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We study representations of the enveloping algebra of a Lie group G which are induced by a
representation of a Lie subgroup H, assuming that G/H is reductive. Such representations describe
the superselection sectors of a quantum particle moving on G/H. It is found that the representa-
tives of both the generators and the quadratic Casimir operators of G have a natural geometric
realization in terms of the canonical connection on the principal H-bundle G. The explicit
expression for the generators can be understood from the point of view of conservation laws and
moment maps in classical field theory and classical particle mechanics on G/H. The emergence
of classical geometric structures in the quantum-mechanical situation is explained by a detailed
study of the domain and possible self-adjointness properties of the relevant operators. A new and
practical criterion for essential self-adjointness in general unitary representations is given.

1. Introduction

Finite-dimensional homogeneous configuration spaces Q = G/H, where G and
H < G are Lie groups, are worthy of study in their own right, classically as well as
quantum-mechanically; moreover, such spaces may serve as caricatures of interesting
field theories, some of whose (topological) features they may reflect in a tractable
context, where one does not have to worry about the subtleties of an infinite number
of degrees of freedom. For example, the configuration space of a (classical) gauge theory
may be taken to be the space of orbits 2 = ¥4/, where % is the space of gauge fields
on a manifold M, and J is the group of local gauge transformations, acting on % in
the usual way: this situation is to some extent modeled by Q = G/H (ignoring the fact
that here G is a group). More directly, Q may be regarded as a one-dimensional 6-model
with homogeneous target space.

A closely related goal is to understand the emergence of gauge fields in algebraic
quantum mechanics and quantum field theory, where one starts with an algebra of
observables o7, in which the gauge fields and the charged (matter) fields themselves are
obviously invisible. The role of charged matter fields as intertwining operators between
various representations of .« is by now well understood in theories with global
symmetries [7], but local gauge theories have defied a full understanding so far.
Therefore, any example in which gauge fields emerge in connection with the representa-
tion theory of an algebra of observables should be welcome. As we shall see, particle
motion on G/H provides a whole class of such examples.

* supported by SERC

503

Reviews in Mathematical Physics Volume 4 No 4 (1992) 503527
© World Scientific Publishing Company



504 N. P. LANDSMAN

The quantization theory of a particle moving on an arbitrary homogeneous mani-
fold Q = G/H was initiated by Mackey [25], who replaced the canonical commutation
relations as the basic object of study by systems of imprimitivity, and showed that such
systems admit (unitarily) inequivalent representations, labeled by the dual H of H (that
is, the set of equivalence classes of irreducible unitary representations of H). This work
was extended in various directions in [5, 14]; it should be mentioned, that the idea
that a given classical system may admit a family of inequivalent quantizations was
independently arrived at in the context of geometric quantization [32].

In [21, 22] Mackey’s approach was reformulated so as to fit into the algebraic theory
of superselection sectors [13]. This reformulation is based on results of Glimm [9],
who showed that Mackey’s transitive system of imprimitivity over @, which is formu-
lated in terms of a unitary representation of G on a given Hilbert space ¢, tied up with
a projection-valued measure on Q, is equivalent to a (generically non-faithful) represen-
tation of the transformation group C*-algebra o = C*(G, Q). Taking o/ to be the
algebra of observables of the system, which is appropriate since it contains all algebraic
information about the position and momentum observables of the particle, one may
then interpret the inequivalent repreéentations of o/ as superselection sectors of the
particle, or, equivalently, as inequivalent quantizations.

A given sector is, accordingly, labeled by a class y € H, and the corresponding
representation n* of o is conveniently realized on a Hilbert space #* of sections of
the homogeneous vector bundle E* = G x4 J#, over Q (cf. subsection 2.1 for definitions
and notation). This Hilbert space carries a unitary representation n*(G), closely related
to n*(), which is just the one induced by =, (H), where 7, is an arbitrary element of
the class y (this geometric realization of induced representations of Lie groups is due
to Bott, cf. [36, 37]). In addition, s#* carries a representation of C,(Q) (the C*-algebra
of continuous functions on @ which vanish at infinity) by multiplication operators,
which together with n*(G) completely determines n*(.«?), and vice versa. This set-up,
along with its quantum-mechanical significance, is explained in detail in [22], and in
[23] it is shown through examples that several known topological quantum effects can
be rigorously understood in these terms, topological quantum numbers and topologi-
cally quantized coupling constants generically corresponding to elements y of H. We
note that the usual quantization on L?(Q) s just the one induced by the trivial represen-
tation of H.

The nicest feature of this approach to quantization is that it provides an explicit,
geometric expression for the Hamiltonian in any superselection sector. One can look
at the quantum Hamiltonian H* either as an operator implementing a given one-
parameter automorphism group on &/ in the sector y, or as the ‘quantization’ dn*(H)
of some classical Hamiltonian H; the time-evolution that we will study is such that
in the former description it is implemented in the trivially induced representation by
(minus) the Laplacian on L*(Q), and in the latter representation corresponds to the
symbol of the Laplacian. In any case, it was found in examples [23], and later in the
more general case that G is compact [24], that H¥ is a gauge-covariant Laplacian on E*
with respect to a background gauge field of a known type: the canonical (or reductive)
connection on G [18, 19]. In other words, in the non-trivial superselection sectors
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the particle behaves as if it were moving in a fictitious external Yang-Mills field with
gauge group H.

The aim of the present paper is to give a detailed and mathematically rigorous
exposition of a circle of ideas generalizing this observation firstly to more general cosets
(viz. reductive ones, with no compactness conditions), and secondly to a larger class
of elements of the enveloping algebra of G (in the situation described above the
Hamiltonian is the representative of the second-order Casimir operator of G). More
specifically, we will analyze the role played by gauge fields in the theory of induced
representations of Lie groups: as such, our results can be understood, without reference
to quantum mechanics, as a possible contribution to the study of geometric structures
arising in representation theory. However, we shall see that certain expressions, which
from a purely mathematical point of view appear to be out of place, have a natural
physical interpretation in terms of classical conservation laws in field theory as well
as in particle mechanics.

Ovur starting point is the above-mentioned realization of a given induced representa-
tion 7n*(G) on a Hilbert space #* of L?-sections of a homogeneous vector bundle E*
over Q. Our main concern is to study the associated representation dn* of the envelop-
ing algebra %(g), concentrating on its first- and second-order elements. In any case,
%(g) is represented by unbounded operators, so we have to address problems of
domains and (essential) self-adjointness of the relevant operators. These problems are
fairly straightforward, but since their treatment requires some functional-analytic tools
(as opposed to the geometric ones used in the main body of the paper) we have deferred
this discussion to the Appendix. For the benefit of those interested in the results only,
and to keep matters transparent, we have written the Appendix in the lemma-theorem
format.

The results are satisfactory, in that they justify the use of the differential-geometric
machinery in the following sense: representatives idn*(X) of the Lie algebra g, as well
as of central (and several other) elements in #(g), are essentially self-adjoint on the
domain I'* of compactly supported smooth sections. More generally, the naive expres-
sion for a representative of %(g) as a differential operator on E* has the same closure
as the corresponding operator defined on the Garding domain, so that we can consis-
tently define all unbounded operators of interest as naive differential operators. We
also give an expression for their closure: this implies that we explicitly know the domain
of self-adjointness of operators which are essentially self-adjoint on T*. These results
eventually follow from a theorem of Thomas [35]. We also prove another useful result,
which states that the (essential) self-adjointness of any dn*(X), X € %(g), in a reducible
unitary representation 7(G) of a type I Lie group G, is equivalent to its (essential)
self-adjointness in all subrepresentations of . This criterion is particularly convenient
for induced representations, where the subrepresentations are easily determined from
Frobenius reciprocity: a number of the known criteria guaranteeing essential self-
adjointness on the Girding domain [16] are recovered in this way, with the added
benefit that we can work on the domain I'*.

Feeling secure that we can work in a smooth (rather than an L?) context, we start
Sec. 2 with a quick summary of invariant metrics and connections on homogeneous
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spaces (a subject exhaustively treated in [19]), followed by an equally short review of
induced representations realized on vector bundles. We then derive expressions for the
representative dn*(Y) of an arbitrary element Y in the Lie algebra g, and for generic
second-order Casimir operators in %(g). One term in the former is easily understood
(it is the covariant derivative, relative to the canonical connection, in the direction of
the Killing vector field defined by Y), but there is a curious additional term, which has
no straightforward geometric interpretation. To understand this extra term, we firstly
analyze the classical field theory corresponding to the quantum particle (that is, we
interpret the Schrodinger wave function, which here takes values in the carrier space
#, of n,(H), as a classical field), and show (inspired by the work of Jackiw and Manton
[15]) that the extra term is precisely the additional contribution to the conserved
charge associated to Y caused by the presence of the external gauge field.

Secondly, we explain how the extra term in dn*(Y) has a classical analogue in particle
mechanics, where once again it can be understood as an additional term in a conserved
quantity (here given by the momentum map of Y) necessitated by the gauge field. We
use (and briefly summarize) the symplectic formalism developed by Sternberg et. al.
{33, 38, 12] to construct the phase space of a classical particle with a Yang-Mills charge,
and see explicitly how the additional contribution arises in the momentum map in the
charged sector. These considerations lead to the intriguing idea, that a particle on G/H
not only admits inequivalent quantizations, but has a family of distinct ‘classicizations’
as well. The parallel with the quantum case goes quite far, its main feature being the
role played by Yang-Mills fields in either case. In this paper we will not go beyond
drawing the analogies, leaving further work in this direction to the future.

We are grateful to a referee for pointing out an omission in the derivation of Eq.
(2.18).

2. The Geometry of Induced Representations
2.1. Homogeneous spaces

Assumptions and notation

The results of this paper are derived under the following assumptions and notation:

1. G is a finite-dimensional Lie group of type I [37] (with Lie algebra g), and H a
closed Lie subgroup (with Lie algebra h); g and h are generated by {T,},-;, .. 4.,and
{T.}:-1,....q, (coinciding with the first dy T’s), respectively. The structure constants
relative to this basis are called C,;, etc.

2. g admits a reductive decomposition [19] g = h @ m, where n,4,(h) X € m for all
he H and all X € m (here 7,4 denotes the adjoint representation). In particular, one
must have [h, m] < m. The dual g* has a corresponding decomposition g* = h* @ m*.
Hence one has representations n;(H) on m and =_;(H) on m*, which are the obvious
restrictions of the adjoint representation =,, and the co-adjoint representation =,
respectively. We assume that 7, is faithful (the opposite extreme, in which G = H x M
as a group, is easily handled as well; we leave this to the reader). The dimension of m
is equal to dy, the dimension of Q = G/H. We choose a basis {T, },-,,... 4, (coinciding
with the last dy T.’s). Accordingly, doubly occurring indices a, § are to be summed
from 1 to dy, a, b, c from 1 to dg, and i, j, k from 1 to dy.
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Let g, € Q stand for either the coset {H} € G/H, or for a given H-invariant point of
any realization of Q, as an explicitly given manifold. We will identify T, Q (the tangent
space of Q at q,) with m, so that X e m corresponds to X, defined by (X, f)(q,) = d/dt
Sexp(tX)qo)y=o for f € C*(Q). More generally, any Y € g defines a vector field ¥, on
Q whose value Y, in T,Q is given by (Y,f)(q) = d/dt f(exp(tY)q),-o. All this can be
dualized to g*, m* and the cotangent bundle T*Q: we denote the appropriate bases
by {6.}, {0,}, etc.

3. mhasa n; (H)-invariant nondegenerate inner product g, (not necessarily positive-
definite). This gives rise to a G-invariant quasi-Riemannian metric g on Q, obtained
from g, by left-translation [19]. Hence one has Killing vector fields K(Y) for each
Y € g, whose value at g € Q is K(Y), = —Y,. We abbreviate K(T;) = K,.

Let pgo: G — Q be the canonical projection (i.e., pgox = xg, for x € G), and let
s:Q > U — G be alocal section (that is, pgo o s = id), such that g, € U. Assuming that
the basis {T,} has been chosen (quasi-) orthonormal with respect to g,, we can define
a vielbein {e,} by giving its value at g as (e,), = Li)(T,),, (here L, denotes the
left-action of x € G on Q, and L’ is the push-forward of any map L between two
manifolds. We denote the pull-back by L*). This implies g(e,,eg) = 1,5, Where 7 is
diagonal with entries + 1, depending on the signature of g,. The vielbein is related to
the Killing vector fields by

(Ka)q = —nco(s(q))aﬂ(eﬂ)q; (ea)q = _nco(s(q)_l)ab(Kb)q . (21)

The metric on Q defines a measure called dg, which is necessarily the unique (up to a
constant scale) quasi-G-invariant measure on Q [37]. Also, n;; defines an embedding
of H into the isometry group SO(n,m) of g, (with n + m = d,).

This ends the list of ‘essential’ assumptions, i.e., conditions without which our
approach would have to be seriously modified. The existence of a reductive decomposi-
tion and of an invariant metric is guaranteed if H is compact [19]. It should be pointed
out that neither of these structures is necessarily unique. As will become clear shortly,
the gauge field in the Hamiltonian and in the generalized momentum operators
actually depends on the precise choice of the (arbitrary) reductive decomposition;
moreover, the Hamiltonian depends on the metric as well. The point is that this
dependence is irrelevant up to unitary equivalence: different choices of the various
geometric structures (and this even goes as far as the signature of the metric on Q) give
rise to different realizations of the induced representation dn* of %(g) (and, therefore
of the full algebra of observables C*(G, Q)) which are related by a unitary transforma-
tion. In this sense, the geometry is just an auxiliary tool, subordinate to the (analytic)
representation-theoretic aspects of the problem.

In what follows, we make two further, inessential assumptions which simplify the
formulae somewhat. Firstly, we will assume that H is compact (hence unimodular),
and that G is unimodular. Hence we can choose g to be positive-definite, leading to
an embedding of H into SO(dy). Furthermore, the measure dq is now G-invariant. One
can easily rewrite the formulae below so as to fit the general case, by inserting the
appropriate Radon-Nikodym derivatives that appear in induced representations in
the quasi-invariant case [37], and by replacing SO(d,) by SO(n,m). We will discuss
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representations 7*(G) which are induced from an irreducible unitary representation
n,(H). The latter is finite-dimensional for compact H; the generalization of the results
below to non-compact H is non-trivial in case.that 7, is infinite-dimensional. One then
has to restrict the space I'* of compactly supported smooth sections of the vector
bundle E* (cf. subsection 2.2 below) to those sections taking values in the domain of
the representation dn* of the enveloping algebra #(h).

Secondly, the form g, defining the metric on Q is supposed to satisfy

9o(X,[Y, Z]jm) + go(Z,[Y, X]jra) = 0 22

for all X, Y, Z em. The reason for this assumption will become apparent in the
derivation of (2.18); it is always possible to choose g, so as to satisfy it in each of the
following cases: G compact, G/H symmetric, G semi-simple, and more generally if g,
is the restriction to m of a nondegenerate form on g which is invariant under n,,(G).

Invariant connections on homogeneous bundles over Q
We will employ two principal fibre bundles over Q. The general scheme is

G— P ——K

Pro

G/H

That is, P is a bundle over Q = G/H with gauge group K (acting from the right) and
another group G acting on P from the left. (We use the symbol pp,, for the projection
of P onto Q, n generically denoting a representation.) We denote this situation by
P(Q, K, G). The two cases of interest to us are the bundle of orthonormal frames
0(Q,50(d,), G), with the left-action of G on a frame given by the push-forward of the
G-action on Q, and the H-structure G(Q, H, G), with the natural left- and right-action
of G and H on G, respectively [18]. The bundle G is a sub-bundle of 0, a point x € G
corresponding to the vielbein frame at xq, € Q defined in item 3 above, relative to a
section satisfying s(xqo) = X, i.€., (€,)y,, = L'(Ty),, -

Now take the fixed point e € P (here e is the identity of G); for P = O this is defined
via the embedding of G in 0. Define amap A: H - Kby A = idfor P = G,and A = =,
for P = O. The derived Lie algebra map is called d4 : h — k. Invariant connections on
P are in 1-1 correspondence with maps A:g— k, which coincide with dA when
restricted to h, and satisfy the intertwiner relation

A(mag(h)Y) = 7,9(A(R)A(Y) (2.3)

for all Y € g (on the right-hand side n,4 of course refers to K). With Y, denoting the
vector corresponding to Y € g relative to the left-action of G on P, and Z, the vertical
vector defined by Z € k via the right-action of K on P, (cf. item 2 above), the k-valued
one-form A defined in T*P by (A4, Y,> = A(Y) and {4, Z,)> = Z, and at other points
of P either by vertical translation by K, or translation by G, is well-defined, and defines
a connection because of (2.3) [19].
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Of interest to us is the canonical connection (also called reductive, or H-connection,
which name we shall adopt) A¥ on G, defined by A¥ : g — h given by

A(Y)=Y (Yeh); AHY)=0 (Yem). 2.4)

A" is just the h-component of the left-invariant Maurer-Cartan form on G. The space
of horizontal vectors in T,G is spanned by the left-invariant vectors (TX), (with T
defined via the right (anti-) action x — xy of G on itself; similarly, the right-invariant
vector fields T.® are defined via the left (anti-) action x —» y~!x of G on itself).

We will also use the Levi-Civita connection w*€ on P = 0, defined by AC:g —
so(d o). We take so(d ) in its defining representation on m, and define A by its action
on an arbitrary vector X e m [19):

A*(YV)X =[Y,X] (Yeh); ALC(Y)X=%[Y,X]|... (Yem). (2.5)

Note that for symmetric spaces Q one has [m, m] < h, so that (2.4) and (2.5) essentially
coincide. Also, due to our assumption (2.2), AL indeed defines the Levi-Civita connec-
tion, cf. Sec. X.3 in [19].

2.2. Induced representations and gauge fields

Realization on sections of vector bundles

Given a representation n,(H) on a finite-dimensional Hilbert space ,, one can form
the vector bundle E* = G x4 i, associated to G; its base space is Q, and its fibers are
isomorphic to .#,, which is identified with the fiber prj(qq) (pgg being the projection
of E* onto Q). Points of E* are equivalence classes [x, ,](y, € #,) under the equiva-
lence relation (x,¥,) ~ (xh™!, n,(hy,) (he H). Then G acts on E* by y[x,y,] =
[yx, ¥, ], and therefore it also acts on I (the space of smooth cross-sections of E* with
compact support) by means of (n*(y)¥*)(g) = y¥*(y~'q); one can close T'* in the natural
inner product (coming from the invariant measure dg on Q) [36, 37] to obtain a
Hilbert space #%, on which the induced representation n* acts as above, extended to
all of s#* by continuity. It is convenient to realize the cross-sections as functions
Y*: G - #* which are H-equivariant, ie., satisfy y*(xh) = n,(h™")y*(x) for all xe G
and h € H. In this realization [36, 37]

(YY) (x) = Y *(y'x). (2.6)

Being in I’} then means having compact support on G up to H-translations, that is,
the projection of the support onto @ is compact; for H compact this is equivalent to
compact support on G.

We wish to study the derived representation dr* of the enveloping algebra %(g) on
H*. As shown in the Appendix, this is simply given on the domain I'¥ = #* by

d
drX(T ) x) = v e Tex)y=o 2.7
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for all T, e g, and extended to %(g) in the obvious way. Now take any invariant
connection 4 on G, defined by a function A, as explained after (2.3) above. This defines
a covariant derivative V* on the cross-sections I'* of E*. The horizontal lift to TG
of the Killing vector (K,)e, in T, Q is (T,?), — (A, (T,),>. The first term is just
the right-hand side of (2.7), whereas the second term equals the vertical vector
at x corresponding to A(m,4(x"*)T,) € h. Hence from the H-equivariance of y* we
find

(@dr*(TW*)(x) = (VE, ¥ (%) + dry(Almeg(x ™) THYH(x). 28

The first term is geometrically nice, but the second one looks odd. It will be inter-
preted in Sec. 3. The induced representation n*(G), hence the integrable representation
dn*(g), in conjunction with the representation of Cy(Q) by multiplication operators
on #* completely determines the associated representation n* of the algebra
of observables &/ = C*(G,Q) of the quantum particle moving on Q = G/H [21,
22, 24].

The Hamiltonian (or second-order Casimir operator)

We wish to find an expression for dn*(C,), where C, € %(g) is a second-order Casimir
invariant, which is more illuminating than the one obtained by just squaring (2.8). We
start by recalling that TQ = E* = G xz m and T*Q = E* = G x4 m*, these vector
bundles being defined with respect to m,(H) on #, = m and n(H) on J#; = m*,
respectively; an equivalence class [x, X] € E® corresponding to L' X, € T, O, and
[x,0] € E* being identified with L} .6, € T.% Q. Hence for given y*eTl¥ we can
regard V¥ as a section of E°®* = E®' @ E*, that is, as an H-equivariant map
Viy*: G - m* ® ,. But elements of m* are (linear) functionals on m, so that V¥j*
is, in fact, a map from G x m into J#,, whose value {VX/*|x,Y> on (x,Y) € G x m is
given by the evaluation of the covariant derivative (VX*)(x) in the direction
[x, Y]€ T, Q. Since [x, Y] = L, Y, = —oq(x"")K(¥),,,, we find from (2.8)

(VAA|x, YD = (drg(Y)Y*)(x) + dr (A(Y)Y¥(x), (2.9)

where we have written 7¥ in terms of the right-regular representation (tensored with
the trivial representation on ) ng of G, defined by (nx(y)¥*)(x) = Y*(xy). Note that
ng does not map #* into itself.

Now choose a linear connection @ on the bundle O of orthonormal frames on Q,
defined by a function A:g— so(dg), as explained after (2.3). This gives a covariant
derivative V on the cotangent bundle T*Q = O X,oq o) M*. Since this bundle is identi-
cal to E¥ = G x; m*, we can realize sections of T*Q as H-equivariant functions
Y : G > m*. Even if the connection w on P is not reducible to a connection of G = O
(which would be the case if w takes values in h), we still have a formula analogous to
(2.8), viz.

@ (T = (Vi b)) + drg(A g (x ™) TP (), (2.10)
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where 7, is the defining representation of SO(d,) on m, identified with its dual on m*.
To derive (2.10), one initially regards ' as an SO(d,)-equivariant function from O to
m*, which, by equivariance, is determined by its values on G.

Note that, since y*(x) € m*, one has for Z e so(dg) and X e m

Amy(Z)Yei(x), X > = — Y (x), dmy(Z) X > . 2.11)

We now take the tensor product of the covariant derivatives V* on E* and Von E to
obtain a connection V* on E ® E*. For any section y*'®% of E® ® E* we then have,
analogously to (2.9),

Y11, Y5 = (drp(VIWO)(x) + [dmA(D) @ 1, + 1, ® dm,(A(V)IY(x),
(2.12)

where 1, and 1, are the unit matrices on m* and ., respectively. We apply this
formula to the case Y°i®* = VX (with y* e TX); this is £ggarded as a map from
G x m x m into #,; the first factor m refers to the slot of V%, and the second one to
that of V¥, From (2.9), (2.11), and (2.12) we then have

VY|, Y, X = {[dng(Y) + dn, (A(Y))] [dng(X) + dm,(A(X))]
— dngldn(A(Y))X) - dr,(A[dr (A(Y)XD}YH(x),  (2.13)

withxe Gand X, Yem.
We define a second-order differential operator on E* by

(A%¥) (x) = (0 @_Vi‘,lﬂ’)(X), (2.14)

in terms of the vielbein {e,},~1, .. 4,- Using the second equation in (2.1) (with ¢ = xq,
and s(q) = x), it follows from (2.14) and the text preceding (2.9) (relating the Killing
vectors to the (T,), , noting that these vectors vanish if a is not in the range 1, ..., dy)
that

(AR (x) = KAV x, T, T (2.15)

This can be evaluated from (2.13), and it is clear that the resulting expression greatly
simplifies if we take the connection A (defining V*) to be the H-connection A%, cf. (2.4),
and the linear connection w on O to be the Levi-Civita connection defined by (2.5).
Then A* becomes a gauge-covariant Laplacian, and we find

A* = dng(T,) dng(T )" (2.16)

Here and in what follows, the gauge-covariant Laplacian A* on I'* is defined with respect
to the H- and the Levi-Civita connection. Now assume that there exists a Casimir
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operator C,(H) in %(h), in such a way that
do

C(G) = - Y, TZ + Cy(H) 2.17)
a=1

is a Casimir operator for G (i.e., a central element of %(g)). The choice of C,(H) is not
necessarily unique, and the following expression evidently holds for any such choice.
Since C,(G) is invariant under (the extension from g to #(g) of) 7,4(G), one has
dn*(C,(G)) = dng(C,(G)), so that finally

HY = dn*(Cy(G)) = —A* + dn, (C,(H)); (2.18)

n,(H) being irreducible, the second term is a constant. The left-hand side is the
Hamiltonian HZ in the superselection sector y (that is, the self-adjoint operator imple-
menting time-evolution in the irreducible representation n* of the algebra of observ-
ables .of = C*(G, Q) of a particle moving on Q = G/H) [21, 22, 23, 24] so that we have
found a geometric expression for the Hamiltonian. By the results of the Appendix, H*
is essentially self-adjoint on the domain I'’Y = #* of compactly supported smooth
sections of E*, and, strictly speaking its closure defines the Hamiltonian. In the trivially
induced sector (where y is the identity representation of H) one evidently obtains the
well-known result that the Hamiltonian is minus the ordinary Laplacian.

Given a family of local sections s, : U — G (U, < Q) one can represent * by its local
trivializations ¥} : U, — J#,, defined by yZ(q) = Y*(s,(q)). The corresponding realiza-
tion of the induced representation n* is reviewed in detail in [22] (also cf. [37] for the
case of a single, generally discontinuous section s: @ — G); for the Laplacian A* in
(2.18) we find, in local co-ordinates ¢* on Q,

AL =g"(V, + A0, + A%), (2.19)

where V, is the ordinary covariant derivative in the Levi-Civita connection for the
invariant metric g on Q, and A is short for dn,({(s¥A4",0,>). Similarly, we can rewrite
(2.8) as an operator acting on the local trivializations yX. We abbreviate (dn*(T,)y¥)(g)
as —iJX(q)¥X(q), and omit the yX(q), as well as the a-dependence of J¥ and s,. Using
the H-connection, we find from (2.4)

—iJ3(q) = VA(@) + meo(s(@)), dn(T)), (2.20)

where the gauge-covariant derivative is evidently given by VZ = d + dn,(s*A"Y), we
write V4 = V% . The J7 are generalized momentum operators in the sector y, i.e., they
implement infinitesimal G-translations on Q, in the representation n*(27) [22, 23]; they
are defined and (by the Appendix) essentially self-adjoint on I'X.

To close this section, we wish to make some bibliographical comments concerning
(2.18) and its derivation. In the physics literature, this formula appears (in the form
(2.19)) in [24] under the restriction that G (and H) are compact; the main steps in
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its original, non-geometric derivation, using harmonic analysis on %, are due to
Strathdee [34] in the context of Kaluza-Klein theories (also cf. [2]). This derivation
cannot immediately be generalized to the non-compact case. In the mathematical
literature, similar connections between the Casimir operator in an induced representa-
tion and invariant quadratic differential operators on vector bundles have been studied
in the context of the Langlands program of realizing the discrete series of certain
non-compact semi-simple Lie groups G in a particular, cohomological way; H = K is
then the maximial compact subgroup of G. Under the additional assumption that G/K
is hermitian symmetric, Okamoto and Ozeki [27] relate the (unique) quadratic Casimir
operator on EX ® E‘©9 (where E‘©? is the bundle of harmonic forms of type (0, g) on
the complex manifold G/K) to the Laplacian associated to the anti-holomorphic
exterior derivative d. This result does not (explicitly) involve a connection on G, and
the relation to (2.18) is not clear to us. The canonical connection A¥ on G appears in
papers in which the discrete series is realized on spaces of sections of spin bundles over
G/K, tensored with a given E* {28, 1, 31, 3]. Parthasarathy [28] relates the Casimir
operator on such sections to the square of the Dirac operator in the background field
AH using geometric techniques that partly inspired the derivation of (2.18) above; the
intermediate step (2.13) appears (without derivation) in the work of Slebarski [31],
which contains (2.8) as well. Also, the first term in (2.8) for A = A¥ was found in [6].

Finally, our derivation goes through essentially unchanged if we drop the assump-
tion (2.2); however, in that case (2.5} defines the so-called natural torsion-free connec-
tion on G/H [19] rather than the Levi-Civita connection, and the differential operator
A* may no longer be a gauge-covariant Laplacian on the bundle E*.

3. Induced Representations and Classical Conservation Laws

As we have seen (also cf. [22, 23, 24]), a particle on Q@ = G/H quantized in the
superselection sector y acquires an internal degree of freedom, namely 5, and its
conserved ‘momenta’ JZ (cf. (2.20)) contain additional terms as compared to the usual
trivially induced case y = id. As we will now show, these extra terms can be understood
classically in two quite different ways.

3.1. Classical field theory

Conserved charges

We can regard /¥ € #* as a classical Schrodinger field. We will work in a fixed local
trivialization, and drop both indices on y/%; accordingly, the ‘wave function’ y is defined
on Q, and takes values in 5. For simplicity we assume that  is smooth and has
compact support. The Lagrangian corresponding to the Hamiltonian (2.18) is L =
[Q, %, where Q, is the volume-form on Q derived from the invariant metric g, and &
is the Lagrangian density (omitting the constant)

L = (20 ~ QoY) — gTH V), @3.1)

where ¢ , ) is the inner product on J,. Here y = y(q,1).
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Applying the ideas of Jackiw and Manton [15] to the case at hand, we now ask how
the gauge field A* (which we will simply call A in what follows) occurring in the
covariant derivative V* in (3.1) modifies the conserved charges of the system. If 4 and
the metric g were dynamical (that is, not given externally, but quantities to be varied
in the action principle), then under a combined gauge transformation and diffeo-
morphism

o = —ey + Lyy;
64 = Do+ Lyd; 62
5g = Lxg,

where ¢ = £(q) dn(T), De = de + [A, €], and Ly is the Lie derivative in the direction
of a vector field X on Q, the Lagrangian transforms as a total derivative, i.c., L =
{ Lx(Q,%). The Noether method then provides conserved currents and charges. How-
ever, we are not free to vary 4 and g because they are external and fixed, and one only
obtains conserved charges if 4 and dg vanish. This is the case if X is a Killing vector
field, and if Ly A = Dwy for some Lie-algebra valued function wy on Q: in that case,
we can takee = —wy. Anticipating that this is indeed true, we take X = K, and obtain
the Noether charges

Qi = iqu@//(q), (K, + 0, (9)>, (3.3)

with w, = wg_, and we have written Xy = Lyy; ¥ is a (#,-valued) scalar under
diffeomorphisms. This can be written in terms of the inner product ( , ) on J#* as

06 =W, JM), (34
with

—iJr =K, + w, =V + o, — (A,K,>, (3.5)

the last term(s) being multiplication operator(s) on J#*.

This should be compared with (2.20); to proceed, we have to show that one indeed
has L, A = Dw,, and identify »,. We recall that A = A* = dn,(s*A") in terms of
a fixed local section s: U - G (U < @), and that (K,),,. = Poo(T), for the right-
invariant vector field T.X on G (cf. the text after (2.7)). Since A% is the h-component of
the left-invariant Maurer-Cartan form on G, and T} generates left-translations on G,
we clearly have

LxA® = 0. (3.6)
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Symmetric gauge fields

Defining a gauge field 4 on the base space of a principal bundle P to be symmetric
under a diffeomorphism generated by a vector field X on Q if it is invariant up to a
gauge transformation, that is, Ly A = Dwy, as above, Forgacs and Manton [8] derive
equations constraining wy, and determining it in certain cases. Since we have more
information, i.e., (3.6), we can use a more efficient procedure.

Let A on P satisfy Ly A = 0 for some vector field Y on P (in ourcase A = 4%, P = G,
Y = T}). Let K = p}j, Y be the projection of Y on Q; for any (local) section s: Q — P
it easily follows that

Lgs*A = s*Ly A, (3.7)

where Y, = (s’ o ppg — 1)Y is a vertical vector field on P. For any vector field Z on P
one has [15]

LyA =dizA + i,dA = Di A + i, F, (3.8)

where F = DA is the curvature (and D = d + [A, -] as before). Taking Z = Y, and
using the fact that F vanishes on vertical vectors we find from (3.7) and (3.8)

Lgs*4 = Diy A. (39
Applying this to our situation above, we thus find

@,(q) = dn, (KA (T)y)se)); (3.10)

note that we interchangeably use the notations (A4, X and iyA (for a one-form 4
evaluated at a vector X) according to typographical convenience. The right-hand side
of (3.10) can easily be computed, for (T}), = —nr (x),’(T;")., and the left-invariant
vectors T." are annihilated by A¥ (cf. the text after (2.4)). Being fundamental vertical
vectors, the T are mapped into T;, so that eventually

0a(@) = A, Ko), + Teo(s(9))s' dry(Ty). (.11)

Substituting (3.11) into (3.5), we see that the Noether charge densities JZ as defined in
(3.4) coincide with the generalized momenta JZ in the superselection sector x, as
determined by induced representation theory, leading to (2.20).

Physical interpretation

We started from the Lagrangian density (3.1), whose classical field ¢ (= y* for fixed
x) defined on @ x R, at any fixed time is taken to be a (locally trivialized) section of
the bundle E¥; recall that in the quantum theory of a particle moving on Q, the states
in the sector y are realized as sections of E* as well. In the absence of an external gauge
field A%, the diffeomorphisms generated by the Killing vector fields K, on Q lead to
conserved Noether charges Q¢ = i {dgy K, ¥, which we recognize as i(y, dn'(T,)y),
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that is, the expectation value of T, in the state i in the trivially induced representation
of G.

In a general static background gauge field A on Q no conserved charges of the
classical field theory will exist, but in the presence of a symmetric field 4 = 4% a
modified charge can still be defined. As our computation shows, the modified charge
is given by (3.4) with (2.20), which classically is the integral over a charge density
corresponding to a particular field configuration ¢, and quantum-mechanically is the
expectation value in the state y of the generator T,, evaluated in the non-trivially
induced representation drn* corresponding to the sector y.

In particular, the peculiar second term in (2.20) has thus been accounted for: it is the
generalization of the well-known Poincaré term in the angular momentum of a charged
particle moving in the field of a magnetic monopole. As explained by Jackiw and
Manton [15], this term can be thought of as the contribution to the charge generated
by a small disturbance of the gauge field, caused by the particle moving in its field.

To conclude this subsection, we show how the Poincaré term is indeed a special case
of the second term in (2.20). Since the radial co-ordinate is irrelevant here, we look at
a charged particle moving on $? = SO(3)/SO(2). As explained in [23, 24], representa-
tions n" of G = SO(3) which are induced by non-trivial representations =, of H =
SO(2) (defined by n,(¢) = exp(ing)), correspond to the particle moving in a magnetic
monopole field of quantized charge eg = n. This is because the canonical connection
A" on SO(3) is precisely the Dirac monopole field. The usual expression for this field
on the base space S is obtained by using the section (guage) s : §> — SO(3) defined by

s(@,0) = e?T2e®T2e7¢Ts | (3.12)

identifying H with rotations around the z-axis. Then
Teo(s(, 0)),> = (cos @ sin 6, sin @ sin 6, cos ), (3.13)

for a=1, 2, 3. Since dn,(T;) = in, the second term in (2.20) is the multiplication
operator —ng, where 4 is the unit vector in the direction of g € S2. This is exactly the
Poincaré term.

3.2. Classical particle mechanics

The phase space of a particle in a Yang-Mills field

Rather than looking at classical field theory, we now try to understand the extra
term in (2.20) by finding its classical analogue at the level of particle mechanics. To do
so, we use the formalism developed in [33, 38, 12], of which we now briefly review
some aspects.

The starting point is a principal fibre bundle P with gauge group H over a configura-
tion space @ (not necessarily homogeneous). The classical analogue of a unitary
representation n, (H) is a co-adjoint orbit @ = h*. We say that the classical particle has
charge O. The space T*P x ¢ has a right H-action p,, given by the lift of R, of H on
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P to T*P times the co-adjoint action of H on (0. We equip T*P x ¢ with the symplectic
form Q = —da — ¥, where o is the canonical 1-form (Liouville form) on T*P, and
wX is the canonical (Kirillov) symplectic form on ¢. The H-action is symplectic with
respect to Q, and one has a moment map ®: T*P x @ — h*. The phase space of a
particle with charge O is then defined to be the Marsden-Weinstein reduced space
Py = ®71(0)/H, equipped with the symplectic form w provided by the M-W symplectic
reduction procedure [12]; this phase space evidently depends on P as well as on Q
and 0.

Now choose a connection A on P. This defines a projection Prepreg: T*P - T*Q by

<pT‘PT'Q09 Y>P,,Q(r) = {0,4,(Y)),, (3-.14)

where 6 € T,*P, Ye T, > and A4,(Y) is the horizontal lift of Y at r € P. By acting
trivially on O, pr.pr+g extends to a projection of T*P x @ onto T*Q, which is
py-invariant, and therefore quotients to a well-defined projection p,: P, — T*Q [38].
The point of this is that any function f on T*Q pulls back to a function p* f on P,.

Globally trivial example

To interpret these structures, take the case P = Q x H, with connection 4 =
T,ALdq® + 0yc; here B, is the left-invariant Maurer-Cartan form on H, and we use
local co-ordinates ¢* on Q. The functions A; satisfy 4i(g, hy h) = m,q4(h™*),;A4i(g, h,) in
order that A4 indeed transforms as a connection.

The cotangent bundle T*P ~ T*Q x H x h*, relative to a left-invariant trivializa-
tion of T*H. We use canonical (Darboux) co-ordinates (g, p) on T*Q, and denote points
in T*H by (h, B) = p,6'(h), with {0°} being a basis of h*, realized as left-invariant
one-forms on T*H dual to the basis {T;} of h. Also, we use co-ordinates y; on O, which
are adapted to the embedding @ < h* (that is, y stands for 7,6' € h*). Accordingly
denoting points in T*P x O by (q, p, h, §,7), the H-action is given by

Pu(g: P, ks Bv) = (g, p by by o (1) B, 7o (1)), (3.15)

with (no,(h™)B); = .o(h™*)/B;, etc. The moment map is
(g, p. h. B,7) = —(B; + 7:)0" € h*, (3.16)
so that the reduced space P, is isomorphic to T*Q x 0, a point (g, p,7) corresponding
to the equivalence class [g,p,e,y, —y] € @ 1 (0)/H. In terms of these co-ordinates, the

projection p: P, —» T*Q is given by

Pe(d,p,7) = (P, — 7:A4L(g, €)) dg”. (3.17)

Finally, the symplectic form on the reduced space is @ = dg®dp, + ©*; note the sign
change of w® relative to Q on T*P x 0, caused by the minus sign in [...y, —7]
above.
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Let Y(g) = Y*(q)3/0q* be a vector field on Q. Its symbol fy € C*(T*Q) is given by
f¥(4g,p) = Y*(@)p,. Clearly, from (3.17)

(P% /), p.7) = Y(p, — 7:4i(q. €)). (3.18)

Interpreting fy as the phase-space representative of the derivative in the direction of
Y, we see that its pull-back to P, is the covariant derivative in the gauge field A. This
conclusion evidently holds in the globally non-trivial case as well, as we can reproduce
this result in local trivializations.

Application to homogeneous spaces

We now go back to our pet situation Q = G/H, and take P to be the bundle
G(Q, H, G) already used in subsection 2.1. Then T*P = T*G ~ G x g* under the
left-trivialization, and we denote p,0°(x) € T*G by (x, p) (here 6° are canonical left-
invariant 1-forms on G). When convenient, we use a separate notation f; = p; for the
co-ordinates on h*, and u, = p, for those on m*. As in the example above, we use
co-ordinates y; on . The canonical 1-form on T*G is a(x, p) = p,0°(x) (in which the
p. are regarded as functions on g*, and the 6° are elements of the T*G-factor in
T*(T*G) ~ T*G x T*g*), and the Maurer-Cartan equations provide the symplectic
form on T*G x O

Q(x,p,7) = —dp,0%(3) + 5 CpICI(x) — 0. (.19)

The H-action on T*G x 0O is given by

(%, P, 7) = (xh, Mo (h™1)p, Moo (B ™)), (3.20)

and the moment map ®: T*G x ¢ - h* is

(D(x9p9y) = _(ﬂz + ,yi)ei’ (321)

cf. (3.16). Hence ®7*(0) ~ G x m* x ( under the correspondence ®1(0) > (x, u, 7, —7)
> (x, 11, 7). Since O = h* so that m* x @ < g*, we have anembeddingi: ® '(0) > T*G.
We identify ®~1(0) with the corresponding subset of T*G, and take i to be the
embedding of this subset into T*G. The pre-symplectic form & on ®*(0) is

& = —i*da + o; (3.22)
as in the previous example, note the sign change of wX. This form has null vector-fields
T' + CEugd/op, + Cly.0/0y;(which areindeed tangent to ®~(0), as the last two terms

generate the co-adjoint action of H on m* x (J), which generate the foliation of ®~*(0)
defined by the H-action

pu(x, p) = (xh, meo(™1)p), (3.23)
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cf. (3.20); for notational convenience we have re-assembled (u,7) e m* x ¢ into a single
vector pinm* x ¢ < g*. The quotient space ®*(0)/H = G, is the Marsden-Weinstein
reduced space with respect to Q and @, taken to be the phase space of a particle on Q
with charge 0. If pr is the canonical projection of ® 1 (0) onto G, then G, has a uniquely
determined symplectic form w such that @ = pr*w.

The simplest example of this construction is obtained by choosing ¢ = {0}; this
yields G, = G xy m* = T*Q, cf. subsection 2.2 (text prior to (2.9)). As before, we
denote elements of T*Q by H-equivalence classes [x,0] = L%-.6, (cf. subsection 2.1,
item 2 for the notation used here). Similarly, we denote points in G, by classes
[x, 1, y] = [xh, mo(h ™ ), moo(h1)y]. We now choose the canonical connection A% on
the bundle P = G, and easily find that the projection p,; : G, — T*Q is simply given by

polx, 1,71 = [x, u]. (3.24)

This is clearly independent of the particular representatives of the equivalence classes
involved.

G-action and moment map

Consider the left-action of G on itself (L,x = yx); this lifts to a G-action on T*G
(L¥(x,p) = (yx,p)), extended to an action on T*G x O by a trivial action on @. This
action commutes with the right H-action defined previously, so that we eventually
obtain a G-action A on the phase space G, given by

ly [x, )= [yx, Hs 7] . (325)

This action is symplectic with respect to the symplectic form w on G, and there is a
moment map J: G, — g* with respect to this action. One then has generalized
momenta J? defined by Jf(m) = (J%m), T,> (where m € G,), whose Poisson bracket
relative to o coincides with (minus) the Lie bracket in g* (cf. the general theory of the
moment map [12]). One finds from (3.22) and (3.25)

Jaw([x, p]) = cho(x)abpb’ (326)

which is a well-defined function on the quotient space, cf. (3.23) (as before, p = (1, 7)).
We now compare p%J? with J?, each function being defined on G,. Relative to a

local section s, we choose local co-ordinates (g,p) on G,, such that (q,p) are the

co-ordinates of [s(g), p]. Since on G, the p have no components 7, one has

J2(@ 1) = 7eo(s(@))a’ g - (3.27)

Finally, (3.24) and (3.26) give
J2@ 17) = (PEID)G 1) + Teo(5(@))a'yi - (3.28)

Interpretation
We compare the classical expression (3.28) for the conserved quantity J¢ with its
quantum-mechanical analogue (2.20).
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CLASSICAL QUANTUM

1. Charge ¢ € h* Unitary representation n,(H)

2. Phase space G, Hilbert space of sections #°*

3. Moment map J*¢ Representation dn*

4. Function J* Operator dn*(T)) = —iJ}, T, eg

5. C®(Q) = C*(Gy) C*(Q) as multiplication operators on J#*
6. Momenta u, € C*(G,) Vielbein e, (operator on %)

7. J0 € C*(Gy) Killing vector field K, (on #%)

8. pxJ® e C*(G,) Covariant derivative VX on 3%

9. Meo(s(@))a'y: in J; Teo(8(9))" A, (T;) in JX.

Most of these correspondence are self-evident. We wish to stress that the first one is
by no means one-to-one: only ‘quantizable’ orbits in h* in the sense of geometric
quantization are associated to (irreducible) unitary representations of H, and con-
versely, many groups H have unitary irreducible representations which do not corre-
spond to a coadjoint orbit. In item 5, C*(Q) is understood to be embedded in C*(G,)
via the pull-back of the projection of G, onto Q. As to 6 and 7, cf. (2.1) with (3.27), and
note that #¢ = L2(Q) (we have omitted possible minus signs in 7 and 8; they depend
on the sign convention for the Poisson bracket). The differential operators featuring
in 6-8 are, us usual, defined on the domain I'’* < #* of compactly supported smooth
sections of E* (with y = id in 6 and 7).

The picture that emerges is that the algebra of quantum observables & = C*(G, Q)
has inequivalent representations n%, which have a geometric realization in terms of the
canonical connection 47 on G (evaluated in various representations drx”(h)), and that,
in a very similar way, the Poisson algebra generated by C*(Q) and the functions J2,
has inequivalent representations as Poisson algebras on the various symplectic mani-
folds G,. Surprisingly enough, these representations can be realized by means of the
connection A¥ as well. We may, therefore, speak of inequivalent quantizations as well
as of inequivalent ‘classicizations”: the former refer to representations as concretely
given C*-algebras on Hilbert spaces, and the latter refer to representations as Poisson
algebras on symplectic manifolds. The underlying algebraic structure that is being
represented here in two different categories is, loosely speaking, a crossed product of
G and C*(Q).

Part of this structure was independently studied heuristically by Koch [20], moti-
vated differently (this work became available to us only while finishing this paper).
While not discussing the role played by the gauge field, his work essentially contains
the correspondences 1-5 above, as well as the idea that the symplectic leaves G, of
(T*G)/H carry representations of the Poisson algebra mentioned above. Also, [20]
contains a discussion of the classical analogue of the algebra of quantum observables
C*(G, Q).

A. Representations of the Enveloping Algebra

We are going to discuss how to pass from a representation of a Lie group to a
representation of its enveloping algebra. The latter will be represented by unbounded



INDUCED REPRESENTATIONS, GAUGE FIELDS, AND QUANTIZATION ON HOMOGENEOUS SPACES 521

operators, and we have to discuss the domain and possible self-adjointness properties
of these operators. References for the part of this Appendix preceding and following
the theorems are Warner [37], Jorgensen [16], and Schmiidgen [30]. Theorems 1 and
2 follow directly from Thomas [35]. Theorem 3 is a generalization of a theorem in
[35], proved by different techniques; the version in [35] holds for bi-invariant Hilbert
subspaces of 2(G), and does not apply to induced representations. Detailed informa-
tion on the analysis of direct integral decompositions of unitary group representations
of the type (A.7) below, which are central to our Theorem 3, may be found in Goodman
[10] and Penney [29]. Chapter I of the latter contains relevant background material
for Theorem 1 below as well.

Let 7 be a continuous unitary representation of a Lie group G on a separable Hilbert
space #. This defines a representation of the convolution algebra 2(G), called 7 as
well, by

n(f) = J dx f(x)n(x); (A.1)
G

for convenience we assume that G is unimodular, so that dx is a left- and right-invariant
Haar measure. We realize the Lie algebra g as right-invariant vector fields acting on
2(G), i.e.,

() = 5 1€ Dumo (A2)

for Y e g. This can be extended to an action of any element X of the enveloping algebra
(g) in the obvious way. More generally, we use the notation Xf for the action of
X € %(g) on smooth functions f taking values in a Hilbert space 5#,. This is defined
as in the scalar case, the limit t - 0 now being taken in the topology of #,.

The Girding domain #,; = # consists of all vectors of the form n( )y for f € 2(G)
and Y € &#. This domain is dense, and carries a representation dr of %(g), given by

drn(X)n(f W = (X )y (A3)

It can be shown that J#; exactly consists of the C*-vectors for , that is, € #; if and
only if the function f, : G — 5# defined by f,(x) = n(x)y is in C*(G, #). An equivalent
definition of dr is then given by dn(X)y = —(Xf,)(e).

Given a unitary representation n,(H), we realize the induced representation n*(G)
by H-equivariant functions y*:G — #, whose J,-norm is square-integrable on
Q = G/H (cf. [37] for more details; also cf. subsection 2.2 above). For any y/* € 3 one
then simply has dz*(X)y* = Xis*. However, we wish to work on the domain I'? of
compactly supported smooth cross-sections of the vector bundle E* (cf. subsection 2.2).
It is trivial to show that I'X consists of C®-vectors for n%, so that [} « #¥, and that
I'¥ is dense in 3#* (which, indeed, can be defined as the closure of [¥). The following
theorem shows that it entails no loss of generality to define dn*(%(g)) on T'X rather
than on J#¥.
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Theorem 1. The space I'* of compactly supported smooth cross-sections of the vector
bundle E* over Q is a common dense invariant domain for dn*(%{g)), with the property
that, for all X € 9(g), dn*(X) defined on T'* has the same closure as dn*(X) defined on
the Garding domain H#¥.

Proof. The invariance of I'X is obvious, since the drn¥*(X) are realized as differential
operators. Another way of showing that T'¥ is dense and invariant is to define a map
Jj:#* - 2(G), depending on the choice of a fixed vector u € 5, by giving the action
of jiy* on an arbitrary ¢ € 2(G),

GYr e = L dx{YH(x), upd(x), (A4

where ( , ) is the inner product in #,. In other words, we identify the locally
integrable function jiy* = (¥, u) with a distribution on G. It is easily checked that jyr*
is indeed in 2(G) (it is, in fact, a distribution of order 0), and that j is a continuous
injection (the injective property follows from the H-equivariance of ¥*, combined with
the fact that u € #, is cyclic for n,(H)). The dual j*: 2(G) » #* is given (for uni-
modular H, with Haar measure dh) by

(j*#)(x) = J dhm,(h)$(xh). (A.5)

It follows from Lemma 5.1.1.4 in [37], proving the surjectivity of j* onto I'%, and the
fact that the projection of the support of ¢ onto Q is compact, that j*2(G) = [X. This
proves a nice characterization of I'%, with the intertwining property dn*(X)oj* =
j* o X, showing that I’%, like 2(G) must be invariant under the action of %(g). The
density of T* in #* is a consequence of the continuity of the inclusion j*, cf. [35]
(where analogous inclusion maps j are studied in a more abstract context).

The last part of the theorem is a special case of Proposition 1bin [35]. We reproduce
the proof, which is short and elementary. Let y* = n*(f)¢ be an arbitrary element of
%, Then there exists a sequence {¢,} — ¢, with all ¢, € T¥ (as T? is dense). By the
invariance of T, ¥ = n(f)¢,isin TX, and dn*(X)yY¥ = n(Xf)d, converges to n(Xf )¢ =
drn(X)*, as n(f) is bounded for all f e 2(G). Hence for every y* € #¢ there is a
sequence {YZ} in T'* such that Y — y* and dr*(X)y¥ — dn*(X)y*, for all X € %(g).
The claim follows. O

In the following theorem, X * is the transpose of X € %(g), defined by linear extension
of (Y;...Y)* =(—1)Y,---Y,, Y, e g Let #¥ consist of those elements y* of 5#* for
which X*jy* € j#Z%; here X" is regarded as a weak differential operator acting on
AGY,ie., (X*F,¢) = (F,X¢) for F € 2(GY and ¢ € 2(G). Since j is injective, it can
be inverted on j#%, so that we can extend the action of X* e %(g) from H#¥ to ¥ by
defining

X*pr =TI XjYr (A.6)
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Theorem 2. The domain of the adjoint dn*(X)* of dn*(X) (defined on either TX or
HE) is A, and on this domain dn*(X)* = X*, as defined in (A.6) above. In particular,
X* is the self-adjoint closure of dn*(X) in case the latter is essentially self-adjoint
(on T%).

Proof. This is a special case of Proposition 1¢ in [35], upon identification of »#*
with the arbitrary right-invariant Hilbert space 5 in 2(G) studied there (interchanging
left and right), and the general injection j in {35] given by (A.4) above. g

A more explicit description of s£¥ may be given in case that X is ellipic, cf. [11].

Although Theorem 1 in conjunction with the well-known (Nelson-Stinespring)
criteria for essential self-adjointness on the Géarding domain [37, 16] is sufficient to
establish that the Casimir operators studied in the main text are essentially self-adjoint
on I'}, we wish to provide a more general result, that applies to any unitary representa-
tion of G, and to arbitrary elements of #(g). The notion of a direct integral decomposi-
tion of Hilbert spaces, bounded operators, and representations is explained in [4], and
in [26, 30] for unbounded operators. For this theorem we assume that G is a type I
Lie group [37], a condition satisfied by all examples of interest.

Theorem 3. Let n be a continuous unitary representation of a type I Lie group G on
a separable Hilbert space . Let

D 5]
H = J du() A, @A™  m= f _ du(y)m, ® 1, (A7)
G G

be the primary decomposition of # and m over the dual G; the n, are irreducible
representations of G on Hilbert spaces #,, and the #™ are multiplicity spaces (with unit
operator 1, ). Then, for every X € %U(g), dn(X) is essentially self-adjoint if and only if
dn.(X) is essentially self-adjoint for u- almosrt every 7y (these operators being defined on
their respective Gdrding domains).

The proof will follow from three lemma’s. In what follows, A denotes the closure of
an operator 4, D(A) stands for its domain, and X is an arbitrary element of %(g). Also
&' is-the commutant of .

Lemmal. dn(X)isaffiliated to n(G)” (the von Neumann algebra generated by n(G)).

Proof. We must show that, for all unitary operators U e n(GY, UD(dn(X)) c
D(dn(X)) and U*dn(X)U = drn(X) on its domain. By 5.6.3 in [17], it suffices that these
properties hold on a core D, of dn(X). We take D, = #;. For y = n(f)¢ € H#, one
has Uy = n(f)U¢ € #5, and U*dn(X)Un(f)¢ = U*n(Xf)U¢ = dn(X)n(f)é. O

Lemma 2. Relative to the decomposition (A.7) of H#, dn(X) can be decomposed
as

5]
&n(X) = f du()X, ®1,, (A3)

G
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where the field {X.}, . is y-measurable, and the X, are certain (ui-a.e.) closed operators
defined on a dense domain D(X ) < H,. The domain of dn(X) consists of those measur-
able vector fields yy € # (defined by their components Y (y) € #, ® #™) for which

Y(y) e D(X,) ® #™ and dn(X)y € H# (where (An(X)Y)(y) = X, ® lnvl//(y)).

Proof. The preceding lemma, in combination with Theorem 2 of Nussbaum [26]
(where the definition of a measurable field of unbounded operators may be found)
implies the existence of a decomposition dn(X) = j? du(y) X (y) for some field {X ()}
of closed operators, with similar properties as in the statement of the lemma above.
We show that X (y) is affiliated to n,(G)” (a.e.). Since the decomposition (A.7) is primary,
any unitary U € n,(G) can be decomposed as U = j'g du(y)U(y), with all U(y) unitary
(up to a null set, where they may be redefined so as to be unitary), and of the form
U(y) = 1, ® U,. Conversely, any field {U(y)} of this form defines a unitary operator in
n(GY. By Lemma 1, U*dn(X)Uy = dn(X)y = [ du(») X »)¥ () for ¢ € D(dn(X)), but
the left-hand side is also equal to j? du(y)U*() X (p)U(y)¥(y). The existence of a
non-null set I € G on which U *PX Uy # X() on D(X(y)) would then lead to a
contradiction. Hence X (y) is affiliated to n,(G)” a.e., and it follows from the factoriza-
tion of the U(y) that X (y) = X, ® 1, for some X,. Since X (y) is closed, its domain must
be of the form D(X,) ® S, with D(X,) 4, such that X, on this domain is a closed
operator on J,, and S a closed subspace of #™. But D(dn(X)) is dense in 4%, so that
D(X,) must be dense in ), and § = #™. ]

Lemma 3. The operators X, in (A.8) are equal to dn(X), the closure of dn(X)
(defined on the Gdrding domain H#,¥ in ).

Proof. Wedivide the proofinto 4 parts. We omit the qualification ‘u-a.e.’ at various
appropriate places.

1. We first show that 5#° < D(X,). Take ¢ = n(f)¢ € #; = D(dn(X)). Then by the
previous lemma ¥ = j? du()¥(y), with ¥ (y) € D(X,) ® #™. Since ¢ has a similar
decomposition (without the domain restriction) it follows from (A.7) that y(y) =
(7, (f) ® 1, )$(v), hence =, (/) d(y) ® 1, € D(X,) ® #™. Since f and ¢ are arbitrary, the
claim follows.

2. Moreover, X, restricted to #,¢ coincides with dr,(X). This follows similarly: on
the one hand, by definition of dn(X) one has dn(X)y = n(Xf)¢ = | 2 dp(y)(n(Xf) ®
1, )¢(7), while on the other hand by (A.7) this must equal j% dp()(X,m,(f) @ 1,)9().

3. We now define the unbounded operator X’ on # as follows: the domain D(X")
consists of those vectors i = ﬁ? du(y)y(y) in o for which Y(y) e 9?;0 ® A", and
X'y = [§ dp(y)dn(X) ® 1, W () is in #. Then X' = (€ du(y)dn,(X)® 1, , with do-
main as described in Lemma 2 (with X, replaced by dn.(X)). This follows from the fact
that if , —  in # then {y,} contains a subsequence {i,, } such that y, (y) > ¥(y) in
H, ® H™, cf. the proof of Proposition 7 in [26], and Lemma 14.1.3 in [17].

4. Finally, X’ = dn(X). This follows from the inclusions drn(X) € X’ < dn(X). Then
first inclusion follows as in the proof of item 1 above, and the second one is equivalent
to the claim in item 1. Together with item 3, this proves the lemma. O
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We note that, rather than proving part 1 and 2 of this lemma directly, we could have
appealed to a result of Goodman (Lemma 3.1 in [11]), who shows that C* vectors
for = on 5 decompose (in the sense of (A.7)) into direct integrals of C* vectors for =,
on #,, and that dn(X) decomposes as in (A.8), with X, replaced by dr. (X). Also cf.

[29].
Proof of Theorem 3. Combining Lemma 2 and Lemma 3, we have

—_—_— @ J—
dn(X) = J _du(y)dr(X)® 1, . (A9)
G
Theorem 3 of Nussbaum [26] states that in a decomposition of the type X =
j?; du(y)X (), with X and the X (y) closed, X is self-adjoint if and only if almost every
X(y)is. O

Applied to induced representations (n = =*), and using Theorem 1, Theorem 3 can
be used to prove essential self-adjointness of many operators dn*(X) on the domain
T of compactly supported sections of the vector bundle E*. The conditions can often
be checked, since by Frobenius reciprocity [37] we know which subrepresentations =,
occur in m*.

More generally, some well-known theorems stating essential self-adjointness of
representatives dn(X) on J; are immediate corollaries of Theorem 3. If G is compact
then the 7, are finite-dimensional, so that any dn(X) is essentially self-adjoint if it is
symmetric (ie., X* = X). Also, for any G, central elements Z € %(g) are scalars in each
irreducible representation ., so that dn{Z) s essentially self-adjoint if Z* = Z (Nelson-
Stinespring). Finally, it easily follows that idn,(Y), where Y € g, must be essentially
self-adjoint in irreducible representations (because by irreducibility the range
R(drn,(Y) + i) must be ), so that Theorem 3 implies that idn(Y) is essentially
self-adjoint in any representation (I. E. Segal).
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