worked with
the Riemann surface algebraically described by an irreducible complex polyno-
mial equation F (s, z) = 0. But Riemann’s results hold more abstractly in the
setting of a one-dimensional complex manifold. Both notions can be generalised.
As we have seen in §5.1 the complex curve description of the Riemann surface
can be reformulated via a projective curve. This notion generalises directly to
higher dimensions. The manifold description also generalises directly to higher
dimensions. However, as we will see for example in §9.5, it lacks some of the
nice properties that we will need to generalise the Riemann–Roch theorem di-
rectly. It is possible, however, to generalise the Riemann–Roch theorem in this
case too, as proved in [AH59]. These investigations to generalise the Riemann–
Roch theorem to differentiable manifolds started the development towards the
Atiyah–Singer index theorem [At88].

Other concepts we need to generalise are the divisor, the corresponding
spaces L(D) and Ω1(D) and the topological quantity called the degree of the
divisor. The generalisation of the divisor and its corresponding spaces will be
executed in §7.2. The topological quantity of the degree of the divisor via the
concept of Chern numbers in §8.2.

6.1 Sheaves and presheaves

In 1943, Steenrod developed a theory of homology with local coefficients in order
to fill gaps in the old homology theory [St43], namely he was able to provide
a full duality and intersection theory for non-orientable manifolds (see §14 of
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[St43]). Steenrod stated that his theory of homology with local coefficients was
a “natural and full generalization of the Withney notion of locally isomorphic
complexes [Wh40]. Whitney, in turn, credits the source of his idea to de Rham’s
homology of groups of the second kind in a non-orientable manifold [dR32].” He
also noted that independently Reidemeister came to a similar homology theory:
the Überdeckung [Re].

In 1946, Leray published two Comptes Rendus notes [Ler46a][Ler46b] where
he generalised Steenrod’s concept of local coefficients and put it into one global
structure: the sheaf and the corresponding sheaf cohomology, which we will
introduce in this section. He developed his ideas while being a prisoner during
the Second World War. The motivation for Leray to introduce the concepts of
a sheaf and sheaf cohomology was to be able to relate the cohomologies of two
topological spaces X and Y if there is a map f : X → Y . Leray gave a list
of applications in his second note [Ler46b]. This relative perspective predates
Grothendiek and may originate from Leray’s interest in fixed points, which
are important in the study of partial differential equations [Mi00]. However,
according to Dieudonné [Die89] “applications certainly went far beyond the
wildest dreams of the inventor of these notions.” For more details on the history
of the concept of a sheaf I will refer to [Mi00] or [Die89].

Now we will introduce the concept of a sheaf of abelian groups. The old
terminology differs from the modern terminology. We will use the concept of a
sheaf in the form that was used by Hirzebruch and created by H. Cartan [Car51]
(Definition 6.1). However, this notion of a sheaf is what is now called an étalé
space. The modern notion of a sheaf does not have an classical counterpart.
The terminology of a presheaf was invented by Grothendiek [Mi00] (Definition
6.4).

Definition 6.1. A sheaf S of (abelian) groups over a topological space X is a
triple S = (S, π,X) that satisfies the following properties:

1. S and X are topological spaces and π : S → X is a surjective continuous
map.

2. For any point α ∈ S there exists an open neighbourhood N ⊂ S of α and
an open neighbourhood M ⊂ X of π(α) such that π|N : N → M is a
homeomorphism.

3. For any x ∈ X the preimage π−1(x) is an (abelian) group.

4. If we denote S ⊕ S := {(α, β) ∈ S × S| π(α) = π(β)} with the induced
topology via the product and subset topology. The map S⊕S → S given
by (α, β) 7→ α− β is continuous.

(Abelian) groups can be replaced with any other algebraic structure. With
the concept of a sheaf we introduce the following notation:

Definition 6.2. Let S = (S, π,X) be a sheaf of (abelian) groups. Then we
have the following definitions
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� Sx := π−1(x) is called the stalk over x.

� A section of S over an open set U is a continuous map s : U → S such
that π ◦ s = idU .

� We define Γ(U,S) to be the group of sections of S over U. If U = ∅, we
set Γ(U, ∅) = {0}.

We should also define morphisms of between sheaves.

Definition 6.3. Let S = (S, π,X) and S̃ = (S̃, π̃, X̃) be sheaves over X. A
homomorphism h : S → S̃ is defined by the following properties:

1. h is continuous.

2. π = π̃ ◦ h, i.e. h(Sx) ⊂ S̃x.

3. For any x, the map hx : Sx → S̃x is a group homomorphism.

Often a sheaf is defined using a presheaf.

Definition 6.4. A presheaf over X consists for every open set U ⊂ X of an
(abelian) group SU and for each pair of open sets V ⊂ U ⊂ X of a homomor-
phism rUV : SU → SV , called the restriction, such that

1. If U = ∅, then SU = 0.

2. rUU = idU .

3. If W ⊂ V ⊂ U are open sets of X, then rUW = rVW ◦ rUV .

We also write f |V = rUV f with f ∈ SU .

Any sheaf defines a canonical presheaf via SU = Γ(U,S). However, different
presheaves can define the same sheaf. We define the sheaf corresponding to a
presheaf via the direct limit with respect to the restriction homomorphisms: i.e.
each f ∈ SU defines an equivalence class, called a germ fx ∈ Sx. Namely, we
have for any neighbourhood U and V of x and for any f ∈ SU and g ∈ SV that
fx = gx if and only if there exists an open neighbourhood W of x contained
in U and V such that f |W = g|W . Then we define S =

⊔
x∈X Sx. There is

a natural projection π that maps elements of Sx to x and the topology of the
sheaf is defined by a basis given by f(U) for each open set U in X and f ∈ SU .
In particular, if we take the direct limit of the canonical presheaf we recover the
original sheaf.

We define the following notation for sheaves that we will use throughout the
rest of this thesis.

Definition 6.5. � Let X be a topological space and let A be a group. De-
fine the constant sheaf with stalk A, also denoted by A, by the triple
(X×A, π,X). We define π : X×A→ X to be the canonical projection and
we give X ×A the product topology, where A is considered to have a dis-
crete topology. Addition is defined stalkwise: (x, a)± (x, a′) = (x, a± a′),
where (x, a), (x, a′) ∈ X ×A.
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� Let X be a topological space and let G be a topological group. Define
Gc to be the sheaf such that for each open U ⊂ X, Γ(U,Gc) consists of
continuous functions U → G.

� Let X be a differentiable manifold and let G be a real Lie group. Define
Gd to be the sheaf such that for each open U ⊂ X, Γ(U,Gd) consists of
differentiable functions U → G.

� Let X be a complex manifold and let G be a complex Lie group. Define
Gω to be the sheaf such that for each open U ⊂ X, Γ(U,Gω) consists of
holomorphic functions U → G.

The constant sheaf in Definition 6.5 should not be confused with a locally
constant sheaf that we will not define here, though it has the local nature of
the sheaf. Namely, the sections of the constant sheaf are locally constant and
therefore constant on the connected components. If G is a topological group
endowed with the discrete topology we get that Gc = G is a constant sheaf (and
similarly for the differentiable and holomorphic case).

Let’s consider a simple example of these concepts, which we introduce here
since we will use it to define Chern classes (§8.2). Let X be a complex mani-
fold and for any open set U define SU to be the additive group of continuous
complex valued functions on U . This defines a presheaf and therefore a sheaf
Cc. Similarly we define C∗

c as the sheaf of germs of continuous nowhere vanish-
ing complex functions (the germs form a multiplicative group). Let Z denote
the constant sheaf with stalk Z. If we consider the map h 7→ e2πih we get the
following exact sequence of sheaves:

Theorem 6.6. There is an exact sequence of sheaves

0 → Z → Cc
h7→e2πih

−−−−−−→ C∗
c → 0. (6.1)

Proof. Exactness at Z and at Cc is clear. To see that h is surjective, take any fx
with f ∈ Γ(U,C∗

c). We can restrict f to a neighbourhood V such the logarithm
is single-valued on the image f(V ) of f . Hence, there is a g = 1

2πi ln f ∈ Γ(V,Cc)
that maps to f . Hence, the induced map hx : (Cc)x → (C∗

c)x maps gx to fx.

Note that the surjectivity of h 7→ e2πih is in contrast to the non-surjectivity
on the global sections through the map Γ(X,Cc) → Γ(X,C∗

c). For example, take
X = C \ {0} and take z 7→ z as an element of Γ(X,C∗

c). The function 1
2πi ln(z)

is not an element of Γ(X,Cc), since it is not single-valued, but only locally
single-valued. The local single-valuedness is expressed by the exact sequence of
sheaves.

Another important example of a sequence in which the exactness does not
hold for global sections but holds for sheaves is the sequence of differential forms
with the exterior derivative as homomorphism.

Theorem 6.7 (Poincaré’s Lemma in terms of sheaves). Let X be a real manifold
and let Ap be the sheaf of differential p-forms, then there is an exact sequence

0 → R d−→ A0 d−→ A1 d−→ . . . . (6.2)
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Proof. Poincaré’s lemma implies that if ω ∈ Γ(U,Ap) such that dω = 0, then
for any x ∈ U there is an open neighbourhood V of x such that ω = dα with
α ∈ Γ(V,Ap−1). The statement follows from an argument analogous to the
proof of 6.6.

6.2 Cohomology classes with coefficients in sheaves

We now generalise the concept of cohomology groups with coefficients in abelian
groups to cohomology groups with coefficients in sheaves of abelian groups. In
this section, we will assume that the (pre)sheaves are (pre)sheaves of abelian
groups. If S is a sheaf of non-abelian groups however, the cohomology groups
H0(X,S) and H1(X,S) can be defined analogously (see [Hi56]). We will define
sheaf cohomology in two steps:

1. Define Hq(U,G) for an open covering U = {Ui}i∈I of a topological space
X with coefficients in a presheaf G.

2. Define Hq(X,S) as the direct limit of Hq(U,G) with respect to refine-
ments of the cover, where G is the canonical presheaf of S.

The notion of a direct limit was introduced by Steenrod in his PhD thesis (see
[Pe70]). Let’s start with the first step.

Definition 6.8. LetG be a presheaf over a topological spaceX and U = {Ui}i∈I

an open covering of X.

� A q-cochain is a function which maps an a tuple of q+1 indices (i0, . . . , iq)
to an element f(i0, . . . iq) ∈ S(Ui0∩···∩Uiq )

.

� Define Cq(U,S) to be the group of q-cochains.

� Define the coboundary homomorphism δ : Cq(U,S) → Cq+1(U,S).

(δqf)(i0, . . . iq+1) =

q+1∑
k=0

(−1)kr
Ui0

∩···∩Ûik
∩···∩Uiq+1

Ui0
∩···∩Uiq+1

(f(i0, . . . , îk, . . . , iq+1)).

(6.3)

You can prove δq+1δq = 0, so we can define the cohomology groups.

Definition 6.9. LetG be a presheaf over a topological spaceX and U = {Ui}i∈I

an open covering of X. We call

Hq(U,G) = ker(δq)/im(δq−1)

the cohomology groups of an open cover U with coefficients in G.

To take the direct limit we have to show that the cohomology groupsHq(U,G)
form a directed set with respect to refinement of the cover U = {U}i∈I . Let
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V = {V }j∈J be a refinement of U = {U}i∈I via a map τ : J → I such that
Vj ⊂ Uτ(j). This induces a map on cochains

τ∗ : Cq(U,G) → Cq(V,G) (6.4)

by the formula

(τ∗f)(j0, . . . , jq) = f |Vj0
,...,Vjq

(τ(j0), . . . , τ(jq)). (6.5)

The map τ∗ commutes with δq, so it induces a homomorphism

τUV : Hq(U,G) → Hq(V,G). (6.6)

The map τ∗ depends on the choice of τ . For the cohomology groups, however,
τUV is independent of the specific choice of map τ (see Lemma 2.6.1 in [Hi56]).
Now it is clear that the maps τUV make the cohomology groups of a cover a
directed set with respect to refinements of the cover. Therefore we can create a
definition of the cohomology groups with coefficients in a sheaf.

Definition 6.10. Let G be a presheaf over a topological space X, then we
define the cohomology groups

Hq(X,G) := lim−→Hq(U,G) (6.7)

as the direct limit with respect to refinement.
Let S be a sheaf and let G be its canonical presheaf. Then we define the

cohomology groups with coefficients in S to be

Hq(X,S) := Hq(X,G). (6.8)

As an example, we will explicitly determine H0(X,S). Take any cover
U = {Ui}i∈I . Then an element f ∈ H(U,S) gives for each i ∈ I a section
fi ∈ Γ(Ui,S) such that

0 = (δ0f)(i, j) = fj |Ui∩Uj
− fi|Ui∩Uj

, (6.9)

i.e., fj |Ui∩Uj
= fi|Ui∩Uj

. Therefore, H0(U,S) = Γ(X,S), so

H0(X,S) = Γ(X,S). (6.10)

Two presheaves that define the same sheaf may define different cohomology
groups on X. However, if the space is paracompact, the two presheaves define
the same cohomology groups on X (see Lemma 2.9.1 in [Hi56]). This fact is
important when we consider an exact sequence of sheaves

0 → S′ → S → S′′ → 0. (6.11)

On each open set U of X we define S′′
U via an exact sequence

0 → Γ(U,S′) → Γ(U,S) → S′′
U → 0. (6.12)
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We noted in the example of Theorem 6.6 that S′′
U is not always equal to

Γ(U,S′′). However, the corresponding presheaves, that assign S′′
U and respec-

tively Γ(U,S′′) to each open set U of X with the usual (induced) restrictions,
define the same sheaf S′′. Therefore, if X is paracompact, the presheaves de-
fine the same cohomology groups. The exact sequence of sheaves of equation
(6.11) induces via the exact sequence of equation (6.12) a long exact sequence
on the cohomology groups of a cover (like in the simplicial case, for details see
[Hi56]). The direct limit preserves exact sequences so we get the following exact
sequence:

Theorem 6.11. Let X be paracompact and let

0 → S′ → S → S′′ → 0 (6.13)

be a short exact sequence of sheaves over X. Then we have a long exact sequence

0 → H0(X,S′) → H0(X,S) → H0(X,S′′)

→ H1(X,S′) → H1(X,S) → H1(X,S′′) (6.14)

....

6.3 Fine sheaves

We now introduce the notion of a fine sheaf, because if a sheaf is fine, many
cohomology groups vanish (Theorem 6.13). The vanishing of cohomology groups
can often be used to prove isomorphisms between cohomology groups (see for
example equation 6.17 and Theorem 9.5).

Definition 6.12. Let S be a sheaf over a paracompact space X. Then S is
a fine sheaf if for each locally finite covering U = {Ui}i∈I of X, there exists a
system {hi}i∈I of homomorphisms hi : S → S such that

1. For each i ∈ I there is a closed set Ai ⊂ X such that Ai ⊂ Ui and for any
x ∈ X \Ai we have hi(Sx) = 0.

2.
∑

i∈I hi = idS.

Many sheaves are fine. For example, using a partition of unity we can prove
that the sheaf Cc of continuous complex valued functions over a paracompact
space X, but also the sheaf of real differential p-forms Ap over a differentiable
manifold is fine. On the other hand, constant sheaves, the sheaf C∗

c over a
paracompact manifold or sheaves of holomorphic differential forms over a dif-
ferentiable manifold are not fine in general.

Theorem 6.13. If S is a fine sheaf over a paracompact space X, then for any
q ≥ 1 we have Hq(X,S) = 0.

Proof. See Theorem 2.11.1 in [Hi56].
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We illustrate the usefulness of the notion of fine sheaves with an example
that we will need in §8.2. In Theorem 6.6, we created the exact sequence of
sheaves

0 → Z → Cc → C∗
c → 0. (6.15)

This induces the long exact sequence

· · · → H1(X,Cc) → H1(X,C∗
c) → H2(X,Zc) → H2(X,Cc) → . . . . (6.16)

But Cc is fine, so H1(X,Cc) = H2(X,Cc) = 0. Therefore we have an isomor-
phism

H1(X,C∗
c))

∼= H2(X,Z). (6.17)

7 Fibre bundles and divisors

7.1 Fibre bundles

Although earlier mathematicians already used the ideas behind a fibre bundle
(see [Jam99]), the formal development of the concept of a fibre bundle began
with a paper by Whitney [Wh35]. In this paper, Withney introduced sphere
bundles. For more details regarding the development of fibre bundles see [Jam99]
or [Die89]. The development of fibre fundles was important since it evolved hand
in hand with the concept of characteristic classes (see §8.2). Furthermore, the
concept of a fibre bundle was used in a reinterpretation of the divisors that we
will treat in the next paragraph (§7.2).

In the following subsection, let X and F be topological spaces and let G be a
continuous group (written multiplicatively, since the group is no longer assumed
to be abelian) with an effective continuous action G×F → F (“effective” means
that if the action of g is the identity on F , then g is the identity element of the
group).

Definition 7.1. A topological space W with a continuous map π : W → X is
called a fibre bundle over X with structure group G and fiber F , and π is called
a projection, if there exist

1. an open covering U = {Ui}i∈I of X,

2. homeomorphisms hi : π
−1(Ui) → Ui×F that map π−1(U) onto u×F and

3. for all i, j ∈ I elements gij ∈ Γ(Ui ∩ Uj , Gc) called transition maps such
that for all u ∈ Ui ∩ Uj and f ∈ F we have

hih
−1
j (u, f) = (u, gij(u)f). (7.1)

Here, the transition maps gij are determined uniquely by hi and hj since
the action is effective. The transition maps form a 1-cocycle on the covering U
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(a 1-cochain g such that δg = 1, see also Definition 6.8), namely the equality
(δg)ijk = gjkg

−1
ik gij = 1 is equivalent to gijgjk = gik. On the other hand, a

cocycle on an open cover U = {Ui}i∈I of X defines a fibre bundle with structure
group G and fibre F if we identify (u, f) ∈ Uj ×F and (u, gij(u)f) ∈ Ui ×F on

the disjoint union
⊔
i∈I

Ui × F .

We will now define isomorphisms of fibre bundles. For this purpose we will
introduce the concept of an admissible chart:

Definition 7.2. An admissible chart of a fibre bundle over X with coordinates
given by a cocycle g is a homeomorphism hU : π−1(U) → U × F , with U open
in X such that for any i ∈ I there exist elements gU,i ∈ Γ(U ∩Ui, Gc) such that
for all u ∈ U ∩ Ui and f ∈ F

hUh
−1
i (u, f) = (u, gU,i(u)f). (7.2)

So we can define the following notion of an isomorphism between fibre bun-
dles:

Definition 7.3. Let W be a fibre bundle with projection π and W ′ a fibre
bundle with projection π′, both over a topological space X with structure group
G and fibre F . An isomorphism k : W → W ′ is a homeomorphism such that
for each x ∈ X:

1. k(π−1(x)) = π−1(x) and

2. there is an open neighbourhood U of x, an element gU ∈ Γ(U,Gc) and
admissible charts hU : π−1(U) → U ×F for W and h′U : π−1(U) → U ×F
for W ′ such that for all u ∈ U and f ∈ F ,

h′Ukh
−1
U (u, f) = (u, gU (u)f). (7.3)

2 is equivalent to saying that the cocycles g of W and g′ of W ′ defined by
the transition map define the same element in H1(X,Gc) (see [Hi56]). The
cohomology groupsHq(X,S) are only well-defined for sheaves of abelian groups,
however, the zeroth and the first cohomology groups are still well-defined in
the non-abelian case (see [Hi56] for details). Therefore we have the following
theorem.

Theorem 7.4. There is a one-one correspondence between isomorphism classes
of fibre bundles and with structure group G and fibre F and elements of H1(X,Gc).

Definition 7.5. The elements of H1(X,Gc) are called G-bundles.

An example of a fibre bundle is a vector bundle. A vector bundle has as
a vector space as its fibre and the corresponding general linear group as its
structure group. For vector spaces we have a direct sum ⊕ and a tensor product
⊗. These operations can be extended fibrewise to vector bundles. We will also
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write ⊕ and ⊗ for the induced operations on GL-bundles. Analogously we
extend the notion of the dual vector space and the exterior algebra.

For a complex vector bundle we can also define the conjugation operation.
Let ξ ∈ H1(X,GL(n,C)) be represeted by gij , then we define ξ to be defined
by gij . Therefore, using Theorem 7.4, if W is a complex vector bundle, we
can define W up to isomorphism. We define an anti-isomorphism to be an
isomorphism except that it is anti-linear instead of linear. W and W are anti-
isomorphic.

An important special case of a complex vector bundle is a complex line
bundle. A complex line bundle has structure group GL(1,C) = C∗ = U(1). The
group operation in H1(X,Gc) is given by the tensor product. If ξ ∈ H1(X,C∗

c)
is represented by {gij}, then the inverse ξ−1 is represented by {g−1

ij } such that

ξ ⊗ ξ−1 = 1, where 1 denotes the trivial bundle. The dual bundle ξ∗ is also
represented by g−1

ij , so we have ξ∗ = ξ−1.

Let M be real differentiable manifold and {(Ui, (x
(i)
1 , x

(i)
2 , . . . , x

(i)
n ))}i∈I be

its atlas. The coordinate transformations

gij =

(
∂x

(i)
r

∂x
(j)
s

)
: Ui ∩ Uj → GL(n,R) (7.4)

define a vector bundle called the tangent bundle and is denoted by TM . Anal-
ogously we can associate to a complex differentiable manifold M with atlas

{(Ui, (z
(i)
1 , z

(i)
2 , . . . , z

(i)
n ))}i∈I a holomorphic tangent bundle denoted by TM . If

we consider M as a real manifold by writing

(z
(i)
1 , z

(i)
2 , . . . , z(i)n ) = (x

(i)
1 + iy

(i)
1 , x

(i)
2 + iy

(i)
2 , . . . , x(i)n + iy(i)n )) (7.5)

we get isomorphisms (see §4.7 of [Hi56])

TM ⊗ C ∼= TM ⊕ TM (7.6)

(TM ⊗ C)∗ ∼= T ∗
M ⊕ T

∗
M (7.7)

λr(TM ⊗ C)∗ ∼=
⊕

p+q=r

λpT ∗
M ⊗ λqT

∗
M , (7.8)

where λkW denotes the kth exterior power of a vector bundle W . The second

isomorphism is locally given by dz
(i)
r = dx

(i)
r + i dy

(i)
r and dz

(i)
r = dx

(i)
r − i dy

(i)
r

with r ∈ {1, 2, . . . , n} and using the coordinates of equation (7.5).

7.2 Divisors

In this section, we consider a compact complex manifold V . In the case of a
compact Riemann surface T , we defined divisors as finite formal sums of points
(see §4.5) ∑

p∈T

app. (7.9)
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This notion was generalised in the algebraic setting to higher dimensions, where
the points are replaced by algebraic hyperplanes of codimension 1 (see [Die85]
for the exact definition). There is a direct analog in the analytic setting. Here
a divisor is defined by system of place functions:

Definition 7.6. {fi} is called a system of meromorphic place functions on a
compact complex manifold V if U = {Ui}i∈I is an open covering of V and for
each i ∈ I the function fi is meromorphic on Ui and the function fi is not
identically zero, and for each i, j ∈ I the quotient fi

fj
has no poles or zeroes on

Ui ∩ Uj .

Two systems {fi} and {gj} of meromorphic place functions with {Ui}i∈I and

{Vj}j∈J as respective covers are said to be equivalent if fi
gj

has no poles or zeroes

on Ui∩Vj , or in other words, if Ui∩Vj ̸= 0, then fi
gj

∈ Γ(Ui∩Vj ,C∗
ω), where C

∗
ω is

the sheaf of germs of nowhere vanishing complex valued holomorphic functions
on V . The equivalence classes of systems of meromorphic place functions are
called divisors.

We will show this definition of divisors correspond with finite formal sums
of points on a compact Riemann surface T . First, let {fi} be a system of
meromorphic place functions on T corresponding to a cover U = {Ui}i∈I of T .
Since T is compact, we can take a finite subcover of U and fi has a finite number
of poles and zeroes (using a argument analogous to the one used to show the
well-definedness of div(f) defined in equation (4.14)). If Ui and Uj overlap, fi
and fj have poles and zeroes of equal order on Ui ∩Uj . So to any p ∈ T we can
associate a unique number ap = ord fi, where i is chosen such that p ∈ Ui. This
gives the finite formal sum

∑
p∈T app. Any equivalent system of meromorphic

place functions also have poles and zeroes of equal order. Conversely we can
find for any finite formal sum a corresponding system of meromorphic place
functions as follows: Denote the by {pk}k∈K the set of points corresponding
to the nonzero terms in a finite formal sum of points

∑
p∈T app =

∑
k apk

pk.
Define non-overlapping neighbourhoods Uk corresponding to a chart centered
around pk for each k ∈ K. Define U = V \ {pk}k∈K . The functions z 7→ zapk

on each Uk and the constant function 1 on U form a system of place functions.
This establishes the correspondence.

Alternatively, the definition of divisors can be written in the language of
sheaves.

Theorem 7.7. Let G be the sheaf of germs of local meromorphic not identi-
cally zero functions on a compact complex manifold V , where multiplication is
considered the group operation. Then we define a sheaf D = G/C∗

ω via the exact
sequence

0 → C∗
ω → G → D → 0. (7.10)

Divisors correspond one-to-one to the elements of H0(V,D).

Proof. Any system of meromorphic place functions defines an element ofH0(V,D)
in the direct limit over refinements of the cover of the system. Being an element
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of H0(U,D) exactly means that fi
fj

has no poles and zeroes on Ui ∩ Uj . The

equivalenve introduced by the direct limit is precisely the equivalence between
two systems of meromorphic place functions.

We will write the group operation on divisors induced by the sheaf definition
of the divisors additively.

The function space L(D) can now be defined as follows:

Definition 7.8. Define L(0) to be the space of holomorphic functions on a
compact complex manifold V . If a divisor D is represented by a system {fi},
then

L(D) = {g ∈ M(V )|∀i ∈ I gfi ∈ Cω(Ui)}. (7.11)

Here, Cω(Ui) denotes the space of holomorphic functions on Ui and M(V ) the
space of meromorphic functions on V .

In modern language, the Riemann–Roch problem is to determine the dimen-
sion of L(D). In 1949, Weil introduced a new perspective on divisors in terms
of line bundles, that makes it more natural to use tools of algebraic topology
[Weil49]. The space L(D) can also be written in terms of cohomology groups.
First, we define a line bundle associated to a divisor.

Definition 7.9. Let a divisor D on V be represented by a system of place
functions {fi} with open cover U = {Ui}i∈I . We define the line bundle {D} by

identifying, in
⊔

i∈I Ui×C, the elements u×k ∈ Uj×C and u× fi(u)
fj(u)

k ∈ Ui×C,
when u ∈ Ui ∩ Uj .

Let {D} be the line bundle defined by a system of place functions {fi}
with open cover U = {Ui}i∈I . Note that sections s ∈ H0(V, {D}) are given by
holomorphic functions si on Ui such that on Ui ∩ Uj

si
fj

=
sj
fj
. (7.12)

This si
fj

=
sj
fj

defines a global meromorphic function that we call h(s). Therefore

we have a map h : H0(V, {D}) → L(D). This is an isomorphism.

Theorem 7.10. Let D be a divisor on a complex manifold V , then H0(V, {D})
and L(D) are isomorphic via the mapping h just defined.

This motivates a generalisation of the Riemann–Roch problem: to determine
the dimension of H0(V,W ), where W is a vector bundle. We focus however on
the case of line bundles. This case includes the classical divisors since {D} is a
line bundle.
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8 Characteristic classes and the Todd genus

8.1 Canonical classes

For a complex algebraic curve described by a complex polynomial equation
f(x, y) = 0, and for a complex algebraic surface given by a complex polynomial
equation g(x, y, z) = 0, the simple and respectively double integrals of the first
kind are of the form (see equation (5.8) and [Se32]):∫

φ

fy
dx,

∫
ψ

gz
dx dy, (8.1)

where φ and ψ are polynomials that vanish in the singularities of the curve
or respectively the surface. Severi said these polynomials have a “birational
invariant meaning50 [Se32]”. I think he means that the dimension of the space
of these polynomials remains unchanged. The simple integrals of the first kind
on a surface can be expressed as (see [Pi84a])

u =

∫
Ady −Bdx

gz
, (8.2)

where A and B are polynomials also defined by conditions set out in [Pi84a].
However, these polynomials depend on their coordinates x and y and it is there-
fore clear that they are not defining a space of polynomials with invariant di-
mension. Namely, you could take the birational transformation interchanging
coordinates to vary the dimension of each space. Severi however, tried to give
a birationally invariant meaning to a space corresponding to the simple Picard
integrals of the first kind in [Se32]. He defined the Jacobian group to be the set
of double points of the curves u = const., which he says has invariant mean-
ing. This observation of Severi initiated the development of new invariants:
canonical systems (canonical systems are explained e.g. in [To57]).

In 1936, Todd and Eger independently generalised the canonical system of
Severi into what is now called the Eger–Todd canonical classes [Eg37][To37a]
(not to be confused with the Todd class td(ξ) that we define in Definition 9.16).
Todd associated to these classes arithmetical invariants (numbers), that enabled
him to give a new expression for the arithmetical genus in terms of these arith-
metical invariants, generalising an earlier theorem of Severi for three dimensions
[To37b]. The expression of the genus in terms of the arithmetical characters is
now called the Todd genus. This expression enables us to express the arithmeti-
cal genus in terms of local geometrical data. However, Todd’s proof relied on
an unproven lemma of Severi51. Hirzebruch proved this inequality as a special
case of his Hirzebruch–Riemann–Roch theorem (Theorem 9.18).

The Eger–Todd classes are now commonly replaced by Chern classes, intro-
duced by Chern in [Ch46]. Chern classes are dual, up to sign, to the homology

50My own translation. Originally: ‘significato invariante per transformazioni birazionali.’
51I am unaware of its current status, however, this lemma was still unproven at the time

Hirzebruch proved the equality of the arithmetic and the Todd genus [Hir54].
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class of the Eger–Todd classes via Poincaré duality. Hodge proved this duality
for a non-singular variety (i.e., an algebraic variety without singular points (see
[Ho51a]), and the general case was later proven by Nakano [Na55]. Chern classes
where originaly defined on complex manifolds. Consequently, Hodge asked the
following question [Ho51a]:

“Now a non-singular algebraic variety over the complex field is a
complex variety, and hence Chern’s results apply to it, and it is a
natural question to ask whether the characteristic classes are related
in any way to the known geometrical properties of the variety.”

By answering this question, Hodge established the duality between the Chern
classes and the homology classes of Eger–Todd classes.

8.2 Chern classes

Hirzebruch used the language of Chern classes. Their definition will be subject
of this chapter.

We already saw that the coboundary homomorphism induces a isomorphism
(equation (6.17))

H1(X,C∗
c)

∼= H2(X,Z). (8.3)

This isomorphism 6.17 associates a unique cohomology class c1(ξ) to each C∗-
bundle ξ ∈ H1(X,C∗

c) (see definition 7.5). U(1) = C∗, so any C∗-bundle is a
U(1)-bundle. We will now introduce a definition of the total Chern class of a
U(q)-bundle. For a comparison of the many equivalent definitions see [BH58].
A topological space X will be called finite dimensional if every open covering U
of X has a refinement V such that each point of X lies in at most n + 1 open
sets of V.

Definition 8.1. Let X be a locally compact and finite dimensional space X
that is a countable union of compact sets, then the Chern classes can be defined
by the following axioms:

1. For every U(q)-bundle ξ over X, there exists for any i ≥ 0 a Chern class
ci(ξ) ∈ H2i(X,Z). And we will write

c(ξ) =

∞∑
i=0

ci(ξ). (8.4)

2. For any U(q)-bundle ξ over X, we have c0(ξ) = 1

3. For any U(1)-bundle ξ over X, we have an element c1(ξ) ∈ H2(X,Z) given
by the isomorphism H1(X,C∗

c)
∼= H2(X,Z) of equation (6.17). The total

Chern class of ξ is then defined to be c(ξ) = 1 + c1(ξ).
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4. If ξ1, . . . , ξq are continuous U(1)-bundles over X, then

c(ξ1 ⊕ · · · ⊕ ξq) = c(ξ1) . . . c(ξq). (8.5)

Here, multiplication is given by the cup product.

5. If f : Y → X is a continuous map and ξ a U(q)-bundle over X, then
c(f∗ξ) = f∗c(ξ).

It is clear that this definition is well-defined for U(1)-bundles. In order to
show that this definition is well-defined for any q, we should make use of axioms
4 and 5. The proof of the well-definedness of the Chern classes by these axioms
is given in §4.2 and Theorem 4.3.1 of [Hi56]. According to 4.1b of [Hi56], there
is an isomorphism

H1(X,U(q)c) ∼= H1(X,GL(q,C)c). (8.6)

By Theorem 7.4, we can associate to a q-dimensional complex vectorbundle W
an element ξ ∈ H1(X,GL(q,C)c) ∼= H1(X,U(q)c). So, using equation (8.6), we
define the Chern class of the complex vector bundle W to be

c(W ) := c(ξ). (8.7)

We will now associate numbers to polynomials in Chern classes. Let M be
a compact n-dimensional complex manifold. A complex manifold has a natural
orientation. Namely, if z1, z2, . . . , zn are local coordinates with zk = xk + iyk,
then the ordering

x1, y1, x2, y2, . . . , xn, yn (8.8)

defines the natural orientation. This orientation can also be expressed by an
element of H2n(M,Z) called the fundamental cycle. Here is H2n(M,Z) the 2nth
singular homology group defined e.g. in §4.1 of [Sp66]. Our goal is to give a
natural pairing

H2n(M,Z)×H2n(M,Z) → Z, (8.9)

in order to let Chern classes act on the fundamental cycle.
Since M can be considered a real differentiable manifold, there exists a

triangulation (see [Cai35]). A triangulation enables us to consider the equivalent
but more practical simplicial homology (see equation (8.12)). In the context of
simplicial homology, we will define the fundamental cycle. First we define the
simplicial complex

Definition 8.2. A simplicial complex K consists of a set V of vertices and a
set of finite non-empty subsets of V called the set of simplices such that

1. any set of one vertex is a simplex

2. and any non-empty subset of a simplex is a simplex.
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You can define a topological space associated to K what is called a geometric
realisation |K| of K (see p. 110 of [Sp66]). The geometric realisation |K| of K
is the disjoint union of standard simplices

∆n := {(t1, . . . , td)| ti ≥ 0,

n∑
i=1

ti ≤ 1}, (8.10)

where d is the dimension of the simplex, glued along common faces, such that the
vertices of the standard simplices in |K| correspond to the vertices of simplices
of K. A triangulation of M is then a homeomorphism

|K| →M. (8.11)

Theorem 4.6.8 of [Sp66] states that singular homology (p. 159 of [Sp66]) is
isomorphic to the simplicial homology (p. 161 of [Sp66]), i.e. for any 0 ≤ i ≤ 2n
we have

Hsing
i (M,Z) ∼= Hsing

i (|K|,Z) ∼= Hsimp
i (K,Z). (8.12)

Therefore we are justified to use the simplicial homology of a simplicial complex
K corresponding to a triangulation of M . We will now define the fundamental
cycle in terms of simplicial homology using the orientation of the manifold M .
Take an oriented atlas of M according to the ordering of equation (8.8). A
chart φ : U → V ⊂ Rn centered at x induces isomorphisms of relative singular
homology groups via excision (see §3.3 of [Ha02]):

H2n(M,M \ {x}) ∼= H2n(U,U \ {x}) ∼= H2n(V, V \ {0}) ∼= H2n(R2n,R2n \ {0}).
(8.13)

The orientation of R2n at 0 is given by the homology class of the standard
simplex translated such that 0 is in the interior. This induces an orientation
on the 2n-simplices of the triangulation as follows: Take an 2n-simplex in K
and consider the corresponding function σ : ∆n → M under the triangulation
|K| →M (equation (8.11). σ determines the same homology group under that
isomorphism H2n(M,M \{x}) as the standard simplex translated such that 0 is
in its interior upto a sign. If the sign is positive, σ is called positively oriented.
If the sign is negative, it should become positive by an interchange of vertices
(see also [Ha02]).

We want to be able to let H2n(M,Z) act on the simplicial homology groups
corresponding to a triangulation of M . Since Z is a constant sheaf, the sheaf
cohomology defined in Definition 6.10 is the Čech cohomology (§6.7 of [Sp66])
that we will be able to pair with the simplicial cohomology. Namely, define

U := {St(vi) ⊂M |vi a vertex of K on M}, (8.14)

where St(vi) is called the star of vi and is equal to the interior of the union of
all simplices in K on M having vi as a vertex. U is an open cover of M . To
each simplical p-cochain f ∈ Cp(K,Z) corresponds a p-cochain f̌ ∈ Cp(U,Z) as

f̌Ui1∩Ui2∩···∩Uin
= f(i1, i2, . . . , in), (8.15)
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defining an isomorphism

Cp(K,Z) ∼= Cp(U,Z) (8.16)

of chain complexes (see p. 43 of [GH94] for more details). By barycentric
subdivision we obtain a simplicial complex with simplicial homology groups
isomorphic to those of K (see §2.1 of [Ha02]). Using such subdivision, we can
make the cover U of open stars arbitrarily fine so that we get in the direct limit
for each p an isomorphism

Hp(M,Z) ∼= Hp(K,Z), (8.17)

between the Čech and simplicial cohomology. This enables us to define the
action of an x ∈ H2n(M,Z) on the fundamental class [M ] via the pairing

H2n(K,Z)×H2n(K,Z) → Z (8.18)

The action of a cohomology class x ∈ H2n(M,Z) on the fundamental cycle
[M ] is denoted by x[M ] ∈ Z. Define the function xn : H∗(M,Z) → Z to be
the action of the 2nth degree component cohomology class on the fundamental
cycle [M ] .

Let ξ be a U(q)-bundle. To every polynomial p(c1(ξ), c2(ξ) . . . , cn(ξ)) of
Chern classes of ξ we can now associate a number

xn[p(c1(ξ), c2(ξ) . . . , cn(ξ))] (8.19)

Let’s consider the example of the Chern class of a divisor on a Riemann
surface.

Theorem 8.3. Let T be a compact Riemann surface and D a divisor on T
represented by a system of place functions {fi} with cover U = Ui. Then we
have

c1({D})[T ] = deg(D). (8.20)

Proof. Label the zeroes and poles of D by j ∈ J . Let K → T be a triangulation
of T subject to the cover U, with simplicial complex K (this is possible as can
be seen in §3.3 of [Sp66]). Assume w.l.o.g. that each j ∈ J lies on the interior
of an image of a 2-simplex (a triangle). The standard 2-simplex has vertices
ordered counterclockwise, so a positively ordered triangle has its vertices also
ordered counterclockwise. Subdivide each triangle AjBjCj containing a j ∈ J ,
positively oriented, into three new triangles with vertex j. They have positive
orientation jAjBj , jBjCj , jCjAj . Let j be a zero or pole of fij . To the cover
V of open stars (equation (8.14)) we can associate place functions gk = fij on
each open star of k ∈ J and gk = 1 for any other open star. This defines an
equivalent divisor since the systems have the identical poles and zeroes of equal
order (see §7.2). The line bundle {D} then has transition functions gkℓ = gk

gℓ
equal to 1 except for gjAj

= gjBj
= gjCj

= −gAjj = −gBjj = −gCjj = gj , with
j ∈ J .
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Figure 4: The subdivision of a triangle containing a point j into a three triangles
having j as a vertext.

The functions gkℓ define an element of H1(T,C∗). The first Chern class of
{D} is defined via the isomorphism

H1(T,C∗) ∼= H2(T,Z) (8.21)

arising from the exact sequence of sheaves

0 → Z → Cc
exp(2πi·)−−−−−−→ C∗

c → 0. (8.22)

Let’s investigate gkℓ under the mapping H1(X,C∗) ∼= H2(X,Z). We have gkℓ ∈
H1(V,C∗) and the cover V is fine enough such that gkℓ has an inverse under
the mapping exp(2πi·) on each open set of V:

hkℓ :=
1

2πi
ln gkℓ ∈ C1(V,Cc), (8.23)

Applying the boundary operator on hkℓ we obtain an element

ckℓm := (δh)kℓm =
1

2πi
(ln gℓm − ln gkm + ln gkℓ) ∈ C2(V,Cc), (8.24)

Theorem 6.11 shows that ckℓm ∈ H2(T,Z) and that the ckℓm is independend of
the choice of branch of ln when defining hkℓ.

Let’s go back to our situation. We have that gkℓ is equal to 1 except for
gjAj = gjBj = gjCj = −gAjj = −gBjj = −gCjj = gj , with j ∈ J . Therefore all
hkℓ = 0 except for permutations of hjAj

= hjBj
= hjCj

. Denote the intersection
of open stars of k and ℓ by Ukℓ. Let’s choose the branch of hjAj

= 1
2πi ln gj on

UjAj
and extend analytically to UjBj

and then UjCj
. On the overlap of UjCj

and
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UjAj the branches of the logarithm differ by 2πi ordj gj , since we extended the
the logarithm once counterclockwise around te zero or pole. Therefore equation
(8.24) gives

cjCjAj
=

1

2πi
(ln gCjAj

− ln gjAj
+ ln gjCj

) =
1

2πi
(0 + 2πi ordj gj) = ordj gj .

(8.25)

All other indices (except for permutations of jCjAj) will give zero. This is now
an element of the cohomology H2(T,Z) and gives an element in in the simplicial
cohomology H2(K,Z) that maps each triangle kℓm to ckℓm (equation (8.15)).
We can let this act on the fundamental cycle, defined as the sum of all triangles,
positively oriented, of the triangulation. In the pairing of simplicial cohomology
and homology, the only non-zero terms are the cjCjAj

giving

c1[T ] =
∑
j

cjCjAj =
∑
j

ordj gj = degD. (8.26)

9 The cohomology groups Hp,q(V,W ) and the arith-
metic genus.

9.1 Kodaira’s Riemann–Roch theorems

In 1950, Kodaira succeeded to prove a Riemann–Roch theorem for compact
Kähler surfaces by applying the theory of harmonic integrals [Ko51]. The fol-
lowing year, Kodaira proved a similar Riemann–Roch theorem for complex man-
ifolds of three dimensions [Ko52a]. The outline of Kodaira’s incredible work on
the Riemann–Roch theorems and other conjectures posed by the Italian ge-
ometers can be found in [Die89]. A great part of the research that preceded
Kodaira’s work on algebraic geometry was on harmonic integrals. Furthermore,
Severi already wrote in [Se09] that he was not able to prove his conjecture on
the arithmetic genus (equation (5.11)) because

“the demonstration of this result will undoubtedly be achieved through
serious difficulty, involving the introduction of many new elements
and the development of others that currently exist only in embryonic
form in the theory of algebraic functions of several variables.52”

The development of the theory of harmonic integrals consisted precisely of new
elements in the theory of algebraic functions of several variables and indeed en-
abled Kodaira to make and prove Riemann–Roch theorems and to prove many

52Translated using the assistance of ChatGPT. Original: ‘la dimostrazione di questo risul-
tato si otterrà, indubbiamente attraverso a difficoltà gravissime, introducendo molti nuovi
elementi e sviluppandone altri, che oggi esistono appena in germe nella teoria delle funzioni
algebriche di più variabili.’
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conjectures of the Italian geometers. For example, he was able to prove the
conjecture of Severi on the arithmetic genus (equation (5.11)) in [Ko52b], and
together with Spencer he proved another conjecture of Severi between two def-
initions of the arithmetic genus [KS53]. For these contributions, Kodaira was
awarded the fields medal [IMU].

9.2 Dolbeault’s note of 1953

The note of Dolbeault initiated what Dieudonne called the sprint towards the
Hirzebruch–Riemann–Roch theorem [Die89]. In order to treat this paper we
will introduce some notation and give some important preliminary results.

Let W be a complex analytic vector bundle over a complex manifold V , and
let Ω(W ) be the sheaf of germs of local holomorphic sections of W . We will
introduce the following shorthand notation:

Hi(V,W ) := Hi(V,Ω(W )). (9.1)

Let λpT ∗V denote the complex analytic vector bundle of covariant tangent
p-vectors. Then we can define the following cohomology groups:

Definition 9.1.

Hp,q(V,W ) = Hq(V,W ⊗ λpT ∗
V ) (9.2)

In particular we have H0,q(V,W ) = Hq(V,W ).

Definition 9.2. We call local sections of λpT ∗
V ∧λqT ∗

V local differentiable forms
of type (p, q) and define Ap,q to be the sheaf of germs of local differentiable forms
of type (p, q).

The operator d on differential forms splits into a sum

d = ∂ + ∂. (9.3)

Here do ∂ and ∂ denote differentiation with respect to the z and z variables
respectively, the first increases the number p and the second operator increases
the number q when acting on a differential form of type (p, q). Like d2 = 0, we

also have ∂2 = ∂
2
= ∂∂ + ∂∂ = 0.

9.2.1 Resolution of sheaves

In 1931, de Rham discovered a famous theorem now called de Rham’s theorem
[dR31]. Though de Rham’s proof was accepted at the time of publication, it
took for granted certain properties of differential manifolds. The first detailed
proof is due to Weil and was communicated to Cartan in 1947 (see [Weil52] for
Weil’s publication):
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Theorem 9.3. If X is a differentiable manifold, we have an isomorphism

Hp(X,R) ∼= Hp
dR(X), (9.4)

where Hp
dR = ker(dp)/im(dp−1) and dp is the exterior derivative acting on dif-

ferential forms of degree p.

It was found that de Rham’s theorem 9.3 could be proved very neatly using
Poincaré’s lemma formulated in terms of an exact sequence of sheaves:

0 → R d−→ A0 d−→ A1 d−→ . . . , (9.5)

where Ap is the sheaf of germs of differentiable p-forms over a differentiable
manifold X and d is the exterior derivative. The exterior derivatives also give
maps on the sections of the sheaves:

0 → Γ(X,R) d−→ Γ(X,A0)
d−→ Γ(X,A1)

d−→ . . . , (9.6)

whose quotients define the de Rham cohomology groups Hp
dR. The sheaves Ap

are fine (Definition 6.12). We have seen that the cohomology groups of non-
zero degree of fine sheaves are zero (Theorem 6.13). This observation is key in
the proof of de Rham’s theorem. We will give a sequence of sheaves with this
property a name and formulate the proof in general.

Definition 9.4. A sequence

0 → S
h−→ S0

h0

−→ S0
h1

−→ S1
h2

−→ . . . (9.7)

of sheaves over a paracompact space X is called a resolution of S if the sequence
is exact and for all p ≥ 0 and q ≥ 1 the cohomology groups Hq(X,Sp) = 0.

Theorem 9.5. Let

0 → S
h−→ S0

h0

−→ S0
h1

−→ S1
h2

−→ . . . (9.8)

be a resolution of S over a paracompact space X. Then we have an induced
sequence

0 → Γ(X,S)
h∗−→ Γ(X,S0)

h0
∗−→ Γ(X,S0)

h1
∗−→ Γ(X,S1)

h2
∗−→ . . . (9.9)

such that for all q ≥ 0

Hq(X,S) ∼= ker(hq∗)/ im(hq−1
∗ ). (9.10)

Here, h−1
∗ is understood to be the zero mapping.

Proof. The case q = 0 is just equation (6.10). Now split the long exact sequence
(9.8) into short exact sequences

0 → ker(hp) → Sp
hp

−→ ker(hp+1
∗ ) → 0. (9.11)
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These induce for all p ≥ 1 the long exact sequence that contains

0 = Hq−1(X,Sp) → Hq−1(X, ker(hp+1)) → Hq(X, ker(hp)) → Hq(X,Sp) = 0
(9.12)

for each q ≥ 2. Therefore by an inductive argument, using kerh0 = im h = S
we can show that for all q ≥ 1

H1(X, ker(hq−1)) ∼= Hq(X,S). (9.13)

If p is replaced by q − 1 in the short exact sequence (9.11), then we get the
induced exact sequence

H0(X,Sq−1)
hq−1
∗−−−→ H0(X, ker(hq) → H1(X, ker(hq−1)) → 0. (9.14)

Therefore we have that H1(X, ker(hq−1)) ∼= H0(X, ker(hq))/ im(hq−1
∗ ). If we

replace instead p with q we have an exact sequence

0 → H0(X, ker(hq)) → H0(X,Sq)
hq
∗−→ . . . , (9.15)

so H0(X, ker(hq)) = ker(hq∗). This proves H
q(X,S) ∼= ker(hq∗)/ im(hq∗ − 1).

De Rham’s theorem is now a corollary of Theorem 9.5. Grothendieck proved
an analog to Poincaré’s lemma for the operator ∂ [Do53]:

Lemma 9.6 (Grothendieck). Let Ω(λpT ∗
V ) denote the sheaf of germs of local

holomorphic p-forms. The sequence

0 → Ω(λpT ∗
V )

∂−→ Ap,0 ∂−→ Ap,1 ∂−→ . . . (9.16)

is exact.

Proof. See [Do53] for a proof due to H. Cartan. At the time of publication of
[Do53], Grothendieck’s proof was still unpublished.

In [Do53], Dolbeault observed that the sequence (9.6) is a resolution, since
the sheaves Ap,q are fine. This led Dolbeault to prove an analog to de Rham’s
theorem for complex manifolds. This short note in the Comptes Rendus of Dol-
beault [Do53] led to the discovery of theorems that year, which were crucial for
the Hirzebruch–Riemann–Roch theorem. We will prove a slightly more general
theorem then Dolbeault orignally treated by considering complex differential
forms with coefficients in a complex analytic vector bundle W , i.e. sections of
the differentiable vector bundle W ⊗ λpT ∗

V ⊗ λqTV
∗
, since this enables us to

introduce the divisors, as divisors can be considered line bundles (Definition
7.9). This was done by Serre [Se53] and independently by Spencer (according
to Kodaira in [Ko53]).

Before we can generalize Dolbeault’s theorem, we need to show that ∂ in-
duces a homomorphism on the sheaf of germs of complex differential forms with
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coefficients in W . This follows from the fact that the transition functions of
W are matrix-valued functions with each component being a holomorphic func-
tion. But ∂ = 0 on holomorphic functions, so the action of ∂ is independent
on the local product structure U × C, where U ⊂ V is open. So we get indeed
an induced homomorphism ∂ on the sheaf of germs of differential forms with
coefficients in W .

Definition 9.7. Define Ap,q(W ) to be the sheaf of germs of differential forms of
type (p, q) with coefficients in W and define Ap,q(W ) := Γ(V,Ap,q(W )). Analo-
gously define Ap,q := Γ(V,Ap,q).

Theorem 9.8. The sequence

0 → Ω(W ⊗ λpT ∗
V )

∂−→ Ap,0(W )
∂−→ Ap,1(W )

∂−→ . . . (9.17)

is exact.

Theorem 9.9 (Dolbeault). Let ∂
p,q

be the restriction of ∂ on the complex
differential forms of type (p, q) with coefficients in a complex analytic vector
bundle W , then we have

Hp,q(V,W ) ∼= ker ∂
p,q
/ im(∂

p,q−1
) (9.18)

A simple corollary of this theorem is that Hp,q(V,W ) = 0 when p or q
is larger then dimC V . However, in order to apply the cohomology groups of
Ωp(W ) to the theory of compact complex varieties, it was needed to prove that
the dimension of these cohomology groups is finite. This step was made by
Kodaira [Ko53]. But before we treat Kodaira’s paper we treat Serre’s letter to
Borel [Se53].

9.3 Serre’s letter

After Dolbeault published his note [Do53], Serre wrote a letter to Borel on his
famous duality theorem (Theorem 9.10) and the Riemann–Roch theorem for
higher dimensions. In his letter, Serre mentioned the work of Kodaira on the
Riemann–Roch theorem for higher dimensions “that of course strongly inspired
me [Serre]53” [Se53]. Crucially, Serre considered the sheaf Ω(W ⊗ λPT ∗V ), in-
stead of just Ω(λpT ∗V ) (notation of Lemma 9.6). He derived the corresponding
theorem (Theorem 9.9) analogous to that of Dolbeault.

The first result from the letter is Serre’s duality theorem [Se53] and was
published as Theorem 2 in [Se55]:

Theorem 9.10 (Serre duality). Let V be a compact complex manifold and let
W be a complex analytic vector bundle over V , then we have an isomorphism

Hp,q(V,W ) ∼= Hn−p,n−q(V,W ∗). (9.19)

53My own translation using the assistance of Google Translate. Original: ‘dont je me suis
bien etendu fortement inspiré.’
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In particular, if K := λnT ∗
V is the canonical line bundle, we have

Hp(V,W ) ∼= Hn−p(V,K ⊗W ∗). (9.20)

However, Serre relied on the assumption that the cohomology groupsHp,q(V,W )
were finite. This would be proven by Kodaira and independently by Cartan and
Serre as we will see in the next section (Theorem 9.14). The idea of Serre’s
proof of his duality theorem (Theorem 9.10) was to show that there is a perfect
pairing

Hp,q(V,W )×Hn−p,n−q(V,W ∗) → C (9.21)

induced by the mapping

(α, β) 7→
∫
V

α ∧ β, (9.22)

where α is a global (p, q)-form with coefficients in W and β is a (n− p, n− q)-
current with coefficients in W ∗. We will not delve into the theory of currents,
which are to differential forms what distributions are to functions. Serre noted
that the mapping of equation (9.22) was already studied to give a duality be-
tween forms and currents by Grothendieck and Schwartz.

Using this duality theorem Serre was able to relate the classical formulations
of the Riemann–Roch theorems to the cohomology groups Hp,q(V,W ) and gave
new proofs, about which he stated:

“It is clear from the above that the general form of the Riemann–Roch
theorem would be proven if one could always express the arithmetic
genus in terms of the Chern classes54.”

Indeed he was close to the general Hirzebruch–Riemann–Roch formula (Theorem
9.18). First let’s introduce the following notation:

Definition 9.11. Let W be a complex analytic vector bundle over a compact
complex manifold V of dimension n. Then we define the following notions (also
relying on the finiteness of the dimension of Hp,q(V,W )):

� hp,q(V,W ) := dimHp,q(V,W )

� hp,q(V ) := dimHp,q(V, 1), where 1 is the trivial vector bundle.

� χ(V,W ) :=
∑n

q=0(−1)qh0,q(V,W ) is called the Euler–Poincaré character-
istic.

� χ(V ) := χ(V, 1) =
∑n

q=0(−1)qh0,q(V ) is called the arithmetic genus.

54My translation with the assistance of ChatGPT. Original: ‘Il est clair d’après ce qui
précède que la forme générale de Riemann–Roch serait démontrée si l’on savait chaque fois
exprimer le genre arithmétique à l’aide des classes de Chern.’
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The definition of the arithmetic genus is slightly different from that of Severi:
it turns out that χ(V ) = pa + 1, where pa is one of the equivalent definitions of
the arithmetic genus by Severi (see e.g. [Hi56]). This definition eliminates an
commonly appearing −1 from the formulas of the Italian geometers.

Serre conjectured that, if D is a divisor with first Chern class x, and if the
Chern classes of the tangent space of an n-dimensional variety X are given by
c1, . . . , cn, then there exists a polynomial P only depending on n such that55

P (x, c1, . . . , cn)[X] = χ(D). (9.23)

This is indeed the right form of the Hirzebruch–Riemann–Roch formula (Theo-
rem 9.18).

Let’s take a look at how Serre was able to reformulate the classical Riemann–
Roch formula (Theorem 4.7) in terms of the cohomology groups Hq(V,W ). We
note

Ω1(−D) ∼= H0(V, {D}−1 ⊗ λ1T ∗
V )

∼= H0(V, {D}∗ ⊗ λ1T ∗
V ), (9.24)

since −D is represented by {D}−1 ∼= {D}∗. Serre’s duality (Theorem 9.10)
gives

H0(V, {D}∗ ⊗ λ1TV ) ∼= H1(V, {D}). (9.25)

Since we had shown L(D) ∼= H0(V, {D}) in Theorem 7.10, we have

L(D)− Ω1(−D) = H0(V, {D})−H1(V, {D}) = χ(V, {D}). (9.26)

Therefore we can reformulate the Riemann–Roch theorem (Theorem 4.7) in the
form

χ(V, {D}) = degD + 1− p. (9.27)

In particular we have for the arithmetic genus

χ(V ) = χ(V, {0}) = 1− p, (9.28)

Using these we can refine the Riemann–Roch theorem even further into:

Theorem 9.12. Let V be a Riemann surface and let D be a divisor. Then

χ(V, {D}) = degD + χ(V ). (9.29)

But remember, Serre formulated his general form of the Riemann–Roch the-
orem on the assumption that the cohomology groups Hp,q(V,W ) were finite.
We will now look at Kodaira’s proof of this assumption.

55Originally he wrote ⟨P (x,C2, . . . , C2n), X⟩ = χ(D)
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9.4 Finiteness of the dimension of the cohomology groups,
the arithmetic genus, and the theory of harmonic forms

In 1953, Kodaira published a paper [Ko53] on the finiteness of the dimension
of Hp,q(V,W ) by applying the theory of harmonic forms with coefficients in a
vector bundle56. At almost the same time, Cartan and Serre also published a
paper on the finiteness of the Dolbeault cohomology [CS]. Cartan and Serre,
however, considered the coefficients to consist of elements of coherent sheaves,
a generalisation of vector bundles. We will not go into the theory of coherent
sheaves and just treat the contents of Kodaira’s paper.

In the real case an operator formally adjoint to d is constructed in order to
define the Laplace–Beltrami operator ∆. The idea is to construct a Laplace–
Beltrami operator analogous to the real case, by introducing a formal adjoint
to the operator ∂. In order to construct the formal adjoint to ∂, we need an
analogue to the Hodge star operator ⋆. The theory of real harmonic forms is
described for example in [Ros97].

We set out to construct two anti-isomorphisms (maps that are isomorphisms
except that they are anti-linear instead of linear)

# :W ⊗ λpT ∗
V ⊗ λqT

∗
V →W ∗ ⊗ λn−pT ∗

V ⊗ λn−qT
∗
V

#̃ :W ∗ ⊗ λn−pT ∗
V ⊗ λn−qT

∗
V →W ⊗ λpT ∗

V ⊗ λqT
∗
V (9.30)

that induce anti-isomorphisms

# : Ap,q(W ) → An−p,n−q(W ∗)

#̃ : An−p,n−q(W ∗) → Ap,q(W ). (9.31)

We start with the isomorphism TV → T ∗
V via the pointwise map (defined in

§15.3 of [Hi56]). Therefore we get

λpT ∗
V ⊗ λqT

∗
V
∼= λpT ∗

V ⊗ λqTV
∼= λn−pTV ⊗ λnT ∗

V ⊗ λnTV ⊗ λn−qT ∗
V

∼= λn−pT
∗
V ⊗ λn−qT ∗

V . (9.32)

Here we used the canonical isomorphisms of tensor and exterior products (chap-
ter III of [Bo42]). If we compose the isomorphism of equation (9.32), that we

call ⋆ : λpT ∗
V ⊗ λqT

∗
V → λn−pT

∗
V ⊗ λn−qT ∗

V , with complex conjugation c. We
get an anti-isomorphism

c ◦ ⋆ : λpT ∗
V ⊗ λqT

∗
V → λn−pT ∗

V ⊗ λn−qT
∗
V . (9.33)

Together with the anti-isomorphisms ψ : W → W ∗ (defined in §15.3 of [Hi56]),
this enables us to create the compositions # := ψ⊗(c◦⋆) and # := ψ−1⊗(c◦⋆),

56In his paper he considered the particular case of a line bundle.
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resulting in anti-isomorphisms

# :W ⊗ λpT ∗
V ⊗ λqT

∗
V →W ∗ ⊗ λn−pT ∗

V ⊗ λn−qT
∗
V ;

#̃ :W ∗ ⊗ λpT ∗
V ⊗ λqT

∗
V →W ⊗ λn−pT ∗

V ⊗ λn−qT
∗
V . (9.34)

These are the isomorphisms in equation (9.30) we set out to construct.
Now we can construct an inner product on the global (p, q)-forms Ap,q(W ).

First we extend the wedge product in a natural way to a map

Ap,q(W )×Ar,s(W ∗) → Ap+r,q+s(1) = Ap+r,q+s. (9.35)

Namely, locally W and W ∗ are trivial. Let their trivialisations being given
by (w1, . . . , wk) and (w∗

1 , . . . w
∗
k) respectively. We can then write α ∈ Ap,q(W )

locally as α =
∑

i αi ⊗ wi, with αi ∈ Ap,q, and we can write β ∈ Ar,s(W ∗)
locally as β =

∑
j βj ⊗w∗

j , with βi ∈ Ar,s. Then there is a natural extension of
the wedge product∑

i

αi ⊗ wi,
∑
j

βj ⊗ w∗
j

 7→
∑
i,j

w∗
i (wj)(αi ∧ βj) (9.36)

that can be extended to a global product. Therefore we can define an inner
product on the Ap,q(W ) as

⟨α, β⟩ =
∫
V

α ∧#β, (9.37)

where α, β ∈ Ap,q(W ). Checking that equation (9.37) indeed forms an inner
product is analogous to the real case. We will now construct a formal adjoint
with respect to this inner product,

ϑ : Ap,q(W ) → Ap,q−1(W ), (9.38)

as the composition

ϑ = −#̃∂#. (9.39)

Namely, if we observe that57 ⋆⋆ = (−1)p+q, and so ##̃ = (−1)p+q, we get that
for any α ∈ Ap,q(W ) and β ∈ Ap,q−1(W ) we have

⟨∂α, β⟩ − ⟨α, ϑβ⟩ =
∫
V

(∂α ∧#β − α ∧##̃∂#β)

=

∫
V

(∂α ∧#β + (−1)p+qα ∧ ∂#β)

=

∫
V

∂(α ∧#β)

=

∫
V

d(α ∧#β)

= 0. (9.40)

57Here we mean the operator given resulting in a multiplication by (−1)p+q .
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The fourth equality in equation (9.40) arises from the fact that ∂ = d − ∂
transforms the (n, n − 1)-form α ∧ #β into an (n + 1, n − 1)-form, which is
zero. The last equality is due to Stokes’ theorem. We define the corresponding
Laplace–Beltrami operator to be

□ := (∂ + ϑ)2 = ∂ϑ+ ϑ∂ : Ap,q(W ) → Ap,q(W ). (9.41)

Analogous to the real case (see [Ros97]) we have

Ap,q(W ) = ∂Ap,q−1(W )⊕ ϑAp,q+1(W )⊕Bp,q(V,W ), (9.42)

where Bp,q(V,W ) is the space of harmonic forms of type (p, q), i.e. the kernel
of □. Therefore

ker ∂
p,q
/ im ∂

p,q−1 ∼= Bp,q(V,W ), (9.43)

and so by Theorem 9.9 we get the following theorem:

Theorem 9.13 (Kodaira). If V is a compact complex manifold and W is a
complex analytic vector bundle over V , then

Hp,q(V,W ) ∼= Bp,q(V,W ). (9.44)

Kodaira knew that the Laplace–Beltrami operator is an elliptic operator,
and observed this was also the case in the complex case. An elliptic operator
on a compact manifold has a finite dimensional kernel. So Kodaira obtains the
following corollary:

Corollary 9.14 (Kodaira–Cartan–Serre). If V is a compact complex manifold
and W is a complex analytic vector bundle over V , then

dimHp,q(V,W ) <∞. (9.45)

Severi conjectured that the arithmetic genus can be expressed as an alter-
nating sum of the dimensions of the space of differential forms of the first kind
(see equation (5.11))

n∑
i=0

(−1)igi, (9.46)

where gi is equal to the dimension of the space of differential i-forms of the
first kind. The space of differential q-forms of the first kind, i.e., holomorphic
differential forms, are exactly elements of H0(V, λqTV ) = Hq,0(V, 1). So gi =
hq,0. Since we defined the arithmetic genus to be (Definition 9.11)

χ(V ) = χ(V, 1) =

n∑
q=0

(−1)qh0,q, (9.47)

we will have to prove h0,q = hq,0 to show that our definition of the arithmetic
genus (Definition 9.11) is equivalent to the form conjectured by Severi in equa-
tion (5.11). But this is not true in general. It is however true in the case of a
Kähler manifold, which we will treat in the next chapter.

78



9.5 Kähler manifolds

The notion of a Kähler metric was introduced by Kähler in his article58 “On
a remarkable Hermitian metric” [Ka33]. Kähler stated that in the study of in-
variants (with respect to the coordinate transformations of a complex manifold)
corresponding to a Hermitian metric that can locally be written in the form∑

α,β

gαβdz
α ⊗ dz̄β , (9.48)

it is natural to use the alternating form

ω :=
∑
α,β

gαβdz
α ∧ dz̄β . (9.49)

Namely, we can use, in his words59, “the elegant calculus of symbolic differential
forms to produce invariants”. As an example, Kähler gives the form dω. In his
paper, he investigates the case where dω = 0. A metric for which dω = 0 is now
called a Kähler metric. A Kähler manifold is a complex manifold that admits
Kähler metric. It turns out that all algebraic varieties are Kähler (see §18.1 of
[Hi56]), so Kähler manifolds include a wide variety of other manifolds.

In 1951, Hodge [Ho51b] and independently Garabedian and Spencer60 pub-
lished papers on the calculus of tensors and differential forms on Kähler man-
ifolds. The most important result for the history of the Hirzebruch–Riemann–
Roch theorem was proven in a subsequent paper [GS53]. In this work, Garabe-
dian and Spencer showed that

□ =
∆

2
, (9.50)

where ∆ is the real Laplace–Beltrami operator and □ the complex Laplace–
Beltrami operator introduced in 9.41. This is now known as one of the Kähler
identities. For the proof I will refer to the original source [GS53] or to proposition
3.1.12 of [Huy05]. The factor 1

2 comes from the fact that ∆ splits into two equal

Laplace–Beltrami operators, one for ∂ and one for ∂. Since the operator ∆
commutes with conjugation, so does □. Therefore, we have an anti-isomorphism
from Bp,q to Bq,p, where Bp,q := Bp,q(V, 1). So Theorem 9.13 gives

hp,q(V ) = dimBp,q = dimBq,p = hp,q(V ). (9.51)

In particular this enables us to rewrite the arithmetic genus:

58My translation. Original: “Über eine bemerkenswerte Hermitesche Metrik.”
59My translation with the assistance of Google Translate. Orignal (whole sentence): “Diese

invariant mit (1) [equation (9.48)] verknüpfte Form ω gibt Gelegenheit, den eleganten Kalkül
der symbolischen Differentialformen zur Herstellung von Invarianten zu verwenden”

60I was not able to check the original source, but it was cited in [GS53]
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Theorem 9.15. Let V be a Kähler manifold, then the arithmetic genus (in the
sense of definition 9.11) is equal to

χ(V ) =

n∑
q=0

(−1)qgq, (9.52)

where gq is the dimension of the space of differential q-forms of the first kind.

Proof. Using equation (9.51) we get

χ(V ) =

n∑
q=0

(−1)qh0,q =

n∑
q=0

(−1)qhq,0 =

n∑
q=0

(−1)qgq. (9.53)

The last equality is arises from the definition of a differential q-forms of the first
kind as elements of Γ(V, λqTV ) = H0(V, λqTV ).

9.6 The Todd genus and the Hirzebruch–Riemann–Roch
theorem

In §8.1, we saw that Hodge gave in [Ho51a] a duality between Chern classes and
homology classes of the Eger–Todd classes for a non–singular variety. Motivated
by this duality, Hirzebruch gave a definition of the Todd genus in terms of
Chern classes in [Hir53]. Hirzebruch made use of a few tricks to simplify the
many algebraic Lemmas used by Todd [To37b] in order to define his genus.
This simplification provided Hirzebruch with much deeper insight into what
was going on. The recent results of Kodaira and Spencer on the equality of
various definitions of the arithmetic genus (see §9.1), and the work of Todd,
which relied on an unproven Lemma of Severi (see §8.1), made it plausible to
Hirzebruch that the equality between the arithmetic genus and the Todd genus
indeed holds.

The first trick was the central topic of Hirzebruch’s article [Hir53]: his inven-
tion of the multiplicative sequence. In [Hir53], Hirzebruch applied the concept
of a multiplicative sequence to Steenrod’s reduced powers, to the index of inertia
and to the construction of the Todd genus. His expression of the index of inertia
in terms of a multiplicative sequence of the Pontrjagin classes is now known as
Hirzebruch’s signature theorem and will be essential in Hirzebruch’s proof of
the Hirzebruch–Riemann–Roch theorem (Theorem 9.18) and is a direct result
of combining the concept of a multiplicative sequence with the work of Thom on
cobordism. Cobordism was developed in Thom’s thesis [Th52] and announced
in four comptes rendus notes [Th53]. I will not go deeper into the concept
of a multiplicative sequence and how this was used to prove the Hirzebruch–
Riemann–Roch theorem (Theorem 9.18). More on multiplicative sequences can
be found in its publication [Hir53] or in [Hi56].

The second trick to ease his calculations was not his own invention. Namely,
when Borel and Serre were calculating Steenrod’s reduced powers of cohomology
classes of certain Lie algebras, they noted that characteristic classes such as
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Chern classes could be regarded as symmetric polynomials [BS51]. Hirzebruch
called this the Borel–Serre method [Hir53]. Hirzebruch formulated this using
generating functions. Namely, he factorised a formal polynomial of Chern classes
as follows: Let X be a locally compact and finite-dimensional space X that is
a countable union of compact sets and ξ a U(q)-bundle over X, then

q∑
i=0

ci(ξ)x
i =

q∏
j=0

(1 + γjx), (9.54)

where x and γ1, . . . , γq are formal variables. If we write the right hand side as
a power series, we get

q∏
j=0

(1 + γjx) = 1 + (γ1 + · · ·+ γq)x+ · · ·+ (γ1 · · · γq)xq

= e0(γ1, . . . , γq) + e1(γ1, . . . , γq)x+ · · ·+ eq(γ1, . . . , γq)x
q, (9.55)

where for each i the coeffcient of xi is the ith order elementary symmetric poly-
nomial ei(γ1, . . . , γq). Equation (9.54) amounts to saying that for each i we have
ci(ξ) = ei(γ1, . . . , γq). This factorisation is purely formal. However, using this
factorisation Hirzebruch was able to express any polynomial, and therefore any
power series symmetric in γj , in terms of the elementary symmetric polynomial
of the γj , i.e. in terms of the Chern classes ci. This enabled Hirzebruch to
define the following notions [Hir54]:

Definition 9.16. Let X be a locally compact and finite-dimensional space X
that is a countable union of compact sets and ξ a U(q)-bundle over X and let

q∑
i=0

ci(ξ)x
i =

q∏
j=0

(1 + γjx). (9.56)

be a formal factorisation with formal variables x and γ1, . . . , γq, then we define:

� ch(ξ) :=
∑q

i=1 e
γi is called the Chern character

� td(ξ) :=
∏q

i=1
γi

1−e−γi
is called the (total) Todd class (not to be confused

with the Eger-Todd classes).

In the definition of the Todd class we recognize the generating function

x

1− e−x
=

∞∑
n=0

Bn

n!
xn, (9.57)

where Bn are the Bernoulli numbers with the convention that B1 = 1
2 and x is

again a formal variable.
Let V be a compact complex manifold. Recalling from §8.2 that we defined

xn : H∗(V,Z) → Z to be action the 2nth cohomology class on the fundamental
cycle, we can now introduce Hirzebruch’s definitions of the the T -characteristic
and the Todd genus [Hir54]:
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Definition 9.17. Let V be a compact complex manifold and letW be a complex
analytic vector bundle over V , then we define the T-characteristic to be

T (V,W ) = xn[ch(W )td(TV )]. (9.58)

The quantity T (V, 1) is called the Todd genus.

The definition of T (V, 1) = xn[td(TV )] is written in terms of Chern numbers,
but is equivalent to Todd’s original formulation via the duality discovered by
Hodge between the Eger–Todd classes and the Chern classes (see §8.1). We are
now able to formulate the Hirzebruch–Riemann–Roch theorem.

9.7 The Hirzebruch–Riemann–Roch theorem

In 1954 Hirzebruch published his famous theorem [Hir54] (Theorem 9.18). In
his proof he had to assume that he worked over an algebraic variety, that is,
a compact complex manifold that admits a complex analytic embedding as a
submanifold of a complex projective space of some dimension (see 0.1 in [Hi56]).
The Hirzebruch–Riemann–Roch theorem then states:

Theorem 9.18 (Hirzebruch–Riemann–Roch). Let V be an algebraic variety
and let W be a complex analytic vector bundle over V . Then we have

χ(V,W ) = T (V,W ). (9.59)

The case χ(V ) = T (V ), i.e. whenW = 1 the trivial line bundle, is equivalent
to Todd’s original formula [To37b]. The Hirzebruch–Riemann–Roch theorem is
indeed in the form conjectured by Serre (equation 9.23). We will first take a
look how this theorem generalises the Riemann–Roch theorem (Theorem 9.12).
The proof is beyond the scope of this thesis and I would like to refer to [Hir54]
or Theorem 21.1.1 of [Hi56] for its details.

Theorem 9.19. The Hirzebruch–Riemann–Roch theorem (Theorem 9.18) im-
plies the Riemann–Roch theorem (Theorem 9.12).

Proof. Let V be a Riemann surface and let D be a divisor. Let the Chern classes
of {D} and TV be factored as in equation (9.54):

1 + c1({D})x = 1 + γx, (9.60)

1 + c1(TV )x = 1 + γ′x′ (9.61)

where x, γ, x′ and γ′ are formal variables. The Chern character corresponding
to a divisor is

ch({D}) = eγ = 1 + γ + · · · = 1 + c1({D}), (9.62)

all higher Chern classes being 0 since V is two-dimensional and therefore all
cohomology groups Hi(V,Z) with i > 2 vanish. Similarly we have

td(TV ) =
γ′

1− e−γ′ = 1 +
c1(TV )

2
. (9.63)
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Therefore the T -characteristic corresponding to a divisor is

T (V, {D}) = xn

[
(1 + c1({D})

(
1 +

c1(TV )

2

)]
= xn

[
1 + c1({D}) + c1(TV )

2

]
= c1({D})[V ] +

c1(TV )

2
[V ]. (9.64)

The pairing of the first Chern class of a divisor with the fundamental class
of V is the degree of the divisor (Theorem 8.3). We will calculate the first
Chern class of the tangent bundle in terms of the arithmetic genus using the
Hirzebruch–Riemann–Roch Formula 9.18:

χ(V ) = T (V ) = x1[td(TV )] =
c1(TV )[V ]

2
. (9.65)

Therefore the T-characteristic is

T (V, {D}) = c1({D})[V ] +
c1(TV )

2
[V ] = deg(D) + χ(V ), (9.66)

so Hirzebruch–Riemann–Roch implies

χ(V, {D}) = T (V, {D}) = deg(D) + χ(V ), (9.67)

which is the Riemann–Roch theorem that we reformulated in Theorem 9.12.

10 Outlook

Using the joint work of many mathematicians, who unified many areas in math-
ematics, Hirzebruch was able to close the problem of generalising the Riemann–
Roch theorem to higher dimensions. However, his work also opened new areas
of research. Most notably, in 1957, Grothendieck generalised the Hirzebruch–
Riemann–Roch theorem by expressing the Hirzebruch–Riemann–Roch theorem
as a relative theorem between two algebraic varieties called the Grothendieck–
Riemann–Roch theorem. The theorem was first communicated in two letters to
Serre, dated November 1 and November 17, 1957 [GS04], and was later published
by Borel and Serre in [BS58]. Along the way Grothendieck created K-theory.
The history of the Grothendieck–Riemann–Roch theorem is described in [Die89].

In 1957, Atiyah and Hirzebruch published a joint paper generalising the
Hirzebruch–Riemann–Roch theorem to differentiable manifolds using the K-
theoric methods of Grothendieck [AH59]. This was the start in a sequence
of developments that created the Atiyah–Singer index theorem [At88]. In the
commentary to volume 3 of his collected works, Atiyah outlines the immediate
history of the Atiyah–Singer index theorem. The book [HP09] also contains
much information in the biographical accounts of Atiyah and Singer. For a more
mathematical account I would advise the article of Freed [Fr21]. A complete
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mathematical account of the original proof can be found in the lecture notes of
Palais [Pa65].

When I was working on this thesis I stumbled upon a very interesting in-
terview with Serre [CL85]. In this interview Serre called for more questions in
papers:

“papers should include more side remarks, open questions, and such.
Very often, these are more interesting than the theorems actually
proved. Alas, most people are afraid to admit that they don’t know
the answer to some question, and as a consequence they refrain from
mentioning the question, even if it is a very natural one. What a
pity! As for myself, I enjoy saying ‘I do not know’.”

Therefore I want to take this opportunity to make some remarks and ask some
questions. First of all, we observed in §5.3 that great results arose when the
mathematics attained a high degree of unity. This was also reconfirmed by the
later sections. Nevertheless, there developed a strong tendency of the algebraic
geometers after Zariski to reinterprete the theorems in a purely algebraic setting.
This lead to the following quote of Lefschetz [Lef68]:

“I cannot refrain, however, from mention of the following notewor-
thy activities: (...) II. The systematic algebraic attack on algebraic
geometry by Oscar Zariski and his school, and beyond that of André
Weil and Grothendieck. I do feel however that while we wrote al-
gebraic GEOMETRY they make it ALGEBRAIC geometry with all
that it implies.”

However, this approach enabled the algebraic geometers to uncover deep analo-
gies with number theory. Furthermore it may be misleading to consider the
algebraic methods merely as a complement to the analytical methods. In many
cases, algebraic methods can be extended to fields of arbitrary characteristic.
For example the Grothendieck–Riemann–Roch theorem has been extended to
fields of arbitrary characteristic (see [BS58]). But, by observing this historic
pattern, I believe it’s important that one should develop the algebraic side, the
topological, and also the analytical side, search for equivalent definitions or ap-
proaches such as different definitions of invariants, but most importantly, not
forget the underlying unity of mathematics.

The second question is a little bit more specific and I do not know if it has
already been asked or answered. Riemann’s inequality (Theorem 4.2) was a
direct consequence of considering the space of functions as a subspace of the
space of integrals. Roch’s proof of the Riemann–Roch theorem used the same
principle. My question is if it is possible to consider an analogous argument to
in order to prove the Hirzebruch–Riemann–Roch theorem. I did not have the
time to give it much thought.
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de transcendantes et sur les quadratures. Paris: Courcier.

[Ler46a] Leray, J. (1946). Anneau d’homologie d’une représentation. Comptes
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Journal de Mathématiques Pures et Appliquées, 9(10), 115–200. https:
//www.numdam.org/item/JMPA_1931_9_10__115_0/
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