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Quantization is defined as the act of assigning an appropriate C*-algebra &/ to a given
configuration space @, along with a prescription mapping self-adjoint elements of & into
physically interpretable observables. This procedure is adopted to solve the problem of quantizing
a particle moving on a homogeneous locally compact configuration space Q = G/H. Here «/ is
chosen to be the transformation group C*-algebra corresponding to the canonical action of G
on Q. The structure of these algebras and their representations are examined in some detail.
Inequivalent quantizations are identified with inequivalent irreducible representations of the
C*-algebra corresponding to the system, hence with its superselection sectors.

Introducing the concept of a pre-Hamiltonian, we construct a large class of G-invariant
time-evolutions on these algebras, and find the Hamiltonians implementing these time-evolutions
in each irreducible representation of «. “Topological” terms in the Hamiltonian (or the corre-
sponding action) turn out to be representation-dependent, and are automatically induced by the
quantization procedure. Known “topological” charge quantization or periodicity conditions are
then identically satisfied as a consequence of the representation theory of .

1. Introduction

1.1. The stage

The problem considered in this paper is the quantization of a particle moving on a
homogeneous configuration space Q = G/H. For example, Q might be a line, a circle,
a sphere, three-dimensional Euclidean space, etc. Physical systems of this kind are very
interesting, because, in their simplicity, they may exhibit so-called “topological quan-
tum effects” in case that Q and G are suitably chosen. Well-known examples of such
effects, which will be studied in detail in the sequel to this paper, are the Aharonov-
Bohm effect and the Dirac magnetic monopole charge quantization, which arise if one
deletes a line or a point from R3, respectively. Phenomena of this kind are usually
associated with what physicists call “topologically non-trivial” configuration spaces
(which means that Q is not homeomorphic to some Euclidean space), and the examples
mentioned fit well into this idea, but actually such phenomena may occur for any
configuration space. For example, the existence of spin is an example of an effect whose
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mathematical description (or, at least the one given here) is completely analogous to
that of the two effects mentioned earlier, while its arena is just R® with its usual
topology. As we shall see, such phenomena are bound to occur whenever the little
group H is non-trivial.

Our restriction to locally compact homogeneous configuration spaces is, unfor-
tunately, necessitated by the fact that the quantization scheme we are going to offer
in its present formulation only works for such spaces; this restriction excludes field
theories from the present treatment as well. Both restrictions may eventually be
removed by employing the formalism of continuous tensor products of C*-algebras,
but we leave this development to a future paper. We will actually impose still further
restrictions on the pair G, @, to be detailed in 3.1 below, but these are of a very technical
nature, and are easily met by all obvious physical examples.

Another limitation is that we start from the formulation of a physical system in terms
of its configuration space Q; its phase space T*Q (in case that Q is a manifold) does
not enter the discussion. Yet physical systems exist which are directly formulated in
terms of their phase-space variables, and which do not admit an underlying configura-
tion space. In spite of these limitations to the applicability of the method described
here, a wide range of realistic systems remains for which the technique is applicable,
some of which are difficult to handle with other methods (e.g., the case in which Q is
neither a manifold nor a vector space).

1.2. Quantization and C*-algebras

Origins

Our present approach to the quantization problem has been inspired by, and, indeed,
is mathematically modeled on the foundational work in quantum (field) theory due to
Segal {361, Haag-Kastler [22], and Araki [1]. Among other things, these authors drew
attention to some limitations of the conventional Hilbert space formalism, useful as it
may be in practical calculations. For one thing, the phenomenon of superselection
sectors [41] is incorporated in an ad hoc way, and another point is that quite often
the set of physically realizable states of a physical system is simply not exhausted by
the set of density matrices in a given Hilbert space representation. Instead, these
authors proposed that all relevant physical information ought to be contained in
certain abstract operator algebras .« generated by the observables of the system. This
approach is vindicated a priori by a deep study of the algebraic structure of quantum
mechanics; it is remarkable that, the main emphasis in the eventual C*-algebraic
formulation of quantum mechanics being on abstract operator algebras, its mathe-
matical origin is actually tied to the algebraic structure of the state space. For a
comprehensive discussion of these issues, we refer to [S, 21] and refs. therein, the first
of which also contains extensive historical notes.

For physical as well as mathematical reasons, which are explained in [36, 22, 5, 21],
it is at least highly convenient, and possibly mandatory, to assume that &/ is a
C*-algebra. There is an intrinsic axiomatic way to define C*-algebras [8, 31, 5] as
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special instances of Banach algebras with involution. A Banach algebra is a Banach
space over C, which is also an associative algebra, and in which the norm satisfies
|AB| < {|A|{ | B|l. An involution is an antilinear operation *, such that (4B)* = B*4*
and A** = A. What defines a C*-algebra is the extra demand | 44*|| = ||4||2. These
axioms may be motivated by noting that they are identically satisfied by the ordinary
operator norm on a norm-closed algebra of bounded operators on a Hilbert space.
Conversely, particularly in reference to quantum mechanics, the upshot of especially
the last requirement is that the usual Hilbert-space formalism can be recovered from,
and is a special case of the C*-algebraic setup. In other words, the axioms characteriz-
ing a C*-algebra allow one to prove that every C*-algebra is isomorphic with a
norm-closed subalgebra of Z(#) (cf. 1.4.7 for notation).

It so happens, that in the past C*-algebraic techniques have almost exclusively been
employed in the study of infinite systems, in particular quantum field theories and
non-relativistic thermodynamic systems (cf. [24] and [6], respectively, for a review).
The reason for this might have been the belief that, in view of the Stone-von Neumann
uniqueness theorem, the application of these techniques to finite systems (by which
one apparently implicitly referred to systems consisting of a finite number of particles
moving in Euclidean space) would not lead to results which could not also have been
obtained in a more elementary way by conventional Hilbert space (or other) tech-
niques. However, the moment one studies the sort of systems considered in this
paper, rather than the special case mentioned above, the distinct features of the
C*-algebra approach, and the way it is an extension of the usual Hilbert space
formalism, emerge.

One of the main advantages of studying the simple systems considered here lies in
the fact that they lead to C*-algebras which are far more tractable than the ones
considered in field theory and quantum statistical mechanics. Namely, C*-algebras
come in two sorts: they can be either “extremely well behaved” (=type I = post-
liminary = GCR [8, 2, 31]; in the context of the present paper, this means in particular
that their representation theory is well under control), or “totally misbehaved (anti-
liminary)” [31]%. Now the C*-algebras we are going to use to quantize a particle
moving on a locally compact homogeneous space turn out, under mild extra assump-
tions, to be of the former type (cf. 3.1), whereas the ones employed in infinite systems
(at least those of the type mentioned) invariably belong to the latter sort.

The sort of C*-algebras employed in algebraic quantum field theory or quantum
statistical mechanics admit a tremendous number of unclassifiable irreducible repre-
sentations, most of which presumably have no physical interpretation whatsoever.
Indeed, much of the effort in algebraic field theory goes into the procedure of selecting
“admissible” states (or, equivalently, representations) giving rise to physically mean-
ingful structures. Thus it would be meaningless to call any equivalence class of

* Actually, the totally misbehaved C*-algebras are in a certain sense better behaved than the well-behaved
ones we employ, since the ones used in field theory, etc. which belong to the former category are simple,
hence admit faithful irreducible representations, whereas the latter usually are not, as exemplified in Chap.
3 below.
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(irreducible) representations a superselection sector, so that in the context of quantum
field theory this notion usually refers to a very special class of representations, namely
the ones which in some well-defined sense are close to a vacuum representation.

Instead, the physical systems we are presently dealing with are so elementary that
it should be possible to associate a well-behaved (type I) C*-algebra </ to the con-
figuration space Q, so that, in particular, all (irreducible) representations of &/ are
physically meaningful, and correspond to admissable superselection sectors, or ad-
missable “inequivalent quantizations”, which are the same.

Quantization by systems of imprimitivity ( Mackey)

Let us introduce some of the relevant concepts by discussing a very elementary
example, which also provides a simple-minded motivation for concentrating on ab-
stract algebraic relations between operators, rather than on their concrete represen-
tations, at least in the initial stage of the quantization process.

Consider a particle moving on the real line R. According to canonical quantization,
this system is quantized by the following postulates:

1. the Hilbert space of states of the system is # = L*(R);

2. the position and momentum variables are represented by (unbounded) operators

q and p satisfying the canonical commutation relations (CCR) [¢, p] = i.
The Stone-von Neumann uniqueness theorem is then usually invoked to demonstrate
that the CCR are necessarily represented on J by g = g (multiplication operator) and
p = —id/dq.

Now item 1 should be considered in the light of the fact that there is only one
infinite-dimensional separable Hilbert space. Hence 1 is a statement about a con-
venient concrete realization of this Hilbert space, which in a sense corresponds to a
“choice of co-ordinates”, and which can at best be a matter of convenience. Therefore,
all essential, “co-ordinate free” information must reside in the second item.

However, the fact that the operators involved are unbounded makes it difficult to
directly formulate the essential contents of the CCR in a representation-independent
way. It is therefore convenient, and involves no loss of information whatsoever, to
reformulate the CCR in terms of bounded operators [27, 341°. Firstly, note that the
multiplication operator q is completely characterized by its spectral projections, which
also characterize all bounded multiplication operators f, which act on # by ( fi¥)(q) =
f(@¥(q), where f € Cy(R) (cf. 1.4.4 below for notation). Secondly, the additive group
G = R is represented on # by unitaries = such that (n(x)¥/)(g) = (g — x), and this
representation may equivalently be characterized by the operator relation (which is
essentially a system of imprimitivity)

(xX)fa(x)* = o [f], (1.1)
where the automorphism «, acts on f € Cy(R) by

b The reformulation of the CCR in terms of Weyl operators [36, 6] differs significantly from the one sketched
here (e.g. it leads to an inequivalent C*-algebra), although it serves the same goal. The Weyl-Segal formula-
tion of the CCR appears to be possible only if the underlying phase space is linear, as in the present example.
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(in which x™'q = q — x) in the sense of multiplication operators. However, one may
consider C,(R) as an abstract algebra of functions in its own right (with pointwise
multiplication), and G = R as an abstract group acting on Cy(R) via the «,, so that
(1.1) and (1.2) actually no longer contain any reference to the realization s = L*(R)
of the Hilbert space on which the operators had originally been defined. In a word,
these operator relations are the desired abstract reformulation of the CCR. Their
physical content resides, of course, in the identification of elements of the abstract
function algebra C,(Q) with functions of the actual physical position variable g de-
scribing the localization of the particle; the physical interpretation of the operators m(x)
(or rather their generators, in case that G is a Lie group) as momentum operators then
automatically follows, in view of the fact that they generate translations of the position
variable. Thus, according to the above quantization method, which is due to Mackey
[27] (also cf. [39] for an exhaustive review), all one has to do is find the (irreducible)
representations of the system of imprimitivity given above, and it is easily shown
that, up to unitary equivalence, there is only one such irreducible representation
27, 39, 4, 15].

A powerful feature of this approach is that it can trivially be generalized to deal with
particles moving on arbitrary (separable locally compact) homogeneous spaces [27,
39, 11]. For let a group G act transitively on the configuration space @ (so that, in
self-evident notation, x € G sends g € Q to xq € Q). The position variable is then fully
described by the algebra C,(Q) (generalizing C,(R) above), and the action of G on Q
is contained in the same formulae (1.1), (1.2); in a word, the particle is quantized by
the above system of imprimitivity. Finding the possible “quantizations” of the system
is then equivalent to classifying the irreducible representations of this system of
imprimitivity, which is a problem admitting a complete and straightforward solution
[27, 39, 4, 157 (also cf. Chap. 2 below).

Before proceeding, it should be remarked that the representation Q = G/H is highly
non-unique, so that the choice of G should be restricted by demanding that it respects
certain additional structures, e.g., a metric. Even so, one may form arbitrary nontrivial
extensions E of G by K (G = E/K), and let E act on Q via the canonical epimorphism
p: E — G. Such extensions can be classified by cohomological methods [35], and, as
will rapidly become clear, inequivalent extensions will lead to different quantizations
in the present method. (This is true for trivial extensions of G as well, but these just
correspond to the incorporation of internal degrees of freedom.) In ordinary quantum
mechanics only central extensions are taken into account, whereas the proposed
method is more general®, so that one is faced with an embarras du choix which may be
a blessing or a curse. In any case, it will turn out that topological quantum effects are
caused by a non-minimal choice of the group G.

¢ Note in this connection that all projective representations of a given group G, can be obtained from the
unitary representations of a single group extension G, (the splitting group of G, [7]). If we choose G = G,,
then the confines of scalar quantum mechanics in the context of the quantization method used in the present
paper require that we restrict ourselves to those states on the C*-algebra C*(G, Q) which give rise to a
representation of G for which the kernel of p is mapped into multiples of the unit operator, cf. 2.2 and 2.3.



50 N. P. LANDSMAN

C*-algebraization

Itis just a tiny step to embed the above procedure in the general C*-algebraic setting
of quantum mechanics, that is, to “code” the information carried by the generalized
CCR (1.1), (1.2) into a given C*-algebra. Before attempting to do so, we would like to
make a number of general comments concerning the quantization procedure. The
above example has been included to motivate the reader in accepting that the act of
quantizing a given physical system consists of the following three steps:

1. associating an operator algebra o/ with the system (in the above case, some

algebra generated by the system of imprimitivity);

2. giving a rule leading to the interpretation of the self-adjoint elements of o/ as
observables;

3. finding the unitarily inequivalent (irreducible) representations of .o/ by an algebra
of operators on a Hilbert space, thus entering the conventional description of
quantum mechanics.

The basic postulate from which this paper starts is that, for the present class of
systems, the so-called transformation group C*-algebra & = C*(G, Q) (to be defined
in 2.2 below) is the correct choice [28,26]. Our reason for this choice is that, as will
be explained in the sequel, together with an appropriate implementation of item 2 in
the quantization procedure (identifying the observables), this algebra actually does
encode the correct system of imprimitivity describing the quantum particle. Now it
would be nice if this algebra in some sense would generate its own physical interpreta-
tion, i.e., if it would uniquely characterize Q as well as the group action of G, and its
associated set of observables, thus minimizing the role of step 2 above. However, while
</ is now given explicitly, it is still highly “uninformative” as to the nature of the
quantized configuration space it is supposed to describe: there is by no means a
one-to-one correspondence between the abstract C*-algebra C*(G, Q) and the pair G,
Q; as we shall see later, C*(G,, Q, ) is isomorphic to C*(G,,Q,) if H, is homeomorphic
to H, and L*(Q,) is isomorphic to L%(Q,). Hence step 2 is indispensable. We will see
in 2.2 and 2.3 below, that the algebra C*(G, G) contains C,(Q) in an improper way,
and the latter may be extracted out of the former in any representation. However, the
same goes for any other Cy(Q’). What rule 2 in the present case allows us to do is
extract the correct C,(Q), and identify its abstract elements f, g, ... with functions of
the physical position variable g. The other Cy(Q’)’s are still imporperly embedded in
2/, but their elements simply are not to be associated with any position variable. In
similar vein, all relevant information on the group G may be extracted from ., and if
G is a Lie group then rule 2 says its generators are to be identified with physical
momentum observables.

Although the momentum operators (apart from being unbounded, so that they are
not properly contained in .#) do not admit any local structure, the position observables
do, and this allows some analogy with algebraic quantum field theory to be drawn
here. If E is a compact subset of Q then C(E) is a C*-algebra which is properly
embedded in C,(Q), and improperly contained in /. Thus we have a local structure
E — C(E) = Co(Q), and Cy(Q) is actually the C*-inductive limit of all C(E)’s embedded
in it. The difference with the situation in algebraic field theory [22, 24] (where one puts
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all physical information in the “net* ¢ - o/(0) - &/, which assigns an algebra of
localized observables to a region @ in space-time) is that there the local structure refers
to all observables, not just to the position variable; furthermore, the meaning of the
notion of locality is different in the two cases: in the relativistic context of algebraic
quantum field theory this refers to the causal structure of Minkowski space-time,
whereas in the present setting it just has its naive, spacelike meaning. Indeed, the
clements of the algebras C(E) are not local operators in the sense of [22], cf. [23].

As to step 3 of the quantization procedure, the problem of finding the inequivalent
representations of the systems is actually at the heart of the whole process of quantiza-
tion. We suggest that inequivalent irreducible representations of a given C*-algebra
describing a physical system are to be identified with its “inequivalent quantizations”,
and we adopt the terminology that these are the superselection sectors of the theory;
in case that the existence of these superselection sectors is a consequence of the
non-Euclidean topology of the configuration space, as in most of the examples studied
here, we will call them topological superselection sectors?. The above-mentioned prob-
lem, then, is a purely mathematical one, which can be solved completely for the class
of systems considered in this paper (cf. Chap. 2).

1.3. Plan of the paper

Having introduced some notation in 1.4 below, we take off in Chap. 2 by describing
some relevant mathematics, namely those aspects of the theory of crossed products
and transformation group C*-algebras that we are going to employ. We need only a
very small class of the latter objects (the transitive ones), whose complete representa-
tion theory is derived in 2.2. Three convenient realizations of their irreducible repre-
sentations are given in 2.3, and we find that the idea of a Hilbert space of sections
enters very naturally at this stage; here the differential geometry of fibre bundles enters
the stage in an otherwise purely functional-analytic setting. Chap. 2 is little more than
a collection of known facts, amended by a sequence of fairly trivial derivations of some
results following form these.

The fact that Mackey’s approach to the quantization of particles on homogeneous
spaces can be reformulated in terms of C*-algebras does not, in itself, add anything to
the practical aspects of the quantization problem. The C*-algebraic description really
comes to its own where the description of time-evolution is concerned. The abstract
algebraic formulation of the time evolution of a quantum system in terms of a
one-parameter automorphism group on its C*-algebra [25, 37, 5] is a very powerful
generalization of the conventional Hamiltonian description, and its use in the present
context lies at the basis of understanding the appearance of what are usually called
“topological” terms in the Hamiltonian, and their connection with the quantization
procedure.

The ultimate goal of Chap. 3 is to describe time evolutions of particles moving
on homogeneous spaces by constructing one-parameter automorphism groups (G-

4 Topological superselection sectors have previously been identified in the context of (two-dimensional)
quantum field theory [38, 17], also cf. [16].
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invariant or not) on transitive transformation group C*-algebras. To do so, we need
a detailed structural analysis of these algebras, which is given in 3.2. The precise
conditions under which our approach works are stated and motivated in 3.1. Note
that an essential part of the analysis in this chapter, and thereby the possibility of
defining a time-evolution in the way we do, uitimately relies on a theorem of Williams
[42] concerning the structure of a large class of transformation group C*-algebras,
which includes the transitive ones relevant to this paper.

The connection between the techniques proposed here, and other quantization
methods is a delicate and involved issue, which will be taken up in a future paper. Thus
the lack of references in this paper to other quantization techniques is not to be
interpreted in any negative sense.

1.4. Definitions and notation

The following conventions will be used throughout this paper and its sequel, and
any potentially obscure or ambiguous notation used in the main text without explana-
tion is given below.

1. G is a locally compact group, whose elements are denoted by x or y. We assume
G to be unimodular, type I (postliminary), and amenable (cf. 3.1), and its Haar measure
is written as dx. The integral { dx stands for {dx (the same holds with x replaced by
). The Hilbert space L?(G) is defined with respect to the Haar measure. The dual of
G is denoted by G; this is the space of equivalence classes of irreducible unitary
representations of G (equipped with the hull-kernel topology [14]).

2. Hisaclosed unimodular subgroup of G with generic element h, and Haar measure
dh (etc.); once again, | dh stands for [y dh, and L*(H) is constructed on the basis of the
Haar measure on H. Elements of its dual H are generically called y, and their dimension
is d,. The Plancherel measure on H is denoted by dv(y). If H is compact, we use the
symbols K, k, K, and « instead of H, h, H, and 1, respectively.

3. Elements of the locally compact Hausdorff configuration space Q are just called
q or q'. G acts on Q in such a way that x sends ¢ to xg. The action is assumed to be
transitive, so that we have Q = G/H, where H is the little group (stability group) of an
arbitrarily chosen point g, € Q. Hence yq, may be identified with the coset yH = ¥;
thus xy = xy. Since we will assume both G and H to be unimodular, Q carries a natural
G-invariant measure called dgq. The Hilbert space L2(Q) is obviously constructed in
terms of this measure.

4. For any locally compact Hausdorff space X, Co(X) stands for the space of
continuous complex-valued functions on X which vanish at infinity (that is, the set
{x € X :{f(x)| > &} is compact for any ¢ > 0 and f € C,(X)). This space can be normed
by setting | f1| = sup,. x| f(x)}, and is complete in this norm; it is even a commutative
C*-algebra under pointwise multiplication of functions, and with an involution *
sending f to its complex conjugate {8, 31, 51°. The space C(X) of continuous functions

¢ And, conversely, all commutative C*-algebras arise in this way. The fact that the underlying space X is
necessarily locally compact follows inescapably from the Banach-Alaoglu theorem of functional analysis,
and is the major barrier preventing an extension of the present quantization method to field theories.
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on X with compact support is uniformly (i.e., in the above norm) dense in Cy(X).
Functions in Cy(Q) or Cy(G) will be denoted by f or g, whereas upper-case letters F,
G correspond to elements of C.(G x Q) (confusion with the group G is impossible). For
reasons explained in Chap. 2, elements of the transformation group C*-algebra & =
C*(G, Q) are called F or G as well. More generally, C*-algebras are denoted by
calligraphic letters o/, ¥ and their elements are written as upper-case roman letters,
unless &7 is commutative, in which case we also use lower-case letters f, g as above.
The dual of o/ (etc.) is the space of equivalence classes of its irreducible representations
(carrying the hull-kernel topology), and is called .

5. *-Automorphisms of a C*-algebra .o/ are denoted by «; these are linear surjective
and injective maps of o into itself which respect the *-algebraic structure, i.c. a[AB]} =
a[AJa[B] and a[A*] = (x[4])*. It follows [5, 2.3.4] that « is norm-preserving. If «
depends on x € G in such a way that a, o a, = «,, so that the a,’s form a representation
of G on .« (regarded as a Banach space), then G is said to be an automorphism group
of o (and the triple («/, G, @) is called a C*-dynamical system) [31, 5]. Throughout this
paper, this representation of G will be required to be strongly continuous, that is, the
maps x — a,[A] are continuous for all 4 € /. The C*-dynamical systems of interest
for us will be those in which & = C,(Q), @ = G/H, and a, acts on &/ in the way
described by (1.2). These systems will simply be referred to as (G, Q).

6. A concrete representation of any algebraic object will be denoted by the symbol
n, usually with some index attached to it. For example, an irreducible representation
of H corresponding to an element y € H is called 7, and the same symbol can be used
to denote a representation of a group algebra of H, such as L'(H) or C*(H). The
d,-dimensional carrier space of =, is called 5. The representation of G induced by
the representation n, of H is called n% and its carrier space is #* As we shall see,
irreducible representations of C*(G, Q) uniquely correspond to elements y € H, and,
more particularly, to induced representations n* of G; for this reason the symbol n*
will stand for an irreducible representation of C*(G, Q), too.

7. The unique abstract separable infinite-dimensional Hilbert space will be called
H#, and the C*-algebra of all compact operators on this space is denoted by H ().
The C*-algebra of all bounded operators on # is denoted by #(#). Concretely given
Hilbert spaces will generally be called 5 for some index i. The carrier space J#, is
finite-dimensional, and M, = #(s#,). Finally, we will simply say that two Hilbert
spaces are isomorphic if they are isometrically isomorphic (unitarily equivalent).

Finally, a non-integer appearing in a reference is a reference to a paragraph or
theorem in the work preceding that non-integer (e.g. [31, 7.7.1] refers to a result stated
in Sec. 7.7.1 of [31]).

2. Crossed Products and Transformation Group C*-Algebras

2.1. Crossed products

Crossed products, of which the transformation group C*-algebras on which the
mathematics in this' paper is based are special cases, were introduced in [10]. We will
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give some more information on their structure than is actually required to understand
the rest of this paper, because we believe that the approach due to Fell [15, Chap.
VIII] sketched below invites useful generalizations of the quantization procedure
advertised here. An alternative discussion may be found in [31]. These references also
provide an exhaustive bibliography on the subject.

We start by defining a so-called semidirect product bundle % (which in itself is a
special case of the more general concept of a C*-algebraic bundle [14, 15]) in terms
of a C*-dynamical system (%, G,«) (which later on we take to be (G, Q)). & is a space
whose elements are pairs (4,x), A € €, x € G. In order to construct the crossed product
algebra later on, it is necessary to define a multiplication in & according to the
semi-direct product rule

A, x)<{B,y> = {Aa,[B], xy). 2.1

Also, we will need an involution and a norm on &, given by
A, %)% = a1 [A*], x71); 22
<A, x>0, = 141, (2.3)

respectively. The bundle structure is defined by the projection p: & — G, given by
p{A, x> = x. The fibers are isomorphic to %, and the base space is just G; & is a trivial
fibre bundle (that is, it has the topology of the product G x %). Note that & is not a
Banach algebra: addition is only defined for elements in the same fiber.

Let C(%) be the space of continuous cross-sections (i.e. functions F: G - & such
that p o F is the identity map) of & with compact support. (Since the bundle topology
is trivial, this space may be identified with the space C,(G, %) of compactly supported
continuous functions from G to %, by identifying F and F in the relation F(x) = {F, x).)
This space can be normed by putting | F|f; = j'dx | F(x}|l, and the completion of C,(%)
in this norm may be made into a Banach algebra L'(%) upon defining a product and
an involution by (assuming G to be unimodular)

(FG)x) = de Fxy™)G(y); 2.4

(F*)(x) = (F(x"1))*. (2.5)

Thus (2.4)is an operator-valued convolution product, which may be defined as it stands
(whereas (2.5) is defined by extension of the continuous involution in C(¥)).

L'(&) is not a C*-algebra because the axiom |AA4*||, = ||4]? is not satisfied, but
it can easily be made into one by the canonical procedure [8, 2.7]: define |F|| =
sup, |z (F)||, where the norm in the right-hand side is the ordinary norm of the bounded
operator n(F) on the Hilbert space carrying the representation n(L'(&)), and the
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supremum is taken over all representations (or, equivalently, over all irreducible
representations) of L!(%). Completing L(%) in the norm thus defined yields a C*-
algebra, which we denote by C*(%). This, then is the crossed product of € and G with
respect to the automorphism o, and to stress the role of a one also uses the notation
% %, G instead of C*(¥) [31]. Note that, because the supremum is taken in defining
the norm, this is the smallest possible C*-completion of L'(%). Also observe that (as
always) |- [|l; = || - |, so that C(¥) is uniformly dense in C*(%).

The crucial property of C*(&) (or L'(#)) is that its nondegenerate’ representations
7 are in one-to-one correspondence with the nondegenerate representations of & itself,
which in turn are in one-to-one correspondence with the so-called covariant represen-
tations of the C*-dynamical system (%, G, «) [10], [31, 7.6], [15, VIII.13]. A represen-
tation 7 of € (occurring in (%, G, «)) is said to be covariant with respect to G if there is
a unitary representation (also called n) of G on the same carrier space on which n(%)
is defined, such that n(G) implements a, in other words, if

r(x)n(A)n(x)* = n(a.[A]). (2.6)

The explicit correspondence between the representations (all called #) of &, (%, G, @),
and C*(&) is given by the relations

({4, %)) = n(A)n(x);

n(F) = J dx 7(F(x))n(x), Q2.7

where F is related to F in the way explained prior to (2.4). More constructively, 7(%)
and n(G) may be extracted from n(C*()) by exploiting the existence of an approxi-
mate unit in C*(¥) [31, 7.6.4], [15, VIIL.11.8 & 13.8].

2.2, Transformation group C*-algebras

The simplest nontrivial case of the above construction arises by choosing ¥ = C
(the 1 x 1 matrix algebra over the complex numbers), with G acting trivially on €. The
crossed product corresponding to this C*-dynamical system is just the group C*-
algebra C*(G), which is equipped with the conventional convolution product [31], and
the results quoted in the last section just boil down to the well-known fact that unitary
representations of G are in one-to-one correspondence with nondegenerate represen-
tations of its group algebra (e.g., [31]).

A more involved special case of the general crossed product construction, which is
of great relevance for us, follows by taking the dynamical system (%, G, a) to be equal

A representation is nondegenerate if no nonzero subspace of the carrier space # is annihilated by all
representatives. In particular, irreducible representations are nondegenerate.
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to (G, Q) (cf. 1.4.5); the C*-algebra C*(¥) is then denoted by C*(G, Q), and is called
the transformation group C*-algebra® corresponding to the pair G, Q. Thus we have
% = Co(Q), and G acting on this algebra as an automorphism group as in (1.2).

By the general theory, nondegenerate representations n of C*(G, Q) correspond to
covariant representations 7 of the system (G, Q); in other words, given n(C*(G, Q)) one
can extract representations 7{Co(Q)) and 7(G), the latter being unitary, in such a way
that (2.6), which in this case boils down to (1.1) (with f replaced by n(f), f € Co(Q)) is
satisfied. If n(C*(G, Q)) is faithful, this allows us to extract the algebras Cy(Q) and C*(G)
from their crossed product. However, these algebras are not properly contained in
C*(G, Q), unless Q is compact and G is discrete; in the general case, we will still say
that they are embedded in C*(G, Q). Conversely, covariant representations of (G, Q)
give rise to nondegenerate representations of C*(G, Q) by (2.7).

The observation in the previous section that C.(%) is dense in C*(&) allows us to
be more concrete in the present case: here C, (G, Q) consists of the compactly supported
continuous functions from G to Cy(Q), or, equivalently, of the complex-valued func-
tions on G x Q which are C, on G and C, on Q. The norm of such a function F
(identified with F defined previously) is majorized by its norm in L(G, Q) given by
[|Flly = | dxsupg|F(x,q)i, which, in combination with the fact that C.(Q) is uniformly
dense in C,y(Q) leads to the conclusion that C.(G x Q) is dense in C*(G, Q). Thus
identifying C.(G x Q) with a dense subalgebra of C*(G, Q) allows us to state the
contents of the rules (2.4), (2.5) in very simple terms for elements of this subalgebra, viz.

(FG)(x,9) = de F(xy™',9)G(y,yx'q); (2.8)

(F*)(x,q9) = F(x"',x"g). 2.9)

Furthermore, the assumption that G and Q are separable now allows us to conclude
that C*(G, Q) is separable.

It is a simple matter to derive all irreducible representations of C*(G, Q). The general
theory in [15, VIIL.18] is evidently applicable here, but the fact that G acts transitively
on Q allows us to take a shortcut here [26]. Namely, (2.6) (or (1.1)) is a transitive system
of imprimitivity for the representation 7 of G, and Mackey’s imprimitivity theorem
[27, 39, 4, 15]* allows us to conclude that such systems of imprimitivity, hence the
nondegenerate representations n of C*(G, Q), are in one-to-one correspondence with
the unitary representations of the little group H. In particular, the unitary
representation n(G) associated to n{C*(G,Q)) is just the one induced by the given
representation of H. Specializing to the irreducible representations of C*(G,Q), it

¢ These were introduced by Glimm [19] in the context of induced group representations. To define them,
it is not necessary to assume that the action of G on Q is transitive, as we do.

® Mackey’s derivation of this theorem is based on the assumption that G is separable and 2nd countable,
but these conditions were later proven to be unnecessary, cf. [15] and refs. therein. Nevertheless, we will
need to impose them, for different reasons, at a later stage of the analysis {cf. Chap. 3). Also, note that
Mackey, etc. use the term “system of imprimitivity” in a slightly different, yet completely equivalent sense.
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follows that
[C*(G,G/H)] =H. (2.10)

This justifies the use of the notation n* for the irreducible representations of C*(G, Q),
as well as for the representations of G induced by y € H, cf. 1.4.6. As we shall see later
(Sec. 3.2), for nontrivial H all irreducible representations are unfaithful (they have large
kernels), but we will first proceed by studying their explicit forms.

2.3. Irreducible representations of C*(G,G[H)

We have seen that certain covariant representations of the C*-dynamical system
(G, Q) give rise to irreducible representations of the transformation group C*-algebra
C*(G, Q). These representations are parametrized by y € H, and by the imprimitivity
theorem we know that that the corresponding unitary representation n* of G is the one
induced by a particular representative n, of y. The associated representation n*(Co(Q))
is also given by the imprimitivity theorem, as it is determined by the spectral projec-
tions of each n*(f), f € Co(Q) [27]. Given these data, the corresponding representation
n*(C*(G, Q)) follows by the second member of (2.7). We will now give three useful
(unitarily equivalent) realizations of n* (or #%*), which stand out for their analytic,
physical, and differential-geometric convenience, respectively. The Hilbert spaces used
in the first two realizations are well-known in the context of group representation
theory.

Realization 1

Let- us first consider #* to be realized as #f, which is the space of equivalence
classes (under the inner product defined in 3 below) of functions’ y, : G — ¥, satisfying
(cf. e.g. [18, V1.2], [4, 16.1]):

1. ((x),¥) is a measurable function of x for all y € J#,;

2. Y,(xh) = n,(W)*y, (x) for all h € H a.e. with respect to the Haar measure on G;

3. (), = fodX(Y,(x),¥,(x)), < oo, where, as explained in 1.4.3, d¥ is the in-

variant measure on Q = G/H, and (-, -), is the inner product in 5.
The realization n¥ of n* of G and C,(Q) is then given by

(MY (X)) = ¥y (y ' x);
(@IS W) (x)= f(xgo)¥:(x). (2.11)

Thus F € C.(G x Q) is represented by

(F(F)1)(q) = de F(xy™, xqo)¥1 (). (2.12)

! Here and in the following we will omit the appropriate upper index y on the §’s.
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Realization 2

The constraint in 2 above obscures the physical interpretation of the state vectors
¥,. Therefore, we now give another realization on a Hilbert space »#% consisting of
equivalence classes of functions ¥, : Q — 5, which satisfy the analogues of 1 and 3
above, but are unconstrained otherwise. To specify 7§ we need to choose a measurable
section’ s: Q — G (that is, s(g)go = g), in terms of which

(@52 = 7, (v(y, @)Wy 9);
(73 (@) = fl@y.(a), (2.13)

where y(y, q) = (s(g))~' ys(y'q) is the Wigner cocycle. A formula analogous to (2.12)
is then easily derived, and will be omitted here. We see, that elements of #% are
essentially (vector-valued) wave-functions in the usual sense.

Different choices of the section s correspond, of course, to unitarily equivalent
representations. Namely, let sections s, and s, be almost everywhere related by a “gauge
transformation” sz(q) = 5.(9)9.5(q), With g,4(q) € H. To emphasize that #7, n§ and ¥,
depend on the choice of s, we will affix a label o or f to these symbols. Then the unitary
transformation T, : %, — H#¥ defined by

(Tp92)(@ = 7,(95.(@)V3(9) (2.14)

intertwines 73, and ., (to be precise, one needs to define the above transformation
on compactly supported continuous wave-functions, and extend it to the whole Hilbert
space by continuity).

The intertwiner of 7 and =% is easily established as well (we now take s = s, fixed):
it is the unitary map T, : #{ — #% defined (on compactly supported continuous
functions, etc.) by

(T12¥1)(@) = ¥1(s(@)), (2.15)

its inverse being given by
(THY2) (%) = m,(x 7 s(xqo))¥2(xq0)- (2.16)

Let now G and H be Lie groups. The induced representations nf of G constructed
above then have a geometric meaning [40] in terms of fiber bundles. Namely, G is the
total space of a principal fiber bundle with base manifold Q = G/H and group H, the
projection p : G — Q being the canonical one (cf. 1.4.3) px = x = xH. One then forms
the vector bundle E, associated to G; its fibers are isomorphic to #,, and its
points are equivalence classes [x,v](v € ) under the equivalence relation (x,v) =
(xy~',m,(y)v). Then G acts on E, by y[x,v] = [yx,v], and therefore it also acts on
I'(E,) (the space of C-cross-sections of E,) by means of

i This is equivalent to choosing a measurable Mackey decomposition of G with respect to H,asin[4, 16.1].
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(W) (@) = wW(y'q), 2.17)

where i € E, . If we realize the cross-section y in terms of Y, given by ¥/(q) = [x,¥,(x)],
where x satisfies px = g, then consistency with the definition of the equivalence class
[x,v] requires that , : G — #, satisfies ¥, (xh) = 7, (h)*y,(x) for all h € H. Defining
the obvious inner product in I'(E,) and completing it into a Hilbert space
then evidently reproduces the construction leading to the representation n¥ given
previously.

Realization 3

We would now like to incorporate the passage of n{ to %, or, in other words, the
passage to wave-functions having a local interpretation, into the differential-geometric
setting of induced representations of Lie groups reviewed above. However, this goal
seems to be frustrated by the fact that the section s used in constructing #¥ cannot,
in general, be chosen so as to be continuous (as we mentioned, it only needs to be
measurable in the general Hilbert space context). The obvious way out is to construct
a “Hilbert space of sections”. This leads to a third realization of n*, which we call ©%.

We cover 0 with open sets {U,},., for some index set I, so that the U, are
homeomorphic to a Euclidean space, and do this in such a way that we can locally
define smooth sections s,: U, = G. For g € U,; = U, n Uy the sections s, and s, are
then related by the gauge transformation given previously, where now g,,: Q — H is
required to be smooth, and to be such that it satisfies the consistency (cocycle)
condition g,4(9)94,(q) = go,(@) On g€ U, n Uy U,

Elements of #% are sectional wave-functions y;, which are concretely represented
by their local trivializations y§ : U, —» #, for all « € I. In overlap points ge U,n U
different trivializations of the single section i, are required to be related a.e. by the
analogue of (2.14), viz. Y(q) = n,(94.(9))¥35(q). Furthermore, the obvious translations
of the conditions 1 and 3 for #/ should be satisfied; as far as the inner product in ¥
is concerned, one has

W3, 03)s = ZI dq 1. W3, 93(@), < o0, (2.18)

U,

in terms of a partition of unity* y.
The representation 7§ on #%, then, is defined as follows:

(@EOW3 ) (@) = 1,((s2() " yss(y WA (Y 9);
(m3(N:) @) = f@¥3(g). (2.19)

Here it has been supposed that g € U, and y™'q € Uy; which particular Uj is selected

kX This is a collection of functions y,: @ — R such that the support of each y, is in U,, and Y., x(@) =1
for all q. The value of the inner product is not affected by the precise choice of x in view of the compatibility
between different trivializations of y, in overlap regions, and the unitarity of n,.
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in overlap regions is immaterial due to the compatibility conditions on the trivializa-
tions of y5.

It is an easy matter to intertwine n£ and the previously constructed realizations: the
unitary equivalence with n is established by the map T,: #f — #¥, defined in
complete analogy with (2.15) by

(Ty391)(9) = ¥1(5.(9)), (2.20)
with the inverse
(T ¥3)(x) = (X" 5,(xq0))¥3(xq0), (2.21)

where it is assumed that q € U, (once again, this particular choice is immaterial). The
unitary equivalence with 7§ is inherent in (2.14): let s = s, be the fixed (discontinuous,
in general) section employed in the construction of 5. Then T, : #¥ — ¥ defined
by

(Tsyv) (@ = nx(gav(q))lpZ(q), (2.22)

in combination with its self-evident inverse, intertwines n§ and n%. Note that g,, need
not be smooth, if s is not.

Gdrding domain

When both modes of description are available, it may, in general, be a matter of
taste whether one prefers a functional-analytic or a differential-geometric setting; in
the present case, however, the third (fibre bundle) realization of n* turns out to be
particularly useful in the problem of constructing the Garding domain [29, 4] for =*(G).
Doing so is essential for the analysis of those unbounded operators on the represen-
tation space J#* which are representatives of elements of the universal enveloping
algebra %(%) of (the Lie algebra of) G; as we shall see in 3.3 below, the Hamiltonians
implementing the time-evolution in (irreducible) representations of C*(G, Q) are of this
kind.

The Garding domain Dy for a representation n(G) of a Lie group is by definition
the linear subspace of the carrier space # of n spanned by the vectors n(f)y =
{dx f(x)n(x)y, where f and ¥ run through C*(G) and #, respectively. Dg is dense in
#, and its importance derives from the fact [29, 4] that representatives of symmetric
elements of #(%) are essentially self-adjoint on Dg.

In the present case, simple manipulations show that on # one has

(T3 Ws)(9) = J dx f(s,(@)x)m (xs5(x " go))¥P(x ' qo), (2.23)

where f and ¥, are as indicated above, and g € U,, x "' g, € Us. The g-dependence of
the right-hand side is particularly straightforward: it allows one to conclude that
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sections in Dy = #y are represented by local trivializations y§ which are C* on U, for
each a € I. If 3, is finite-dimensional (as in all our applications), so that the factor
7,(...) in (2.23) is innocent, then more detailed information on Dy is easily extracted,
cf. Chap. 4 below, and also the sequel to this paper. The corresponding Garding
domains on #¥ and #¥ may subsequently be found by performing the unitary
transformations T3% and T3%, respectively, on D; < H#¥.

3. The Structure of C*(G, O)

3.1. Conditions on G and Q

The only essential technical assumption made so far on the pair (G, @), with @ =
G/H, is that G is locally compact, H is closed, and Q is Hausdorff. This sufficed to
prove the key result (2.10) concerning the representation theory of the crossed product
C*(G, Q). Although most of the formulae in Chap. 2 also require the unimodularity of
G and H, this condition has not been essential, and just enhanced the clarity of the
expressions by saving some writing (cf. [31, 15] and [18, 4] for the incorporation of
the modular function in the context of crossed products and induced representations,
respectively).

Further progress can be made if we impose stronger conditions on G and H. Let us
note already at this stage that these are all going to be met in our examples (and, indeed,
in most realistic examples one can think of). Firstly, assume that H is a type I
(= postliminary = GCR [2, &, 18, 31, 14, 151) group. This condition means that any
factorial representation of H properly contains an irreducible representation (so that
it can be discretely reduced), and is met by all compact groups, all locally compact
abelian groups, all semisimple Lie groups, etc. By (2.10), this allows us to conclude that
the crossed product C*(G, Q) is itself postliminary, which is in agreement with, and a
special case of a considerably deeper result of Gootman [20].

What is more, the further assumption that H is amenable and CCR, and that the
pair (G, Q) is 2nd countable, implies, by a theorem of Williams [42]' that o/ = C*(G, Q)
is even a CCR algebra™. This means, by definition [2, 8, 31], that any irreducible
representation of &/ consists of X (#) for some # (which is allowed to be finite-
dimensional). A group H is said to be CCR if its group C*-algebra C*(H) is CCR. A
sufficient condition, which can easily be checked in practical cases, for a group H to
be CCR is [18, VIL5] that the following three demands are met: it is locally compact,
it has an Iwasawa decomposition, and the set of its finite-dimensional representations
separates points on H. Necessary and sufficient conditions of a more complicated sort
are given in [30]. In any case, practically all (finite-dimensional) groups encountered
in theoretical physics are CCR.

! For H compact this theorem is easily checked by looking at the explicit realizations of the irreducible
representations of C*(G, Q) constructed in the preceding section, from which it may be inferred that n*(F)
is Hilbert-Schmidt for F € C(G x Q). The general proof follows quite different lines, and is highly involved.

™ Here CCR means Completely Continuous Representation (theory); in older literature a compact operator
is called completely continuous. What physicists call a CCR algebra (for Canonical Commutation Relations)
is, in the infinite-dimensional case, not a CCR algebra in the above sense.
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The condition of amenability [32] on H is less straightforwardly explained (for a
brief summary, cf. the notes to Secs. 4.3.1, 4.3.2 in [5]); here we just mention that all
locally compact abelian and solvable groups, all compact groups, and ali factor groups
and semidirect products of these three classes are amenable. Noncompact semisimple
Lie groups, while type I, are not amenable. For us, one of the important consequences
of amenability is that all irreducible representations of H occur in the direct integral
decomposition of its left-regular representation (cf. 3.2 below). More generally, the fact
that C*(G, Q) is CCR will be decisive in our construction of time evolutions on this
algebra in Sec. 3.3.

Furthermore, the proofs of the first two Theorems below require G and H to be
separable” (so that C*(G, Q) is separable, and the carrier spaces of its (irreducible)
representations are separabile); this allows us, in particular, to carry out direct integral
decompositions whenever required. Moreover, we demand that G is amenable as well;
this 1s necessary for the regular representation of C*(G, Q) to be faithful [31, 7.7.5],
which we use in Theorem 1, and in the construction of time evolutions later on.
However, the whole construction also works for non-amenable groups G, provided
that we slightly modify our quantization prescription: instead of quantizing the con-
figuration space Q with its associated group action by means of the crossed product
C*(G, Q), we rather have to work with the so-called reduced crossed product [31, 7.7].
A large number of “inequivalent quantizations” of Q will still be covered by this
modified procedure.

We will maintain our assumption that G and H are unimodular: as to the former,
this remains just a matter of convenience, whereas the unimodularity of H will actually
be crucial in the harmonic analysis part of the reasoning in the next section. However,
this assumption is not essential for the quantization procedure in itself. Finally,
Theorem 2, which may be interesting, but which will not really be employed in the
sequel, requires the space H (equipped with the hull-kernel topology [8, 15]) to be
Hausdorff. We make this assumption because it is satisfied by all our examples; in
general, there exists a “folk-conjecture”, which has been proved in [3] for the locally
compact separable case, that a group dual H is Hausdorff if and only if H is type I,
and is an extension of an abelian group by a compact group. (The more general
question whether the dual of a transformation group C*-algebra is Hausdorff is
addressed in [43].)

3.2. Reduction of a regular representation

In this section we will exhibit a very simple faithful representation %, of C*(G, Q).
This is reducible, and its decomposition over irreducible representations will com-
pletely elucidate the structure of the transitive transformation group C*-algebras we
are interested in.

Consider the representations n,(G) and m;(Co(Q)) defined on the Hilbert space
H, = L*(G) by

® This is automatically true if G and Q are 2nd countable.
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(”L()’)‘/’L)(x) = '//L(y_lx);
(L (LX) = fxgo)rL(x), (3.1

respectively, or, equivalently, the corresponding representation of F € C(G x Q) given
by

(e (F)gr ) (x) = J.dy F(xy™, xqo)¥(¥)- (3.2)

A representation of C*(G, Q) then follows by passing to the uniform closure of the set
of operators on 2%, defined by (3.2). The restriction of n; to G is evidently the left-regular
representation. We have

Theorem 1. The representation n,(C*(G, Q)) is faithful if G is amenable.

We precede the proof of this theorem by an intermezzo on direct integrals, a machinery
which is heavily used below as well as in the next paper.

Direct integrals of Hilbert spaces and representations

Direct integrals are particular realizations of a Hilbert space. We will consider only
the simplest form of this construction, and our treatment will be very sketchy. For
more detail and rigour we refer to [29, 9].

Let A be a measure space with a Borel measure y, and let each 1 € A correspond to
a Hilbert space #'(1) with inner product ( , ),. By definition, elements of the direct
integral H = [® du(A) # (1) are measurable vector-valued functions v on A, such that
v(4) € #(4), and (v,v) = [, du(4)(v(4), v(4)), < oo; this also defines the inner product in
H.

This realization singles out two special classes of operators on #. Let a bounded
operator A act on v by (Av)(A) = a(4)v(A). If a is a (measurable) complex-valued
function on A then A is called diagonal, whereas A4 is said to be decomposable if
a(}) € #(#(%)). The connection between these classes, which lies at the basis of
reduction theory, is that the algebra of all diagonal operators is the commutant of the
algebra of all decomposable operators.

Let now .4 be a commutative von Neumann algebra® of bounded operators acting
on a Hilbert space 5#. The spectral theorem then states that there exists a unitary map
U: # — #,for some choice of A (identified with the spectrum of .#) and p, such that
U.# U* consists of diagonal operators on #,

Furthermore, let o/ be a C*-algebra with nondegenerate representation n on J#,
such that .# is in the commutant of n(/). Then Un(s/)U* is a C*-algebra of decom-
posable operators on #. Thus one may reduce a representation 7 of a C*-algebra .o/
by finding a commutative von Neumann algebra .# in the commutant of (<), and

° A von Neumann algebra is a concretely given C*-algebra which is closed in the weak operator topology;
equivalently, it is its own bi-commutant [9].
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diagonalizing it. Moreover, the decomposition is extremal (i.e., into irreducible sub-
representations) if and only if .# is maximal. One symbolically writes # ~ #, with
# defined as above, and 7 ~ {8 du()m,, where the subrepresentative 7,(4) coincides
with the operator a(1) defined above.

Proof of Theorem 1. Take the canonical faithful representation zn, of Co(Q) by
multiplication operators on #, = L(Q). This gives rise to a so-called regular repre-
sentation® 7,(C*(G, Q) on #, = L*(G, #,) ~ L*(G x Q) defined by

(m.(F)Y,)(x, ) = de Fxy™, xq),(y,9), (3.3)

which is equivalent to the pair

(Y)Y, (x, q) = ¥, (y " x, g);
(m (W) (X, 9) = f(xq)(x, q). (3.4

Now the von Neumann algebra L*(Q) acts on #, in the obvious way (as an algebra
of multiplication operators, leaving the argument x of , unaffected), and it is easily
seen to commute with 7,(C*(G,Q)). Thus we may follow the general strategy for
decomposing =, sketched above; note that the present decomposition is neither ex-
tremal nor central. This gives

® @
L%G x Q) :f dqg#(q); =, :J dqn,, (3.5

with #(q) = L*(G), and =, given by
(W) () = Y (y ™' x);
(T (W) (%) = f(xq)¥,(x). (3.6)

It is evident that #; = ¥, , n, = =, ; moreover, all representations =, are unitarily
equivalent to m; by the unitary intertwiner T, : #, — 5, defined by (T, y,)(x) =
Y,(x(s(g))™*) for an arbitrary measurable section s: Q — G. Hence the regular repre-
sentation (3.3), which for G amenable is faithful by a well-known theorem [31, 7.7.5],
is decomposed as a direct integral of identical copies of =, . It follows that 7; itself must
be faithful. O}

Apart from carrying =, , #, also carries the right-regular representation of G, defined
by (nx(»¥L)(x) = Y.(xy). Bounded operators on #; commuting with the von Neu-
mann algebra #(H) generated by ng(H) will be called ad(H)-invariant.

® [t is easy to check that the procedure given here is a special case of the general construction of a regular
representation of a crossed product [31, 7.7.1].
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Corollary 1. Let G be compact. Then C*(G,G/H) is isomorphic to the algebra
H (H)y of ad(H)-invariant compact operators on L*(G).

Proof. A Hilbert-Schmidt operator K on L*(G) defined by a kernel k(x,y) is
evidently ad(H)-invariant if k(xh, yh) = k(x,y) a.e. It then follows from (3.2) that
operators of the form =, (F), F e C(G x Q) are in K4 (#)y, and by passing to the
uniform closure we infer that 7;(C*(G, Q)) = A (#)y.

We now prove the converse. To do so, it suffices to show that any ad(H)-invariant
Hilbert-Schmidt operator K represented by a kernel k € C(G x G) is of the form
K = 7, (F) for some F € C (G x Q). The sufficiency of this condition follows from the
fact that the set of operators of the former type is uniformly dense in 2 (L3(G)), and
this in turn is implied by the observation that C(G x G) is L?-dense in L?(G x G),
combined with the inequality [33, VL6] | K|} < ||k|l,.. Suppose, then, that k(xh, yh) =
k(x, y). Define a function f on G x G by f(x,y) = k(x,y ! x). Then f(xh,y) = f(x, y), so
that f must have the form f(x, y) = F(xq,,y) for some F € C.(G x Q). It follows that
K = n,(F), where the function F is identified with the corresponding element of
C*(G,Q0). 1

This Corollary is a special case of a theorem of Evans [12], which was proved by
quite different means.

Decomposition of n,(C*(G, Q)

The representation 7, is reducible, because, as in the compact case discussed in the
Corollary, 7, (C*(G, Q)) commutes with .#(H). (An argument similar to the one used
in proving the Corollary may be employed to show that 7, (C*(G, Q)) = .#g(H), but
we will not need this fact.) We are going to decompose 7, by reducing ng(H) on 5,
that is, by diagonalizing an arbitrary maximal abelian subalgebra of .#x(H). It will
follow by inspection that the corresponding decomposition of 7, (C*(G, Q)) is extremal
(i.e., it is decomposed as a direct integral of irreducible representations), and it is unique
by the type I property of H.

The first step is to perform a unitary transformation Tp,:#; = L%(G) > #, =
L*(Q x H) ~ L*(Q) ® L*(H). Given a section s, this is defined by

(Toa¥1) (@, b) = ¥i(s(g)h), (3.7)
with inverse
(TEY)(x) = ‘/’4(x‘I0,(s(x‘Io))_1x)- (3.8)

This transformation is unitary with the obvious inner product on #,. With n, =
Tram, T it follows that

(raOWa)a ) = Yy 0. (2(3, 9)) ' h);
(ma(NWa)la, B) = fl@)Walg, h), (39
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where 7 is the Wigner cocycle (cf. (2.13)); the result follows by noting that
s(@)q0 = 4.

The next step consists in reducing the left-regular representation of H on the
L?(H)-factor in 3, by the (Fourier-) Plancherel transform [8, 18.8]. Thus define

£}
Hs = L dv()A();  AQ) = L*Q)® HS[#,], (3.10)

where HS[#] is the Hilbert space of Hilbert-Schmidt operators on # [8, A66] (with
inner product (4, B) = Tr AB*). Hence the inner product in Hy is

(s, ¥s)s = qu L dv() Tr[Ys(q, ¥slg 0*]- (3.11)

If H is abelian then 5, = C, whereas 5, is always finite-dimensional if H is compact;
in that case HS[#] is just M, (C) (the algebra of complex d,-dimensional matrices),
H is discrete, and the Plancherel measure assigns the measure d, to the point x € H.

In the general case, the Plancherel transform is effected by the unitary transforma-
tion T, s : #, — 5 defined by

(Tas¥a)(g, 1) = f dhm,(h)4(q, h), (3.12)

which is well-defined as it stands for , € L%(Q) ® (L'(H) n L*(H)), and is extended to
all of s#, by continuity. The inverse follows from (3.11) and (3.12) as

(T&Ys) (g, h) = L dv() Trlm, (h)*¥s(q, 0] (3.13)

The point of the unitary transformation T, ; = T, T,, : #, — 5, is that it decom-
poses mgx(H) on ¥, and thereby also decomposes 7, (C*(G,Q)). Indeed, with 75 =
T,.s7 Ti% it is easily inferred from the above formulae that

(msWW¥s) (@ 0) = m, (v DWs(y ' 4, %);
(rs(rs)a 1) = f(@¥s(g, x). (3.14)

To interpret this result, let us recalil [8, A66] the canonical isomorphism HS[#,] ~
X, ® H;, where ¥ is a representation conjugate to x. Thus regarding ¥s(q, 1) as a
vector in ¥, ® #%, (3.14) shows that only its components in J, transform. Inspecting
(2.13), the reader will then notice that

® ]
o, =j dv()dy A ms = j dv()d, 1k, (3.15)
a b4
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so that n5 is indeed a direct integral over irreducible representations of C*(G, Q), as
advertised before.

The structure of C*(G, Q)

Since n, is a faithful representation of C*(G, Q), and =5 above is unitarily equivalent
to it, the latter is faithful as well. Now *-isomorphisms of aigebras of decomposable
operators on Hilbert spaces represented as direct integrals do not distinguish between
different nonzero (possibly infinite) multiplicities, and they do not see the difference
between equivalent measures (defining the direct integral) either. Hence (3.15) allows
us to identify

@
C*(G,0) = J\* dyn*(C*(G, Q)), (3.16)

where dy is any measure on H which is supported on all of H (recall that we assumed
H to be amenable, so that all irreducible representations are weakly contained in the
regular representation), and the right-hand side is obviously defined on the Hilbert
space A = [®dy #* To completely define this direct integral, we need to specify a
fundamental family of vector fields; this is trivial in the present case, as each n* occurs
with multiplicity one, so that by [8, 8.6] the direct integral is a constant field (in the
sense of [9] or [8, A71]). In other words, the Hilbert space defined by the direct integral
consists of equivalence classes of all functions ¥ on H such that y(y) € #7%, and its
norm is dy-square-integrable.

Furthermore, under the assumptions stated in the previous section, we know [42]
that n%(C*(G, Q))is the algebra & () of compact operators on an infinite-dimensional
Hilbert space?, so that we may identify C*(G, Q) with a certain space of functions from
H to ' (#). 1t then follows that the kernel of the irreducible representation n* consists
of those functions which vanish on y. We can completely determine the nature of this
function space in case that H is Hausdorff. In that case, [8, 3.3.9] says that the function
¥ — | m*(A)| is continuous on H for each A € C*(G, Q), whereas [14, VIL6.7] implies
that the same function vanishes at infinity. Hence we have proved

Theorem 2. Let G and H be locally compact, amenable, separable, type I, and 2nd
countable, and let H also be CCR, unimodular, and such that His Hausdorff. Then
C*(G,G/H) = %o(ﬁ X H(HK)), the algebra of continuous cross-sections vanishing at
infinity of the trivial bundle with base space H and fibers A (H#).

Note that multiplication of two cross-sections is defined by the product of the operators
in their image, that is, pointwisely. Also note that the triviality of the bundle could
have been derived from [13, Th. 1.3]. The above theorem confirms a very general
theorem {137, [14, VIL.8.14] stating that any separable C*-algebra whose spectrum is
Hausdorfl is of the form %,(#) for some bundle # whose fibers are isomorphic to
H(H) (where # may vary from fiber to fiber, and may be finite-dimensional).

4 We exclude the case where @ consists of a finite humber of points.
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3.3. Dynamics

The aim of this section is to apply Theorem 1 to construct a reasonable family of
time-evolutions on the transitive transformation group C*-algebras describing the
physical systems under consideration. Before doing so, we give a brief review of some
standard facts on the C*-algebraic description of dynamics.

Algebraic time-evolution

In the abstract algebraic approach to quantum mechanics, time evolution is not a
priori described by a Hamiltonian on a fixed Hilbert space (which is not yet there), but
rather by a one-parameter *-automorphism group (cf. 1.4.5) on the algebra of observ-
ables o7 [25, 37, 5, 6].

A general strategy for constructing such a one-parameter group consists in deter-
mining a faithful representation n of &/ on some 5#, and finding a group of unitaries
U, (or, equivalently, a sclf-adjoint operator H, such that U, = exp(itH,)) for which
A, = U AU¥ e () for all 4 e n(). Since = is faithful, this gives rise to a unique
automorphism group « satisfying n(x,[4]) = Un(A)U* for all A € o

Given a group of *-automorphisms «, on &/ one may still, under favourable cir-
cumstances, arrive at a conventional Hamiltonian description within each represen-
tation of .«/: let =* be such a representation”. The Hamiltonian H* on the carrier space
H#* is defined, if it exists, as the operator implementing «, in the following sense:

X (A)e ™" = ([ A]) (317

for all A € /. One sees that H¥ is only defined up to a c-number. In the models studied
here, the existence of H* is guaranteed (for we will explicitly construct it).

It is clear that the Hamiltonian thus defined is, in general, a representation-
dependent object: it derives its structure both from the automorphism group «, and
from the explicit form of n*. Now the latter carries global (topological) information
about the algebra .7, hence on the configuration space Q. In particular, so-called
“topological terms” in the Hamiltonian may be expected to arise without any further
ado, if there is reason to expect them at all. An exceptional situation arises if the «, are
inner, that is, if unitary elements U, € &/ exist implementing the time-evolution within
the algebra itself (rather than in a given representation). In that case, we evidently have
exp(itH¥) = n*(U,), so that the Hamiltonians in all representations are essentially the
same. As in quantum field theory, this rather trivial situation will not arise in the
present context.

Application to C*(G, Q)

It is reasonable to demand that the time-evolution o, is G-invariant; this means in
concrete terms that the Hamiltonian in any representation n*(</) commutes with
n*(G). This requirement may be translated into a condition on the «,. To do so, note

" We use the symbol n* because in this paper we concentrate on irreducible representations, but the
definition (3.17) applies in any representation.
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that G acts as an automorphism group not only on Cy(Q) (this action was used in the
definition of the transformation group C*-algebra), but also on C*(G, Q) itself. We
denote the latter action by f, and define it on C,(G x Q) by*

(B,LF))(x,q) = F(y™'xy,y " q), (3.18)

to be extended to the whole algebra by continuity. Note that § is implemented in any
representation n of C*(G,Q): the unitary implementing f, is simply n(x). The G-
invariance of the time-evolution on &/ is now simply expressed by the requirement
o o B, = B. oo forallt € R, x € G. Thisis guaranteed if the unitary group U, mentioned
above commutes with #(G).

After the work in the previous section, the actual construction of a large number of
G-invariant time-evolutions on ¢ is now a piece of cake. We take the faithful repre-
sentation = = n;, given in (3.1), (3.2). Let .#; and .#y be the von Neumann algebras
generated by the left- and right- regular representations of G on #, = L*(G), respec-
tively. A well-known theorem [29, VI.12] asserts that these algebras are each other’s
commutant, i.e. 4 = #x. Hence any unitary group in .# is G-invariant in the
above sense. The nontrivial part of proving that such a unitary group defines an
automorphism of o is to show that it maps . into itself, cf. the one-but-last para-
graph. This issue is completely settled by the following theorem, which is stated on the
same assumptions as Theorem 2, except that we do not have to assume that H is
Hausdorff, and that, for simplicity, we assume that G is a Lie group (this assumption
may be avoided, at the expense of a more involved formulation of the theorem, by
noting that the universal enveloping algebra may be constructed for any connected
locally compact group [29, V1.6]). We will use the notation 7’ for the representation
of the universal enveloping algebra #(%) of G which is derived from a unitary repre-
sentation n of G [29, 4]. The adjoint representation of G on its Lie algebra ¢ (with
generators T;) extends to the whole #(%); this leads to an obvious notion of ad-
invariance of elements of %(%), which is compatible with our earlier use of this term.

Theorem 3. Let C be a symmetric and ad(H)-invariant element of %(%). Then the
“pre-Hamiltonian” H, = nx(C) is essentially self-adjoint on the Gdrding domain for
nx(%(%)) on L*(G), and is affiliated* to M} . The unitary group U, = exp(itH,) defines a
G-invariant one-parameter *-automorphism group on C*(G, Q) satisfying n,(a,[A]) =
Umn, (AYU¥ for all A e C*(G,Q), where n, is the representation defined by (3.2). If, in
addition, C = C(T,) is central, then the Hamiltonian H* in an irreducible representation
¥ is given by the closure of (n*) (C(— T;))(defined on the appropriate Gdrding domain).

Proof. The essential self-adjointness of H, follows from standard theorems on
representations of enveloping algebras [29, 4]. The second claim, as well as the
G-invariance of the time-evolution, follows immediately from the remarks in the
previous paragraph.

s This is a special case of the definition (8, [F])(x) = o,[F(y™xy)], where F:G — € is an element of a
general crossed product, cf. Sec. 2.1.

¢ In the present case, this means that the bounded spectral projections of its closure commute with all
clements of .#; . For the general definition cf. [5, 2.5.7].
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The built-in ad(H)-invariance of the unitaries U, implies that the operators U,.5 =
T,s U, Ti% are decomposable on 55 (cf. (3.10), etc.). Then (3.14), (3.15) in combination
with Williams® theorem [42] quoted in the previous two sections, which guarantees
the compactness of the operators n*(A), show that U, sn5(4) U¥; € n5(C*(G, Q)) for all
A € C*(G, Q) (because the compact operators form a two-sided ideal in 2(#)). There-
fore, the a, as defined in the theorem indeed define a *-automorphism group of
C*(G, Q). The final statement follows from the explicit decomposition of =, in the
previous section as well, for n; (X (— T;)) = nx(X(T})) if X is central. [J

Note that the construction of the appropriate Garding domains will be facilitated
by the considerations at the end of Sec. 2.3.

Leaving trivial instances apart, one sees from the construction above that the
automorphism groups thus constructed are outer, i.c. they are not implemented within
the algebra itself. This fact accounts for the possibility of that topological terms in the
Hamiltonian may be “induced” in given representations.

Let us also remark that the construction of arbitrary (i.e., not necessarily G-invariant)
time-evolutions on .o/ follows from a trivial generalization of the above theorem: any
ad(H)-invariant® group of unitaries on L?(G) defines such a time-evolution. However,
even the class of G-invariant time-evolutions is already very large (for example, any
central element of %(%) will do). One may restrict this class by demanding that, for
example, the spectrum of each Hamiltonian H* is positive. For G compact this is
automatically satisfied if we choose X to be a Casimir operator; for noncompact G
one has to be more careful. Also, one may require that the pre-Hamiltonian forces the
particle to move on geodesics (in case that Q is a symmetric space), at least in the
classical approximation.

Finally, we wish to point out that it should be possible to realize the time-evolutions
constructed above as modular automorphism groups, as in the Tomita-Takesaki
theory (cf. [5], and refs. therein to the original literature). This could possibly give rise
to a proof of Theorem 3 which is independent of the explicit decomposition theory in
the previous section; in addition, it would hint at a deep connection between states
and time-evolutions in quantum mechanics. The rationale for this belief is that the von
Neumann algebras .#; and .# on L?(G) are connected by a modular conjugation J,
defined by (J,)(x) = ¥ (x~!)(which intertwines 7, (G) and nx(G)). Any vector Q which
is cyclic and separating for .#j defines a modular group, which is implemented by
unitaries U, € .4, (because G, and therefore .4, g are assumed to be type I). The further
requirement of H-invariance on Q then produces a time-evolution satisfying all our
requirements.
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