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Abstract

Using a toy model as an illustrating case, Hiura and Sasa have shown that the trajectory generated by
a Martin-Löf random microstate of a deterministic system, relative to a suitable probability measure,
exhibits irreversibility when viewed macroscopically. We extend this result, which could prove useful
in mathematically and conceptually justifying Boltzmann’s ideas on randomness and the emergence of
irreversibility, to systems with stochastic dynamics by illustrating it for the Ehrenfest urn model. The
main difference with deterministic dynamics is that stochastic dynamics require the use probability
measures on trajectories of microstates, rather than microstates themselves. In addition, we sketch a
possible solution to the problem of non-random microstates satisfying macroscopic laws and discuss
the Stosszahlansatz from the viewpoint of Martin-Löf randomness.
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1 Introduction

The equations of motion governing microscopic particles, both in classical and quantum mechanics,
are reversible in time, i.e., any evolution is just as physically plausible and possible when considered
as occurring backward in time. In contrast, many processes on the macroscopic scale are irreversible,
meaning their reversals are never observed. For example, friction causes a pendulum in motion to
dissipate energy in the form of heat, thereby coming to a halt, but the reverse process of the pendulum
spontaneously being set in motion by the energy contained in its surroundings never happens. If one
believes in the unity of physics, in the sense that macroscopic laws should be derivable from microscopic
ones, then this discrepancy is a problem, known as the reversibility paradox.

This paradox was first formulated in the 19th century within the context of kinetic theory, which is
an attempt at deriving macroscopic properties of a gas from the motion of its constituent microscopic
particles. Through the works of Maxwell and Boltzmann, it became clear that the paradox may
be resolved by supplementing the microscopic mechanics of the gas by probability considerations.
Essentially, while mechanics does allow for motions that do not satisfy the macroscopic laws, these are
very unlikely when the number of particles N is large, hence are unobserved. Another great insight
stemming from the use of probability theory is that macroscopic laws often take the form of a time-
dependent law of large numbers when the number of particles becomes infinite. For deterministic
systems, these laws look like

lim
N→∞

1

N

N∑
n=1

Xn(t) = F (t) for P-almost all initial conditions x (1.1)

for some appropriate probability measure P and with F (t) satisfying a differential equation if t is
continuous and a difference equation if t is discrete. Here Xn(t) is the state of the n’th particle at time
t, which is a random variable, though only through its dependence on a random initial condition x.
The quantity on the left-hand side of (1.1) is the macroscopic state of the system. For systems with
stochastic dynamics, the entire trajectory becomes random and one uses a probability measure P on
the space of trajectories rather than initial conditions.

The statement (1.1) does not tell us for which x the macroscopic law holds, only that it almost
surely holds. Many theorems in mathematics in which measure theory is involved have the same
problem: one knows that some property holds for almost all elements of a measure space, though not
for which elements. The simplest example is the usual strong law of large numbers. To get a better
understanding of the x for which the equality in (1.1) holds, [Hiura and Sasa, 2019] suggest using the
theory of algorithmic randomness, which allows one to formulate a notion of P-randomness and turn
(1.1) into

lim
N→∞

1

N

N∑
n=1

Xn(t) = F (t) for all P-random x. (1.2)

Intuitively, an element x is P-random if it is generic with respect to all computable properties (hence
the term ‘algorithmic’), with genericity being measured by P. Apart from the fact that one is now
arguably closer to characterizing which x satisfy the equality in (1.1), the mathematical advantage
of (1.2) over (1.1) is that the entire field of algorithmic randomness is now available as a tool for
studying the emergence of macroscopic behaviour from microscopic laws, which is the main goal of
statistical mechanics. Conceptually, it also does justice to Boltzmann’s intuition that microscopic chaos
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leads to irreversible macroscopic behaviour, by making the notion of chaos precise through algorithmic
randomness.

The application of algorithmic randomness to statistical mechanics in the manner initiated by
[Hiura and Sasa, 2019] is currently in its infancy, but [Landsman, 2023] believes that such a research
program could lead to interesting developments and possibly solve and clarify long-standing problems
in statistical mechanics, both mathematical and conceptual. Thus far, the idea has only been applied
to the Kac ring model, a toy model with deterministic dynamics. In this thesis, we aim to make a small
contribution to the program by applying it to a system with stochastic dynamics, specifically the Ehren-
fest model. In addition, we will sketch a solution to the problem of non-random microstates satisfying
macroscopic laws, which was mentioned in [Hiura and Sasa, 2019], and discuss the Stosszahlansatz
from the viewpoint of algorithmic randomness, following a suggestion by [Landsman, 2023].

We begin by giving more details on kinetic theory in Chapter 2, so as to provide the reader with
more context on the problem of deriving macroscopic laws from microscopic laws. In Chapter 3, the
necessary basics of algorithmic randomness are presented. In Chapters 4 and 5 we apply algorithmic
randomness to the two toy models, one with deterministic and one with stochastic dynamics, noting
the differences between the two types of dynamics.
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2 Statistical mechanics

The objective of statistical mechanics is to derive macroscopic behaviour from microscopic laws using
probability theory. The earliest type of statistical mechanics, as well as its paradigmatic case, is kinetic
theory, which seeks to derive macroscopic properties of gasses from the assumption that a gas consists
of many particles behaving according to classical mechanics, usually only interacting by collisions. In
this section, we will give a short description of kinetic theory, since the toy models of Chapters 4 and
5 are based on it. We also give a short overview of the conceptual explanation of irreversibility, known
as the typicality account.

2.1 Kinetic theory

The philosophical roots of kinetic theory consist of ancient atomism and its 17th century mechanistic
revival, which stated that all natural phenomena can be explained by small moving particles undergoing
certain types of interactions such as collisions. This line of thinking remained mainly qualitative, the
most notable exception being Daniel Bernoulli’s microscopic derivation of Boyle’s law. Kinetic theory
could only flourish after it was acknowledged that heat is a form of motion, which was brought on by
Joule and Mayer in the middle of the 19th century. Important contributions were made by Boltzmann,
some of which we briefly present in this section. For more on the history of kinetic theory, see Chapters
3 and 4 in [Uffink, 2006] or [Brush, 1976] for even more.

2.1.1 Microscopic dynamics

The fundamental assumption of kinetic theory is that a gas forms a mechanical system, consisting of a
large number N of particles, which we take to be identical for simplicity. If one takes these to be point
particles, then the gas can be described using Hamiltonian mechanics. Its state is given by canonical
coordinates x = (q1, . . . ,qN ,p1, . . . ,pN ), with qi representing the position of the i’th point particle
and pi = mvi its momentum. Here m is the common mass of the particles. The set of all such states is
called the phase space and denoted by Γ. The microscopic evolution of the gas is given by Hamilton’s
equations

dqi

dt
=

∂H

∂pi
and

dpi

dt
= −∂H

∂qi
. (2.1)

The interactions between particles are encoded by the potential energy U appearing in the Hamiltonian
H = T + U . Often, this potential is such that particles strongly repel at short distances and mildly
attract at larger distances, which models particle collisions and intermolecular forces.

Instead of point particles, a gas can also be modelled as consisting of hard spheres, which only interact
through elastic collisions. In that case, the Hamiltonian formalism becomes less practical to use, but
remains the correct microscopic description in spirit. One speaks of an ideal gas if elastic collisions are
the only kind of interaction between particles.

An important property of the equations (2.1) is that they are time-reversible in the following sense.
Let T : Γ → Γ be the operation (q1, . . . ,qN ,p1, . . . ,pN ) 7→ (q1, . . . ,qN ,−p1, . . . ,−pN ), which we call
velocity reversal. Then, if the trajectory x(t) through Γ satisfies (2.1), then so does Tx(s− t) for any
s. Consequently, if the initial state x evolves under (2.1) into x′ during some time interval, then Tx′

evolves into Tx during the same time interval.



4 2.1 Kinetic theory

2.1.2 Boltzmann equation

Without caring too much about rigour, let us now consider deriving macroscopic laws from the mi-
croscopic dynamics of a gas with N particles. The macroscopic quantity of interest is the distribution
function

f(q,p) =
1

N

N∑
i=1

δ3(q− qi)δ
3(p− pi), (2.2)

which is a function of the state x = (q1, . . . ,qN ,p1, . . . ,pN ) of the gas. It tells us how the positions
and momenta of the particles are distributed in the state x, but not to which specific particles these
belong. In this sense, f(q,p) is a reduced description of the state. Actually, it would be more correct
to call this a ‘mesoscopic’ quantity, since it is not really macroscopically observable. However, we
will stick to the term ‘macroscopic’, essentially taking it to mean non-microscopic. If the number of
particles N is large, f(q,p) should become a continuous function such that

Nf(v)d3qd3p ≈ number of particles with position in a volume d3q around q
and momentum in a volume d3p around p,

though, like Boltzmann, we will not make this precise. To make things simpler, let us now switch
to an ideal gas, for which the Hamiltonian description is less suitable, and assume that it is spatially
homogeneous, so that we have the velocity distribution

f(v) =
1

N

N∑
i=1

δ3(v − pi/m)

instead of the full distribution (2.2). One of the most important results in kinetic theory is that the
particle velocities of an ideal gas in equilibrium are distributed according to the Maxwell-Boltzmann
distribution

f(v) =

(
m

2πkBT

) 3
2

exp

(
−m|v|2

2kBT

)
(2.3)

if N → ∞, with T the temperature of the gas and kB the Boltzmann constant. If the particle velocities
of an isolated ideal gas are initially not distributed according to (2.3), the distribution function ft(v)
becomes time-dependent and we should expect it to evolve in such a way that it attains the equilibrium
(2.3). This evolution is supposed to be described by the Boltzmann equation, which is the prototypical
macroscopic law in kinetic theory.

To derive his equation, Boltzmann considers collisions between two particles, modelled as spheres of
diameter d, with incoming velocities v1,v2 and outgoing velocities v′

1,v
′
2. Following Section 3.3 in

[Uffink, 2006], it is useful to set up cylindrical coordinates (b, φ, z) such that the first particle is resting
at the origin and v2−v1 is aligned along the negative z-axis. The centre of the second particle then has
coordinates given by b(t) = b0, φ(t) = φ0 and z(t) = z0 − |v2 − v1|t before the collision. The quantity
b0 is known as the impact parameter. A collision happens if and only if b0 < d. The new velocities
v′
1,v

′
2 are uniquely determined as functions of the old ones v1,v2 and the two collision parameters

φ0, b0.

If the number of particles is large, it is reasonable to assume that the number N(v1,v2) of collisions of
the type v1,v2 → v′

1,v
′
2 with collision parameters b, φ is proportional to relevant numbers of particles
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Nft(v1)d
3v1, Nft(v2)d

3v2 and the volume bdbdφdz = |v2 − v1|bdbdφdt, in the space of collision
parameters, so that

N(v1,v2) = N2ft(v1)ft(v2)|v2 − v1|d3v1d
3v2bdbdφdt. (2.4)

Because the microscopic laws of motion governing gas particles are time-reversible, a collision with
incoming velocities v′

1,v
′
2 should lead to outgoing velocities v1,v2, assuming the collision parameters

are equal. This means that equation (2.4) should also hold with v1,v2 and v′
1,v

′
2 exchanged. In

addition, conservation laws imply |v′
2 − v′

1| = |v2 − v1| and d3v1d
3v2 = d3v′

1d
3v′

2, hence

N(v′
1,v

′
2) = N2ft(v

′
1)ft(v

′
2)|v2 − v1|d3v1d

3v2bdbdφdt. (2.5)

The change in the number of particles Nft(v1)d
3v1 due to only collisions of types v1,v2 → v′

1,v
′
2 and

v′
1,v

′
2 → v1,v2 with parameters b, φ is then given by the N(v′

1,v
′
2)−N(v1,v2). Assuming collisions

between three or more particles are rare and can be neglected, we can integrate over v2 and b, φ to
obtain the total change

Nft+dt(v1)d
3v1 −Nft(v1)d

3v1 (2.6)

= N2

∫ d

0

bdb

∫ 2π

0

dφ

∫
R3

|v2 − v1| (ft(v′
1)ft(v

′
2)− ft(v1)ft(v2)) d

3v1d
3v2dt, (2.7)

from which the Boltzmann equation

∂ft(v1)

∂t
= N

∫ d

0

bdb

∫ 2π

0

dφ

∫
R3

|v2 − v1| (ft(v′
1)ft(v

′
2)− ft(v1)ft(v2)) d

3v2 (2.8)

follows upon dividing by N , d3v1 and dt (recall that we make no pretences that this is a rigorous
derivation). Recall that v′

1,v
′
2 are functions of v1,v2 and b, φ. Equation (2.8) is often called the

homogeneous Boltzmann equation, since it is also possible to derive an equation for the full distribution
function f(q,p). An important consequence of (2.8) is Boltzmann’s H-theorem, which states that the
quantity

H(ft) =

∫
R3

ft(v) log ft(v)d
3v (2.9)

always decreases except if f is of the form (2.3). Furthermore, H(f) = 0 if and only if f is of the form
(2.3), which means the Maxwell-Boltzmann distribution is the global minimizer of H. Consequently,
a gas whose particle velocities are not initially distributed according to (2.3) will evolve in such a way
that they take on the distribution (2.3).

The derivation of the Boltzmann equation from microscopic motions is the prototypical example of
a macroscopic law being derived from microscopic behaviour. It is specifically a law expressing the
relaxation to equilibrium of an isolated system, which is also the kind of macroscopic law we will be
interested in when looking at toy models in Chapters 4 and 5.

In the years after the Boltzmann equation was first published, controversies arose about its validity,
in particular whether it really is a pure consequence of the microscopic dynamics of the gas. The two
main objections brought forth were Loschmidt’s Umkehreinwand and Zermelo’s Wiederkehreinwand
(see Sections 4.3 and 4.5 in [Uffink, 2006] for more details).
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� The Umkehreinwand is based on the time-reversibility of microscopic dynamics. It follows from
the considerations in Section 2.1.1 that there exist initial conditions such that the resulting
evolution of the gas does not satisfy the Boltzmann equation. Simply take a non-equilibrium
state that evolves into equilibrium (which presumably exist in the first place) and use the velocity
reversed final state as new initial state. The resulting trajectory will be an evolution from
equilibrium into non-equilibrium.

� The Wiederkehreinwand is based on a theorem proven by Poincaré (see Theorem 4.6 for a gen-
eralization of Poincaré’s result), which states that a mechanical system that is spatially bounded
and satisfies conservation of energy has the property that any trajectory will eventually return
arbitrarily close to its initial state. This is known as recurrence and shows that the Boltzmann
equation cannot hold for all times.

Both of these objections show that the Boltzmann equation cannot be derived solely from micro-
scopic dynamics. Any true derivation necessarily needs to make use of non-mechanical assumptions.
In the above derivation, the non-mechanical assumption is equation (2.4), which is known as the
Stosszahlansatz, a term first introduced in [Ehrenfest and Ehrenfest, 1912]. This can be read as a
probabilistic assumption: the velocity distributions of two particles are independent, hence one can
take their product to calculate the probability of collision. Of course, making this precise, both con-
ceptually and mathematically, is a more difficult matter. Boltzmann did make use of probability,
but whether he believed it was only a tool for deriving his H-theorem or a necessary non-mechanical
ingredient of the derivation remained unclear. In any case, the objections of Loschmidt and Zermelo
forced Boltzmann to be more clear about his ideas on probability and move from a strict H-theorem to
a statistical H-theorem: while H(ft) does not necessarily decrease when starting in non-equilibrium,
there is a very high probability that it does, and upon reaching its minimum, it stays there for a very
long but finite time.

2.2 Typicality

Despite Boltzmann’s efforts at clarifying his ideas, his work did not lead to a completely satisfactory
explanation of irreversibility. Consequently, physicists, mathematicians and philosophers explored al-
ternative approaches to the problem of irreversibility in the 20th century (see Chapters 5 to 7 in
[Uffink, 2006]). While many of these approaches were interesting and important, they did not lead
to significantly more understanding. At the turn of the 21st century, articles written by a number
of authors (see for example [Lebowitz, 1993], [Bricmont, 1995] and [Goldstein, 2001]) initiated a reap-
praisal of Boltzmann’s ideas, especially those formulated in response to the objections of Loschmidt
and Zermelo, known as the typicality account. We give a short overview of this modern formulation
of Boltzmann’s ideas. More details can be found in the original articles and in the more recent works
[Lazarovici and Reichert, 2015] and [Bricmont, 2022].

The typicality account is a general conceptual explanation of irreversibility, specifically of relaxation
to equilibrium. We present its ingredient in a list, illustrating each item the example of kinetic
theory.

1. Microstates. Any system has a fundamental level of description, which we call its microstate
x. The set of microstates is denoted by Ω. For a gas, the microstate is given by the canonical
coordinates (q1, . . . ,qN ,p1, . . . ,pN ) and the set of microstates is the phase space Γ.

2. Macrostates. As already realised by Maxwell, irreversibility only occurs on macroscopic scales,
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so that we need to switch to a reduced description of the system. This is accomplished by means
of a coarse-graining map which assigns a macrostate M(x) to each microstate x, in such a way
that many microstates lie in the same macrostate. We denote the region in Ω corresponding
to a macrostate M by ΩM . For a gas, one maps a microstate (q1, . . . ,qN ,p1, . . . ,pN ) to its
distribution function f(q,p).

3. Probability. By Loschmidt’s Umkehreinwand, not all initial states lead to correct macroscopic
behaviour. To account for this, one introduces a probability measure µ on Ω which should be
invariant under the microscopic evolution. Then, relaxation to equilibrium is not necessary, but
it is typical in the sense that it has high probability according to µ, from which the typicality
account gets its name. For a gas, the invariant probability measure is given by the Liouville
measure, which is invariant under the Hamiltonian dynamics (2.1) by Liouville’s theorem (see
[Goldstein et al., 2001]). Actually, this measure should be restricted to the hypersurface ΓE ⊆ Γ
of microstates having energy E, to account for conservation of energy, which results in the
microcanonical measure.

4. Hierarchy. The macrostates should be divided in a hierarchy of size as measured by µ. At
the top of this hierarchy sits the equilibrium macrostate Meq, which is characterized by being
enormously larger than all other macrostates combined. This is known as the dominance of
equilibrium. For a non-equilibrium macrostate M , the distance to equilibrium is measured by
the size µ(ΩM ). In kinetic theory, Boltzmann’s famous combinatorial argument (see Section
4.4 in [Uffink, 2006]) essentially expresses the dominance of the Maxwell-Boltzmann distribution
(2.3) for the ideal gas.

5. Relaxation. The explanation for relaxation to equilibrium is now as follows. If the system starts
out in a non-equilibrium macrostate, then it is overwhelmingly likely, as measured by µ, that it
will evolve into larger macrostates and eventually end up in the equilibrium macrostate. This
depends crucially on the hierarchy of macrostates and the invariance of µ. To illustrate, let M
be the initial macrostate and M ′ one which is further from equilibrium, i.e., µ(ΩM ′) ≪ µ(ΩM ).
If we denote the evolution of x after time t by φt(x) and define

ΩM,t = {x ∈ ΩM | φt(x) ∈ ΩM ′},

then φt(ΩM,t) ⊆ ΩM ′ and the invariance of µ together with the monotonicity of probability
measures then imply

µ(ΩM,t) = µ(φt(ΩM,t)) ≤ µ(ΩM ′).

Dividing by µ(ΩM ) turns this into

µ(ΩM,t)

µ(ΩM )
≤ µ(ΩM ′)

µ(ΩM )
≪ 1,

which states that the probability of M evolving into M ′ at time t is very low. Intuitively, ΩM

does not fit into ΩM ′ . However, this does not exclude ΩM from fitting into multiple smaller
macrostates, in which case wrong macroscopic behaviour cannot be ruled out a priori. Actually
proving that the microstates in ΩM typically evolve towards equilibrium requires more detail,
which is not available at this level of generality.

6. Entropy. If we define the Boltzmann entropy of a macrostate M by

SB(M) = kB logµ(ΩM ) (2.10)
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and denote the evolution of the system’s macrostate by M(t), then the reasoning in the previous
point implies that SB(M(t)) very likely increases to the global maximum SB(Meq) if the system
starts out in non-equilibrium. The quantity (2.10) can be related to the notion of entropy in
thermodynamics, which was one of Boltzmann’s great insights. However, we will not make any
further use of this quantity.

Let us make some comments about this scheme.

� The reasoning of the typicality account, in particular the hierarchy of macrostates, is under
the assumption that the number of particles N is large. In the thermodynamic limit N → ∞,
statements of high probability become statements of the form “property P holds almost surely”.

� If we sample microstates using the invariant probability measure µ, then we will obtain equi-
librium states with very high probability, due to dominance of equilibrium. In this sense, µ
represents equilibrium.

� For many systems, the invariant probability measure µ is uniform in a certain sense, which is
called the principle of equal a priori probabilities.

� Even though we illustrated the typicality account with deterministic dynamics, its reasoning is
general enough to also work for stochastic dynamics, as we will illustrate in Chapter 5.

See [Lazarovici and Reichert, 2015] and Section 3.6 in [Frigg and Werndl, 2024] for critical discussions
of the typicality account. The main critique brought against the typicality account is that it neglects
the details of the microscopic dynamics: a microstate does not evolve into a region simply because
that region is large. However, the typicality account does not pretend to give a mathematical proof
that relaxation occurs. Rather, it is a conceptual explanation, and the details of a mathematical
proof may differ case by case. Indeed, the typicality account can be seen as a reaction against the
many futile attempts to find universal conditions on dynamics which lead to irreversible behaviour.
The most famous of these is ergodicity, which already dates back to Boltzmann’s early work (see
Section 4.1 in [Uffink, 2006]). Intuitively, microscopic dynamics are ergodic if most initial states have
trajectories which explore the entire state space, from which it follows that most trajectories end up
staying the equilibrium macrostate for a long time. However, apart from simple systems, ergodicity is
hard to prove and it is unclear whether physically relevant systems are ergodic at all (see Section 3.3
in [Frigg and Werndl, 2024]).

Another problem is that the coarse-graining map x 7→ M(x) and the invariant measure µ are in some
sense arbitrary. However, even when there are multiple invariant measures, it is often the case that
a natural one presents itself, such as the Liouville measure in the case of Hamiltonian mechanics.
In many systems, the natural coarse-graining is given by a sum function, which is a sum over the
microscopic constituents of the system. The distribution function (2.2) is an example. Sum functions
do not exhaust all relevant macroscopic quantities, but form an important class since they often have
dynamics given by a law of large numbers. The toy models we will look at in Chapters 4 and 5 are
examples of systems for which this is the case.

Let us now return to the objections of Loschmidt and Zermelo and see how the typicality account
deals with them. The Umkehreinwand is countered by the statement that relaxation to equilibrium,
while not necessary, is overwhelmingly likely when starting out in non-equilibrium. The main point
of the Wiederkehreinwand cannot be refuted: almost all initial states have recurrent trajectories.
However, it can be proven that the expected recurrence time of a macrostate is inversely proportional
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to its size according to the invariant measure µ (see Theorem 4.6), which means the recurrence of a
non-equilibrium state takes an enormously large amount of time. Admittedly, this result depends on
the microscopic dynamics being ergodic, but we still expect the Wiederkehreinwand to be practically
irrelevant in many cases due to large recurrence times.

Mathematically, the Wiederkehreinwand is more significant, since it shows that rigorously derived
irreversible macroscopic laws can only be valid on finite time intervals. This inconvenience can be
circumvented by assuming the number of particles is infinite, i.e., taking a thermodynamic limit N →
∞, since in that case the recurrence time becomes infinite. We will do this for the toy models in
Chapters 4 and 5.

Let us make an important final note. The typicality account explains why a system which is initially
in a non-equilibrium macrostate relaxes to equilibrium. Even though this can be safely described
as irreversible behaviour, it does not provide an arrow of time, i.e., a way of distinguishing the two
possible directions of time. The reason is that microscopic dynamics are still time-reversible, so that
any conclusions which hold for one direction of time, also hold for the other. In particular, relaxation
to equilibrium must also hold backward in time: if one observes a non-equilibrium state, then the
theory predicts that it evolved from the equilibrium state in the past (see [Albert, 2000]). This is
a major philosophical problem, which some try to solve by the postulate that the universe had an
initial non-equilibrium state, known as the past hypothesis. However, this does not give a completely
satisfying solution and the problem still remains a difficult point for the foundations of statistical
mechanics (see [Earman, 2006]).

2.3 Ensembles

Other approaches to the problem of irreversibility focus on probability measures on the space of mi-
crostates, known as ensembles to physicists. These approaches stem from the work of Gibbs and
one uses the term Gibbsian statistical mechanics to describe them collectively (see Chapter 5 in
[Uffink, 2006]). In the case of Hamiltonian mechanics, a probability measure on the phase space Γ
is given by a density ρ(x) relative to the Liouville measure µ, i.e.,

R 7→
∫
R

ρ(x)dµ(x)

for measurable regions R ⊆ Γ. It follows from Hamilton’s equations (2.1) that the time evolution ρt
of such a density function is given by the Liouville equation

∂ρt
∂t

= {H, ρ} (2.11)

(see [Goldstein et al., 2001]). The Gibbsian approach to statistical mechanics is much more systematic
and useful in practice, especially when describing equilibrium states, but conceptually much less clear
than the approach of Boltzmann. The main problem is the interpretation of the density function ρt
and its behaviour given by (2.11). For example, even if one can prove that some sort of relaxation
to equilibrium follows from (2.11), it is not immediately clear how that translates into actual systems
relaxing to equilibrium. This in contrast to the approach of Boltzmann, which is interested in whether
individual realisations of the system typically relax, instead of whether abstract probability distribution
do so. A particularly radical form of Gibbsian statistical mechanics is that of Prigogine, which denies
the existence of individual microscopic trajectories (see [Bricmont, 1995]).
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Another conceptually problematic aspect of Gibbsian statistical mechanics is its notion of entropy,
which is given by the Gibbs entropy

SG(ρ) = −
∫
Γ

ρ(x) log ρ(x)dµ(x), (2.12)

as a function of the phase space density ρ. It follows from Liouville’s theorem that S(ρt) is constant in
time, unlike the Boltzmann entropy (2.10) which increases with high probability. This is problematic,
since we expect entropy to increase during irreversible processes by the second law of thermodynamics.
One can try to solve this by coarse-graining the phase space density ρt, but this introduces new
problems (see Section 4.6 in [Frigg and Werndl, 2024]).
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3 Algorithmic randomness

The notion of randomness is often intuitively understood as the lack of predictability and patterns. It
is naturally related to the concept of probability, with the result of a probabilistic experiment, such
as flipping a coin, being described as random. However, randomness does not exactly correspond to
probability. For example, consider the binary sequences

1001100100110101010101111111011100010101000010101001101100110011 (3.1)

1010101010101010101010101010101010101010101010101010101010101010 (3.2)

which are possible outcomes of repeatedly flipping a coin. Their probabilities are both equal to 1/2N ,
with N the length of the sequences, but clearly the first would be described as more random than the
second. The theory of algorithmic randomness is the attempt at formulating a precise definition of
randomness that applies to intuitively random sequences like (3.1) but not to ordered sequences such
as (3.2). It has been interwoven with probability theory since its inception in the work of Von Mises,
who tried to base the foundations of probability theory on a precise notion of randomness. We do not
intend to give a detailed exposition of algorithmic randomness and only a small part of the theory will
be relevant to us. See [Dasgupta, 2011] for a general introduction and [Downey and Hirschfeldt, 2010],
[Nies, 2008] and [Calude, 2002] for detailed expositions.

There are three approaches to formalizing the notion of randomness, corresponding to different intu-
itions:

� Unpredictability. We already mentioned this intuition in the first sentence of this section. One
way of making this intuition more precise is through gambling. If one were to reveal the bits
of a binary sequence one by one and bet on whether the next bit is a 0 or 1, then it would be
very easy to make money if sequence were given by (3.2) rather than (3.1). This idea leads to
formally defining the notion of a betting strategy and defining a binary sequence to be random
if no betting strategy succeeds in making a large amount of money from that sequence, which is
known as computable randomness.

� Incompressibility. Another sense in which (3.1) is more random than (3.2) is that the latter
can be abbreviated by a simple rule, such as “print 10 thirty-two times”, while the former
seemingly has no shorter description than writing out the sequence itself. This intuition leads to
the notion of Kolmogorov randomness, which essentially deems a sequence random if its shortest
description, known as its Kolmogorov complexity, is not shorter than the sequence itself.

� Typicality. Even though the sequences (3.1) and (3.2) have equal probabilities, probability
can still be used to describe why one is more random than the other. If a binary sequence is
generated by flipping a coin, we expect 1 to be followed by 0 about half of the time. This is the
case for (3.1), but not at all for (3.2). In this sense, the latter sequence is exceptional, while the
former is typical. If a binary sequence is typical with respect to any statistical property, then it
is deemed to be random. This is the essence of Martin-Löf randomness.

All three approaches require introducing the notion of computability, whence the term ‘algorithmic’.
This is most clear in the second approach: one needs to exactly define what a description of a binary
sequence is. We will see in Section 3.1 why computability is needed for the typicality approach to
randomness.
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With randomness and probability being closely related to each other and the latter being fundamen-
tal to statistical mechanics, it is to be expected that randomness might have useful applications in
statistical mechanics. In view of the typicality account, Martin-Löf randomness seems to be the most
appropriate sense of randomness to use and we will describe possible ways of doing so in Section 3.3.
This does not mean that the other two approaches might have no applications. On the contrary,
Kolmogorov complexity has already seen more applications to physics than Martin-Löf randomness.
See for example Chapter 8 in [Li and Vitányi, 2019] and Chapter 9 in [Calude, 2002]. Randomness
through betting strategies has not yet been applied to problems in physics, but [Hiura and Sasa, 2019]
expect it to also be useful.

3.1 Martin-Löf randomness

Even though we illustrated randomness for finite binary sequences, the rigorous definition of random-
ness in the sense of typicality is most clean when applied to infinite objects. The same holds for betting
strategies, while Kolmogorov complexity only works for finite objects. Hence, we begin by considering
Martin-Löf randomness of infinite binary sequences.

We first need to introduce some terminology and notation. The set of finite binary sequences of length
N is denoted by 2N and the set of infinite binary sequences by 2N. The latter equipped with the
product topology, using the discrete topology on each factor {0, 1}, is known as the Cantor space. For
σ ∈ 2N , we define the cylinder set

σ2N = {x ∈ 2N | x(n) = σ(n) for 0 ≤ n ≤ N − 1}, (3.3)

which is the set of infinite binary sequences having initial segment σ (see also Appendix A). It is easily
seen that each cylinder set is both open and closed. A general fact from topology regarding bases of
product spaces implies that the collection of cylinder sets forms a basis for the topology of 2N.

Intuitively, a sequence x ∈ 2N is Martin-Löf random if it has no exceptional properties, as measured
by some probability measure µ defined on the Borel σ-algebra of 2N. This can be formalised in the
following way. A subset N ⊆ 2N is called a null set if there is a sequence (Un)n∈N of open sets
such that N ⊆

⋂∞
n=0 Un and µ(Un) ≤ 1/2n, which we interpret as N representing some exceptional

property. Then, we might say that x is random if it is not contained in any null set. However, this
proposed definition does not work, since it can imply that {x} is a null set for any x ∈ 2N: each
sequence is exceptional in virtue of being itself. For example, this happens for the Bernoulli measure
fN constructed from the fair probability measure f on {0, 1} satisfying f(0) = 1/2. Indeed, setting
Un = x(0) . . . x(n)2N, we have x ∈

⋂∞
n=0 Un and fN(Un) = 1/2n.

The way out of this problem is to restrict to a smaller class of null sets. Since sequences that can be
described by simple algorithms should be deemed non-random, such as the infinite version of (3.2), we
restrict to effective null sets, i.e., those which can be described in an algorithmic manner. Making this
precise requires the field of computability theory, which is too involved to present in detail here (see
for example [Enderton, 2010]). The central objects of computability theory are computable functions,
which are partial functions f :⊆ N → N, possible defined only on a subset Df ⊆ N, whose values
f(n) for n ∈ Df can be computed by some algorithm using n as input. The notion of an algorithm
is formalised using a model of computation, such as the Turing machine. Given the notion of a
computable function, computability can be defined for all kinds of other objects, such as subsets of
N and real numbers. Instead of a precise definition, however, we will use the principle of “I know it
when I see it” with regards to computability.



13 3.1 Martin-Löf randomness

With the restriction to effective null sets, one obtains a satisfactory definition of randomness of infi-
nite binary sequences, which was first given in [Martin-Löf, 1966]. However, we will give the defini-
tion of Martin-Löf randomness immediately for spaces more general than the Cantor space, following
[Hertling and Weihrauch, 2003].

Definition 3.1. An effective topological space is a pair (X,B) consisting of a topological space X,
whose topology we denote by O(X), and an enumeration B : N → O(X) of a topological basis for X.
An effective probability space (X,B, µ) consists of an effective topological space (X,B) together with a
probability measure µ defined on the Borel σ-algebra of X.

As an example, the probability space (2N, fN) representing an infinite number of coin tosses can be
made effective by choosing some enumeration of the collection of cylinder sets (3.3). This is the effective
probability space for which the original definition in [Martin-Löf, 1966] was given.

Definition 3.2. An open set U ⊆ X is computable if there exists a computable function f : N → N
such that U =

⋃
n∈N B(f(n)). In words, it is possible to write U as a union of basis elements in an

effective manner.

Definition 3.3. A sequence of open sets (Un)n∈N is uniformly computable if there exists some com-
putable function g : N× N → N such that Un =

⋃
m∈N B(g(n,m)) for all n ∈ N.

Definition 3.4. A Martin-Löf test is a uniformly computable sequence of open sets (Un)n∈N such that
µ(Un) ≤ 1/2n for each n ∈ N. A subset N ⊆ X is an effective null set if there exists a Martin-Löf
test (Un)n∈N such that A ⊆

⋂∞
n=0 Un. An element x ∈ X is Martin-Löf random if it is not contained

in any effective null set.

If we want to emphasize the dependence on the probability measure, we speak of ‘µ-Martin-Löf ran-
domness’, or simply ‘µ-randomness’. Note that this notion of randomness also depends on the choice
of countable basis B : N → O(X). However, one can formulate a notion of equivalence between count-
able bases and show that equivalent countable bases give rise to equivalent notions of randomness (see
[Hertling and Weihrauch, 2003]).

Proposition 3.5. The set of Martin-Löf random elements of an effective probability space has measure
one.

Proof. Models of computation, such as Turing machines, are countable in nature, from which it follows
that the number of computable functions is countably infinite. Consequently, there exists only a
countably infinite number of Martin-Löf tests. For each test (Un)n∈N, the intersection

⋂∞
n=0 Un is

an effective null set. Each of these sets have measure zero, hence their union does too. Because all
non-Martin-Löf random elements of X are contained in this union, the result follows.

The following alternative definition of randomness can be seen as an effective version of the Borel-
Cantelli lemma from probability theory (see Theorem 10.5 in [Jacod and Protter, 2004]). It is equiva-
lent to Martin-Löf randomness and we will use it for applications of randomness to the toy models in
Chapters 4 and 5.

Definition 3.6. A computable sequence of open sets (Vn)n∈N is a Solovay test if
∑∞

n=0 µ(Vn) < ∞.
An element x ∈ X is called Solovay random if for each Solovay test (Vn)n∈N it is contained in only
finitely many sets Vn.
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Proposition 3.7. An element x ∈ X of an effective probability space is Martin-Löf random if and
only if it is Solovay random.

Proof. See Theorem 6.2.8 in [Downey and Hirschfeldt, 2010].

Let us make some general comments on the notion of Martin-Löf randomness.

� Variants of Martin-Löf randomness can be obtained by modifying the class of null sets (see
Sections 3.5 and 3.6 in [Nies, 2008]). For example, one obtains Schnorr randomness by demand-
ing that the sequence of real numbers (µ(Un))n∈N in Definition 3.4 is uniformly computable.
One reason for preferring Martin-Löf randomness over its variants is because it is closely re-
lated to Kolmogorov randomness, in the sense that an infinite binary sequence is Martin-Löf
random if and only if all its initial segments are Kolmogorov random (see Theorem 6.2.3 in
[Downey and Hirschfeldt, 2010]). It is also equivalent to computable randomness (see Chapter 7
in [Nies, 2008]).

� If x ∈ 2N is a computable sequence, then the sets Un = x(0) . . . x(n)2N from before are uniformly
computable and hence form a Martin-Löf test, so that x is non-random. This fact implies that
we got more out of our randomness definition than we may have wanted: not only are sequences
given by simple rules non-random, for example the infinite version of (3.2), but sequences given
by any computable rule whatsoever are also non-random. For example, the sequence

10110101000001001111001100110011111110... (3.4)

may seem random, but it actually lists the digits in the binary expansion of 1/
√
2, which means it

is computable and hence non-random. Sequences like (3.4), which seem random but are given by
a non-obvious rule, are called pseudorandom. This concept is relevant for statistical mechanics,
since deterministic systems can exhibit chaotic behaviour which seems random but is actually
pseudorandom.

� The fact that computable sequences are non-random means that Martin-Löf random sequences
are inaccessible to us, in the sense that we cannot list the terms of a sequence which is Martin-
Löf random (see Chapter 8 in [Calude, 2002]). This might seem worrying for applications of
Martin-Löf randomness to physics, but one should always remember that mathematical models
are idealizations anyway, especially if infinity is involved. However, there exist similar theorems
for Kolmogorov randomness, which means that even finite random objects are inaccessible and
mysterious in a certain sense.

3.2 Effective theorems

Whenever measure theory is involved in mathematics, one often comes across theorems of the form

property P holds for µ-almost all x ∈ X, (3.5)

with (X,µ) some measure space, for us always a probability space. Such theorems state that typical
elements of X satisfy P , but do not characterize these elements, which might be seen as a draw-
back. Since Martin-Löf randomness is a refined notion of typicality, especially in view of Proposition
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3.5, we might hope to get a characterization of such elements by turning (3.5) into the randomness
statement

property P holds for all µ-Martin-Löf random x ∈ X. (3.6)

Whether this can be done and how depends on the specifics of the property P . If (3.5) can be proven
using the Borel-Cantelli lemma and there are no problems regarding computability, then Proposition
3.7 can be used to prove (3.6). For example, this technique works for the strong law of large numbers,
which in the simplest case of infinitely many coin tosses states that 1 almost surely appears about half
of the time in the resulting infinite binary sequence, i.e.,

lim
N→∞

1

N

N−1∑
n=0

x(n) =
1

2
for fN-almost all x ∈ 2N. (3.7)

To prove this using the Borel-Cantelli lemma, define the exception sets

EN,m =

{
x ∈ 2N |

∣∣∣∣∣ 1N
N−1∑
n=0

x(n)− 1

2

∣∣∣∣∣ > 1

m

}
(3.8)

and use the fourth-moment method (see Appendix B) to derive the bound fN(EN,m) ≤ Cm4/N2 for
some constant C ≥ 0, which is possible since the probability measure fN makes the random variables
x(n) independent by construction. The Borel-Cantelli lemma then implies that for fN-almost all x ∈ 2N

there exists an N0, which may depend on x, such that x ̸∈ EN,m for all N ≥ N0, i.e.,

fN

( ∞⋃
N0=1

∞⋂
N=N0

Ec
N,m

)
= 1

for all m ≥ 1. It then follows from elementary probability theory that

fN

( ∞⋂
m=1

∞⋃
N0=1

∞⋂
N=N0

Ec
N,m

)
= 1,

which is equivalent to (3.7). To turn this into a randomness statement, note that the sequence
(EN,m)N≥1 of open sets is uniformly computable, since there obviously exists an algorithm to ex-
press (3.8) as a union of cylinder sets. Because (3.8) only depends on the first N terms of x, only
finitely many cylinder sets need to be checked. Together with fN(EN,m) ≤ Cm4/N2, it follows that
(EN,m)N≥1 forms a Solovay test and Proposition 3.7 then implies that

lim
N→∞

1

N

N−1∑
n=0

x(n) =
1

2
for all fN-Martin-Löf random x ∈ 2N. (3.9)

All random infinite binary sequences satisfy the law of large numbers, which is an improvement over
(3.7), but this would only be a full characterization if the converse were also true. This is not the
case, since the infinite version of (3.2) satisfies the law of large numbers, but is not random because
it is given by an algorithm. The problem is that random sequences satisfy more statistical properties
than just the law of large numbers. For example, the finite sequence 10 should occur a fourth of
the time, which is not the case for (3.2). More generally, the frequency of any σ ∈ 2N should be
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1/2N . A sequence in which all frequencies are as expected is called Borel normal. However, even
all these statistical properties together are not equivalent to Martin-Löf randomness, since the binary
Champernowne sequence

0100011011000001010011100101110111...

is Borel normal. This sequence simply lists all binary strings in lexicographic order, which means it is
given by an algorithm and hence not random. A further generalization of Borel normality is given by
(a special case of) the ergodic theorem.

Theorem 3.8. If φ : S → S is ergodic with respect to an invariant probability measure µ (see Section
4.1 for the definitions of these terms) and A ⊆ S is measurable, then

lim
N→∞

1

N

N−1∑
k=0

δφk(x)(A) = µ(A) (3.10)

for µ-almost all x ∈ S.

Proof. If A ⊆ S is measurable, then 1A ∈ L1(S, µ) and (3.10) follow from Theorem 4.5.

Here δx is the point measure on S concentrated at x. Note that the sum on the left-hand side of
(3.10) counts the number of times the trajectory (φk(x))k≥0 lies in A. Theorem 3.9 states that in the
long run, this trajectory spends a fraction µ(A) of its time in A. Restricting to the probability space
(2N, fN) and the shift map (Lx)(n) = x(n + 1), which leaves fN invariant and is ergodic, we recover
Borel normality as a special case by applying (3.10) to cylinder sets.

Theorem 3.8 is of the form (3.5) and we may expect that an effective version of the form (3.6) ex-
ists. There indeed does, if we make all objects computable. This effective ergodic theorem gives a
characterization of µ-Martin-Löf randomness.

Theorem 3.9. If φ : S → S is ergodic with respect to an invariant probability measure µ, and φ and
µ are computable (see [Galatolo et al., 2010] for an explanation of what this means), then

lim
N→∞

1

N

N−1∑
k=0

δφk(x)(U) = µ(U) (3.11)

for all computable open U ⊆ S if x ∈ S is µ-Martin-Löf random. Conversely, if (3.11) holds for all
computable open U ⊆ S, then x is µ-Martin-Löf random.

Proof. See Theorem 3.2.2 in [Galatolo et al., 2010] and Theorem 1.3 in [Pathak et al., 2014].

Theorem 3.9 states that the collection of computable properties (3.11) which x could satisfy, ranging
over computable open subsets U ⊆ S, is large enough to yield a characterization of µ-Martin-Löf
randomness. We now recognize the effective law of large numbers (3.9) as only one of these properties
for the effective probability space (2N, fN).
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3.3 Statistical mechanics

Now we describe the applications of algorithmic randomness to statistical mechanics envisioned by
[Hiura and Sasa, 2019] and [Landsman, 2023]. When worked out rigorously in the thermodynamic
limit N → ∞, the typicality account amounts to a statement of the form (3.5), stating that the
microstates of a given non-equilibrium macrostate typically lead to irreversible macroscopic behaviour,
according to some probability measure. But which microstates actually have this property and what
characterizes them? Following Section 3.2, we could attempt to answer these questions using Martin-
Löf randomness.

First, we would like to prove that Martin-Löf random microstates lead to irreversible macroscopic
behaviour, giving a precise class of microstates with correct macroscopic behaviour. Then one can
study the properties of these microstates. In particular, do they satisfy the analogue of Boltzmann’s
Stosszahlansatz (2.4)? Recall that this is the infamous and crucial assumption in deriving the Boltz-
mann equation and a positive answer to the previous question would reveal that it actually follows
from a more fundamental assumption of randomness. Finally, the converse question can be asked: are
microstates with correct macroscopic behaviour Martin-Löf random? If not, then Martin-Löf random-
ness may be too strong to fully describe macroscopic irreversibility, in which case one might want to
look at different notions of randomness.

To qualitatively illustrate how randomness of a microstate might be tied to irreversible macroscopic be-
haviour, consider the following two possible microstates of an ideal gas in a cylindrical container.

1. The particles are distributed homogeneously through the cylinder with velocities pointing in
random directions.

2. The particles lie in a common circular cross section and all velocities are equal and aligned with
the axis of the cylindrical container.

It is clear that the second microstate results in an evolution of the gas in which the particles periodically
bounce off the two ends of the cylinder, which is not the expected irreversible behaviour. The first
microstate intuitively relaxes to equilibrium, if it is not already there. The second microstate would
clearly be described as non-random, being analogous to the sequence (3.2), while the first would be
described as random and is more like (3.1). Hence we expect random microstates to give rise to
irreversible macroscopic behaviour.

Once the relation between Martin-Löf randomness and irreversible macroscopic behaviour has been
explored, one would like to do the same for systems with a finite number of particles, using a dif-
ferent notion of randomness appropriate to finite objects. We expect this to be more difficult, since
randomness is most clean to work with in the case of infinite objects.
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4 Deterministic dynamics

Even though it is quite important in physics, the Boltzmann equation has to this day not been made
completely mathematically rigorous in a satisfactory manner. It is the hope of [Landsman, 2023]
that algorithmic randomness may help in accomplishing this. Instead of immediately tackling the
Boltzmann equation, it is better to begin with toy models of statistical mechanics. Since the equa-
tions of motion of classical mechanics are deterministic, it is natural to begin with deterministic
dynamics. Specifically, we will look at the Kac ring model, which was introduced in [Kac, 1959] to
illustrate Boltzmann’s kinetic theory in a simplified setting. Other useful references for the model
are [Gottwald and Oliver, 2009] and [Maes et al., 2009]. First we will need to introduce discrete-time
dynamical systems in general.

4.1 Dynamical systems

The microscopic dynamics of a physical system are usually given in terms of differential equations,
such as Hamilton’s equations (2.1). However, an alternative description is more useful in statistical
mechanics. Assuming some regularity of the Hamiltonian H, the existence and uniqueness theorem for
ordinary differential equations implies that each microstate x ∈ Γ determines a unique solution of (2.1)
starting at x, which we denote by t 7→ φt(x). In this way, the differential equations (2.1) determine a
collection of maps φt : Γ → Γ, which obviously have the property φs(φt(x)) = φs+t(x). Conversely,
if we neglects some details, any collection of sufficiently regular maps φt : Γ → Γ with this property
determines a system of differential equations, though not necessarily of Hamiltonian form. This leads
to the following definition.

Definition 4.1. A continuous-time dynamical system with state space S is a collection of maps φt :
S → S parametrized by t ≥ 0 such that φt+s = φt ◦ φs.

Since time is often assumed to be continuous in physics, it is most natural to use dynamical systems in
continuous-time for studying statistical mechanics. However, the Kac ring has a discrete time variable,
and discrete-time dynamical systems in general are mathematically much simpler, especially when
restricting to finite state spaces.

Definition 4.2. A discrete-time dynamical system with state space S is a collection of maps φk : S →
S parametrized by k ∈ N such that φk+m = φk ◦ φm.

A discrete-time dynamical system satisfies the recursion relation φk+1 = φ ◦ φk, which means it is
completely determined by the single function φ1 through φk = φk

1 . From now on, we restrict to
discrete-time dynamical systems, which we interpret as maps φ : S → S.

In the definitions one comes across in the literature, a dynamical system is usually supposed to include
a probability measure π on S which is invariant under the dynamics. To us, it makes more sense to
separate dynamics from invariant measures, which may or may not exist and be unique.

Definition 4.3. A probability measure π on S is invariant under the dynamics φ : S → S if
π(φ−1(A)) = π(A) for all measurable subsets A ⊆ S.

As was mentioned in Chapter 2, the notion ergodicity was used in the 20th century as an attempt at
giving a mathematical underpinning of irreversibility in physics. We can now give a precise definition
of the concept.
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Definition 4.4. A dynamical system φ : S → S is ergodic with respect to a given probability measure
µ if φ−1(A) = A implies µ(A) ∈ {0, 1} for any measurable A ⊆ S, i.e., S cannot be decomposed into
two φ-invariant subsets with positive measure.

Most definitions in the literature would include the condition that µ is invariant under φ. Ergodicity is
actually only one of multiple properties forming the ‘ergodic hierarchy’, all of which try to mathemati-
cally capture the notion of irreversibility. To give an example of another property, a dynamical system
φ : S → S is said to be metrically transitive with respect to µ if for any measurable A,B ⊆ S such
that µ(A) > 0 and µ(B) > 0, there exists a k ≥ 0 such that µ(φ−k(A) ∩ B) > 0. The study of such
ergodic properties and their consequences is the field of ergodic theory (see [Walters, 1982]).

The central result of ergodic theory is the ergodic theorem, which states that for almost all trajectories
of an ergodic dynamical system, the time average of an integrable function over the trajectory is equal
to the spatial average of the function over the entire space. This expresses the intuition that most
trajectories of an ergodic dynamical system fill up the entire state space.

Theorem 4.5. If φ : S → S is ergodic with respect to an invariant probability measure µ and f ∈
L1(S, µ), then

lim
N→∞

1

N

N−1∑
k=0

f(φk(x)) =

∫
S

fdµ

for µ-almost all x ∈ S.

Proof. See Section 1.6 in [Walters, 1982].

The Poincaré recurrence theorem, which we mentioned in Chapter 2 within the context of kinetic
theory, holds for more general dynamical systems. We also stated that the recurrence time of a subset
can be related to its measure, assuming the dynamics are ergodic. This can now be made precise,
though we will not go into the details of the proof.

Theorem 4.6. Suppose φ : S → S is a dynamical system with invariant probability measure π. If
a measurable A ⊆ S satisfies π(A) > 0, then almost all x ∈ A have the property that φk(x) ∈ A for
infinitely many k ≥ 0. In addition, if φ is ergodic with respect to π, then the mean recurrence time

∞∑
k=1

k
π(Ak)

π(A)

is equal to 1/π(A). Here Ak ⊆ A is the set of x ∈ A which first return to A at time k.

Proof. See Sections III.4 and III.5 in [Kac, 1959].

For a dynamical system φ : S → S with finite state space, the notions of ergodicity and metrical
transitivity coincide and are equivalent to φ having only one orbit: for any x, y ∈ S, there exists
a k ≥ 0 such that φk(x) = y. This orbit is periodic, i.e., there is some smallest N ≥ 1 such that
φN (x) = x for all x ∈ S, so that the dynamics is recurrent. More generally, any dynamical system
with finite state space can be partitioned into periodic orbits. The dynamics is still recurrent, but the
recurrence time is now given by the least common multiple of all periods.
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Finally, let us discuss the reversibility of dynamical systems. First, note that non-invertible dynamical
systems cannot be said to be reversible, since those cannot be run backward in time. However, an
invertible dynamical system is not necessarily reversible. Only if the behaviour forward and backward
in time is essentially the same can we speak of reversibility.

Definition 4.7. A dynamical system φ : S → S is reversible if it is invertible and there exists a
non-zero involution T : S → S such that φ−1 = T ◦ φ ◦ T .

The involution T : S → S is analogous to the operation of velocity reversal in kinetic theory (see
Section 2.1.1) and we us the same name for it. If φ : S → S is invertible, then it is automatically
reversible in case S is finite. This is because a finite dynamical system can be partitioned into periodic
orbits, on each of which a velocity reversal can be defined. For example, if φ has only a single orbit
x, φ(x), . . . , φN−1(x), then the velocity reversal is given by the involution

φk(x) 7→ φ2N−k(x).

A dynamical system can only be truly non-reversible according to Definition 4.7 if the state space is
infinite, because then the orbits are not forced to be periodic. For example, the dynamical system
φ(x) = 2x on R is non-reversible. A corresponding velocity reversal T would have to satisfy the
functional equation 2T (2x) = T (x), from which it follows that T = 0 under the assumption that T is
continuous, which is a reasonable assumption to make.

4.2 Kac ring

Rather than directly writing down the dynamics of the Kac ring in a formal manner, it is better to
first give an intuitive description of the model. To begin, there is a ring with N sites and at each
site a ball that is either black or white. At each time step, every ball moves one site over in the
counterclockwise direction. Some of the sites are marked, and if a ball departs from a marked site, it
changes colour.

If we let the colours black and white correspond to 0 and 1, then the configuration of balls is equivalent
to a finite binary sequence x ∈ 2N . Similarly, if 0 corresponds to the absence of a mark and 1 to the
presence, then the configuration of the sites is equivalent to y ∈ 2N . Hence, we may use S = 2N × 2N

as the state space of the Kac ring. Using the notation (x, y)(i) = (x(i), y(i)), the dynamics φ : S → S
can be expressed as

φ(x, y)(i) = (x(i− 1) + y(i− 1)(1− 2x(i− 1)), y(i)). (4.1)

The subtractions occurring in the arguments of x, y in (4.1) are modulo N . If we change the first
factor 2N into {−1, 1}N , then we get a more physical interpretation of the Kac ring in terms of spins
moving along a ring and being flipped by scatterers which may be present at some sites, but we will
stick to coloured balls. The dynamics (4.1) are invertible with inverse

φ−1(x, y)(i) = (x(i+ 1) + y(i)(1− 2x(i+ 1)), y(i)), (4.2)

and reversible when using the velocity reversal T : S → S defined by

T (x, y)(i) = (x(−i), y(−i− 1)), (4.3)

as is easily checked (Umkehreinwand). Again, the arguments of x, y are modulo N . The Kac ring
is also recurrent in the sense that each state evolves back into itself after at most 2N time steps
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(Wiederkehreinwand). In spite of this, the Kac ring exhibits irreversibility when viewed macroscopi-
cally. As pointed out by [Bricmont, 1995], this is noteworthy, since the Kac ring lacks properties which
are often taken to be explanations of irreversibility, such as ergodicity. Indeed, the Kac ring cannot
be ergodic since it obviously has multiple orbits.

Let us now walk through the steps of the typicality account to explain how irreversibility occurs in the
Kac ring. We have already seen that the microstates form the set 2N×2N , analogous to the phase space
of a gas. The natural coarse-graining of this space is given by the two macroscopic quantities

f(x, y) =
1

N

N∑
i=1

x(i) and g(x, y) =
1

N

N∑
i=1

y(i), (4.4)

which are the proportions of white balls and marked sites, analogous to Boltzmann’s distribution
function (2.2). Note that the second is non-dynamical, but obviously required to describe the dynamics
of the first. This means that one should use only f in the typicality account, but conditioned on a
fixed value of g. The macrostates corresponding to f should have differing sizes as measured by a
probability measure π on S which is invariant under φ. Because S is finite, a probability measure on
S is equivalent to its probability mass function and we use the same symbol for both. In addition, φ
is invertible, which means π is invariant under φ if and only if

π(φ(x, y)) = π(x, y)

for all (x, y) ∈ S. It follows that π is constant on orbits of φ. Conversely, any probability measure on
the set of orbits gives rise to an invariant probability measure on S. Because the Kac ring has multiple
orbits, there is no unique invariant probability measure. However, in view of the principle of equal a
priori probabilities (see Section 2.2), it seems natural to use the uniform probability measure

π(x, y) =
1

22N
. (4.5)

Using π to measure sizes of subsets of S, the size of the region corresponding to the macrostate n/N
is given by

π ({f = n/N}) = 1

2N

(
N

n

)
.

This shows that the equilibrium macrostate is given by f ≈ 1/2, since it has the largest size. Also, the
further n/N is from 1/2, the smaller the corresponding region of the microstate space is, as should be
the case for the typicality account to hold. The dominance of equilibrium is actually an asymptotic
statement, which can be made precise as follows. The probability measure π makes the projections
x(i) : S → {0, 1} independent random variables with expectation 1/2, hence we may use Hoeffding’s
inequality (see Appendix B) to conclude

π({|f − 1/2| < ε}) ≥ 1− 2 exp(−2Nε2),

which is approximately equal to 1 for large N . The buffer ε is necessary because the equilibrium
macrostate would otherwise actually be smaller than all other macrostates combined (see Section
6.2 in [Bricmont, 2022]). Of course, this buffer is no problem when N is very large, as is the case for
physical systems. Recall that in all of the previous steps, one should actually condition on a fixed value
of g. Since f and g can be independently varied, it is clear that this does not affect the conclusions in
an essential way.
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By the typicality account, we are now justified in expecting that the Kac ring has a high probability
of relaxing to equilibrium when starting in a non-equilibrium macrostate. Of course, as we made clear
in Section 2.2, this is only an expectation. We can only be sure that relaxation occurs by giving a
mathematical proof, which we will do in Section 4.3.

4.3 Macroscopic behaviour

4.3.1 Kac ring

First we non-rigorously derive the macroscopic law governing (4.4), after which we can prove that
it is satisfied with high probability. We denote the time-evolution of the macroscopic quantity f by
fk = f ◦ φk. We make the simplifying assumption that

proportion of white balls at marked sites = gfk (4.6)

and similarly
proportion of black balls at marked sites = g(1− fk) (4.7)

hold for all relevant times k, which is the analogue of the Stosszahlansatz (2.4) for the Kac ring, stated
in terms of proportions rather than numbers. One can easily come up with examples of microstates for
which (4.6) and (4.7) do not hold, but we nevertheless expect them to typically hold with respect to
a proper probability measure. The change in the proportion of white balls during the time step from
k to k + 1 is equal to the difference between (4.7) and (4.6), which results in the Kac ring’s analogue
of the Boltzmann equation:

fk+1 − fk = g(1− 2fk). (4.8)

Using standard techniques for solving difference equations, the solution of (4.8) with initial conditions
f = α and g = β is given by

fk =
1

2
+

(
α− 1

2

)
(1− 2β)k (4.9)

and exhibits relaxation to the equilibrium value of 1/2 if β ∈ (0, 1), monotonically if β < 1/2. The
question is now whether the evolution equation (4.8) can also be obtained rigorously. As shown in
Section III.14 of [Kac, 1959], one way of doing this is as follows. With respect to the probability
measure π conditioned on fixed initial values f = α and g = β, the expectation E(fk) becomes equal
to (4.9) for fixed k upon taking a limit N → ∞.

There is another method of rigorously obtaining (4.8) which is much easier and more elegant than the
previous. Instead of fixing initial values f = α and g = β, one can use a probability measure µ in
which they are allowed to vary, but still satisfy

E(f) = α and E(g) = β. (4.10)

The best choice is the product measure µ = µα×µβ , with µp the Bernoulli measure on 2N of parameter
p ∈ [0, 1]. This makes all the coordinates x(i), y(j) independent Bernoulli random variables such
that

E(x(i)) = α and E(y(j)) = β.

In physics, this trick is known as switching from the microcanonical ensemble to the canonical ensemble.
For the Kac ring, the former corresponds to π conditioned on f = α and g = β while the latter
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corresponds to µ. It is not the case that µ is wholly unrelated to π. One can show that µ minimizes
the relative entropy H(µ|π) (see Definition 5.12) subject to the constraints (4.10), which is an instance
of the maximum entropy principle (see Chapter 2 in [Mackey, 1992]). The quantity H(µ|π) is actually
a negative entropy, hence is minimized instead of maximized. The following Proposition now makes
(4.8) rigorous at the level of expectation using µ rather than π.

Proposition 4.8. With respect to the probability measure µ, the expectation Fk = E(fk) satisfies the
difference equation Fk+1−Fk = β(1−2Fk) with initial value F0 = α for all k < N , and is consequently
given by

Fk =
1

2
+

(
α− 1

2

)
(1− 2β)k (4.11)

for k ≤ N . The finite time interval of validity is necessary in view of the Kac ring being re-
current. In fact, one can show that Fk evolves towards non-equilibrium for N ≤ k ≤ 2N (see
[Gottwald and Oliver, 2009]).

Note that both the canonical measure µ and the macroscopic law Fk actually depend on α and β, but
we suppress this dependence to ease the notation.

Proof. The proof is most clean using the alternative variables η, ε ∈ {−1, 1}N defined by{
η(i) = 2x(i)− 1

ε(i) = −2y(i) + 1.
(4.12)

With these, the dynamics (4.1) takes on the simple form φ(η, ε)(i) = (η(i−1)ε(i−1), ε(i)), from which
the useful formula φk(η, ε) = (η(i− k)ε(i− 1) · · · ε(i− k), ε(i)) follows. Using this formula and

2f − 1 =
1

N

N∑
i=1

η(i), (4.13)

we have

2E(fk+1)− 1 = E

(
1

N

N∑
i=1

η(i− (k + 1))ε(i− 1) · · · ε(i− (k + 1))

)
.

If k < N , the factors appearing in the summand are all independent. Using standard properties of the
expectation, we can then bring a factor E(ε(i− 1)) out in front and use E(ε(j)) = 1− 2β to get

2E(fk+1)− 1 = (1− 2β)E

(
1

N

N∑
i=1

η(i− (k + 1))ε(i− 2) · · · ε(i− (k + 1))

)
.

The sum clearly does not change under the shift i 7→ i+ v, hence

2E(fk+1)− 1 = (1− 2β)E

(
1

N

N∑
i=1

η(i− k)ε(i− 1) · · · ε(i− k)

)
= (1− 2β)(2E(fk)− 1)

and a simple rearrangement of this equality finally yields Fk+1−Fk = β(1−2Fk). The initial condition
F0 = α holds by (4.10).
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The evolution equation (4.8) has now been obtained rigorously, but only at the level of expectations.
To actually prove the Kac ring exhibits irreversibility, it needs to be shown that fk remains near to
Fk on some finite time interval with high probability. This can be accomplished using π (see Section
10 in [Maes et al., 2009]), but it is once again mathematically more convenient to use µ.

Theorem 4.9. Defining Fk by (4.11), for any T ≥ 0 and ε > 0 we have

µ

(
T⋂

k=0

|fk − Fk| < ε

)
≤ 1− T 2

4Nε2

if T ≤ N/2. This means that for sufficiently large numbers of balls N , the Kac ring satisfies its
macroscopic law on the time interval 0 ≤ k ≤ T with high probability.

Proof. It follows from Proposition 4.8 that E(fk) = Fk for all k ≤ T , since T ≤ N/2. Chebyshev’s
inequality (see Appendix B) then implies

µ({|fk − Fk| ≥ ε}) ≤ V(fk)
ε2

.

We will now derive an upper bound on the variance V(fk). As in the proof of Proposition 4.8, this is
easier if we use the variables (4.12), which means we are actually going to bound V(2fk −1) = 4V(fk).
First, a standard formula from probability theory gives

V(2fk − 1) = E((2fk − 1)2)− E(2fk − 1)2.

It follows from (4.11) that E(2fk − 1) = (2α − 1)(1 − 2β)k. Together with (4.13), this means we can
rewrite the previous formula as

V(2fk − 1) = E

( 1

N

N∑
i=1

η(i− k)ε(i− 1) · · · ε(i− k)

)2
− (2α− 1)2(1− 2β)2k

=
1

N2

N∑
i,j=1

(
E (η(i− k)η(j − k)ε(i− 1) · · · ε(i− k)ε(j − 1) · · · ε(j − k))− (2α− 1)2(1− 2β)2k

)
.

If the distance between sites i and j is greater than or equal to k, then all arguments of ε appearing
in the second line are distinct and hence all factors are independent. Because the distance between
sites cannot be greater than N/2, this can only happen if k ≤ N/2, which is guaranteed by T ≤ N/2
and k ≤ T . Using E(η(i)) = 2α− 1 and E(ε(j)) = 1− 2β, the summand then vanishes. The summand
does not necessarily vanish for pairs i, j with distance less than k, of which there are N(2k − 1).
The summand is obviously bounded by 1 from above, hence V(2fk − 1) ≤ (2k − 1)/N and from this
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V(fk) ≤ (2k − 1)/4N follows. By elementary properties of probability measures, we finally have

µ

(
T⋂

k=0

|fk − Fk| < ε

)
= 1− µ

(
T⋃

k=0

{|fk − Fk| ≥ ε}

)

≤ 1−
T∑

k=0

µ({|fk − Fk| ≥ ε})

≤ 1−
T∑

k=0

2k − 1

4Nε2

= 1− T 2

4Nε2
.

4.3.2 Kac chain

Theorem 4.9 can be seen as a time-dependent weak law of large numbers. A strong version does not
exist for the Kac ring, since the strong law of large numbers can only be formulated for a system with
infinitely many components. For the same reason, Martin-Löf randomness cannot be applied to the
Kac ring. To fix this, we switch to the Kac chain, which can be seen as the thermodynamic limit
N → ∞ of the Kac ring. It seems to have been introduced by [Hiura and Sasa, 2019].

The Kac chain has state space given by S = 2Z × 2Z with dynamics of the same form (4.1) as before.
The interpretation is now an infinite line of coloured balls which change colour upon leaving a marked
site. The dynamics of the Kac chain is invertible with the same inverse (4.2) and reversible with the
same velocity reversal (4.3). The natural invariant probability measure is the infinite version of (4.5),
which is the Bernoulli measure on 2Z×2Z built from the fair probability measure on each factor {0, 1},
for which we use the same symbol π. With respect to this measure, the Kac chain is recurrent by
Theorem 4.6. However, the mean recurrence time, which for the Kac ring is of order N , is now infinite.
The relevant macroscopic quantities are now the limits of the truncations

fN (x, y) =
1

2N + 1

N∑
i=−N

x(i) and gN (x, y) =
1

2N + 1

N∑
i=−N

y(i) (4.14)

as N → ∞, which do not exist for all microstates. However, with respect to the infinite version of the
probability measure µ from before, which we denote by the same symbol, these macroscopic quantities
do exist for µ-almost all microstates and the first satisfies the macroscopic law (4.11). We denote the
time evolution of the first quantity in (4.14) by fN

k = fN ◦ φk.

Theorem 4.10. Defining Fk by (4.11) and fixing k ≥ 0, we have

lim
N→∞

fN
k (x, y) = Fk and lim

N→∞
gN (x, y) = β (4.15)

for µ-almost all microstates (x, y) ∈ S.

Proof. Because the random variables y(j) are independent and identically distributed, the second
equality in (4.15) can be proven in the same way as the strong law of large numbers in Section 3.2.



26 4.3 Macroscopic behaviour

For the other equality, we begin with the observation that the macroscopic law holds at the level of
expectations in the sense that E(fN

k ) = Fk for all N ≥ 0 and k ≥ 0, which is proven in the same
way as Proposition 4.8. Note that there is no restriction on the time interval of validity in this case,
because the mean recurrence time of the Kac chain is infinite. The exception sets

EN,m = {|fN
k − Fk| > 1/m}

satisfy

µ(EN,m) ≤ V(fN
k )

1/m2

by Chebyshev’s inequality. It can be shown that V(fN
k ) ≤ (2k − 1)/(4(2N + 1)) for 2N ≥ k in the

same way as the variance bound in the proof of Theorem 4.9. We then have

µ(EN,m) ≤ (2k − 1)m2

4(2N + 1)
,

which means that
∑∞

N=0 µ(EN2,m) < ∞. The Borel-Cantelli lemma now implies that for µ-almost all
(x, y) ∈ S, there exists an N0 ≥ 0 such that (x, y) ∈ Ec

N2,m for all N ≥ N0, i.e.,

µ

( ∞⋃
N0=0

∞⋂
N=N0

Ec
N2,m

)
= 1

for all m ≥ 1. It then follows from elementary probability theory that

µ

( ∞⋃
m=1

∞⋃
N0=0

∞⋂
N=N0

Ec
N2,ε

)
= 1,

which is equivalent to limN→∞ fN2

k (x, y) = Fk for µ-almost all (x, y) ∈ S. The convergence of this
subsequence then implies the convergence of the entire sequence to Fk (see the proof of Theorem 3.3
in [Hiura and Sasa, 2019]).

4.3.3 Randomness

We make the state space of the Kac chain effective by choosing some enumeration of the cylinder sets
of 2Z × 2Z ∼= 2Z×Z. Now we can implement the applications of Martin-Löf randomness to statistical
mechanics described in Section 3.3 for the Kac chain. First, we turn the strong law of large numbers
given by Theorem 4.10 into an effective law of large numbers, giving more information about which
microstates have expected macroscopic behaviour.

Theorem 4.11. Define Fk by (4.11) and assume that α, β are computable real numbers. Fixing k ≥ 0,
we have

lim
N→∞

fN
k (x, y) = Fk and lim

N→∞
gNk (x, y) = β (4.16)

for all µ-random microstates (x, y) ∈ S.

Proof. The second equality in (4.16) can be proven in the same way as the effective law of large
numbers in Section 3.2. For the other equality, note that the exception sets EN,m defined in the proof
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of Theorem 4.10 form a uniformly computable sequence of open sets, since there obviously exists an
algorithm to express EN,m as union of cylinder sets. Since EN,m only depends on a finite segment of
x, only finitely many cylinder sets need to be checked. Because

∑∞
N=0 µ(EN2,m) < ∞, the sequence

(EN2,m)N≥0 is a Solovay test. If (x, y) ∈ S is µ-random, then Proposition 3.7 implies that there is
an N0 ≥ 0 such that (x, y) ∈ Ec

N2,m for all N ≥ N0. It now follows that fN
k (x, y) converges to Fk as

before.

While Theorem 4.11 does give a class of microstates for which expected macroscopic behaviour oc-
curs, it should be kept in mind that this is with respect to the probability measure µ. Relative to
other probability measures, the macroscopic behaviour may be different (see for example Section 5 in
[Hiura and Sasa, 2019]). One way to argue for using µ is to say that the invariant probability measure
π is natural and that µ can be derived from π in some natural sense, such as the maximum entropy
principle.

An interesting consequence of Theorem 4.11 is the following randomness perspective on theWiederkehrein-
wand, making more precise in what sense the velocity reversed state considered by Loschmidt is ex-
ceptional. For any k ≥ 0, let µk be the image under φk, i.e., the probability measure defined by
µk(A) = µ(φ−k(A)) for all measurable A ⊆ S.

Theorem 4.12. If (x, y) is µ-random, then φk(x, y) is µk-random, but the velocity reversed microstate
(T ◦ φk)(x, y) is non-random with respect to µk.

Proof. See Theorem 5.1 in [Hiura and Sasa, 2019].

All µ-random microstates have correct macroscopic behaviour, but the converse is not true. That is to
say, there exist microstates that are non-random, but for which (4.16) nevertheless hold. The easiest
examples of such microstates are in equilibrium, such as (x, y) given by y(i) = 1 for all i and

x(i) =

{
0 i is even

1 i is odd,

though we expect that examples out of equilibrium can also be invented. One of the questions
[Hiura and Sasa, 2019] have is what to make of such microstates. As with the law of large num-
bers in Section 3.2, the answer is that µ-random microstates satisfy more macroscopic laws than just
(4.16). For example, the proportion of white balls followed by another white ball, which is the limit
of

1

2N + 1

N∑
i=−N

x(i)x(i+ 1) (4.17)

as N → ∞, is expected to behave as

1

4

(
1 + 2(2α− 1)(1− 2β)k + (2α− 1)2(1− 2β)2

)
by a similar reasoning as in the proof of Proposition 4.8. Note that this macroscopic evolution does not
relax to its equilibrium value of 1/4, which can be interpreted as persistence of correlations (see also
Section III.15 in [Kac, 1959]). Like with the law of large numbers, we can try to get a characterization
through the ergodic theorem. The relevant dynamical system is the two-sided shift map L(x, y)(i) =
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(x(i + 1), y(i + 1)) on S with invariant probability measure µ. To show that L leaves µ invariant, it
suffices to check this on cylinder sets. Unlike the one-sided shift in Section 3.2, the two-sided shift is
invertible, so that a two-sided version of the ergodic theorem is more appropriate.

Theorem 4.13. If φ : S → S is invertible and ergodic with respect to an invariant probability measure
µ, then for any measurable A ⊆ X we have

lim
N→∞

1

2N + 1

N∑
k=−N

δφk(x)(A) = µ(A) (4.18)

for µ-almost all x ∈ X.

Proof. Applying Theorem 3.8 to both φ and φ−1 and adding the results yields (4.18) after some
elementary manipulations.

Similar to Theorem 3.8, we expect an effective version of Theorem 4.13 to exist, which should look
something like the following theorem. We conjecture that its proof is similar to that of Theorem
3.9.

Theorem 4.14. If φ : S → S is invertible and ergodic with respect to an invariant probability measure
µ, and φ and µ are computable, then

lim
N→∞

1

2N + 1

N∑
k=−N

δφk(x)(U) = µ(U) (4.19)

for all computable open U ⊆ S if x ∈ S is µ-random. Conversely, if (4.19) holds for all computable
open U ⊆ S, then x is µ-random.

Now we apply Theorem 4.14 to the Kac chain. In the following theorem, φ denotes the dynamics of
the Kac chain and L the two-sided shift.

Theorem 4.15. For any computable open U ⊆ S and any k ≥ 0,

lim
N→∞

1

2N + 1

N∑
n=−N

δφk(x,y)(L
−n(U)) = µ(φ−k(U)) (4.20)

for all µ-random microstates (x, y) ∈ S. Conversely, if (4.20) holds for each computable open U ⊆ S,
then (x, y) is µ-random.

Proof. If U ⊆ S is a computable open set, then so is φ−k(U), since φ is obviously computable and
continuous. Applying Theorem 4.14 to the two-sided shift L and the computable open set φ−k(U)
yields

lim
N→∞

1

2N + 1

N∑
n=−N

δLn(x,y)(φ
−k(U)) = µ(φ−k(U)) (4.21)

for all µ-random microstates (x, y) ∈ S. One easily checks that φ and L commute. It follows that
δLn(x,y)(φ

−k(U)) = δφk(x,y)(L
−n(U)) and hence the left-hand side of (4.21) is equal to that of (4.20).

The converse follows from this equality and the converse in Theorem 4.14.
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Theorem 4.15, if it is correct, answers the question of [Hiura and Sasa, 2019] on non-random mi-
crostates satisfying the macroscopic law (4.15). For each computable open U ⊆ S, the left-hand side
of (4.20) is a macroscopic quantity of the Kac chain and the equality states that it has macroscopic
law µ(φ−k(U)). For example, if U = {(x, y) ∈ S | x(0) = 1}, then

1

2N + 1

N∑
n=−N

δφk(x,y)(L
−n(U)) = fN

k

and (4.20) reduces to the first macroscopic law in (4.15) if one can show that µ(φ−k(U)) = Fk, with Fk

defined by (4.11). If all these macroscopic laws are satisfied by a microstate (x, y), then it is µ-random.
However, one can ask whether all of these laws are physically relevant. If not, then it might be better
to use a definition of randomness which has less properties that need to be satisfied.

Lastly, we discuss the Kac chain’s analogue of the Stosszahlansatz from the perspective of Martin-Löf
randomness. The proof of Theorem 4.11 show that the Stosszahlansatz can be bypassed in proving
the macroscopic laws (4.16). In other words, the assumption of randomness is more fundamental than
the Stosszahlansatz. This becomes especially clear by looking at macroscopic laws other than (4.16).
For example, (4.17) cannot be proven from (4.6) and (4.7), but requires different Stosszahlansatz-like
assumptions, all of which are implied by the more fundamental assumption of randomness.

If one wants, the first of the macroscopic laws (4.16) can be proven through the Stosszahlansatz, but
this requires more work than the direct proof given above. Denoting the components of the first factor
of φk(x, y) by xk(i), the Stosszahlansatz for the Kac chain is given by

lim
N→∞

1

2N + 1

N∑
i=−N

xk(i)y(i) =

(
lim

N→∞

1

2N + 1

N∑
i=−N

y(i)

)(
lim

N→∞

1

2N + 1

N∑
i=−N

xk(i)

)

and

lim
N→∞

1

2N + 1

N∑
i=−N

(1− xk(i))y(i) =

(
lim

N→∞

1

2N + 1

N∑
i=−N

y(i)

)(
1− lim

N→∞

1

2N + 1

N∑
i=−N

xk(i)

)
.

Proving this requires first showing that the two limits on the right-hand sides, which we denote
by g(x, y) and fk(x, y) respectively, exist for each k ≥ 0. This is most easily done through the
law of large numbers, which also yields the macroscopic laws (4.16) which we are trying to prove,
making the Stosszahlansatz redundant. However, let us proceed anyway. Using the formula xk+1(i) =
xk(i− 1) + y(i− 1)(1− 2xk(i− 1)), the change

N∑
i=−N

xk+1(i)−
N∑

i=−N

xk(i)
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in the number of white balls on sites −N through N is equal to

N∑
i=−N

(xk(i− 1) + y(i− 1)(1− 2xk(i− 1)))−
N∑

i=−N

xk(i)

=

N∑
i=−N

y(i− 1)(1− 2xk(i− 1)) + xk(−N − 1)− xk(N)

=

(
N∑

i=−N

y(i)(1− xk(i))−
N∑

i=−N

y(i)xk(i)

)
+ xk(−N − 1)− xk(N)

+ y(−N − 1)(1− 2xk(−N − 1))− y(N)(1− 2xk(N)),

which is the difference between the number of black balls at marked sites and white balls at marked
sites in the same interval of sites, up to boundary terms. This implies

∣∣∣∣∣
(

1

2N + 1

N∑
i=−N

xk+1(i)−
1

2N + 1

N∑
i=−N

xk(i)

)

−

(
1

2N + 1

N∑
i=−N

y(i)(1− xk(i))−
1

2N + 1

N∑
i=−N

y(i)xk(i)

)∣∣∣∣∣ ≤ 4

2N + 1
,

from which in turn
fk+1(x, y)− fk(x, y) = g(x, y)(1− 2fk(x, y))

follows, when combined with the Stosszahlansatz above. This concludes the derivation of the Kac
chain’s analogue of the Boltzmann equation through the Stosszahlansatz.

It may be the case that the Stosszahlansatz is not necessary here because the Kac chain is a simple toy
model. Perhaps more complicated models have macroscopic laws which are more easily proven through
a Stosszahlansatz, which in turn is first proven from an assumption of randomness on the microstate.
This could be explored in the Ehrenfests’ wind-tree model, which is more complicated than the Kac
chain but still reasonably simple (see [Brown et al., 2009]).
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5 Stochastic dynamics

When studying irreversibility in a deterministic model, the use of probability is restricted to random
initial conditions. Once the initial state is given, the dynamics determine its orbit completely. A system
in which transitions of state are themselves random is said to have stochastic dynamics. Models with
stochastic dynamics have long been used in statistical mechanics, going back to the work of Einstein,
Smoluchowski and Langevin on Brownian motion in the early 20th century [Ebeling et al., 2008]. Even
if the fundamental microscopic laws of physics are presumed to be deterministic, stochastic dynamics
are still relevant: microscopic conditions cannot be fully known, which means one necessarily needs to
work with reduced descriptions, in which information of the microstate is lost. This lack of information
through coarse-graining turns a deterministic process into a stochastic one.

Following the mathematical development of the theory of stochastic processes in the second half of
the 20th century [Meyer, 2022], stochastic approaches to non-equilibrium systems have flourished. In
the mathematical literature, one has the field of interacting particle systems, which studies stochastic
processes modelling systems both in and outside physics [Liggett, 1985]. In the physics literature,
there is the field of stochastic thermodynamics [Seifert, 2025]. See Chapter 7 of [Uffink, 2006] for more
on stochastic approaches to the foundations of non-equilibrium statistical mechanics.

In this section, we look at one of the oldest and simplest models with stochastic dynamics, the Ehrenfest
model1, which was introduced in [Ehrenfest and Ehrenfest, 1907] to discuss the objections of Loschmidt
and Zermelo against Boltzmann’s H-theorem. The canonical reference for the model’s mathematical
details is [Kac, 1959]. We use the Ehrenfest model to illustrate the typicality account for stochastic
dynamics. Furthermore, we use it as a test case for extending the ideas of [Hiura and Sasa, 2019] on al-
gorithmic randomness to stochastic dynamics, noting the differences with the deterministic case.

5.1 Markov chains

Before describing the Ehrenfest model, it is necessary to explain part of the mathematical theory of
stochastic processes, specifically that part concerning Markov chains. We will find that the theory of
Markov chains is a miniature version of kinetic theory, having analogues of the Boltzmann equation,
relaxation, recurrence and the H-theorem. We are not interested in giving a full and completely
rigorous exposition of either Markov chains or stochastic processes in general. The reader may consult
[Norris, 1997] for the former and [Karlin and Taylor, 1975] and [Karlin and Taylor, 1981] for the latter.
We do provide some background material in Appendix A, but only that which is required for our
purposes.

5.1.1 Construction

A stochastic process with state space S is essentially a collection of random variables (X(t))t∈T taking
values in S, one for each value of time t ∈ T , and which may be correlated across time (see Appendix
A for more details). In general, a stochastic process may have arbitrary correlations across time.
However, in most models of interest, including those used in physics, one often makes simplifying
assumptions which limit the possible correlations. The most common is the Markov property, which
states that the future development of the process only depends on its current state. In other words,

1It is also often called the ‘Ehrenfest urn model’, to prevent confusion with other models named after Ehrenfest, such
as the wind-tree model.



32 5.1 Markov chains

the process is memoryless. In the discrete-time case, such processes are called Markov chains. These
can be defined for general state spaces (see Section 4.1 in [Kurtz and Ethier, 1986]), but for countable
state spaces one has the following definition.

Definition 5.1. A discrete-time stochastic process (X(k))k≥0 with countable state space S is said to
be a Markov chain if

P(X(k + 1) = xk+1 | X(0) = x0, . . . X(k) = xk) = P(X(k + 1) = xk+1 | X(k) = xk) (5.1)

for all k ≥ 0 and x0, . . . , xk+1 ∈ S such that the conditional probabilities exist (which is the case if and
only if P(X(0) = x0, . . . , X(k) = xk) ̸= 0).

From now on, we restrict to Markov chains with finite state space. Most of what will be presented
also works, after suitable modifications, for countably infinite state spaces (see [Norris, 1997]). Let us
introduce some more terminology. The distribution2 of X(0) is called the initial distribution, which
we often denote by µ. The probabilities P(X(m) = y | X(k) = x) are called transition probabilities.
We restrict to time-homogeneous Markov chains, for which these probabilities depend only on the
difference m − k. In that case, all transition probabilities are determined by the transition function
Pk(x, y) = P(X(k) = y | X(0) = x), which we view as a time-dependent |S| × |S| matrix.

Definition 5.2. A matrix P is called stochastic if its entries are all non-negative and all rows have sum
1, i.e., P (x, ·) forms a probability distribution for each x ∈ S. If the transpose PT is also stochastic,
one calls P doubly stochastic. If each P (x, ·) is deterministic, the matrix P is called deterministic.
Equivalently, P is deterministic if there is a function φ : S → S such that P (x, ·) = δφ(x).

It follows from elementary probability theory that each Pk is a stochastic matrix. A simple application
of the law of total probability combined with the Markov property and time-homogeneity shows that
the transition function satisfies the Chapman-Kolmogorov equations

Pk+m(x, z) =
∑
y∈S

Pk(x, y)Pm(y, z). (5.2)

Rewriting these in matrix form Pk+m = PkPm, it becomes clear that Pk = P k, with P = P1 the
matrix of one-step transition probabilities. In the language of semigroups, (Pk)k≥1 form a discrete-
time Markov matrix-semigroup with generator P .

Proposition 5.3. A discrete-time stochastic process (X(k))k≥0 is a Markov chain if and only if there
is a distribution µ and stochastic matrix P such that the finite-dimensional distributions are given by

P(X(0) = x0, . . . , X(k) = xk) = µ(x0)P (x0, x1) · · ·P (xk−1, xk). (5.3)

Proof. If (X(k))k≥0 is a Markov chain, one sets µ equal to the initial distribution and P equal to the
one-step transition probabilities. Then (5.3) follows from repeated use of the Markov property and
time-homogeneity. Conversely, suppose that P(X(0) = x0, . . . , X(k) = xk) ̸= 0. Then (5.3) implies
that (5.1) holds using the definition of conditional probability, from which it follows that X is a Markov
chain.

2While the term ‘distribution’ often refers to the law of a random variable, in this thesis it will refer to the probability
mass function of a random variable (see Appendix A).
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It follows that a Markov chain is uniquely determined by its initial distribution µ and one-step transition
probabilities P . Indeed, given a distribution µ and stochastic matrix P , Kolmogorov’s extension
theorem (see Appendix A) allows us to construct a unique discrete-time stochastic process satisfying
(5.3), which consequently is a Markov chain by Proposition 5.3. This reduction to µ and P is useful,
since it allows for the application of linear algebra to the theory of Markov chains. We will see that
many probabilistic properties can be expressed in the language of vectors and matrices.

Although we have defined a Markov chain as a certain type of stochastic process, analogy with deter-
ministic dynamics suggests to regard a Markov chain as being defined solely by a matrix of one-step
transition probabilities P , just as one may consider equations of motions without choosing initial con-
ditions. Appending an initial distribution µ then yields a stochastic process, which is a Markov chain
in the sense of Definition 5.1. We will use both perspectives throughout this thesis, as sometimes one
is more convenient than the other.

5.1.2 Master equation

Now that we have seen how to construct Markov chains, let us look at their properties. An obvious
quantity of interest is the distribution of X(k), which we denote by µk. An application of the law of
total probability yields the relation

µk+1(y) =
∑
x∈S

µk(x)P (x, y), (5.4)

through which all distributions can be determined inductively beginning from the initial distribution.
If we represent probability distributions by row vectors, equation (5.4) can be written as the matrix
multiplication µk+1 = µkP . Iteration yields µk = µP k, which could also have been derived from
the Chapman-Kolmogorov equations (5.2). Assuming P is diagonalizable3, it follows that one may
determine µk by diagonalizing P . However, at the moment we are less interested in the solutions
of (5.4) and more in the equation itself, which we see as the evolution equation of a time-dependent
probability distribution. When rewritten in the form

µk+1(y)− µk(y) =
∑
x∈S

(µk(x)P (x, y)− µk(y)P (y, x)) (5.5)

through use of
∑

x∈S P (y, x) = 1, equation (5.4) gets called the master equation. Though trivial,
this rewriting has conceptual advantages. Following [Uffink, 2006], we interpret the master equation
as follows. The probability of state y increases as result of transitions from other states x to y, and
decreases as a result of transitions from y to other states x. Hence, the probability of a state remains
constant in time if these two effects cancel each other. With respect to this balancing idea, the master
equation is similar to the Boltzmann equation (2.8). However, there are some aspects in which the
similarity fails:

1. The master equation presented here is in discrete-time, while the Boltzmann equation is in
continuous-time.

2. The master equation is linear, while the Boltzmann equation is non-linear.

3. The master equation determines the evolution of a probability distribution, while the Boltzmann
equation concerns a distribution of single-particle states.

3An important case in which P is diagonalizable is when it is reversible (see Section 5.3).
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The first is not a significant problem, since the theory of Markov jump processes, which are in
continuous-time, also has a master equation analogous to the homogeneous Boltzmann equation (see
Section 5.5, in particular equation (5.53)). The other two non-similarities are more significant. They
imply that the true analogue of the master equation is actually the Liouville equation (2.11), which
is similarly linear and an equation for a time-dependent probability distribution. In this sense, the
general theory of Markov chains is more Gibbsian than Boltzmannian. However, it is still possible to
construct a closer analogy between Boltzmann’s kinetic theory and Markov chains by restricting to
certain types of Markov chains, as we will detail in Sections 5.2 and 5.4.

5.1.3 Relaxation, recurrence and H-theorem

Continuing the analogy with kinetic theory, the theory of Markov chains even has notions of relaxation
and recurrence and an analogue of the H-theorem. To understand this, we first need to introduce some
more concepts.

Definition 5.4. A Markov chain is said to be stationary if the distribution of X(k) does not change
with time. Equivalently, its initial distribution µ is invariant under the master equation (5.5):∑

x∈S

(µ(x)P (x, y)− µ(y)P (y, x)) = 0. (5.6)

Changing perspective, we call a distribution µ stationary with respect to the Markov chain given by a
stochastic matrix P if (5.6) holds, i.e., if the process built from µ and P is stationary.

Stationary distributions of Markov chains play the same role as the Liouville measure in Hamiltonian
mechanics and the invariant measure of the Kac ring: they are the natural measures corresponding
to the dynamics and characterize the equilibrium of the system. A finite-state Markov chain always
has at least one stationary distribution. There are many ways to prove this. The simplest is to notice
that since P is stochastic, it has 1 as eigenvalue and hence must have a corresponding left-eigenvector,
which is a stationary distribution. Uniqueness of the stationary distribution does not hold for all
Markov chains, but can only fail if the Markov chain is decomposable in a certain sense.

Definition 5.5. A Markov chain is said to be irreducible if for any x, y ∈ S, there exists some k ∈ N
such that P k(x, y) ̸= 0, i.e., from any state x it is always possible to reach any other state y after a
sufficiently large number of time steps.

Proposition 5.6. An irreducible Markov chain has a unique stationary distribution π such that π(x) >
0 for all x ∈ S.

Proof. For any distribution π, there is at least one x ∈ S such that π(x) > 0. Given z ∈ S, choose
k ≥ 0 such that P k(x, z) > 0. If π is stationary, then πP k = π and hence

π(z) =
∑
y∈S

π(y)P k(y, z) ≥ π(x)P k(x, z) > 0.

To show that the stationary distribution is unique, we follow the hint given for Exercise 1.17 in
[Levin and Peres, 2017]. If π1 and π2 are both stationary distributions, let x ∈ S be a minimizer of
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π1(x)/π2(x). Then for any k ≥ 0, we have

π1(x) =
∑
y∈S

π1(y)P
k(y, x)

=
∑
y∈S

π1(y)

π2(y)
π2(y)P

k(y, x)

≥ π1(x)

π2(x)

∑
y∈S

π2(y)P
k(y, x) = π1(x),

from which it follows that ∑
y∈S

(
π1(y)

π2(y)
− π1(x)

π2(x)

)
P k(y, x) = 0.

The term between the brackets is non-negative by definition of x, so that the summand vanishes for
each y ∈ S. For each y ∈ S, there is a k ≥ 0 such that P k(y, x) > 0, from which it follows that the
term between the brackets vanishes. This implies π1 = π2.

Definition 5.7. Given a state x ∈ S, let T (x) = {k ≥ 1 | P k(x, x) ̸= 0} be the set of times for which
a return to x is possible when starting the process in x. The period of x is defined to be gcdT (x). A
Markov chain is aperiodic if all its states have period 1.

If a Markov chain is irreducible, then its states have a common period, call it d (see Lemma 1.6 in
[Levin and Peres, 2017]). If d > 1, then the state space can be partitioned in subsets C1 . . . , Cd such
that P (x, y) ̸= 0 if and only if x ∈ Ci and y ∈ Cj with j ≡ i+ 1 (mod d). The matrix P d then defines
an irreducible and aperiodic Markov chain on each Ci (see Section 6.3 in [Kemeny et al., 1976]).

Definition 5.8. A Markov chain is ergodic if it is both irreducible and aperiodic.

This definition agrees with ergodicity defined for deterministic dynamics in the following sense. To any
Markov chain with given initial distribution, one can associate a dynamical system (SN,P, T ), with
P the Kolmogorov representation of the process (see Appendix A) and T : SN → SN the shift map,
mapping (xk)k≥0 to (xk+1)k≥0. This dynamical system is metrically transitive, hence ergodic, if the
Markov chain is ergodic in the sense of Definition 5.8.

Proposition 5.9. A Markov chain is ergodic if and only if there is some k ≥ 1 such that P k(x, y) ̸= 0
for all x, y ∈ S.

Proof. See Proposition 1.7 in [Levin and Peres, 2017] for one direction and Theorems 8.5.2 and 8.5.3
in [Horn and Johnson, 1985] for the converse.

Ergodic Markov chains exhibit relaxation in the sense that any initial distribution evolves into the
stationary distribution. The rate of this convergence is even exponential, which is particularly useful
for algorithms based on Markov chains, such as Markov chain Monte Carlo methods (see Chapter
3 in [Levin and Peres, 2017]). To measure this rate of convergence, we need to introduce a dis-
tance on the space ProbS of probability distributions on S. A natural metric (see Section 4.1 in
[Levin and Peres, 2017]) is the total variation distance

∥µ− ν∥ =
1

2

∑
x∈S

|µ(x)− ν(x)|. (5.7)
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Theorem 5.10 (Fundamental theorem of Markov chains). If the Markov chain given by the stochastic
matrix P is ergodic, then it has a unique stationary distribution π and any initial distribution µ evolves
into π with exponential rate relative to the total variation distance, i.e., µP k → π in ProbS as k → ∞
and there are C ≥ 0 and a ∈ (0, 1) such that

∥µP k − π∥ ≤ Cak.

Like other results in mathematics which are fundamental in their respective fields, this theorem has
many proofs. One common proof is based on the Perron-Frobenius theorem from linear algebra (see
Chapter 8 in [Horn and Johnson, 1985]). Another proof uses Banach’s fixed point theorem. More
probabilistic proofs can also be given. A probabilistic approach to the existence and uniqueness of
π, which also works for Markov chains with countably infinite state space, involves the notion of
recurrence.

Given a state x ∈ S, we use the notation Px for probabilities when the Markov chain has deterministic
initial distribution δx. The state x is said to be recurrent if

Px (X(k) = x for infinitely many k) = 1,

i.e., the process returns infinitely often to x when starting from x. We define the random variable

Tx = min{k ≥ 1 | X(k) = x},

which is the first time the process arrives at state x (after possibly starting at x). The state x is said
to be positive recurrent if it is recurrent and Ex(Tx) < ∞, i.e., it is expected to recur within a finite
number of time steps. Here Ex denotes expectation relative to Px. See Section 1.5 in [Norris, 1997]
for more details on recurrence. All states of an irreducible Markov chain with finite state space are
positive recurrent, which is intuitively obvious (see Theorem 1.7.7 in [Norris, 1997]). This is analogous
to the Poincaré recurrence theorem, as first pointed out by [Kac, 1947a], in which the following result
was proven.

Lemma 5.11. If π is the stationary distribution of an irreducible Markov chain P with finite state
space, then π(x) = 1/E(Tx) for any x ∈ S

Proof. See Lemma 21.12 in [Levin and Peres, 2017].

The probabilistic proof of the existence and uniqueness of the stationary distribution π essentially
hinges on Lemma 5.11: for an irreducible Markov chain in which each state is positive recurrent, one
can construct π from the expected recurrence times Ex(Tx) (see Section 1.7 in [Norris, 1997]).

The convergence and its exponential rate in Theorem 5.10 also have a probabilistic proof (see Theorem
4.9 in [Levin and Peres, 2017]). We will give another kind of proof for the convergence based on entropy.
In order to be able to do this, we first need to look at the analogue of Boltzmann’s H-theorem for
Markov chains.

Definition 5.12. The relative entropy of two probability distributions µ, ν on S is defined by

H(µ|ν) =
∑
x∈S

µ(x) log

(
µ(x)

ν(x)

)
(5.8)
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if µ ≪ ν, with the convention that the summand in (5.8) is zero if both µ(x) and ν(x) vanish. Other-
wise, it is set equal to ∞.

Proposition 5.13. For any distributions µ, ν, H(µ|ν) ≥ 0 and equality holds if and only if µ = ν.

Proof. We assume that ν(x) > 0 for all x ∈ S, since that is the only case we will be interested in. If
we set ρ(x) = µ(x)/ν(x), then (5.8) can be rewritten as

H(µ|ν) =
∑
x∈S

ν(x)η(ρ(x)),

with η : [0,∞) → R the function defined by η(t) = t log t and η(0) = 0. It is easy to check that η is
convex, so that we may use Jensen’s inequality to conclude

H(µ|ν) ≥ η

(∑
x∈S

ν(x)ρ(x)

)
= η

(∑
x∈S

µ(x)

)
= η(1) = 0.

Because η is even strictly convex and ν(x) > 0 for all x ∈ S, equality holds if and only if ρ is constant,
which is equivalent to µ(x)ν(y) = µ(y)ν(x) for all x, y ∈ S. Summing over y then yields µ(x) = ν(x)
for all x ∈ S.

Proposition 5.14. Given any two distributions µ, ν and a stochastic matrix P , we have

H(µP |νP ) ≤ H(µ|ν).

Proof. We follow the proof of Theorem 3.1 in [Mackey, 1992]. Again, we restrict to the case that
ν(x) > 0 for all x ∈ S. To begin,

H(µP |νP ) =
∑
y∈S

νP (y)η

(
µP (y)

νP (y)

)
,

using the same function η as in the proof of Proposition 5.13. Using ρ(x) = µ(x)/ν(x) and Jensen’s
inequality again, we have

η

(
µP (y)

νP (y)

)
= η

(∑
x∈S ρ(x)ν(x)P (x, y)∑

x∈S ν(x)P (x, y)

)
≤
∑

x∈S η(ρ(x))ν(x)P (x, y)∑
x∈S ν(x)P (x, y)

(5.9)

and hence

H(µP |νP ) ≤
∑

x,y∈S

η(ρ(x))ν(x)P (x, y) =
∑
x∈S

η(ρ(x))ν(x) = H(µ|ν).

By Proposition 5.15, the stationary distribution π of an irreducible Markov chain satisfies π(x) > 0
for all x ∈ S and H(µ|π) is consequently always defined by (5.8). This is our analogue of Boltzmann’s
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H-quantity, though it is more correct to say that it is analogous to the negative of the Gibbs entropy
(2.12), which becomes clear upon rewriting (5.8) as

H(µ|π) =
∑
x∈S

ρ(x) log(ρ(x))π(x) (5.10)

and comparing with (2.12), where ρ(x) = µ(x)/π(x) the analogue of the phase space density function.
If µk is the evolution of an initial distribution µ under a Markov chain P , i.e., µk = µP k, then it
follows from Proposition 5.14 that the quantity H(µk|π) is non-increasing, which is the analogue of
Boltzmann’s H-theorem. Looking at (2.9) one may think that the correct analogue of Boltzmann’s
H-quantity should be

H(µ) =
∑
x∈S

µ(x) logµ(x), (5.11)

which is the negative Shannon entropy of µ. However, this quantity is not necessarily non-increasing.
In fact, by Proposition 5.15, H(µk) is non-increasing if and only if the stationary distribution π is
uniform, at least for ergodic Markov chains. This means that H(µk) is non-increasing if and only if
the system satisfies the principle of equal a priori probabilities.

Proposition 5.15. For any ergodic Markov chain P , the following are equivalent.

1. The stationary distribution π is uniform.

2. The matrix P is doubly stochastic.

3. For any initial distribution µ, H(µk) is non-increasing.

Proof. The first two conditions are equivalent, since both are equivalent to∑
x∈S

1

|S|
P (x, y) =

1

|S|
.

If π is uniform, then H(µ) = H(µ|π)− log|S| and hence H(µk) is non-increasing by Proposition 5.14.
Conversely, suppose π is non-uniform. Let µ be the uniform distribution. By Theorem 5.10 (which
does not depend on Proposition 5.15) and the continuity of relative entropy, H(µk) → H(π) as k → ∞.
But, one can show that (5.11) is maximal for the uniform distribution, so that H(µk) must decrease
at some point.

The following lemma says that in an ergodic Markov chain H(µk|π) actually decreases, which will
be used in our proof of Theorem 5.10. Because µ 7→ H(µ | π) is clearly continuous, it follows from
Theorem 5.10 and Proposition 5.13 that H(µk|π) decreases to zero. Note that our reasoning is inverse
to that of Boltzmann. He proves his H-theorem from relaxation in the form of the Boltzmann equation,
while we use the analogue of the H-theorem to prove relaxation.

Lemma 5.16. For an ergodic Markov chain P with stationary distribution π, there is some m ≥ 1
such that H(µPm|π) < H(µ|π) for any initial distribution µ ̸= π.

Proof. By Proposition 5.9, there exists some m ≥ 1 such that Pm has non-zero entries. If we go
through the proof of Proposition 5.14 with Pm instead of P and ν = π, then the weights π(x)Pm(x, y)
in Jensen’s inequality (5.9) are non-zero, which means the inequality H(µPm|πPm) ≤ H(µ|π) becomes
strict, since we assume µ ̸= π. Because π is stationary, it follows that H(µPm|π) < H(µ|π).
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As a side remark, note that Lemma 5.16 also provides a proof of the uniqueness of the stationary
distribution π, at least for ergodic Markov chains. For, if µ is also stationary, then H(µPm|π) =
H(µ|π), which means we must have µ = π. The exponential rate of convergence can also be proven
using entropy methods (see [Caputo, 2022]). We wonder whether the same is true for the existence of
the stationary distribution.

Now we can give our proof of Theorem 5.10 using relative entropy. This proof is similar to the one
given in Section II.4 of [Liggett, 1985]. The same reference also contains some remarks on the history
of the entropy method.

Proof of Theorem 5.10. We first prove an auxiliary result. If A ⊆ ProbS is compact and closed under
right multiplication by P , then π ∈ A. For, µ 7→ H(µ|π) is continuous and hence attains a minimum
on A, say at µ. If µ ̸= π, then Lemma 5.16 implies H(µPm|π) < H(µ|π) for some m ≥ 1, which
contradicts µ being a minimum. Hence, µ = π.

Given any µ ∈ ProbS, let A = {µP k | k ≥ 0}. Then A is compact and closed under right multiplication
by P . Indeed, if µP ki → ν, then µP ki+1 → νP since right multiplication by P is obviously continuous.
It follows that π ∈ A, which means that µPmi → π for some sequence (mi)i≥1 and henceH(µPmi |π) →
0. Since H(µP k|π) is a non-increasing sequence by Proposition 5.14, we have H(µP k|π) → 0. If
µP ki → ν, then

H(ν|π) = lim
i→∞

H(µP ki |π) = 0,

which can only be the case if ν = π. Consequently, all subsequences of (µP k)k≥0 converge to π,
allowing us to conclude µP k → π.

5.2 Ehrenfest model

We pointed out in the previous section that the general theory of Markov chains, when viewed as a
miniature version of kinetic theory, is more Gibbsian than Boltzmannian, since it deals with probability
distributions rather than empirical distributions of single-particle states. This is remedied by restricting
to population Markov chains, which have state space of the form S ⊆ AN , i.e., the state consisting of N
individual states in A. In models of kinetic theory, elements of A are the single-particle states. Writing
such a process as X(k) = (X1(k), . . . , XN (k)), the analogue of Boltzmann’s distribution function (2.2)
is the time-dependent empirical measure

1

N

N∑
n=1

δXn(k), (5.12)

whose evolution equation would be the true analogue of the Boltzmann equation, rather than the
master equation (5.5) governing the probability distribution µk on S. However, (5.12) is a stochastic
process, which does not satisfy a deterministic evolution equation. We will see how to deal with this
problem in Section 5.4. One of the earliest studied population Markov chains, and at the same time
the earliest Markov chain model used in statistical mechanics, is the Ehrenfest model, which we will
look at together with a similar variant which is more suited for our purposes.

5.2.1 Original model

The original Ehrenfest model, introduced in [Ehrenfest and Ehrenfest, 1907], has single-particle state
space A = {0, 1} and stochastic dynamics given by the following simple rule. At each time step, one
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out of N particles is chosen at random and its state is changed. The transition probabilities are thus
given by P (x, y) = 1/N if x, y differ in only one single-particle state and P (x, y) = 0 in all other cases.
There are multiple ways of physically interpreting the Ehrenfest model.

� The two states may represent two locations between which the particles randomly move, making
it a model of diffusion (see [Scalas et al., 2007]). Less physically, one often hears talk of balls
being moved between urns or fleas hopping between dogs.

� Redefining A = {−1, 1}, the states can be interpreted as spins which randomly flip, making it
a model of thermal agitation of magnetic particles. A slight generalization leads to the Glauber
dynamics, which includes magnetic interaction (see [Falk, 1980]).

� Using again A = {−1, 1}, the states can be interpreted as velocities, giving a model of a gas.

The last interpretation in this list is, of course, the most natural for kinetic theory. However, the
state transitions are not due to collisions between particles, but due to random fluctuations. Hence
the Ehrenfest model is trivial as a kinetic model. Nevertheless, it exhibits irreversibility in the sense
that it relaxes to equilibrium, as we will see in Section 5.4, showing that collisions are not the only
mechanism of irreversibility.

When one encounters the Ehrenfest model in the literature, it is more often than not the process

Y (k) =

N∑
n=1

Xn(k)

which is meant, rather than the more fundamental process X(k). This process has state space
{0, 1, 2, . . . , N} and it can be shown that it is also a Markov chain. As is clear from its definition,
Y (k) represents the number of particles in state 1. However, it can also be given interpretations inde-
pendent of an underlying particle interpretation. For example, [Kac, 1947b] interprets it as a random
walk with restoring force. In [Kac, 1959], the Ehrenfest model in the sense of Y (k) is used as an
analogy for Hamiltonian dynamics, to show that time-reversibility and recurrence can in principle be
reconciled with irreversibility. In view of the critical distinction between microstates and macrostates
in the typicality account, it seems to us more appropriate to base an analogy with kinetic theory on
the underlying population process X(k), which is what we do next. At the same time, this analogy
illustrates the typicality account for a stochastic model.

To start our analogy, the state-space of the Ehrenfest model, which we denote by 2N , consists of
the possible microstates, corresponding to the microstates making up the phase space of a gas. The
stochastic dynamics of the Ehrenfest model, given by its transition probabilities, is analogous to the
Hamiltonian dynamics on the phase space of a gas.

Proposition 5.17. The Ehrenfest model is an irreducible Markov chain with period 2.

Proof. Two states x, y ∈ 2N differ in at most N single-particle states. Changing one single-particle
state of x at a time, one constructs a path from x to y with non-zero probability, showing that P is
irreducible. Because the parity of the number of ones changes at each time step, the Ehrenfest model
can only return to its original state after an even number of time steps, which means the period is
equal to 2.
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It follows from Proposition 5.6 that the Ehrenfest model has a unique stationary distribution π, which
plays the same role as the invariant probability measure in the typicality account. It is easily seen that
the Ehrenfest model has a doubly stochastic matrix of transition probabilities. Hence, by Proposition
5.15, the stationary distribution is uniform and given by π(x) = 1/2N .

The Ehrenfest model is periodic and consequently cannot be ergodic. This means that the convergence
statement in Theorem 5.10 does not apply. For example, the probability distribution P k(x, ·) does not
converge to π as k → ∞, since its support keeps switching back and forth. However, by the remarks
following Definition 5.7, the state space 2N can be partitioned into two subsets

Ceven =

{
x ∈ 2N |

N∑
n=1

xn is even

}
and Codd =

{
x ∈ 2N |

N∑
n=1

xn is odd

}
.

such that P 2 is ergodic on both. The Ehrenfest model thus still exhibits relaxation to equilibrium, in
the sense that P 2k converges to π on Ceven and Codd separately. The periodicity of 2 is essentially a
mathematical inconvenience, which is one reason for looking at a variant of the Ehrenfest model in
Section 5.2.2.

Irreversibility is, as we have seen before, a phenomenon which only occurs when switching from a
microscopic description to a macroscopic (or mesoscopic) description of the system by means of coarse-
graining. For the Ehrenfest model, the relevant macroscopic quantity is the time-dependent empirical
measure (5.12). Since there are only two single-particle states, this random measure is equivalent to
the random variable

f(k) =
1

N

N∑
n=1

Xn(k), (5.13)

which is a scaled version of the the process Y (k) define earlier and is a Markov chain. Its state space
is given by {m/N | m = 0, 1, 2, . . . , N}. It is not hard to see that the non-zero transition probabilities
are given by

P

(
n

N
,
n+ 1

N

)
= 1− n

N
and P

(
n

N
,
n− 1

N

)
=

n

N
. (5.14)

This macroscopic process is similarly irreducible and has period 2. Since all microstates have equal
probability 1/2N , it is intuitively obvious that the stationary distribution of the macroscopic process
is given by

n

N
7→ 1

2N

(
N

n

)
. (5.15)

We can equivalently first define a coarse-graining map f : 2N → [0, 1] by

f(x) =
1

N

N∑
n=1

xn

and then express f(k) as f applied to X(k). Corresponding to this choice of coarse-graining, there
is an equilibrium macrostate consisting of microstates having f ≈ 1/2. It should be characterized by
having the largest size among the macrostates, according to the stationary distribution π. Indeed,
the projections Xn : 2N → {0, 1} are independent random variables with expectation 1/2 under the
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probability distribution π on 2N , so that we may appeal to Hoeffding’s inequality (Proposition B.4)
to conclude

π({x ∈ 2N | |f(x)− 1/2| < ε}) ≥ 1− 2 exp(−2Nε2), (5.16)

for any ε > 0. The bound in (5.16) is approximately equal to 1 for large N . As with the Kac ring, the
buffer ε is required to actually make the equilibrium macrostate dominant (see Section 4.2). The size
of a macrostate according to π is equal to (5.15), which becomes smaller the further away it is from
equilibrium, as is needed for the typicality account to work.

If the Ehrenfest model starts in a non-equilibrium macrostate, corresponding to a value of f far
from 1/2, the resulting stochastic evolution of f(k) should very likely be an essentially monotonic
convergence from the initial value to 1/2, assuming the number of particles N is large. The typicality
account explains this qualitatively through the differences in size of the macrostates. In the case of
the Ehrenfest model, this qualitative explanation is more specific: the Ehrenfest model can be viewed
as a random walk on the hypercube 2N , so that it is no surprise that it wanders into larger portions
of this space and stays there for long times. After switching to a variant of the Ehrenfest model,
we will study the evolution of f(k) quantitatively in Section 5.4 and prove that it indeed relaxes to
equilibrium.

The objections of Loschmidt and Zermelo to Boltzmann’s kinetic theory can be illustrated in the Ehren-
fest model. Recall that the model was invented for this purpose. Beginning with the Umkehreinwand,
the Ehrenfest model has no analogue of velocity reversal, but microscopic time-reversibility can still
be formulated in the following form.

Proposition 5.18. Given any two microstates x, y ∈ 2N , the probability of transitioning from x to
y in a given time k is equal to the probability of transitioning from y to x in the same time, i.e.,
P k(x, y) = P k(y, x)

Proof. The way in which the Ehrenfest model’s transition probabilities are defined makes it clear that
P (x, y) = P (y, x) holds for any x, y ∈ 2N , i.e., P is a symmetric matrix. It follows that P k is symmetric
as well.

Loschmidt’s paradox is now the observation that trajectories going from non-equilibrium to equilibrium
are as likely as trajectories which do the opposite, so why do we only observe the former? Of course,
this not a true paradox, since the almost sure relaxation to equilibrium can be mathematically proven,
as we will do in Section 5.4. Instead, we have here a conceptual paradox. The solution lies in coarse-
graining. Suppose x belongs to some non-equilibrium macrostate and y belongs to the equilibrium
macrostate. Even though x → y does have the same probability as y → x, due to (5.16) there are
many more microstates like y than there are like x, making an evolution from equilibrium to non-
equilibrium much less likely than the reverse when viewed macroscopically. Stated differently, while
the microscopic Ehrenfest model satisfies the symmetry P (x, y) = P (y, x), the macroscopic version
does not.

The Ehrenfest model exhibits Zermelo’s Wiederkehreinwand in the sense that it is an irreducible
Markov chain with finite state space, hence every microstate is positive recurrent. Likewise, the
macroscopic process f(k) is also positive recurrent. Does this not imply that the Ehrenfest model will
have anti-thermodynamic behaviour? It does, since recurrence is a mathematical theorem. However,
this does not impede the very high likelihood of relaxation when starting in non-equilibrium. In
addition, the recurrence of an initial non-equilibrium state will never be observed in practice due to
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the recurrence time being enormously large for large N , which follows from Lemma 5.11 and the
macroscopic stationary distribution (5.15).

Not all fundamental aspects of kinetic theory have an analogue in the Ehrenfest model, or population
Markov chains in general. An example is the non-invariance of the Gibbs entropy (5.10). We will
show in Section 5.3.3 that the Gibbs entropy is invariant for each initial distribution µ if and only if
P is deterministic (see Definition 5.2). It follows that in the Ehrenfest model H(µk|π) increases for
any non-stationary µ, unlike its analogue (2.12) in kinetic theory. The explanation is that stochastic
dynamics inherently dissipate information, which is measured by entropy: one cannot perfectly predict
the future or retrodict the past from the present state, expect in the degenerate case of deterministic
P .

5.2.2 Variant model

We introduce here a variant of the Ehrenfest model, which is studied and seemingly introduced for the
first time in [Hauert et al., 2004], for the following three reasons.

1. The particles in the original Ehrenfest model are not truly independent, since only a single
particle can change state at each time step. Of course, in kinetic theory one is interested in
models in which particles interact, but the interaction in the original Ehrenfest model is of an
artificial kind. Hence, we seek a Markov chain model in which the particles are truly independent.

2. The original Ehrenfest model is not ergodic, which is mathematically inconvenient.

3. Most significantly, it is impossible to formulate the original Ehrenfest model with an infinite
number of particles, simply because the dynamics involves choosing a particle at random and
there is no uniform probability measure on a countably infinite set. This is a problem for us,
because Martin-Löf randomness can only be applied to infinite objects.

These problems can be solved using the following method. Let Pn be stochastic matrices for n =
1, . . . , N defining Markov chains with state space A. We then define the stochastic matrix P with
state space S = AN by

P (x, y) =

N∏
n=1

Pn(xn, yn).

Let us denote the corresponding process by X(k) = (X1(k), . . . , XN (k)). Upon appending an initial
distribution of the form

µ(x) = µ1(x1) · · ·µN (xN ), (5.17)

each projection (Xn(k))k≥1 is itself a Markov chain and at each k the random variables (Xn(k))1≤n≤N

are independent, which follows from Proposition 5.3 combined with the form of µ and P . To obtain
our variant of the Ehrenfest model, we set A = {0, 1} and let each Pn be equal to the stochastic
matrix (

1− p p
p 1− p

)
(5.18)

corresponding to a single particle with possible states 0 and 1, jumping from its current state to the
other with probability p at each time step. The stochastic matrix P defines the variant of the Ehrenfest
model considered by [Hauert et al., 2004]. The Markov chain given by (5.18) is the most general form
of a two-state Markov chain which is reversible in the sense of Proposition 5.18, making it the simplest
Markov chain relevant to statistical mechanics.
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The variant of the Ehrenfest model thus constructed has essentially the same properties as the original
model. It has the same stationary distribution π(x) = 1/2N , is reversible in the sense that P (x, y) =
P (y, x) and exhibits recurrence, with the same recurrence times due to Lemma 5.11. Unlike the
original, the variant is ergodic since there is always a non-zero probability that the microstate does not
change. Furthermore, it is possible to construct a version with an infinite number of particles by simply
taking an infinite number of copies of the single-particle Markov chain, which we detail in Section 5.4.5.
This infinite version will be used to formulate a time-dependent strong law of large numbers, which
will be turned into a statement about Martin-Löf randomness of microstates. A disadvantage of the
variant is that its transition probabilities are more complicated than those of the original.

5.3 Reversibility

We saw in the previous section that the Ehrenfest model is reversible in the sense that P (x, y) = P (y, x)
for any microstates x, y ∈ 2N , i.e., the matrix of transition probabilities is symmetric. However, other
definitions of reversibility are also possible and it is not immediately clear which is correct, unlike the
case of deterministic dynamics.

5.3.1 Possible definitions

Definition 5.19. A Markov chain with matrix of transition probabilities is said to be state-symmetric
if P (x, y) = P (y, x) holds for any x, y ∈ S.

Proposition 5.20. For a Markov chain with matrix of transition probabilities P , the following prop-
erties are equivalent.

1. P(X(1) = y | X(0) = x) = P(X(1) = x | X(0) = y) for any x, y ∈ S, i.e., P is symmetric.

2. P(X(k) = y | X(0) = x) = P(X(k) = x | X(0) = y) for any x, y ∈ S and any k ≥ 1, i.e., P k is
symmetric.

3. P(X(0) = x0, . . . , X(k) = xk | X(0) = x0) = P(X(0) = xk, . . . , X(k) = x0 | X(0) = xk) for any
k ≥ 1 and x0, . . . , xk ∈ S.

Proof. The first two are obviously equivalent. The third follows from the first using the definition of
conditional probability and (5.3). Conversely, the first follows from the third by setting k = 1.

While state-symmetry seems to be the natural analogue to reversibility of deterministic dynamics (see
Proposition 5.26), and the failure of state-symmetry of a coarse-grained system seems like a reasonable
explanation of irreversibility (see the discussion following Proposition 5.18), it is almost non-existent
in the mathematical literature on stochastic processes. The more common definition of reversibility is
the following.

Definition 5.21. A Markov chain with matrix of transition probabilities P and initial distribution µ
is said to satisfy detailed balance if the equality

µ(x)P (x, y) = µ(y)P (y, x) (5.19)

holds for any x, y ∈ S.



45 5.3 Reversibility

Proposition 5.22. For a Markov chain with matrix of transition probabilities P and initial distribution
µ, the following are equivalent.

1. µ(x)P (x, y) = µ(y)P (y, x) for any x, y ∈ S

2. P(X(k + 1) = y | X(k) = x) = P(X(k) = y | X(k + 1) = x) for any k ≥ 0 and x, y ∈ S.

3. P(X(0) = x0, . . . , X(k) = xk) = P(X(0) = xk, . . . , X(k) = x0) for any k ≥ 1 and x0, . . . , xk ∈ S.

Proof. If 1. holds, then 3. follows from the decomposition (5.3) and repeated use of µ(x)P (x, y) =
µ(y)P (y, x). Conversely, if 3. holds, then P(X(0) = x,X(1) = y) = P(X(0) = y,X(1) = x) in
particular, which is equivalent to µ(x)P (x, y) = µ(y)P (y, x). For the equivalence between 1. and 2., if
1. holds, then the Markov chain is stationary, as is clear from (5.5). It then follows that

P(X(k) = y | X(k + 1) = x) = P(X(k + 1) = x | X(k) = y)
P(X(k) = y)

P(X(k + 1) = x)

= P (y, x)
µ(y)

µ(x)
= P (x, y),

(5.20)

which is equal to P(X(k+1) = y | X(k) = x) by time-homogeneity. This requires the assumption that
µ(x) > 0, which means we actually need to restrict 2. to x such that µ(x) > 0, or restrict the theorem
to irreducible Markov chains. Conversely, suppose that 2. holds. Then

µk+1(x)P (x, y) = µk(y)P (y, x)

by (5.20), so that it suffices to prove that the Markov chain is stationary. Condition 2. implies that
P(X(k) = y | X(k + 1) = x) is independent of k. It then follows from (5.20) that

P(X(k) = y)

P(X(k + 1) = x)

is independent of k. If we turn

P(X(k) = y)

P(X(k + 1) = x)
=

P(X(0) = y)

P(X(1) = x)
,

into
P(X(1) = x)P(X(k) = y) = P(X(k + 1) = x)P(X(0) = y).

and sum over x, then this results in P(X(k) = y) = P(X(0) = y), which means the Markov chain
is stationary. Again, this reasoning depends on some probabilities being non-zero, which means the
theorem is actually not precisely true as stated, but does hold for irreducible Markov chains.

In view of condition 2 in the previous proposition, another natural name for detailed balance is time-
symmetry, which we will use from now on. A time-symmetric Markov chain is necessarily stationary,
though the converse does not hold. State-symmetry is a stronger property, it the sense that any
stationary state-symmetric Markov chain is time-symmetric. We discuss two problematic aspects
about Definition 5.21.

Problem 1. Should reversibility be a property of a stochastic process, or of a set of transition
probabilities?
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Reversibility according to Definition 5.21 suggests that it is a property of a process, which is necessarily
stationary. However, relaxation to equilibrium, the irreversible phenomenon we are interested in, only
occurs when the system is initially out of equilibrium, which entails a non-stationary initial distribution.
Paraphrasing [Uffink, 2006], Definition 5.21 thus trivializes the problem of reconciling reversibility and
irreversibility, since it implies that the two cannot even coexist.

On the other hand, analogy with deterministic dynamics suggests that reversibility should be a property
of the transition probabilities, since they are analogous to the equations of motion. We will see in
Section 5.3.3 that a direct analogy with Definition 4.7 does not work. Fortunately, there is a simple
way of reconciling this intuition with Definition 5.21, which is the following definition.

Definition 5.23. A matrix of transition probabilities P is said to be time-symmetric if there exists a
distribution π such that detailed balance (5.19) holds.

Such a distribution π is necessarily stationary, of course, but we need not set the initial distribution of
a process with transition probabilities P equal to it. Most texts on Markov chains define reversibility
as a property of processes, for example [Norris, 1997], [Kelly, 1979] and [Brémaud, 2020], though some
do use Definition 5.23, such as [Liggett, 2010]. As with many other concepts in theory of Markov
chains, time-symmetry in the sense of Definition 5.23 can be expressed using linear algebra. For a
given distribution π such that π(x) > 0 for all x ∈ S, we define the inner product

⟨f, g⟩π =
∑
x∈S

f(x)g(x)π(x)

on functions f, g : S → R. It is then easy to show that P is time-symmetric if and only if there exists
a distribution π such that P is self-adjoint with respect to the inner product ⟨·, ·⟩π, i.e., ⟨Pf, g⟩π =
⟨f, Pg⟩π for all functions f, g. Here Pf is the function x 7→

∑
y∈S P (x, y)f(y).

Having defined time-symmetry as a property of transition probabilities rather than of processes, there
still remains the question whether it has consequences for processes starting from a non-stationary
distribution. First, the stationary distribution itself, whether it satisfies detailed balance or not, al-
ready determines the recurrence properties of the Markov chain by Lemma 5.11. If detailed balance
is satisfied, one additional consequence is that P is self-adjoint and hence has real eigenvalues. These
determine the mixing time of the Markov chain, which quantifies how fast an arbitrary initial distri-
bution converges to the stationary distribution. This is particularly useful for Markov chain Monte
Carlo algorithms (see [Levin and Peres, 2017]).

Problem 2. The theory of Markov chains is seemingly inherently time-asymmetric.

There are two ways in which the theory may be said to be time-asymmetric. First, Markov chains are
usually considered as processes with time taking values in N, which means the process has distinguished
initial time and time-direction. If one is interested in the reversibility of Markov chains, it seems more
appropriate to consider them as processes with time taking values in Z. In that case, we have the
following discrete-time version of a special case of a theorem by Kolmogorov.

Theorem 5.24. Given a stochastic matrix P , there exists a unique time-homogeneous Markov chain
(X(k))k∈Z with forward transition probabilities given by P if and only if P k(x, ·) converges to some
distribution π as k → ∞ for any x ∈ S. In that case, X(k) has distribution π for any k ∈ Z.

Proof. See [Kolmogorov, 1936].



47 5.3 Reversibility

By Theorem 5.10, it follows that an ergodic Markov chain is necessarily stationary when using Z as
the set of times. Note that this move not only gets rid of asymmetries, but also solves Problem 1,
since there is no longer any choice of initial distribution. As for the definition of reversibility in this
context, one can again either use state-symmetry or time-symmetry.

The second asymmetry is the fact that Markov chains are constructed using forward transition proba-
bilities P , which means one knows how to evolve a given state into the future, though not immediately
how to ‘evolve’ it back into the past. In the case of deterministic dynamics, the same problem appears,
since the map φ : S → S represents evolution in one direction of time. This is solved by assuming that
φ is invertible, upon which the question of reversibility becomes the question whether φ and φ−1 are
equal up to velocity reversal (see Definition 4.7). The analogous solution in the stochastic case is to
assume there is a second stochastic matrix Q such that

µPQ = µ and µQP = µ (5.21)

for any distribution µ. This implies that Q is the matrix inverse of P , since any row vector can be
normalized to a probability distribution. The following proposition states that this can only happen
if P is a deterministic matrix (see Definition 5.2), which spoils the solution.

Proposition 5.25. If P is an invertible stochastic matrix with inverse Q, then Q is stochastic if and
only if P is deterministic, in which case Q is also deterministic.

Proof. For each x ∈ S, there exists a y ∈ S such that P (x, y) > 0. This means that we can choose a
function φ : S → S such that P (x, φ(x)) > 0 for all x ∈ S. Because PQ = I, we have∑

y∈S

P (x, y)Q(y, z) = 0

for all x ̸= z. If Q is stochastic, the summand is non-negative and hence P (x, y)Q(y, z) = 0 for all
x, y, z ∈ S such that x ̸= z. Setting y = φ(x), it follows that Q(φ(x), z) = 0 for all x, z ∈ S such
that x ̸= z. In other words, Q(φ(x), ·) = δx. This implies that φ is a bijection (if φ(x) = φ(x′), then
δx = δx′ and hence x = x′) and we get Q(x, ·) = δφ−1(x), so that Q is deterministic. By symmetry,
P is also deterministic. The converse follows from the same reasoning, since a deterministic matrix is
stochastic.

As with the non-invariance of the Gibbs entropy, the reason why this fails is because stochastic dy-
namics dissipate information: one cannot perfectly reconstruct the original distribution by applying a
backward stochastic matrix, except if the dynamics is deterministic.

However, it is possible to construct a stochastic matrix Q which in some sense is inverse to P , at least
in the irreducible case. Let π be the stationary distribution. If (X(k))k≥1 is a Markov chain with
forward transition probabilities P and initial distribution π, then its backward transition probabilities
are also time-homogeneous, since

P(X(k) = y | X(m) = x) =
P(X(m) = x | X(k) = y)P(X(k) = y)

P(X(m) = x)

=
Pm−k(y, x)π(y)

π(x)
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if k ≤ m. This means that the one-step backward transition probabilities are given by the stochastic
matrix Q, defined by

Q(x, y) = P (y, x)
π(y)

π(x)
. (5.22)

This stochastic matrix is a kind of inverse to P , though not in the sense of (5.21). If one wants to
know how a stochastic dynamics behaves when going backward in time, one should arguably apply Q.
The difference between going forward and backward in time disappears if Q(x, y) = P (x, y), which is
equivalent to time-symmetry in the form of detailed balance (5.19).

While the matrix (5.22) is certainly well-defined, it still needs to be mathematically clarified in which
sense it represents a backward evolution. Furthermore, there remain philosophical issues with the
asymmetry between forward and backward transition probabilities, which is sometimes even taken to
be the origin of irreversibility in physics. See for example [Watanabe, 1965], [Arntzenius, 1995] and
[Sober, 1993] for opinions of this kind and [Bacciagaluppi, 2010] and [Di Biagio and Rovelli, 2024] for
criticisms thereof.

Barring the conceptual problem of inherent asymmetry, we now have two possible definitions of re-
versibility for stochastic dynamics: state-symmetry (Definition 5.19) and time-symmetry (Definition
5.23). The former is a stronger form of the latter, so that the question becomes whether we should
restrict to it or not. The mathematical literature clearly prefers using the more general Definition 5.23,
and there are also philosophical reasons for preferring it over Definition 5.19 (see [Holster, 2003]). The
main argument for state-symmetry is that it corresponds to the principle of equal a priori probabil-
ities, since a state-symmetric P is doubly stochastic and hence has a uniform stationary distribution
by Proposition 5.15. This is a good argument insofar as one believes that physical systems will always
satisfy the principle of equal a priori probabilities in equilibrium.

5.3.2 Velocity reversal

In the presence of velocities, the above definitions of reversibility should be modified so as to include the
operation of velocity reversal (or more general reversals of state, such as reversal of magnetic fields4),
which is an involution T : S → S. All states appearing on the right-hand sides of the equations in
Definitions 5.19, 5.21 and 5.23 and Propositions 5.20 and 5.22 should have velocity reversal applied to
them. In addition, Definitions 5.21 and 5.23 pick up the condition that π(Tx) = π(x) for all x ∈ S.
For any distribution µ, the function µ ◦ T : x 7→ µ(Tx) is another distribution, called the velocity
reversal of µ.

Loschmidt’s paradox, in the sense that reversing velocities will bring the system back to its original
state, does not occur for stochastic systems with velocities. This has, once again, the same reason as
the non-invariance of the Gibbs entropy: stochastic dynamics inherently dissipate information, which
means the past state is forgotten. Consequently, there is no direct analogue of Theorem 4.12.

As an example, let us consider a stochastic model in which there are N particles which can be located
on any of M sites on a discrete ring. Each particle has, apart from its position on the ring, a velocity
(or rather, direction of motion) that is either -1 or 1, representing respectively clockwise and counter-
clockwise motion. The single-particle state space is thus {1, . . . ,M} × {−1, 1}. At each time step,
each particle takes a step in its current direction of motion, after which it reverses its velocity with

4For such more general reversals, one uses the term ‘time reversal’ instead of ‘velocity reversal’, though we will only
use the latter.
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probability p. It is not hard to show that this system is state-symmetric, so that the stationary
distribution is uniform.

5.3.3 Deterministic dynamics

In Section 5.3.1 we mentioned that direct analogy with deterministic dynamics does not yield a working
definition of reversibility of stochastic dynamics. Let us see how. The analogy consists of trying to
replicate Definition 4.7 in the stochastic case at the level of probability distributions. A given initial
distribution µ evolves into µP over a single time step. Applying P again to the velocity reversal of µP ,
we might demand that this returns the velocity reversal of µ for any initial distribution, i.e.,

µ(Tz) =
∑
y∈S

(µP )(Ty)P (y, z)

=
∑

x,y∈S

µ(x)P (x, Ty)P (y, z)
(5.23)

for any z ∈ S. Actually, this tentative condition is more than an analogy. The stochastic matrix P
induces a dynamical system Φ on ProbS given by µ 7→ µP . Condition (5.23) then amounts to Φ being
reversible in the sense of Definition 4.7 with velocity reversal given by µ 7→ µ ◦ T . Making µ equal to
δx′ and setting z = Tz′, (5.23) becomes

δ(x′, z′) =
∑
y∈S

P (x′, T y)P (y, Tz′),

so that the matrix R(x, y) = P (x, Ty), which is obviously also stochastic, satisfies R2 = I, i.e., it is
invertible and equal to its own inverse. However, Proposition 5.25 implies that this can only be the
case if R is deterministic, in which case P is too. Hence, this approach does not work in general.

A definition of reversibility directly analogous to the deterministic case is thus not possible. However,
deterministic dynamics are a special case of stochastic dynamics in the following sense. Any map
φ : S 7→ S defines a deterministic matrix P by

P (x, y) = δ(y, φ(x)). (5.24)

Conversely, if P is a deterministic matrix, there is a unique function φ : S → S such that (5.24) holds.
We denote the deterministic matrix corresponding to φ by Pφ. We may now ask whether Definition
5.23 reduces to Definition 4.7 when applied to deterministic matrices. It turns out that it even reduces
to the stronger Definition 5.19. This explains the statement made in Section 5.3.1 that state-symmetry
is the natural analogue of reversibility in the deterministic setting.

Proposition 5.26. The mapping φ : S → S is reversible in the sense of Definition 4.7 if and only if
Pφ is state-symmetric.

Proof. Suppose there is an involution T : S → S such that φ−1 = T ◦ φ ◦ T . We need to show that
Pφ(Ty, Tx) = Pφ(x, y). Using the reversibility of φ, we have

Pφ(Ty, Tx) = δ(Tx, (φ ◦ T )(y))
= δ(Tx, (T ◦ φ−1)(y))
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and because T and φ are invertible, this is equal to δ(x, φ−1(y)) = δ(φ(x), y). Conversely, suppose
there is an involution T such that Pφ(Ty, Tx) = Pφ(x, y) holds for all x, y ∈ S. Then

δ(y, φ(x)) = δ(Tx, (φ ◦ T )(y))
= δ(x, (T ◦ φ ◦ T )(y))

implies that φ is invertible with inverse T ◦ φ ◦ T , hence reversible.

In fact, all properties of the Markov chain Pφ should and indeed do reduce to the corresponding
properties of the deterministic dynamics φ. As a sample, a distribution π is stationary relative to φ
in the sense of Definition 4.3 if and only if it is stationary relative Pφ in the sense of Definition 5.4,
which follows from the equality

(πPφ)(x) = π(φ−1({x})). (5.25)

Finally, we stated at the end Section 5.2.1 that the Gibbs entropy is invariant for any initial distribution
if and only if P is deterministic, which we now prove.

Proposition 5.27. Suppose P is an irreducible Markov chain with stationary distribution π. Then, the
Gibbs entropy H(µk|π) is time invariant for each initial distribution µ if and only if P is deterministic.

Proof. Suppose P is deterministic and let P (x, y) = δ(y, φ(x)). Because P is irreducible, φ has only a
single orbit and hence is invertible. This follows from the equality P k(x.y) = δ(y, φk(x)). It is easily
checked that µP = µ ◦ φ−1. If µ, ν are probability measures such that ν(x) > 0 for all x ∈ S, then

H(µP |νP ) =
∑
x∈S

µ(φ−1(x)) log

(
µ(φ−1(x))

ν(φ−1(x))

)
=
∑
x∈S

µ(x) log

(
µ(x)

ν(x)

)
= H(µ|ν)

and this yields the invariance of the Gibbs entropy. Conversely, suppose H(µk|π) is constant for any
given initial distribution µ, i.e., H(µP |π) = H(µ|π) for all µ. This means that Jensen’s inequality
(5.9) is an equality. If µ is chosen such that ρ(x) is different for each x ∈ S, then the equality can only
hold if there is only a single non-zero weight, which implies P (x, ·) is deterministic.

5.4 Macroscopic behaviour

We have seen that the empirical distribution f(k), which is the analogue of Boltzmann’s distribution
function, exhibits relaxation to equilibrium when the Ehrenfest model starts out in a non-equilibrium
macrostate. Now we would like to have an equation that describes this macroscopic evolution. As
mentioned before, since f(k) is a random variable, it does not satisfy a deterministic evolution equation.
However, the expected value E(f(k)) does, and we will see that f(k) itself almost surely does too, upon
taking a thermodynamic limit N → ∞. Such a limit is only possible for the variant of the Ehrenfest
model discussed in Section 5.2.2, to which we restrict unless stated otherwise. We will also always
assume that the initial distribution is of the form (5.17), such that the processes (Xn(k))k≥1 are
independent.
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5.4.1 Expectation

As with the Kac ring, the expected macroscopic behaviour can first be derived non-rigorously using an
analogue of the Stosszahlansatz. For the Ehrenfest model, this analogue is given by the assumption
that at each time step,

proportion of particles in state 1 which change state = pf(k) (5.26)

and
proportion of particles in state 0 which change state = p(1− f(k)). (5.27)

Again, it is easy to give examples of trajectories for which (5.27) and (5.26) do not hold, but we expect
them to typically hold. The change in the proportion of particles in state 1 during the time step from
k to k + 1 is given by the difference between (5.27) and (5.26), which results in the Ehrenfest model’s
analogue of the Boltzmann equation:

f(k + 1)− f(k) = p(1− 2f(k)).

This can be made rigorous by working with the expectation F (k) = E(f(k)). To determine the
equation governing its evolution, we take advantage of the fact that each of the single-particle processes
(Xn(k))k≥1 is itself a Markov chain with transition probabilities (5.18). First, it follows from equation
(5.13) and the linearity of expectation that

F (k) =
1

N

N∑
n=1

E(Xn(k)) =
1

N

N∑
n=1

P(Xn(k) = 1), (5.28)

the second equality holding because Xn(k) takes values in {0, 1}. The probabilities P(Xn(k) = 1)
satisfy the master equation of the two-state Markov chain (5.18), which is given by

P(Xn(k + 1) = 1)− P(Xn(k) = 1) = pP(Xn(k) = 0) + (1− p)P(Xn(k) = 1)

− pP(Xn(k) = 1)− (1− p)P(Xn(k) = 1)

= p(1− 2P(Xn(k) = 1)),

(5.29)

using P(Xn(k) = 0) = 1− P(Xn(k) = 1) for the second equality. Summing over n and dividing by N ,
it follows from (5.28) combined with (5.29) that F (k) satisfies the difference equation

F (k + 1)− F (k) = p(1− 2F (k)), (5.30)

which is the rigorously derived analogue of the Boltzmann equation. It follows from standard techniques
for solving difference equations that its solution is given by

F (k) =
1

2
+

(
F (0)− 1

2

)
(1− 2p)k, (5.31)

which exhibits relaxation to the equilibrium value 1/2 as long as p ∈ (0, 1), monotonically if p < 1/2.
Hence, on the average, the Ehrenfest model relaxes. However, as in the case of the Kac ring, one wants
to prove something stronger, which is that actual realizations of the model typically relax if the number
of particles N is large, i.e., f(k) is close to its expected value F (k). This is a law of large numbers
with time-dependence, which we will formulate more precisely and prove in Sections 5.4.3 and 5.4.4.
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This will require a bound on the variance of f(k), which we now calculate. Because the processes
(Xn(k))1≤n≤N are independent, we may use equation (B.1) together with a standard formula for the
variance to write

V(f(k)) =
1

N2

N∑
n=1

V(Xn(k))

=
1

N2

N∑
n=1

(
E(Xn(k)

2)− E(Xn(k))
2
)

=
1

N2

N∑
n=1

(
P(Xn(k) = 1)− P(Xn(k) = 1)2

)
,

the last equality holding because Xn(k) ∈ {0, 1}. Solving the master equation (5.33) and substituting
the solution into the previous expression leads to

V(f(k)) =
1

4N
− 1

N2

N∑
n=1

(
P(Xn(0) = 1)− 1

2

)2

(1− 2p)2k,

which gives the bound

V(f(k)) ≤ 1

4N
. (5.32)

5.4.2 Interaction

Before moving on to the time-dependent law of large numbers, let us make some comments about the
evolution equation (5.30) and how such equations can be derived for other systems. Note that (5.30)
is identical to the master equation (5.29) of the single-particle Markov chain (5.18). This is true for
any two-state5 population Markov chain such that all processes (Xn(k))k≥1 are Markov chains with
identical transition probabilities, since (5.28) still holds.

If interactions are present, then the single-particle processes (Xn(k))k≥1 usually are no longer Markov
chains themselves, since the state of a single particle is not enough to predict its evolution. However, if
we assume that these processes are identically distributed at each k ≥ 1, say with common distribution
νk, then from (5.28) follows F (k) = νk(1), so that F (k) has the same evolution as the probability dis-
tribution of a single particle. A natural case in which this happens is when the transition probabilities
P and the initial distribution µ are symmetric, i.e., invariant under permutation of the particles,6 since
the master equation (5.5) then implies that µk is symmetric at each k ≥ 1. Physically, this corresponds
to the particles being indistinguishable.

The question remains how to determine the evolution equation of the single-particle distribution νk.
If the transition probabilities have the property that

Q(x, y1) =
∑

y2,...,yN∈A

P (x1, . . . , xN , y1, . . . , yN )

5We only consider population Markov chains with single-particle state space {0, 1} here, but similar statements hold
for more general single-particle state spaces.

6Defining the action of a permutation σ on x ∈ 2N by σx = (xσ(1), . . . , xσ(N)), invariance under permutations of the

particles means that µ(σx) = µ(x) and P (σx, σy) = P (x, y) for all x, y ∈ 2N and any permutation σ.
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only depends on x1 and y1, in which case we denote it by Q(x1, y1), then one obtains the evolution
equation of νk by summing over y2, . . . , yN in the master equation (5.5), which yields the linear
difference equation

νk+1(y1)− νk(y1) =
∑
x1∈A

(νk(x1)Q(x1, y1)− νk(y1)Q(y1, x1)).

This assumption typically holds if only a single particle changes state at each time step. As an example,
let us go through this procedure for original Ehrenfest model, which has non-independent particles
and obviously symmetric transition probabilities. The master equation is given by

µk+1(y)− µk(y) =
∑
x∈2N

(µk(x)P (x, y)− µk(y)P (y, x))

=
1

N

N∑
n=1

(µk(y
n)− µk(y)) ,

(5.33)

with yn the result of changing the state of particle n in microstate y. Let νk again denote the marginal
distribution of µk with respect to a single particle, say the first. Summing over all particles expect the
first in (5.33) yields

νk+1(y1)− νk(y1) =
1

N
(νk(1− y1) + (N − 1)νk(y1))− νk(y)

=
1

N
(νk(1− y1)− νk(y1))

=
1

N
(1− 2νk(y1)) ,

which is the evolution equation of all single-particle marginals as well as the empirical distribution
F (k) of the original Ehrenfest model. Note that if we set y1 = 1, then this equation coincides with
(5.29) if p = 1/N . In this sense, the variant of the Ehrenfest model reduces to the original upon setting
p = 1/N (see also [Hauert et al., 2004]).

For population Markov chain models in kinetic theory, it is more realistic that two particles should
change state at each time step, representing binary collisions. In that case,

Q(x, y1, y2) =
∑

y3,...,yN∈A

P (x1, . . . , xN , y1, . . . , yN )

should depend only on x1, x2 and y1, y2, which we then write as Q(x1, x2, y1, y2). Summing over
y2, . . . , yN in the master equation (5.5) now only results in

νk+1(y1)− νk(y1) =
∑

x1,x2,y2∈A

(ρk(x1, x2)Q(x1, x2, y1, y2)− ρk(y1, y2)Q(y1, y2, x1, x2)), (5.34)

with ρk the common distribution of all pairs (Xn(k), Xm(k)) such that n ̸= m, which are likewise
identically distributed assuming symmetry. We would prefer to have νk instead of ρk on the right-
hand side of this equation. If the stochastic dynamics are such that

ρ0(x1, x2) = ν0(x1)ν0(x2) implies ρk(x1, x2) = νk(x1)νk(x2) (5.35)
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for all k ≥ 1, then (5.34) turns into

νk+1(y1)− νk(y1) =
∑

x1,x2,y2∈A

(νk(x1)νk(x2)Q(x1, x2, y1, y2)− νk(y1)νk(y2)Q(y1, y2, x1, x2)), (5.36)

when restricting to initial distributions such that ρ0(x1, x2) = ν0(x1)ν0(x2) holds. Equation (5.36) is
a non-linear evolution equation for νk, analogous to the Boltzmann equation. The property (5.35) is
known as propagation of chaos and was first introduced in [Kac, 1956]. The Stosszahlansatz is often
interpreted as this factorization condition ρk(x1, x2) = νk(x1)νk(x2) (see [Uffink, 2006]).

5.4.3 Weak law of large numbers

The law of large numbers comes in a weak version and a strong version. We begin by proving the
former. Note that it cannot be proven that f(k) stays close to F (k) at all times with high probability.
In fact, this probability is zero because the Ehrenfest model is recurrent. Instead, we will at first fix a
finite time interval, say T time steps. Let

Ak = {|f(k)− F (k)| < ε},

suppressing the dependence of f(k) and Ak on N to ease the notation. We aim to show that the
probability P

(
∩T
k=0Ak

)
is high for large N . Because of the fixed time interval, this simply follows from

the usual weak law of large numbers for each random variable f(k) together with the bound

P

(
T⋂

k=0

Ak

)
≥ 1−

T∑
k=0

P (Ac
k) , (5.37)

since each P(Ac
k) individually converges to zero as N → ∞. If the terminal time TN grows with N and

the error εN decreases, it is still possible to prove a law of large numbers through (5.37) by making
use of explicit bounds on P(Ac

k).

Proposition 5.28. For any sequences (TN )N≥1 in N and (εN )N≥1 in (0,∞), we have the bound

P

(
TN⋂
k=0

Ak

)
≥ 1− 2TN exp(−2Nε2N ). (5.38)

Proof. The random variables (Xn(k))1≤n≤N are independent for fixed k and take values in [0, 1], so
that we may use Hoeffding’s inequality (Proposition B.4) to obtain (5.38).

For the specific case of power laws εN = 1/Na and TN = ⌊N b⌋, the second term on the right-hand
side of (5.38) converges to zero if and only if a < 1/2. We can even make the terminal time grow
exponentially in N . For example, letting εN = ε be constant and setting TN = exp(Nε2) turns the
right-hand side of (5.38) into 1− exp(−Nε2). However, if ε is small, which we would like it to be, then
both the time interval and bound grow very slowly, making them of little practical use.

Following [Baldovin et al., 2019], we can obtain better bounds by exploiting the fact that (f(k))k≥1 is
a Markov chain, which we did not do in the above method based on Hoeffding’s inequality.
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Theorem 5.29. For any sequences (TN )N≥1 in N and (εN )N≥1 in (0,∞), the bound

P

(
TN⋂
k=0

Ak

)
≥
(
1− 2 exp(−2Nε2N )

)(
1− 1

Nε2N

)TN

(5.39)

holds for N large enough that P(A0) ≥ 1/2.

Proof. It follows from the Markov property that

P

(
TN⋂
k=0

Ak

)
= P(A0)

TN∏
k=1

P(Ak|Ak−1). (5.40)

The probability P(A0) can be bounded using Hoeffding’s inequality, so it remains to bound the transi-
tion probabilities appearing in (5.40). Using elementary probability theory and the Markov property
once again,

P(Ak|A0) = P(Ak|Ak−1 ∩A0)P(Ak−1|A0) + P(Ak|Ac
k−1 ∩A0)P(Ac

k−1|A0)

= P(Ak|Ak−1)P(Ak−1|A0) + P(Ak|Ac
k−1)P(Ac

k−1|A0)

≤ P(Ak|Ak−1) + P(Ac
k−1|A0)

and from this follows the bound

P(Ak|Ak−1) ≥ 1−
(
P(Ac

k|A0) + P(Ac
k−1|A0)

)
(5.41)

on transition probabilities. To bound the two terms between the parentheses, note that

P(Ac
k|A0) = P(Ac

k ∩A0)/P(A0) ≤ P(Ac
k)/P(A0)

by monotonicity of the probability measure. Assuming N is large enough that P(A0) ≥ 1/2, Cheby-
shev’s inequality (Proposition B.2) combined with the bound (5.32) on the variance of f(k) results
in

P(Ac
k|A0) ≤ 1/2Nε2N .

Using this in (5.41) gives

P(Ak|Ak−1) ≥ 1− 1

Nε2N
,

which together with Hoeffding’s inequality for f(0) and (5.40) finally implies that (5.39) holds for N
large enough that P(A0) ≥ 1/2.

Specializing again to the case of power laws εN = 1/Na and TN = ⌊N b⌋, the right-hand side of (5.39)
is bounded from below by (

1− 2 exp(−2N1−2a)
)(

1− 1

N1−2a

)Nb

(5.42)

assuming that a < 1/2. Using the Taylor expansion log(1 + x) = x+ o(x), the second factor in (5.42)
can be expressed as

exp
(
−N2a+b−1 + o(N2a+b−1)

)
and hence converges to 1 if and only if 2a+ b < 1. It follows that (5.42) converges to 1 as well. Even
though the convergence is not exponential, it is still much better than what one gets from (5.38).
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5.4.4 Strong law of large numbers

To formulate a strong law of large numbers for the Ehrenfest model it is necessary to assume that all
random variables Xn(k) are defined on the same probability space. Our construction of Markov chains
given in Section 5.1.1 is only valid for finite state spaces, hence is not applicable here. However, one
can still use the Kolmogorov representation to construct an appropriate probability space. Since the
specific probability space on which the Xn(k) exist is not at all important for the law of large numbers,
we leave this construction to the next section, in which it is more important.

In the Ehrenfest model with an infinite number of particles, the relevant macroscopic quantity is now
given by

f(k) = lim
N→∞

1

N

N∑
n=1

Xn(k),

which need not necessarily converge. However, assuming a convergence condition on the initial distri-
butions, we will show that it almost surely converges for all k ≥ 1. It is convenient to introduce the
truncations

fN (k) =
1

N

N∑
n=1

Xn(k) and FN (k) = E(fN (k)).

Theorem 5.30. Suppose that FN (0) converges to some number F (0) as N → ∞. If we define F (k)
by equation (5.31) and fix k ≥ 0, then almost surely

lim
N→∞

1

N

N∑
n=1

Xn(k) = F (k). (5.43)

That is to say, the macroscopic quantity f(k) becomes deterministic in the thermodynamic limit N →
∞, satisfying our analogue of the Boltzmann equation. This illustrates how deterministic macroscopic
laws may emerge from stochastic microscopic laws as a result of the law of large numbers.

Proof. The proof is similar to that of the strong law of large numbers in Section 3.2. Using the
reasoning of Section 5.4.1, FN satisfies (5.31) and hence FN (k) → F (k). By the triangle inequality,
|fN (k)−F (k)| ≥ 2/m implies |fN (k)−FN (k)| ≥ 1/m for N large enough that |FN (k)−F (k)| < 1/m.
Using monotonicity and the fourth moment bound (Proposition B.3), it follows that

P(|fN (k)− F (k)| ≥ 2/m) ≤ P(|fN (k)− FN (k)| ≥ 1/m)

≤ m4F(fN (k))

≤ Cm4/N2

for sufficiently large N , with some constant C ≥ 0, since the random variables Xn(k) are independent
and uniformly bounded (see equation (B.2)). It now follows from the Borel-Cantelli lemma that
|fN (k) − F (k)| < 2/m almost surely eventually holds for any m ≥ 1, from which (5.43) follows as in
the proof of the strong law of large numbers in Section 3.2.

Note that in Theorem 5.30, the initial distribution of the process is arbitrary, except that its truncations
are of the form (5.17) and have convergent expectations at the initial time. Thus while we could use
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the same physically relevant, entropy-maximizing distribution P(Xn(0) = 1) = α which we used in
Section 4.3, we could also, at the other entropy-extreme, concentrate the initial distribution on a single
microstate x ∈ 2Z+ such that N−1

∑N
n=1 xn converges. Thus, in contrast to deterministic dynamics,

every initial state with well defined macroscopic value leads to relaxation.

5.4.5 Randomness

Having proven the strong law of large numbers with explicit and summable bounds, it is now a simple
application of Solovay randomness to prove the corresponding randomness statement. However, while
in probability theory the specific underlying probability space is almost never important, it is in the
theory of algorithmic randomness, if only because one needs to speak of the possible computability of
its subsets. Hence we first take some time to construct a proper probability space for the Ehrenfest
model with infinitely many particles.

The Ehrenfest model with an infinite number of particles is the process X(k) = (Xn(k))n≥1 with
state space 2Z+ such that Xn(k) are independent copies of the Markov chain (5.18). The natural
probability space is the Kolmogorov representation (2Z+)N, with probability measure P making the
random variables (Xn(k))n≥1 independent for each k ∈ N and which makes (Xn(k))k≥0 a Markov
chain for each n ∈ Z+ with transition probabilities (5.18). Our earlier construction is not applicable,
since the state space is uncountably infinite. While it is possible to construct Markov chains like we
did earlier for more general states spaces (see Section 4.1 in [Kurtz and Ethier, 1986]), we will take a
different approach here.

For each n ∈ Z+, let Pn be the Kolmogorov representation (see Appendix A) of the Markov chain
Xn(k) on 2N, with arbitrary initial distribution, the dependence on which we suppress. By Theorem
A.5, there is a unique probability measure P on the product space (2N)Z+ , equipped with the cylindrical
σ-algebra it inherits from the same on 2N, such that

P

(⋂
n∈F

X−1
n (An)

)
=
∏
n∈F

Pn(An),

with Xn : (2N)Z+ → 2N the projection onto the n’th factor and An ⊆ 2N measurable sets indexed by a
finite subset F ⊆ Z+. Appealing to Proposition A.6, the obvious bijection (2N)Z+ ∼= (2Z+)N is actually
an isomorphism of measurable spaces, hence we may view P as a probability measure on (2Z+)N.

Proposition 5.31. The probability measure P on (2Z+)N makes the random variables X(k) indepen-
dent for each fixed k ∈ N and makes each Xn(k) with n ∈ Z+ fixed a Markov chain with transition
probabilities given by (5.18).

Proof. The random variablesX(k) are independent by construction (see the remarks following Theorem
A.5), hence so are Xn(k), since they are measurable functions of them. To show that Xn(k) is a copy
of the Markov chain 5.18 for each n ∈ Z+, we use Proposition 5.3. For any ak ∈ {0, 1}, the event
Xn(k) = ak is equal to the event Xn ∈ Ak, where Ak = {x ∈ 2N | x(k) = ak}. Hence, for any fixed
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n ∈ Z+ we have

P(Xn(T ) = aT , . . . , Xn(0) = a0) = P(Xn ∈ AT , . . . , Xn ∈ A0)

= P(X−1
n (A0 ∩ · · · ∩AT ))

= Pn(A0 ∩ · · · ∩AT )

= pn(a0)P (a0, a1) · · ·P (aT−1, aT ).

We make the probability space ((2Z+)N,P) effective by choosing some enumeration of the cylinder sets
of 2Z+×N ∼= (2Z+)N. This completes our construction of an appropriate effective probability space for
the infinite Ehrenfest model. Its elements are sequences in the microstate space 2Z+ and the following
theorem says that such a sequence follows our analogue (5.30) of the Boltzmann equation if it is
P-random, under the same condition on the initial distributions as in Theorem 5.30.

Theorem 5.32. Suppose that the initial distributions are such that FN (0) converges to some com-
putable number F (0). Fixing k ≥ 1 and defining F (k) by equation (5.31), any P-random x ∈ (2Z+)N

satisfies

lim
N→∞

1

N

N∑
n=1

xn(k) = F (k). (5.44)

Proof. The exception sets EN,m = {|fN (k)− F (k)| > 2/m} are obviously computable and summable
in N by the inequalities in the proof of Theorem 5.30, hence form a Solovay test. By Proposition 3.7,
if x ∈ (2Z+)N is P-random, then x ∈ EN,m for finitely many N . Since this holds for all m ≥ 1, this
implies (5.44) as in the proof of the effective strong law of large numbers in Section 3.2.

With this theorem, we have shown that Martin-Löf randomness may also be applied to a system
with stochastic dynamics, in the sense that its macroscopic evolution holds for random trajectories of
microstates. We could also look at the other two aspects of randomness we looked at for the Kac chain,
i.e., characterization of randomness through the ergodic theorem and the role of the Stosszahlansatz,
but this is similar to the case of the Kac chain, so we leave the details for another time. Let us now
note the important differences with deterministic dynamics:

� With deterministic dynamics, one uses probability measures on initial microstates, while stochas-
tic dynamics require probability measures on trajectories of microstates.

� With deterministic dynamics, not all initial microstates lead to correct macroscopic behaviour.
In the case of stochastic dynamics, any initial microstate leads to correct macroscopic behaviour
with high probability. The analogue of bad initial microstates is given by bad trajectories.

� For stochastic dynamics with velocities, velocity reversal at a single time does not reverse the
macroscopic evolution.

5.5 Continuous-time

The Kac chain model used in [Hiura and Sasa, 2019] is a two-state system in discrete-time, making
the appearance of the Cantor space 2N natural and the basic theory of Martin-Löf randomness almost
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immediately applicable. We tried to follow them in this by using the discrete-time Ehrenfest model,
which is also a two-state system. However, we get a closer analogy with the Boltzmann’s kinetic theory
by working in continuous-time, which we do in this section.

5.5.1 Continuum limit

The Boltzmann equation is formulated in terms of a continuous time variable, while our analogue (5.30)
and the Ehrenfest model itself are in discrete-time. We can turn our analogue into a continuous-time
equation by a continuum limit, in which we make both the time step and transition probability p scale
with the number of particles N and let N → ∞. Making the time step equal to 1/N and setting
p = λ/N , equation (5.30) becomes

FN

(
k + 1

N

)
− FN

(
k

N

)
=

λ

N

(
1− 2FN

(
k

N

))
, (5.45)

with FN now a function on the rational numbers of the form k/N instead of integers. We extend FN

to all other times by linear interpolation, making it a continuous function. As N increases, the number
of discrete time points in any given finite interval becomes denser and we expect (5.45) to turn into a
differential equation. Rewriting (5.45) as

FN (t+ 1/N)− FN (t)

1/N
= λ(1− 2FN (t)) (5.46)

with t = k/N , we can conjecture that the functions FN should converge to solutions of the differential
equation F ′(t) = λ(1− 2F (t)), which is the continuous analogue of (5.30). The following proposition
makes this precise.

Proposition 5.33. If for each N the function FN satisfies the difference equation (5.45) and the
sequence FN (0) converges to some number F (0), then limN→∞ FN (t) = F (t) exists for each t ≥ 0 and
is a differentiable function satisfying the continuous-time analogue of the Boltzmann equation:

F ′(t) = λ(1− 2F (t)). (5.47)

Proof. Since FN is defined by linearly interpolating between its values at discrete time points, we can
write

FN (t) = (1−Nt+ ⌊Nt⌋)FN

(
⌊Nt⌋
N

)
+ (Nt− ⌊Nt⌋)FN

(
⌊Nt⌋+ 1

N

)
= FN

(
⌊Nt⌋
N

)
+ (Nt− ⌊Nt⌋)

(
FN

(
⌊Nt⌋+ 1

N

)
− FN

(
⌊Nt⌋
N

))
for any t ≥ 0. Rewriting the last term using (5.46), we get

FN (t) = FN

(
⌊Nt⌋
N

)
+ (Nt− ⌊Nt⌋) λ

N

(
1− 2FN

(
⌊Nt⌋
N

))
.

It follows from the solution of (5.46) that FN is bounded. Since Nt− ⌊Nt⌋ is obviously also bounded
and λ/N → 0, it follows that limN→∞ FN (t) = limN→∞ FN (⌊Nt⌋/N), assuming the latter limit exist.
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It remains to show that this limit indeed exists. It follows from (5.31) that

FN

(
⌊Nt⌋
N

)
=

1

2
+

(
FN (0)− 1

2

)((
1− 2λ

N

)N
) ⌊Nt⌋

N

,

which converges to
1

2
+

(
F (0)− 1

2

)
e−2λt

by the assumption FN (0) → F (0) and the standard limits (1 + x/N)
N → ex and ⌊Nt⌋/N → t. One

easily checks that F (t) satisfies the differential equation (5.47).

5.5.2 Markov processes

The continuum limit F (t) = limN→∞ FN (t) disregards the fact that FN and its equation (5.46) arise
from a discrete-time stochastic process. It would be more fundamental to show that this stochastic
process itself has a continuum limit in a certain sense. However, instead of taking a continuum limit of
a discrete-time process, we could also work exclusively with continuous-time processes from the start.
This is the more usual approach in the mathematical literature, for example in the theory of interacting
particle systems. While continuous-time processes require more measure-theoretic machinery to set
up, the theory is mathematically much more convenient than the discrete-time counterpart. As before,
we restrict to processes satisfying the Markov property.

Definition 5.34. A continuous-time stochastic process (X(t))t≥0 on S is said to be a Markov process
if for all s, t ≥ 0 with t ≤ s the equality

P(X(s) ∈ Γ | Ft) = P(X(s) ∈ Γ | X(t))

holds for all measurable Γ ⊂ S. Here Fs = σ(X(t), 0 ≤ t ≤ s) is the canonical filtration generated by
the process (X(t))t≥0.

Markov processes with continuous sample paths are called diffusions.7 Important examples are so-
lutions of stochastic differential equations, which stem from the work of Einstein, Smoluchowski and
Langevin on Brownian motion, and which were rigorously defined by Itô. We do not look at these kinds
of processes and instead restrict to Markov processes with discrete state space. For these, the Markov
property is easier to check according to the following proposition which we state without proof.

Proposition 5.35. Suppose (X(t))t≥0 is a continuous time stochastic process with countable state
space S. If the equality

P(X(s) = xs | X(t0) = x0, . . . , X(tn) = xn) = P(X(s) = xs | X(tn) = xn) (5.48)

holds for all s, t0, . . . , tn ≥ 0 and xs, x0, . . . , xn ∈ S such that these conditional probabilities exist (which
is the case if and only if P(X(t0) = x0, . . . , X(tn) = xn) ̸= 0), then (X(t))t≥0 is a Markov process.

Analogous to the discrete-time case, the probability mass function of X(0) is called the initial distri-
bution and the probabilities P(X(t) = y | X(s) = x) are called the transition probabilities. We restrict
to time-homogeneous Markov processes, for which these depend on the times s, t only through their

7Actually, one often includes the strong Markov property in the definition of a diffusion.
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difference s− t. In that case, the transition function is defined by Pt(x, y) = P(X(t) = y | X(0) = x),
which we see as a time-dependent |S| × |S| matrix. The Chapman-Kolmogorov equations

Ps+t(x, z) =
∑
y∈S

Ps(x, y)Pt(y, z)

are proven as in the discrete-time case and may be expressed in matrix notation as Ps+t = PsPt, which
is called the semigroup property. Together with the obvious equality P0 = I and the fact that each
matrix Pt is stochastic, this means that the operators (Pt)t≥0 form a matrix-semigroup of stochastic
matrices, also known as a Markov matrix-semigroup.

Unlike in the discrete-time case, a general Markov process on a discrete state space could be badly
behaved, for example jumping infinitely often in each arbitrarily short time interval (see Section 2.4
in [Liggett, 2010]). This motivates the following definition.

Definition 5.36. A Markov jump process8 is Markov process with discrete state space and right-
continuous sample paths.

The discreteness of S together with the right-continuity of (X(t))t≥0 imply that the process actually
waits a finite time in each state before jumping to another state. Thus, as a function of the sample
path, one has jumping times Jk at which the state changes and holding times Sk = Jk−Jk−1 giving the
duration of each visited state. The Markov property together with the assumption of time-homogeneity
imply that the holding time Sk is memoryless, hence exponentially distributed, conditional on X(Jk−1)
having some fixed value. This means that for each x ∈ S, there is a parameter λ(x) ∈ [0,∞) such
that

P(Sk > t | X(Jk−1) = x) = e−λ(x)t. (5.49)

Thus, a Markov jump process stays in a state for an exponentially distributed amount of time and
then jumps to another state. Conditional on X(Jk−1) having some fixed value, the holding time Sk

and the new state X(Jk) are independent, i.e.,

P(X(Jk) = y, Sk ≤ t | X(Jk−1) = x) = P(X(Jk) = y | X(Jk−1) = x)P(Sk ≤ t | X(Jk−1) = x)

= a(x, y)
(
1− e−λ(x)t

)
.

(5.50)

Here we defined a(x, y) = P(X(Jk) = y | X(Jk−1) = x), which are the transition probabilities of the
discrete-time stochastic process Y (k) = X(Jk). It easily follows from the Markov property of (Xt)t≥0

that (Y (k))k≥0 is a Markov chain, called the jump chain.

In Section 5.1.1, we saw that all transition probabilities of a Markov chain can be reduced to the
one-step transition probabilities. Disregarding technicalities, the analogous fact in the continuous-
time case is that all transition probabilities can be recovered from the infinitesimal description of the
semigroup (Pt)t≥0 near 0, which is its derivative at 0, also known as the generator. The existence of
this derivative depends on the continuity of the semigroup, which is guaranteed by the right-continuity
of the process.

8Such processes are also often called ‘continuous-time Markov chains’. Furthermore, some sources, such as
[Liggett, 2010], include the condition that the number of jumps be finite in any finite interval of time, while others
do not, such as [Norris, 1997]. For Markov jump processes with finite-state spaces, this condition is always satisfies by
Theorem 2.7.1 in [Norris, 1997].
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Proposition 5.37. The transition probabilities Pt of a Markov jump process are continuous in the
sense that

lim
t→0+

Pt(x, y) = δ(x, y)

for any x, y ∈ S.

Proof. See Definition 2.2 and Theorem 2.12 in [Liggett, 2010].

In other words, the Markov matrix-semigroup (Pt)t≥0 associated to a Markov jump process is strongly
continuous. If the state space S is finite, then Theorem 2.8 in [Engel and Nagel, 2006] allows us to
conclude abstractly, i.e., without regard to the underlying stochastic process,9 that the generator

Q(x, y) = lim
t→0+

Pt(x, y)− δ(x, y)

t

exists and is a rate matrix,10 which means that it satisfies Q(x, y) ≥ 0 for all x, y ∈ S such that
x ̸= y, and

∑
y∈S Q(x, y) = 0 for each x ∈ S. Furthermore, the matrices Pt satisfy the differential

equations
dPt

dt
= QPt and

dPt

dt
= PtQ (5.51)

and either of these, together with the initial condition P0 = I, imply that Pt = exp(tQ). Conversely,
any rate matrixQ uniquely determines a corresponding Markov matrix-semigroup Pt = exp(tQ).

Returning to Markov jump processes, it follows that all transition probabilities Pt can be recovered
from the generator Q through either of the equations (5.51), which in this context are called the
backward and forward Kolmogorov equations respectively. How should we interpret the rate matrix
Q in probabilistic terms? First, note that the probability

P(X(Jk−1 + t) = x | X(Jk−1) = x) = 1 +Q(x, x)t+ o(t)

is equal to (5.49). Since exp(−λ(x)t) = 1 − λ(x)t + o(t), it follows that λ(x) = −Q(x, x). Hence,
Q(x, x) determines the rate at which the state x jumps to some other state, in the sense of probability
per unit time. For Q(x, y) with x ̸= y, note that the probability (5.50) is equal to

P(X(Jk−1 + t) = y | X(Jk−1) = x) = Q(x, y)t+ o(t).

Since a(x, y)(1 − exp(−λ(x)t)) = a(x, y)λ(x)t + o(t), it follows that Q(x, y) = a(x, y)λ(x). Hence,
Q(x, y) is the rate at which the state x changes to y, which is determined by the rate at which the
process leaves x and the jump chain transition probabilities. Combining the two cases, we can write
Q(x, y) = λ(x)(a(x, y)− δ(x, y)).

We have now seen that the transition probabilities of any Markov jump process form a strongly
continuous Markov matrix-semigroup, which is equivalent to its corresponding generator. Similar to
what we did in Section 5.1.1, we can ask the converse question whether we can construct a Markov
jump process with given initial distribution and transition probabilities.

9It is also possible to conclude this from the stochastic process itself, see Theorem 2.1 in [Brémaud, 2020]. Also, for
non-finite S abstract reasoning is possible, see Theorem 2.14 in [Liggett, 2010].

10A more common name for such a matrices is ‘Q-matrix’, used for example in [Norris, 1997].
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To begin, if (X(t))t≥0 is a Markov process (not necessarily having right-continuous sample-paths) with
initial distribution µ and transition probabilities (Pt)t≥0, the equality

P(X(t1) = x1, . . . , X(tn) = xn) =
∑
x∈S

µ(x)Pt1(x, x1)Pt2−t1(x1, x2) · · ·Ptn−tn−1(xn−1, xn)

follows from and is equivalent to the Markov property in the form equation (5.48). Thus, the finite-
dimensional distributions of a Markov process are fixed by the initial distribution and the transition
probabilities. Appealing to Kolmogorov’s extension theorem, it follows that they uniquely determine
the Markov process as a random variable in the space S[0,∞). However, if one wants to construct pro-
cesses which are right-continuous or even continuous, then this method does not work directly.

Instead of constructing a Markov jump process directly from given transition probabilities, it is easier to
construct it from the corresponding rate matrix, since that is a simpler object. To see how, note that by
the considerations following Definition 5.36, it seems reasonable that a Markov jump process (X(t))t≥0

can equivalently be characterized by the parameters (λ(x))x∈S of its holding times and its jump chain
(Y (k))k≥0. These, in turn, are related to the rate matrix by its probabilistic interpretation.

This leads to the following natural construction of a Markov jump process with a given rate matrix
Q (see Section 2.6 in [Norris, 1997]). Define λ(x) = −Q(x, x) ≥ 0, a(x, y) = Q(x, y)/λ(x) − δ(x, y) if
λ(x) > 0 and a(x, y) = 1−δ(x, y) if λ(x) = 0. In the latter case, x is absorbing, which means the process
stays forever in x if it reaches that state. Let (Tk)k≥1 be independent exponential random variables
with parameter 1 and set Sk = Tk/λ(Yk), making Sk exponentially distributed with parameter λ(x),
conditional on Yk = x. Setting Jk = S1 + · · · + Sk, we define (Xt)t≥0 by Xt = Yk if Jk ≤ t < Jk−1.
This requires that Jk → ∞ as k → ∞, which is guaranteed by a simple fact about exponential
random variables (see Theorem 2.3.2 in [Norris, 1997]). Note that under this construction, the process
obviously has right-continuous sample paths.

Now that we have seen how to construct Markov jump processes, we could look at properties such
as stationarity, irreducibility and convergence, like we did for Markov chains in Section 5.1. Much
of this is essentially the same as for Markov chains, so we skip most of it (see instead Chapter 3 in
[Norris, 1997]). However, we promised in Section 5.1.2 that a continuous-time version of the master
equation (5.5) exists, which is what we show now. Let µt(x) = P(X(t) = x) be the probability
distribution at time t. Then

µt(y) =
∑
x∈S

µ0(x)Pt(x, y), (5.52)

which shows that µt is differentiable, since Pt is. Furthermore, it follows from the forward Kolmogorov
equation (5.51) that it satisfies the differential equation

dµt(y)

dt
=
∑
x∈S

µt(x)Q(x, y),

which can be rewritten in the form

dµt(y)

dt
=
∑
x∈S

(µt(x)Q(x, y)− µt(y)Q(y, x)) (5.53)

using
∑

x∈S Q(y, x) = 0. Equation (5.53) is the continuous-time analogue of the discrete-time master
equation (5.5). Again, the interpretation is that of gains and losses, but now of probability rates,
rather than probabilities themselves.
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Let us now look at some examples. First, the continuous-time analogue of the Markov chain (5.18) is
the two-state Markov jump process with rate matrix(

−λ λ
λ −λ

)
, (5.54)

in which the process jumps between the two states with equal rates. Like its discrete-time counterpart,
this is arguably the simplest possible reversible Markov jump process. The probability distribution µt

is completely determined by µt(1), which according to (5.53) satisfies the differential equation

dµt(1)

dt
= λµt(0)− λµt(1)

= λ(1− 2µt(1)).
(5.55)

This is the analogue of the single-particle master equation (5.29) of the Markov chain (5.18) and has
solution given by

µt(1) =
1

2
+

(
µ0(1)−

1

2

)
e−2λt, (5.56)

which shows that µk relaxes to the uniform distribution, which is stationary in the sense that it makes
the right-hand side of (5.53) vanish.

For the next example, consider N independent copies (Xn(t))t≥0 of the two-state Markov jump process
with generator (5.54), i.e., we use Theorem A.5 to view them as independent processes on the same
probability space.

Proposition 5.38. The stochastic process given by X(t) = (X1(t), . . . , XN (t)) with state space 2N is
a jump Markov process.

Proof. Due to independence, both sides of (5.48) can be factorised and the equality holds because each
process Xn(t) satisfies the Markov property. It follows that X(t) is a Markov process. For each t ≥ 0,
there are εn > 0 such that Xn(s) = Xn(t) if t ≤ s < t+ εn. Taking ε = minn=1,...,N εn, it follows that
X(s) = X(t) if t ≤ s < t+ ε. Hence, (X(t))t≥0 is right-continuous.

The process (X(t))t≥0 is constructed similarly to the variant Ehrenfest model in Section 5.2.2. However,
an important difference is that in the process (X(t))t≥0, the particles almost surely change state one
at a time, due to the continuity of time. This makes the process more like the original Ehrenfest model
of Section 5.2.1, despite its construction being more like the variant. Indeed, the original Ehrenfest
model is actually the jump chain of this process.

As in the discrete-time case, one may now use the natural coarse-graining map f : 2N → [0, 1] to define
a macroscopic version

f(t) =
1

N

N∑
n=1

Xn(t)

of the process X(t), which also satisfies the Markov property and is right-continuous using the same
argument as in the proof of Proposition 5.38, hence is a Markov jump process as well.
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5.5.3 Macroscopic evolution

By the same reasoning as in Section 5.4.1, the expectation F (t) = E(f(t)) satisfies the differential
equation F ′(t) = λ(1 − 2F (t)) which is identical to the single-particle master equation (5.55). Its
solution

F (t) =
1

2
+

(
F (0)− 1

2

)
e−2λt (5.57)

is similarly identical to (5.56) and shows that F (t) exhibits relaxation to the equilibrium value 1/2
when starting in a non-equilibrium state. As in Section 5.4.3, one may prove that with high probability
f(t) stays near F (t) on a finite time interval. However, let us go directly to the strong law of large
numbers. Suppose we have an infinite number of independent copies (Xn(t))t≥0 of the Markov jump
process with generator (5.54) defined on the same probability space, for example using Theorem A.5.
Define the truncations

fN (t) =
1

N

N∑
n=1

Xn(t) and FN (t) = E(fN (t)).

The following theorem is proven in exactly the same way as Theorem 5.30. Indeed, both are essentially
nothing more than the usual strong law of large numbers applied at each point of time.

Theorem 5.39. Suppose that FN (0) converges to some number F (0) as N → ∞. If we define F (t)
by (5.57) and fix t ≥ 0, then almost surely

lim
N→∞

1

N

N∑
n=1

Xn(t) = F (t).

An analogue of Theorem 5.32 would require us to first construct a proper probability space for the
process given by X(t) = (Xn(t))n≥1. However, this is significantly more involved than in the discrete-
time case. We would like (X(t))t≥0 to have sample paths that are right-continuous and have left limits.
The state space 2Z+ is not discrete, so the construction in Section 5.5.2 is not applicable. However, it
is still possible to construct the process using a generator. Because the state space is not discrete, this
require some operator theory. Formally, the generator is given by its action

Lf(x) =

∞∑
n=1

λ(f(xn)− f(x)), (5.58)

on continuous functions f ∈ C(2Z+). Here xn is the microstate obtained by changing the state of the
n’th particle in the microstate x. To make the sum well defined, one first restricts to local functions
f , which only depend on a finite number of particles. These are dense in C(2Z+) and one uses the
Hille-Yosida theorem to show that the closure of L generates a strongly continuous Markov semigroup.
By a general theorem relating Markov processes and semigroups, one has then constructed the process
in the form of a probability measure P on the Skorokhod space D[0,∞)(2

Z+) of right-continuous paths

in 2Z+ with left limits. See Chapter 1 in [Liggett, 1985] for the many details needed to make this
precise.

With the appropriate probability space (D[0,∞)(2
Z+),P) constructed, one needs to choose a countable

basis to make it effective. There is a general theorem stating that D[0,∞)(S) is second-countable if S
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is a second-countable metric space (see Chapter 3, Theorem 5.6 in [Kurtz and Ethier, 1986]), which
implies that this is possible in principle, but the effective basic sets will likely be less simple than the
cylinder sets we encountered in the discrete-time case. Nonetheless, assuming no problems regarding
computability, it should not be hard to turn Theorem 5.39 into a statement about P-randomness,
though we leave the details for another time.
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6 Conclusion

In this thesis, we have used two toy models, the Kac ring model and the Ehrenfest urn model, to illus-
trate the emergence of irreversible macroscopic behaviour from reversible microscopic laws for deter-
ministic and stochastic dynamics. We also used these models as test cases for the research programme
of applying algorithmic randomness to statistical mechanics, initiated by [Hiura and Sasa, 2019]. Our
contributions to this research programme are as follows:

� It was shown in [Hiura and Sasa, 2019], using the Kac chain as an illustrating case, that random
microstates of a deterministic system, give rise to trajectories that exhibit irreversibility when
viewed macroscopically, relative to a suitable probability measure. We extended this result to
stochastic dynamics, specifically for the Ehrenfest urn model, with our Theorem 5.32. The main
difference with the deterministic case is that stochastic dynamics require the use of probability
measures on trajectories of microstates, rather than microstates themselves.

� The problem of what to make of non-random microstates whose trajectories nevertheless satisfy
macroscopic laws was brought up in [Hiura and Sasa, 2019]. We proposed that this problem can
be resolved by the realization that the trajectories of such microstates satisfy some microscopic
laws, but not all. This is made precise by the effective ergodic theorem, resulting in our Theorem
4.15 which states that a microstate is random if and only if its trajectory satisfies all relevant
macroscopic laws.

� Following [Landsman, 2023], we discussed the Stosszahlansatz from the viewpoint of algorith-
mic randomness, using the Kac chain as a test case. We concluded that macroscopic laws can
be proven directly from the assumption of randomness, bypassing the Stosszahlansatz. Since
each macroscopic law requires its own Stosszahlansatz-like assumptions, which we expect to be
consequences of randomness, we also conclude that randomness of the microstate is a more fun-
damental assumption than the Stosszahlansatz. However, macroscopic laws in more complicated
laws may require first proving a Stosszahlansatz from the randomness assumption.

The use of algorithmic randomness in statistical mechanics as described by [Hiura and Sasa, 2019] and
[Landsman, 2023] is in its infancy and much work is still to be done. The holy grail would be to
rigorously derive the Boltzmann equation using algorithmic randomness. Recently, important work
on the rigorous derivation of the Boltzmann equation has appeared (see [Bodineau et al., 2023] and
[Deng et al., 2025]), and it would be interesting to see whether algorithmic randomness can be useful
for such work. Some more immediate directions of possible future research are the following:

� While the Kac chain and Ehrenfest urn model illustrate the essence of how algorithmic random-
ness can be applied to statistical mechanics, it would be useful to use more complicated models
as stepping stones towards the case of kinetic theory, in particular those in which the particles
can interact.

� Both the Kac chain and the Ehrenfest urn model are in discrete-time. To get closer to the
Boltzmann equation, it will be useful to apply algorithmic randomness to a model which is in
continuous-time. We already indicated how this may be done in Section 5.5, but more work
needs to be done.

� In this thesis, the Stosszahlansatz was discussed from the viewpoint of algorithmic randomness
within the context of the Kac chain, but we feel that better conclusions can be drawn by using
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a more complicated model, such as the Ehrenfest wind-tree model (see [Brown et al., 2009]).

� The most clean notion of algorithmic randomness is Martin-Löf randomness, which is based
on measure theory. However, it can only be sensibly applied to infinite objects. This requires
taking thermodynamic limits of physical models. It would be interesting to derive irreversible
macroscopic laws for finite systems, using a notion of randomness appropriate to finite objects,
i.e., Kolmogorov randomness.
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A Stochastic processes

We summarize in this appendix some parts of the theory of stochastic processes which are needed in
this thesis. The reader is referred to any standard text for a more complete exposition, for example
[Karlin and Taylor, 1975] and [Karlin and Taylor, 1981].

Recall from probability theory that a random variable is a measurable function X : Ω → S, with
(Ω,Σ,P) a probability space and (S,S) a measurable space. The specific probability space is often not
important. Rather, the fundamental object is really the law11 PX , which is the probability measure on
S defined by PX = P◦X−1. Thus, an S-valued random variable is essentially the same as a probability
measure on S.

A stochastic process on S is simply a collection of random variables Xt : Ω → S, indexed by some set
T , which we often interpret as time, but can also be interpreted in non-temporal ways (in which case we
speak of a random field rather than a process). The set S is called the state space. Through currying,
we may equivalently view the process as a function X : Ω → ST . A natural choice of σ-algebra on ST

makes X a random variable.

Definition A.1. Given a measurable space (S,S), the cylindrical σ-algebra on ST is the smallest
σ-algebra making all the evaluation maps πt : S

T 7→ S, x 7→ x(t) measurable. Equivalently, it is the
σ-algebra generated by all (one-dimensional rectangular) cylinder sets

π−1
t (A) = {x ∈ ST | x(t) ∈ A},

with A ∈ S and t ∈ T .

Throughout this thesis, we use the term ‘cylinder set’ in the sense of a subset of ST having the
form ⋂

t∈F

π−1
t ({at}) = {x ∈ ST | x(t) = at for all t ∈ F},

with F ⊆ T finite and at ∈ S for each t ∈ F , i.e., subsets whose elements have fixed values at a finite
collection of times.

Proposition A.2. There is a one-to-one correspondence between stochastic process (Xt)t∈T on S and
random variables X on ST , given by Xt = πt ◦X.

Proof. Given a stochastic process Xt : Ω → S indexed by T , there is a unique function X : Ω → ST

satisfying πt ◦ X = Xt for all t ∈ T , i.e., X(ω) : t 7→ Xt(Ω). This function is measurable since
preimages X−1(π−1

t (A)) = X−1
t (A) of cylinder sets are measurable. Conversely, a given random

variable X : Ω → ST gives rise to random variables Xt = πt ◦ X, since the evaluation maps πt are
measurable by construction.

By our general comment on random variables made above, it follows that a stochastic process X is
essentially the same as its law PX on ST . We call the probability space (ST ,F , PX) the Kolmogorov
representation of X. The probability measures PX ◦ π−1

F on SF with F ⊆ T finite are called finite-
dimensional distributions. By a result from measure theory, these uniquely determine PX , since

11This is sometimes called the distribution of X, a name which I prefer but do not use, since I already reserve that
term for probability mass functions.
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the collection of cylinder sets is closed under intersection. Conversely, any consistent collection of
probability measures pF on each finite product SF determines a probability measure on ST , assuming
S is sufficiently regular. This is known as Kolmogorov’s extension theorem. Consistent here means
that

pF = pG ◦ π−1
F,G

for any finite subsets F,G ⊆ T such that F ⊆ G, with πF,G : SG → SF the natural projection of SG

onto SF .

Theorem A.3 (Kolmogorov’s extension theorem). If S is Polish, i.e., a separable complete metric
space, then any consistent collection of probability measures pF on SF with F ⊆ T finite determines a
unique probability measure P on ST such that pF = P ◦ π−1

F for each F .

Proof. See Section 14.3 in [Klenke, 2020].

A discrete-time process is one with indexing set T = N or T = Z, the former corresponding to processes
with an initial time and the latter to those without an initial time. In the first case, one can restrict to
finite sets of the form F = {0, 1, 2, . . . , N} in Theorem A.3, because any finite subset of N is contained
such a set. Similarly, in the second case one may restrict to F = {−N, . . . ,−1, 0, 1, . . . , N}.

Definition A.4. Given a collection (Si,Si)i∈I of measurable spaces, the product σ-algebra on
∏

i∈I Si

is the smallest σ-algebra making all the projections πj :
∏

i∈I Si → Sj measurable.

Theorem A.5. Given a collection (Si,Si, Pi)i∈N of probability spaces, there is a unique probability
measure P on the product σ-algebra of

∏
i∈N Si such that

P

(⋂
i∈F

π−1
i (Ei)

)
=
∏
i∈F

Pi(Ei)

for any finite F ⊆ N and Ei ∈ Si. With respect to the probability measure P , the random variables πi

are independent.

Proof. See Corollary 14.33 in [Klenke, 2020].

Consider the double product space SI×J . It is obviously bijective to the iterated product spaces (SI)J

and (SJ)I . However, the generating class of cylinder sets appearing in Definition A.1 is different for
each of these products. Denoting the elements of SI×J by double sequences x(i, j), these classes are
given by

C1 : sets {x ∈ SI×J | x(i, j) ∈ E} with i ∈ I, j ∈ J and E ⊆ S measurable

C2 : sets {x ∈ SI×J | x(·, j) ∈ F} with j ∈ J and F ⊆ SI measurable

C3 : sets {x ∈ SI×J | x(i, ·) ∈ G} with i ∈ I and G ⊆ SJ measurable.

(A.1)

Proposition A.6. The three classes of cylinder sets (A.1) generate the same σ-algebra on SI×J .
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Proof. We prove only σ(C1) = σ(C2), the equality σ(C1) = σ(C3) being proven in the same way by
symmetry. Define

C1(E, i, j) = {x ∈ SI×J | x(i, j) ∈ E}
C2(F, j) = {x ∈ SI×J | x(·, j) ∈ F}.

and denote the projections SI → S by πi. It is obvious that

C1(E, i, j) = C2(π
−1
i (E), j), (A.2)

which implies C1 ⊆ C2 and hence σ(C1) ⊆ σ(C2). For the converse, let Σ be the cylindrical σ-algebra
on SI and define

Σ′
j = {F ∈ Σ | C2(F, j) ∈ σ(C1)}.

It is easily checked that Σ′
j is itself a σ-algebra. The sets π−1

i (E) generate Σ and are contained in Σ′
j

due to (A.2). It follows that Σ′
j = Σ for each j ∈ J , so that C2 ⊆ σ(C1) and hence σ(C2) ⊆ σ(C1).

B Concentration inequalities

As was stated in Section 2 and illustrated in Sections 4 and 5, coarse-graining together with the law
of large numbers is the essence of emergent irreversible behaviour on the macroscopic scale. When
referring to the law of large numbers, it usually the version for independent variables which is meant,
though this can be generalized to correlated variables and indeed needs to be generalized for systems
with interactions.

Underlying laws of large numbers for both independent and dependent random variables is the con-
centration phenomenon, which says that a function f(X1, . . . , XN ) of random variables X1, . . . , XN

will be close to its expected value if it depends only weakly on each Xi and if the random variables
are not strongly correlated. This idea is made rigorous by concentration inequalities or, even better,
large deviations principles. We collect a few concentration inequalities in this appendix which we use
throughout the thesis.

Proposition B.1 (Markov’s inequality). If X is a non-negative random variable, then for any a > 0
we have

P(X ≥ a) ≤ E(X)

a
.

Proof. See Theorem 5.1 in [Jacod and Protter, 2004].

From Markov’s inequality, further and more useful concentration inequalities can be derived as follows.
Suppose that φ is a non-negative and non-decreasing function and a is such that φ(a) > 0. Then

P(X ≥ a) = P(φ(X) ≥ φ(a))

≤ E(φ(X))

φ(a)
.

Applying this to the random variable |X − E(X)| with the function φ(x) = xm, we get so called
moment bounds, assuming X has finite expectation. Two particular cases are the following. Note that
a finite moment implies finite expectation by Hölder’s inequality.
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Proposition B.2 (Chebyshev’s inequality). If the real-valued random variable X has finite variance,
then

P(|X − E(X)| ≥ ε) ≤ V(X)

ε2
.

Proposition B.3 (Fourth moment bound). If the real-valued random variable X has finite fourth
moment, then

P(|X − E(X)| ≥ ε) ≤ F(X)

ε4
.

Here V(X) is our notation for the variance E((X−E(X))2) and F(X) is defined as the fourth moment
E((X − E(X))4). As is well known, if the random variables X1, . . . , XN are independent, then the
identity

V

(
1

N

N∑
n=1

Xn

)
=

1

N2

N∑
n=1

V(Xn) (B.1)

holds, which makes Chebyshev’s inequality useful. For example, if the random variables are such
that their variances are uniformly bounded by a constant C, then the right-hand side of (B.1) can be
bounded by C/N . The corresponding identity for the fourth moment is given by

F

(
1

N

N∑
n=1

Xn

)
=

1

N4

 N∑
n=1

F(Xn) + 6

N∑
n,m=1
n<m

V(Xn)V(Xm)

 . (B.2)

In this case, if the fourth moments of the random variables are uniformly bounded by C, the right-hand
side of (B.2) can be bounded by C/N2.

While moment bounds are in many cases useful, they are quite crude. At the cost of restricting to
random variables of the form N−1

∑N
n=1 Xn with X1, . . . , XN independent, we have the following much

tighter bound.

Proposition B.4 (Hoeffding’s inequality). Suppose the random variables X1, . . . , XN are independent,
bounded, say a ≤ Xn ≤ b, and have finite expectations. Then

P

(∣∣∣∣∣ 1N
N∑

n=1

Xn − 1

N

N∑
n=1

E(Xn)

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2nε2

(b− a)2

)
.

Proof. See [Hoeffding, 1963].


