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Preface

This thesis is the result of my bachelor project in both Mathematics and Physics & Astronomy.
The aim of this project was to give a satisfactory and rigorous formulation of the equivalence
principle of the general theory of relativity (gr) in terms of synthetic differential geometry (sdg).
sdg is a “natural” formulation of differential geometry in which the notion of “infinitesimals” is
very important. Smooth infinitesimal analysis (sia) is the mathematical analysis corresponding
to these infinitesimals and it forms an entrance to sdg. Both sia and sdg are formulated in
terms of categories and topoi. As I was quite new to these subjects, I first needed to study them
thoroughly before I could start studying sdg.

Besides using synthetic differential geometry to reformulate Einstein’s equivalence principle, I
intend to give an introduction to sia and sdg. I will also explain the special aspects of these
theories and point out the contrasts with the usual theories and structures. I assume that the
reader has some background in mathematical reasoning, logic, abstract algebra and classical
analysis. Background in category theory and classical differential geometry is not assumed, but
may make things easier. I wrote an appendix covering basic category theory in a concise way.
However, this should not be regarded as an introductory text to category theory.

My project was supervised by Prof. Dr. Klaas Landsman. I want to thank him for the orig-
inal idea and the enthusiastic supervision. I want to thank Dr. Michael Müger for being the
second reader of this thesis. I also want to thank Prof. Dr. A. Kock from Aarhus University,
Prof. Dr. I. Moerdijk from the University of Utrecht and Prof. Dr. G.E. Reyes from the Université
de Montréal for kindly answering the questions Klaas and I asked them.

Tim de Laat,
Nijmegen, July 2008.
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1 Introduction

Natural scientists have made models to describe the world around us for a very long time.
Physics, in the way it is still being taught, came up in the seventeenth century. One of the most
important events was the publication of Isaac Newton’s book, Philosophiae Naturalis Principia
Mathematica, in 1687. One can still buy modern printings of this book [16]. In this book, Newton
invented what is nowadays appropriately called Newtonian mechanics. For the formulation of
this theory, he also invented basic calculus, but this nice piece of mathematics was, curiously, left
out of his book. In his other work, the most important calculus statement was the fundamental
theorem of calculus, which in its modern form reads as follows:

Theorem 1.1. Let f : [a, b] −→ R be a continuous function. Let F : [a, b] −→ R be differentiable
such that ∀x ∈ [a, b] f(x) = F ′(x). Then

b
∫

a

f(t)dt = F (b)− F (a).

The idea to build a mathematical framework to solve physical problems and to formulate models
of physical systems in a mathematical way, was completely new at that time. The way in which
Newton developed this idea connected closely to his scientific intuition. In the centuries that
followed, mathematics and (theoretical) physics were practically inseparable.

Some years before Newton published his calculus, another brilliant philosopher and scientist,
Gottfried Wilhelm Leibniz, also published the basic calculus. Also his main result was the
fundamental theorem of calculus. The notation he invented is the one we still use. However,
Leibniz did not invent the calculus for the description of physical systems.

The question who deserves the credit for inventing the calculus is a topic of ongoing debate
[6]. It is often said that Newton derived his results first, but published them after Leibniz, and
we also know that Leibniz knew Newton’s work to some extent. For us, it is not at all necessary
to settle this debate, since both Newton and Leibniz have made contributions to mathematics
which are still of great importance to us: Newton described physical systems in a mathematical
way and Leibniz used so-called infinitesimals in his formulation of calculus. Newton also used
them, but changed to another formulation during his later work. Infinitesimals are “infinitely
small quantities”1. Leibniz considered the derivative of a function by calculating its increase on
a certain interval. If one takes the interval infinitely small, say [x, x + dx], then the slope of the
function on that interval is the derivative of the function at the point x.

Intuitively, mathematicians and in particular physicists and other scientists use infinitesimals
to derive results which are often correct. There are also methods to solve equations which make
use of infinitesimals, which have been proved to be correct by different means. An example is
given by a method which is widely used to solve ordinary differential equations: separation of
variables.

Any ordinary differential equation (in Leibniz’s notation) of the form

dy

dx
= g(x)h(y),

1We will give a precise definition later.
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where y is a function depending on x and g and h are functions of one variable such that h(y) 6= 0,
can be solved using the following method. We separate the variables, i.e. we rewrite the equation
such that the left-hand side only depends on y and the right-hand side only depends on x:

dy

h(y)
= g(x)dx.

(Formally) integrating this equation then yields a class of solutions to the differential equation.
In general, for the uniqueness of a solution, an initial value is needed.

Note that the method above is a formal method in the way it is given, since we did not formu-
late it in a rigorous way. It shows us that the ideas of Leibniz are still used in practice, at least
as a heuristic principle. Note, however, that in standard analysis, infinitesimals are not defined.
The most important objects defined in standard analysis are numbers, functions, various kinds
of spaces and, what is very important, limits, but infinitesimals are avoided. One could say that
in the standard formulation of analysis, limits play the role of infinitesimals. The reason that the
concept of infinitely small quantities is dropped, is that you do not really need them in modern
analysis. But are infinitesimals not just easier to understand than limits?

In modern physics, which may be considered to have started with the publication of the special
theory of relativity by Einstein in 1905, there are many physicists who do not use mathematics
in a rigorous way. Results need not be proved mathematically to be physically correct. There are
still mathematicians who try to formulate physical theories in a rigorous mathematical frame-
work, but that is not at all a goal of modern physics itself.

Roughly speaking, in physics, a theory is considered correct if its predictions are confirmed
by experiments; in mathematics, a theory is considered correct if all symbols have been defined
properly and if all statements have been proved. A way to combine mathematics and physics
is done in what is called mathematical physics. Theories in mathematical physics have to make
verifiable predictions as well, but the symbols have to be defined properly and all statements
have to be proved mathematically (and not by experiments). So you could think of it as adopting
the truth interpretation of both mathematics and physics.

In what follows, we will use the ideas of both Newton and Leibniz. We will consider a physical
theory and describe it mathematically (Newton) and in our description we will make use of
infinitesimals in a rigorous way (Leibniz). The great advantage of this method is that it is both
natural, intuitive and rigorous. We will use a framework that came up in mathematics in the
1940s: category theory. Category theory is a theory that describes mathematical structures
starting from the notion that many of these structures “behave in the same way” [13]. Some of
these structures are very similar to sets and the functions between them. Such a structure is
called a topos [15]. This statement is not very precise, but it will be made so in what follows.
Topos theory provides a framework in which it is possible to define a category which roughly
behaves like sets and functions and which consists of “smooth” objects and morphisms. This
gives us a structure to describe physics mathematically, as was already anticipated by Lawvere.

We will define a topos in which the objects and arrows are smooth, whatever that may be
[9]. This topos is called the smooth world. Our main goal is, after giving a survey of the most
important results of relativity theory and the foundations of general relativity, to formulate
Einstein’s equivalence principles, one of the foundations of general relativity, in the smooth
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world. It turns out that in this topos we can even say more than the classical formulation of the
principle.

Einstein’s general relativity theory was published in 1915 and 1916. It is a geometric theory
of spacetime, in which gravitation is not an action-at-distance interaction, but a property of
the geometry of spacetime [19], [23]. The theory combines the special theory of relativity and
Newton’s universal law of gravity and can be considered as one of the most brilliant contributions
to modern science.

The foundations of general relativity are still being discussed. Einstein himself changed his
opinion about them during his life, and still, scientists do not agree what the foundations are
[17], [18]. One of them, given by Einstein, is the equivalence principle. It says that, if one is
isolated, i.e. if one cannot look around, one cannot distinguish between gravitational forces and
acceleration. This heavily relies on Galilei’s observation that inertial and gravitational mass is
physically the same.

Later, it was pointed out that the equivalence principle is wrong in the way it was formulated
by Einstein. Because of so-called tidal forces, one would be able to decide if a force is gravitational
or caused by acceleration, since gravitational forces are in general not uniform. Only if they were
uniform, they would be indistinguishable from acceleration.

There are other, so-called infinitesimal formulations of the principle. An important one was
given by Pauli [17], [18]. Mathematically, probably the best formulation says that the metric,
which describes the local curvature of spacetime, is locally Lorentz [19], [23]. The Lorentz metric
is the metric of special relativity. So the infinitesimal principle says that spacetime in general
relativity locally behaves like special relativity. The best you can get in classical geometry, is
that the metric and its derivatives are Lorentz and zero respectively at an arbitrary point in
spacetime. This is not a very strong statement.

Our observation is that synthetic differential geometry may give a satisfactory and rigorous
way to formulate general relativity. We will reformulate the principle and say even more than the
classical formulation. We have chosen the equivalence principle as our object of study, because
it may be the most important foundation of the general theory of relativity, despite of which it
was never formulated well mathematically.
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2 Topoi

In this chapter, we define the concept of a topos. A brief overview of the basic category theory
needed for the rest of this thesis, is given in appendix A.

Definition 2.1. An elementary topos (plural: topoi) E is a category such that:

1. E has all finite limits and colimits,

2. E has exponentiation,

3. E has a subobject classifier.

In what follows, we will drop the adjective “elementary” and just talk about “topoi”. There are
various other (equivalent) definitions of a topos, but we will use the one stated above. Other
definitions turn out to be equivalent, as follows from basic category theory.

The above definition of a topos is quite complex. It requires the existence of a number
of categorical constructions. However, there is an intuitive way to think of topoi. They are
generalizations of the category of sets and functions. Roughly speaking, topoi have the same
properties, namely the three given above in the definition of a topos. Like for any generalization
in mathematics, one can prove that the thing generalized is a special case of the generalization.

Definition 2.2. Set is the category with as objects all small sets and as arrows all functions
between them.

Proposition 2.1. Set is a topos.

To prove this proposition, one needs to check the three conditions of a topos given above. The
finite limits and colimits are technical categorical properties of the category Set. We do not give
them explicitly.

Any two-element set is a subobject classifier in Set. One can identify such a set with the
collection of classical truth values (e.g. {0, 1} or {true, false}). The characteristic function from
an object A to the subobject classifier Ω then classifies subobjects.

The exponentiation of two sets A and B is given by AB = {f : B −→ A}. Such exponents are
well-defined for any two sets A and B.

For a complete proof of this proposition, cf. [12].

When working with sets, we use symbols like {}, ∈, ⊂,
⋂

and
⋃

as defined in axiomatic set
theory. Together with the logical operators (∧,∨,→,¬) and the universal and existentional
quantifiers (∀ and ∃), this language is called the internal language of sets. In a topos we can
do more or less the same, since a topos defines its own internal language. We will not explain
how this works in detail, but we will say something about it when defining our topos of interest.
For more information, cf. [3], [4] or [15]. We will simply use the internal language in a somewhat
intuitive way.

In the category Set, the objects are sets, which contain elements. In the categorical description
we are not bothered with determining what elements a set has, but in determining if and how a
set can be mapped to another one (injective, surjective, bijective). Actually, we are in particular
interested in how many elements a set has, since any two sets with the same cardinality are
isomorphic objects in Set, which is very straightforward to prove by defining a bijection between
them.
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There is a very nice way of denoting elements of sets in terms of arrows from the initial object
to another object. This way of “denoting” elements works well for arbitrary topoi. An element
of an object A is then considered to be an arrow from the terminal object2 to A: a : 1 −→ A.
This corresponds to the notion of point or location which we adopt in the topos S that we will
define later on. For more information about this way of denoting elements, cf. [12].

2.1 Topoi in physics

As already mentioned in the introduction, a reason to use topos theory in physics was given by
Lawvere. He said [9]:

“In order to treat mathematically the decisive abstract general relations of physics, it
is necessary that the mathematical world picture involve a cartesian closed category
E of smooth morphisms between smooth spaces.”

Another reason, which came up later, was the mathematical formulation of quantum theory. The
logic in quantum theory is not classical, and if the logic is already inappropriate, why try to give
an all-encompassing formulation of quantum theory in terms of sets.

In topoi one has a minimal, more primitive logic than the classical one, namely intuitionistic

logic3. This is currently also being considered to be the logic of quantum theory by some, so a
formulation of quantum theory in terms of topoi may be very successful [7].

When specifying the objects and arrows of a topos, more logical rules may be adopted. For
example, if one defines the topos Set, then the law of excluded middle is adopted and we end
up with classical logic in this topos. We will say more about that later.

There is, however, a problem in combining topos theory and physics. Topos theory is a very hard
mathematical theory. It requires the notion of category theory and many abstract structures.
Most physicists do not know anything about categories and topoi. Even Lee Smolin, who is
considered to be one of the leading theoretical physicists of this time by some, says the following
in his book [21]: “As a mathematical formalism, topos theory is not easy. It is perhaps the
hardest mathematical subject I’ve yet encountered.” So purely sociological it will take some
time before topos theory and physics can be combined.

2In an arbitrary topos there exists an initial object, since an initial object can be given as a finite colimit, and
all topoi have all finite limits and colimits.

3This kind of logic will be described in the next chapter.
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3 Axiomatic Smooth Infinitesimal Analysis

3.1 Motivation

Smooth infinitesimal analysis (sia) is a formulation of mathematical analysis in terms of infinites-
imals, which gives us an entrance to synthetic differential geometry (sdg). This formulation is
an attempt to rigorously formulate analysis in a way that is closer to the ideas of Leibniz than
ordinary analysis. The axiomatisation defines analysis in a so-called smooth world S, which is a
topos. This S is a model of sia. It first came up in Lawvere’s work in the 1970s. Lawvere is in
fact, together with Grothendieck and Tierney, one of the founders of topos theory.

It is important not to confuse sia with non-standard analysis, which was axiomatised in the
1960s by Robinson. There, infinitesimally small quantities come up as reciprocals of infinitesi-
mally large quantities, which is not the case in sia. For more information about non-standard
analysis, cf. [20].

Two important concepts in sia are continuum and infinitesimal. A continuum is the domain
over which a continuously varying magnitude varies. A connected continuum coheres and is
indefinitely divisible. It is not composed of discrete points. It has a so-called non-punctuate
nature. Leibniz already said: “A point may not be considered a part of a line,” which clearly
illustrates this point of view.

Some prominent mathematicians think that set theory is not capable of describing continua
[1], because set theory is based on sets which contain elements, which have a punctuate nature.
As pointed out earlier, the category of sets is generalized to topoi, categories which are very
similar to sets. However, topoi need not have a punctuate nature and hence turn out to be very
useful structures for giving models of sia.

An infinitesimal is often thought of as a quantity that is not necessarily equal to zero and
smaller than any finite quantity. For our purposes, we assume that an infinitesimal quantity x

is nilsquare, i.e. x2 = 0, which clearly implies that xn = 0 for n ≥ 2. We want to formulate
mathematical analysis such that the infinitesimals are parts of continua. They permit a non-
punctuate nature, since e.g. a line will not be thought as composed of points, but of infinitesimal
line segments, called linelets. This gives us the reason that we need topoi for our description of
infinitesimals. They simply do not exist in set theory, but can in fact be constructed in topoi.

3.2 Logic

Many definitions in mathematics assume that the logic of the system has already been defined.
Roughly speaking, the logic of a mathematical system or framework is the collection of rules that
are allowed in definitions, statements and proofs. There are several ways to define these rules in
a rigorous way. In topos theory, logic occupies a prominent position. In general, there are two
ways of defining a topos:

1. Define the objects and morphisms of the topos and derive the logical rules.

2. Define the logical rules and construct a topos model corresponding to these rules.

One could say that the first way is very natural and intuitive, since one first defines the most
important properties of the structure, and then derives what one is allowed to do.
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In any topos, we have a “minimal” logic in the sense that the logic of every topos contains the
logical rules and rules of inference of this logic. This minimal logic turns out to be intuitionistic
logic.

We will use the logical operators (∧,∨,→,¬) and the universal and existential quantifiers (∀
and ∃), which form the essential part of the internal language of toposes. We will not rigorously
define these notions, although they are by no means trivial. For more information, cf. [3], [4] or
[14].

The axioms of (first-order) intuitionistic logic as given in [1] are as follows:

1. A→ (B → A);

2. (A→ (B → C))→ ((A→ B)→ (A→ C));

3. A→ (B → (A ∧B));

4. (A ∧B)→ A and (A ∧B)→ B;

5. A→ (A ∨B) and B → (A ∨B);

6. (A→ C)→ ((B → C)→ ((A ∨B)→ C));

7. (A→ B)→ ((A→ ¬B)→ ¬A);

8. ¬A→ (A→ B);

9. D(y)→ ∃xD(x) and ∀xD(x)→ D(y);

10. x = x and (D(x) ∧ (x = y))→ D(y).

Here A, B and C are propositions and D is a predicate on the variable x. We also assume two
rules of inference:

1. From A and A→ B we can conclude B (Modus ponens).

2. (B → A(x)) implies B → ∀xA(x) and A(x)→ B implies ∃xA(x)→ B.

Note that if we add the law of excluded middle — A∨¬A — as an axiom, we obtain (first-order)
classical logic. The law of double negation, (¬¬A) → A, is logically equivalent to the law of
excluded middle, so we cannot use this law either. This is a serious restriction in giving proofs.

3.3 Axiomatic construction of S

We will use the second way described above to define sia, i.e. we will define the logical rules,
give some axioms and give a model for it. If you want to know more about model theory, cf. [8].
If one wants to use a more natural and intuitive way of defining S —and that was actually our
reason to use infinitesimals—, the first way of defining a topos perfectly makes sense as well.
Cf. [1] for more information.

We start with saying that in any case in sia we can use intuitionistic logic4 (as defined above)
and that the smooth world S, being a topos, contains an object Ω that plays the role of the

4This includes the logical operators (∧,∨,→,¬) and the universal and existentional quantifier (∀ and ∃).
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collection of truth values. We assume that Ω contains at least two elements, and call these
“true”, denoted > and “false”, denoted ⊥.5 Maps from an object X to Ω correspond to parts of
X. We say that the map from X to Ω that takes the constant value “true” corresponds to X

itself and that the map that takes the constant value “false” corresponds to the empty part of X.

There is an object R in our topos S, for which the following three axioms hold:

R1 : (R,+, ·, 0, 1) is a commutative ring with identity. There is a notion of location6 on R and
we assume we can say when two points in R are equal.7 We assume that 0 6= 1.

R2 : There is an order relation < on R which makes into an ordered ring, in which from every
positive element we can extract a square root.

Kock-Lawvere axiom : For all f in R∆ there exists a unique b ∈ R such that ∀ε ∈ ∆ we have
f(ε) = f(0) + εb.

Here, ∆ := {x ∈ R|x2 = 0}. The notion of a function f will be given in the construction of a
model of sia. However, note that we can state this axiom without defining functions as long as
the definition will not lead to inconsistencies.

We will see that the Kock-Lawvere axiom together with the intuitionistic logic is what makes
smooth infinitesimal analysis differ from classical analysis. The consequences of these axioms are
given in the next chapter.

These axioms give us the notion of points in R. We will see that there are also other (gen-
eralized) elements in R: the infinitesimals. These two kinds of elements take into account the
undecidability of the relation (ε = 0)∨(ε 6= 0). For more information about generalized elements,
cf. [12].

The existence of sia is proved by constructing models of it. A model can be regarded as an
explicit framework in which the given logic and the given axioms hold. We will briefly describe
a way to construct a model for sia, without proofs. We will only heuristically explain what we
need to do, and describe the first step in some detail, but we prefer not to enter into a discussion
about sheaves and presheaves. For a thorough explanation, cf. [14].

Definition 3.1. A topos E is a model for sia if in E we have (at least) intuitionistic logic and
if E contains (R,+, ·, 0, 1) for which the three axioms given above hold.

It can be proved that any topos is a model of intuitionistic logic.

For the construction of a model of sia, we need quite advanced category theory, but the
construction can be skipped if you are primarily interested in the consequences of sia and results
which are proved in the model itself. We will not use much of the following construction after
this chapter.

We will start our construction vy repeating a definition and giving two others.

Definition 3.2. ∆ := {x ∈ R | x2 = 0}.
5Note that the fact that Ω contains at least two elements is very natural, because the logic would be trivial if

there were only one truth value.
6What is meant by this, is explained in the next chapter.
7A point in R can categorically be regarded as the map 1 −→ R. Thus we really have a notion of points on R.

For more information about this, cf. [12].
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Definition 3.3. The category Man has as objects all small smooth manifolds and as arrows all
smooth, i.e. infinitely differentiable, mappings between them.

Definition 3.4. The category CRng has as objects all small commutative rings with identity
and as arrows all unital ring homomorphisms between them.

Man is neither a topos, nor does it contain an object like ∆. Our aim is to embed Man into a
topos E that contains our R such that this embedding preserves the most important properties
of Man.

We will first embed Man in a category A in a certain way. Note that Man is the category
of manifolds in the formulation of standard differential geometry, so the field we work over is R,
the field of real numbers, in which infinitesimals other than zero do not occur.

The set of smooth mappings from a manifold M to R, together with the binary operations
pointwise addition and pointwise multiplication, forms a ring, the coordinate ring of M , denoted
CM .

The embedding of Man in A is given in the following way. Each manifold M has a coordinate
ring in CRng as described above. We identify each manifold M , i.e. each object in Man, with
its coordinate ring CM and add this ring to a collection A, which was empty before we started.
Then we will add some other rings, which we identify with the micro objects —roughly speaking,
these are objects like ∆.

We define a ring R
∗ := (R×R,⊕,⊗, (0, 0), (1, 0)), where the binary operations are defined as

follows:

(a, b) ⊕ (c, d) = (a + c, b + d),

(a, b) ⊗ (c, d) = (ac, ad + bc).
(1)

We define this ring to be the coordinate ring of ∆, denoted R
∆, and add it to A.

This means that we assign to each smooth map between manifolds g : M −→ N a ring
homomorphism Cg : CM −→ CN . This C is a contravariant functor from Man to A, which
can be regarded as functorial embedding of Man in Aop, the dual category of A.
Aop can be identified with all smooth manifolds, micro objects and smooth mappings between

them, but is alas not a topos. To achieve this, there is a natural embedding from Aop into the
(presheaf8) topos SetA, called the Yoneda embedding9.

Then we need another embedding L : SetA −→ E, because SetA still does not have the
desired properties, e.g. the relation ∀x ∈ R(x < 1 ∨ x > 0), which is an assumption on <, is not
true. The composite s = LY C eventually gives us the embedding of Man into a topos E that
has all desired properties:

s(R) = R,

s(R− {0}) = {invertible elements of R},
s(f ′) = s(f)′,

s(TM) = (sM)∆.

(2)

This shows us not only that E closely resembles Man, but that E is a topos model for sia as
well. We will call this topos S from now on. From equation (2) we conclude that the object R

8For more information about presheaves and sheaves, cf. [15].
9Cf. [13]
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of S is the image of the real numbers R under the functor s. This is how our real line R is given
by the model, starting from standard differential geometry. The notion of functions in S is given
by the images of functions between the coordinate rings under the functor LY .
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4 Smooth infinitesimal analysis

Given the topos construction of the previous chapter, in this chapter we will derive some impor-
tant results in sia. We will do so by using the axioms, giving definitions and proving theorems
with the rules of intuitionistic logic. The mathematical reasoning takes place within our topos
S, so we will not be bothered by the construction of S any more, but we will simply use anything
we know about it. This chapter is based on [1].

4.1 Basics

We will now briefly describe the meaning of the axioms and some other concepts.
A very important object in any smooth world is the indefinitely extensible homogeneous

straight line R, called the smooth, real or affine line. We have assumed that we are given
the notion of a location or point in R, together with the relation “=” of identity, i.e. coincidence
of locations. The identity relation is an equivalence relation. The notation a 6= b now means
that a and b are distinguishable. In smooth worlds, the relation “=” is not decidable, i.e. we can
not always say if the relation a = b is true or false. This is typical for intuitionistic logic.

We assume that (R,+, ·, 0, 1) is a commutative ring with identity, where 0 6= 1. In what
follows, we will, when writing down a product, drop the · and just write ab instead of a · b.

Proposition 4.1. 0 · a = 0 ∀a ∈ R.

Proof. 0a = (0 + 0)a = 0a + 0a directly implies 0a = 0.

We assume that for any two points a, b there is an entity a∧b, called the oriented (a, b)−segment
of R. We say that a ∧ b and c ∧ d are identical if and only if a = c and b = d. Furthermore,
a∗ := 0 ∧ a is called the segment of length a.

We furthermore assume that for any two points a and b we can form a segment a∗ : b∗, which
is obtained by “connecting” the oriented segment of length b to the oriented segment of length
a, in the given order and preserving orientation. As expected, we assume that a∗ : b∗ is of the
form c∗ for some c on the real line. We call c the sum of a and b and write c = a + b. We also
say a− b = a + (−b).

The reason to give the line segment construction is that many of the results we will give and
prove perfectly make sense in a geometrical way of thinking.

We can extend the theory to Rn, the n-fold Cartesian power of R. This is possible, since S is a
topos, and hence Cartesian closed. A point x in Rn is denoted by the n-tuple (x1, ..., xn) and
x = y if and only if xi = yi for all i = 1, ..., n.

In Rn we can define so-called k-monads [9], which give us a notion of neighbours in Rn.

Definition 4.1. The k-monad Dk(n) is defined as
Dk(n) = {(x1, ..., xn) ∈ Rn | the product of any k + 1 of the xi’s is zero.}.

Definition 4.2. We say that two points in Rn are k-neighbours, and write x ∼k y, if x− y ∈
Dk(n).

The second axiom says that there is an ordering < on R, which can be interpreted as follows:
a < b means that a is strictly to the left of b on R. We assume that:
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1. ¬(a < a);

2. a < b and b < c implies a < c (transitivity);

3. a < b implies a + c < b + c for any c;

4. a < b and 0 < c implies ac < bc;

5. either 0 < a or a < 1;

6. a 6= b implies a < b or b < a.

It is, in general, not true that for any two a and b in R the relation (a < b ∨ a = b ∨ a > b)
holds.

We say a ≤ b if and only if ¬(b < a). The relation a ≥ b is defined in the same manner. We
define the open interval (a, b) as the collection of points in R satisfying both a < x and x < b

and we define the closed interval [a, b] as the collection of points in R satisfying both a ≤ x and
x ≤ b.

It is straightforward to prove some results about the R and the order relation. Let us give a
typical example.

Proposition 4.2. ((a < 0) or (0 < a)) implies (0 < a2).

Proof. Assume 0 < a. Then 0 · a < a · a. Since 0 · a = 0, we have 0 < a2. Assume a < 0. Then
a · (−a) < 0 · (−a). Then −a2 < 0. So 0 < a2. Since both 0 < a and a < 0 imply 0 < a2, it is
obvious that ((a < 0) or (0 < a)) implies 0 < a2.

We define a part X of R to be microstable if for any x in X and any ε in ∆ we have that x + ε

is in X. Microstable parts are objects in the topos S.
We will soon see that all maps are continuous by the Kock-Lawvere axiom, since varying x in-
finitesimally also changes y infinitesimally.

The graph of a function is the collection of points in R ×R of the form (x, f(x)). There is also
a categorical definition of a graph [12]. In what follows, we will, however, do mathematics in S

without using too much category theory and therefore we use the first definition of a graph.
For any two functions f ,g : J −→ R from a part J of R to R, we can define a new function

(f + g)(x) by x 7→ (f(x) + g(x)) and another new function (f · g)(x) by x 7→ (f(x)g(x)).
The axiom that makes smooth infinitesimal analysis different from standard analysis is the

Kock-Lawvere axiom, which we will state shortly. First, however, we define what we mean by
infinitesimals.

Definition 4.3. An infinitesimal on R is any nilsquare element of R, i.e. x2 = 0. We denote
the collection of infinitesimals on R by ∆ := {x ∈ R | x2 = 0}.
Axiom 4.1. (Kock-Lawvere) For any mapping g : ∆ −→ R there exists a unique b in R such
that for all ε in ∆ we have g(ε) = g(0) + bε.

From this, it follows that all curves that come from a mapping in S satisfy the principle of
microstraightness, i.e. for any smooth curve and for any point P on it, there is a nondegenerate
segment in C, called a microsegment, around P which is straight (microstraight) around P ,
where nondegenerate means that the segment is not a point.

We are now in a position to state a substantial theorem.
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Theorem 4.1. All functions in S are continuous in the following sense: if a and b in R are such
that a− b is in ∆, then f(a)− f(b) ∈ ∆.

Later on, this theorem will follow from the fact that every function is differentiable. For that,
we do not need a function to be continuous.

The following theorem guarantees the existence of non-zero infinitesimals.

Theorem 4.2. ∆ 6= {0}.

Proof. Suppose ∆ = {0}. Consider the mapping f : ∆ −→ R defined by x 7→ x. That this
mapping is in S follows from the fact that for J ⊂ M the identity injection f : J −→ M is in
Man. Then g(ε) = g(0) + εb for b = 0, since g(ε) = g(0) = 0 = 0 + ε0, but also for b = 1, since
g(ε) = g(0)+ε = ε. So this b is not unique (because 0 6= 1), which contradicts the Kock-Lawvere
axiom. So ∆ cannot coincide with {0}.

It is important to notice that this proof does not make use of the rule of double negation,
(¬¬A) → A, since we want to prove that something is not true and suppose it is true. If we
wanted to prove that something is true and would suppose that it is not, then we would make
use of the rule of double negation.
The following property is called the Principle of Microcancellation.

Proposition 4.3. ∀a, b ∈ R, if εa = εb ∀ε ∈ ∆, then a = b.

Proof. Suppose that ∀a, b ∈ R, if εa = εb ∀ε ∈ ∆ and consider the mapping f : ∆ −→ R

defined by x 7→ xa. Hence g(ε) = g(0) + εa = εa, which is by assumption equal to εb. By the
Kock-Lawvere axiom, a = b, which directly proves the claim.

Corollary 4.1. If εa = 0 ∀ε ∈ ∆, then a = 0.

So this ∆ contains more points than only 0. There is a very elegant geometric illustration of ∆
given by Joyal. It says that if you consider the unit circle in R2 centered at the point (0, 1), then
the collection of points where it is tangent to the x-axis is precisely ∆. To see this, we remember
that the given circle is parametrized by x2 + (y− 1)2 = 1. On the x-axis, we have y = 0. So the
points at which the given circle is tangent to the x-axis satisfy x2 = 0, which are precisely the
infinitesimals on R. This illustrates that tangency is geometrically not something that happens
only at a point. This example is another indication that our way of thinking may be useful.

4.2 Calculus

4.2.1 Differential calculus

For the definition of differentiability, we need a mapping to be defined on a microstable domain,
so we will always assume that this is the case, unless stated otherwise.

With the concept of a function and the Kock-Lawvere axiom in mind, we are now ready to
define what it means for a function to be differentiable. Let f : J −→ R be any function
from a microstable part J of R to R. If we fix x, we can define a function gx : ∆ −→ R by
gx(ε) = f(x + ε). This is a well-defined function, since it is defined for all ε in ∆, because J is
microstable in R.

As before, let R be the real line in S, ∆ = {x ∈ R | x2 = 0} and let f : R −→ R be a function
with domain R and codomain R. Let gx : ∆ −→ R denote the function gx(ε) = f(x + ε).
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From the Kock-Lawvere axiom, we conclude that there exists a unique b in R —denoted bx—,
such that for all ε in ∆:

f(x + ε) = gx(ε) = gx(0) + bxε = f(x) + bxε. (3)

The rule defined by x 7→ bx is a well-defined function, denoted f ′ and called the derivative of f .
This notion can be defined for any microstable part of R. With this definition in mind, equation
(3) becomes:

f(x + ε) = f(x) + εf ′(x). (4)

This is the fundamental equation of differential calculus in S. In S every function from R to
R has derivatives up to any order, which means that the process of taking derivatives can be
repeated arbitrarily often.

Corollary 4.2. All functions in S are continuous, i.e. if a and b in R are such that a− b is in
∆, then f(a)− f(b) ∈ ∆.

Proof. Suppose we have a and b in R are such that a − b is in ∆. Then there exists an ε ∈ ∆
such that b = a+ ε. By the differentiability of an arbitrary function f from R to R we now have
f(b)− f(a) = f(a + ε)− f(a) = εf ′(a), which clearly is an infinitesimal.

The derivative has some familiar arithmetic properties:

Proposition 4.4. Let J be a microstable part of R. For any two functions f, g : J −→ R and
for any c,d in R we have:

(cf + dg)′ = cf ′ + dg′

Proof. By definition we have

(cf + dg)(x + ε) = (cf + dg)(x) + ε(cf + dg)′(x) = cf(x) + dg(x) + ε(cf + dg)′(x),

and
cf(x + ε) + dg(x + ε) = cf(x) + εcf ′(x) + dg(x) + εdg′(x).

Since (cf + dg)(x + ε) = cf(x + ε) + dg(x + ε), we have:

(cf + dg)′ = cf ′ + dg′.

We will call this property the linearity of the derivative. In the same way, we can prove the
so-called Leibniz or product rule:

Proposition 4.5. Let J be a microstable part of R. For any two functions f, g : J −→ R we
have:

(fg)′ = f ′g + fg′.

Corollary 4.3. Let J be a microstable part of R. For any two functions f, g : J −→ R such
that g(x) 6= 0 for all x in R, we have:

(

f

g

)′

=
f ′g − fg′

g2
.
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Another important rule for differentiation is the chain rule:

Proposition 4.6. Let I and J be microstable parts of R, let f : J −→ R and g : I −→ J . Then
we have:

(f ◦ g)′ = (f ′ ◦ g)g′

For proofs of these propositions, cf. [1].

4.2.2 Integral calculus

To be able to integrate functions in S, we adopt an integration axiom.

Axiom 4.2. Let f : [0, 1] −→ R be a function. Then there exists an unique g : [0, 1] −→ R with
g′ = f and g(0) = 0.

This turns out to make integration rather easy. We will often write
∫ x

0 f for g(x), as we are used
to from standard analysis. It is clear that if we integrate f ′, then we have

∫ x

0 f ′ = f(x)− f(0).
It is straightforward to prove the following rules.

Proposition 4.7.
∫ x

0 (cf + dg) = c
∫ x

0 f + d
∫ x

0 g and
∫ x

0 f ′g = fg|x0 −
∫ x

0 fg′.

By rescaling we can extend the theory of integration to arbitrary intervals in R.
This notion of integration is a bit surprising, since it is given by an axiom. This is also the

way in which it is done in the texts we considered about it. Note that in ordinary analysis, first
the definition of the Riemann or Lebesgue integral is given. Then, what we stated as an axiom
above, is in fact a provable statement for continuous functions.

4.2.3 Minima and maxima

A very important application of differential calculus is determining extrema: minima and max-
ima.

Definition 4.4. We say that a function f : J −→ R has an extremum in a if f(a + ε) = f(a)
for all ε ∈ ∆.

Theorem 4.3. A function f has an extremum in a if and only if f ′(a) = 0.

Proof. Suppose f has an extremum in a. Then for all ε ∈ ∆, f(a + ε) = f(a). Hence for all ε

we have f(a) = f(a + ε) = f(a) + εf ′(a), from which it follows that f ′(a) = 0.
Suppose f ′(a) = 0. Then for all ε we have the relation f(a + ε) = f(a) + εf ′(a) = f(a).

This is a very important result, since the concepts of minima and maxima correspond to the
notion of these concepts in standard analysis.
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5 Synthetic Differential Geometry

With the results of sia in mind, we are now ready to interpret differential geometry in this setting.
The resulting theory is called synthetic differential geometry (sdg). The way of reasoning in sdg

is very intuitive, so this may be a very useful mathematical framework for the formulation of
physical theories.

5.1 Basic notions

If we want to study differential geometry, we first need a definition of the spaces we are working
with, i.e. the analogues of manifolds in the classical theory. The explicit analogue of a (standard)
manifold in sdg is given by the image of this manifold under the funtor s : Man −→ S given
in chapter 3. Basically, a manifold M is replaced by its coordinate ring under this functor. So
the construction of a model provides us with the notion of a manifold. This is all we need, since
the objects we will consider in relativity theory are manifolds in standard differential geometry.
We will just talk about manifolds in S, but what we consider are actually images of ordinary
manifolds in Man under the functor s. For a very thorough text about the identification of
manifolds with objects in S, cf. [9] or [14].

There are, however, also direct definitions of manifold(-like) objects in S, but these are very
special and technical, since they use a lot of category theory. For more information, cf. [11].

One of the main concepts of standard differential geometry is tangency.

Definition 5.1. A tangent vector to M at a point m is a map t : ∆ −→M with t(0) = x.

The image of a tangent vector lies in M . Note that tangent vectors always exist, since the objects
of study are smooth.

There is a rather subtle, but important difference between standard and synthetic differential
geometry concerning tangency. In the standard formulation, a tangent vector at a point m ∈M

is given by an equivalence class of arbitrarily short short paths t : (−α, α) −→M . In that case,
the tangent vectors are paths with a certain length (2α), but in the synthetic case, the tangent
vectors have “length” 0, in the sense of the notion of metrics defined below.

A related notion is the tangent bundle.

Definition 5.2. There is a map π : M∆ −→M from the collection M∆, consisting of all tangent
vectors to M , to M , defined by sending each tangent vector to its base point, π(t) = t(0). The
object (M∆, π) is called the tangent bundle of M .

For our purposes however, the most important definition may be the one of a tangent space.

Definition 5.3. The fibre over m ∈M , i.e. the set of tangent vectors with m as its base point,
is called the tangent space to M at m and is denoted (M ∆)m or TmM .

According to Bell [2], the tangent space can be regarded as “locally lying” in M . This is a very
important difference with standard differential geometry, in which this is clealy not the case.
There, in general the intersection of a manifold and the tangent space is the point at which the
tangent space is considered. We do not go into this, since we do not really need this, but we
wanted to give this contrasting result.

21



5.2 Metrics

In standard differential geometry, a very important concept is the metric. As will be explained
later, the metric is also very important in relativity theory. We will therefore define this concept
in sdg.

To do so, we extend the theory of k-monads, which is given in chapter 4. Since any n-
dimensional manifold in sdg is locally isomorphic to Rn, we can extend the relation ∼k, which
is given in chapter 4, to manifolds, by defining it on M via the atlas of charts {fi : Ui −→ M}.
This turns out to be independent on the choice of the chart. We will not give this construction
explicitly, but for a thorough description cf. [10].

Definition 5.4. For each k ≥ 1, M[k] is the collection of pairs (x, y) ∈M such that x ∼k y.

So, M[k] is a (generalized) relation on M . An ordered pair is in the relation if the components
of the ordered pair are k-neighbours on the manifold M .

We follow Kock [10] in defining the metric via a quadratic differential form.

Definition 5.5. A quadratic differential form g on a manifold M is a mapping g : M[2] −→ R

that vanishes on M[1].

Such a mapping turns out to be symmetric if x ∼2 y. We can now define the notion of a metric.

Definition 5.6. A (pseudo-Riemannian) metric is a nondegenerate10 quadratic form on M .

Note that the vanishing condition on the quadratic differential form establishes that the dis-
tance between two points “which have an infinitesimal distance to each other” is zero, which is
not very surprising.

A (global) metric g satisfies the following usual conditions:

1. g is nondegenerate (by definition).

2. g is symmetric.

3. g satisfies the triangle inequality.

A metric in sdg gives us a notion of distance, in just the same way as in standard differential
geometry.

There are other ways to define metrics in sdg. For example, we can define inner products and
norms and say how an inner product induces a norm and how a norm in turn defines a metric.
We did not follow this way of reasoning here, because Kock’s procedure is more general. We
also do not need inner products and norms, and in general, they are not assumed to exist on
manifolds.

With these concepts of synthetic differential geometry in mind, we can at last focus on the
theory of general relativity.

10This is a condition that arises as a technical consequence of the generalization of k-neighbours to manifolds.
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6 Mechanics

In this chapter, we give a brief overview of the physical theory of mechanics and its history. We
start with Newtonian mechanics and end up with general relativity. We do not discuss quantum
theory.

6.1 Classical Mechanics

Until 1905, the theory of mechanics that was used in all areas of physics, was classical mechanics,
which is today considered as the mechanical theory of macroscopic objects moving at low veloci-
ties. The aim of classical mechanics is to calculate the trajectory of a moving object. The subject
started in 1687 with the publication of Isaac Newton’s book. In Philosophiae Naturalis Principia
Mathematica, he describes two important theories: the motion of bodies and gravitation. He
formulates his three laws of mechanics and the law of universal gravity, which in modern forms
read as follows[5]:

1st law Free particles move at constant velocity.

2nd law The force on a particle is proportional to the acceleration of the particle with propor-
tionality constant m, i.e. ~F = m~a.

3rd law The forces of action and reaction are equal in magnitude and opposite in direction.

Law of Universal Gravity A point mass A attracts a pointmass B in A’s direction. The force that
A acts on B is given by

~FAB = −G
mAmB

r2
r̂, (5)

where F is the force, G is Newton’s universal constant of gravity, mA is the mass of A, mB is
the mass of B, r is the distance between A and B and r̂ is the unit vector directed from A to B.

Cf. [16] for more information.

In 1788, there was a reformulation of Newtonian mechanics by Joseph Louis Lagrange. It relies
on two important results of Newtonian mechanics, which both do not appear in Newton’s own
work: conservation of momentum and conservation of energy. The method relies on the fact that
one can choose independent generalized coordinates such that the results found are valid for each
well-defined coordinate system. The idea is to solve the so-called Euler-Lagrange equations,

d

dt

∂L
∂q̇
− ∂L

∂q
= Q′, (6)

where L := T −V , the co-called Lagrangian, is defined as the kinetic energy minus the potential
energy, q is a generalized coordinate and Q′ is a term which corresponds to the non-conservative11

interactions within the system. The system of equations needs to be solved for each of the gen-
eralized coordinates to get a set of equations which describes the particle trajectory.

A reformulation of Lagrangian mechanics was given in 1833 by William Rowan Hamilton. He
used the fact that in the Lagrangian method we have, say, n second order differential equations

11An interaction is non-conservative if it cannot be written as the gradient of a scalar.
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with constraints. According to Hamilton, this is equivalent to 2n first order differential equations
with constraints. These equations are called the Hamilton equations:

q̇ =
∂H
∂p

,

ṗ = −∂H
∂q

,

(7)

where H := T + V is the so-called Hamiltonian and p is the generalized impuls conjugate to q.
Hamilton’s theory can be formulated completely geometrically in terms of symplectic spaces,

but this goes beyond the scope of this thesis.

A very important Newtonian concept in classical mechanics is absolute space and time, which
says that space can be regarded as an inert scene on which physical events take place and that
time is the same for all observers in space. This is by no means evident, and has been rejected
by Einstein’s work, as will be explained below. It has even been rejected by Leibniz before.

For a comprehensive text about classical mechanics, cf. [5].

6.2 Special Theory of Relativity

In 1905, the special theory of relativity (sr) was published by Albert Einstein, which forced
physicists to not only use classical mechanics and classical field theory12. Classical mechanics
was (and is) still a good theory for describing macroscopic objects at low velocities —compared to
the speed of light—, but at higher velocities, one needs to use special relativity. The formulation
of this theory by Einstein relies heavily on the work of Poincaré and Lorentz.

The two postulates of sr are:

1. All inertial frames are equivalent for the performance of all physical experiments.

2. Light travels rectilinearly at speed c in all directions in all inertial frames.

Both postulates clearly break with the tradition of absolute space and time, and this may be the
most important assertion of sr. Space and time together form a continuum which we will call
spacetime. From the postulates we can derive transformations that transform a coordinate vector
(x, y, z, t)T in an inertial frame S to a coordinate vector (x′, y′, z′, t′)T in another inertial frame
S′ moving with a velocity ~v with respect to S. If S ′ moves with a velocity ~v in the x-direction
and if at t = t′ = 0 the origin of both inertial frames cross, then the coordinate transformation
is given by:

x′ = γx− βγct,

y′ = y,

z′ = z,

t′ = γt− βγ
x

c
.

(8)

Such a transformation is called a Lorentz transformation. Here β = v
c

and γ = 1√
1−β2

= 1
q

1− v2

c2

.

12Classical mechanics and classical field theory together formed physics before 1905.
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From the Lorentz transformation we obtain the astonishing facts that moving objects “become
shorter” in the direction of their velocity and that moving clocks “run more slowly”. Together
with the fact that an object cannot accelerate to a velocity which is greater than the speed of
light and that mass and energy are equivalent as in the following equation:

E = γmc2, (9)

where E is the energy, m the mass, c the velocity of and γ is defined as above, these are the
most important results of sr.

6.3 General Theory of Relativity

In our description of sr we only discussed inertial frames of reference, but what if the frames
accelerate and what if there is gravity, both of which make frames non-inertial?

Einstein himself generalized his special theory of relativity to the general theory of relativity
(gr), which deals with accelerating systems and systems in which gravity plays a role, and
published it in 1915 and 1916. gr is a geometrical theory of spacetime, in which gravitation
is not an action-at-distance interaction, but a property of the geometry of spacetime. The
mathematical framework in which this theory is formulated is differential geometry. This is the
main reason why the mathematical concepts of the theory are not familiar to all physicists, since
this framework is quite difficult and technical.

The local geometry of spacetime is described by the metric tensor gµν . The metric tensor on
a manifold M is a covariant, symmetric and nondegenerate tensor of rank two. This is equivalent
to saying that the metric g = gµνdxµ ⊗ dxν defines an inner product (not necessarily positive
definite) on the tangent space of each point. The metric tensor is transformed to its contravariant
form by the following transformation:

gανgνβ = δα
β . (10)

The metric can be regarded as the description of the (local) geometric and causal structure of
spacetime. It gives a complete local general relativistic description of it.

In gr we can of course also calculate trajectories of particles, but we will not describe how
this is done, since this is rather technical and we do not use it for what follows. A good book
about relativity (for physicists) is [19]; for mathematicians we would recommend [23], but the
latter does not deal with sr.

In the next chapter, we will take a closer look at the foundations of general relativity.
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7 Einstein’s Equivalence Principle

7.1 Foundations of General Relativity

In 1918, after the publication of the general theory of relativity (gr) in 1916, Einstein again
discussed the foundation of his own theory. He listed the following three principles [17]:

1. Principle of relativity: All systems of reference are equivalent with respect to the for-
mulation of the fundamental laws of physics; therefore they find their unique, natural
expression in generally covariant equations.

2. Principle of equivalence: Inertia and weight are identical in essence. From this and
from the results of the special theory of relativity, it follows necessarily that the symmetric
“fundamental tensor” gµν determines the metric properties of space, the inertial relations of
bodies in it, as well as gravitational effects. We will call the condition of space, described
by the fundamental tensor, the G-field.

3. Mach’s principle: The G-field is determined entirely by the masses of bodies. Since mass
and energy are equivalent according to the results of the special theory of relativity and
since the energy is described formally by the symmetric energy tensor Tµν , this means that
the G-field is conditioned and determined by the energy tensor.

Although the foundations of gr are still an interesting topic of discussion, we will not go into all
three of them. For a very thorough view on these three principles, and the differences between
them, cf. [17]. We will only discuss the principle of equivalence (ep), and of that only its
mathematical part, rather than the physical and philosophical aspects. For a thorough discussion
of the ep as a whole, cf. [18].

7.2 Equivalence Principle: standard formulation

The first problem that arises is that the equivalence principle formulated by Einstein is simply
not true. Because of so-called tidal forces, one would be able to decide if a force is gravitational
or caused by acceleration, since gravitational forces are in general not uniform [18]. Only if it is
uniform, then it would be indistinguishable from acceleration.

There have been various attempts to formulate the principle infinitesimally, starting with
Pauli’s formulation [18]. They say:

Spacetime is locally flat.

It would be nice to have a mathematical formulation of the ep in terms of (standard) differential
geometry13, since gr has been formulated in this mathematical framework.

In terms of the metric, the mathematical content of the ep is as follows [18]: at a point p of

13Or better, semi-Riemannian geometry, because the metric is not positive definite. If you are not familiar with
(standard) differential geometry, cf. e.g. [22].
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spacetime14 M we can transform to normal coordinates [23] such that in general we have:

gµν(p) = ηµν(p) = ηµν ,

gµν,σ(p) = 0,

Γσ
µν(p) = 0,

gµν,στ (p) 6= 0,

(11)

where ηµν = diag(1,−1,−1,−1) is the Lorentzian metric (the metric of the special theory of
relativity) and an index after a comma denotes differentiation with respect to this index.

The fact that the Christoffel symbols vanish at p implies that the geodesics through p are
locally linear.

Physicists often use the principle of equivalence as if the equations (11) holds in a neighbour-
hood of p, but that is simply not true. The maximal mathematical conclusion that can be drawn
is that spacetime is locally Lorentzian any point p of spacetime, where “locally” is interpreted as
“at the point p”.

7.3 Equivalence Principle: topos formulation

As defined in chapter 5, there is a notion of metric in sdg. Such a metric g is interpreted in
the same way as the metric in standard differential geometry: it is responsible for the local
geometric and causal structure of spacetime. It can also be written in terms of the metric tensor
as in standard differential geometry:

g = gµνdxµ ⊗ dxν . (12)

In our formulation, it is now clear that for a given point p in spacetime, we also have normal
coordinates such that at the point p in the spacetime manifold, one has:

gµν(p) = ηµν(p),

gµν,σ(p) = 0,

Γσ
µν(p) = 0,

gµν,στ (p) 6= 0.

(13)

However, and this is the whole point, the first equation holds in more points, namely throughout
O(p) = {x ∈ M | x ∼1 p}, for we know that any x ∈ O(p) can be written as x = p + ε, where
ε ∈M[1]. Then we have:

gµν(x) = gµν(p + ε) = gµν(p) + εσgµν,σ(p) = ηµν . (14)

As a consequence of this, also the second —and therefore the third– equation holds at O(p), since
∀x ∈ O(p) we have gµν(x) = ηµν and equations (13) hold. Our conclusion is that ∀x ∈ O(p):

gµν(x) = ηµν ,

gµν,σ(x) = 0,

Γσ
µν(x) = 0,

gµν,στ (x) 6= 0.

(15)

14This is a manifold.
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This is a nice result, for we have both reformulated the equivalence principle in sdg and we
conclude that in our formulation the infinitesimal equivalence principle holds at more points
than just one. A problem of our formulation, however, is that we are not able to really construct
the neighbourhood O(p).

We think that this formulation is succesful. This contributes to the work that has already
been done on describing metrics in general relativity.
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8 Conclusion

As we have seen, Einstein’s principle of equivalence can be formulated in synthetic differential
geometry in the following way: for all points x in O(p) = {x ∈M | x ∼1 p}, we have:

gµν(x) = ηµν ,

gµν,σ(x) = 0,

Γσ
µν(x) = 0,

gµν,στ (x) 6= 0.

(16)

We conclude that it is possible to formulate Einstein’s equivalence principle in terms of synthetic
differential geometry. We have even said more than the classical formulation, as our formulation
holds in more points than one. However, if we add the law of excluded middle to our logic, we
recover the classical formulation of the equivalence principle.

Formulating the equivalence principle in synthetic differential geometry gives us an example
of using topos theory in describing physics. sdg is a natural and intuitive formalism for differ-
ential geometry. Thinking this way is easier than in the standard theory, because the arguments
are typically geometric and quite simple. We think that applying topos theory may give very
interesting new formulations of physics. It may even be a very succesful framework for quan-
tum gravity, which is supported by the phenomenon that there are already a few mathematical
physicists working in that way.
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A Category Theory

This appendix is a short overview of basic category theory. We will introduce most main concepts
and state some results about categories without proof. This text is not meant as an introduction
to category theory, but it presents basic category in such a way that one is able to understand
the sections about topoi, smooth infinitesimal analysis and synthetic differential geometry after
reading this appendix. It is based on [13]. For a thorough introduction in Category Theory,
cf. [4], [12] or [13].

There is much to be said about the foundations and history of category theory, but we will
not go into that. For further reading, cf. [4] or [12].

Roughly speaking, category theory is a theory which describes mathematical structures in a very
abstract way. It starts with the notion that many properties of mathematical structures can be
described with diagrams, consisting of “objects” and “arrows”.

A.1 Basics

A.1.1 Categories and objects

Before giving the definition of a category, we will define some other important concepts. A
category C contains a class of objects ob (C) and a class of arrows or morphisms hom (C)
between objects.

Definition A.1. To a morphism f in a category, we assign an object A = dom(f) in that
category, which is called the domain of f , and an object B = cod (f), which is called the
codomain of f .

Usually, we will denote a morphism with domain A and codomain B by

f : A −→ B. (17)

Definition A.2. For any two arrows f : A −→ B and g : B −→ C, such that dom (g) = cod (f),
the composite morphism g ◦ f : A −→ C is defined.

The explicit “calculation” of this composite depends on the structure of the morphisms of the
category.

Definition A.3. An identity morphism for an object X is a morphism 1X : X −→ X such that
for every morphism f : A −→ B we have 1B ◦ f = f = f ◦ 1A.

It is straightforward to prove that if there is an identity morphism for an object X, then it is
unique.

Definition A.4. A category C consists of a class of objects ob (C), a class of morphisms hom (C)
between objects and a binary operation ◦ (composition) such that to every arrow in C we can assign
a domain and a codomain, the composition is associative, i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f) (when
defined) and for every object X of C there exists an identity morphism 1X : X −→ X.
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Because of the associativity of the composition, it is not necessary to place parentheses. If no
confusion arises, we may drop the notation ◦ in a composition and just write gf for g ◦ f . We
will also use the words map, mapping and function15 to denote morphisms.

There are many examples of categories. We will give two important ones. The first of them is
of great importance for this text, since it is a topos16.

Example A.1. Set: The class of sets together with the usual functions defined between them
form a category.

Example A.2. Grp: The class of groups together with the group homomorphisms between them
form a category.

We take a certain class of objects in these examples, because for example one cannot speak about
the set of all sets. This is solved by the idea that there exist so-called small and large categories.
We will not go into that. For more information, cf. [13].

There is a straightforward notion of a subcategory D of a category C.

Definition A.5. A subcategory D of C is a category such that ob (D) ⊂ ob (C) and hom (D) ⊂
hom (C).

There is a useful way of denoting (parts of) categories as diagrams. These diagrams have vertices
and arrows between the vertices. The vertices correspond to objects and the (diagram) arrows
to morphisms. We will say that a diagram is commutative if every “arrow path” from an object
to another yields the same mapping.

Example A.3. The identity law, i.e. for every morphism f : A −→ B and for every morphism
g : B −→ C we have 1Bf = f and g1B = g, can be pictured in a commutative diagram in the
following way:

A
f //

f ��@
@@

@@
@@

B

1B

��

g

  @
@@

@@
@@

B g
// C

A.1.2 Functors

Definition A.6. For categories B and C, a (covariant) functor T : B −→ C consists of two
functions: the object function, which assigns to every object B in B an object TB in C, and
the arrow function, which assigns to each arrow f : B −→ B ′ in B an arrow Tf : TB −→ TB ′

in C such that T (1B) = 1TB and T (g ◦ f) = Tg ◦ Tf for any two morphisms f and g such that
the composition gf is defined.

A functor is actually a morphism of categories. The term covariant suggests that there exist
contravariant functors as well:

15The word function will be used in particular in Set. A definition of this category will be given very soon.
16Cf. chapter 2 for a definition.
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Definition A.7. For categories B and C, a contravariant functor T : B −→ C consists of two
functions: the object function, which assigns to every object B in B an object TB in C, and
the arrow function, which assigns to each arrow f : B −→ B ′ in B an arrow Tf : TB ′ −→ TB

in C such that T (1B) = 1TB and T (g ◦ f) = Tf ◦ Tg for any two morphisms f and g such that
the composition gf is defined.

A contravariant functor reverses the direction of the arrows in the categories and the composition
of morphisms is done in reversed order.

A.1.3 Natural transformations

Definition A.8. If S and T are functors from B to C, then a natural transformation τ :
S −→ T assigns to every object B of B an arrow τB : SB −→ TB in B in such a way that every
arrow f in B yields the following commutative diagram:

B

f

��

SB
τB //

Sf

��

TB

Tf

��
B′ SB′

τB′

// TB′

We also say that τB : SB −→ TB is natural in B.

A.1.4 Properties of morphisms

Definition A.9. A morphism f : A −→ B in a category C is called invertible if there exists a
morphism f ′ : B −→ A in C such that ff ′ = 1B and f ′f = 1A. The map f ′ is then called an
inverse of f in C.

It is straightforward to prove that if there exists an inverse of a morphism, then it is unique, so
we will talk about the inverse of f from now on and denote it by f−1.

If in definition A.9 one only has ff ′ = 1B , then f ′ is called a right inverse. If, on the other
hand, only f ′f = 1A, then f ′ is called a left inverse.

Definition A.10. Two objects A and B are called isomorphic (notation: A ∼= B) if there
exists an invertible morphism (isomorphism) h : A −→ B.

Definition A.11. A morphism f : A −→ B is called left cancellable, monic or a monomor-
phism if for any two arrows g1, g2 : C −→ A the equality fg1 = fg2 implies g1 = g2.

Definition A.12. A morphism f : A −→ B is called right cancellable, epi or an epimor-
phism if for any two arrows g1, g2 : B −→ C the equality g1f = g2f implies g1 = g2.

In Set, monomorphisms and epimorphisms correspond to injective and surjective functions re-
spectively.

Definition A.13. A morphism f : A −→ A for which f 2 ≡ ff = f is called idempotent.

Idempotent morphisms are categorical generalizations of projections.

Definition A.14. An object A is called initial in C if for each object B in C there exists exactly
one morphism from A to B.

32



Definition A.15. An object A is called terminal in C if for each object B in C there exists
exactly one morphism from B to A.

An object which is both initial and terminal is called a null or zero object. In Set, the empty
set is the (only) initial object and each one-element set is a terminal object.

A.2 Duality

When in a given category all arrows are reversed, a new category is obtained. This property is
called categorical duality. For our purposes, it is sufficient to note that the dual category C op

of a category C is obtained by replacing a morphism f : A −→ B by a morphism f : B −→ A,
i.e. A = dom (f) is replaced by A = cod (f) and B = cod (f) by B = dom (f). In the dual
category, the order of composition is reversed. Monic arrows become epi, left inverses become
right inverses, initial objects become terminal and vice versa. It is important to mention that
the dual of an axiom for categories is also an axiom. In proofs, it is therefore allowed to state
dual statements without proofs if the original statements are true.

We can say more about duality of categories, but we cannot go into that now, because we have
not yet introduced some very important concepts.

A.3 Universal properties

Definition A.16. Let S : D −→ C be a covariant functor and let C be an object of C. A
universal arrow from C to S is a pair (R, u) consisting of an object R of D and an arrow
u : C −→ SR in C such that to every pair (D, f) with D an object of D and f : C −→ SD an
arrow of C, there is a unique arrow f ′ : R −→ D of D such that Sf ′ ◦ u = f , i.e. the following
diagram commutes:

C
u //

f !!C
CC

CC
CC

C SR

Sf ′

���
�

� R

f ′

���
�

�

SD D

We say that if this diagram is commutative, then the universal property is satisfied. Universal
arrows are unique up to unique isomorphism. There is also a dual of a universal arrow. The
definition is very straightforward by reversing all arrows. We do not give it explicitly, but we
will give the definitions of the universal properties which bother us and also give their duals.

Important examples of universal arrows are limits and colimits. These are explained in the
next section.

A.4 Limits and colimits

Definition A.17. A cone for a diagram D consists of an object C in C together with an arrow
fi : C −→ Di for each object Di in D such that, when g is an arrow in D, the following diagram
commutes:
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Di
g // Dj

C

fi

``@@@@@@@@ fj

>>}}}}}}}

We will denote this cone by {fi : C −→ Di}.

Definition A.18. A limit for a diagram D is a cone for D, {fi : C −→ Di}, such that for
every other cone for D, {f ′

i : C ′ −→ Di} there exists a unique arrow f : C ′ −→ C such that for
every object Di the following diagram commutes:

Di

C ′

f
//

f ′

i

>>}}}}}}}}
C

fi

``@@@@@@@@

It is said that this cone has the universal property. Any other cone factors uniquely through
it. We are now ready to use the duality property to define the dual of a limit.

Definition A.19. A cocone for a diagram D consists of an object C in C together with an
arrow fi : Di −→ C for each object Di in D such that, when g is an arrow in D, the following
diagram commutes:

Di

fi   @
@@

@@
@@

@
Dj

goo

fj~~}}
}}

}}
}

C

.

We will denote this cocone by {fi : Di −→ C}.

Definition A.20. A colimit for a diagram D is a cocone for D, {fi : Di −→ C} such that for
every other cocone for D, {f ′

i : Di −→ C} there exists a unique arrow f : C −→ C ′ such that for
every object Di the following diagram commutes:

Di

fi

~~}}
}}

}}
}} fj

  @
@@

@@
@@

@

C ′

f
// C

So the colimit is the dual of a limit. If we construct a dual category from a given category, then
a limit turns into its corresponding colimit and vice versa.

In the following sections, we will give some examples of limits and colimits which are of great
importance for the definition of a topos.
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A.4.1 Products and coproducts

A very important example of a limit is the product.

Definition A.21. In a category C, a product of two objects A and B is a pair of mappings
A

πA←− A × B
πB−→ B such that ∀X, f : X −→ A, g : X −→ B, ∃!h : X −→ A × B such that

f = πAh and g = πBh.

This definition is illustrated by the following commutative diagram:

A

X

f
11

h //

g
--

A×B

πA

;;wwwwwwwww

πB

##G
GG

GG
GG

GG

B

Dual to the product is the coproduct, which is a colimit.

Definition A.22. In a category C, a coproduct of two objects A and B is a pair of mappings

A
iA−→ A + B

iB←− B such that ∀X, f : A −→ X, g : B −→ X, ∃!h : A + B −→ X such that
f = hiA and g = hiB .

This definition is illustrated by the following commutative diagram:

A
f

ww
iA{{ww

ww
ww

ww
w

X A + B
hoo

B
g

hh
iB

ccGGGGGGGGG

This construction is often regarded as the sum of the objects A and B.

Example A.4. In the category Grp, the product of two groups G and H is the direct product of
the groups and the coproduct is the free product of the groups.

Example A.5. In the category Vec, in which the objects are all vector spaces and the arrows
are linear transformations of vector spaces, the product and the coproduct of two objects V and
W is the same: V ×W = V ⊕W . Here the coproduct is denoted by ⊕. It is equal to the usual
direct product or direct sum of vector spaces.

A.4.2 Equalisers and coequalisers

Definition A.23. For two arrows f and g from an object A to an object B, we define an
equaliser for f and g as a map i : E −→ A such that fi = gi and ∀x : T −→ A with fx = gx

we have ∃!x̄ such that x = ix̄.
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This is illustrated by the following diagram:

T
x̄

��~
~

~
~

x

��@
@@

@@
@@

E
i

// A
f //
g

// B

The arrow i is called an equaliser because composition with it equalises the morphisms f and g.
The concept of a coequaliser is dual to the concept of an equaliser.

Definition A.24. For two arrows f and g from an object A to an object B, we define a co-
equaliser for f and g as a map q : B −→ Q such that qf = qg and ∀y : B −→ T with yf = yg

we have ∃!ȳ such that y = ȳq.

This is illustrated by the following diagram:

A
f //
g

// B
q //

y
��?

??
??

??
?

Q

ȳ����
��

��
�

T

A.4.3 Pullbacks and pushouts

Definition A.25. A pullback of the pair of morphisms f : A −→ C, g : B −→ C consists of
an object P and a pair of morphisms p1 : P −→ A, p2 : P −→ B, such that the diagram

P
p2 //

p1

��

B

g

��
A

f
// C

is commutative. Moreover, for any other object T and pair of morphisms t1 : T −→ A, t2 : T −→
B with this property, there is a unique morphism u : T −→ P such that the following diagram is
commutative:

T

t1

��

u

��@
@

@
@ t2

""
P

p2 //

p1

��

B

g

��
A

f
// C

The dual of a pullback is called a pushout.
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Definition A.26. A pushout of the pair of morphisms f : C −→ A, g : C −→ B consists of an
object P and a pair of morphisms i1 : A −→ P , i2 : B −→ P such that the diagram

C
g //

f

��

B

i2
��

A
i1

// P

is commutative. Moreover, for any other object T and pair of morphisms j1 : A −→ T , j2 :
B −→ T with this property, there is a unique morphism u : P −→ T such that the following
diagram is commutative:

C
g //

f

��

B

i2
�� j2

��

A
i1

//

j1 ++

P
u

��@
@

@
@

T

Pullbacks and pushouts might seem quite abstract, but are fundamental concepts in category
theory. In our context, they are particularly useful for showing that a category is a topos.

A.5 Exponentiation

In Set we denote by BA the set of all morphisms from a set A to a set B. We will now describe
a way to generalize this to arbitrary categories.

Definition A.27. A category C has exponentiation if it has a product for each two objects and
if for arbitrary objects A and B there is an object BA and an arrow ev : BA×A −→ B in C such
that for any object C and each arrow f : C × A −→ B there is a unique arrow f̂ : C −→ BA

such that the following diagram is commutative:

BA ×A
ev

##G
GGGG

GGGG

P

C ×A

f̂×1A

OO�
�

�

�

�

�

� f

::vvvvvvvvv

The morphism ev is called evaluation.

A.6 Subobject classifiers

A subobject classifier is a categorical generalization of the classical set of truth values (e.g. {0, 1}
or {true, false}). Morphisms from an object to the subobject classifier correspond to parts of
the object.
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Definition A.28. In a category C with a terminal object 1, an object Ω is called a subobject
classifier if there exists a monomorphism t : 1 −→ Ω such that for each monomorphism j :
U −→ X there exists χ : X −→ Ω such that the following diagram is a pullback:

U //

j

��

1� _

t

��
X χ

// Ω

Here, χ can be regarded as a generalized characteristic function.

We have now precisely defined all notions necessary to state the definition of an elementary

topos. Cf. chapter 2.
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