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The quantization procedure of the preceding paper is applied to study two generic topological
quantum effects, viz. the charge quantization induced by (abelian) magnetic monopoles, and the
Aharonov-Bohm effect. Prior to these applications, a general procedure is given for reducing
unitary representations of a locally compact G which are induced by nontrivial unitary repre-
sentations of H « G. This involves the use of spherical trace functions, and is useful in the
determination of the eigenfunctions of the Hamiltonian of the particle in a given superselection
sector. Such Hamiltonians, implementing the time-evolution on the given abstract C*-algebra,
are explicitly constructed and analyzed. The relevant quantum effects are found to be a con-
sequence of the representation theory of the appropriate algebras of observables. In this way a
group- and operator-theoretic elucidation of the mathematical structure of the given systems is
attempted. This paper may be read independently of its predecessor.

1. Introduction

1.1. Entree

In this paper we apply some of the results and techniques developed in the preceding
paper I [14] to an analysis of the two best-known and perhaps most surprising
topological quantum effects, namely the magnetic monopole a la Dirac [7] and its
associated charge quantization, and the Aharonov-Bohm effect [1]. To make this
paper independently readable, we will briefly sum up the main points made in I, now
employing a predominantly group-theoretic rather than operator-algebraic language.
Sections, equations, and references in I will be referred toas1...., L(...),and L.[...],
respectively. Notational conventions are stated in 1.1.4.

1. The homogeneous configuration space Q = G/H is quantized by associating an
abstract operator algebra o to it, whose self-adjoint elements are mapped into
the physical observables of the system (i.e., the particle moving on Q). Here &/ is
chosen to be the so-called transformation group C*-algebra of = C*(G, Q). An
important feature of this particular algebra is that the set of equivalence classes
ofits irreducible representations n* (under unitary equivalence), which we identify
with the superselection sectors of the system, as well as with its “inequivalent
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quantizations”, equals H, the dual of H. The unitary representation of G cano-
nically associated to =¥ is just its representation induced by a unitary represen-
tation of H which is in the class y.

2. The algebra o has a faithful representation on #; = L*(G) given by the pair
1.(3.1), in which ¢, is a fixed H-invariant point on Q (corresponding to the coset
{H}); this representation is used to construct a time-evolution on & in the
following way (cf. 1.3.3): any self-adjoint operator H,, called the pre-Hamiltonian,
whose bounded spectral projections of H, must commute with all operators ng(h),
h € H, defines a unitary group U, = exp(itH,) with the property that it maps the
algebra & into itself, i.e, U, (/) U* = n, (o). Thus, by the faithfulness of =;,
this uniquely defines an automorphism on /. This automorphism is the time-
evolution of the system at the algebraic level. The operator H, is not the usual
Hamiltonian of the system; a conventional Hamiltonian H* may be found (up to
a c-number) in each superselection sector y as the operator implementing the
time-evolution a,, that is, one demands that 1.(3.17) holds.

3. In most practical examples one may construct H, and the H* straightaway, by
choosing a symmetric central element C in %(%) (the enveloping algebra of G).
Then, assuming C to be an even polynomial, H, = nx(C) and H* = (n*)(C),
where 7’ is the representation of #(%) derived from a unitary representation 7 of
G [13, Chap. VI], and =g is the right-regular representation on L2(G). More
precisely, the respective Hamiltonians are obtained as the closure of the expres-
sions given above, which are defined and essentially self-adjoint on the Garding
domain generated by n(G). Moreover, in this case the Hamiltonians are G-
invariant, so that their degenerate eigenspaces will form irreducible multiplets
under G.

The simplest illustration of the whole scheme is provided by particle (without internal
degrees of freedom) moving on R3. Firstly, take G = Q to be the additive group R3
(hence H = {e}), and according to our prescription the algebra of observables is
o = C*(R? R3). As this system, like all the others considered below, certainly satisfies
the conditions in 1.3.1, we can immediately conclude (e.g., from Theorem 1.2) that
o = A (). The C*-algebra of compact operators is well-known (e.g. 1.[2]) to have
only one irreducible representation (up to unitary equivalence, of course), so that this
choice of G only yields one “inequivalent quantization”. Although the underlying
mathematics is slightly different from what is used in its conventional formulation, this
result is just another version of the Stone-von Neumann uniqueness theorem (cf.
1.[34]). Here n, (/) is nothing but the usual Schrodinger representation of the CCR
on L2(R?), and the simplest positive pre-Hamiltonian, which in this case coincides with
the ordinary Hamiltonian, is evidently minus the Laplacian.

It is more interesting to take the covering of the Euclidean group G = SU(2) =R?3,
which acts on Q in the conventional way (SU(2) acts via its canonical epimorphism
on SO(3)). Within the confines of “scalar quantum mechanics” (cf. 1.1.2) this is the
largest symmetry group of R? respecting the (flat) Riemannian structure. It follows that
H = SU(2), so that the inequivalent representations of the quantum algebra .« =
C*(G, Q) are labeled by (half-) integers j, to be interpreted as the spin of the particle.
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Hence spin defines a superselection rule in the sense of labeling the inequivalent
irreducible representations of the algebra of observables of a particle moving in
three-space. This result is very close to Mackey’s derivation of the concept of spin (cf.
1.[27,391) and is also in agreement with the original notion of a superselection sector
1.[22,41].

As to the dynamics of the system, the simplest nontrivial choice of a positive
pre-Hamiltonian is, as before, to select C = T2 + T2 + T, where the T; are the
generators of the Lie algebra of R3. A peculiar feature of this choice is that the
Hamiltonians H/ in the irreducible representations n/(«/) do not depend on j: they are
(once again) just minus the Laplacian on R3. More general, spin-dependent interac-
tions may be obtained by choosing C to be an element of #(%) which is just SU(2)-
invariant (rather than invariant under the whole group G, as in the choice above).

1.2.  Plan of the paper

The main goal of this paper is the actual construction and analysis of both the
pre-Hamiltonian and the ordinary Hamiltonians in two concrete examples. One is
usually interested in the (improper) eigenfunctions of the Hamiltonian, and it turns
out that the study of our examples is facilitated by first giving a fairly abstract and
general scheme to obtain these eigenfunctions. In case that the Hamiltonian is invariant
under the group G, as in the construction given in ad 3 of the preceding section, this
by and large amounts to decomposing the unitary representation 7% of G on the Hilbert
space H#* on which n¥(.<7) is defined, into irreducible multiplets (subrepresentations)
(note that #* is irreducible as the carrier space of n*(«¢), but in general reducible as
the carrier space of n%(G)).

This problem has been extensively studied in the case that y is the identity represen-
tation of H, so that n%¥ = n'¢ is the usual representation of G on L?(G/H) by left-
translation of the cosets. The general case of nontrivial y appears to have been studied
very little in this explicit form, but is, under the hypotheses on G and H stated in 1.3.1,
in principle contained in the more ambitious task of reducing the left-regular repre-
sentation 7, of G. The reason for this is that, as made explicit in 1.3.2, 5, c.q. 7, can
be decomposed as a direct sum/integral over (reducible) subspaces c.q. subrepresen-
tations isomorphic to the #°% c.q. n*, so that the problem of completely decomposing
A4, indeed amounts to the decomposition of all »#*.

The full reduction of n; has indeed been accomplished along these lines by Harish-
Chandra (cf. [18] and refs. therein to the original literature) for G a semisimple Lie
group, in which case H = K is chosen to be a maximal compact subgroup of G. Some
of the technical machinery introduced by Harish-Chandra (and certain other mathe-
maticians), in particular the use of so-called spherical trace functions, is also available
in a wider context, i.e. G locally compact, and H = K compact but not necessarily
maximal. It turns out, that a further restrictive assumption on the pair G, K (stated
early in 2.1), which is satisfied in our application to the monopole problem, allows us
to carry out the reduction process in a fashion which directly generalizes the reduction
of the trivially induced representation on L?(G/K) in case that the latter is manageable,
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that is, when G, K is a so-called Gel'fand pair [6, 18, 19]. In this generalization, which
is the principal subject of Chap. 2, the role played by spherical trace functions is
analogous to the way zonal spherical functions enter in the trivially induced case.

It is hoped that these considerations will be of some mathematical interest, but in
any case the main upshot of all this for the physics studied here is that explicit formulae
for the energy eigenfunctions in terms of matrix elements of irreducible representations
of G will be found. The discussion of so-called monopole harmonics, which are the
eigenfunctions of the angular part of the Hamiltonian of a particle in a monopole field,
in Chap. 3 is thereby rendered trivial.

Another special case which is both manageable and interesting for applications (e.g.,
the Aharonov-Bohm effect) obtains when H is discrete and G/H is compact. Here we
have nothing to add to the literature, and at the end of Chap. 2 we just review some
of the standard techniques (Selberg trace formula, duality theorem) that may be
employed in the reduction of #*. An explicit determination of the eigenfunctions of the
Hamiltonian in this representation amounts to a nontrivial exercise in the theory of
automorphic functions, which becomes trivial in the case of the Aharonov-Bohm effect,
where G = Rand H = Z, and the relevant automorphic functions are essentially simple
exponentials.

In Chap. 3 we turn our attention to the Dirac magnetic monopole. The study of the
real thing is preceded by a detailed analysis of a particle moving on the two-sphere
(i.e., @ = $?), which already contains all information on the superselection structure of
the full model. The reason for this is that the relevant feature of a particle moving in
the field of a monopole is not that it is moving in the field of a monopole, but that the
location of the monopole (taken to be the origin) is excluded from its configuration
space. Thus one has @ = R* — {0} ~ R* x §2. The radial co-ordinate in some sense
factorizes in the topological and representation-theoretic aspects of the problem (in
particular, it does not affect the superselection structure of the model), and phenomena
like the Dirac quantization condition will be seen (as is well-known, of course) to be
a consequence of the S2-part of Q. A more conventional way of putting this is to say
that all “nontrivial topology” is contained in S2.

The reduced problem Q = S? is much easier than the full one from the point of view
of constructing the time-evolution and the (pre-) Hamiltonian, for here one is in the
simple situation sketched in 1.1.3, where all Hamiltonians are representatives of a
central element in the universal enveloping algebra of G(= SO(3)). This amounts to a
drastic simplification of domain issues, and allows us to essentially blindly follow the
algorithm given in L

The inclusion of the radial co-ordinate destroys this simplicity, so that we have to
do some of the analysis of domain problems of the pre-Hamiltonian by hand. For-
tunately, these can be handled by completely standard techniques (leading to Theorem
1 in 3.2), so that the main conclusions of our analysis hopefully will not be obscured.
These are, that the (Wess-Zumino-like) n-dependent terms in the Hamiltonian H” (with
n the quantized monopole charge), which are automatically induced by our quantiza-
tion procedure, may be interpreted as terms describing the interaction of the particle
with a magnetic monopole, that the Dirac quantization condition for electric and
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magnetic charge is a direct consequence of the “quantized” representation theory of
the algebra of observables of a charged particle moving in a monopole field, and that
the quantized charge labels a superselection rule for such a particle. As a technical
corollary, it will be found that several apparently qualitatively different descriptions
of the Dirac monopole, as the one in terms of a forbidden stringy region used by Dirac
himself [7], the one in terms of a Hilbert space of sections introduced by Greub and
Petry [10] and made popular by Wu and Yang [20], and the one in terms of induced
representations used by Langlands [12], are unitarily equivalent from the point of view
of the algebra of observables, and therefore equivalent from both a physical and a
mathematical point of view, despite the fact that seemingly entirely different mathe-
matical concepts are used in each of these descriptions.

Chap. 4 is devoted to the Aharonov-Bohm effect. As in the monopole case, it is
the topology of the configuration space, here taken to be Q = R® — {z-axis} =
R* x R x S which determines most reievant features, notably the superselection rules,
of the problem. As before, the factors R™ in @ are better omitted in a preliminary
discussion of the superselective and topological aspects of the problem, so we start
with the simpler case of a particle moving on a circle Q = S. (This situation is also of
some independent interest, for the emergence of a #-angle labeling the superselection
sectors of this system is supposed to take place in quantum chromodynamics as well).
Here our quantization method, including the construction of the pre-Hamiltonian and
the Hamiltonian in each superselection sector can be carried out smoothly, yet, as in
the monopole case, this smoothness is obscured by the inclusion of the radial co-
ordinate. This again leads to certain domain problems, which can be handled in a very
straightforward way.

In any case, the physical picture that emerges is analogous to that of the monopole
example: the -dependent terms in the Hamiltonian H? in a given superselection sector
0 may be interpreted as describing the interaction of the particle with the electro-
magnetic vector potential generated by an infinitely thin solenoid along the z-axis, so
that, conversely, the magnetic flux ® generated by such a solenoid determines a
superselection rule for a particle moving in its field (with 8 proportional to ®).

2. Reduction Theory

Let 5% be the carrier space of the unitary representation n* of G, which is induced
by an irreducible unitary representation , (in the class ) of H. A convenient realiza-
tion of #* is provided by the set of functions ¥ : G — 5, which satisfy y(xh) =
m,(h)*(x), and which are square-integrable with respect to the inner product in 7,
namely (,,¥,) = [odX(¥,(x), ¥,(x)),, where (.. .), is the inner product in 5, (cf. [8,
VL.2], or 1.2.3 ad 1). The representation n* then acts by (z*(y)¥)(x) = ¢(y~*x). Our
task is to decompose n*(G) into irreducible constituents 7 (G).

One has to solve two problems:

1. the determination of Gx < G, that is, the set of irreducible representations of G

which (weakly) occur in n%, as well as their multiplicities n¥;

2. the explicit form of the functions in #* that transform irreducibly, or, in physical
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terms, the eigenfunctions of the Hamiltonian in case it is G-invariant (or, if
appropriate, to reduce the Schrodinger equation to a radial equation if the
Hamiltonian is only partially G-invariant).
These problems are nontrivial even in case that y = id, i.e. the identity representation
of H. Take, for example, G = SO(3) and H = SO(2); then one has to find the explicit
form and multiplicities of the spherical harmonics.

2.1. Case I: H compact

As mentioned in the Introduction, we will be able to deal with two special cases,
and here we start with the first one, in which H = K is taken to be compact. In addition,
for reasons to become clear shortly, we require that n? is either 0 or 1 for all y € G and
x € K. Here the number n} is defined as the multiplicity of « in 7,(G | K) (that is, the
representation x, restricted to K). This condition is quite strong, but is satisfied by the
pair G = SO(3), K = SO(2), which corresponds to the Dirac monopole. A much weaker
condition, sufficient for conventional harmonic analysis to work out nicely, consists
in requiring the above just for x = id. A pair (G, K) meeting the latter demand is called
a Gel'fand pair, and explicit conditions on G and K to meet it are known [6, 18, 19].
No such conditions are known (to the author)in the general case, but let us nevertheless
call a pair G, K satisfying the strong condition a generalized Gel’fand pair. The
statement above then amounts to saying that (SO(3), SO(2)) is a generalized Gel'fand
pair.

Instead of reducing #™%, it is technically simpler to decompose #'(k) =~ @% H#™ (cf.
L.(3.10)). We realize #(x) as the space of functions ¥* : G — .#, satisfying y*(xk) =
m (ky*¥*(x), and being square-integrable with respect to the inner product in # (k)
defined by

W1 y3) =d, L dXTryF () (3 (x))*. 2.n

The representation #* ~ @* n* of G on #(x) is then defined as above, by

(7<) (x) = Y (y ™ x). 22

For later use, we record how the representations #* are embedded in the left-regular

representation on L?(G). Specializing the results in 1.3.2 to the compact case, we have,
in the sense of the decomposition of unitary group representations,

L*(G) ~ #5 = @ g H (%), (2.3)

the unitary map P : L*(G) — #; being given by

(Py)'(x) = Jdk T (k)Y (xk); 24)
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strictly speaking, this is defined on L'(G) n L%(G), and extended by continuity. Now
define a map P*:L*(G)— #/(x) by (2.4) as well, keeping x fixed (and obviously
replacing the left-hand side by (P*y,)(x)). We are going to employ this map in the
following considerations, which are inspired by a similar procedure for x = id in [19,
Chap. 16].

Distributions on G and unitary representations

Consider the Schwartz space 2(G) = L*(G), the inclusion being continuous [13,
V1.5, Th.12(3)]. Define a sesquilinear form &* on 2(G) x 2(G) by

O"(f1,f2) = (P*f1, P*f3), (2.5)

the inner product being taken in (k). This form is separately continuous in each
variable (in fact, by [13, V1.6, Th.16] it is jointly continuous because it is left-invariant,
see below), so that, by the Bruhat-Maurin generalization [13, V1.6, Th.14] (to arbitrary
locally compact groups) of the usual kernel theorem the form &* is related to a
functional @* on 2(G) (now considered a *-algebra with the standard convolution,
and an involution given by (f*)(x) = f(x™")) by

O (f1,.f2) = 0" (f1 + f5*). (2.6)

Notice that @* is left-invariant in the sense that @*(n, f,, 7. f>) = ®*(f}, f>), and that,
by the Schur orthogonality relations for compact groups, the projector P* satisfies
P*f = P*f %, 0, where 0, = d_y, with x,(k) = Tr (k) (the convolution integral is over
K only, see below). These facts imply that w* has the following property: w*(f) =
w*(P.f), where P, projects C.(G) onto the well-known [18, 1.4.5.1] (also cf. [8, 15])
function algebra 1, ,(G). Elements of I, (G) are members of C,(G) which satisfy f(kx) =
f(xk) as well as f *, 0, = f (which taken together also imply that 8, f = f), where
the convolutions are taken over K only:

(f #x 0)(x) = Jdkf (k™) 8, (k);

O *x f)X)= fdk 6,(k)f (k™ x). 2.7
Explicitly, the projector P, may be defined by
(P f)x) = f dk( f xx B)(kxk™). 2.8)

In addition, it is obvious that w* is a positive definite distribution on %(G) in the
sense that w*(f* f*) > 0 for all f. It is well-known that positive definite functionals
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on the C*-algebra C*(G) correspond to unitary representations of G. The construction
given below requires a similar correspondence between distributions and unitary
representations of G. In general, a distribution w will not extend to a functional on
C*(G), so that we cannot appeal to the standard C*-algebra-result here. Fortunately
enough, this would be quite unnecessary anyway, because, as shown in [13, VL.6], the
GNS-like construction of a unitary representation from a positive definite functional
can be carried out at the distributional level as well.

Thus one can associate a representation =, of the convolution algebra 2(G) on a
Hilbert space 4, to the distribution w, in such a way that there is an identification of
equivalence classes / of functions f € 2(G), and vectors in a pre-Hilbert space @, =
#,, with the inner product in ®, given by (f;, f») = w(f, * f*), and the representation
n, acting by n,(f)§ = f/:g. The equivalence relation is evidently given by f ~ g if
f—g~0,and f ~ 0if w(f*f*) = 0. 5, is then defined as the Hilbert space closure
of @, and the above relations all extend to J#, by continuity. The associated repre-
sentation of G (called mn, as well), is then extracted by the connection = (f) =
{dx f(X)my(x).

One even has more structure here (needed in the sequel) compared to the usual GNS
construction: @, can be given a nuclear topology (derived form the usual Schwartz
topology on 2(G)) which is finer than its Hilbert space topology, so that the embedding
®, c J, is continuous, and one has a Gel'fand triplet (rigged Hilbert space) @, <
X, — @, where the last space is the dual of the first (with its nuclear topology).

It is now evident that the distribution w* defined by (2.6) leads to the representation
7 on H# (k) in the above sense, i.e. #,. = #(x) and ©,. = #*. As we see it as our task
to reduce 7%, we may now appeal to a decomposition theorem [13, V1.6, Th.20], stating
that (as a consequence of the so-called complete von Neumann spectral theorem) the
Hilbert space #°(x) and the distribution w* can be decomposed in the sense of direct
integrals [13] (also cf. 1.3.2 for a very brief review of this notion):

N ®
H (k) ~ H(k) = L du(A) #(2);

* =f du(Aw,, 2.9)
A

where each #(4) carries the representation =, of G. Here the set A may be taken to
be G, (see the preamble to this chapter), and the measure u is yet to be determined.

Connection with spherical trace functions

The above theorem concerns existence rather than explicit construction of the
decomposition. In the present case it is possible to proceed, by relating the distributions
w, to so-called spherical trace functions. The following is a generalization of a com-
putation for k = id, which establishes a similar connection with zonal spherical
functions [ 19, Chap. 16]. The starting observation is that J#(x) carries a representation
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p of I . (G), defined by
PUWE =y +f. (2.10)

Since f is K-central, this is well-defined (i.e. the right-hand side satisfies the constraint
mentioned prior to (2.1) that elements of #(k) have to satisfy), and it is easily shown
that the operators p(f) are bounded (cf. [19]), and that p is nondegenerate (that is,
no non-zero subspace is annihilated by all representatives p(f)). The same property
of I, (G) may be used to show, by an easy computation, that the algebra p(I, .(G)) is
in the commutant of 7*(G). Therefore, by standard reduction theory [13], decomposing
an abelian subalgebra in the uniform closure I} of p(I, .(G)) amounts to decomposing
#* (and vice versa). Now, under our assumption that the pair (G, K) satisfies the
generalized Gel'fand condition the algebra I, ,(G) can be shown to be abelian itself [18,
6.1.1.6]. Hence p is diagonal on ff(x):

p=p= f du(A)p; (2.11)
A

|
where p; : I, .(G) — C are representations of I, ,(G). (The notation in (2.11) means that

(PUW)A) = pi(S W Q).
Now we are in a position to establish the connection between the p; and the w;.
Take Y[ € #(x), i = 1, 2. By the first member of (2.9), and (2.11) we have

(p(NWE.¥5) = L dpDp (NPT YEA));, 2.12)

where *(4) is the image of y* in #°(1) by the general spectral theorem [13, .7], and
(...); is the inner product in 3°(2). On the other hand, by (2.10) the same expression
equals { dp(A) (W1 * (D), ¥5(A);-

Choose f; € 2(G), in such a way that P*f; = . The inner product in #(4) is given
by w,, so that we can combine the information in this paragraph and the previous one
to conclude that the following relation must hold almost everywhere (a.e.) with respect
to u:

PN (fi*f3*) = o, (fi * [+ f5). (2.13)

Now choose f and f, in D,(G) = D(G) L (G). Then f+f, = f, +f. Thus (2.13)
implies, by the arbitrariness of f, (in 2(G)), a.e.

pi(Nwi(f1) = pa(fi)wi(f). (2.14)

Hence w; = a(4)p, as distributions on 2, (G), where a is an a.e. strictly positive function.
(Its positivity follows from the fact that a(d) = w,(f)/p,(f) for arbitrary f, which may
be taken an approximate unit for Z,(G). p being a representation of I .(G), p;(f) must
then converge to 1, whereas the w, are a.e. positive definite by definition.)
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The distributions «, are actually defined on 2(G), where they satisfy w,(f) =
,(P, f), where P, is the projector on I, ,(G) defined above (2.7). As we shall see below,
the representations p, of I, . (G) may also trivially be extended to distributions on 2(G),
where they satisfy the same projection property. Thus we conclude that @, and p, are
proportional as distributions on G (for y-almost all A € A). We may absorb the function
o in the measure dy, defining dv = a dy, and rewrite the first equation in (2.9) as

H(k) = J ® dv(A)H#(4), (2.15)
A

where #(J) is the carrier space constructed from the distribution p, by the procedure
sketched earlier in this section.

What do we know about the set A? The p, are irreducible representations of
I¥ o I .(G), so that I* e I:‘,‘. More detailed information on the inclusion will be
provided later on, but for the moment it appears to be relevant to investigate the set
IAC,,‘ of irreducible representations of the algebra I, ,(G).

Spherical trace functions

This representation theory can be reduced to the study of so-called spherical trace
functions [18, 11.6], [8, VIL.3], [15]. Thus we proceed to give a very brief review of this
theory, restricting ourselves to the case in which I, ,(G) is commutative (although some
of the results stated below are valid in general, cf. the references above).

Firstly, there is the trivial fact that all irreducible representations p (= p; for fixed
A) of I, ,(G), being abelian, are one-dimensional. Less trivial is that each p is given by
a spherical trace function p (which does, of course, depend on «, but we suppress this
dependence in the notation) by means of

p(f) = J dx p(x)f(x), (2.16)

where p satisfies all properties of functions in I, ,(G), except that it need not have
compact support. Also, it is bounded, and normalized by p(e) = 1. What makes the
spherical trace functions amenable to explicit investigations is Godement’s theorem:
For each non-zero spherical trace function p there exists a unitary representation &, of
G ona Hilbert space 5, containing a representation n, of K in the class k once, such that

px) = diTr P()7 ,(x) P(x), @.17)

p

where P(x) is a projection operator on the subspace of #, which carries n,(K). Moreover,
7,(G) isirreducible if and only if p is positive definite, and p characterizes &, up to unitary
equivalence.

Now we have seen that the p, in (2.11) are indeed positive definite, but this does not
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mean that the carrier spaces #(A)in (2.15) are irreducible, because they correspond to
p via the GNS construction, rather than by the connection (2.17). However, the relation
between the #(4) and the #, = H, of Godement’s theorem is trivial: decomposing
the state p on 2(G), one evidently has

H) =% H; 7w, = O%F,,. (2.18)
Hence (2.15) may be rewritten as
-~ e -~
H(k) = d,c-f dv(A)H,, (2.19)
A

where it is now understood that A = I:,,‘, and that 3, is the carrier space of an
irreducible representation n; = 7, of G corresponding to the spherical trace function
p; attached to the class k (i.e. as representations of I, ,(G)) by means of (2.17).

Let us note, that some aspects of this results were to be expected on the basis of the
(generalized) Frobenius reciprocity theorem [8, VI.11, Th.7]: the fact that each ir-
reducible representation 7, of G (weakly) occurring in 5 (x), if subduced (restricted)
to K contains the class x once is an immediate corollary of this theorem, as #(x) is
the direct sum d, copies of #*, which by definition is the carrier space of the repre-
sentation n*(G) induced from x. This explains the multiplicity d, in (2.19) as well.

Finally, the measure v on A is still unknown. In case that ¥ = id and G is a semisimple
Lie group, an explicit expression exists in terms of Harish-Chandra’s ¢c-function [19],
but in the general case discussed above this problem appears to be open (for partial
results in the semisimple case cf. [157). What we can say is that it follows from [15]
that v is supported by those points in A which correspond to the positive definite
spherical trace functions.

A simple example

Let us now, as an illustration of the general formalism, consider the rather trivial
yet illuminating case G = K. Note, that the pair (G, G) is a generalized Gel’fand pair,
so that the theory developed above is indeed applicable. Then #(x) by definition
consists of those functions y*: K — M, which satisfy y*(xy) = n(y )¢ "(x). Hence
H(x) is isomorphic to the matrix algebra M, itself, by the correspondence (k) 3
Yie o M, € M, given by y(x) = 7, (x )M, and M, = yfi(e). The inner product in
M, corresponding to the one in J#, is evidently (M, N) = d, Tr MN*. G acts on M, by
n*(y)M = n,(y)M, so that the commutant of z*(G) is M,, acting on itself by right-
multiplication. This leads to an explicit reduction of the carrier space M,, hence of
H(k), namely #' (k) = @* H#,, each copy of H#, corresponding to a column vector in
the matrix algebra M,.

Let us now try to reproduce this result by applying the formalism of spherical trace
functions outlined above. Firstly, it is easily inferred, using the Schur orthogonality
relations, that I, .(G) is spanned (as a vector space) by the single function 0. (defined
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after (2.6)), so that I, (G) ~ C. Secondly, the representation p of I, (G) on #(x),
constructed in (2.10), here comes out, in the realization on M, , to be p(8,) = 1 (the unit
matrix in M, ). Hence p appears in fully reduced form, and we conclude, in conformity
with the explicit discussion above, that M, is already the direct sum of irreducible
carrier spaces. Thirdly, the spherical trace function corresponding to the irreducible
subrepresentation of p of I, ,(G) is easily seen to be p = y,./d, (the normalized character
of k), which is an explicit check of Godement’s theorem above. Thus fi, = m,, as
expected.

The monopole-like situation

A more general application of the formalism is G compact, but not equal to K. This
is the situation relevant for the Dirac monopole, so let us specialize the abstract theory
to this case (assuming, of course, that (G, K) is a generalized Gel'fand pair). The main
simplification of the general theory is that G is now discrete, so that the direct integral
machinery in unnecessary in favour of direct sums, and that Frobenius duality holds
in its naive form. In particular, the measure v as well as the set A may now be
determined explicitly.

To find 1, .(G)(= I,(G)), embed it in L2(G) and map this into 5#(x) by means of (2.4).
It is easily seen (and follows from [18, 6.1.1]) that the image of I, ,(G) under the map
P* consists of those elements of J#(x) which are continuous functions, and satisfy
Y (kx) = m (k~1)*(x). Given the other constraints that y* has to satisfy in order to
be in J#(k), this condition is seen to be met only by the linear span of functions of the
type ¥(x),s = m,(x),,, Where p, ¢ =1,...d, are matrix indices, and 7,(G|K) is
supposed to contain 7, (K) in its upper-left corner, with ye G,. Now use the
fact that the map P*, if restricted to I (G) = L*(G) has an inverse, which is given by
(P Y™} (x) = d, Try™(x), to conclude that I, (G)is spanned by functions of the type
f(x) = Tr P(x)m (x) P(x), where the projector P(x) is defined after (2.17). Hence I, (G)
consists itself of spherical trace function which belong to the class k (the class of
representations conjugate to ).

The spherical trace functions defining irreducible representations of I, .(G)
are then (by the Schur orthogonality relations) obviously the functions 4,(x) =
Tr P(x)m,(x)P(x)/d,, as was to be expected from Godement's theorem (2.17). Hence
A = G,, and the representation theory of I, .(G) is completely determined by the
equation p,(f,) = 4,,. It goes without saying that the spherical trace function p,
corresponds to a representation n,(G) in the class y, so that one finally has

H ~ @}’eéx ‘%’ m @ye@, 7[),. (220)

Let o#* be realized as sketched in the beginning of this chapter (with H and y replaced
by K and «, respectively). It then follows from the one-but-last paragraph that the
irreducible subspaces #, are embedded in #°* as follows: basis vectors e, u = 1...d,,
are given by elements V), in #*, such that

lp(";)u(x)a = ny(x)‘m L] (221)
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under the same conditions as stated above. This formula determines, among other
things, the explicit form of monopole harmonics (cf. Chap. 3).

22. Case 2: H discrete and Q compact

Let us now assume that H is a discrete subgroup, which may be non-compact (for
H compact and discrete the theory in the previous as well as the present section is
applicable). The discussion is considerably simplified if we assume that Q = G/H is
compact, as in the application to the Aharonov-Bohm effect (although all of the results
reviewed below may be generalized to the non-compact case [9, 13]). The following
discussion is just a repetition of material in [9, Chap. 1]; also cf. [8, VIL6].

Let us start with the first problem mentioned in the beginning of this chapter. The
main virtue of the compactness of Q is that 3% and n* can be discretely reduced, such
that each irreducible representation n, occurring in n* has finite multiplicity ny. Thus
we have

HE > @, onf Ky ¥~ @, 0¥ m, (2.22)

and the problem is to determine the multiplicities #¥ < oo.

One of the tools available for solving this problem is the Selberg trace formula. Let
f € L(G) be such that n*(f) = {dx f(x)n*(x) is of trace-class. By calculating Tr z*(f)
in two different ways one then finds

f dx Y f(xhx')Trm(h) = ZG nﬁj dx f(x) Trr,(x). (2.23)
F heH y G

€

Here F is a so-called fundamental domain in G, i.e., an open set such that the union of
the closures of its translates under all h € H is G, whereas h, F ~ h, F isempty if h; +# h,.
For example, if G = R and H = Z then the set J0, 1] is a fundamental domain. In case
that 5, or J, are infinite-dimensional the traces have to be understood in the distri-
butional sense, that is, “Tr n,” is just the name of a distribution satisfying (Tr z,)(f) =
Tr(n,(f)) for f € 2(G). The use of the Selberg trace formula in the reduction problem
is brought about by choosing f in such a way that it determines the multiplicities n¥
(see Chap. 4 for an example).

A second tool for determining the n¥ is the generalized Frobenius reciprocity
theorem (called the duality theorem in [9]) n} = n!, where n} is the number of times
the class x occurs in 7,(G | H). For d, = oo this occurrence is understood to be in the
weak sense, see below.

For d, = 1 one may relate this application of the duality theorem, as well as the
Selberg trace formula, to the theory of automorphic functions. Given a carrier space
3, of n,(G), construct the Gel'fand triplet ®, = &, < @, (this step is unnecessary if
d, < o). Then the representation 7, extends to &) in the obvious way, that is, given a
functional ¢ € @, sending Y € ® to {@,¥) € C one defines n(x)p by {n(x)o,¥) =
{@,n,(x"")¥>. The duality theorem now says that n} is equal to the number of linearly
independent elements of ®; for which n.(h)¢ = n,(h)@. Such distributions ¢ are called
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(generalized) automorphic functions, and one sees, that the Selberg trace formula is a
statement about the dimensions of the respective spaces of automorphic functions
corresponding to y and x. (Note that here we have followed [13, VIL.9] rather than
[9].) Once again, this procedure will be illustrated, in a rather trivial way, at the end
of 4.1 below.

Finally, the second problem mentioned in the beginning of this chapter, that is, the
explicit determination of the functions in 2#* which transform irreducibly under =%,
might be discussed. This problem is related to the theory of automorphic functions as
well, and since its solution is absolutely trivial in our application to the Aharonov-
Bohm effect, we will not comment on it any further.

3. Dirac Monopole

3.1. Particle on a sphere

As explained in the Introduction, the study of a particle moving on the two-sphere
Q = S?is a prelude to the analysis of a charged particle whose configuration space is
R? minus the origin. We realize the two-sphere as Q@ = SO(3)/S0(2) = G/H, so that the
algebra of observables of the particle is & = C*(SO(3), S?). By the general theory (cf.
1.1.1) we know that the superselection sectors of this system correspond to SO(2) = Z,
that is, they are labeled by an integer n.

We label elements of SO(3) by the Euler angles [3], so that we have

x = R(a, B,y) = e™*se7H2e700%5, 3.1)

where the J; are the standard generators of the Lie algebra so(3), and 0 < o < 27,
0< B <7 0<y<2n Weidentify H with the group of rotations around the z-axis,
and realize Q as the set {Rq,; R € SO(3)} with R?® 3 ¢, = (0,0, 1); its points are denoted
in spherical co-ordinates by g = (¢, 6). The representation n, of SO(2) is given by

1.(R(0,0,7)) = m,(R,(3) = e™ . (3.2)

As we know from I (also cf. (1.1.1)), the irreducible representation n” of the algebra
&/ corresponds to the representation #" of G which is induced by #,(H). In 1.2.3 we
gave three realizations of the carrier space J#* in the general case; let us now apply
the abstract formulae given there to the concrete case studied here. Each realization
will eventually correspond to a known description of the magnetic monopole.

Realization 1

The following realization has been used by Langlands in his study of the Dirac
monopole [12]. Here =" is realized by =} acting on a Hilbert space #}", which is given
by equivalence classes of complex-valued square-integrable functions on SO(3) which
satisfy the constraint

YI(xR.()) = e™Yi(x). (3.3
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Hence the y-dependence of y{ is given by y(a, B,7) = exp(iny)y¥(, f,0). The inner
product in #7 is given by

1 -
Wi ol) = 4 Jda dBsin By (e, B, ) @1(x B,7). (3.4)

T

The representation 7} of SO(3) and C(S?) corresponding to n%(#/) (cf. (1.1.1)) on
H7 is now given by

(my (W) x) = Yy x);
(=3 (WD) (@ B,7) = fla, BWi( B,7). (3.5

Realization 2

Next, consider nl(«/) on #7 = L*(S?) = L*([0,2xr] x [0,7]; d¢dOsin8). This
realization is in some sense the most straightforward one, and, as we will see, it is the
closest Hilbert space approximation to Dirac’s description of the monopole [7]. To
define n2(G) we need to choose a measurable section s : S* — SO(3); let us consider the
two choices

5+(4,0) = R(¢,0, T ¢). (3.6)

Evidently, s, is discontinuous at the south pole, whereas s_ is so at the north pole.
This is irrelevant in the present Hilbert space context. To be definite, we adopt the
choice s = s, in the formulae below. Writing y = R(x, 8,7), 1.(2.13) is translated as

(T5()Y3) (4, 0) = m,[R(, — 0, —$)R(% B,7)R(4y, 0,, —4,)1¥3(8,, 6,);
(R3(W3)(9,0) = (4, 0)¥1(8,6), (3.7
where (¢,, 0,) are the co-ordinates of the point (¢, 6) rotated by y L

One may intertwine n} and =} by a unitary map T}, : #7" — #7', cf. 1.(2.15), 1.(2.16),
given by

(T291)(9,0) = ¥1(8,0, —¢) = e ™*Y](9,6,0), (3.8)

that is, the right-hand side is not given by ¥/7(¢, 6,0), as one might naively expect on
the basis of (3.4). The inverse is

((Tr2)*¥3)(0, B,y) = ™ Y3(a, B). (3.9

Realization 3

For reasons alluded to in Sec. 1, and to become clear shortly, in case that G is a Lie
group, a realization of #”" inspired by differential geometry is convenient. In the
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context of a conventional quantum-mechanical description of the magnetic monopole,
such a realization of the Hilbert space of states of a charged particle moving in a
monopole field by means of “sectional wavefunctions” was first suggested in [10]; also
cf. [20, 4].

The main goal here is to avoid the use of discontinuous sections in realization 2
above. Thus one covers S? with two (or more; this would lead to yet another unitarily
equivalent realization) co-ordinate patches U, , such that continuous sections s, :
U, — SO(3) are possible. Choose ¢ > 0, and define U, and U_ to be the open sets of
points on S? for which 6 € [0,7/2 + ¢[and 0 € Jn/2 — ¢, 7], respectively. Vectors y§ in
the “Hilbert space of sections” 3" are pairs (y}),, each of which is an equivalence
class of L2-functions defined on U,, such that in the overlap region U, n U_ the pair
is related almost everywhere by

(¥3)-(¢,6) = e*"*(y3)..(4,6). (3.10)

The inner product in 7 is given by translating 1.(2.18) with an appropriate choice of
a partition of unity:

W= T | wnen @11

T r=

where §2 = S} and S2 = S7 are the northern and southern hemispheres, respectively.

The action of the representations 7§ of SO(3) and C(S?) follows from 1.(2.19). Let r,
s stand for the signs + or —, r being + if (¢,0) € U,, and s being + if (¢,,0,) e U,
(cf. (3.7)). Then we have

(r3(0)¥3)+(4,60) = 7,[R(rg, —6, — H)R(@ B,V)R(S,. 6,, —56,)1(h2)s(d, 6,);
(3(N)¥3)(8,6) = f(4,0)(¥3)(9,0). (3.12)
The representations =3 and =} , are, of course, unitarily equivalent, and their

intertwining unitary maps Ty : #7 — #5 and Tjy: #; — A7 can be inferred from
1.(2.20) and 1.(2.22), respectively. This gives

(T5¥7),(8,0) = Y1(4,0, —rd) = e "¢ 1(4,6,0), (3.13)

with inverse

((T3)*¥3) (@ B,7) = ™), (@, B), (3.14)

where r relates to (o, f) in the same way as it does to (¢, 8). The connection between
A7y and 37 is more direct: on the northern hemisphere the wavefunctions are identical,
whereas on the southern hemisphere they are related by the gauge transformation
(3.10). In the sequel we will only need the inverse transformation (also cf. 1.(2.22))
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(T3)*¥3)(8,0) = ¥5).(4,0) if (¢,0) e U, ;
(TF5)*¥3)(6,0) = e 2™ WY3)-(4,0)  if(4,0)e U-. (3.15)

Once again, in the overlap region either expression may be used.

Representation of the enveloping algebra

In order to construct the Hamiltonian later on, and as a matter of independent
interest, we will now study the representation (z")' of %(so(3)), the enveloping algebra
of SO(3), which is derived from the unitary representation n" constructed above in
three different guises. The standard symmetric generators of so(3) are denoted by J;,
i = 1,2, 3. The representatives of elements in %(so(3)) are unbounded operators, and
it turns out that the related domain issues (which, as we shall see, have a direct physical
content) are most easily handled on the sectional Hilbert space %'

We write ((n5) (J)¥35), = J7.(¥3),, and find the following formal expressions from
(3.12)

. o .. 0 cos¢ i
Ji, = 1cos¢cot0@ + 1s1n¢% + n—sm(l —rcos8);
5 .
J3, = isin¢cot05(z — icos¢% + n%(l —rcosf);
n H a
J3, = —1%+rn. (3.16)

(Choosing r = + one obviously has formal expressions for the generators on #;".)
We now have to find a domain in 3 where the operators in (3.16) are essentially
self-adjoint. The standard procedure to follow in the representation theory of envelop-
ing algebras is to find the Garding domain [13], which consists of all vectors of the
form n(f)y, with f e C*(G) and ¢ € #. Applying 1.(2.23) to the present situation, it
follows that the Garding domain D& c 37 is given by vectors

(l//}'),(¢,9)=J dp(, B, Nf(R(4,0, —r$)R(@, B, y)e” " P WY3)(—v, —B), (3.17)

S0(3)

with f € C*(SO(3)), and du the Haar measure on SO(3).

To proceed, we use the following rather trivial argument: let an operator A’ be a
symmetric extension of an essentially self-adjoint operator 4. Then A’ is essentially
self-adjoint. (This follows from the fact that D(A"*) = D(A*), so that A’ must have zero
deficiency indices.) Now define the space C3(S?) of pairs of functions y, which are in
C*(U,) and satisfy (3.10) on the overlap region. If we regard C*(U..) as a subspace of
H#, the conditions on ¥ to be in this subspace are (apart from (3.10))
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1. ¢, e C*([0,27] x [0,n] nU.);

2. ,(0,0) = ¥, (2n,8), and similar for all derivatives;

3. ¥4(¢,0) = ¥.(0,0); (0™./0¢™)(,0) = O for all m > 1;

4. the previous condition, but now for 6 = = rather than 6 = 0.

It is clear from (3.17) that Dg = C*(U,). The operators defined in (3.16) are still
symmetric if extended to the domain C*(U, ). Hence they are essentially self-adjoint.
A different way to arrive at this conclusion is to start at 7", and notice that the Garding
domain D§ = #, n H#}, where #, is the space of functions which are convolutions
f*y, with f € C°(SO(3))and y € L%(SO(3)). Clearly D¢ = C*(SO(3)) n #7. The gene-
rators (n}) (J;) (which are written down, e.g. in [3, Eq. (3.101)]) being symmetric also
on this larger domain, it follows that they are essentially self-adjoint if extended to
C*(SO(3)) n 5#7. Now this domain is mapped onto C*(U.,) by the unitary intertwining
map (3.13), and there we are.

It remains to find a domain of essential self-adjointness for the generators (n) (J;) =
Ji. on #7 (see(3.16)). This trivially follows from (3.15); the result is that the appropriate
domain is given by functions satisfying conditions analogous to 1, 2, and 3, above,
whereas 4 is replaced by
4. Y(p,m) = e~ 2y (0, 7).

As a check on this domain, one may notice that the singularity for 8 = = in (n2)(J,)
and (n3)'(J,) is removed if these operators act on functions satisfying 4. This condition
is supposedly a relic of the Dirac string in the naive description of a magnetic
monopole. Note, that the wavefunction by no means has to vanish at the south pole!

Finally, we should remark that the domain of the formal operators (3.16) has also
been studied by Hurst [11], where no explicit conditions of the above type are given.
However, the last section of this reference contains germinal ideas which, although
stated in a non-C*-algebraic language, resemble the way in which the dynamics of a
particle moving in a monopole field is constructed below.

Dynamics

The construction of a time-evolution on the algebra of observables .7, as well as its
implementation in its irreducible representations, has been reviewed in 1.1.2 and 1.1.3.
Here we can literally follow the prescription in 1.1.3. We choose the Casimir operator
C = J? + J} + JZin %(s0(3)), and according to I the Hamiltonian H" in each irreduc-
ible representation n"(&#) on #™" is given, up to a c-number, by H" = (z")'(C). For
reasons to become apparent later, we choose the constant to be —n2, so that in the
realizations ;| = 1, 2, 3 we have the Hamiltonians

HY =3 (ayUR) - n?. (3.18)
k=1

These operators, which are defined and essentially self-adjoint on the domains de-
scribed earlier, will be interpreted at the end of the next section.
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Monopole harmonics

The Hamiltonian H” is SO(3)-invariant (its bounded spectral projections commute
with the operators n"(x)), so that in the realization H} on 5} its eigenfunctions are
given by (2.21). In this formula the index y € G should be replaced by je 86\(3) =N,
the index k € K becomes n e Sé\(Z) = Z, u now runs from —n to n, and o takes the
single value n. The condition for (2.21) to be meaningful is that =, (K) occurs in
7,(G | K), which here means that j > |n|. Hence the eigenfunctions on 7 are given by

W) = Djn(x), (3.19)

with x € SO(3), and D the standard D-function [3, 3.6]. On 47 we find from (3.8) and
the previous reference (where the d-functions appearing below are given as well) that

(V3)i(9,0) = eV d] (). (3.20)

The “eigensections” in #7 are then apparent from (3.20) and (3.10). Note how the
domain conditions 1-4 and 4 given earlier are satisfied as a consequence of the
properties d,,(0) ~ &, and df, () ~ & _,, with,m= —j, ..., j.

3.2. The Dirac Monopole

We now include the radial co-ordinate in the problem, that is, we take the configura-
tion space to be Q = R® — 0~ R* x S where R* is homeomorphic to R via the
exponential map. A group acting transitively on Q is G = R* x SO(3), where R* (with
generic element a), regarded as a group under ordinary multiplication, acts on the
R*-part of Q by sending r > 0 to ar, whereas SO(3) acts on S? as in the previous section.
Since the former action is free, we still have H = SO(2) as the little group. Taking the
algebra of observables of a particle moving in Q to be & = C*(G, ), with the above
choices of G and Q, we see that the superselection sectors are classified by H=12, as
in the case Q@ = S studied in the previous section.

The radial co-ordinate not influencing the superselection structure of the model, the
main technical difficulty its inclusion brings about lies in the construction of the
pre-Hamiltonian (cf. 1.1.2). The problem is that the usual radial momentum operator
is not the representative of an element in the enveloping algebra of R, so that we
cannot follow the algorithm stated in 1.1.3. To see this, consider the faithful represen-
tation of o givenin L.(3.1). The Haar measure on R* being dr/r, we have #} = L*(G) =
L*(R*;dr/r)® L*(SO(3)), but in the present situation a more natural realization is
provided by

#, = L2(R*) ® L*(S') = L2(R*;r?dr) ® L*(SO(3)). (3.21)

Vectors in J#, and J, are related by the unitary map T: 3, > #;, defined by
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(TYL)(r, R) = (4m) 21~y (r, R), (3.22)

and the corresponding representation #, of &/ on #; follows from L.(3.1) and (3.22) to
be

(#Lla, R)WL)(r, R') = a~ ¥y (r/a, RTIR');

(R W)@ R) = f(r,0 BWL(r, 0, B,7), (3.23)

where it is understood that R’ corresponds to the Euler angles (z, B, 7).
In addition, fﬁ carries the right-regular representation #;(G), given by

(%r(a, RWL)(r, R') = a®*{ (ar, R'R). (3.24)
It follows that #(SO(2)) is generated by
(7R) (J3) = —id/dy, (3.25)

defined and essentially self-adjoint on functions in J#, which are C* and periodicin y.
According to 1.1.2, the pre-Hamiltonian H, must be an (essentially) self-adjoint

operator that commutes with #g(H) = #4(SO(2)), where SO(2) is embedded in SO(3)

in the way explained after (3.1). The pre-Hamiltonian in any case should include a

radial part p?, where p, = —i(6/0r + 1/r) is the usual radial momentum on L3(R3).
However, adopting the name p for the generator of R*, one has (ng) (p) = —ird/or and
hence (#g) (p) = —ird/or — 3i/2, which comes nowhere near p,. An additional problem

comes from the 1/r* factor multiplying the angular part of the usual free Hamiltonian
expressed in polar co-ordinates. In view of this, there exists no element C of %(%) such
that H, = (#z)(C). Instead, we proceed “by hand”. Consider the operator on
defined by the formal expression

12 1
H,=p} + 2 kz,l (feY(J2) = P + 2((#R)(C) — (#R)U3)), (3.26)

where C is the usual quadratic Casimir operator in #(so(3)). We define this on the
domain D = CP(R* U {0}) ® D§(SO(3)),, where D§ is the Garding domain for 7z on
L?(SO(3)), the suffix r meaning that one restricts this set to those functions y for which
H,y e #,, and the tensor product being the algebraic one. We then have

Theorem 1. Define the pre-Hamiltonian (3.26) on D. Then

. H, is essentially self-adjoint,

2. the closure of H, commutes with #g(SO(2));

3. the closure of H, commutes with #;(SO(3)).
(To be precise, the bounded spectral projections of the closure of H, have the two
last-mentioned properties.)
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Proof. As to item 1, the spherical part of this expression is essentially self-adjoint
on the given domain, and it follows from (3.25) in conjunction with (3.3} that its closure
has spectrum {I(/ + 1) — n?}, where l € N, n € Z, and |n| < I. Hence the radial part of
(3.26) can be examined from the partial pre-Hamiltonians H." = p? + (Il + 1) —
n?)/r?. 1t follows from [ 16, Th.X.11] (or by explicit computation) that these expressions
are essentially self-adjoint for ! > 0;for !l = n = 0the deficiency indices are easily shown
by hand to be (0,0), due to our specific choice of D, which enforces the boundary
conditions lim,_o r2y(r) = lim,_or? dy/dr = 0 on elements of D((H;")*). Note, that
replacing C*(R* U {0})in D by C(R*) would spoil the essential self-adjointness, as it
leads to arbitrary boundary conditions near 0 (also cf. [2]). Item 2 follows from the
fact that C is central, so that (fz) (C) = (#.)(C), and 3 follows from Segal’s theorem
stating that the von Neumann algebras generated by the left- and the right-regular
representation are each other’s commutant [13, VI.12]. O

By 1.1.2, this result means that the closure of H,, which we will denote by H, as well,
defines a time-evolution on the algebra of observables .o, and this time-evolution is
SO(3)-invariant.

Irreducible Hamiltonians

We now look at the Hamiltonians implementing the time-evolution on ./ in each
of its irreducible representations. Most of the work has already been done in the
previous section, because the inclusion of the radial co-ordinate does not affect the
representation theory of .« In particular, its representations =, (we use the same
notation as in the purely spherical case) are given by the tensor product of the
representations constructed in 3.1 with a radial term that can be read from (3.23), on
carrier spaces which are a tensor product of L2(R*;r?dr) with the spaces #;"con-
structed in 3.1. Let us concentrate on the realization n5 on #5 = L*(S?) given in 3.1.
Tensoring with L2(R*;r? dr) then gives the carrier space L?(R*) expressed in spherical
co-ordinates; this is the whole point of the transformation (3.22). The time-evolution
defined by the pre-Hamiltonian (3.26) is then implemented by

N 1
H}=p? + r—zHg, (3.27)

where H} is given in (3.18). The only part of this result that needs explanation is how
the term (%) (JZ) in (3.26) leads to the term n? in (3.18). This follows from the explicit
reduction of the (abstract version of) the representation =, (/) (cf. 1.3.2); in particular,
the irreducible subspaces #; are embedded in J#, by means of the constraint (3.3)
(with the radial co-ordinate added). As we see from (3.25), () (J#) is therefore diagonal
on these subspaces with eigenvalue n?. J#} being unitarily equivalent to #7' (cf. (3.8),
(3.9)), the result therefore follows.

The domain of the formal expression (3.27) immediately follows from the appro-
priate domains for the spherical part and the radial dependence separately: the angular
dependence of the function y = D(H2), with argument (r, ¢, 8), for fixed r is governed
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by the conditions 1-4’ stated after (3.17), whereas the radial dependence is such that
for fixed (4, 0) it is in C*(R* U {0}), the complete function being further restricted by
the demand that the operator (3.27) does not map it out of L%(R3). By our previous
considerations, H} is essentially self-adjoint on this domain, and its closure, which we
denote by the same symbol, is a bona fide Hamiltonian of a particle movinginR3 — 0.

Punchline
Hy = (p — eA)?, (3.28)

where A is an electromagnetic potential given by

g(1 —cosB)
A(r,9,0) =———"¢,, 3.29
(.4,0) rsin 8 ©s (3:29)
and e and g are related by eg = —n. In other words, the Hamiltonian H2, constructed

by purely operator- and group-theoretic considerations, without any input from the
theory of electromagnetism, is precisely the Hamiltonian of a charged particle moving
in the field of a magnetic monopole with charge g sitting at the origin [7, 4]. The Dirac
quantization condition for the charge is identically satisfied, and the quantized charge
defines a superselection rule for a particle moving in its field. No Dirac string (or “veto™)
is necessary to describe this system; the apparent singularity along the negative z-axis
is completely removed by the conditions on the wavefunctions in the domain of the
Hamiltonian (3.27).

Alternatively, we could have adopted the Greub-Petry-Wu-Yang {10, 207 descrip-
tion of the monopole in terms of Hilbert spaces of sections, as in 3.1 (realization 3),
and find it to be unitarily equivalent to the above description, cf. 3.1 (the radial
co-ordinate does not affect these considerations) from the point of view of the repre-
sentation theory of the C*-algebra of observables of the particle.

Finally, we remark that half-integer monopole charges (eg = n/2) and, accordingly,
half-integer monopole harmonics, can easily be incorporated in the present formalism
by passing from SO(3) to SU(3), which acts on Q via its canonical epimorphism onto
SO(3). The stability group then picks up an extra factor Z,, which accounts for the
possibility of having half-integer charges.

4. The Aharonov-Behm Effect

4.1. Particle on a circle

We now choose the configuration space to be @ = § = §* = U(1). We label points
on S by the complex co-ordinate w, with |w} = 1 (the symbol z will be used later on
for the z-axis). To find the desired structures, we take G = R, which acts transitively
on S as follows: x € R sends w € § to exp(2zix)w. Obviously, the stability group is
H = Z. According to our program we take the C*-algebra of observables to be
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C*(R,S), and find its set of superselection sectors (classes of unitarily equivalent
representations) being & = H = U(1). Accordingly, the irreducible representations
n®(/) are labeled by an angle 6 € [0, 2r[, and the corresponding representation of
G = R is the one induced by the character ny(n) = exp(inf), n € Z.

As in the monopole case, it is illuminating to write out explicitly what the three
realizations of n° given in abstract form in 1.2.3, look like.

Realization 1

Here the carrier space is the Hilbert space 5 of functions ¢ : R —» C which satisfy
the constraint

Yitx + n) = e "Yl(x), (4.1)
and have finite inner product
1

(wf,<pf)=j dx Y2(x)@¥(x). 4.2)

0

Taking the fixed point g, = w, = 1, o is represented by (cf. 1.(2.11))
(R = ¥ilx — y);
(R} WD) () = f(E™ Wi (x). (4.3)

Realization 2

The following realization will turn out to be most appropriate if we wish to study
the Aharonov-Bohm effect on R3. Now the carrier space is #5 = L%(S;dw/2miw),
where, as above, S is supposed to be embedded in the complex plane (an alternative
realization would be L?([0, 2x]; d@)). To define n§(.o¢) one must choose a measurable
section 5: S — R, and we take s(w) = s, (w), where s, (w) are defined by

1
s4(w) = ﬁIOgi w, 44

where log, and log_ have their cuts on the positive and the negative real axis,
respectively. Equivalently, the former is defined with respect to Argw € [0, 2r[ whereas
the latter has argw € [ —n, n[. Accordingly, s, is discontinuous in w = + 1. For later
use, we record the relations

log_w=1log, wif 0 < Argw < =;

log_w=log, w—2miifn < Argw < 2nm;
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log, zw=1log, z + log, wif Argz + Argw < 2n;
log, zw =log, z + log, w — 2mi if Argz + Argw > 2=x. 4.5)
Computing the Wigner cocycle, we then find
(m2(y = B + DY) (w) = ™3> w);
(RIS W) W) = fwhp3(w). (4.6)

The first line only holds if Argw > 2n8; in the opposite case one should replace [ by
I+ 1 on the right-hand side (here I € Z and B € [0, 1[). Thus the representation is
strongly continuous in y, as it should be.

The unitary equivalence with n? is established by the unitary intertwiner TY, : # —
A7 defined by

(T ¥7)(w) = y((log, w)/2mi), @7
with inverse
(TL)* ) (x = B + 1) = e yf(e*™#). 4.8)

Note that (T%,)* does not map continuous functions in 57 into continuous functions
in 7, unless the former satisfy lim,, ; Y5(w) = ¢”lim,, y ; Y3 (w).
Realization 3

Now for #7, a “Hilbert space of sections”. We choose 0 < & < 7/2, and define two
co-ordinate pathches on § as follows:

U_={weS —g—a<argw<g+e};
.4 3n
U+={weS§~8<Argw<7+e}. 4.9

The sections s, (4.4) are defined and analytic on U,, and in the overlap regions they
are related by a gauge transformation s, (w) = s_(w) + g_, (w). The overlap consists of
two disjoint regions: region A, for which n/2 — ¢ < Argw < n/2 + ¢, and region B with
3n/2 —e< Argw < 3n/2 + &. Theng_,(w)=0forwe Aand g_,(w)=1forwe B.

Therefore, in view of 1.(2.14), elements ¢ of 57 are given by pairs (¥5), € L*(U,)
which satisfy

W3)-(w) = (¥3)+(W) ifwe 4;

¥35)-(w) = e®(Y3).(w)  ifweB. (4.10)
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The inner product may be chosen as

P dw
(W3, p3) =lim > er(w;’),(w)(wz),(wy 4.11)

£2*0 r=+,

By 1.(2.19), the representation n(s/) is given by

0 . .
(RSN (w) = exp,—[—log,w + 2miy + log,(e™*™*w)1(¥9)(e™ > w);

(RSN (w) = FW)(¥3),(w), 4.12)

(cf. (3.12)) where r = + if we U, and s = + if exp(—2niy)w € U,. In the overlap
region either expression may be used due to the compatibility condition (4.10). The
expression in square brackets is an integer, which may be determined by using identities
of the type (4.5).

The unitary equivalence with the other two realizations is assured by the intertwiners
Tos : HP— #E, i = 1, 2. Firstly, from 1.(2.20) we have

(T ) = wf(ﬁlog, w), @13)

and note how this equation (with (4.5)) reproduces (4.10). We will neither need nor write
down the inverse of T, whereas we will only need the inverse of TY; in the sequel,
which according to (4.5) and 1.(2.22) is

(T Y3)W) = W) W) if we U, ;

=WH_wif 0 < Argw < g +&;

= e "(Y3)-(w) if 3; — &< Argw < 2. (4.14)

Representation of the enveloping algebra

The enveloping algebra #(R) is generated by a single symmetric element, which we
choose as T = (2i) ™" d/dx (acting on C°(R)). We start with the easiest case, which is
(n$) on #. From (4.12) we formally have

d
=Y(T) = wd—w =p®. (4.15)

This object should exponentiate to the representation n®(R), which is explicitly 6-
dependent. The f-dependence of p® is obviously in its domain. By an argument similar
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to the one used in the previous section (in particular after (3.17)), which ultimately rests
on 1.(2.23), it may be shown that p? is essentially self-adjoint on the domain CZ(S) =
73 (and, once again, this result may also be derived from (4.13)). In analogy to CZ(5?),
this domain consists of those ¥ whose representatives (y3), are in C*(U,). It goes
without saying that this domain is f-dependent because of the pasting condition (4.10).

The corresponding domain on 7, which is the realization with the most direct
physical interpretation, may then be found by applying the unitary transformation
(4.14). The result is that the appropriate domain of essential self-adjointness of p® on
H#; is given by D§, which consists of those y§ which are in C*(S — 1) (the circle with
the point w = 1 removed) and satisfy the boundary condition

lim Y2(w) = e lim y2(w). (4.16)
whi wil

This condition may be stated more naturally in the realization of #% as L*([0, 2n]),
where p® = —id/d¢ is essentially self-adjoint on the equivalent domain consisting of
those y € C*([0, 2n]) which satisfy ¥ (2n) = exp(— i#)y(0). The exact domain on which
the operator is self-adjoint may then be found in Example 1 of [16, X.1].

The #-dependence of p® on #% may be made more explicit by performing a unitary
transformation U : # — #} defined by

0
(Uy3)(w) = exp <ﬂlog+ W> Y2(w) = womy(w); (4.17)

then UD? is as before, but without the phase factor in (4.16), whereas the transform of
p?® as a formal differential operator is now given by

d 0
] * S
Up®U wdw o (4.18)

Time-evolution

We can now construct a reasonable time-evolution on ./ by following the prescrip-
tion in 1.1.3. The faithful representation =, (/) on #; = L*(R) is given by (4.3) with
! replaced by ¥, and the pre-Hamiltonian on .#, is taken to be

dz

H,= @)@’ T?) = —, (4.19)

which is initially defined and essentially self-adjoint on the Garding domain of func-
tions of the form f*y, f e C*(R) and y € L2(R), and may be extended to its usual
domain of self-adjointness [16].

According to 1.1.3, the Hamiltonian H? in the superselection sector labeled by 6 is
then given, in the realizations 75 and =%, by
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H} = 4n*(nly(T?) = 4n? (w d—w> , (4.20)

(with i = 2, 3) defined and essentially self-adjoint on the domain for the representation
of the enveloping algebra constructed, in its various realizations, in the previous
section. Put differently, given the formal differential operator (4.15) (defined, e.g. on
functions vanishing near w = 1), inequivalent representations of the C*-algebra «/
select different extensions of this operator in its role of implementing the time-evolution
on the algebra in the given representation. In this way, the f-dependence of these
extensions will ultimately “explain” the Aharonov-Bohm effect.

Some very simple automorphic functions

Let us concentrate on #, and study the eigenfunctions of the Hamiltonian Hj (the
corresponding functions in #; and #7 may then be found by the inverse of (4.13) and
by (4.14), respectively). Of course, this can easily be done by hand, but let us use
the general methods reviewed in 2.2. As S = R/Z is compact, we have a discrete
decomposition

Hy >~ @y r MoK, (4.21)

where s, = C, carrying the representation 7,(x) = exp(—ipx) of R. To determine the
multiplicities we first use the Frobenius reciprocity theorem nj = nf, where the right-
hand side is the number of times that my(Z) occurs in 7,(R | Z). This number is evidently
either 0 or 1, and for it to be 1 it must be that exp(inf) = exp(—inp) for all n € Z. This
implies p = —0 + 27n, and therefore the multiplicities in (4.21) are as follows: nd =1
if p = —0 + 2nn for arbitrary n € Z, and n) = 0 otherwise.

We may draw the same conclusion from the Selberg trace formula (2.23). The
fundamental domain in R may be chosen as F = ]0, 1[, and the formula becomes

Y fme™ =Y nif(p), (4.22)

neZ reR

for functions f on R for which both sides are finite. Here f is the Fourier transform of
f (without any factor of 27n), and by the pre-compactness of F one knows that only
a countable number of p’s contribute to the right-hand side. Now choose f(x) =
exp(igx)/2n, and use the identity Y ,exp(ing) = 2n Y, 6(¢ — 27n). The trace formula
(4.22) then demands that

ZZ 5(q + 0 —2mn) =) ndd(q — p)
ne p

for all geR. This gives the same result for the nj as before. Substituting these
multiplicities back into the Selberg trace formula, one finds a trivial generalization of
the Poisson summation formula.
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The above considerations have given the multiplicities of functions in #5 which
transform irreducibly under n(R) (hence the eigenfunctions of the Hamiltonian), but
not their explicit form. This must be determined by other means, and here one finds,
formelZ,

(W) m(w) = wmo2", (4.23)

where the fractional power is defined with a cut along the positive real axis. Thus the
domain condition (4.16) is satisfied. These eigenfunctions are special, and rather trivial
cases of automorphic functions.

To end this section, we give some comments as to the interpretation of this result.
The eigenvalues of the Hamiltonian Hf are E,, = (m — 6/2n)?, so that for 6 € [0, 7]
(¥3)o is the ground state, whereas for 0 € [, 2z[ the ground state is (y£),. For 0 = =
the ground state is evidently degenerate. Regarding these vectors as pure states on the
C*-algebra of observables 7, they may be identified with “f-vacua” of the particle on
a circle with the given time-evolution. Each #-vacuum lies in, and defines, a super-
selection sector of the theory. A related model with an infinite numbers of degrees of
freedom would presumably show a phase transition for 6 = =.

4.2. The full configuration space

To study the full Aharonov-Bohm effect we need to include a radial and an axial
co-ordinate into the problem, that is, we now consider Q = R® — {z-axis} ~ R* x
R x S ~R? x S. A group acting transitively on Q is G=R* x R x R ~R3 (the
above identification of R and R proceeds via the exponential map), whose elements
x = (a,b,¢) (a > 0) send a point g = (r, z, §) (expressed in cylindrical co-ordinates) to
xq = (ar,z + b,¢ + 2ncmod 2x). We see that the little group does not change in
comparison with the case Q = S: we again have H = Z, its elements corresponding to
(1,0,n) € G, n € Z. Hence all remarks in the previous section on the superselection
structure of the model still stand.

The following discussion parallels that of the monopole case in 3.2. To find a suitable
time-evolution on & = C*(G, Q) we investigate the faithful representation 7, (=) (cf.
L(3.2)) on s, = L*(R* x R x R; dr/rdzdc). For later extraction of L2(R3) it is more
convenient to realize 7, as £, on #, = L}(R* x R x R; rdrdzdc), the unitary equi-
valence between the two being given by the map V : #, — #, defined by

1
VY )(r,z,c) = “¥lrz,0). (4.24)
The algebra .« is represented by
1.
(ﬁL(a’ b’ c,)lpL)(ra 2, C) = a '//L(r/az zZ— b’ c— cl);

(‘LWL 2,0) = f(r,2, e W (r, 2, 0), (4.25)
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of. (4.3). In addition, #, carries the right-regular representation #z(G) defined by
(Rr(a, b, ' Wi )(r,2,¢) = ayy(ar,z + b,c + ¢). (4.26)

For the same reasons as in the monopole case, the pre-Hamiltonian ), we are after
cannot be written as a representative of an element in the enveloping algebra of G, and
we have to proceed in an indirect way. As in the monopole case, we are looking for a
pre-Hamiltonian defining a time-evolution on .o/ which in the “trivial” superselection
sector 6 = 0 is implemented by the usual free Hamiltonian on L?(R?), i.e., (minus) the
Laplacian. A suitable candidate for H, is

02 10 02 1 ¢
H = - T 4,27
H, or? + ror 0z rtoct (4.27)

As in 3.2, only the radial terms cause problems; we may rewrite the expression as

i =2 L0 ey + L (4.28)
P2 U ror RI3 Mz anR ¢ ’

where T, and T, are the generators of the subgroup R x R < G (hence T, = 2T, where
T is the generator used in 4.1). An analysis similar to the one surrounding Theorem 1
in 3.2 (also cf. the treatment of the two-dimensional -function potential in [2]) shows
that H,, is essentially self-adjoint on D, = CX(R™ L {0}) ® C°(R) @ C°(R), (where the
last factor refers to the z-coordinate), and its closure (called H, as well) defines an
acceptable pre-Hamiltonian. Namely, it obviously satisfies the basic demand (see 1.3.3,
or 1.1.3) of being affiliated to .#x(H)Y (with H = Z), a condition which in this case is
trivial, because G is abelian. The time-evolution is not invariant under the full group
G = R* x R x R, but just under R x R, as the explicit r-dependence of H, evidently
breaks the R* -invariance.

The final step is to determine the “true” Hamiltonians H? implementing the time-
evolution in the irreducible representations nf(.#), in their various guises i = 1, 2, 3.
We confine our attention to i = 2, which leads to the most familiar realization of the
Hilbert space in question. Most of the work has been done in 4.1; we now parametrize
the complex number w € § used in realization 2 in 4.1 by w = exp{i¢), and realize the
¢ of the purely circular case as L*([0, 2r]; d¢). We then use the same label #7 for
the carrier space of n9(.«/) of the full algebra of observables, including those corre-
sponding to the radial co-ordinate and the z-axis. Hence

#; = L*(R*;rdr) ® L*(R; dz) ® L*([0, 27J; d¢), (4.29)

which is nothing but L?(R?) expressed in cylindrical co-ordinates (this is the point of
the transformation (4.24)).

The irreducible representation 14 of the algebra of observables .« is then given by
(cf. (4.6), (4.26))
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(r(a,b,c = B + Wi)(r,z,¢) = (—lze“"lpg(r/a,z — b,¢ — 2nfmod 2n);
(S, 2, 8) = f(r,2, Y3(r. 2, ). (4.30)

Here we assumed that ¢ — 2nf € [0, 2= [; in the opposite case [ should be replaced by
I + 1 in the exponent.

From (4.20), the remark after (4.16), and (4.27) in combination with the discussion
on the domain, we finally infer that the Hamiltonian in the §-superselection sector is

o2 1o & 18

—_— Ao = — _—— —— —_—
B=trataztror 31
which is defined and essentially self-adjoint on
Dy = D(H) = C*(R* U {0}) ® C2(R) ® C7([0, 2]),, (4.32)

where C3° ([0, 2]) consists of those C*-functions which satisfy the twisted periodicity
condition ¥(2n) = exp(—if)y(0), and the suffix r means (as always) that the given
domain is restricted to those functions ¢ for which H3y{ is in #7; finally, the tensor
product is evidently the algebraic one.

The main feature is, of course, the f-dependence of this domain, hence of the
Hamiltonian itself. As in (4.17), this dependence may be made more explicit by per-
forming a unitary transformation U’ : #% — #7 given by

U (r,2,9) = e**>"Y3(r,z, ¢), (4.33)

which maps D, to D,, and Héinto U’'HS(U’)*, which is given by (4.31) upon replacement
of 0/0¢ by d/0¢ — i0/2n, which is defined on Dy, cf. [5].

Another punchline
U'HYU'Y* = (p — eA)?, (4.34)

where A is an electromagnetic potential given by

0]
A(r,z,¢) = ﬂfed” (4.35)

which is the field of an infinitely thin solenoid sitting along the z-axis. The magnetic
flux is related to the §-parameter by @ = 6/e. This result is entirely analogous to (3.29)
in the monopole case: once again, the main feature is that a given abstract time-
evolution on the algebra of observables .o/ is implemented by a Hamiltonian that
explicitly depends on the superselection sector 8, and this -dependence, which in the
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present case is quite subtle, has clear physical consequences, viz. the Aharonov-Bohm
effect.

The Aharonov-Bohm effect has two peculiar features. Firstly, the effect is periodic
in ®. This is explained in our description by the fact that everything is periodic in 6,
which is a consequence of the representation theory of the algebra of observables of a
particle moving in this particular configuration space, and as such is entirely analogous
to the Dirac charge quantization. Secondly, the magnetic field itself vanishes off the
z-axis, so that, in a conventional electrodynamical description, the particle feels a
vector potential which is a pure gauge. It is occasionally argued (see, e.g., refs. in [ 17,
5]) that the Aharonov-Bohm effect arises because one cannot transform away the
vector potential, for the required gauge transformation would be multivalued (in a
single point on the circle, and on a plane in R® — {z-axis}). This argument in itself is
not quite sufficient to explain the effect, for one can construct a perfectly bona fide
unitary operator implementing such a gauge transformation (namely the inverse of
(4.33)); the real point, as stressed, e.g., in [5, 17], is that, as we have seen, such a unitary
transformation affects not only the formal expression of the Hamiltonian (as a differ-
ential operator), but also its domain, and that by removing the flux-dependent term
from the formal Hamiltonian one effectively re-introduces it by selecting a flux-
dependent domain. The crucial importance of a correct specification of the domain of
H? is immediate in our approach to the Aharonov-Bohm effect as well: it follows from
1.3.3 that, as reviewed in 1.1.3, the Hamiltonian implementing the abstract time-
evolution on the algebra of observables is initially defined as an essentially self-adjoint
operator on the Gérding domain corresponding to the representation 7% of G = R,
which is evidently 6- (and thereby flux-) dependent, this unambiguously giving rise to
the Aharonov-Bohm effect.
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