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Abstract

In this thesis, spinors are applied to a wide variety of problems in classical General Relativity. The three main
results of this work are divided in three chapters. First, we introduce the two-spinor concept and use it to pro-
vide a novel visualisation of the distortion of the light-cone due to Weyl curvature. In the second part we apply
spinors to study asymptotically flat space-times and discuss a recently proposed derivation of Einstein’s equa-
tions using a symmetry argument [Freidel et al., 2021, Freidel & Pranzetti, 2022]. We show that this argument
fails and explain in detail why. The final chapter discusses the geometric origin of energy in General Relativity,
and we use this to provide a novel argument that the Bondi-mass meaningfully represents the total energy of
the space-time at null infinity. Finally, we define Penrose’s energy-momentum and angular momentum in de-
tail and provide, to my knowledge, the first non-trivial example of Penrose’s angular momentum by computing
the mass and spin of the Kerr space-time at null infinity.
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1 Preface

Spinors provide a remarkably efficient and beautiful description of space-time, which in many cases is more
appropriate than the conventional tensor approach. Tensor calculus is, however, the formalism of choice for
most physicists, in part due to some conceptual difficulties. For these reasons, the first chapter of this work is
dedicated to buiding literal pictures of a spin-vector, the Maxwell spinor, and the Weyl spinor. Along the way
all the necessary ideas are introduced. Our treatment is far from comprehensive, but no prior knowledge on
spinors is required to be able to read this work. The first chapter leads up to a novel technique allowing us to
visualise the distortion of the light-cone due to Weyl curvature, which lets us see the Weyl spinor in a literal
sense.

The second chapter is dedicated to Penrose’s conformal treatment of asymptotically flat space-times. These are
space-times that represent isolated systems in General Relativity. We may add to these space-times a bound-
ary, whose points represent ‘points at infinity’ in a rigorous way. Because the boundary is null, spinors will
prove to be quite useful when describing the asymptotics and dynamics of fields at infinity. For a large part,
this chapter is meant to cover the prerequisites for the final chapter. The final part of this chapter is a re-
sponse to a recently proposed symmetry argument from which Einstein’s equations could supposedly be de-
rived [Freidel et al., 2021, Freidel & Pranzetti, 2022]. I demonstrate that this is not the case, and that part of my
perceived confusion stems from the fact that the coordinate-based formalism that was chosen by the authors
is ill-suited to the problem.

In the final chapter we discuss the geometric origin of mass in General Relativity. Providing a rigorous quasi-
local definition of energy-momentum and angular momentum is an outstanding problem that has remained
unsolved for over a hundred years. Here, we will discuss a proposed definition due to Penrose, which is defined
in the context of Twistor theory. Twistors, as used in this work, should be seen as a tool used to solve prob-
lems in standard physics (much like spinors). We will not discuss some of Twistor theory’s more sophisticated
or speculative ideas. Penrose’s definition, in cases where it is applicable, provides a remarkable notion of mass
which is in line with our physical intuition in all space-times where it can be computed. Null infinity is one such
special case. Here, Penrose’s angular momentum manages to avoid some serious problems that plague more
conventional BMS based definitions. This chapter will provide a basic introduction to Twistors, along with
detailed explanation of Penrose’s Twistorial definition of energy-momentum and angular momentum, with a
special focus on null infinity. I have also striven to provide many clarifying remarks, figures, and examples. In
particular, the end of this chapter will contain a computation of the mass and spin of the Kerr space-time at
null infinity which, surprisingly, appears to be the first explicit example of Penrose’s angular momentum that
is non-trivial.
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2 A short introduction to two-spinors

In modern times, tensors have found widespread application across all disciplines of theoretical physics. Be-
cause tensors are a direct representation of geometric quantities without reference to any particular coordinate
system, tensors provide an elegant and effective description of the physics. In 3+1-dimensions there exists, by
some miraculous coincidence, a more primitive description of geometry in terms of two-spinors. This de-
scription is remarkably efficient and is in many cases a considerable simplification over tensors. The two main
reasons for this simplification are, in the first place, the fact that two-spinors only have two-components, which
is half the amount of four-vectors. An important example of this is the Weyl curvature (which provides a com-
plete description of vacuum curvature in general relativity) which is described by a 256-dimensional trace-free
four index tensor Cabcd having complicated symmetries, Cabcd = C[ab][cd ] and C[abc]d = 0, reducing the num-
ber of independent real components down to ten. By contrast, the Weyl curvature can be represented by a
16-dimensional fully symmetric four index spinor ΨABC D = Ψ(ABC D), which has five independent complex
components. In the second place, spinors utilize complex numbers which effectively halves the amount of real
components one needs to keep track of. For example, the 40 real components of the Christoffel symbol Γc

ab
needed to describe the covariant derivative (of which only 24 are independent) get compacted down to just 12
complex spin coefficients.

It has been 110 years since Cartan introduced spinors, 95 years since Dirac used them to formulate his equation
describing spin 1/2 particles, and 60 years since Penrose introduced spinors to General Relativity [Penrose, 1965].
Despite having been around for quite a long time1 they are still relatively unknown, and rarely see use in gen-
eral relativity. One of the reasons for this is that compared to vectors, the geometric interpretation of spinors
is not quite as straightforward. At the same time, pure mathematicians, who are generally less discouraged by
abstract concepts, prefer tensors in most cases since they work in any dimension.2 For these reasons, the first
chapter is dedicated to developing a literal picture of a spinor, along with all the tools necessary to understand
the later chapters. I have tried to strike a balance between rigour and informal discussions, interrupting dry
pieces of exposition with intuition, examples, or clarifying remarks.

2.1 The null flag

To start off this chapter, we will first develop a geometric picture of the simplest type of spinor, a spin-vector.
Spinors are perfectly valid geometric objects in their own right, but average minds like my own are mostly
equiped to think visually in terms of vectors and tensors. This is for good reasons, since virtually all objects one
deals with in their everyday experience are tensorial in nature. Fortunately, spin-vectors may be understood
almost entirely, up to a single sign ambiguity, by a flag.

Let us start by examing the following useful coincidence. Let V⃗ = (t , x, y, z) be a Minkowski vector. We may
represent V⃗ as a matrix

V⃗ = 1p
2

(
t − z x + i y

x − i y t + z

)
. (2.1.1)

The Minkowski norm is conveniently given by the determinant of this matrix

|V⃗ |2 = 2detV⃗ = t 2 −x2 − y2 − z2. (2.1.2)

Formally, we are using a basis of 2×2 hermitian matrices for Minkowski vectors to translate between the vector
and matrix representation.

V A A′ =V µσ A A′
µ , (2.1.3)

1In fact, spinors pre-date GR by two years.
2The concept of a spinor may also be generalised to n dimensions, but the dimension of spin vectors increases exponentially in n, and

therefore they are not nearly as useful in higher dimensions.
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where, in this particular example, the µ= 0 component of σ A A′
µ is the identity matrix, and the µ= 1,2,3 com-

ponents are the Pauli-matrices.
We can write the Minkowski metric as a tensor3, acting on the row and column vectors of the matrix V A A′

:

2detV A A′ = 2(V 00′V 11′ −V 01′V 10′ ) = 2ϵAB V A0′V B1′

= ϵABϵA′B ′V A A′
V BB ′

, (2.1.4)

where ϵ01 =−ϵ10 = 1 and ϵ00 = ϵ11 = 0.

The row and column vectors of the matrix V A A′
belong to a two-dimensional complex vector spaces S and S̄,

which are called spin spaces. Elements of these vector space are called spin vectors.

The reason we need two spin spaces, S and S̄, is that in order to be able to speak of real vectors V A A′ =V A A′ , we

need a notion of complex conjugation on S. Suppose κA ∈ S, then if κA were also an element of S there would

be a notion of a real spinor κA = κA . However, the real and imaginary parts of the spinor should be on equal
footing since a Lorentz transformation may mix the two. For example, a rotation about the z-axis will clearly

mix the real and imaginary parts of x + i y . For this reason, κA = κ̄A′
belongs to a different vector space, whose

elements are indicated by a primed indices A′.

The tensor ϵAB , being anti-symmetric, does not define a metric on spin space. However, since

VA A′V A A′ = g AB A′B ′V A A′
V BB ′ = ϵABϵA′B ′V A A′

V BB ′
, (2.1.5)

and similarly VA A′V A A′ = g AB A′B ′
VA A′VBB ′ = ϵABϵA′B ′

VA A′VBB ′ , (2.1.6)

ϵAB raises and lowers spinor indices

ϵABκ
A := κB and ϵABκB := κA . (2.1.7)

Remark. Of course, since VA A′V A A′ = V A A′
VA A′ we may have also chosen to raise or lower indices with −ϵAB

or −ϵAB . In spinor terms, this can be understood as a consequence of the fact that g AB A′B ′ = ϵABϵA′B ′ =
(−ϵAB )(−ϵA′B ′ ).

Remark. Note that, because ϵAB is anti-symmetric, κAλ
A ̸= κAλA , but instead κAλ

A =−κAλA . When contract-
ing spinor indices, one should proceed with caution to take into account possible factors of −1.

Let us finally build a geometric picture of a spinor. The simplest kind of vector one can build from a spin-
vector is a null vector:

The spinor κA corresponds to a unique null vector u A A′ = κAκA = κAκ̄A′
.

u A A′
is real since u A A′ = κAκ̄A′ = κ̄A′

κA = κAκ̄A′ = u A A′
, and null since uA A′u A A′ = κAκ̄A′κAκ̄A′ = |κAκ

A |2 = 0.
Put differently, the determinant of a matrix u A A′

which is the outer product of two spin-vectors u A A′ = κAκ̄A′
is

always zero.

Conversely, a null vector u A A′
can always be expressed as the product of two spinors u A A′ = κAλA′

, but not
always of a product of the form u A A′ = κAκ̄A′

. To see this, consider two null vectors u A A′ = κAκ̄A′
and v A A′ =

λAλ̄A′
. Because uA A′v A A′ = κAκ̄A′λAλ̄A′ = |κAλ

A |2 > 0, u A A′
and v A A′

are either both future-null or both past-
null. Hence, all null vectors of the form κAκ̄A′

are either future-null or past-null. We can use this fact to define
future- and past-causal vectors without reference to any particular time orientation vector field:

Definition 1. A vector t A A′
is future-causal if and only if t A A′

κAκ̄A′ ≥ 0 for all κA . t A A′
is past-causal if and only

if t A A′
κAκ̄A′ ≤ 0 for all κA .

3Note that this is not a tensor on the space of Minkowski vectors. The determinant is a map that acts multilinearly on the rows and
columns of the matrix.
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All null vectors u A A′
can be written as u A A′ =±κAκ̄A′

for some κA , where the sign is positive if u A A′
is future-

null and negative if u A A′
is past-null. Any spinor that is a phase multiple of κA determines the same null vector,

since e iϕκAe iϕκA = e iϕe−iϕκAκA = κAκ̄A′
. Hence,

A null vector u A A′
determines a spinor κA uniquely up to a phase: u A A′ ↔ e iϕκA .

The phase can be given a geometric meaning. Let pab be a bivector constructed from κA as follows:

p AB A′B ′ = κAκBϵA′B ′ + κ̄A′ κ̄B ′ϵAB . (2.1.8)

That the form pab is a bivector can be seen by writing ϵAB = κAλB −λAκB for some λA satisfying κAλ
A = 1. We

can then write pab as

p AB A′B ′ = κAκB (κ̄A′ λ̄B ′ − λ̄A′ κ̄B ′ )+ κ̄A′ κ̄B ′ (κAλB −λAκB ) (2.1.9)

= κAκ̄A′ (κB λ̄B ′ +λB κ̄B ′ )− (κAλ̄A′ +λAκ̄A′ )κB κ̄B ′ = uA A′wBB ′ −w A A′uBB ′ , (2.1.10)

where w A A′ = κAλ̄A′ +λAκ̄A′ is a real (space-like4) vector. wa is determined uniquely up to a multiple of ua ,
since pab = 2u[a wb] = 2u[a(wb]+r ub]) (or, put spinorially, since κA(λA +rκA) = κAλ

A). The bivector pab deter-
mines a unique null half plane spanned by r ua + swa , where r ∈ R and s ∈ R>0. Conversely, the null half plane
determines the spinor κA up to a sign, since

p AB A′B ′ = κAκBϵA′B ′ + κ̄A′ κ̄B ′ϵAB = (−κA)(−κB )ϵA′B ′ + (−κ̄A′ )(−κ̄B ′ )ϵAB . (2.1.11)

This concludes our geometric reconstruction of a spin-vector.

A spinor up to a sign ±κA corresponds uniquely to a null flag {ua , pab}. The flag pole of κA is given by the null
vector u A A′ = κAκ̄A′

, and the flag lies in the plane spanned by the vectors ua and w a determined by the bivector
pab = 2u[a wb]. The flag points in the spatial direction w a . See figure 1.

Figure 1: The null flag of a spinor κA with flag pole κA κ̄A′ = u A A′
and flag plane κAκB ϵA′B ′ + κ̄A′ κ̄B ′ϵAB = 2u[a wb].

Remark. We may also asign a ‘shrew sense’ to the null flag by drawing the flag pole as a corkskrew rotating
clockwise when the flag represents a spinor κA , and counter clockwise when the flag represents a complex
conjugate spinor κ̄A′

, since their flag planes rotate in the opposite direction under a phase change κA 7→ e iϕκA ,
κ̄A′ 7→ e−iϕκ̄A′

.

4w A A′ w A A′ = (κA λ̄A′ +λA κ̄A′ )(κA λ̄A′ +λA κ̄A′
) = κA λ̄A′λA κ̄A′ +λA κ̄A′κA λ̄A′ =−2.
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The famous fact that it takes two full rotations to return a spinor to its original state manifests itself as
the fact that one full rotation of the spinor κA rotates the flag by 4π about the flagpole, because a rotation
κA 7→ e iϕκA , rotates

p AB A′B ′ 7→ (e iϕκA)(e iϕκB )ϵA′B ′ + (e−iϕκ̄A′ )(e−iϕκ̄B ′ )ϵAB = e2iϕκAκBϵA′B ′ +e−2iϕκ̄A′ κ̄B ′ϵAB , (2.1.12)

so that a full continuous rotation of the flag through an angle 2π about the flagpole changes the phase of the
spinor κA by π.

2.2 Spinor algebra

Because a spinor index can only take on two values, any spinor that is simultaneously anti-symmetric in three
or more indices must vanish; φ[ABC ]D...Z = 0 for any spinor φA...Z . As a special case of particular interest, con-
sider

ϵ[ABϵC ]D = 0, (2.2.1)

so that ϵ C
A ϵ D

B −ϵ C
B ϵ D

A = ϵABϵ
C D . (2.2.2)

We can use this identity (2.2.2) to decompose any spinor into products of fully symmetric spinors and ϵAB . As
a concrete example, consider an arbitrary two-index spinor φAB , which can be written as

φAB =φ(AB) +φ[AB ]

=φ(AB) + 1
2 (ϵ C

A ϵ D
B −ϵ C

B ϵ D
A )φC D =φ(AB) + 1

2ϵABϵ
C DφC D

=φ(AB) + 1
2φ

C
C ϵAB . (2.2.3)

Of course, this procedure also works with spinors with both unprimed and primed indices. Let us consider
another important example by performing this decomposition on a skew tensor Fab = F[ab]:

FAB A′B ′ = F(AB)A′B ′ + 1
2 F C

C A′B ′ϵAB

= F(AB)(A′B ′) + 1
2 F C ′

(AB)C ′ ϵA′B ′ + 1
2 F C

C (A′B ′)ϵAB + 1
2 F C C ′

C C ′ ϵABϵA′B ′ . (2.2.4)

Since Fab = F[ab] is skew,

F(AB)A′B ′ =−F(B A)B ′A′ =−F(AB)B ′A′ so that F(AB)A′B ′ = F(AB)[A′B ′], (2.2.5a)

and similarly F[AB ]A′B ′ =−F[B A]B ′A′ = F[AB ]B ′A′ so that F[AB ]A′B ′ = F[AB ](A′B ′). (2.2.5b)

It follows that F(AB)(A′B ′) = 0 and F C C ′
C C ′ = FC DC ′D ′ϵC DϵC ′D ′ = F[C D][C ′D ′]ϵ

C DϵC ′D ′ = 0, so that

FAB A′B ′ =φABϵA′B ′ +ψA′B ′ϵAB , (2.2.6)

where φAB = φ(AB) = 1
2 F C ′

(AB)C ′ and ψA′B ′ = 1
2 F C

C (A′B ′). If Fab is a real tensor, ψA′B ′ = φ̄A′B ′ , so that any real
two-form is equivalent to a symmetric spinor φAB =φ(AB).

2.2.1 Decomposition of the Riemann tensor

As a final example of the decomposition procedure, let us apply what we have just learned to the Riemann
tensor Rabcd . Using the anti-symmetry in the first two indices,

RABC D A′B ′C ′D ′ = 1
2 R E ′

(AB)C DE ′ C ′D ′ϵA′B ′ + 1
2 R E

E C D A′B ′C ′D ′ϵAB . (2.2.7)

Using anti-symmetry in the last two indices,

RABC D A′B ′C ′D ′ = X ABC DϵA′B ′ϵC ′D ′ +ΦABC ′D ′ϵA′B ′ϵC D + Φ̄A′B ′C DϵABϵC ′D ′ + X̄ A′B ′C ′D ′ϵABϵC D , (2.2.8)
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where X ABC D = X(AB)(C D) := 1
4 R A′ B ′

ABC D A′ B ′ and ΦAB A′B ′ =Φ(AB)(A′B ′) := 1
4 R C C ′

ABC C ′ A′B ′ . Given skew symme-
tries Rabcd = R[ab]cd = Rab[cd ], the algebraic Bianchi identity R[abc]d = 0 is equivalent to the interchange sym-
metry Rabcd = Rcd ab , which implies that X ABC D = XC D AB and ΦAB A′B ′ = Φ̄A′B ′AB . Hence, Φab corresponds to a
real tensor, which is symmetric and trace-free. The symmetries of X ABC D imply that X C

C AB = X C
C [AB ] , so that

X C
C AB = 3ΛϵAB where5 Λ := 1

6 X AB
AB is real. Finally, we can isolate the fully symmetric part of X ABC D :

X ABC D = 1
3 (X ABC D +X AC DB +X ADBC )+ 1

3 (X ABC D −X AC BD )+ 1
3 (X ABC D −X ADC B )

= X(ABC D) + 1
3 X E

AE DϵBC + 1
3 X E

AEC ϵBD

=ΨABC D +Λ(ϵAC ϵBD +ϵADϵBC ), (2.2.9)

where we definedΨABC D := X(ABC D).

The Ricci tensor Rab := R c
acb is given by

RAB A′B ′ = X C
AC B ϵA′B ′ +2ΦAB A′A′ + X̄ C ′

A′C ′B ′ ϵAB

= 6ΛϵABϵA′B ′ +2ΦAB A′A′ . (2.2.10)

It follows thatΛ 1
24 R where R is the Ricci scalar. Summarizing, we find that

RABC D A′B ′C ′D ′ =ΨABC DϵA′B ′ϵC ′D ′ + Ψ̄A′B ′C ′D ′ϵABϵC D +ΦABC ′D ′ϵA′B ′ϵC D + Φ̄A′B ′C DϵABϵC ′D ′

+2Λ(ϵAC ϵBDϵA′C ′ϵB ′D ′ −ϵADϵBC ϵA′D ′ϵB ′C ′ ), (2.2.11)

where we used the ϵ identity (2.2.2) to simplify theΛ part.

2.2.2 Canonical decomposition of fully symmetric spinors

There is a way to further decompose fully symmetric spinors into (one index) spinors, which is made possible
by the fact that spinors are two-dimensional objects. This further simplification will later allow us to classify
fully symmetric spinors (and, in fact, any spinor although the general scheme is much more complicated).

Theorem 1. Let φA...Z =φ(A...Z ) be a fully symmetric spinor. Then there exist a set αA ,βB , ...,λZ which is unique
up to proportionality, so that φA...Z =α(AβB ...λZ ).

Definition 2. The decomposition φA...Z = α(AβB ...λZ ) of φA...Z is called its canonical decomposition. The
spinors αA ,βA , ...,λA are called principle spinors of φA...Z . The flag pole directions of αA ,βA , ...,λA are called
the principle null directions of φA...Z .

Before we can prove theorem 1, we will have to develop a bit of machinery, starting with the following useful
lemma:

Lemma 1. Let Ta...z = T(a...z) be a fully symmetric tensor. Then Ta...z is determined by the function T (X a) =
Ta...z X a ...X z .

Especially in the final chapter, this lemma will prove to be quite useful since ‘diagonal’ terms Aab Z a Z b of a
symmetric bilinear form Aab = A(ab) may in some cases be a lot simpler than ‘off-diagonal’ terms Aab X aY b .

Proof. We will first show that T (X a) = 0 for all X a if and only if Ta...z = 0. Write X a = Y a +λZ a . Then, if Ta...z

has n indices,

T (X a) = Ta...z Y a ...Y z +nλTab..z Z aY b ...Y z + ...+λnTa...z Z a ...Z z . (2.2.12)

T (X a) vanishes if and only if each of the coefficients Ta...z Y a ...Y z ,Tab..z Z aY b ...Y z , ...,Ta...z Z a ...Z z vanish. We
can repeat the same steps on Tab..z Z aY b ...Y z , writing Y a = U a +µV a to find that Tabc...z Z aU bV c ...V z = 0,
etcetera. Hence, T (X a) = 0 for all X a if and only if Ta...z = 0. To complete the proof, notice that function
(T −T ′)(X a) = 0 if and only if Ta...z = T ′

a...z , so that T (X a) determines Ta...z uniquely.

5The numerical factor is chosen for later convenience.
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In the special case of two indices, proposition 1 follows from the more well-known polarization identity,
which expresses the value of TabY a Z b explicitly in terms of the function T (X a).

Proposition 1. (The polarization identity.) Let Tab = T(ab) be a symmetric tensor. Then

Tab X aY b = 1
4 (Tab(X a +Y a)(X b +Y b)−Tab(X a −Y a)(X b −Y b))

= 1
4 (T (X a +Y a)−T (X a −Y a)). (2.2.13)

In fact, a generalised polarization identity may be derived, expressing Ta...z Y a ...Z a in terms of the function
T (X a). We will be implicitly using lemma 1 throughout this work. For our immediate purposes, we may use it
to finally prove theorem 1:

Proof of theorem 1. Let ξA =ωA + zπA be an arbitrary spinor, where ωAπ
A ̸= 0. Then φA...Z ξ

A ...ξZ is a polyno-
mial in z which, by the fundamental theorem of algebra, may be refactored by its roots:

φA...Z ξ
A ...ξZ =φA...Zω

A ...ωZ +nzφAB..Zπ
AωB ...ωB + ...+ znφA...Z

= (α0 +α1z)(β0 +β1z)...(λ0 +λ1z). (2.2.14)

The factors are unique up to proportionality and re-ordering. Define αA =α0(πAω
A)−1πA +α1(ωAπ

A)−1ωA , so
that

αAξ
A = (α0(πAω

A)−1πA +α1(ωAπ
A)−1ωA)ξA =α0 +α1z. (2.2.15)

Define βA , ...,λA in a similar manner. Then φA...Z ξ
A ...ξZ =αAβB ...λZ ξ

AξB ...ξZ . By proposition 1,

φA...Z =α(AβB ...λZ ). (2.2.16)

2.2.3 Classification of fully symmetric spinors

Theorem 1 provides a wonderfully simple classification scheme for fully symmetric spinors (and tensors equiv-
alent to fully symmetric spinors). These spinors are defined, up to scale, by their principle null directions
(PNDs). The classes in the classification scheme correspond to the pattern of coincidences of these PNDs. At
the end of this chapter we will explore this classification scheme applied to the Weyl curvature, which is of
particular interest to us, because it will turn out to have a rather satisfying geometric interpretation.

Definition 3. A fully symmetric spinor φA...Z is called algebraically special if two or more of its principle null
directions coincide. A principle null direction ξA is called an n-fold principle null direction if φA1...An B...Z =
ξ(A1 ...ξAnβB ...λZ ). φA...Z is called null if all of its principle null directions coincide.

Notice that ξA is an n-fold principle null direction of φA...Z iff ξAnξB ...ξZφA1...An−1 An B...Z = 0. In particlar,
φA...Z is null iff φA...Z ξ

Z = 0.

Example 1. (Classification of the electromagnetic field strength.) Because the Maxwell spinorφAB only has two
indices, it is algebraically special iff it is null. We can identify three distinct classes:

Type I φAB =α(AβB). This is the generic case. φAB is not algebraically special.

Type N φAB = ξAξB . In this case, the field strength tensor is simple: Fab = v[a wb] for some null vector v a and
space-like vector w a , as can be seen from equation (2.1.8) and the discussion thereafter. v a is tangent to
the (unique) principle null direction iff vbFab = 0.

Type O φAB = 0.

The naming convention for the classes is as follows: a vanishing spinor φA...Z = 0 is type O. A null spinor
φA...Z = ξ(A ...ξZ ) is type N (the N stands for Null). If the spinor has a single repeating principle null direction with
multiplicity n, its class will be denoted by the roman numeral n, for example φA...Z = ξ(AξBξCβD ...λZ ) where
βA , ...,λA are all distinct null directions is type III. Spinors of valence four or more may have multiple distinct
repeated principle null directions, for example ψABC D =α(AαBβCβD) is type D (the D stands for Double).
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2.3 What is a spinor, physically?

In the previous section, we have seen that spinors (and tensors) can usefully be decomposed into fully sym-
metric spinors. If these spinors have an even amount of (combined unprimed and primed) indices, these cor-
responds to tensors. For example, from a fully symmetric even-indexed spinor having only one type of index
(unprimed or primed), we can construct the tensor Pab...y z = φAB...Y Z ϵA′B ′ ...ϵY ′Z ′ which is trace-less, and has
algebraic ‘Bianchi’ symmetries: anti-symmetrization over any three indices yields zero; Pa...[i j k]...z = 0.

I would, at this point, like to stress that spinors are not merely a useful tool only to be used to simplify algebraic
manipulations of tensor expressions. Spinors may also be used instead of tensors, and interpreted directly
without relying on their correspondence to tensors. In some situations, a purely spinorial approach is more
appropriate. The purpose of this section is to introduce this more direct geometric interpretation of spinors, as
applied to two-index spinors (which includes the electromagnetic spinor, which is an instructive example). In
a way, this section is a ‘warm-up’, so that at the end of this chapter we may apply many of the ideas put forth
here to the Weyl spinorΨABC D .

To start with, recall that symmetric spinors φAB = φ(AB) are determined by their fully symmetric contractions
φABκ

AκB . The spinor κA corresponds to a null flag, and conversely a null flag corresponds to two spinors, ±κA .
Notice that φABκ

AκB =φAB (−κA)(−κB ), so that

The null flag of κA is sufficient to determine φABκ
AκB .

This should not come as a surprise, since the spinor φAB is equivalent to an anti-symmetric tensor Fab = F[ab],
which does not need spinorial elements to exist. We may therefore characterise two-index symmetric spinors
in the following way:

φAB maps null flags to complex numbers,

φAB : {ua , pab} 7→C. (2.3.1)

In the special case thatφAB = ξAξB is null, this mapping is linear andφAB may actually be represented by a null
flag.

Let us now consider the physical significance of the Maxwell spinor φAB . Consider φABκ
AκB , and choose

κA = o A to be one of our basis spinors. The flag plane of o A is given by pab = la(mb + m̄b)− (ma + m̄a)lb . In a
Cartesian basis, l a = 1p

2
(t a−za), and pab = 2

p
2l[a xb] so that the flag pole of o A points in the z-direction and the

flag plane points in the x-direction. From the definition of φAB = 1
2 FAB A′B ′ϵA′B ′

we find that φ0 = φAB o AoB =
1
2 Fab l amb = 1

2 (Ex − i Ey −By − i Bx ). Define the electromagnetic field vector as the complex three-vector E− i B.
Then, |φAB o AoB | tells us what the electromagnetic field strength is in the spatial direction orthogonal to the
flag pole direction l a . −argφAB o AoB tells us the angle the electromagnetic field makes with the flag plane pab

in the space-like two-plane perpendicular to the flag pole direction. The basis we chose was arbitrary so we
can summarise the important points with the following proposition:

Proposition 2. LetφAB be the Maxwell spinor, and let κA be arbitrary. LetΠ be the space-like two-plane perpen-
dicular to the flag pole κAκ̄A′

. Let C := E− i B be the electromagnetic three-vector tangent to Π, and let x be the
flag plane direction tangent toΠ. Then |φABκ

AκB | = 1
2 |C| and −argφAB o AoB = arccos x·E

|x||E| . See figure 2.

Proof. To prove the last statement, first perform a boost such that B = 0. Then, −argφABκ
AκB gives the angle

between the electric vector E and the flag plane direction x of κA . Lorentz transformations are conformal on
the celestial sphere (see definition 4), hence this angle is invariant.

Definition 4. Consider a fully symmetric spinor φAB at some point p. Consider the celestial sphere S+, the
space of all future-null directions, at p. Given any null direction κA , φABκ

AκB defines a vector6 tangent to S+.

6The components of this vector are given by the real and imaginary parts of φABκ
AκB ∈C.
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Figure 2: The electromagnetic spinor φABκ
AκB along a null direction κA yields the direction of the electric field tangent to

the celestial sphere S+.

The vector field on S+ that arises as one varies κA over the whole of S+ is called the fingerprint of φAB . The
fingerprint of the Maxwell spinor yields, at every point, the direction of the electromagnetic field tangent to S+.

We may similarly describe higher valence fully symmetric spinors using a fingerprint. For example, a four-
index spinorφABC D =φ(ABC D) defines a line field on S+, sinceφABC Dκ

AκBκCκD =φABC D (−κA)(−κB )(−κC )(−κD ) =
φABC D (±iκA)(±iκB )(±iκC )(±iκD ). The spinors ±κA and ±iκA have opposite flag planes.

2.4 Covariant differentiation of spinors

The final ingredient we need in order to study geometry using spinors is a spinor covariant derivative. For-
tunately, the Levi-Civita connection ∇a can canonically extended to spinor fields by demanding that ∇a is
compatible with ϵAB , so that ∇aϵBC = 0. Intuitively, the fact that ∇a may easily be extended can be understood
from the fact that spinors are, up to a sign, equivalent to ordinary tensorial objects. ∇a contains information
about differential properties of fields, and the sign ambiguity does not cause any trouble.

A covariant, purely spinorial treatment of differentiation and curvature would take us too far afield and is not
relevant for our immediate purposes. Instead, we will derive most of the relevant expressions from the corre-
sponding tensorial expressions.

2.4.1 Spinor curvature

The trick to finding the commutator ∆ab :=∇a∇b −∇b∇a as applied to a spinor κA , is to consider the bivector
kab = κAκBϵA′B ′

. From the ordinary Riemannian definition of the curvature tensor Rabcd we find that

∆abkcd = R c
abe ked +R d

abe kce . (2.4.1)

Using the Leibniz rule on the left-hand side, and using the curvature spinors (2.2.11) on the right-hand side we
find that

κDϵC ′D ′
∆abκ

C +κC ϵC ′D ′
∆abκ

D = X C
ABE κDκEϵA′B ′ϵC ′D ′ +Φ C

E A′B ′κ
DκEϵABϵ

C ′D ′

+X D
ABE κCκEϵA′B ′ϵC ′D ′ +Φ D

E A′B ′κ
CκEϵABϵ

C ′D ′
, (2.4.2)
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so that

κ(C∆AB A′B ′κD) = (X (C
ABE ϵA′B ′ +Φ (C

E A′B ′ϵAB )κD)κE . (2.4.3)

Note that φ(A
C ...Mψ

B)
N ...Z = 0 iff φA

C ...M = 0 or ψB
N ...Z = 0, hence, since κA is arbitrary,

∆AB A′B ′κC = (X C
ABE ϵA′B ′ +Φ C

E A′B ′ϵAB )κE . (2.4.4)

Finally, let us decompose ∆ab into

∆AB A′B ′ = ϵA′B ′∇C ′(A∇ C ′
B) +ϵAB∇C (A′∇ C ′

B ′)

:= ϵA′B ′2AB +ϵAB2A′B ′ , (2.4.5)

which combined with our expression for ∆abκ
C yields

2ABκ
C = X C

ABE κE =Ψ C
ABE κE +2Λκ(Aϵ

C
B) , (2.4.6a)

2A′B ′κC =Φ C
E A′B ′κ

E . (2.4.6b)

2.4.2 The spinor form of the Bianchi identities and Einstein’s equations

The spinor form of the Bianchi identities may be found in a straightforward manner by substituting (2.2.11)
into the tensorial expression ∇[aRbc]de = 0. It is, perhaps, slightly more instructive to re-derive it using the
commutators (2.4.6) we just found. Starting from the ϵ identity (2.2.2) we find

0 = ϵABϵ
D

C −ϵAC ϵ
D

B +ϵBC ϵ
D

A

= 2ϵA(Bϵ
D

C ) −2ϵAC ϵ
D

B +ϵBC ϵ
D

A , (2.4.7)

so that ϵA(Bϵ
D

C ) = ϵAC ϵ
D

B − 1
2ϵBC ϵ

D
A , (2.4.8)

from which it follows (by expanding all the terms using the identity (2.4.8) we just derived) that

ϵA(Bϵ C )
D ϵ A′

D ′ ϵ
B ′C ′ −ϵ A

D ϵBC ϵA′(B ′
ϵ C ′)

D ′ −ϵABϵ C
D ϵ (A′

D ′ ϵB ′)C ′ +ϵ (A
D ϵB)C ϵA′B ′

ϵ C ′
D ′ = 0. (2.4.9)

Applying this to ∇A A′∇BB ′∇CC ′κE , we find, after a lengthy but straightforward computation, that

(∇B
D ′ X

E
BDC −∇B ′

D Φ
E

C B ′D ′ )κ
C = 0, (2.4.10)

but since κA is arbitrary,

∇D
A′ X ABC D =∇B ′

A ΦBC A′B ′ . (2.4.11)

The Bianchi identities in spinor form split naturally into two parts, a part symmetric in BC and skew in BC :

∇D
A′ΨABC D =∇B ′

(AΦBC )A′B ′ , (2.4.12a)

∇BB ′
ΦAB A′B ′ +3∇A A′Λ= 0. (2.4.12b)

The second of these (2.4.12b) is the spinor form of the contracted Bianchi identities ∇bGab = 0 where
Gab = Rab − 1

2 Rgab = 2Φab −6Λgab is the Einstein tensor (i.e. the trace-reversed Ricci tensor). Similarly, Ein-
stein’s equations split into a trace part and a trace-free part:

Φab = 4πG(Tab − 1
4 T gab), (2.4.13a)

Λ= 1
3πGT + 1

6λ, (2.4.13b)
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where λ is the cosmological constant. The contracted Bianchi identities imply local conservation of energy
∇bT ab = 0, while the remaining part (2.4.12a) implies

∇D
A′ΨABC D = 4πG∇B ′

(ATBC )A′B ′ . (2.4.14)

In vacuum, the curvature is encoded entirely in a single four-index fully symmetric spinor ΨABC D . Comparing
the Bianchi identities with Maxwell’s equations (in Gaussian units)

∇B
A′φAB = 2π j A A′ , (2.4.15)

we see thatΨABC D satisfies a wave equation similar to the electromagnetic fieldφAB , so that in Einstein’s theory
of General Relativity,ΨABC D plays the role of the gravitational field.

2.5 The GHP formalism

Up until this point, we have almost entirely avoided explicit coordinate descriptions. There are distinct ad-
vantages and disadvantages to using covariant expressions and coordinates. Unless there exist four natural
coordinates, there will be a considerable amount of freedom in choosing coordinates. A covariant approach
avoids this problem altogether, and carries immediate geometric significance as is. On the other hand, scalar
quantities are much easier to work with. As an added bonus, spinors employ complex numbers, and so a coor-
dinate or frame approach effectively cuts the number of scalar quantities in half.

In this section we will develop the spin-coefficient formalism. This approach assumes a spin frame {o A , ιA}
spanning spin space in every point. The formalism is most advantageous when a space-time singles out two
null directions. In that case, only two gauge degrees of freedom are left, corresponding to the Lorentz trans-
formations that leave these two null directions invariant7. A second important use-case for spin coefficients is
provided when there may be only one null direction singled out, when these null directions are geodesic. In
this case, some of the spin coefficients may be given a precise geometric meaning.

Let us start by introducing the spin frame {o A , ιA}, satisfying oAι
A = 1 so that ϵAB = oAιB − ιAoB . The metric

can we written in terms of our spin frame as

g AB A′B ′ = ϵABϵA′B ′

= (oAιB − ιAoB )(oA′ ιB ′ − ιA′oB ′ )

= oAoA′ ιB ιB ′ −oAιA′ ιB oB ′ − ιAoA′oB ιB ′ + ιAιA′oB oB ′ . (2.5.1)

There is a canonical null-tetrad associated with the spin frame, whose members are given by

l A A′ = o Ao A′
, (2.5.2a)

m A A′ = o AιA
′
, (2.5.2b)

m̄ A A′ = ιAo A′
, (2.5.2c)

n A A′ = ιAιA′
, (2.5.2d)

satisfying la l a = mama = m̄am̄a = nana = 0 and lana =−mam̄a = 1, and which span the tangent space at any
point; gab = 2l[anb] −2m[am̄b]. The spin connection is given by sixteen complex numbers

κ ϵ γ′ τ′
ρ α β′ σ′
σ β α′ ρ′
τ γ ϵ′ κ′

=
o ADoA ιADoA −o ADιA −ιADιA
o AδoA ιAδoA −o AδιA −ιAδιA
o Aδ′oA ιAδ′oA −o Aδ′ιA −ιAδ′ιA
o AD ′oA ιAD ′oA −o AD ′ιA −ιAD ′ιA

(2.5.3)

7That there are precisely two can be seen as follows: perform, first, a boost such that the two null directions lie in opposite directions on
the celectial sphere (say, the ±z-directions). Then, the Lorentz transformations preserving these null directions are boosts along the null
directions (i.e. in the z-direction) and rotations about the null directions (i.e. about the z-axis).
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where

D =∇00′ = o Ao A′∇A A′ = l a∇a (2.5.4a)

δ=∇01′ = o AιA
′∇A A′ = ma∇a (2.5.4b)

δ′ =∇10′ = ιAo A′∇A A′ = m̄a∇a (2.5.4c)

D ′ =∇11′ = ιAιA
′∇A A′ = na∇a . (2.5.4d)

Note that ϵ= ιADoA = D(ιAoA)−o ADιA = D(1)+γ′ = γ′. Similarly, α= β′, β=α′, and γ= ϵ′ so that only twelve
of the spin coefficients are independent. The prime ’ operation changes o A 7→ i ιA and ιA 7→ i o A . This preserves
oAι

A . Priming achieves incredible notational economy, since it, again, effectively almost halves the amount of
equations to be considered. The other half being obtained by priming the first half.

Remark. All of the spin coefficients can also be expressed in terms of the null tetrad {l a ,ma ,m̄a ,na}. For ex-
ample, maDla = o AιA

′
DoAoA′ =�

��o AoAι
A′

DoA′ + ιA′
oA′o ADoA = κ. This also constitutes a proof of the assertion

we made earlier, that the spin connection may be constructed canonically from the Levi-Civita connection.

2.5.1 The compacted spin coefficient formalism

As mentioned before, the spin coefficient formalism is best used when the space-time has two preferred null
directions. The gauge transformations that leave the flag pole directions of o A and ιA invariant are rather
simple, being given by o A 7→ λo A and ιA 7→ λ−1ιA . We will assign a weight {p, q} to any tensor η defined rel-
ative to the tetrad, if they transform according to η 7→ λp λ̄qη. For example, the Riemann tensor Rabcd has
weight {p, q} = {0,0}, since it is independent of our spin frame. The scalar Ψ0 :=ΨABC D o AoB oC oD has weight
{p, q} = {4,0}. The spin coefficients are not tensors, and can therefore not be expected to have a well defined
weight. Nevertheless, some of them do. For example,

κ= o ADoA 7→λ2λ̄o AD(λoA) =λ3λ̄o ADoA +λ2λ̄���o AoADλ (2.5.5)

=λ3λ̄κ, (2.5.6)

so that κ has weight {p, q} = {3,1}. The full list of spin coefficients having a well-defined weight are

κ with weight {3,1}, (2.5.7a)

σ with weight {3,−1}, (2.5.7b)

ρ with weight {1,1}, (2.5.7c)

τ with weight {1,−1}, (2.5.7d)

and their primed variants. Priming changes the weights according to {p, q}′ = {−p,−q} and complex conjugat-
ing interchanges {p, q} = {q, p}. For example, κ′ has weight {−3,−1} and κ̄ has weight {1,3}.

The remaining spin coefficients do not have a well defined weight. For example,

ϵ= ιADoA 7→ λ̄ιAD(λoA) =λλ̄ιADoA + λ̄ιAoADλ

=λλ̄ϵ+ λ̄Dλ. (2.5.8)

Another problem is that ∇a acting on a weighted quantity does, in general, not produce another weighted
quantity. There a nice workaround to both of these problems, however. Notice that the combination D−pϵ−q ϵ̄
acting on a weighted quantity always produces another weighted quantity, since, if η has weight {p, q}

(D −pϵ−q ϵ̄)η 7→ (λλ̄D −pλλ̄ϵ−pλ̄Dλ−qλλ̄ϵ̄−qλDλ̄)λp λ̄qη

=λp+1λq+1(D −pϵ−q ϵ̄)η+ (λλ̄D(λp λ̄q )−pλ̄Dλ−qλDλ̄)η

=λp+1λq+1(D −pϵ−q ϵ̄)η. (2.5.9)
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We define the weighted operators

þ= D −pϵ−q ϵ̄ with weight {1,1} (2.5.10a)

ð = δ−pβ+qβ̄′ with weight {1,−1} (2.5.10b)

ð′ = δ+pβ′−qβ̄ with weight {−1,1} (2.5.10c)

þ′ = D ′+pϵ+q ϵ̄ with weight {−1,−1}. (2.5.10d)

Using these weighted operators we further cut down the number of spin coefficients to keep track off by only
considering the eight weighted spin coefficients! The resulting formalism, first developed by Geroch, Held, and
Penrose, is called the compacted spin coefficient formalism, or GHP formalism.

Finally, let us consider the curvature spinors. We define the curvature scalars

Φ00 :=ΦAB A′B ′o AoB o A′
oB ′

Φ01 :=ΦAB A′B ′o AoB o A′
ιB

′
Φ02 :=ΦAB A′B ′o AoB ιA

′
ιB

′

Φ10 :=ΦAB A′B ′o AιB o A′
oB ′

Φ11 :=ΦAB A′B ′o AιB o A′
ιB

′
Φ12 :=ΦAB A′B ′o AιB ιA

′
ιB

′

Φ20 :=ΦAB A′B ′ ιAιB o A′
oB ′

Φ21 :=ΦAB A′B ′ ιAιB o A′
ιB

′
Φ22 :=ΦAB A′B ′ ιAιB ιA

′
ιB

′

Ψ0 :=ΨABC D o AoB oC oD Ψ1 :=ΨABC D o AoB oC ιD Ψ2 :=ΨABC D o AoB ιC ιD

Ψ3 :=ΨABC D o AιB ιC ιD Ψ4 :=ΨABC D ι
AιB ιC ιD

(2.5.11)

The curvature scalars have the following weights

Λ has weight {0,0}, (2.5.12a)

Φr s has weight {2−2r,2−2s}, (2.5.12b)

Ψr has weight {4−2r,0}. (2.5.12c)

Expressions for the curvature spinors in terms of the spin coefficients can be found from the commutators
(2.4.6). For example,

ΨABC D = ϵDE2(ABϵ
E

C ) , (2.5.13)

where ϵ B
A = {oA , ιA} is the spin basis. Naturally, they may also be found from the tensorial expression

2W a X bY c∇[a∇b]Zc = Rabcd W a X bY c Z d , (2.5.14)

by substituting our tetrad vectors for W a , X a ,Y a , Z a . The weighted components of (2.5.14) are

þρ−ð′κ= ρ2 +σσ̄− κ̄τ−τ′κ+Φ00 (2.5.15a)

þσ−ðκ= (ρ+ ρ̄)σ− (τ+ τ̄′)κ+Ψ0 (2.5.15b)

þτ−þ′κ= (τ− τ̄′)ρ+ (τ̄−τ′)σ+Φ1 +Φ01 (2.5.15c)

ðρ−ð′σ= (ρ− ρ̄)τ+ (ρ′− ρ̄′)κ−Ψ1 +Φ01 (2.5.15d)

ðτ−þ′σ=−ρ′σ− σ̄′ρ+τ2 +κκ̄′+Φ02 (2.5.15e)

þ′ρ−ð′τ= ρρ̄′+σσ′−ττ̄−κκ′−Ψ2 −2Λ. (2.5.15f)

Notice, again, the incredible economy of the compacted spin coefficient formalism: only six equations are left
from the initial 256 components!

Not all curvature scalars can be computed this way. The remaining scalars show up in the weighted com-
mutators

þþ′−þ′þ= (τ̄−τ′)ð+ (τ− τ̄′)ð′−p(κκ′−ττ′+Ψ2 +Φ11 −Λ)−q(κ̄κ̄′− τ̄τ̄′+ Ψ̄2 +Φ11 −Λ) (2.5.16a)

þð−ðþ= ρ̄ð+σð′− τ̄′þ−κþ′+p(ρ′κ−τ′σ+Ψ1)−q(σ̄κ̄− ρ̄τ̄′+Φ01) (2.5.16b)

ðð′−ð′ð = (ρ̄′−ρ′)þ+ (ρ− ρ̄)þ′+p(ρρ′−σσ′+Ψ2 −Φ11 −Λ)−q(ρ̄ρ̄′− σ̄σ̄′+ Ψ̄2 −Φ11 −Λ). (2.5.16c)
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2.5.2 Space-like two-surfaces

One important situation where two null directions are singled out is on two-dimensional submanifolds. A
space-like two surface singles out the null directions orthogonal to it, i.e. the outgoing rays perpendicular to
the front and back of the surface at every point. A time-like two-surface singles out the null directions tangent
to the surface.

We will concern ourselves here with space-like surfaces S , since they will be heavily involved in the later
chapters. Having chosen our spin frame {o A , ιA} orthogonal to S , the vectors ma and m̄a are tangent to S .
Let Da be the covariant derivative intrinsic to S , and let V a be a {p, q} = {0,0} vector field in S . Then since
ðma =−σna − σ̄′l a and ðm̄a =−ρ̄na −ρ′l a , the components of DaV b are given by

maðV a , m̄aðV a , mað′V a , m̄að′V a . (2.5.17)

More generally, the components of DaT b...z for any non-weighted tensor field intrinsic to S are given by

ma ...mz ðT a...z , ma ...m̄z ðT a...z , ..., m̄a ...m̄z ð′T a...z . (2.5.18)

We may commute ð and ð′ with ma and m̄a (since ðma and ðm̄a have no components intrinsic to S ), and
since ma and m̄a have weight p =−q = 1 we see that

The operator ð acting on weighted quantities with weights p =−q is intrinsic to S .

The reason for this is that p =−q weighted quantities arise as contractions Ta...i j ...z ma ...mi m̄ j ...m̄z . Which are
components of Ta...z projected onto S .

As a simple consequence, consider the commutator

ðð′−ð′ð = (ρ̄′−ρ′)þ+ (ρ− ρ̄)þ′+p(ρρ′−σσ′+Ψ2 −Φ11 −Λ)−q(ρ̄ρ̄′− σ̄σ̄′+ Ψ̄2 −Φ11 −Λ). (2.5.19)

The operators þ and þ′ involve derivatives away from S , and so we find that

Proposition 3. Suppose the spin frame {o A , ιA} is orthogonal to a space-like two-surface. Then ρ = ρ̄ and ρ′ = ρ̄′.

Furthermore,

Proposition 4. K + K̄ , where

K := ρρ′−σσ′+Ψ2 −Φ11 −Λ, (2.5.20)

is the Gaussian curvature of S .

This can be proven by writing 2D[aDb]V
c = k(had h c

b −hbd S c
a )V d where k is the Gaussian curvature and

hab = 2m[amb] is the metric instrinsic to S , and using the commutator (2.5.19).

2.5.3 Integration on space-like two-surfaces

Here, I will briefly describe how to integrate on space-like two-surfaces and null hypersurfaces in the spin
coefficient formalism. Let us start with space-like two-surfaces. The area form S is given by

S = Xad xa ∧Yad xa

= 1p
2

(ma +m̄a)d xa ∧ ip
2

(m̄a −ma)d xa

= i m̄ambd xa ∧d xb . (2.5.21)
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Note that we are using the same symbol to denote both the surface S and its area element. Integrating a form
Fab over S yields ∫

S
Fabd xa ∧d xb =

∫
FS , (2.5.22)

where F :=−2i Fabmam̄b . Here, S serves a dual purpose: it denotes both the area element and the domain of
integration. If Fab is exact, i.e. if it can be written as Fab =∇[a Ab], we can write F in GHP form as

i F = ð(m̄a Aa)−ð′(ma Aa). (2.5.23)

Set Aa =−Abm̄bma − Abmbm̄a := Ama + Ãm̄a (note that, if Aa is real, Ã = Ā) so that

−i F = ðA−ð′ Ã. (2.5.24)

By Stoke’s theorem, ∫
FS = i

∫
(ðA−ð′ Ã)S

=
∮

Aa (2.5.25)

In particular, if S is closed, ∮
ðAS = 0 =

∮
ð′ ÃS , (2.5.26)

from which we can derive the following useful integration by parts formulae:∮
f ð′gS =−

∮
g ð′ f S

∮
f̄ ðḡS =−

∮
ḡ ð f̄ S , (2.5.27)

where f g is a {p, q} = {1,−1} weighted quantity.

On null hypersurfaces N we again have an obvious null direction, namely the direction na generating N .
Stoke’s theorem on null hypersurfaces in GHP form may be derived in a manner similar to our derivation on
two-surface. It is given by ∫

((þ′−2ρ′)µ− (ð−τ)ν)N =
∮
µS , (2.5.28)

where µ is a {0,0} scalar and ν is a {−2,0} weighted scalar. S = ∂N is assumed to be space-like and orthogonal
to the spin frame. If ∂N contains a non-space-like part, (2.5.28) will also contain a term involving ν on the
right-hand side.
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2.5.4 Spin weighted spherical harmonics

To end this section I will give a very brief summary of some key results involving spin-weighted spherical har-
monics. The theory of spin-weighted spherical harmonics can be derived from straightforward spinorial argu-
ments, but a complete discussion is somewhat lengthy.

Theorem 2. There exists a complete set of {p, q} = {s,−s} weighted functions s Y j ,m on the unit sphere, called spin-
weighted spherical harmonics. The label j takes on the values |s|+n, where n ∈N≥0, and m ∈ {− j ,− j +1, . . . , j }.
When s = 0, there harmonics reproduce the ordinary spherical harmonics. The harmonics are orthogonal:∮

s Y j ,m s Y j ′,m′S =
∮

(−1)m′
s Y j ,m −s Y j ′,−m′S := δ j , j ′δm,m′ . (2.5.29)

The operators ð and ð′ map spin s harmonics to spin s +1 and s −1 harmonics, respectively:

ð s Y j ,m =−
√

1
2 ( j + s +1)( j − s) s+1Y j ,m , (2.5.30a)

ð′
s Y j ,m =

√
1
2 ( j − s +1)( j + s) s−1Y j ,m . (2.5.30b)

Remark. We will sometimes omit the m label on spin-weighted spherical harmonics. For example, the phrase

"The function f consists of −1Y1 harmonics."

Means, more precisely,

"The function f is a linear combination of −1Y1,−1, −1Y1,0 and −1Y1,1 harmonics."

The main application of spherical harmonics is to provide solutions to differential equations on the two-
sphere. The theorem listed above, together with the number of spherical harmonics given the values of s and
j , can be used derive all important results. Virtually all their properties can be read from table 1:

j = 0 1
1
2 2 2
1 ð′

←− 3 3 3 ð−→
3
2 4 4 4 4
2 5 5 5 5 5
5
2 6 6 6 6 6 6
...

...
. . .

s = ·· · − 5
2 −2 − 3

2 −1 − 1
2 0 1

2 1 3
2 2 5

2 · · ·

Table 1: Table of the number of spin-weighted spherical harmonics for each value of s and j . If an entry is empty there are no
harmonics of this type.

First, we see that all non-zero spin-weighted spherical harmonics have |s| ≤ j . Secondly, notice that ð f = 0
where f is a spin s weighted function if and only if f consists of j = s harmonics. We may slightly generalise
this, to obtain:

Proposition 5. Let f be a spin s weighted function satisfying ðn f = 0. Then f must consist of j ≤ s +n − 1
harmonics. In particular, if f has negative spin weight, then ð f = 0 if and only if f = 0.

Thirdly, we can use the fact that ð is injective everywhere except when s = j , and surjective everywhere
except when −1− s = j to derive the following:

Proposition 6. Let f be a spin s weighted function satisfying ðn f = g . Then g satisfies ðr g = 0 where r ≥ n +2s.

From this we can see at a glance how many solutions f equations of the type ðn f = g have. Let us go over a
few examples:
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Example 2. In the following, let s f denote a spin s weighted function.

• ð 0 f = 0 if and only if f is proportional to 0Y0, which is constant. ð2
0 f = 0 if and only if f consists of 0Y0

and 0Y1 harmonics.

• The real part of the operator ðð′ working on functions with no spin weight is the ordinary two-sphere
Laplacian∆. A classical result is that a spin 0 function 0 f is constant on the sphere if and only if∆ 0 f = 0.
Similarly, 0 f is constant if and only if ð 0 f = 0 = ð′

0 f . In some situations it is easier to compute ðð′
0 f ,

however. Let us re-derive the classical result using proposition 5. Suppose ðð′
0 f = 0, then, because ð′

0 f
has spin weight −1, ð′

0 f = 0 by proposition 5. Applying proposition 5 a second time, we find that 0 f is
proportional to 0Y0. Hence, ðð′

0 f = 0 if and only if 0 f is constant.

• ð 1 f = 2g has a three dimensional solution. Let 1 f̃ be a solution, then

f = 1 f̃ + A 1Y1,−1 +B 1Y1,0 +C 1Y1,1, (2.5.31)

spans the solution space.

• Given any function s f where s is an integer, there exists a potential 0 A such that either s f = ðs
0 A if s ≥ 0

or s f = ð′−s
0 A if s ≤ 0.

The following theorem states that ð and ð′ may sometimes preserve conformal invariance.

Theorem 3. Let f be a spin weight s function. Suppose that under a conformal transformation S 7→ Θ2S , f
transforms as f 7→Θw f . Then the functions ðw−s+1 f and ð′w+s+1 f are conformal.

As an example, suppose W is a spin 0, conformal weight w =−1 function satisfying ð2W . Then W consists
of 0Y0 and 0Y1 harmonics. A conformal transformation will mix these harmonics together, but the resulting
function will again consist of 0Y0 and 0Y1 harmonics.

2.6 Null congruences

A congruence is a family of curves such that there is exactly one curve that passes through every point in space-
time. Here, we will consider null congruences, and in particular geodetic null congruences, which are congru-
ences whose curves are geodesics. In this section we will see that these congruences are efficiently described
by the spin coefficient formalism. When a basis spinor o A is chosen to be tangent to null geodesics (which we
will refer to as rays), the spin coefficients σ, ρ and the vanishing of ϵ will attain a geometric meaning.

The vector l a is geodetic (i.e. tangent to a geodesic) if and only if

l a∇a l b = Dl b ∝ l b . (2.6.1)

The curves are affinely parametrized if and only if

Dl a = 0. (2.6.2)

We will refer to a spinor as being geodetic if its flag pole is geodetic. Let us see what this means in terms of spin
coefficients. From their definition,

Do A = ϵo A −κιA , (2.6.3)

so that

Dl A A′ = (ϵo A −κιA)o A′ +o A(ϵ̄o A′ − κ̄ιA′
)

= (ϵ+ ϵ̄)l A A′ −κιAo A′ − κ̄o AιA
′
. (2.6.4)

Hence,
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o A is geodetic ⇐⇒ κ= 0.
o A is affinely parametrized ⇐⇒ κ= 0 = ϵ+ ϵ̄.

Note that ϵ can always locally be set to zero by reparametrizing o A 7→ λo A where Dλ= ϵλ. ϵ= 0 if the null flag
o A is parallelly propagated. If ϵ−ϵ̄= 0, ϵ can be made to vanish by re-scaling o A 7→λo A with a real λ, which only
affects the flag pole. We can therefore interpret ϵ− ϵ̄= 0 as the condition for parallelly propagating flag planes.

From this point onward, let us assume o A is geodetic. Spinorially, we can write this condition as

o AoB o A′∇A A′oB = 0, (2.6.5)

so that

o Ao A′∇A A′oB = ϵoB , (2.6.6a)

oB o A′∇A A′oB = ρoA , (2.6.6b)

o AoB∇A A′oB =σoA′ . (2.6.6c)

The three complex numbers ϵ, ρ, and σ are fully defined in terms of the congruence o A . We have already seen
that ϵ can be made to vanish by re-scaling λo A , but since ρ and σ are weighted quantities they cannot.

Remark. If o A were not geodetic, it would be possible to make ρ or σ vanish. In this case, o AoB o A′∇A A′oB ̸= 0
so that we can choose

ιA ∝ oB o A′∇A A′oB , (2.6.7a)

or ιA′ ∝ o AoB∇A A′oB , (2.6.7b)

to set ρ = 0 or σ= 0.

To interpret ρ andσ geometrically, let the spin frame be parallelly propagated by o A , so that Do A = DιA = 0,
and consider two nearby points separated by a small vector

q a = g l a + ζ̄ma +ζm̄a +hna . (2.6.8)

Let us drag this vector along the congruence:

Ll q a = 0 (2.6.9a)

so that Dζ=−ρζ−σζ̄−τh, (2.6.9b)

Dh = 0, (2.6.9c)

Dg = (β̄−β′)ζ+ (β− β̄′)ζ̄− (ϵ′+ ϵ̄′)h. (2.6.9d)

We will ignore g , since it turns out to not be physically meaningful. We may consider neighbouring rays with
h = 0, since this condition is preserved along the rays. Such rays are called abreast.

To summarise, our setup is as follows: we are considering a congruence of geodetic, affine, abreast rays. We
saw in the previous section that if ρ− ρ̄ = 0, ma and m̄a are tangent to a space-like two-surface and the con-
gruence is hypersurface forming. In this case, we may interpret ζ as a coordinate on a small complex plane as
it is dragged along l a . Each value of ζ corresponds to a ray, so that (2.6.9b) tells us how this plane is distorted as
it moves along its generators. More generally, if ρ− ρ̄ ̸= 0, ζ represents a vector connecting neighbouring points
on the congruence seperated by an infinitesimal distance |ζ|.

Write ρ = c + i t and σ= se2iϑ where s ≥ 0, then

if σ= 0, Dζ=−(c + i t )ζ, (2.6.10a)

if ρ = 0, Dζ=−se2iϑζ̄. (2.6.10b)
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From the first equation we can see that c, representing the real part of ρ measures the convergence of the
congruence. t leaves the distance |ζ| between neighbouring rays invariant but changes the phase of ζ, so that
the imaginary part of ρ measures the twist of the congruence. When ρ = 0, se2iϑζ̄ is a positive real multiple of
ζ when argζ = ϑ or argζ = ϑ+π and a negative real multiple of ζ when argζ = ϑ± 1

2π. Hence σ measures the
shear of the congruence, where 1

2 argσ and 1
2 argσ+π measures the directions of maximal focusing.

2.7 The fingerprint of the Weyl tensor

To wrap up this chapter, we will apply some of the results and techniques we just found to the Weyl spinor
ΨABC D . We will find that it is possible to construct a picture of ΨABC D on the celestial sphere. This picture will
represent, in a rather satisfying way, how an observer sees the distortion of his light cone in a small neighbour-
hood. We saw in §2.3 that the Maxwell spinor φAB may be represented as a vector field on S+. To construct a
similar representation ofΨABC D on S+, we proceed from a slightly different starting point.

Consider a rotation-free geodetic congruence ξA , and let ρ andσ be the convergence and shear of ξA . Then, by
(2.5.15b),

Dσ= 2ρσ+Ψ, (2.7.1)

where Ψ := ΨABC Dξ
AξBξCξD . The effect of Ψ is to induce shear in the congruence. The shear will, in turn,

distort a circular arrangement of nearby abreast rays into an ellipse. Represent the axis tangent to S+ along the
direction of maximum focusing by a line segment on S+. Doing this for every point on S+, we can define a line
field on S+ representingΨ.

Proposition 7. Along every null direction ξA ,Ψ :=ΨABC Dξ
AξBξCξD is defined by a line segment with magnitude

|Ψ| which makes an angle of 1
2 argΨ and 1

2 argΨ+π with the flag plane of ξA .

Definition 5. The line field on S+ arising fromΨABC D is called the fingerprint of the Weyl tensor.

Using what we have learned in §2.6, we can construct a visual representation of the distortion due to the
Weyl curvature. Let o A represent a direction on S+. To see how the curvature along o A affects nearby abreast
rays ξA we differentiate (2.6.9b) again to obtain

D2ζ=−Φζ−Ψζ̄, (2.7.2)

where Φ := ΦAB A′B ′ξAξBξA′
ξB ′

. We will only consider vacuum curvature, so that Φ = 0. To first order in ζ,
Ψ=Ψ0 is constant, and ζ(u) ≈− 1

2 u2Ψζ̄(0)+O (u3) where u is a parameter along o A . See figure 3:

Figure 3: The visible distortion due to the presence of Weyl curvature at leading order in ζ and affine distance along the rays
u. The right picture is undistorted. The red lines in the left picture indicate the direction of the fingerprint.
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If o A is a principle null direction of ΨABC D , Ψ0 = 0, so we shall need a better approximation. To higher
orders in ζ, we need to take into account that ξA = o A +O (ζ), so thatΨ=Ψ0 +O (ζ). Notice that we have

ξAξA′ −o Ao A′ ≈ q A A′

= ζ̄o AιA
′ +ζιAo A′

, (2.7.3)

so that ξA = o A +ζιA +O (ζ2). We find that if o A is an n-fold principle null direction,

Ψ(ζ) =
(

4

n

)
Ψnζ

n +O (ζn+1). (2.7.4)

2.7.1 The Petrov-Pirani-Penrose classification

In chapter §2.2.3 we saw that there is a neat way to classify fully symmetric spinors by the multiplicities of their
principle null directions. Historically, the first use of part of this classification scheme was due to Petrov and
later Pirani, who originally distinguished only three cases8. The full classification with spinorial arguments was
found later by Penrose. The different classes are

Type I The generic case; no repeated principle null directions.

Type II One two-fold principle null directionΨABC D = ξ(AξBαCβD).

Type D Two repeated principle null directionsΨABC D = ξ(AξBηCηD).

Type III A triple repeated principle null directionΨABC D = ξ(AξBξCηD).

Type N A quadruple repeated principle null directionΨABC D = ξAξBξCξD .

Type O ΨABC D = 0.

In figure 3 we saw the generic picture one would see when Weyl curvature is present. In most other direction,
we would see an almost identical image, with the only differences being the degree of distortion (determined
by |Ψ|) and the axis along which the ellipsoidal distortion takes place (determined by argΨ). If an observer is
looking in a principle null direction, we get a more exciting image, as shown in figure 4 below:

Figure 4: The visible distortion due to the presence of Weyl curvature along a principle null direction. The line field is the
fingerprint, and the color represents the magnitude ofΨ, where purple represents smaller |Ψ| than blue.

8Petrov’s type 1 corresponds to type O, I and D, type 2 corresponds to type II and N, and type 3 corresponds to type III.
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The fingerprint of an algebraically special Weyl spinor will have one or more of these simple type I singularities
merged. For example, the fingerprint around a two-fold repeated principle null direction will either look like
concentric circles, or as a ‘sink’ type pattern where all surrounding lines terminate at the principle null direc-
tion. This type of principle null direction is present in type II or D Weyl spinors. See figure 5 below:

Figure 5: The visible distortion due to the presence of type II or D Weyl curvature along a repeated principle null direction.
The line field is the fingerprint.

Type D curvature is associated with point masses. The Kerr-Newman space-time, which is a family of station-
ary black hole space-times, is type D everywhere. Stationary isolated systems (which we will define in the next
chapter) are approximately type D at large distances. The two remaining types of principle null directions are
type III and type N, shown in figure 6:

Figure 6: The visible distortion due to the presence of Weyl curvature along a principle null direction. The Left picture shows a
neighbourhood of a triple repeated principle null direction. The right picture shows a neighbourhood of a quadruple repeated
principle null direction. The line field is the fingerprint.

At large distances in non-stationary regions of isolated systems, the curvature is approximately type N. It rep-
resents gravitational radiation.
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3 Asymptotically flat space-times

In physics, one is often interested in the asymptotic behaviour of fields. The asymptotics of General Relativity
are particularly interesting since dynamical systems can have a wildly complex geometry. For example, no an-
alytic solution to Einstein’s equations representing a dynamic binary black hole system has been found, even
though the corresponding Newtonian two-body problem is fairly simple. As one moves far away from an iso-
lated system, however, we might expect these space-times to approach a simpler space-time. In this chapter,
we will define and explore a large class of space-times describing isolated systems in General Relativity, called
asymptotically flat space-times. These space-times allow for additional ‘boundary points at infinity’, denoted
by I , to be added to the manifold M , similar to how one may add {z−1 = 0} to the complex plane to obtain the
Riemann sphere. The asymptotic behaviour of fields can be studied at — and in a neighbourhood of — infinity
in a coordinate-free way, without having to resort to using inelegant limiting arguments involving coordinate
representations of field components. At infinity, the curvature is zero9, making rigorous the intuitive idea that
the metric should approach the Minkowski metric at large distances.

In order for the points at I to meaningfully represent infinity, we require the metric ĝab of M to diverge at
I , since we would like points in M lying in an infinitesimal neighbourhood of I to be separated by an infinite
distance to points in I . The conformal geometry, however, is only concerned with ratios of distances between
neighbouring points, and so we should be able to define a conformal metric gab =Ω2 ĝab which is well defined
at I . Infinity, here, must be located atΩ= 0 because ifΩ−2 were smooth at I , ĝab :=Ω−2gab could be smoothly
extended to I .

The efficiency and elegance of Penrose’s conformal description of asymptotic flatness is quite remarkable, es-
pecially when combined with his spinorial treatment of General Relativity. Indeed, a large number of con-
cepts are conformal. Some important examples include causality, null geodesics, Weyl curvature, the vacuum
Bianchi identities ∇A A′

(Ω−1ΨABC D ) = 0 and the source-free Maxwell’s equations ∇A A′
(Ω−1φAB ) = 0. (The last

two of these are examples of mass-less field equations with arbitrary spin ∇A A′
(Ω−1φA...Z ) = 0.)

Concretely, asymptotic flatness is typically defined as follows [Penrose, 1965, Penrose & Rindler, 1986]:

Definition 6 (Asymptotic flatness). A space-time M with metric ĝab is asymptotically flat at future [past] null
infinity if there exists a space-time M̄ := M ∪I+ [M̄ := M ∪I−] with boundary ∂M̄ := I+ [∂M̄ := I−] and
metric gab , and a smooth conformal factor Ω such that:

1. gab =Ω2 ĝab in M .

2. Ω≈ 0, Na :=−∇aΩ ̸≈ 0 is future-null [past-null], where we define "≈" to mean "equal when evaluated on
I±".

3. I± ∼=S2 ×R is complete.

4. Einstein’s equations hold in M , Ĝab =−8πT̂ab , andΩ−2T̂ab can be smoothly extended to I±.

Remark. Modern definitions of asymptotic flatness do not require I± to be complete. A space-time satisfying
conditions 1-4 is called asymptotically Minkowskian. Here, we will adopt Penrose’s definition of asymptotic
flatness, which is equivalent to asymptotically Minkowskian.

An unphysical space-time (M̄ , gab) satisfying condition 1 of definition 6 is called a conformal completion of
the physical space-time (M , ĝab). We will use the shorthand notation "I " to refer to either I+ or I−.

We have introduced four more conditions. Firstly, by requiring dΩ ̸≈ 0 we ensure that I is a non-singular

9Presently, it is not clear that the curvature will be well-defined at infinity since, as we will see shortly, the metric will diverge here.
We will later show, however, that the curvature can be uniquely extended to infinity, where it is seen to vanish. This justifies the term
‘asymptotically flat’.

24



hypersurface, and that the conformal geometry of M̄ is uniquely determined by the geometry of the physical
space-time (M , ĝab):

Proof. Let (M̄ , gab) and (M̄ ′, g ′
ab) be two conformal completions of (M , ĝab) with conformal factors Ω, Ω′. In

M , g ′
ab =Ω′2Ω−2gab . In M̄ , applying ∇c∇d toΩ2g ′

ab =Ω′2gab we find

2(∇cΩ∇dΩ+Ω∇c∇dΩ+Ω∇(cΩ∇d) + 1
2Ω

2∇c∇d )g ′
ab = 2(∇cΩ

′∇dΩ
′+Ω′∇c∇dΩ

′)gab , (3.0.1)

whence ∇cΩ∇dΩg ′
ab ≈∇cΩ

′∇dΩ
′gab , (3.0.2)

so that on ∂M , g ′
ab = ( dΩ′

dΩ )2gab where dΩ′
dΩ is well-defined since dΩ and dΩ′ are both orthogonal to ∂M (and

non-vanishing), and hence co-linear.

Secondly, the topological condition I ∼= S2 ×R ensures that I is ‘as big’ as the future or past conformal
boundary of Minkowski space. Originally, Penrose defined a smaller class of space-times, called asymptotically
simple space-times, where the topological condition 3 is replaced by the condition that all null geodesics start
and end at I . If I is space-like or null, I splits into two pieces, I+ and I− consisting of the future and past
end points of null geodesics respectively. Penrose then proved that for asymptotically simple space-times with
null I , I± ∼=S2 ×R:

Proof sketch. Let p be a point in M , and let N + be its future light-cone. The rays generating N + intersect
each generator of I+ exactly once in some cut C +. Let λ be an affine parameter on N + starting at p, which is
scaled such that C1 =C + where Cλ are the cuts of N + of constant λ. Cλ may be singular at at most countably
infinite λ, So that the function

∮
Cλ

K (λ)dCλ = 4πχ(Cλ), where K (λ) is the Gaussian curvature of Cλ, can be
extended to a continuous function. Hence χ(Cλ) is constant, so that the non-singular Cλ’s are topological
spheres. I+ ∼=C +×R, and since dΩ ̸≈ 0, C + is non-singular and thus C + ∼=S2.

Hence, the class of asymptotically simple space-times is a subset of asymptotically flat space-times, but
they are not equivalent: some very relevant examples of isolated systems, such as the Schwarzschild space-
time, are asymptotically flat but not asymptotically simple, due to the existence of photon orbits around the
black hole. One could try to broaden the definition by merely requiring a neighbourhood of I to be isometric
to an asymptotically simple space-time, but even this requirement might be too restrictive. In any case, the
topology of I will be a crucial ingredient in the proofs of several important (physically motivated) theorems,
so any condition replacing 3 should have the current condition as a consequence. There does not seem to be
any advantage to further restrict the definition. Completeness of I allows for the existence of a large asymp-
totic symmetry group, which we will explore shortly.

Finally, Einstein’s equations are assumed to hold, and the fall-off condition on the stress-energy is weak enough
to allow for radiation, but strong enough so that the resulting geometry of I is equivalent to the geometry we
would have found if we had instead required the stress energy to have compact support. We can therefore
intuitively understand asymptotically flat space-times as describing isolated matter sources which may emit
radiation.

Evoking Einstein’s equations makes sense from a physicist’s perspective, but if we are only interested in the
geometry of I we can simplify condition 4 in several ways, the most obvious of which is replace it with a fall-
off condition for the physical Ricci curvature. We will be revisiting this problem at the end of this chapter.

3.1 The geometry of I

Having set the stage, let us study the geometry of I . Under a conformal transformation, the scalar curvature
transforms as

Ω−2Λ̂=Λ+ 1
4Ω2Ω

−1 (3.1.1)

=Λ+ 1
4Ω

−1∇a N a + 1
2Ω

−2Na N a .
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We can use this to determine the character of I :

Proposition 8. Let (M , ĝab) be a space-time satisfying conditions 1-3 of definition 6. Then I is space-like, time-
like, or null depending on if λ+2πT̂ is positive, negative, or zero at I . In particular, if M is asymptotically flat,
I is null.

Proof. Einstein’s equations yield

1
3πT̂ + 1

6λ=Ω2Λ+ 1
4Ω∇a N a + 1

2 Na N a . (3.1.2)

Both sides are smooth at I , so that this expression extends smoothly to I . Hence, 1
3πT̂ + 1

6λ ≈ 1
2 Na N a . In

particular, in asymptotically flat space-times 1
3πT̂ + 1

6λ≈ 0 so that I is null.

Note that if I is non-null, Na ̸≈ 0 so that the condition dΩ ̸≈ 0 is automatically satisfied in this case.

A further important property of I is the following:

Theorem 4 (Penrose, 1965). Let (M , ĝab) be an asymptotically flat space-time. Then Cabcd ≈ 0.

Proof. The physical Bianchi identity is

∇̂A
A′Ψ̂ABC D = 8π∇̂B ′

B T̂C D A′B ′ . (3.1.3)

In terms of unphysical quantities, this becomes

Ω∇A
A′ΨABC D −N A

A′ΨABC D = 4πΩ2∇B ′
B TC D A′B ′ −12πΩN B ′

B TC D A′B ′ . (3.1.4)

Because gab (and therefore also its curvature) and Tab are smooth at I , we find that N A
A′ΨABC D ≈ 0. If the

matrix formed by the components of N A
A′ is invertible, we immediately find thatΨABC D ≈ 0. This will be the case

when det N A
A′ ̸= 0, i.e. if and only if N A

A′ ̸= κAλA′ , i.e. if and only if N a is non-null. Since M is asymptotically flat,

however, I is null, so that N A
A′ΨABC D ≈ ξA ξ̄A′ΨABC D ≈ 0 implies that ΨABC D ≈ΨξAξBξCξD for some function

Ψ. Hence, ΨABC D is type N at I . Choose a spin frame with ιA orthogonal to the principle null direction. Then
Ψ1 ≈Ψ2 ≈Ψ3 ≈Ψ4 ≈ 0. The 0′000 component of the physical Bianchi identity then becomes ð̂′Ψ̂0 ≈ 0. Ψ0,
having positive spin weight, must therefore also vanish.

The proof crucially relied on the spherical topology of the cross-sections of I because in the final step we
used that there are no positive spin-weight solutions Ψ to ð′Ψ = 0. Intuitively, we can understand this part of
the proof as a consequence of the non-existence of purely spherically symmetric gravitational waves: Consider
a field Ψ orthogonal to a spherical surface S, and assume Ψ is type N in a neighbourhood of S. Ψ needs to be
constant on S since otherwise it would induce a gradient in the other components through the Bianchi identi-
ties. Because there are no purely spherically symmetric gravitational waves (for the same reason there are no
spherically symmetric electromagnetic waves),Ψmust vanish.

As a corollary to the vanishing of the conformal curvature, the physical curvature is seen to vanish on I . This
justifies the term ‘asymptotic flatness’:

Corollary 1. Let (M , ĝab) be an asymptotically flat space-time. Then R̂a
bcd can be smoothly extended to I ,

where it vanishes.

Proof. Under a conformal rescaling gab =Ω2 ĝab , ϵAB =Ωϵ̂AB and ΨABC D = Ψ̂ABC D . By condition 4 the right-
hand side of Einstein’s equations has a smooth limit to I , so that Ĝab can be smoothly extended to I . Further-
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more, R̂ab ≈ 0 andΩ−2R̂ = g abR̂ab ≈ 0 so that

R̂ A A′
BC DB ′C ′D ′ = Ψ̂BC DE ϵ̂

AE ϵ̂A′
B ′ ϵ̂C ′D ′ + ˆ̄ΨB ′C ′D ′E ′ ϵ̂A′E ′

ϵ̂A
B ϵ̂C D + Φ̂B ′E ′C D ϵ̂

A′E ′
ϵ̂A

B ϵ̂C ′D ′ + ˆ̄ΦBEC ′D ′ ϵ̂AE ϵ̂A′
B ′ ϵ̂C D

+2Λ̂(ϵ̂A
C ϵ̂BD ϵ̂

A′
C ′ ϵ̂B ′D ′ − ϵ̂A

D ϵ̂BC ϵ̂
A′

D ′ ϵ̂B ′C ′ )

=ΨBC DEϵ
AEϵA′

B ′ϵC ′D ′ + Ψ̄B ′C ′D ′E ′ϵA′E ′
ϵA

BϵC D + Φ̂B ′E ′C Dϵ
A′E ′

ϵA
BϵC ′D ′ + ˆ̄ΦBEC ′D ′ϵAEϵA′

B ′ϵC D

+2Ω−2Λ̂(ϵA
C ϵBDϵ

A′
C ′ϵB ′D ′ −ϵA

DϵBC ϵ
A′

D ′ϵB ′C ′ )

≈ 0. (3.1.5)

Finally, let us consider the trace-free Ricci curvature. Under a conformal rescalingΦab transforms as:

Φ̂AB A′B ′ =ΦAB A′B ′ +Ω−1∇A′(A NB)B ′ . (3.1.6)

By condition 4, ∇A′(A NB)B ′ ≈ 0. Φab is highly dependent on the particular choice of Ω, but, as we will see, only
two components will have physical significance. In order to simplify the analysis, we will assume I = I+ is
future null which will allow us to efficiently employ the GHP formalism.

Because I+ is null, we can choose one of our tetrad vectors to be proportional to N a on I : N a ≈ Ana for
some {1,1} scalar A, which is positive since I+ is future null. ιA

′∇A′(A NB)B ′ ≈ 0 then yields

σ′ ≈ 0, ρ′ ≈ ρ̄′, κ′ ≈ 0, ðA ≈ 0, and (þ′+ρ′)A ≈ 0. (3.1.7)

Note that ρ′ ≈ ρ̄′ and κ′ ≈ 0 also follows from the fact that I+ is a null hypersurface, andσ′ ≈ 0 also follows from
the vanishing ofΨ0 andΨ1 and (a slightly modified version of) the Goldberg Sachs theorem. As a consequence,
cross sections of I+ are mapped conformally along its generators: choose a scaling for na so that the generators
of I+ are affine, and complete the tetrad with ma tangent to its cross-sections. Then:

D ′(m(am̄b)) ≈ σ̄′mamb + (ρ′+ ρ̄′)m(am̄b) +σ′m̄am̄b ≈ (ρ′+ ρ̄′)m(am̄b). (3.1.8)

By the uniformization theorem, each cross section is conformal to the unit sphere, so we may chooseΩ so that
K ≈ 1

2 , where K is half the Gaussian curvature of the cross-sections. We will not make this specialisation just
yet, but instead we will simply set ρ′+ ρ̄′ ≈ 0 so that cross sections of I+ are mapped isometrically along its
generators. This can be achieved simply by choosing Ω such that dΩ is null in a small neighbourhood of I+.
We can then set N a := AιAιA

′
. The components of o A′∇A′(A NB)B ′ ≈ 0 then read:

τ′ ≈ 0, ρ′ ≈ 0, þA ≈ 0. (3.1.9)

Finally, we can use the remaining freedom in Ω, and an appropriate choice of o A , to set all but one of the re-
maining spin coefficients to zero in I+: let u be a future increasing parameter along the generators of I+
satisfying þ′u ≈ A−1, and choose o A to be orthogonal to cross-sections of constant u so that ðu ≈ 0. We find
that 0 ≈ (þ′ð−ðþ′)u ≈ τþ′u so that τ≈ 0. At I+, o A is hypersurface orthogonal so that ρ ≈ ρ̄ and κ≈ 0. Finally,
under a conformal transformation ιA 7→ ιA , o A 7→Θo A , where ðΘ≈ 0 ≈ þ′Θ all spin coefficients transform con-
formally, except for ρ 7→Θ2ρ+ΘþΘ. ChooseΘ such that ρ ≈ 0 and scale the spin frame such that þρ ≈ 0.

Essentially, the entire geometry at I+ is encoded in a single complex function σ, which we will soon learn
is related to the outgoing flux of gravitational radiation at I+. The Ricci identities yield:

Φ00 ≈−σσ̄, Φ01 ≈−ð′σ, Φ02 ≈−þ′σ, Φ12 ≈ 0 ≈Φ22. (3.1.10)

The remaining component of the Ricci curvature is given by the Gaussian curvature of the cross-sections of I+
through K ≈Φ11 +Λ.
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3.2 The BMS group

The fact that space-time has no isometries in general is an important feature of General Relativity. In flat space-
time, isometries are an essential ingredient for the definition of conserved energy-momentum and angular
momentum. Indeed, the ten Killing fields ka of Minkowski space together with local conservation of energy
yield ten globally conserved charges which arise from the conserved currents Ja = Tabkb . The stress energy
contains information about the local matter content, and because gravity interacts with matter and exchanges
energy with it, we cannot expect the stress energy to give rise to a globally conserved energy. In the weak field
limit, the local conservation law ∇aT ab = 0 will express the non-conservation of matter energy with respect to
the flat background, and to remedy this a gravitational stress energy may be introduced. Gravity in General
Relativity is non-local, however, as is expressed by the equivalence principle. It is therefore impossible to find
a gravitational energy density. A full discussion of gravitational energy will have to wait until the next chapter.
Presently, we will be concerned with the problem of finding a Poincaré group which is a suitable generalisation
of isometries in Minkowski space.

What we have just seen in the previous section, is that I+ has a delightfully simple structure compared to
the geometry of the bulk space-time. In summary, the intrinsic conformal geometry of I+ is given by the
conformal metric

dl 2 = 0 ·du2 − 4dζd ζ̄

(1+ζζ̄)2
, (3.2.1)

while the extrinsic geometry of I+ is given by a single complex scalar field σ. The simple structure, which we
will soon define and call the strong conformal geometry, allows us to cut down the diffeomorphism group to
give rise to a large symmetry group of diffeomorphisms that leave this structure invariant. This group contains
a unique four parameter subgroup of translations, which can be used to define the total energy-momentum of
the space-time.

Let us start in Minkowski space M and its compactification M̄ with metrics

d s̃2 = du2 −2dudr − 4r 2dζd ζ̄

(1+ζζ̄)2
and d s2 =Ω2du2 +2dudΩ− 4dζd ζ̄

(1+ζζ̄)2
, (3.2.2)

The surfaces of constant u are future light cones inM, so that the cuts of constant u on I+ are celestial spheres
of the points at r = 0. Poincaré transformations of M are seen on I+ as transformations mapping a set good
cuts of I+ to each other. In M̄, a cut is a good cut if it corresponds to a light cone inM, which can be expressed
in terms of quantities defined on I+ by the condition σ ≈ 0 where l a is chosen tangent to the surfaces of

constant u. Specifically, the transformations ζ 7→ aζ+b
cζ+d are Lorentz transformations, and the transformations

u 7→ u+W , where W is composed of l = 0 and l = 1 spherical harmonics are translations. To see this, you could
use coordinates, but it is instructive to use tetrads: choose la = A∇au and na ≈ A−1∇aΩ for some constant
{−1,−1} scalar A. Translating u 7→ u +W (ζ, ζ̄) transforms

l a 7→ l a −mað′W −m̄aðW −naðW ð′W, and ma 7→ ma −naðW, so that (3.2.3)

σ= maδl a 7→ (ma −naðW )(δ−ðW D ′)(l a −mað′W −m̄aðW −naðW ð′W ) (3.2.4)

=σ+ð2W −τðW −ρ′(ðW )2 −2σ̄′ðW ð′W +κ′(ðW )3 +2κ̄′(ðW )2ð′W

≈σ+ð2W −τðW. (3.2.5)

In this tetrad, σ= 0 ≈ τ. Hence, this transformation maps good cuts to good cuts iff ð2W = 0, i.e. iff W consists
of l = 0 and l = 1 spherical harmonics.

Next, let us return to a general asymptotically flat space-time. First, we would like to find a function u on
the generators of I+ that generalises the retarded time coordinate u inM.
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Definition 7. A future-increasing real parameter u on I+ attaining the full range (−∞,∞) on each generator
is a Bondi parameter if (þ′−2ρ′)þ′u ≈ 0.

The condition (þ′−2ρ′)þ′u ≈ 0 is conformal, in other words u being a Bondi parameter is independent of
the choice of conformal factor Ω. In particular, if Ω is chosen such that ρ′ ≈ 0, and if we scale our tetrad such
that na is affine, then u is a Bondi parameter iff D ′2u ≈ 0. Hence, if u is a Bondi parameter all other possible
Bondi parameters are of the form Gu + H , where G > 0 and H are arbitrary functions on the cross sections of
constant u.

Definition 8. If Ω is chosen such that the cross-sections of I+ are unit spheres, then a Bondi parameter u is
called a Bondi retarded time coordinate.

Given N a we can fix a definite scaling for u on each generator by choosing a constantν and setting N a∇au =
ν. Note that ν> 0 on I+ since N a is future null and du is future causal (and not proportional to Na) because u
is future-increasing. Consequently, applying (þ′+ρ′) to Aþ′u −ν≈ 0 and using that (þ′+ρ′)A ≈ 0 we find that
0 ≈ A(þ′+ρ′)þ′u−νρ′ ≈ A(þ′−2ρ′)þ′u+2ρ′ ≈ 2ρ′ if u is a Bondi parameter. Hence, ρ′ ≈ 0 and the cross-sections
of I+ are mapped isometrically along its generators. Note that choosing N a∇au ≈ ν is therefore equivalent to
choosing a divergence free frame ∇a N a ≈ 0 (and hence also ∇a Nb ≈ 0).

Definition 9. A constant N a∇au = ν is called a null angle. The conformal geometry of an asymptotically flat
space-time M , together with a choice of null angle defines the strong conformal geometry of M .

Henceforth we will choose ν= 1, and Ω such that the cross-sections of I+ are unit spheres. The metric of
I+ is now given by (3.2.1).

Definition 10. The transformations ζ 7→ aζ+b
cζ+d , u 7→ 1+ζζ̄

|aζ+b|2+|cζ+d |2 u + H(ζ, ζ̄) that preserve the Bondi retarded

time coordinate and strong conformal geometry form a group B, called the BMS group. The BMS group is the

semi-direct product B =R⋊U of Lorentz rotations R, given by ζ 7→ aζ+b
cζ+d , u 7→ 1+ζζ̄

|aζ+b|2+|cζ+d |2 u and supertrans-

lations U given by u 7→ u +H(ζ, ζ̄).

As we have seen from the Minkowski example, the BMS group contains the Poincaré group P as a subgroup.
B is much bigger than P , being infinite dimensional due to the fact that there are infinitely many smooth
functions H on the sphere. Fortunately, similar to how the translation subgroup is the unique four-parameter
normal subgroup of P , we have

Theorem 5 ([Sachs, 1962b]). The translation subgroup is the unique four-parameter normal subgroup of B.

I will not give the full proof here, but to show that translations are a normal subgroup of B uses the fact
that under a conformal transformation, l = 0 and l = 1 spherical harmonics transform among each other. Con-
cretely, if f is conformal with spin weight s and boost- and conformal weight w , then the equations

ðw−s+1 f = g and ð′w+s+1 f = h (3.2.6)

are Lorentz invariant. A supertranslation u 7→ u +H is a translation if ð2H = 0. Since H has no spin weight and
a boost- and conformal weight w = 1, this condition is Lorentz invariant.

3.3 The gravitational field at I+

Recall that the mass-less field equations ∇̂A A′
φ̂A...Z = 0 are conformal ifφA...Z =Ω−1φ̂A...Z , and that the vacuum

Bianchi identities are given by ∇̂A
A′Ψ̂ABC D = 0. Furthermore, becauseΨABC D is conformal and vanishing on I ,

we are motivated to define the following field on M̄ :

Definition 11. Let (M , ĝab) be asymptotically flat. Define the gravitational field ψABC D as

ψABC D =Ω−1ΨABC D . (3.3.1)

ψABC D is smooth at I .
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At I , half the components of the gravitational field are given by the Bianchi identities:

Proposition 9. On I , the Bianchi identities are given by

Aψ1ABC ϵA′B ′ ιC ′ + AϵAB ιC ψ̄1′A′B ′C ′ ≈ 2∇[aPb]c , (3.3.2)

where Pab := 1
12 Rgab − 1

2 Rab is the Schouten tensor. In GHP form its components are

ψ4 ≈ þ′N , (3.3.3)

ψ3 ≈ ðN −ð′K , (3.3.4)

ψ2 − ψ̄2 ≈ ð′2σ−ð2σ̄+σN − σ̄N̄ . (3.3.5)

Proof. Starting from the Bianchi identities10 ∇d Rabcd and the decomposition R cd
ab = C cd

ab +4P [c
[a g d ]

b] , we
find that the Bianchi identities are equivalent to

∇dCabcd = 2∇[aPb]c . (3.3.6)

It follows directly from the definition that ∇A A′ΨBC DE ≈−NA A′ψBC DE so that
∇A A′

(ΨABC DϵA′B ′ϵC ′D ′ ) ≈ AιAψABC D ιB ′ϵC ′D ′ . Hence,

Aψ1ABC ϵA′B ′ ιC ′ + AϵAB ιC ψ̄1′A′B ′C ′ ≈ 2∇[aPb]c (3.3.7)

3.4 Einstein’s field equations at I+

In our derivation of the asymptotic geometry of space-time, we made use of Einstein’s equations, but nowhere
did we need them. By construction, the Einstein tensor Ĝab has precisely the same symmetry and divergence-
free properties as the stress-energy T̂ab . Without further restrictions on the stress-energy, any Lorentzian man-
ifold is a solution to Einstein’s equations. As far as the geometry is concerned, the only constraint assumption
4 of definition 6 imposes on the space-time geometry is the fall-off R̂ab = O (Ω2) of the Ricci tensor, which is a
consequence of Einstein’s equations with the fall-off T̂ab =O (Ω2) of the stress-energy.

In this section, I will first dispense with condition 4 of definition 6 and replace it by a more direct, local con-
dition on the geometry of I . This new condition implies a weaker fall-off rate of the physical Ricci curva-
ture. It is tempting to try to constrain the possible asymptotic field equations of gravity by demanding that
they are invariant under BMS and conformal transformations. This was the premise of two recent papers
[Freidel et al., 2021, Freidel & Pranzetti, 2022]. Indeed, it is easy to show, (and somewhat trivial, when using
the right tools) that Einstein’s equations at I enjoy BMS and conformal invariance. I will prove, however, that
this invariance is not only generic but weaker than diffeomorphism invariance. In fact, I will provide two ex-
amples of field equations that are, in addition to being BMS and conformally invariant, invariant at I under
conformal transformations of the physical metric.

The single most important property of I in asymptotically flat space-times, which is a consequence of con-
dition 4, is the fact that I is a shear-free null hypersurface. It is this fact that not only gives rise to the simple
intrinsic conformal metric of I (3.2.1), and therefore to the existence of BMS symmetries, but it is also a crucial
ingredient in the proof of the peeling theorem. We will call the condition that I is a shear-free null hypersur-
face, written spinorially as ∇A′(A NB)B ′ ≈ 0, the asymptotic Einstein condition. A second major consequence of
condition 4 is the vanishing of the Weyl curvature at I . This allowed us to define the gravitational field ψABC D

on M̄ , which in vacuum satisfies the conformal mass-less spin two field equations. The conditionΨABC D ≈ 0 in

10These obtained from the standard form of the Bianchi identities, ∇a Rbcde +∇b Rcade +∇c Rabde = 0 by contracting the index a with e.
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addition to the asymptotic Einstein condition is called the strong asymptotic Einstein condition. This condition
is a good replacement for condition 4 of definition 6, and had we chosen to define asymptotic flatness with the
strong asymptotic Einstein condition the preceding sections of this chapter would have been nearly identical.
Although this condition is weaker, it does similarly imply some fall-off rate on the physical Ricci tensor, as the
following theorem proves:

Theorem 6. Let (M , ĝab) be a space-time satisfying conditions 1-3 of definition 6, and the strong asymptotic
Einstein condition. Then Φ̂ab can be smoothly extended to I , and has the following peeling-like property:

Φ̂ab =O (1), (3.4.1a)

Φ̂AB A′B ′ ιB
′ =O (Ω), (3.4.1b)

Φ̂AB A′B ′ ιA
′
ιB

′ =O (Ω2), (3.4.1c)

which can be compactly written in GHP form as Φ̂r s =O (Ωs ).

Proof. On M ,
Φ̂AB A′B ′ =ΦAB A′B ′ +Ω−1∇A′(A NB)B ′ . (3.4.2)

By the strong asymptotic Einstein condition, ∇A′(A NB)B ′ ≈ 0 so thatΩ−1∇A′(A NB)B ′ is smooth on M̄ . Therefore,
the right hand side of (3.4.2) is smooth on M̄ and we can smoothly extend Φ̂AB A′B ′ to M̄ .

Starting from the physical Bianchi identities,

∇̂A
A′Ψ̂ABC D = ∇̂B ′

(B Φ̂C D)A′B ′ , (3.4.3)

we find upon conformally rescaling:

Ω∇A
A′ΨABC D −N A

A′ΨABC D =Ω∇B ′
(B Φ̂C D)A′B ′ −N B ′

(B Φ̂C D)A′B ′ , (3.4.4)

so that Φ̂AB A′B ′ ιB
′ ≈ 0. (3.4.5)

Multiplying (3.4.4) byΩ−1N A′
E , we find

N A′
E ∇A

A′ΨABC D −N A′
E N A

A′ψABC D = N A′
E ∇B ′

(B Φ̂C D)A′B ′ −Ω−1N A′
E N B ′

(B Φ̂C D)A′B ′ . (3.4.6)

The left-hand-side vanishes on I since N A′
E ∇A

A′ is intrinsic to I at I . Furthermore,

N E A′∇B ′
(B Φ̂C D)A′B ′ ≈∇B ′

(B (ΩΩ−1N E A′
Φ̂C D)A′B ′ )

=Ω∇B ′
(B (Ω−1N E A′

Φ̂C D)A′B ′ )−Ω−1N E A′
N B ′

(B Φ̂C D)A′B ′

≈−Ω−1N E A′
N B ′

(B Φ̂C D)A′B ′ , (3.4.7)

by the strong asymptotic Einstein condition, so that

Ω−1Φ̂AB A′B ′ ιA
′
ιB

′ ≈ 0. (3.4.8)

Finally, let turn to issue of deriving Einstein’s equations. The gravitational field equations, whichever one we
choose, should be invariant under asymptotic symmetries at I and independent of the conformal completion.
At first glance, Einstein’s equations seem to be involved in a wonderful coincidence. Consider, once more, the
physical Bianchi identities (3.4.4), written in terms of the unphysical curvature:

N A′
A ∇E

A′ψBC DE ≈Ω−2N A′
A N B ′

(BΦC D)A′B ′ +Ω−3NA A′NBB ′∇A′
C N B ′

D

≈Ω−2N A′
A N B ′

(B Φ̂C D)A′B ′ . (3.4.9)
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The left-hand-side is conformal, because the gravitational field ψABC D has conformal weight −1. The right-
hand-side (3.4.9) is not conformal, however. Miraculously, when using Einstein’s equations, we find

N A′
A ∇E

A′ψBC DE ≈ 4πGN A′
A N B ′

(B T̂C D)A′B ′ , (3.4.10)

which is conformal. Additionally, (3.4.10) is BMS invariant. Indeed, we have seen before that a supertranslation
u 7→ u +H transforms a tetrad with na := A−1N a fixed as follows:

l a 7→ l a −mað′H −m̄aðH −naðHð′H , and ma 7→ ma −naðH . (3.4.11)

In an appropriately chosen tetrad11, σ 7→ σ+ð2H , and it is easy to show that ψr 7→ ∑4
s=r

(4−r
s−r

)
ψs (−ðH)s−r . A

somewhat lengthy combinatorical computation then shows

ðψr+1 7→
4∑

s=r+1

(
3− r

s − r −1

)
(ð−ðHþ′)ψs (−ðH)s−r−1

=
4∑

s=r+1

(
3− r

s − r −1

)
[(−ðH)s−rþ′ψs + (−ðH)s−r−1ðψs − (s − r −1)(−ðH)s−r−2ψs ð2H ]

=
4∑

s=r

[(
4− r

s − r

)
−

(
3− r

s − r

)]
(−ðH)s−rþ′ψs +

3∑
s=r

(
3− r

s − r

)
(−ðH)s−r ðψs+1 −

2∑
s=r

(
2− r

s − r

)
(3− r )(−ðH)s−rψs+2ð2H

= þ′
4∑

s=r

(
4− r

s − r

)
(−ðH)s−rψs −

3∑
s=r

(
3− r

s − r

)
(−ðH)s−r [þ′ψs −ðψs+1]−

2∑
s=r

(−ðH)s−r

(
2− r

s − r

)
(3− r )ð2Hψs+2

= þ′
4∑

s=r

(
4− r

s − r

)
(−ðH)s−rψs − (3− r )ð2H

(
2∑

s=r

(
2− r

s − r

)
(−ðH)s−rψs+2

)
−

3∑
s=r

(
3− r

s − r

)
(−ðH)s−r [þ′ψs −ðψs+1]

=−þ′ψr +ðψr+1 + (3− r )σψr+2 +þ′
4∑

s=r

(
4− r

s − r

)
(−ðH)s−rψs − (3− r )(σ+ð2H)

(
2∑

s=r

(
2− r

s − r

)
(−ðH)s−rψs+2

)

−
3∑

s=r+1

(
3− r

s − r

)
(−ðH)s−r [þ′ψs −ðψs+1 − (3− s)σψs+2], (3.4.12)

so that

þ′ψs −ðψs+1 − (3− s)σψs+2 7→ þ′ψs −ðψs+1 − (3− s)σψs+2 +
3∑

s=r+1

(
3− r

s − r

)
(−ðH)s−r [þ′ψs −ðψs+1 − (3− s)σψs+2].

(3.4.13)

Hence, the vacuum equations þ′ψs −ðψs+1 − (3− s)σψs+2 ≈ 0 are conformal and BMS invariant.

Perhaps this should not have been surprising. Given that the components of any spinor φA...HK ′...Q ′ trans-
form among each other linearly under a BMS transformation. Hence the equation φA...HK ′...Q ′ ≈ 0 must also
hold in the BMS transformed frame. Another way to make the same point is as follows: BMS transformations

u 7→Gu +H , ζ 7→ aζ+b
cζ+d are a subset of diffeomorphisms of M̄ as seen on I . Therefore, clearly:

Remark. Any diffeomorphism invariant field in M̄ is BMS invariant.

We can thus conclude that BMS invariance is a red herring, since we already require all physical laws to be
covariant.

The conformal invariance of the field equation forψABC D (3.4.10) is similarly unremarkable, although the prob-
lem is more subtle. The trace-free Einstein equations are, in terms of the unphysical and physical curvatures,

11For example, a tetrad in which ðu ≈ 0
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ΦAB A′B ′ +Ω−1∇A′(A NB)B ′ = 4πGT̂AB A′B ′ , (3.4.14a)

Φ̂ab = 4πGT̂ab . (3.4.14b)

The first of these (3.4.14a) is not conformal. The second (3.4.14b) is similarly non-conformal under conformal
transformations of the physical metric, ĝab 7→Θ2 ĝab , but it is conformal under transformations of the unphys-
ical metricΩ 7→ΘΩ. By the same logic, we may make the rather obvious remark:

Remark. Any function of the physical metric is independent of the conformal completion.

Even though the unphysical Ricci tensor (3.4.14a) is not conformal, the conformal gravitational field equa-
tion (3.4.10) is conformal under conformal transformations of both the physical and unphysical metrics. This
fact, though remarkable, is far from unique to Einstein’s equations.

Proposition 10. Let M be asymptotically flat, or satisfy conditions 1-3 of definition 6 and the strong asymptotic
Einstein condition. Then all but two of the leading order physical curvature tensor components on I can be
expressed in terms of the unphysical curvature in a conformal manner,

Ω−1Ψ̂ABC D =Ω−1ΨABC D :=ψABC D , (3.4.15a)

Ω−2N B ′
(A Φ̂BC )A′B ′ ≈∇D

A′ψABC D . (3.4.15b)

Note that, as an important example, the trace of Einstein’s equations, Λ̂= 1
3πT̂ + 1

6λ cannot be be expressed
in terms of the unphysical curvature in a conformal manner.

From proposition 10 it is clear that the majority of the components of most quantities constructed from the
physical curvature tensor can be made manifestly conformal. As a non-trivial example, consider the following
field equations:

B̂ab +6Λ̂ĝab −λĝab =−2πGT̂ab , (3.4.16)

where Bab := (∇c∇d − 1
2 Rcd )Cacbd is the symmetric, trace-free, divergence-free, and, most importantly, con-

formal Bach tensor. The trace (3.4.16) is equivalent to the trace of Einstein’s equations. Coincidently, the De
Sitter-Schwarzschild space-time is a vacuum solution to these equations (3.4.16). In vacuum, its trace-free
components are given in terms of the curvature spinors as

B AB A′B ′ = (∇C
A′∇D

B ′ +ΦC D
A′B ′ )ΨABC D + (∇C ′

A ∇D ′
B +ΦC ′D ′

AB )Ψ̄A′B ′C ′D ′ = 0, (3.4.17)

from which it is easy to derive its asymptotics:

(∇C
A′∇D

B ′ +ΦC D
A′B ′ )ΨABC D ≈−∇C

A′ (N D
B ′ψABC D )

≈−NC
A′∇D

B ′ψABC D ≈−Ω−2NC
A′N

C ′
(A Φ̂BC )B ′C ′ , (3.4.18)

by proposition 10. Hence Ω−2Φ̂AB A′B ′ ιA
′
ιB

′ ≈ 0, so that the vacuum Einstein equations tangential to I hold.
The components of the Bach tensor tangential to I vanish, since ΨABC D ≈ 0 and ιA

′∇A A′ is intrinsic to I :
ιA

′
ιB

′
(∇C

A′∇D
B ′ +ΦC D

A′B ′ )ΨABC D ≈ 0. Dividing byΩwe find

Ω−1ιA
′
ιB

′
(∇C

A′∇D
B ′ +ΦC D

A′B ′ )ΨABC D ≈ ιA′
ιB

′
(∇C

A′∇D
B ′ +ΦC D

A′B ′ )ψABC D

≈ (ιA
′
ιB

′∇C
A′∇D

B ′ + N̄ ιC ιD )ψABC D

≈ N̄ ιC ιDψABC D . (3.4.19)
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Therefore, either N ≈ 0 or ψ2 ≈ ψ3 ≈ ψ4 ≈ 0. Recall from proposition 9 that ψ3 ≈ ðN with an appropriate Ω,
which would then also imply that N ≈ 0 since ψ3 has negative spin weight. Hence, N ≈ 0 ≈ ψ3 ≈ ψ4. The
remaining field equations that are tangential to I simplify to

þ′ψ2 ≈ 0 (3.4.20a)

þ′ψ1 −ðψ2 ≈ 0 (3.4.20b)

þ′2ψ0 −ð2ψ2 ≈ 0. (3.4.20c)
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4 Charges in General Relativity

Formulating a satisfactory precise definition of energy in General Relativity has proven to be extremely diffi-
cult, as the problem has remained unsolved for over a hundred years since GR’s inception. Instead of entering
directly into the stress-energy Tab , gravitational energy manifests as an obstruction to integrating the local
conservation laws ∇bT ab = 0 to yield globally conserved charges. The problem is that energy is part of the
energy-momentum four-vector pa = T a

b t b as seen locally by an observer with four-velocity t a . There is, in
general, no way to ‘sum’ all of these local four-vectors together because they are elements of different tangent
spaces. In Minkowski space, parallel transport provides a unique way to identify vectors from different tangent
spaces since without any curvature, parallel transport is path-independent. Another way to put this is that
there exist constant vector fields ka , which are translation Killing fields12 whose components are constant in
standard Cartesian coordinates. With these translation vector fields, we can construct the conserved currents
J a = T a

bkb , which may be integrated to yield four conserved charges.

It might seem like a senseless exercise to insist on defining an energy concept in curved space-time. After all,
conservation of energy, which is energy’s defining property in flat space-time, is also the property that makes
energy physically interesting. However, there are several examples of space-times and special cases where a
‘mass’ parameter exists that plays a similar role to mass in Newtonian gravity. For example, it seems reason-
able to say that in the Schwarzschild space-time with mass parameter m the regions of space containing the
‘hole’ have energy m, while all other regions have no energy. More notably, there exist similar ‘mass’ param-
eters in asymptotically flat space-times defined as integrals at spatial and null infinity, that quantify, in some
well-defined sense how much the sources of these space-times gravitate. We would therefore like to redefine
the mass or energy of a region of space-time as, roughly speaking, the degree to which it gravitates.13

Remarkably — even without a precise definition — gravitational energy can be understood in a wonderfully
intuitive manner [Penrose, 1983]. In the next section, I will first elucidate the geometric origin of energy in
General Relativity. Then, I will discuss a quasi-local definition of energy-momentum and angular momentum
due to Penrose [Penrose, 1982], where spinors are once again proven to be invaluable. Along the way, I will
use the geometric intuition we have built to derive the Bondi mass at null infinity. Unfortunately, Penrose’s
definition is not yet complete, but in the special cases where it does apply, its results are physically satisfy-
ing [Tod, 1983, Tod, 1986]. In particular, we will show that Penrose’s definition of angular momentum at null
infinity does not suffer from some of the problems of earlier attempts14 at such a definition.

4.1 The geometric origin of gravitational energy

Consider a congruence l a of hypersurface orthogonal affinely parameterised null geodesics (so that þ= D and
ρ− ρ̄ = 0 = κ). The dynamics of the congruence are described by the Raychaudhuri equations:

Dρ = ρ2 +σσ̄+Φ00, (4.1.1a)

Dσ= 2ρσ+Ψ0. (4.1.1b)

The effect of a localised source of Ricci curvature Φ00 along one of the generators γ, which may, for example,
arise from a point mass intersecting γ, is to cause a jump in the convergence ρ. In other words, a localised
energy source along a bundle of light rays has the effect of a lens.

Suppose there are two point masses m1 and m2 along γ separated by an affine distance d < 1/m1 (see figure 7).
Let r be an affine parameter along γ, and suppose m1 is at r = 0, so that along γ,Φ00(r ) = m1δ(r )+m2δ(r −d).

12A vector field ka is a translation Killing field if ∇a kb = 0.
13If the distance between nearby parallel geodesics passing through some region gets smaller, this region has positive energy, even in the

absence of matter energy.
14See, for example, [Bramson, 1975].
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Assume, for simplicity, that Ψ0 = 0 and the congruence consists of parallel rays before r = 0 (so that ρ(r < 0) =
0 =σ). In vacuum, (4.1.1a) has the shear-free solution15

ρ = ρ0

1−ρ0(r − r0)
. (4.1.2)

On the interval 0 < r < d , ρ = m1(1−m1r )−1, where we used the initial condition ρ0 = m1 at r0 = 0 due to
the fact that Φ00 causes a jump m1 of the convergence at r = 0. At r = d +δr , we find from the Raychaudhuri
equation (4.1.1a) that

ρ(d +δr ) = ρ(d −δr )+ (ρ(d))2δr +m2

= m1

1−m1d
+m2 +O (δr ) = m1 +m2 −m1m2d

1−m1d
+O (δr ), (4.1.3)

hence, using (4.1.2) with initial conditions (4.1.3) we find

ρ(r > d) = m1 +m2 −m1m2d

1−m1d − (m1 +m2 −m1m2d)r
. (4.1.4)

The net focusing effect of the two masses, therefore, is equivalent to the focusing effect due to a single source16

with mass m1 +m2 −m1m2d .

Figure 7: A light ray γ passes through two masses m1 and m2 (as seen on the left), causing nearby rays to get focused (as seen
on the right).

Remark.

1. The way in which the two masses add up to effectively create a single mass is precisely the thin lens
addition law

Ptot = P1 +P2 −P1P2d , (4.1.5)

where P = 1/ f is the lens’s power, which is the reciprocal of its focal length f .

2. The term −m1m2d has the same form as the one-dimensional Newtonian gravitational potential energy
of two masses m1 and m2 separated by a distance d .

3. The net focusing effect is a non-local phenomenon: the non-linear term −m1m2d can be found by con-
sidering the combined two mass system, but cannot be found by examining the two masses separately.

15Which can be found, for example, through separation of variables:
dρ
ρ2 = dr , and then integrating. Note that D = d

dr .
16(4.1.4) has the form (4.1.2) with ρ0 = m1 +m2 −m1m2d and r0 = m1d(m1 +m2 −m1m2d)−1.
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We can similarly consider the effect of a localised source of Weyl curvature Ψ0 along γ, for example due
to a burst of gravitational radiation intersecting γ. This burst will cause a jump in the shear σ, which will
cause a circular bundle of rays around γ to be distorted into an ellipse. Along the major axis, the burst has
the effect of a negatively focusing lens, while the rays along the minor axis are focused. For simplicity, let us
examine the net focusing effect due to two such bursts separated by a distance d (as depicted in figure 8), the
second of whose major axis is rotated by π

2 with respect to the first burst’s major axis. This will ensure that a
shear-free beam after passing through both bursts will have approximately zero shear. Suppose, once again,
that ρ(r < 0) = 0 = σ(r < 0). Let the first burst occur at r = 0 and the second at r = d , so that Ψ0 is given by
Ψ0 =Ψδ(r )−Ψδ(r −d) for some (complex) constantΨ. Then for small distances,

Dσ≈Ψδ(r )−Ψδ(r −d), (4.1.6)

and D2ρ ≈σ(Ψ̄δ(r )− Ψ̄δ(r −d))+ σ̄(Ψδ(r )−Ψδ(r −d)). (4.1.7)

Upon integrating, we find that

σ(0 < r < d) ≈Ψ, (4.1.8)

so that (Dρ)(0 < r < d) ≈ΨΨ̄. (4.1.9)

Finally, integrating (4.1.9) yields

ρ(d) ≈ΨΨ̄d . (4.1.10)

After passing through both bursts, σ(r > d) ≈ 0 so that

ρ(r > d) ≈ ΨΨ̄

1−ΨΨ̄d(r −d)
. (4.1.11)

We therefore find that the net focusing effect due to the two bursts of gravitational radiation is equivalent to a
single matter source with massΨΨ̄d .

Figure 8: A light ray γ passes through a burst of gravitational radiationΨ (as seen on the left), causing a circular arrangement
of nearby rays to get distorted into an ellipse (as seen in the spatial picture on the right). After passing through a second burst
−Ψ, these nearby rays will get distorted back into a spherical shape. There is a residual focusing effect.

Remark. The net focusing effect due to the Weyl curvature is

1. entirely non-local: The effect of local energy is to cause a jump in convergence in a bundle of rays, while
leaving the shear unaffected. While traveling through the bursts of gravitational radiation, it is only after
traveling through both bursts that the net effect is to cause a jump in convergence in a bundle of rays,
while leaving the shear unaffected.
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2. positive. This means that gravitiational radiation has positive energy. Conguences tangent to light cones
deviate from flat-space light cones through the term σσ̄+Φ00 in (4.1.1a). Assuming the null energy con-
dition holds, Φ00 ≥ 0, so that Dρ ≥ ρ2 +σσ̄. Hence, the effect of matter is to increase the convergence.
The shear term σσ̄ is also positive, σσ̄≥ 0, so that shear has the same effect as a positive energy density.

Figure 9: A small piece of I+. As r → ∞,
the null hypersurface bounded by S and
S ′ approaches a piece of I+.

The focusing argument laid down here assumes a situation not far
from Minkowski. In general, the shear does not enter (4.1.1a) as di-
rectly as Ricci curvature does, since the convergence also plays a role
in the evolution of the shear. It is therefore not clear ‘how much’ of the
focussing is due to the Weyl curvature, and how much is due to the
shear. There is, however, an important situation where we can make
this distinction, and where the small distance approximation (which
is effectively equivalent to a small convergence and shear approxima-
tion) becomes exact. Let Cr be a family of geodesic null congruences
na of rays running approximately parallel to null infinity in a small
neighbourhood of I+, so that C∞ :=C ⊂I+ (see figure 9). Consider
the difference in total convergence between two cuts S ′

r and Sr of
Cr ,

∮
ρ′S ′

r − ∮
ρ′Sr . Even though each integral diverges as r → ∞,

this difference is finite, and given by∮
ρ′S ′

r −
∮
ρ′Sr ≈

∫
(D ′−2ρ′)ρ′N ≈

∫
(σ′σ̄′+Φ22 −ρ′2)N ,

(4.1.12)

where N is the piece of I+ bounded by S ′ and S . To leading (O (r−1)) order, ρ′ is the same for all asymp-
totically flat space-times. This is because at infinity, the congruence na generates I+, which is a confor-
mally flat light-cone for all asymtotically flat space-times. First order deviations from flat space are given by∫
σ′σ̄′ + 4πGTabnanbN . The integrand is conformal, so that in the conformally re-scaled space-time of the

previous chapter,∫
(σ̂′ ˆ̄σ′+4πGT̂abnanb)N̂ =

∫
(Ω−2σ′σ̄′+4πGTabnanb)N ≈

∫
(þσ′þσ̄′+4πGTabnanb)N . (4.1.13)

(Hatted quantities refer, here, to the physical space-time.) The Ricci identities furthermore give þσ′ ≈−Φ20 :≈
−N , so that

Proposition 11. The energy m(N ) of a region N ⊂I+ bounded by two cuts of I+ is

m(N ) =
∫

((4πG)−1N N̄ +Tabnanb)N . (4.1.14)

Perhaps it would have been more appropriate to label proposition 11 as a definition rather than a propo-
sition, since we have not clearly defined energy. What makes this a good definition of energy on I is that in
the limit, the dynamics of σ′ are independent of ρ′,17 so that σ′σ̄′ has precisely the same effect on the total
convergence of I asΦ22.

4.1.1 The non-locality of gravitational radiation

It is tempting to call (4πG)−1N N̄ ‘the energy flux of gravitational radiation’ in an attempt to generalise Tabnanb ,
which is the energy flux of non-gravitational radiation. There is a tantalising similarity with the electromagnetic
energy flux (2π)−1φ2φ̄2 = T E M

ab nanb . The News N , however, is a non-local quantity. This means that N can-
not be computed at any one point of I+. To see this, note that N is related to the Weyl curvature by þ′N ≈ψ4,
ðN ≈ψ3 so that N can be computed as N ≈ ð†ψ3 or N ≈ ∫ u

−∞ψ4du which are integrals over an entire cut or gen-
erator of I+. The News is also given as the component N ≈Φ20 of the unphysical Ricci curvature. However, the

17Indeed, D ′σ′ =Ψ4 +O (r−2) since both σ′ and ρ′ vanish on I .
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unphysical Ricci curvature Rab is a function of the conformal factorΩ. Explicitly,Φ20 is given byΦ20 ≈Ω−1ð′2Ω
whereΩ is defined by the global condition that the re-scaled metric on each cut of I is a unit sphere.

It is even possible to arrange for N to be non-zero in flat space, in some cases. Indeed, let U be a flat small
neighbourhood of some point p ∈I+. Then if N is constant on U ∪I+, ψ4 ≈ 0 ≈ψ3 on U . It is for this reason
that in proposition 11 we required Σ to be bounded by two cuts of I+: if the News N is non-zero somewhere
on a cut S , ψ3 must necessarily also be non-zero somewhere on S ,18 so that S cannot be a cut of flat space.
This ensures that m(N ) is necessarily zero in flat space.

4.1.2 Mass at I+

From proposition 11 we can deduce a definition of mass on each cut of I+. Suppose N is bounded by two
cuts S ′ and S of I+, where S ′ lies in the future of S . Let m(S ) be the total energy of a non-time-like hy-
persurface intersecting I+ in S . Suppose m(S ) is conserved in the sense that the energy does not depend on
the particular choice of hypersurface, then m(S ) = m(S ′)+m(N ). With these requirements, we can uniquely
define an energy function intrinsic to I+ with these properties:

Figure 10: The mass difference m(S )−m(S ′) between two cuts S and S ′ is given by the total amount of radiation m(N )
escaping through N . Adapted from [Penrose & Rindler, 1986].

Theorem 7. Let m(S ), the total energy of S , be a family of real valued functions on cuts of I+ that vanish in
flat space and are conserved in the sense that for all cuts S ′ and S bounding N ⊂ I+, where S ′ lies in the
future of S , m(S ′)−m(S ) =−m(N ), i.e.

m(S ′)−m(S ) =−
∫

((4πG)−1N N̄ +Tabnanb)N . (4.1.15)

Then

m(S ) =− 1

4πG

∮
(ψ2 −σN )S . (4.1.16)

18N has spin weight s =−2 and can therefore not be a non-zero constant on a sphere.
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Proof. Let S be a cut with constant Bondi parameter u. The mass flux law (4.1.15) yields the following differ-
ential equation for m(u):

ṁ(u) =−
∮

((4πG)−1N N̄ +Tabnanb)S (4.1.17)

so that
d

du

(
m −

∮
(4πG)−1σNS

)
=−

∮
((4πG)−1σψ4 +Tabnanb)S , (4.1.18)

where we used integration by parts19∫
N N̄N =

∫
σψ4N −

∮
σNS ′+

∮
σNS . (4.1.19)

The 0011 component of the asymptotic Einstein equations (3.4.10) is ψ̇2 −ðψ3 −σψ4 ≈ 4πGTabnanb so that
m =−(4πG)−1

∮
ψ2−σNS +c, where c ∈C is an arbitrary constant, solves (4.1.18).20 Since in Minkowski space

ψ2 ≈ 0 ≈ N , the constant of integration c must be zero in order to make the mass vanish in flat space. Hence

m(S ) =− 1

4πG

∮
(ψ2 −σN )S . (4.1.20)

Finally, to show that (4.1.20) is real, we use the asymptotic Bianchi identities (proposition 9),
ψ2−ψ̄2−σN+σ̄N̄ ≈ ð′2σ−ð2σ̄. Since the right-hand-side is a total divergence, its integral over a closed surface
vanishes, so that

m(S )−m̄(S ) =− 1

4πG

∮
(ð′2σ−ð2σ̄)S = 0. (4.1.21)

This mass (4.1.20) is called the Bondi mass, and proposition 11 (or rather, (4.1.17)) is called Bondi’s mass
loss theorem. These were first found using very different arguments!21

4.2 Penrose’s quasi-local mass

As we mentioned at the start of this section, there is, in general, no way to ‘integrate’ the local energy-momentum
density pa = T a

b t b as seen by a congruence of observers with four-velocity t a . In Minkowski space, there does
exist an absolute parallelism given by the translation Killing vector fields. We can obtain the energy-momentum
and angular momentum as conserved charges associated with the ten conserved currents J a = T a

bξ
b where ξa

is a Killing vector. The total energy-momentum vector pa(Σ) and total angular momentum tensor Mab(Σ,O) of
a space-like hypersurface Σwith respect to some origin O is given by

kapa(Σ)+k
1

ak
2

bMab(Σ,O) :=
∫
Σ

(ka +k
1

[ak
2

b]xb)T c
a ϵcde f , (4.2.1)

where ka, k
1

a and k
2

a are translation Killing vector fields whose values at each point are given by ka , k
1

a and k
2

a .

xa is a position vector field, i.e. a solution of ∇a xb = g b
a that vanishes at O. Note that ka and k

1

[ak
2

b]xb span

the full ten-dimensional space of Killing vector fields. (4.2.1) defines a linear map and a skew bilinear map
on Σ relative to some origin O from translation Killing vector fields to real numbers. Hence, it defines a dual
translation vector field pa(Σ) and a skew translation tensor field Mab(Σ,O).

19Recall that ψ4 ≈ Ṅ and N =− ˙̄σ.
20Note that

∮
ðψ3S = 0.

21Compare with the original work by to Bondi and collaborators [Bondi et al., 1962, Sachs, 1962a].
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Unlike the gravitational source Tab , the conserved electromagnetic charge current j a may be integrated over a
three-volume to yield a conserved charge, and therefore does not require any Killing fields:22

q :=
∫
Σ
⋆j. (4.2.2)

We may express the charge as a surface integral over the field strength using Maxwell’s equations. In terms of
differential forms, they are given by d ⋆F = 4π⋆ j, so that

q :=
∫
Σ
⋆j = 1

4π

∮
∂Σ
⋆F. (4.2.3)

The field strength F may be written as a symmetric two-spinor

Fab =φABϵA′B ′ +φA′B ′ϵAB , (4.2.4)

and (⋆F)ab = iφABϵA′B ′ − iφA′B ′ϵAB , (4.2.5)

so that Fab − i (⋆F)ab = 2φABϵA′B ′ (4.2.6)

Since dF = 0 by the homogeneous Maxwell equations,
∮

F = 0 so that (4.2.3) can be rewritten as

q = i

2π

∮
∂Σ
φABϵA′B ′ . (4.2.7)

We can use this alternative description of electric charge as a two-surface integral of the field to generate
gravitational charges. The Weyl spinor ΨABC D in vacuum satisfies a higher spin version of Maxwell’s vacuum
equations. The Bianchi identities are ∇A

A′ΨABC D = 0 (compare Maxwell’s vacuum equations ∇A
A′φAB = 0). We

can lower the spin of the Weyl spinor by contracting it with some spinor ωA satisfying ∇(A
A′ω

B) = 0, so that

ΨABC Dω
CωD satisfies Maxwell’s vacuum equations. Integrating these forms over a closed two-surface will then

yield gravitational conserved charges:

qABω
AωA := i

4πG

∮
∂Σ
ΨABC Dω

CωDϵA′B ′ . (4.2.8)

(4.2.8), together with the equation ∇(A
A′ω

B) = 0 defining ωA , is the starting point of Penrose’s definition of en-
ergy momentum and angular momentum in general relativity [Penrose, 1982]. Presently, qAB ≡ 0 since, by the
commutator equations,

∇A′(A∇B
A′ω

C ) =ΨABC DωD , (4.2.9)

so that ∇(A
A′ω

B) = 0 has non-zero solution if and only if ΨABC D is type N, in which case the integrand of (4.2.8)
vanishes.

Before we try to generalise (4.2.8), let us first explore its connection to (4.2.1).

4.2.1 Twistors inM

A Twistor is a solution ωA to the Twistor equation

∇(A
A′ω

B) = 0. (4.2.10)

22Recall that in order to integrate the gravitational source Tab to yield globally conserved charges, we needed to construct conserved
currents J a = T a

bξ
b where ξ is a Killing vector.
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In Minkowski space M, its solutions form a four complex dimensional vector space Tα. It is easy to see23 that
the solutions to (4.2.10) are given by

ωA = ω̊A − i x A A′
πA′ , (4.2.11)

where we have introduced a circle above a spinor, for example ξ̊A to mean ‘ξA evaluated at O’. ω̊A and πA′ are
constant spinor fields (the factor −i will be convenient to us later), and xa is a position vector in M relative to
some origin O. A Twistor Zα ∈ Tα is therefore given, at any point, by two spinor fields Zα = (ωA ,πA′ ), where
πA′ = 1

2 i∇A A′ωA .

The dual Twistor space Tα consists of pairs Wα = (λA ,µA′
) at O, so that the scalar product is

ZαWα =ωAλA +πA′µA′
. (4.2.12)

We similarly want to describe Tα as spinor fields on M. To achieve this, we demand that (4.2.12) holds not just
at O, but at every point. We then find that

ZαWα = ω̊Aλ̊A + π̊A′ µ̊A′

=ωAλA +πA′µA′ = (ω̊A − i x A A′
π̊A′ )λA + π̊A′µA′

. (4.2.13)

It is easy to see that, in order to make (4.2.12) constant, we require µA′ = µ̊A′ + i x A A′
λA and λA = λ̊A , which are

the solutions to ∇A′
A µ

B ′ = iϵA′B ′
λA , and in particular the complex conjugate of the Twistor equation, ∇(A′

A µB ′) =
0. Complex conjugation therefore provides a map between Tα and Tα.

4.2.2 The Kinematic Twistor

Notice that (4.2.8) maps two Twistors to a complex number bilinearly, and therefore defines a (symmetric)
Twistor Qαβ ∈ T(αβ). Of course, in Minkowski space Qαβ = 0, and in curved space-times Tα is generally not
well-defined. Consider therefore, instead, the linearized Einstein equations on M. Let Kabcd be the linearized
Riemann tensor. Kabcd satisfies the differential Bianchi identity ∇[aKbc]de = 0 and the linearized Einstein equa-
tions K c

acb − 1
2ηabK cd

cd = 8πGTab . Let the totally symmetric spinor fieldφABC D be the Linearized Weyl spinor.

By the differential Bianchi identity, this spinor satisfies the mass-less field equations, so that φABC Dω
CωD sat-

isfies Maxwell’s equations, which yield conserved gravitational charges. The following proposition relates these
charges back to energy-momentum and angular momentum:

Proposition 12. The form (Ξ)abc =−ξe T d
e ϵabcd is exact, i.e. Ξ= dΘ, whereΘ is given by

(Θ)ab = Kabcdϵ
cde f Qe f , (4.2.14)

where Qab = iσABϵA′B ′ − i σ̄A′B ′
ϵAB is an anti-symmetric tensor, satisfying ∇(aQb)c −∇(aQc)b + g a[b∇dQc]d = 0.

It follows that ξa = 1
3∇bQab is a Killing vector field, and that σAB satisfies the valence two Twistor equation

∇(A
A′σ

BC ) = 0.

Proof. We will treat the first two and last two indices of Kabcd as differential form indices. The Hodge star
operation on the first and last pair will be denoted by ⋆K and K⋆, respectively. By the differential Bianchi
identity,

(dΘ)abc =∇[aQde (K⋆)bc]de so that (⋆dΘ)a = 1
3∇bQcd Habcd , (4.2.15)

23∇A
A′∇B

B ′ωC is skew in BC and, since M is flat, also skew in AC because we may commute the covariant derivatives. Hence, being skew

in three indices, ∇A
A′∇B

B ′ωC = ∇[A
A′∇B

B ′ωC ] = 0, so that ∇A A′ωB = −iϵ B
A πA′ , where πA′ is an arbitrary contant spinor. This equation may

then straightforwardly be integrated.
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where we defined H =⋆K⋆. By the first Bianchi identity,

∇bQcd Habcd = 2∇cQbd Habcd so that ∇bQcd Habcd = 4
3∇(bQc)d Habcd . (4.2.16)

Finally, using ∇(aQb)c −∇(aQc)b + g a[b∇dQc]d = 0, we find

(⋆dΘ)a = 4
9∇(bQc)d Habcd =− 2

9 g bc∇eQde Habcd

=− 2
3 g bcξd Habcd

= 2
3ξ

d (K b
abd − 1

2ηad K bc
bc ) = 16πG

3 Tabξ
b . (4.2.17)

In going to the last line, we used that Habcd is related to Kabcd by multiplying the Weyl part by −1, and reversing
the trace of the Ricci part. This means that H b

abc = K b
abc − 1

2ηac K bd
bd .

In vacuum, we therefore find that

1

8πG

∮
φABC Dσ

C DϵA′B ′ + φ̄A′B ′C ′D ′ σ̄C ′D ′
ϵAB =

∫
ξaT b

a ϵbcde . (4.2.18)

We can writeσAB as the symmetric product of two Twistors, σAB = ∑
i , j
ω(A

i
ωB)

j
, so that we may define a symmet-

ric Twistor Aαβ ∈T(αβ), which is given by

AαβZαZβ := 1

8πG

∮
φABC Dω

CωDϵA′B ′ . (4.2.19)

With (4.2.18), we can rewrite this as

AαβZαZβ =
∫

− 2
3 i (∇A A′ωAωB )T A′c

B ϵcde f =
∫

−2ωBπB ′T B ′c
B ϵcde f

=
∫

(ω̊BπB ′ + iϵABπA′
πB ′

xA A′ )T c
BB ′ ϵcde f = 2p A′

A ωAπA′ +2iµA′B′
πA′πB′ , (4.2.20)

where in the last line we used (4.2.1). M ab is given by M ab = µA′B ′
ϵAB + µ̄ABϵA′B ′

. (4.2.20) tells us what the
different components of Aαβ are in terms of the standard basis Zα = (ωA ,πA′ ).

4.2.3 Two-surface Twistors

As we remarked earlier, the Twistor equation generally does not have non-zero solutions. We may regard this as
a feature of General Relativity, since we would otherwise have a definition of energy in which vacuum regions
don’t contribute to the total energy, which is contrary to our physical intuition. We therefore should not expect
an expression like qAB (4.2.8) to yield conserved charges like it does in flat space. In order for qAB (4.2.8) to
provide us with a definition of energy-momentum and angular momentum at some two-surface S , we merely
need some four-dimensional space of spinor fields ωA at S , which may be identified with Twistors in the case
thatΨABC D = 0.

Penrose’s suggestion [Penrose, 1982] is to consider only the components of the Twistor equation (4.2.10) in-
volving derivatives tangential to S . In GHP form, with l a and na orthogonal to S , these are

ðω1 =σω0 and ð′ω0 =σ′ω1. (4.2.21)

Its solution space can be shown to be at least four (complex) dimensional when S is a topological sphere, and
may only have more than four (complex) dimensions in exceptional cases. When (4.2.21) has exactly four in-
dependent solutions, it defines a two-surface Twistor space which we will denote by Tα(S ).

Having found a Twistor concept that is usable in curved space-time, we may now simply adopt an expression
of the form (4.2.20) as a definition of energy-momentum and angular momentum in General Relativity.
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Definition 12. The Kinematic Twistor is a symmetric Twistor Aαβ ∈T(αβ) given in GHP form by

AαβZ
αZβ :=− i

4πG

∮
(Ψ1 −Φ01)(ω0)2 +2(Ψ2 −Φ11 −Λ)ω0ω1 + (Ψ3 −Φ21)(ω1)2S . (4.2.22)

By construction, the Kinematic Twistor has the correct weak field limit.

Example 3. (Spherically symmetric space-times [Huggett & Tod, 1994])
Let S be a sphere of spherical symmetry, and let l a and na be orthogonal to S . Then the only non-zero spin
coefficients are those with no spin weight, since there are no constant harmonics with non-zero spin weight.
The two-surface Twistor equations become

ðω1 = 0 and ð′ω0 = 0, (4.2.23)

the solutions of which are multiples of 1
2

Y 1
2

and − 1
2

Y 1
2

respectively. These form a basis of Twistor space:

ωA =Zαe A
α =Z0

− 1
2

Y 1
2 ,− 1

2
o A +Z1

− 1
2

Y 1
2 , 1

2
o A +Z2

1
2

Y 1
2 ,− 1

2
ιA +Z3

1
2

Y 1
2 , 1

2
ιA . (4.2.24)

The norm is given by

{ZαZ̄α} = i (ω̄1′ðω0 −ω0ðω̄1′ + ω̄0′ð′ω1 −ω1ð′ω̄0′ )

=− i

2
p

2πr
(Z0Z̄3 −Z1Z̄2 +Z2Z̄1 −Z3Z̄0), (4.2.25)

which is constant. r , here, is a standard radial coordinate such that ð is simply r−1 times the unit sphere ð. We
may transform to a more convenient basis by setting Z0 =Ω0, Z1 =Ω1, Z2 =−2

p
2πr i P1′ , and Z3 =−2

p
2πr i P0′ ,

so that

{ZαZ̄α} =Ω0P̄0 +Ω1P̄1 + Ω̄0′P0′ + Ω̄1′P1′ =ΩAP̄A + Ω̄A′
PA′ . (4.2.26)

The only curvature components with no spin weight areΦ11,Λ andΨ2. The Kinematic Twistor may then easily
be computed as

AαβZαZβ = i

2πG

∮
(Φ11 +Λ−Ψ2)ω0ω1S

= i r 2

2πG
(Φ11 +Λ−Ψ2)

∮
(Z0

− 1
2

Y 1
2 ,− 1

2
+Z1

− 1
2

Y 1
2 , 1

2
)(Z2

1
2

Y 1
2 ,− 1

2
+Z3

1
2

Y 1
2 , 1

2
)dS

= i r 2

2πG
(Φ11 +Λ−Ψ2)(Z1Z2 −Z0Z3)

=
p

2r 3

G
(Φ11 +Λ−Ψ2)(Ω1P0′ −Ω0P1′ ) = 2p A′

A ΩAPA′ +2iµA′B′
PA′PB′ . (4.2.27)

Hence,

µA′B′ = 0 = p 0′
0 = p 1′

1 and p 0′
1 = r 3

p
2G

(Φ11 +Λ−Ψ2) =−p 1′
0 , (4.2.28)

so that the Penrose mass is given by mP = r 3G−1(Φ11 +Λ−Ψ2). (4.2.29)

As a specific example, consider the Reissner-Nordström black hole, for which, in Gaussian units,Φ11 =− 1
2GQ2r−4,

Λ= 0 andΨ2 =−Gmr−3, so that

mP = m − Q2

2r
. (4.2.30)
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In flat space-time, the energy density of the electric field due to a stationary point charge Q is Q2

8πr 4 , so that
the Penrose mass has the correct Newtonian limit. The Penrose mass, in this case, is different from the Komar

mass, which is mK = m−Q2

r . Finally, it may be remarked that in this special case, the Penrose mass is equivalent

to the Hawking mass, which is mH =
(

A
16πG2

)1/2
(1+ A

2πρρ
′). To see this, we first note thatΦ11+Λ−Ψ2−ρρ′ = K ,

where K is half the Gaussian curvature, which by the Gauss-Bonnet theorem is simply 1
2 r−2 so that

mP =
(

A

16πG2

)1/2

(1+ A

2π
ρρ′) = mH . (4.2.31)

Not every two-surface has a well-defined Penrose energy-momentum and angular momentum. Notice that
Aαβ has, in general, ten complex (i.e. 20 real) components. In flat space-time, only 10 (4 energy-momentum and
6 angular momentum) components are non-zero. Twistorially, the 10 constraints are AAB = 0 and A A’

A = p A’
A is

real. We can rewrite these using the infinity Twistor Iαβ, which is defined in flat space as

IαβZ
1

αZ
2

β :=π0′
1
π1′

2
−π1′

1
π0′

2
, (4.2.32)

so that the only non-zero components of Iαβ are IA’B’ = ϵA’B’. The non-zero components of AαγIγβ are therefore

AACϵ
CB and AA’

Cϵ
CB, and the non-zero components of IγαĀβγ

are ϵC’A’ABC and ϵC’A’A
C’

B. Hence, the constraints

can be written as AαγIγβ = IγαĀβγ
, or alternatively, AαγIγβ =AβγIγα so that

ZαAαγIγβZ̄β ∈R. (4.2.33)

In order to state (4.2.33), we need some kind of Twistor Iαβ ∈ T[αβ](S ) generalising the infinity Twistor in flat
space, and a Twistor norm ZαZ̄α (or, if we are only after the mass, only the Twistor norm is sufficient to demand
m2

P =− 1
4 Ā

αβAαβ ∈R). Unfortunately, neither (4.2.32) nor (4.2.12) are constant on a general two-surface.

Remark. The norm (4.2.12) can be shown to be constant if and only if S can be embedded isometrically in a
conformally flat space. The reason for this is that the Twistor equation (4.2.10) is conformal. Let ϵ̂AB =ΩϵAB ,
then

∇̂A A′ω̂B =∇A A′ω̂B +ϵ B
A ΥC A′ω̂C so that ∇̂(A

A′ ω̂
B) =Ω−1∇(A

A′ ω̂
B). (4.2.34)

Two-surfaces on which the norm (4.2.12) is constant are called non-contorted. In order for a surface to be
non-contorted, the curvature will have to satisfy several constraints at S , one of which isΨ2 − Ψ̄2 = 0.

Unfortunately, no solution has been found that is applicable to contorted two-surfaces, so that the Penrose
mass is generally only defined on non-contorted two-surfaces. On the other hand, there exist a wide variety
of exact solutions to Einstein’s equations containing non-contorted two-surfaces, and in all cases the Penrose
mass provides an appropriate energy concept. To name a few, the Penrose mass provides a notion of

1. gravitational potential energy [Tod, 1983]: any two-surface on time-symmetric vacuum initial data sets
is non-contorted. In particular, data representing a set of point masses mi yields

mP =∑
i

mi −
∑
i ̸= j

mi m j

di j
+O (d−2

i j ), (4.2.35)

where the sums range over all masses enclosed by the chosen two-surface, and di j is the distance be-
tween masses mi and m j .

2. total energy [Penrose, 1982], including (positive) gravitational wave energy: at spatial- and null infinity,
mP reduces to the ADM- and Bondi mass, respectively.

3. rest-mass energy [Tod, 1983]: in FLRW space-times, all two-surfaces are non-contorted and yield a mass
of ρV , where ρ = Tab t a t b is the energy density of the fluid at rest.
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4. electrostatic energy: in the Reissner-Nordström space-time, as shown in example 3 (4.2.30)

5. the irreducible mass of a black hole, in the case of a spherically symmetric marginally outer trapped
surface, which can be seen from example 3 by noting that ρ = 0 on a marginally outer trapped surface, so
that the mass (4.2.31) becomes

mP =
(

A

16πG2

)1/2

. (4.2.36)

4.3 Mass and Angular momentum at I

Null infinity is a rather interesting special case that warrants closer inspection. By construction, the Kinematic
Twistor reduces to the standard flat space description of energy-momentum and angular momentum in the
weak field limit. In some sense, all fields at I are ‘weak’ and one might therefore expect I to be non-contorted.
However, perhaps surprisingly, even though the Weyl curvature vanishes on I , I is generally contorted. In-
deed, in order for Z

0

αZ̄α to be constant, ðð′{Z
0

αZ̄α} has to vanish24. After a short computation, we find

ðð′{Z
0

αZ̄α} = i ðð′(ω̄1′ðω
0

0 −ω
0

0ðω̄1′ + ω̄0′ð′ω
0

1 −ω
0

1ð′ω̄0′ )

= i ð(σ̄ω̄0′ðω
0

0 + ω̄1′ð′ðω
0

0 −ω
0

0ð′ðω̄1′ + ω̄0′ð′2ω
0

1)

= i (ðσ̄ω̄0′ðω
0

0 +ðω̄1′ð′ðω
0

0 + ω̄1′ðð′ðω
0

0 −ðω
0

0ð′ðω̄1′ −ω
0

0ðð′ðω̄1′ + ω̄0′ðð′2ω
0

1)

≈ i (ðσ̄ω̄0′ðω
0

0 +ðω̄1′ (ðð′+ 1
2 )ω

0

0 + ω̄1′ð(ðð′+ 1
2 )ω

0

0 −ðω
0

0(ðð′+ 1
2 )ω̄1′ −ω

0

0ð(ðð′+ 1
2 )ω̄1′ + ω̄0′ð′2ðω

0

1)

≈ i (ðσ̄ω̄0′ðω
0

0 + 1
2 ðω̄1′ω

0

0 + 1
2 ω̄

1′ðω
0

0 −ðω
0

0ð(σ̄ω̄0′ )− 1
2 ðω

0

0ω̄1′ −ω
0

0ð2(σ̄ω̄0′ )− 1
2ω0

0ðω̄1′ + ω̄0′ð′2(σω
0

0))

≈ iω
0

0ω̄0(ð′2σ−ð2σ̄), (4.3.1)

where we used the two-surface Twistor equations (4.2.21), which also imply that ð2ω0 ≈ 0 since ð′ω0 ≈ 0. We
also assume we are using a Bondi frame, in which the Gaussian curvature K ≈ 1

2 , so that (ðð′−ð′ð) f ≈−s f for
spin s weighted functions f . Hence the Twistor norm is constant if and only if the symptotic shear σ is purely
electric, ð′2σ≈ ð2σ̄.

Remark. The condition thatσ is purely electric also guarantees the existence of a four parameter family of good
cuts, related to each other by translations. Recall that under a supertranslation u 7→ u +H ,

σ(u) =σ(u +H)+ð2H . (4.3.2)

Recall, also, that ð 7→ ð−ðHþ′ so that

ð′σ 7→ (ð′−ð′Hþ′)(σ(u +H)+ð′2ð2H) = (ð′σ)(u +H)+ (þ′σ)(u +H)ðH −ðH(þ′σ)(u +H)+ð′ð2H

= (ð′σ)(u +H)+ð′ð2H , (4.3.3)

where we have used the chain rule. Similarly,

ð′2σ(u) 7→ (ð′2σ)(u +H)+ð′2ð2H . (4.3.4)

The reason it is, in general, not possible to find a supertranslation so that σ 7→ 0, is that H is real, while σ is
complex and thus has two real degrees of freedom. As it turns out, the magnetic part of σ is invariant under
supertranslations:

ð′2σ(u)−ð2σ̄(u) 7→ (ð′2σ)(u +H)+ð′2ð2H − (ð2σ̄)(u +H)−ð2ð2H = ð′2σ(u +H)−ð2σ̄(u +H), (4.3.5)

so that if ð′2σ−ð2σ̄≈ 0, there always exists a supertranslation mapping a bad cut onto a good cut. The vanishing
of the magnetic part of σ, therefore, singles out a unique Poincaré subgroup of the BMS group as the largest
subgroup that maps good cuts to good cuts.

24ðð′ is a kind of ‘complex Laplacian’. Its real part ðð′+ð′ð acting on quantities with no spin weight is precisely the ordinary Laplacian.
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Even though the Twistor norm is not well-defined at I+, it is possible to state (4.2.33) since it turns out that
there exists a well-defined map Zα 7→ IαβZ̄β. In order to construct this map, let us first examine the infinity
Twistor Iαβ at I+. In terms of spinor fields on the conformally completed space-time (M̄ ,ϵAB = Ωϵ̂AB ), it is
given by

IαβZ
1

αZ
2

β = ϵ̂A′B ′
π̂A′

1
π̂B ′

2
=− 1

4 ϵ̂
A′B ′

(∇̂A A′ωA

1
)(∇̂BB ′ωB

2
)

=−ΩϵA′B ′
( 1

2∇A A′ωA

1
+ΥA A′ωA

1
)( 1

2∇BB ′ωB

2
+ΥBB ′ωB

2
)

=−ΩϵA′B ′
( 1

2∇A A′ωA

1
−Ω−1NA A′ωA

1
)( 1

2∇BB ′ωB

2
+Ω−1NBB ′ωB

2
)

≈ i N A′
A (πA′

1
ωA

2
−πA′

2
ωA

1
)

≈ i A(π1′
1
ω0

2
−π1′

2
ω0

1
) ≈ A(ω0

1
ðω0

2
−ω0

2
ðω0

1
). (4.3.6)

Let us summarise some important properties in a proposition:

Lemma 2. The infinity Twistor Iαβ ∈T[αβ](S ) is well defined on cuts of I+, being given by the constant expres-
sion

IαβZ
1

αZ
2

β ≈ A(ω
2

0ðω
1

0 −ω
1

0ðω
2

0). (4.3.7)

There exists a two-(complex)-dimensional linear subspace IαβT̄β ⊂Tα that is annihilated by Iαβ, which has the

property that the scalar product WαZ̄α is well defined for all Wα ∈ IαβT̄β and Z̄α ∈ Tα. Using this fact, we can

construct a unique map Zα 7→ IαβZ̄β characterised by

Zα
0

IαβZ̄β = IαβZα
0

Zβ. (4.3.8)

In terms of spinor fields, this map is given by

{ω0,ω1} 7→ {0,−i Aω̄0′ }. (4.3.9)

Proof. It is easy to see that applying ð to (4.3.7) annihilates it, so that (4.3.7) is constant, so that the Iαβ is well-
defined at I+.

If either ω0
1

or ω0
2

vanishes, IαβZα
1

Zβ
2

= 0. If ω0 = 0, one of the components of the two-surface Twistor equa-

tions (4.2.21) at I+ is automatically satisfied, while the other is ðω1 ≈ 0. This equation has a two-(complex)-
dimensional solution space spanned by 1

2
Y 1

2
. Notice that, by (4.3.1), the Twistor scalar product with any other

Twistor is constant.

Finally, we compute the map Zα 7→ IαβZ̄β, which maps {ω0,ω1} 7→ {η0,η1} by setting

i (η̄1′ðω
0

0 −ω
0

0ðη̄1′ + η̄0′ð′ω
0

1 −ω
0

1ð′η̄0′ ) :≈ A(ω0ðω
0

0 −ω
0

0ðω0), (4.3.10)

from which is is easy to see that η0 = 0 and η1 =−i Aω̄0′ .

Having found IαβZ̄β, we can now finally extract the energy-momentum from the Kinematic Twistor (4.2.20),
and show that it is real:

Theorem 8. At I+, the Kinematic Twistor satisfies

ZαAαβIβγZ̄γ =− 1

4πG

∮
(ψ2 −σN A−1)Aω0ω̄0′S ∈R, (4.3.11)

so that only ten real components are non-zero. The term Aω0ω̄0′ satisfies ð2(Aω0ω̄0′ ) = 0, so that its span W is a
linear combination of Y0 and Y1 spherical harmonics. In spherical coordinates, W = 1 and W = (sinϑcosϕ, sinϑsinϕ,cosϑ)
yield the energy and momentum components, respectively, in an orthonormal basis.
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Proof. Let us, for simplicity, consider AαβZ
αZβ.25 We can transform the (ω1)2 term into a ω0ω1 term by using

ψ3 ≈ A−1ðN and integrating by parts:

AαβZ
αZβ =− i

4πG

∮
(ψ1(ω0)2 +2ψ2ω

0ω1 +ψ3(ω1)2)S

=− i

4πG

∮
(ψ1(ω0)2 +2ψ2ω

0ω1 −2A−1Nω1ðω1)S

=− i

4πG

∮
(ψ1(ω0)2 +2(ψ2 −σN A−1)ω0ω1)S . (4.3.12)

Using (4.3.9) we see that the energy-momentum ZαAαβIβγZ̄γ is given by

ZαAαβIβγZ̄γ =− 1

4πG

∮
(ψ2 −σN A−1)Aω0ω̄0′S . (4.3.13)

Using the asymptotic Bianchi identities (proposition 9), Aψ2 − Aψ̄2 −σN + σ̄N̄ ≈ ð′2σ−ð2σ̄. We can therefore
write the imaginary part of the integrand on the right-hand-side, using integration by parts twice, as

ZαAαβIβγZ̄γ−ZαAαβIβγZ̄γ =− 1

4πG

∮
(ð′2σ−ð2σ̄)ω0ω̄0′S

=− 1

4πG

∮
(σð′2(ω0ω̄0′ )− σ̄ð2(ω0ω̄0′ ))S = 0. (4.3.14)

Hence,

ZαAαβIβγZ̄γ ∈R. (4.3.15)

It may be verified that

m2 = 1

4πG2

∮
(ψ2 −σN A−1)(Y0,0 − 1p

3
Y1,0)S

∮
(ψ2 −σN A−1)(Y0,0 + 1p

3
Y1,0)S

− 1

6πG2

∮
(ψ2 −σN A−1)Y1,−1S

∮
(ψ2 −σN A−1)Y1,1S (4.3.16)

Is Lorentz invariant, in the sense that m2 (4.3.16) does not depend on the two-sphere metric on S . Hence

W apa(S ) :=− 1

4πG

∮
(ψ2 −σN A−1)W S , (4.3.17)

defines the total energy-momentum vector pa, where W a = (W 0,W 1,W 2,W 3) and

W =p
4πW 0Y0,0 +

√
2π
3 W 1(Y1,−1 +Y1,1)+ i

√
2π
3 W 2(Y1,−1 −Y1,1)+

√
4π
3 W 3Y1,0. (4.3.18)

In spherical coordinates, W = W 0 +W 1 cosϑsinϕ+W 2 sinϑsinϕ+W 3 cosϕ. The Minkowski norm of pa is
given by m2 = (p0)2 − (p1)2 − (p2)2 − (p3)2.

Presently, we cannot evaluate the energy momentum flux ‘pa(S ′)−pa(S )’ between two different cuts S ′
and S because the vectors pa(S ′) and pa(S ) belong to different vector spaces. To remedy this, we simply
extend the two-surface Twistor Zα = {ω0,ω1} ∈ Tα(S ) to the whole of I+ by setting þ′ω0 ≈ 0. The resulting
space is called asymptotic spin space SA. We can now interpret pa(S ) ∈ SA⊗ S̄A’ as a vector field on the whole of
I+.

25Since Aαβ is symmetric, we can construct any component AαβZ
α

1
Zβ

2
from AαβZ

αZβ using the polarization identity.
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Theorem 9 (Bondi’s mass loss theorem). The energy momentum flux pa(S ′)−pa(S ) through a region N ⊂I+
bounded by two cuts S ′ and S , where S ′ lies in the future of S , is given by

W a(pa(S ′)−pa(S )) =−
∫

((4πG)−1N N̄ +Tabnanb)W N . (4.3.19)

If Tabnanb ≥ 0 on I+, the flux is past causal.

Proof. The energy-momentum flux law (4.3.19) follows immediately from proposition 11 (4.1.14).

W corresponds to a future null direction if W =ωω̄ where ω consists of 1
2

Y 1
2

. Hence, if W is future null, W ≥ 0,

and if Tabnanb ≥ 0 on I+ then ((4πG)−1N N̄ +Tabnanb)W ≥ 0. Hence, pa(S ′)−pa(S ) is past causal.

4.4 Angular momentum

Obtaining a satisfactory definition of angular momentum is a much more challenging problem than defin-
ing energy-momentum, since in order to define the latter we merely needed to associate a vector to some cut
S ⊂I+. In order to define angular momentum we also need to provide a concept of ‘origin’ to S . The earliest
attempts at such a definition regard the cut itself to provide an origin. Indeed, in Minkowski space M, good
cuts26 correspond to light cones. These light cones correspond to a unique point inM via their vertex.

In the dynamical regions of I+ — and these are generically all of I+ — there are generally only bad cuts. Even
if a system starts out being stationary, and returns to being stationary after emitting gravitational radiation, a
good cut will generally be translated into a bad cut by virtue of the fact that

σ(u) 7→σ(u +H)−ð2H =σ(u)−
∫ u+H

u
N̄ du −ð2H . (4.4.1)

In order for a good cut to translate into another good cut, we need
∫ u+T

u N du to vanish, which is generally not
the case.

In stationary space-times we may, nevertheless, use the existence of a family of good cuts whose members
are related to each other through translations. The Bondi-Sachs definition of angular momentum on good cuts
is

JB :=− 1

8πG

∮
Y ψ1S , (4.4.2)

where Y consists of −1Y1 spherical harmonics. When performing a supertranslation u 7→ u+H , ψ1 transforms
as

ψ1(u) 7→ψ1(u +H)−3ψ2(u +H)ðH . (4.4.3)

In stationary space-times, by Einstein’s equations,

ψ̇1 ≈ ðψ2 and ψ̇2 ≈ 0, (4.4.4)

so that ψ2(u) ≈ψ2(0) ≡ψ2 and ψ1(u) ≈ψ1(0)+uψ̇1(0) ≡ψ1(0)+uðψ2. (4.4.5)

We therefore find that under a supertranslation u 7→ u +H which maps S 7→S ′,

JB 7→ − 1

8πG

∮
Y (ψ1 +Hðψ2 −3ψ2ðH)S ′. (4.4.6)

26recall that good cuts are cuts of I+ on which the shear σ vanishes.
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We can simplify the terms involving H through integration by parts:∮
Y (Hðψ2 −3ψ2ðH)S =−∮

Y (Hðψ2 −3ψ2ðH)S +2
∮

Hψ2ðY S so that

JB 7→ JB + 1

4πG

∮
(2Y ðH −HðY )ψ2S

′. (4.4.7)

Notice that if ð2H = 0 which is the case if H is a translation, ð2(2Y ðH −HðY ) = 0, so that the effect of a trans-
lation is precisely to add multiples of the Bondi momentum to JB .

Example 4. Bondi angular momentum of the Kerr space-time.
In a Bondi tetrad, the gravitational field ψABC D of the Kerr space-time at I+ is given by [Bai et al., 2007]

ψ0 ≈
√

96π

5

G J 2

m
2Y2 (4.4.8a)

ψ1 ≈ 2
p

3πiG J 1Y1 = 3iG J sinθp
2

(4.4.8b)

ψ2 ≈−Gm (4.4.8c)

ψ3 ≈ 0 ≈ψ4, (4.4.8d)

So that JB ,K er r =− 1
8πG

∮
sinθψ1S =− ip

2
J . Note that a translation adds a real multiple of the Bondi momentum

to JB , so that Kerr’s Bondi angular momentum is purely spin.

4.4.1 Twistor geometry, and Penrose’s angular momentum

The Twistorial definition of angular momentum operates very differently. Rather than the cut itself providing
an origin, the two-surface Twistor space Tα(S ) provides a Minkowski space of origins M(S ). To construct this
space, first assume S is non-contorted. This means that S can be embedded in Minkowski space M(S ). (If
S is contorted, we may instead embed S in complexified Minkowski space CM(S ).) Two-surface Twistors in
Tα(S ) correspond to spinor fields on S ⊂M(S ), which may be extended to the whole Minkowski spaceM(S ),
so that two-surface Twistors in Tα(S ) correspond to Twistors in M(S ). The points at which the spinor fields
ωA corresponding to null Twistors Zα (Twistors with vanishing norm; ZαZ̄α = 0) vanish, are null geodesics γ in
M:

γ := {x A A′ ∈M | ω̊A − i x A A′
πA′ = 0} = {(i ˚̄ωAπ̄A′ )−1ω̊A ˚̄ωA′ +λπ̄AπA′ | λ ∈R}. (4.4.9)

(If Zα is non-null, we may instead identify Zα with a null geodesic in complexified Minkowski space CM.)

(a) The physical space-time M containing a
non-contorted two-surface S . S can be embedded
into Minkowski space: see the figure on the right.

(b) A two-dimensional slice of the Minkowski space of
origins M(S ), into which S is embedded. Two-surface
Twistors correspond to Twistors inM(S ). A Null Twistor
determines a null geodesic γ in M(S ), defined as the
points at which ωA vanishes.
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In summary, null two-surface Twistors Zα ∈ T(S ), where S is non-contorted, correspond to null geodesics
γ ⊂M(S ), where M(S ) is an (abstract) Minkowski space whose points are unrelated to points in the physical
space-time M , except in the special case that M =M (or M is conformally flat.)

In the Minkowski space definition of angular momentum (4.2.1), the Killing vectors ξa = k
1

[ak
2

b]xb generat-

ing the components of the angular momentum also determine an origin O = {xa = 0} about which the angular
momentum is defined: this origin corresponds to the point where ξa vanishes. Similarly, from the flat space
definition of the Kinematic Twistor (4.2.20) we see that the origin is given by a point at which ωA vanishes.
This makes sense, since solutionsωA to the Twistor equation determine solutions ξa to Killings equations. The
points at which ωA = 0 are the points at which ξa = 0. This follows from proposition 12.

Hence both the component and the origin of the angular momentum in the expression AαβZ
αZβ are provided

by the Twistor Zα. What we have just shown is that Zα singles out the null geodesic on which the origin lies, but
not any one point. This may seem troublesome, but it is actually a nice feature of the Twistorial definition, as
the following proposition demonstrates:

Proposition 13. Let γ be a null geodesic in M with tangent vector π̄AπA′
. Then µA′B ′

πA′πB ′ is constant along γ.

Proof. Under a change of origin xa 7→ xa + y a , the angular momentum tensor M ab changes according to
M ab(xc ) 7→ M ab(xc + yc ) = M ab(xc )−2y [a pb]. In terms of the spinor µA′B ′ = 1

2 M AB A′B ′
ϵAB , this change is given

by µA′B ′
(xc ) 7→µA′B ′

(xc + yc ) =µA′B ′
(xc )− y A(A′

pB ′)
A . Let y A A′ =λπ̄AπA′

, then µA′B ′
πA′πB ′ transforms as

µA′B ′
(xCC ′ +λπ̄CπC ′

)πA′πB ′ =µA′B ′
(xCC ′

)πA′πB ′ −λπ̄Cπ(A′
pB ′)

C πA′πB ′ =µA′B ′
(xc )πA′πB ′ . (4.4.10)

This proposition tells us that, while the angular momentum is defined with respect to some point, the
component µA′B ′

πA′πB ′ is defined with respect to a null geodesic with tangent vector π̄AπA′
. To find the full

angular momentum with respect to some (real) origin O, one computes AαβZ
αZβ for at least three linearly

independent null Twistors Zα passing through O. Let γ
1

and γ
2

be two null geodesics in M(S ) represented by

null Twistors Z
1

α and Z
2

α. Suppose we have chosen our coordinate origin such that Z
2

α passes through it. Then

Z
2

α = {0,πA′
2

}, and in order for Z
2

α to intersect Z
1

α, πA′
2

has to be proportional to ω̄A′
1

. This then implies that

{Z
1

αZ̄α
2

} = 0. Since the coordinate origin is arbitrary, we conclude that γ
1

and γ
2

intersect if and only if {Z
1

αZ̄α
2

} = 0.

See figure 12.

Finally, let us examine the angular momentum part of the Kinematic Twistor at I+:

AαβZ
αZβ =− i

4πG

∮
ψ1(ω0)2 +2(ψ2 −σN A−1)ω0ω1S . (4.4.11)

The Bondi-Sachs angular momentum has been a widely used measure of total angular momentum. It produces
a sound definition in a few cases, and so it should not come as a surprise that it shares a few similarities with
Penrose’s definition.

Remark. (similarities with the Bondi-Sachs angular momentum)

1. (ω0)2 satisfies ð′(ω0)2 = 0 and therefore consists of −1Y1 harmonics.

2. since ω1 satisfies the Twistor equation ðω1 = σω0, so does ω1 + ξ where ðξ = 0. The term ω0ξ satisfies
ð2(ω0ξ) = 0, and therefore consists of Y0 and Y1 harmonics. Hence, adding ξ to ω1 results in multiples of
the Bondi energy-momentum being added to (4.4.11).

3. On a good cut,ω0ω1 consists of Y0 and Y1 harmonics, so that Penrose’s angular momentum has the same
form as the Bondi angular momentum.
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Figure 12: A set of orthogonal null Twistors Z
i
α = (ω

i
A ,πA′

i
) correspond to null geodesics γ

i
intersecting at O. The angular

momentum at O is given by 2iµA’B’(O)πA’
i
πB’

i
=AαβZ

i
αZ

i
β.

On a bad cut, theω0ω1 term separates Penrose’s angular momentum from all prior definitions. Its structure
is somewhat complicated, depending on integrals of σ over S . It is interesting to gain some more insight into
this term. We may solve the two-surface Twistor equations ð′ω0 = 0 and ðω1 =σω0 by introducing the potential
λ for σ, satisfying27 ð2λ=σ. Given ω0, ω1 is

ω1 =ω0ðλ−λðω0 +ξ where ðξ= 0. (4.4.12)

We may substitute this into the Kinematic Twistor (4.4.11). Using integration by parts, we find the following
expression for AαβZαZβ:

AαβZ
αZβ =− i

4πG

∮
((ψ1 +3(ψ2 −σN A−1)ðλ+λð(ψ2 −σN A−1))(ω0)2 +2(ψ2 −σN A−1)ω0ξ)S . (4.4.13)

It would be premature to call the (ω0)2 part the Penrose angular momentum, even though this term seems
similar to the Bondi definition. On a good cut, we can make this identification because {ω0,0} is a null Twistor
and the Twistors Z

1

α = {ω
1

0,0} and Z
2

α = {ω
2

0,0} are orthogonal, Z
1

αZ̄α
2

= 0, so that Z
1

α and Z
2

α intersect. Their point

of intersection determines a real origin. The expression we are left with is identical to the Bondi definition. On
bad cuts, the (ω0)2 part of the Kinematic Twistor (4.4.13) yields the Penrose angular momentum with respect
to a real point only if the cut is purely electric.28 In particular, this is the case for stationary cuts.

Proposition 14. Let S be a purely electric cut of I+. Then Twistors of the form {ω0,ω0ðλ−λðω0} are null
and mutually orthogonal, so that they determine a real point in M(S ). With respect to this point, the angular
momentum is given by

µA’B’πA’πB’ =− 1

8πG

∮
(ψ1 +3(ψ2 −σN A−1)ðλ+λð(ψ2 −σN A−1))(ω0)2S . (4.4.14)

Proof. The condition ð′2σ = ð2σ̄ for a cut to be purely electric implies that λ is real. A lengthy computation
then reveals that the norm (4.2.12) simplifies to

{Z
0

αZ̄α} = i (ξ̄ðω
0

0 −ω
0

0ðξ̄+ ω̄0′ð′ξ
0
−ξ

0
ð′ω̄0′ ), (4.4.15)

27That such a potential exists, follows from the fact that σ has spin weight s = 2.
28Recall that a cut is purely electric if ð′2σ= ð2σ̄.
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from which it is easy to see that Twistors of the form {ω0,ω0ðλ−λðω0} are null and mutually orthogonal.

As an interesting special case, consider a good cut S . On this cut there exists a point where the Twistor
Zα = {ω0,0} vanish. Hence, the null geodesic in M(S ) determined by Zα intersects I+, and the real origin of
proposition 14 is therefore given by the vertex of the light cone inM(S ) intersecting I+ in S .

Penrose’s Twistorial definition of angular momentum is not as straightforward as some other more commonly
used definitions, such as the Bondi-Sachs or Komar angular momentum. There are quite a few conceptual
hoops that one needs to jump through, in particular regarding the Minkowski space of origins. It is then per-
haps not too surprising that for practical purposes, the Bondi-Sachs and Komar angular momentum (when
applicable) have always been favored over Penrose’s angular momentum. This is unfortunate, because both
the Bondi-Sachs definition and the Komar definition suffer from serious problems; neither have the correct
weak field limit. The former yields unphysical results when computed on bad cuts, while the latter yields un-
physical results in the presence of matter.

In order to demonstrate the results of this section, let us explicitly compute the Kinematic Twistor on an ar-
bitrary cut of I+ in the Kerr space-time. Surprisingly, as far as I am aware, this is the first and only explicit
(non-vanishing) example of Penrose’s angular momentum.

Theorem 10 (Total energy-momentum and angular momentum of the Kerr space-time). Let S be an arbitrary
cut of I+ in the Kerr space-time with mass- and angular momentum parameters m and J = ma. At S , the
Penrose mass and spin, given by the norm of the Pauli-Lubanski spin vector are

mP = m and SaSa =−m2 J 2, where Sa := i pA’
B µ̄

AB − i pA
B’µ

A’B’. (4.4.16)

Hence, as expected, the total mass and spin of the Kerr space-time are m and J.

Proof. A basis for Tα(S ) is given by

Zα = {ω0 =Z0
− 1

2
Y 1

2 ,− 1
2
+Z1

− 1
2

Y 1
2 , 1

2
,ω1 =ω0ðλ−λðω0 +Z3

1
2

Y 1
2 ,− 1

2
+Z3

1
2

Y 1
2 ,− 1

2
}. (4.4.17)

The norm is given by (4.2.25,4.4.15)

{ZαZ̄α} =− i

2
p

2π
(Z0Z̄3 −Z1Z̄2 +Z2Z̄1 −Z3Z̄0). (4.4.18)

We can find an ϵAB spinor by using that, in flat space, ϵABω
1

Aω
2

B = IαβX
1

αX
2

β. Where ωA = Zα ∈ IαβT̄β and Xα is

defined by Zα = Iαβ X̄β. Using that map provided by lemma 2 (4.3.9), we find that

ϵABω
1

Aω
2

B = A(ω
1

1ð′ω
2

1 −ω
2

1ð′ω
1

1), (4.4.19)

where Z
1

α = {0,ω
1

1} and Z
2

α = {0,ω
2

1}. For our basis (4.4.18), we find

ϵABω
1

Aω
2

B = A

2
p

2π
(Z

1

2Z
2

3 −Z
2

2Z
1

3). (4.4.20)

Transforming to a more convenient basis Z0 7→ i
√

2
p

2πAP1′ , Z1 7→ −i
√

2
p

2πAP0′ , Z2 7→
√

2
p

2π
A Ω0,

Z3 7→
√

2
p

2π
A Ω1, the Twistor norm and ϵAB simplify to

{ZαZ̄α} =Ω0P̄0 +Ω1P̄1 + Ω̄0′P0′ + Ω̄1′P1′ and ϵABω
1

Aω
2

B =Ω
1

0Ω
2

1 −Ω
2

0Ω
1

1. (4.4.21)
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Finally, let us consider the Kinematic Twistor. Because all cuts are purely electric, any cut S can be transformed
into a good cut with supertranslations u 7→ u −λ+T where T is an arbitrary translation, since, if u 7→ u +H ,

ð2λ=σ 7→σ+ð2H = ð2(λ+H). (4.4.22)

Note that σ (and hence also λ) are independent of u since N = 0. Using the expressions for ψABC D in example
4, we find that on a bad cut

ψ1 ≈ 2
p

3πiG J A−1
1Y1 −3Gm A−1ð(λ−T ), (4.4.23a)

ψ2 ≈−Gm A−1, (4.4.23b)

ψ3 ≈ 0. (4.4.23c)

The Kinematic Twistor becomes

AαβZ
αZβ =− i

4π

∮
((2

p
3πiG J1Y1 −3Gmð(λ−T ))(ω0)2 −2mω0ω1)A−1S . (4.4.24)

The energy-momentum is given by

pA’
A π̄

AπA’ =ZαAαβIβγZ̄γ =
1

4π

∮
mω0ω̄0′S

= 1p
2

∮
m(P1′ − 1

2
Y 1

2 ,− 1
2
−P0′ − 1

2
Y 1

2 , 1
2

)(P̄1 1
2

Y 1
2 , 1

2
+ P̄0 1

2
Y 1

2 ,− 1
2

)S

=− mp
2

(P̄0P0′ + P̄1P1′ ) (4.4.25)

Hence,29

p00′ = mp
2
= p11′ , p01′ = 0 = p10′ so that m2

P = papa = m2. (4.4.26)

Notice that pa is future causal if m > 0 and past causal if m < 0, hence mP = m.

Next, let us consider the angular momentum. The spin is origin independent, so we are free to fix a partic-
ular (real) origin. The simplest choice is provided by proposition 14. Starting from (4.4.14) and using (4.4.23a)
we find that the angular momentum is independent of the shear:

µA’B’πA’πB’ =− 1

8π

∮
(2
p

3πi J A−1
1Y1 +3m A−1ðT )(ω0)2S

= 1

2
p

2

∮
(2
p

3πi J 1Y1 +3mðT )(P1′ − 1
2

Y 1
2 ,− 1

2
−P0′ − 1

2
Y 1

2 , 1
2

)2S

=−i JP0′P1′ +
3m

2

∮
T (P1′ − 1

2
Y 1

2 ,− 1
2
−P0′ − 1

2
Y 1

2 , 1
2

)(P1′ 1
2

Y 1
2 ,− 1

2
−P0′ 1

2
Y 1

2 , 1
2

)S

:=−i JP0′P1′ +T A′B ′
P A′PB ′ , (4.4.27)

where T A′B ′
is real since T is real. Hence,

µ0′1′ =− 1
2 i J +T 0′1′ =µ1′0′ , and µ0′0′ ,µ1′1′ are real, (4.4.28)

from which we find S00′ = i p0′
A µ̄

0A − i p0
A’µ

0′A’ =−m Jp
2
=−S11′ , S01′ = 0 = S10′ , (4.4.29)

so that SaSa =−m2 J 2. (4.4.30)

29Recall that pA’
A π̄

AπA’ =−pAA’π̄AπA’.
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One may take the analysis of Kerr’s angular momentum structure further by decomposing T into spherical
harmonics in order to compute T A′B ′

, which yields M ab =µA’B’ϵAB+ µ̄ABϵA’B’. A different origin may be chosen
by choosing a two (complex) parameter family of Twistors with ξ ̸= 0 that are mutually orthogonal. This may
be a helpful exercise to familiarise oneself with Twistors, but from a physical point of view the full angular mo-
mentum is of little interest. The reason for this is that M ab depends on an origin, which in curved space-times
is not a point in the physical space-time itself. In order for such an identification to exist, the space-time man-
ifold M would need to have a vector space structure that can be identified with M, since a change of origin is
represented by a vector in the Minkowski space of origins M(S ).

On a contorted surface S , there still exists a complex Minkowski space of originsCM(S ), but without a Twistor
norm we cannot identify the subspaceM(S ) ⊂CM(S ) of real origins. At I+, there is a way (albeit a somewhat
crude way) to overcome this problem. If pa is causal, (so that the mass mP is positive) then there exists a unique
unit two-sphere metric on S such that pa = (mP ,0,0,0) (recall that the conformal transformations preserving
the metric of S are Lorentz transformations on Sa.) Having fixed the metric on S to be this unique metric,
define the Twistor norm as the average

{Z
0

αZ̄α} = i

4π

∮
(ω̄1′ðω

0

0 −ω
0

0ðω̄1′ + ω̄0′ð′ω
0

1 −ω
0

1ð′ω̄0′ )S . (4.4.31)

5 Concluding remarks

Throughout this work I have attempted to demonstrate the remarkable utility and elegance of spinors, when
applied to problems in classical General Relativity. The analysis carried out in the first two chapters could, in
principle, also have been translated into a tensorial language, but in some cases (such as the fingerprint, Petrov
classification and field equations at I ) such a translation would have lead to wild complications.

In the final chapter, spinors seem to have played an essential role. In principle, it might be possible to ex-
press the kinematic Twistor in a tensorial way, since energy-momentum and angular momentum are tensors,
although it is not at all clear what a non-Twistorial Penrose angular momentum would look like. In any case,
such an investigation does not seem productive.

Finally, I would like to speculate about future investigations into energy-momentum and angular momen-
tum. Like ΨABC D , the quantities ∇A

A′ . . .∇V
V ′φW X Y Z all satisfy the mass-less field equations in vacuum, where

φABC D is the weak-field Weyl spinor. Hence, it should be possible to define corresponding multipole Twistors
Qα1...α2n as integrals over these spinors [Curtis, 1978]. In general, we should not expect these to be well be-
haved, since Aαβ is not well-defined everywhere either, but perhaps when these quantities are evaluated at
null infinity they can be used to define the total multipole moments. Finding a satisfactory definition of mul-
tipole moments at null infinity is still an open problem. Another problem is that of finding a suitable defini-
tion of kinematic Twistor on contorted two-surfaces. Unfortunately, two-surfaces are generically contorted,
even in ‘nice’ space-times like Kerr. Curiously, a spinorial definition closely resembling Penrose’s kinematic
Twistor has been found in the Kerr space-time, which uses solutions to the Twistor equation with a modified
connection [Bergqvist & Ludvigsen, 1989, Bergqvist, 1991]. This connection has vanishing curvature and non-
vanishing torsion, so that the resulting Twistor equations can be integrated globally (refer back to equation
(4.2.9)). Perhaps, instead of finding a replacement for the kinematic Twistor and Twistor norm, we should look
for a modified ‘contorted two-surface Twistor space’. For now these problems remain unresolved.

55



References

[Bäckdahl, 2009] Bäckdahl, T. (2009). Relating the Newman–Penrose constants to the Geroch–Hansen
multipole moments. Classical and Quantum Gravity, 26(17), 175021. https://doi.org/10.1088/0264-
9381/26/17/175021

[Bai et al., 2007] Bai, S., Cao, J., Gong, X., Yu, S., Wu, X., & Lau, Y. (2007). Light cone structure near null infinity
of the Kerr metric. Physical review, 75(4). https://doi.org/10.1103/physrevd.75.044003

[Bergqvist & Ludvigsen, 1989] Bergqvist, G., & Ludvigsen, M. (1989). Spinor propagation and quasilo-
cal momentum for the Kerr solution. Classical and Quantum Gravity, 6(8), L133–L136.
https://doi.org/10.1088/0264-9381/6/8/003

[Bergqvist, 1991] Bergqvist, G., & Ludvigsen, M. (1991). Quasilocal momentum and angular momentum in Kerr
Spacetime. Classical and Quantum Gravity, 8(4), 697–701. https://doi.org/10.1088/0264-9381/8/4/014

[Bondi et al., 1962] Bondi, H., van der Burg, M. G. J., & Metzner, A. W. K. (1962). Gravitational waves in general
relativity, VII. Waves from axi-symmetric isolated system. Proceedings of the Royal Society of London.
Series A. Mathematical and Physical Sciences, 269(1336), 21–52. https://doi.org/10.1098/rspa.1962.0161

[Bramson, 1975] Bramson, B. D. (1975). Relativistic angular momentum for asymptotically flat
Einstein-Maxwell manifolds. Proceedings of the Royal Society of London, 341(1627), 463–490.
https://doi.org/10.1098/rspa.1975.0004

[Curtis, 1978] Curtis, G. E. (1978). Twistors and multipole moments. Proceedings of the Royal Society of London,
359(1697), 133–149. https://doi.org/10.1098/rspa.1978.0036

[Exton et al., 1969] Exton, A., Newman, E. T., & Penrose, R. (1969). Conserved quantities in the Einstein-
Maxwell theory. Journal of Mathematical Physics, 10(9), 1566–1570. https://doi.org/10.1063/1.1665006

[Freidel et al., 2021] Freidel, L., Oliveri, R., Pranzetti, D., & Speziale, S. (2021). The Weyl BMS Group and Ein-
stein’s Equations. Journal of High Energy Physics, 2021(7). https://doi.org/10.1007/jhep07(2021)170

[Freidel & Pranzetti, 2022] Freidel, L., & Pranzetti, D. (2022). Gravity from symmetry: duality and impulsive
waves. Journal of High Energy Physics, 2022(4). https://doi.org/10.1007/jhep04(2022)125

[Helfer, 2021] Helfer, A. D. (2021). Angular momentum, spinors, and twistors. Physical review, 104(10).
https://doi.org/10.1103/physrevd.104.104053

[Huggett & Tod, 1994] Huggett, S., & Tod, K. P. (1994). An introduction to Twistor Theory.
https://doi.org/10.1017/cbo9780511624018

[Newman & Unti, 1962] Newman, E. T., & Unti, T. (1962). Behavior of asymptotically flat empty spaces. Journal
of Mathematical Physics, 3(5), 891–901. https://doi.org/10.1063/1.1724303

[Newman & Penrose, 1965] Newman, E. T., & Penrose, R. (1965). 10 Exact Gravitationally-Conserved quantities.
Physical Review Letters, 15(6), 231–233. https://doi.org/10.1103/physrevlett.15.231

[Newman & Penrose 1968] Newman, E. T., & Penrose, R. (1968). New conservation laws for zero rest-mass
fields in asymptotically flat space-time. Proceedings of the Royal Society of London, 305(1481), 175–204.
https://doi.org/10.1098/rspa.1968.0112

[Newman, 1976] Newman, E. T. (1976). Heaven and its properties. General Relativity and Gravitation, 7(1),
107–111. https://doi.org/10.1007/bf00762018

[Penrose, 1965] Penrose, R. (1965). Zero rest-mass fields including gravitation: asymptotic behaviour. Proceed-
ings of the Royal Society of London, 284(1397), 159–203. https://doi.org/10.1098/rspa.1965.0058

56



[Penrose & MacCallum, 1973] Penrose, R., & MacCallum, M. (1973). Twistor Theory: an approach to the
quantisation of fields and space-time. Physics Reports, 6(4), 241–315. https://doi.org/10.1016/0370-
1573(73)90008-2

[Penrose, 1980] Penrose, R. (1980). Golden oldie: null hypersurface initial data for classical fields
of arbitrary spin and for general relativity. General Relativity and Gravitation, 12(3), 225–264.
https://doi.org/10.1007/bf00756234

[Penrose, 1982] Penrose, R. (1982). Quasi-local mass and angular momentum in general relativity. Proceedings
of the Royal Society of London, 381(1780), 53–63. https://doi.org/10.1098/rspa.1982.0058

[Penrose, 1983] Penrose, R. (1983). Spinors and torsion in general relativity. Foundations of Physics, 13(3),
325–339. https://doi.org/10.1007/bf01906181

[Penrose & Rindler, 1984] Penrose, R., & Rindler, W. (1984). Spinors and space-time. Vol. 1: Two-spinor calculus
and relativistic fields. https://doi.org/10.1017/cbo9780511564048

[Penrose & Rindler, 1986] Penrose, R., & Rindler, W. (1986). Spinors and Space-Time, Volume 2: Spinor and
Twistor Methods in Space-Time Geometry. https://doi.org/10.1063/1.2815249

[Sachs, 1962a] Sachs, R. (1962). Gravitational waves in general relativity VIII. Waves in asymptotically flat
space-time. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,
270(1340), 103–126. https://doi.org/10.1098/rspa.1962.0206

[Sachs, 1962b] Sachs, R. K. (1962). Asymptotic symmetries in Gravitational Theory. Physical Review, 128(6),
2851–2864. https://doi.org/10.1103/physrev.128.2851

[Szabados, 2009] Szabados, L. (2009). Quasi-Local Energy-Momentum and angular momentum in general rel-
ativity. Living reviews in relativity, 12(1). https://doi.org/10.12942/lrr-2009-4

[Tod, 1983] Tod, K. P. (1983). Some examples of Penrose’s quasi-local mass construction. Proceedings of the
Royal Society of London, 388(1795), 457–477. https://doi.org/10.1098/rspa.1983.0092

[Tod, 1986] Tod, K. P. (1986). More on Penrose’s quasi-local mass. Classical and Quantum Gravity, 3(6),
1169–1189. https://doi.org/10.1088/0264-9381/3/6/016

57


	Preface
	A short introduction to two-spinors
	The null flag
	Spinor algebra
	Decomposition of the Riemann tensor
	Canonical decomposition of fully symmetric spinors
	Classification of fully symmetric spinors

	What is a spinor, physically?
	Covariant differentiation of spinors
	Spinor curvature
	The spinor form of the Bianchi identities and Einstein's equations

	The GHP formalism
	The compacted spin coefficient formalism
	Space-like two-surfaces
	Integration on space-like two-surfaces
	Spin weighted spherical harmonics

	Null congruences
	The fingerprint of the Weyl tensor
	The Petrov-Pirani-Penrose classification


	Asymptotically flat space-times
	The geometry of I
	The BMS group
	The gravitational field at I+
	Einstein's field equations at I+

	Charges in General Relativity
	The geometric origin of gravitational energy
	The non-locality of gravitational radiation
	Mass at I+

	Penrose's quasi-local mass
	Twistors in M
	The Kinematic Twistor
	Two-surface Twistors

	Mass and Angular momentum at I
	Angular momentum
	Twistor geometry, and Penrose's angular momentum


	Concluding remarks

