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Onder de realistische kwantummechanische processen benaderen .de
oplossingen van Langevin-vergelijkingen het meest het idee van een

dissipatief proces.

In tegenstelling tot een bewering van van Hemmen in diens proefschrift,
heeft het door hem bestudeerde harmonische kristal niet één, maar

oneindig veel toestanden, die aan de klassieke KMS-konditie voldoen.

J.L. van Hemmen: Dynamics and ergodicity of the infinite

harmonic crystal. Proefschrift, Groningen, 1976.

Het verschijnsel, dat door Frigerio en Lewis "kwantum-thermisch
geheugen" is genoemd, namelijk het niet-Markoviaans zijn van kwantum-
mechanische processen in thermisch evenwicht, kan beter eenvoudig
"kwantumgeheugen" worden genoemd, omdat het zich ook bij temperatuur

nul voordoet.

Een goede maat voor het geheugen (het niet-Markoviaans karakter) van
het Hilbertruimte-proces {Unlp}:::_(», waarbij Y een eenheidsvektor

in een Hilbertruimte is, en U een unitaire transformatie daarvan, is
de hoek 6 tussen de "verleden" deelruimte D =H_N {w}l en de
"toekomstige" deelruimte D+ = H+ N {w}l, waarbij H_ en H+ de gesloten
deelruimten zijn, gegenereerd voor respektievelijk {Unxp}n <0 en
{u”y} > o

Als de maat u op [O,ZW], gedefinieerd door <w,Un1V>: f%;.exp(ixlq» u(d )
kan worden geschreven als {de) = w(p)de /27, met logwé€ L2, dan geldt

cos? 8 < z n’cnl2 , ‘
n=1

waarbi’j {cn} de rij van Fourier-koé&fficiénten van logw is.

Hoewel de grammatika en de semantiek van de moedertaal het denken op

de langere termijn beinvloeden, is het niet zo, dat we in het alle-

daagse spraak-gebruik de gedachte laten bepalen door de vorm van de

zin die haar tot uitdrukking zal brengen.




rdlent aanbeveling, objekten, waarvan het bestaan alleen met
a op te nemen.

1Vannde‘tweelingparadox in de relativiteitstheorie is
rlng, dat de relZlger, na lange tijd eenparig weggereisd
te~zijh, blj het aanzetten van de motor die zijn ruimteschip moet

‘gaan omkeren, zijn thuisgebleven tweelingbroer zo hoog in een

In de wiskunde is het onderscheid tussen globale theorie en gezwets

in de ruimte gelegen in het probleemoplOSSend vermogen ervan.

9. De verwarrende ekwivalentie van het sneller reizen door de tijd en
de vertraging van de levensprocessen, leidt tot het goed verdedigbaar

zijn van diametraal tegengestelde u1tdrukk1ngsw1jzen VOOor zo een

gebeuren.

R. Kousbroek: Anathema's I, Meulenhoff, zesde vermeerderde druk,
1979,

10. Er bestaat een tendens onder pas afgestudeerde artsen, andere

specialismen te kiezen dan dat van de huisartsgeneeskunde, omdat

zich in de huisartsenpraktijk het Probleem het meest nijbend voordoet

14

dat de huidige geneeskunde op het merendeel van de haar gestelde

vragen geen antwoord heeft,

11. Om de wereld eens van een andere kant te bekijken, is het niet

noodzakelijk, naar Australié te reizen.

12. De bewegingen, die de fysikus bestudeert, zijn vaak gracieuzer, dan

die hij maakt.

G. Zukav: The dancing wWu-Li masters, Bantam Books, 1979,

//7(; ey

an het lemma van Zorn kan worden aangetoond, niet in konstrukties

gravitatieveld plaatst, dat deze hem kwa leeftijd snel voorbijstreeft.

RS LR,

aan mifn vaden
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INTRODUCTION AND SUMMARY

A few years ago, M. Kac put forward the queétion, whethertjmasolutioﬂs
of certain quantummechanical Langevin equations approach thermal
equilibrium. In this thesis a partial, positive answer to this question
will be given.

Let us sketch the background, and explain the meaning of the question.
In 1908, Langevin proposed his now famous equation for the description of
the irregular motion of dust particles; suspended in a liquid. For the case
that the particle is also subject to a conservative force, derived from
a potential v, this equation is the following:

m-g—z—Q +f—§-Q + v'(Q.) = E,_. (1)

dt? >t dt =t t t
Here, m is the particle's mass, f a friction coefficient of the liquid, and
E denotes what is now known as "white noise", the Gaussian generalised

stochastic process, with covariance given by

<EtES>=2fkT6(t—.s). (2)

By ¢ we mean Dirac's delta function. The constants k and T are Boltzmann's
constant and the temperature of the liquid respectively.

In 1930, Uhlenbeck and Ornstein [UhO 30] constructed the solution of
the Langevin equation (1). It is a Markov process with values in the phase
space of the particle. Because of the Markov property, the associated
probability density on this phase space satisfies a diffusion equation.

If we suppose that the potential v is of a cup-like form, the latter
equation has a single stationary solution, towards which all other solutions
converge as time goes on. This stationary probability density turns out to
be the thermal equilibrium, or Gibbs, probability distribution, associated
with the potential v.

Thus it may be said that the solution of the Langevin equation (1)
approaches thermal equilibrium,. |

The probabilistic theory of Brownian motion thus being established,

two further fundamental problems came into view. On the one hand, it was

not clear, whether and how the theory could be derived from the first
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principles of classical mechanics and, on the other hand, some authors
wondered, what could be a suitable corresponding theory in quantum
mechanics. Somewhat surprisingly, answers to both questions were provided
by harmonic oscillator models.

In 1965, Ford, Kac and Mazur showed that, in a chain of coupled har-
monic oscillators, one of the oscillators can bemade to satisfy (1) to arbi-
trary accuracy by an appropriate choice of the coupling strengths, [FKM 65].
A similar result was obtained by Ullersma, [Ull 66]. A quantum theory of
friction and noise was now easily obtained by quantisation of the
oscillators in the chain. The equation of motion, satisfied by an element
of this FKM chain, was called the "quantum Langevin equation". It is
formally identical with (1), but now Q is a self-adjoint operator on some
Hilbert space, and E is an operator-valued distribution. The defining

relation (2) is replaced by the commutation relation

[Et ,ES] = 2ifh é'(t=-s)1 . (3)

If the entire chain is in thermal equilibrium, E has covariance

<E ,E > = 2f J ————§5%67ET eiw(t-—s) %% . (4)
1-e

As (4) indicates already, this quantum version of the Ornstein-Uhlenbeck

process is not a Markov process. This fact deprives one of the tool by

which to prove that it approaches thermal equilibrium. The question,

whether or not this is nevertheless the case, concerns us here.

As a matter of fact, approach to the guantummechanical Gibbs state is
not to be expected for nonzero values of £, on physical grounds. Indeed,
the noise and friction terms in (1) will continually induce transitions
between the energy levels of the oscillator considered, so that these will
be broadened and shifted. Only in the limit f + 0 one may hope to find the
quantum Gibbs state. For this reason, the question of approach to
equilibrium was posed by R. Benguria and M. Kac, [BeK 81] in the following
form.

For which v and T does the solution {Qt} of the quantum Langevin

equation have the property that, irrespective of the initial state < » >,

ITT

lim lim <exp(-i AQt)> = <exp (- ikx)>T ? (5)
£¥0 oo

Here, < * o denotes the ordinary quantummechanical Gibbs state on £ (L*(R))),

associated with the potential v.

For a harmonic potential v, the equation (1) can be explicitly solved,
and the solution indeed satisfies (5).

In the present thesis, as in [BeK 81], the problem is attacked using
perturbation theory around the harmonic potential. In [BeK 811, the
unperturbed equilibrium state was chosen as an initial state, and v was

chosen to be given by

vi{x) = 3 ax?+ ¢cexp(Arx). (6)

A power series expansion in € was considered of both sides of (5), a few
coefficients were explicitly computed, and seen to be equal. This strongly
suggested that (5) is indeed valid, at least for the above choices of the
initial state and the potential.

Here, it will be proved that for a general class of - convex - pertur-
bations of the harmonic potential, the limit as t >« indeed exists for all
initial states of the oscillator, (cf. § II.8), and that the limit is close
to the Gibbs state for f small, (cf. § II.9). However, the limit £ ¥+ 0
cannot be taken, because for every potential and temperature the proof of
the statement concerning the limit t +* ceases to be valid below some
positive value of f . Our proof is based on the existence of a "Mgller"
isomorphism between the perturbed and the unperturbed model. Such iso-
morphisms were also considered in an earlier paper, [Maa 82a].

As to the physical application of the gquantum Langevin equation, we
note that it does not lie in the description of dust particles, suspended
in a liquid. Indeed, the parameter 8 =1 va/m/kT, (cf. Appendix A), measuring
the importance of quantum effects, is extremely small in this case. Instead,
one should think of electrons in an atom or molecule., The noise then
originates from the vacuum and thermal fluctuations in the electromagnetic
field, whereas the friction is caused by radiation reaction. We shall prove
a result in this direction: an oscillator, coupled to a massless scalar

field, satisfies the quantﬁm Langevin equation in the limit where it

becomes a point charge.
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This thesis consists of three chapters.

Chapter I treats a classical mechanical model, which goes back to
Lamb, [Lam 00], and was revived by Lewis and Thomas, [LeT 75]. It consists
of a one-dimensional oscillator, attached to a semi-infinite string, which
is heated to a certain positive temperature (cf. front page) . The oscillator
in this model satisfies the Langevin equation (1) exactly; the model is
isomorphic to, but more transparent than, the limiting FKM chain model.

In Chapter II, the harmonic string model is guantised, and pertur-
bations are added to the potential. For each value of the temperature and
the friction coefficient, a class of perturbations is delineated, for which
the perturbed and the unperturbed evolutions are isomorphic. An estimate
is derived for the difference between the Gibbs distribution and the actual
equilibrium distribution.

In Chapter IIT it is shown that the abovementioned model of a point
charge oscillator in a massless scalar field is isomorphic to the string

model, constructed in the Chapters I and II, and thus satisfies the quantum

Langevin equation.

Chapter |
LANGEVIN EQUATIONS IN CLASSICAL MECHANICS

In this chapter, a classical mechanical model, obeying a Langevin
equation, is treated. In preparation of a quantummechanical treatment, a
Poisson bracket structure on its phase space is introduced. The question
of approach to equilibrium is studied, both with and without the use of

the Markov property.

§ 1. NEWTONIAN FRICTION

Consider the physical system of a massive particle on a line, the
motion t » Qe of which is subject to a linear friction force —11Qt, with
n > 0.

We shall choose the mags of the particle equal to 1, and suppose that
there also acts upon it a conservative force, derived from a potential v
on the line, For the moment, let these two forces be all that the particle
is subject to. Then, according to Newton's law, Qt satisfies the differen-

tial equation
Qt+th+v'(Qt) = 0. (1.1)

We assume that v is continuously differentiable and that v' satisfies the

Lipschitz condition

sketr =2 (1.2)

1 20 !

3 Vx

k>0 Vi) - v

,A €R’
1"
then there is a unique solution to (1.1) for any choice of the initial

position and velocity, O and Q . Let St:IIR2 + TR? denote the map
0 0

{QO,QO} »{Q,,Q.}, (t € R). By the nature of this definition, we have

= ] i 2. Let us call R?
Si o Sg Spsgr (tys €R), i.e. {St}tEIR is a flow on IR

the phase space, and {8 the phase fLow of our system.

t}tfﬁR




Approach to equilibrium

We are interested in the question, what happens if t becomes large.
Now, a friction force is a dissipative force. Under its influence the

particle can only loose energy, O stand still. Indeed, from (1.1) one

derives that

22

i<v(Qt) +%Q§> = 0, (V'(Qt) +ét> = - 1ol s 0. (1.3)

IA

dat

From this one would expect that, if v is of a form, as drawn in Fig. 1,

the particle's motion will slow down, and its position will approach one of

the equilibrium points of v, i.e. one of the zeroes of v'. To prove this,

we need the following lemma. Let h: R? » R be the energy function

1

h(g,p) = via) +3p?.

Let E = {A€R | v'(X) = 0} .

Lemma 1.1. For all x € R*, all t 2 O:

(1.4)

IA

h(s, x) s h(x),

and

il

h(Stx) h(x) =>Stx=xandx€E><{0}. (1.5)

Proof. (1.4) follows directly from (1.3). To prove (1.5), let S_x= {QS,QS}, and

suppose that h(S x) = h(x), for some t = 0. Then, by (1.3):

t t
0=J 2 h(ssx)ciis:—n{é2 ds.

0 ' 0
It follows that @ = 0 for 0 £ s S t, therefore 9 =9Q =0 and 9 = Q.
S

Moreover, because also Qs =0 for 0 £ s £t, we have Vv' (QS) =0 by (1.1). So

x € gx{0}.

Fig. 1.
Potential with

three equilibrium points.

X = X.
s0 St

Theorem 1.2. (variant of Liapunov's theorem). Suppose that
lim v(X) = o,
At oo

and that the set E of zeroces of v' is finite. Then for all x € R? there

is e € E, such that

lim Stx = {e,0}.
t—)oo

Proof. By lemma 1.1, the orbit {Stx}t> 0 remains inside the compact set K,

defined by
K={y €R*|h(y) £ h(x)}.

Consider

L= N {Stx tzT}.

T20

L is the set of those points in R? that are the limit of a sequence St x with
n

tn + ®, (called the w-limit points of x). We claim that L < E x {0}. Let y € 1,

say vy = lim St X. Then, because h(st x) is decreasing in t, for all s € R:
n

h(SSy) = lim h(SS DSt x) = lim h(SSth X ) = inf h(SS+t x) = inf h(Stx) =
n-+eo n N> n n n t

= inf h(st x) = lim h(st x) = h(y).
n n n->-o n

By Lemma 1.1, v € Ex{0}. To show that Stx tends to one point of Ex {0}, define,

for ¢ > 0:

|p| <e and iq—e|<eae ¢ E}

U = {{qrp} €ER?
€

Suppose now that for some ¢ > 0 and for arbitrarily large t , there are points

outside UE with tn—>oo. But because

Stx ¢ Ue' Then there is a sequence {Stnx }n €N

St X € K, and K\ Ua is compact, K\ Ue must contain a limit point y of some sub-

n

sequence of {St }. But then y € L, and L lies inside Ug, so we have a contra-
n

diction. It follows that for all ¢ >0 there is T z 0, such that

{Stxlt gT}cUE.

res as E has

Now, for e small enough, Ue consists of as many disconnected squa

points, and {stx |t 2 T}, being connected, must lie inside one of these. The

statement follows.
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Fig. 2. Stream lines of.a phase flow {St}.

§ 2. EMBEDDING INTO A HAMILTONIAN SYSTEM

Can the system S := {Iﬁ, {St}} , described in the previous section, be
cast into the mould of Hamiltonian mechanics?

Hamiltonian mechanics is the classical theory of isolated mechanical
systems. Such systems are described by a phase space, on which a real-
valued function (the Hamiltonian), a two-form and a flow are defined. The
three are related by the canonical equations of motion, and the Hamiltonian
and the two-form are conserved by the flow.

S is not such a Hamiltonian system. Indeed, h cannot serve as a
Hamiltonian, because h 1is not conserved by {St}. Neither is it possible to

find some other function h on R?*, such that the canonical equations

- oh . _ _ ok 2.1
O, = 33 (9,B) and By g (QurPy) (2.1

have the orbits of {St} as their solutions. Indeed, the flow defined by

(2.1) would preserve the two-form

On2 = dg A dp,

whereas {St} does not. Hamiltonian mechanics has a distinct frictionless
flavour. But, as we shall see, S admits an embedding into a Hamiltonian
system. If this were not the case, S could never describe a physical system.
Indeed, for every physical system one can find a smallest isolated system
containing it, and this is described by a Hamiltonian system R, say. This

yields an embedding of S into R.

The Lamb model

The Hamiltonian system we shall consider, was proposed by Lamb in
1900 {Lam 00] as an early model for spontaneous emission of radiation.
Recently, Lewis. and Thomas [LeT 75] showed that this system could be used as
a model for a small system in a heat bath, satisfying the Langevin equation.
In this and the next chapter, we shall extend these results to anharmonic
potentials, and a gquantum version of the system.

Let us first give a sketch. Imagine a massive ring of mass 1 that can
slide without friction (!) along a bar. To this ring there is attached a
string, extending infinitely far, and pulled tight to a tension n. The mass
of the string per unit of length is also n, so that waves can travel along
it at unit speed. The direction of the bar is perpendicular to that of the

string in its rest position. An irregular spring connects the ring with

some point, held fixed, and exerts on it a force -v'(Q), if Q € R is the

position of the ring, measured along the bar. We suppose that v satisfies

the conditions of theorem 1.2. Henceforth, we shall refer to the ring as

Fig. 3. Lamb's model of friction and radiation.




"the oscillator". Let wt(s),(s 2 0) be the shape of the string at time t,

(t € R). {mt} will satiSfy the one-dimensional wave equation
o, = 0f , (t €R), (2.3)

where the dot denotes time differentiation, and the prime differentiation
w.r.t. the spatial distance s . As the position of the ring at time t is

given by mt(O), we have
©,(0) = nel(0) - v' (0 (0)), (2.4)

where r]m%(O) is the force, exerted by the string (cf. Fig. 3). We shall
see in Theorem 2.2 that the behaviour (2.3) and (2.4) prescribe, is indeed
possible. But first, let us assume this is so, and show that the oscillator

does indeed behave like the particle in § 1.

A simubation of griction

All solutions of the wave equation (2.3) are of the form
wtm)= a(t-s8) + b(t+s). (2.5)

If we add n{pt(O) + v' (g (0)) to either side of (2.4), we obtain the

equation

o, (0) + NG (0) + v' (g (0)) = n(o (0) + 0 (0)). (2.6)

Now, the right-hand side of (2.6) equals, by (2.5)

n(é% + 3%><b(t-+s) + a(t-—s))

=2nb'(t),
s=0

and therefore the position Qt = mt(O) of the oscillator satisfies the

differential equation
G, + nQy * v'(Q) = 2qab'(t), (t €R). (2.7)

This is the basic equation of the Lamb model.

Now, choose any {gq,p} € R®? and prepare the system as follows. Let,
before time 0, the string be horizontal at a height g . Exactly at time O,
give the oscillator a jolt, transferring to it a momentum p, and let go.
For t > 0, the equations of motion take over. From (2.3), and the initial

condition @'(s) = © (s) = 0,(s > 0), it follows that b is constant on
0 0

(0,), and a on (- »,0). Then (2.7) implies that {Qt}t:>0 satisfies our

equation (1.1) for a particle on a line with friction, and therefore

{Qer0L} = s ta,p), (£20), (2.8)

as announced.

It should be noted that there is nothing inherently "irreversible"
about this process. Indeed, if we halt the oscillator and the string at a
time t 20, and, in the fashion of Losschmidt, reverse the velocities of
both, and let go again, the oscillator will retrace its path. Moreover,
by an argument parallel to the one that validated (2.7), we can show that
the following relation holds as well:

Qp =Nl + v'(Q) = - 2na'(t), (t €R). (2.9)

If we would be able to impose the above described situation at time zero

as a final, instead of an initial condition, then, because a is constant

on (—<»,OL{Qt} satisfies the negative-friction differential equation
v ' _ -
Q —nQ + v'(Q) =0, (t < 0).

Its solution is given by
{Qt'Qt} = S_t(qlp)l (tgo)- (2-10)

So the Lamb model can simulate friction behaviour backwards as well

as forwards in time. .

Solution of the equations of motion

The remainder of this section will be devoted to a construction of
the Lamb model as a Hamiltonian system, showing that the equations of

motion (2.3) and (2.4) indeed determine a flow on a well-defined phase

space.

Definition 2.1. Let Q be one of the intervals (- ow,w) or [0,»). By CE(Q),

(me N), we shall mean the space of all c™-functions (i.e. m times
continuously differentiable functions) Q +IR of compact support. By C%(Q)
we denote the Banach space of c™-functions on 9, the first m derivatives

of which vanish at infinity.




Theorem 2.2. Let v and E be as in Theorem 1.2. Let @ : [0,«) IR be such

that @' € Ch([0,=)), and let 7 € C;([0,=)). Suppose that
©" (0) =n@'(0) + v'(p(0)) = 0. (2.11)

Then there are C?-functions a and b, uniquely determined up to a constant

difference, with a', b* € C; (R) , such that the family {(pt} given by

t eR’
@ (s) = a(t-s) + b(t+s), (sz20), (2.12)
solves the equations of motion (2.3) and (2.4), with initial conditions
0, = © and ®y = T (2.13)

Moreover, the limits

Lim (a(t) + b(t)) =: e,
ta>t o -

(2.14)

exist and are points of E.

Deginition 2.3, Let <I>0 be the space of pairs ¢ @ n, satisfying the

conditions of the above theorem. We shall call a and b the output gunction
and the JAnput function of ¢ ®w. The points e  and e_ will be called the

equilibrium points at £ ==+ o,

Proof. Let y: [0,») - R be such that ¢’ = 5. (y is determined up to an additive

constant.) Define

I

b(t) = 3(p(t) + ¢(t)), (£z0), (2.15)

and af(t) Fup(-t) -y (-t)), (£=0). (2.16)

Let, for t<0, b(t) be the solution of the (non-autonomous) differential equation

b"(t) - nb'(t) =~ (a" (t) +na'(t) + v'(a(t) +b(t))> ' (2.17)
with boundary values for b and b' in O given by (2.15). Let, for tz0, a(t) be
the solution of

a"(t) +na’(t) =-<b"(t) “ab' (B) + v (alt) +b(t))), (2.18)

with boundary values for a.and a' in O given by (2.16).We shall show that a and

b are c?.

By definition, they are c?2 on R\ {0}. Also by definition, a, a', b and b' are

continuous in O . Because of (2.11), a" and b" are continuous there too: indeed

lim b"(t) = lim /n(b' (t) - a'(t)) - v'(b(t) + a(t)) - a"(t)\ =
t40 t40 \ /

n(b'(0) -a'(0)) - v'(a(0) + b(0)) - lim a"(t) =
£40

]

ne'(0) - v' (p(0)) - 1im ¥ (" (t) ~ y" (L)) =
t40

I

@"(0) = (" (0) - " (0)) = F("(0) + ¢"(0)) = lim b"(t).
t+0

An analogous argument holds for a .

So a and b are €2, and {q)t}, given by (2.12), satisfies the wave equation

(.L')t = (pjé. ’[‘He equation of motion (2.4) is wvalid by construction ((2.17) and (2.18)).
Finally, note that b' r[O,oo) is of compact support, because (' and y' are. Let T =
sup {t [ b'(t) # 0}. Then, for £t=T, b(t) is constant, and (2.18) becomes the un-
driven friction equation (1.1) for a(t) in the potential v(.+c), (c = b(t)). It
follows from Theorem 1.2 that {a(t), a’ (t)}—>{eJr - ¢, 0}t >®) for some e+€E. But then
also a"(t) +0, (t+«) by (2.18). So a'¢ c(l)(]R) and a(t) + b(t)»e , (tso).

Analogously, we see that b' € Cé (R) and a(t) + b(t)»e_, (t+ -w). O

Define Ft(gp Om) = (pt@ (pt Let the Familtonian H<D of the Lamb model be given by

h

/

B (0 0m) = vie(0)) + 3707 +3n[ (¢'(e)2 vr(e)?)as,
0

for ', T € C%([O,w))-

Let o, be the antisymmetric bilinear form on ¢ := {o®7m | @', 7€ CI°<([O,oo))},

defined by
g E = - —_
ol ®T v o &1 ) <p1(0)7r2(0) © (0)ym (0) + nJ (@1(S)WZ(S)
' 0
-0, (S)Tr1 (s))d S .
Lemma. 2.4, For all q)o®1ro €<I>o and © 1 € ¢ we have
1 1 1

& _ 4
O@(dt Ft(mo@ ﬂo) t=0' (')1@TT'1>~ ar H<I><(po®ﬁo +>\q)1®ﬁ1)|>\=0 (2.19)

Remark. (2.19) is a version of the canonical equations of motion for a

Hamiltonian system (cf. § 4).




10

Proof of Lemma 2.4, For o ® ¢ € ¢ , we have
. 0 0 0
4 F lop®Pr ) =11 ® p" € 9
dt t Lpo ﬂo 0 0 1 !

and, with ¢ P71 €90 :
1 1 1

8

" - 0 0) - "o 0) + _ 1" ) d
(no@q)o,(plﬂﬁﬂl) 'rro( )'lTl( ) cpo( )Lpl( ) +n | (row ¢ s

g
4] 01

0 (o]
='..1r0 (O)Trl(O) + (pl(O)<—cp‘(;(0) +m,o(')(0)>+n I (wowl +q)0(pl) ds
. 0

= n (O)n (0) + v(® (0))@ (0) + q J ((p'(p' b )ds :
0 1 0 1 01 0 1

0
On the other hand,

Ly -4 0) + 0)) +3(r (0) +am (ON?
=Ty Hq)\(p()@ T +Aleﬂl)l a (V((po( ) Aq)l( ) (170( ) 1T1

A=0
d
0

=@ (O)v'(®(0)) +n (0O)y (0) +1q [((p'(p""’n ™ )ds.
1 0 0 1 01 01
0

+

-

(@' +ap )2+ (m +2
(q)o (’01 1To "

o)

1 =0

Comparison yields (2.19). O

Corollarny 2.5. {Ft} conserves the energy H@.

Remank., It also follows that {F is a symplectic flow, i.e. F

t}t € R t

conserves g. in a local sense. We shall not need this result, however.

Procg. Let Lip®w) = E@E Ft(q)éB'n)

. Then by (2.19),% Hq)(Ft((p@’n))’ =
+=0

d ; .
= H®<(p@'ﬂ’ + AL ((’O@ﬂ))‘)\r—o = 0®<L(®€Bw), L(@Eﬁw)) = 0, because o is anti-
symmetric. 0

Conollary 2.6. Let o®q be a point of ¢ , and let b and a be its input and
— 0

output function, e_ and e, its equilibrium points at time * «». Then

0 [ prerzas v vie) = H 8 =0 [ alte)zas ¢ ey, (2.20)

-0

P/woﬁ. Because of energy conservation we have for all t € R;

11

- ; = L 2 1 1 2 P 2\
Hq>(to@7r) = Hq)((pt@mt) = V((Ot(O)) t3 Q. (0)° + 3n J((Pt(S) + ‘Dt\s) ) ds
0

v(a(t) +b(t)) +3(a' (t) +b'(t))?

2
ds

+

2
in {((b‘(t+s) - a'(t-—s)) + (b'(t+s) +a'(t—s)>
0

a' (u)2 du.

11

© t
v(a(t) +b(t)) +3(a' (t) +b' (£))? +n Jb‘(u)zdu + nJ
t o

We obtain (2.20) by taking the limits t - « and t = -,

§ 3. A TRANSLATION REPRESENTATION

In the previous section we have seen that a "dead" string can absorb
the oscillator's energy in such a way that it looks as though the
oscillator is subjected to friction.

So far, so good. There exists a classical mechanical model that can
imitate friction. Why should this be of any interest? As we shall discuss
in this section, this model is not just an imitation, but the prototype
of a friction process, in the sense that, if ever an oscillator undergoes
friction, its environment must behave very much like the string. This
general idea is exemplified by a result due to [LeT 74] on the harmonic
oscillator case. In the case that v (A) = } A%, it can be shown that there
is precisely one (minimal, linear) Hamiltonian system, inducing the
behaviour {St}, as determined by this choice of v, on a part of itself.
This system is the unitary dilation of the semigroup {St} according to
Sz.- Nagy. We shall give a definition shortly. On the other hand, there
may be a host of possible environments for a harmonic oscillator that

induce this frictional behaviour only approximately.

The input function as a hepresenten

We shall now pursue our investigations of the string model, taking
into account also those initial states that are not "dead", i.e. that do
not yield zero on the r.h.s. of the basic equation (2.7). We shall find a
convenient representation of the system's phase space as L?(R).

Consider the correspondence ¢ ® m &+ b, adjoining to a state of the
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string model its input function (Def. 2.3). If ¢ b1 € ¢ , the image of
0
Ft(w @ 7) under this'map is obtained by translation of the image b of

©&® T to the left:

Folo@m » T b; (T b)(s) = b(s+1t). (3.1)

‘ P/L()Oﬁ_. The function b is the input function of ¢©® 7 if for some function a and
all u € IR: (F (@ ® 7)) (s) = alu-s) +b(u+s). Choose t € R. Then

(@®m)(s) =alu+t-s) +b(u+t+s) = (F_a) (u-s) +

(Fu(Ft(w @m))(s) = (F t

u+t

("i‘Jt b) (u+s). Therefore "i‘ltb is the input function of Ft((DEB T . O

By corollary 2.6, the energy Hy(p ® 1) is equal to nllb'l2 + v(e_), and if

v has only one equilibrium point e, say with v(e) = 0, we even have
Ho (o ® m) = nlb'll 2. (3.2)

It seems very attractive, therefore, to label the phase space point ¢ @ r
by b; this would yield a convenient translation representation of the
string model because of (3.1),with a simple Hamiltonian (3.2).

However, the correspondence ¢ ¢ m » b may be a very awkward one. It
is not necessarily continuous; thinking backward in time, one may imagine
how a tiny change in ¢ @& 7 may make the oscillator "decide" to go to
another equilibrium point. Nor is it necessarily invertible. For instance,
if b = 0, it may be that 9y @ m = (e + 1) ® 0 for any e € E. More generally,
given b, ¢ & m may be found by solving the basic equation (2.7) for {Qt},
with different "initial conditions at time -«". Tt is this ambiguity that
has to be dealt with to prove approach to equilibrium (cf. § 9).

None of the above inconveniences plagues the harmonic string model.

This we obtain if we choose v to be a quadratic. Let us put
v{x) = % A%, (3.3)

Then H®, defined in § 2, becomes a quadratic form on & and, being
0
strictly positive, it defines a norm on ¢ , which we shall call the
0

"energy norm":

Nh=t

“m@me;= (2H (o ® 1)) " (3.4)

Let ¢ be the completion of @0 in this norm. (An example of an element of
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¢ \ & is the initial state (g+*1)® (p * ¢8), (gq,p € R), described in § 2,
0

where the string is at rest at a height g and the oscillator has a

momentum p). ¢ becomes a real Hilbert space when endowed with the inner
product
. = l/ O)mw 0\ + 3 J 'o' +m 1 ) ds.
<o BT, 0 @ “2>H® z\cpl(o)(pz(o) +m 0y | )/ i (0o T T
0
(3.5)

Now, if we adjoin to ¢ @ 7 € & the function v2n b', where b is the input
function, we have the convenient representation of {¢,F} as translations

on LZ(EU, as announced.

Degfinition 3.1, Let the functions p, g and r be defined as follows. If

t >0, p(t) = g(t) = xr(t) = 0, and on (-»,0], p, g and r are solutions of

the differential equation
f" -nf' + £ = 0, (3.6)

determined by the initial conditions

r(0) = v2n and r'(0) = 0,

g(0) =0 and g'(0) = - v2n,

p(0) = ¥2n and p'(0) = -nv2n.
We note that, on (-«,0], p ==-qg' and g = r'.
Theorem 3.2. Let v(A) = 3 A%, For ¢ @1 € @0, the input function b,
determined up to a constant, is given by b(t) = L(p(t) + v(t)), (£ =z 0),
where y' = 7m (¢ is determined up to a constant), and:

Fig. 4. The functions q and p .
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1
vV2n

0
b(t) = -a(t) - ¥V2n J g(t-s)a'(s)ds + (@(0) r (t) =m(0) g (t))
t (3.7)

for t <0, where a(t) = 3(p(-t) - ¥(-t)), (t £ 0). Moreover, the map i®:

@ ® 7 » /2nb' is linear and extends by continuity to an isomorphism of

the real Hilbert spaces ¢ and L? (RR), satisfying

igeF, =T oiy, (£t €R). (3.8)

Remark. Define § by: &§(s) = 0 for s>0 and §(0) = 1. Then 1 4 0 and 0 & §
are points of ¢. Indeed, they can be written as energy norm limits of

points in @0 as follows:

1T &0 = lim(pn@O; 0&dd = 1im 0 @nn,

n-—+o n-ro

where {cpn}, {wn} are as drawn in Fig. 5. By (3.7) we have (note that
r' = q):
i<D(1 ® 0) = g and iq)(O b §) = p. (3.9)

This motivates the names of the functions g and p.

For the proof of the theorem we need two lemmas.

Lemma 3,3, Let f :(- ©,0]+ R be continuous. The solution b of the

differential equation

b" = nb'+b = £ on (- «, 0]

with boundary conditions b(0) = b'(0) = 0, is given by
0
b(t) =——-1——Iq(t-s)f(s)ds. (3.10)
v2n r

1

0
Proof. If.b is defined by (3.10), we have b'(t) = (2n) ° f (g'(t~-s) £ (s)ds,
0 J¢
-1
because gq(0) = 0, and b"(t) = £(t) + (2n) °? J g"(t-s) £ (s) ds, because
t

Fig. 5. {(Dn} and {'nn}, approaching 1 and §.
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q'(0) =-v2n. It follows that

0
(b" - nb' +b) (£) = £(t) +L[ (@ -ng'+q) (t-s) £ (s) ds = £(t).
2n
t

Lemma 3.4. The linear span of {'r}'tq |t € R} is dense in L2 (IR) .

Proof. This is a consequence of the L2-version of Wiener's theorem, saying that,
if the Fourier transform (i of g is nonzero almost everywhere (a.e.), {"i‘th‘ t € R}
spans a dense subspace of L2(R) . Indeed, because q" -nq'+q = /2n § in the

distribution sense, we have for all u € R,
“ 9 -1
alw) = (~u*+inw+l) + V2n # 0. (3.11)

Wiener's theorem is proved as follows. Suppose f € L2 is orthogonal to "f"tq for

all t € R. Then for all t:

. . ot S : . . .
i.e., the Fourier transform of f g is zero. But then this function is zero itself,
and because q is nonzero a.e., we have £ = 0 a.e., so £ = 0 as an 1.2-function,

hence £ = 0 in L?. The statement follows. O

Proof of theorem 3.2, From the proof of theorem 2.2 we see that, in order to

show that we have the right function b, we must check

(i) b and b' are contiruous in O.

(i1) (" -nb'+b) (£) =~ (a"+na'+a) (£), (£t<0).
Now, from (3.7) it follows that lim b(t) =-a(0) + @(0) = b(0) and lim b'(t) =
t40 t40

—a'(0) + 7(0) = b'(0). To prove (ii), we let (3%2-nd+ 1) act on both sides of

(3.7), putting t < 0. The r- and g-terms are annihilated and, by lemma 3.3,
(b" -nb'+b) (t) =-(a"-na'+a) (t) - 2na'(t) =-(@"+na' +a) (t).

To prove the second part of the theorem, consider iq): P Dre /2nb' . Clearly,

it is linear. By (3.2) we have

ligt0 ®@mIZ = 20l b'l 2= 28, @& ™ =0 & Ty -
¢

So i_ is isometric. From (3.1) if follows that i, o F_ = T _ei, on o . By
o 0°Ft T Tt o

continuity, ig extends to an isometry from ¢ to LZ(R) , i@ % being a closed and

translation invariant subspace of L2 (R) . Now, because 1 ® 0 € ¢, we have
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q € i, ¢, and by Lemma 3.4 it follows that i, 0= L% (R) .
' O

The very convenient form L? (R}, that our system has taken via iq) makes it

attractive, to think of iq) as an identification, and to talk of functions
x € L? (R) as phase space points, evolving like t b "i"tx . But then we must
have a way of knowing what the position and momentum of the oscillator

are, if the system is in a state x € L?(R) .

Deginition 3.5. Let Q. : L?(R) >R and P: L*(R)+1]R be given by
Qt(iq)(cp ® m)) = ¢, (0) and Pt(i(p(cp ® m)) = m (0),

where ©0p 2] Ty = Ft((p @ 7). Let T, = ?[‘J_t; Ty denotes translation to the

right.

Lemma 3,6, For all x € L?2{IR) we have

Qt(x) = <x,th> and Pt(x) = <x,Ttp>. (3.12)

Proof. From (3.5) if follows that for @@ w € ¢ :
— 0

@(0) = <1 @0, ®n>H and 7(0) = <O€96,<,p69n>H .
9] 9]

Therefore, if q)tGB T = Ft((p@ m), and x = iq}((p@ Ty

Q. (x) = (pt(O) <1 &0, O €Bwt>H® =<1 & 0, Ft((p @Tr)>H® =

= <q,Ttx> = <x,th>.

Analogously, P_(x) = <x, Ttp>.

t

Dilations according £o Sz. - Nagy

We shall now proceed to show that the linear string model, as we
have constructed it, is the dilation of the semigroup {St}t> 0 of linear
=
transformations on R* defined in § 1, if we choose the guadratic potential

(3.3). {St} is given by

S, = exp <t<_01 _ln», (t z 0). (3.13)

Z

Deginition 3.7. Let {S be a semigroup of contractions on a real

t}tzO

(complex) Hilbert space M. A triple {H, j, {U } is called a dilation

t}i: € R
o4 {st}(m the sense of Sz. -Nagy), if H is a real (complex) Hilbert space,

{u a group of orthogonal (unitary) transformations H-+H, and j an

t}t € R

17

isometry M ~+H, such that

j*U 3 = 5., (t 2 0). (3.14)

{#, j, {U.}} is called minimal 1if the span of {Utm] t € R, m € M} is dense

in H.

Lemma 3.8, Let j: R%? » L?(IR) be given by

j(x,, X,) = x4 + X,p. (3.15)

Then {L2(R), j, {"f"t}} is a minimal Sz. - Nagy dilation of {St}.

E/woﬁ. Let j': R? > &: {xl,xz}»(xll) @(xzs). Then j = iq)o j', j' is isometric, and
(j')*((p@n) = {p(0), w(0)}.

By construction, we have, if 0N & {Dt = Ft(j' X) :
(3 *(F (3" %) = {9 (0), @ (0} = 5 x.

So (3j")* °oF ° ' = Sei and it follows that

~

K i =
Jj oTtoj St

by theorem 3.2. The dilation is minimal by Lemma (3.4). 0O

Theorem 3.9 (8z. - Nagy). Let {S be a strongly continuous semigroup of

t}t >0
contractions on a real {(complex) Hilbert space M. Up to isomorphism, {St}

has a unique minimal dilation.

Proof. For the general proof of the existence of such a dilation, we refer to the
literature ([SzN 53], [EvL 77]). In the special case (3.13) we have already given
one (Lemma 3.8). We shall now prove uniqueness.

Suppose both {E, 'j\", {ﬁt}} and {H, 7, {Ut}} are minimal dilations of the
semigroup {St} of contractions on M. For n z O; ti’ a, €ER (C), and m, € M,

(i=1,...,n), define

n n ~ ~

; | = 3 3.16

VO< z a; U jmi> z a; U, Jmg. ( )
i=1 1 i=1 i

. e . S o}
This definition makes sense because, if 2 i=1 a,

3 = also
1 Uti 3 mi 0, then

~ o~ ~

n
o~ 2 _ . * ) 7 _
a; Utijmin ]Z' ay a <U Jmy, U, Jm > =

=1 i tk
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~, o~ ~
*

n n
= Z az a <mg, 370, dm > = ) a; ak<m_,j*Ut _p dm >=

. 2 _
5 Ut. jml|* = 0.

]
Il ~18
o

The same computation shows that V is isometric. As both dilations are minimal, V0
0
has dense domain and range, and hence extends to an isomorphism V: H -+~ H'. By

(3.16), and continuity, we have

~
VoU, =U oV and Voj = 7.

§ 4. THE POISSON BRACKET

In Chapter II we shall give a quantum-mechanical treatment of the
Lamb model, in terms of the abstract description that we have introduced
in the previous section. This means that we shall have to "quantise" the
Hamiltonian system whose phase space is L2 (IR) , whose time evolution is
translation to the left, and whose Hamiltonian is the function H(x) =
$lixllz.

Now, quantisation is not a well-defined and straightforward procedure
vielding a gquantum system for every Hamiltonian system. Neither is there a

clear-cut definition of a Hamiltonian system, of a sufficient generality

to encompass the present infinite-dimensional case. (Not even in [ChM 74]).

Therefore some care has to be taken. It 1s for this reason that we include
this section, a rather extensive discussion of the Hamiltonian formalism
for this infinite dimensional special case. We use the notation of books
like [Thi 77] and [Arn 78 1, adapting it to infinite dimension. The latter
case was studied in [ChM 74].

We start by defining a symplectic form on a large part ¥ of L% (IR) .

A justification of this choice will be given after Lemma 4.4,

Definition 4.1. Let W, (R) be the subspace of L’?(IR) of those functions vy,
for which also y' € L?(R). Let ¥ be the image of W, (R) under the map

Yy B y'. Note that this map is injective. (Indeed, if yl = y!, then y, =Y

2! 2

is a constant, and if y and y,6 are both in L2 (IR), this constant must be
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zero). So we may define I: ¥ ~ WI(EU as the inverse map y'bky. Now let

F: ¥ x ¥> IR be given by

T(x,y) = <Ix,y>. (4.1)

T corresponds to T via the identification i® (see § 3). Indeed, the
linear flow preserves 0Og, and if ©, b ﬁl and ©, ® “2 are points of @0, and
b and b are their input functions, one checks in a way, resembling the

2

1
proof of Corollary 2.6 that

(o]

= 2 b b'" dt. (4.2)
O®(w1 ST 0, & ﬂz) n[ P

— OO

Now, i@(@j69ﬂj) = /2n ba, and therefore
= o(i i | T )).
oq)(cp1 &m0, & ﬂz) o Q(w1$'nl), (0, ® T
We note, however, that this fact does not justify our choice of T, because

9 has come falling out of the blue as well.

our phase space is now Y. By an observable we shall mean a function

vy -~ C.

Definition 4.2, Let F: ¥ » C. 'By the ghradient (DF) of F at x € ¥ we mean the

continuous linear functional on ¥, if it exists, that satisfies

v (DF) _ (u) = 4 p(x + au) X (4.3)

UE\Y: dax >\:0

Let Yq be the complexification of ¥, and extendrg to a bilinear form on VY.
We call an observable F G-smooth in x, if (DF) exists and there is y € Yg

such that for all u € V¥
Gly,u) = (DF), (u). (4.4)

The set of points x in which F is §-smooth we call the domain 04 Xp

(Dom(XF)). For all x ¢ Dom(XF), y is uniquely determined by (4.4) . Define
= : (4.5)
Xp(x) NE

We call Xg the vecton field associated to F . If F and G are observables, we

define the Poisson bracket {F,G} of F and G by

~

{F,G}: Dom(Xy) n Dom (Xg) » C: {F,G}(x) = O(XF(X): XG(X)). (4.6)

The following lemma provides us with a large, translation invariant,
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set of everywhere Gg-smooth observables, on which the Poisson bracket can

act freely, yielding observables in the same set. We introduce the

following notation.

Let % be Schwartz's class of infinitely differentiable functions

R » IR of rapid decrease. Let Ao be the space of functions F: Yy > T of the

form

n i<f.,x»>
F(x) = ) c.e ] ,(n eN; c,

JE(Ii, fj€$, (3 =1,...,n)). (4.7)

Let Tt,(t € R) act on an observable F as follows

T, (F) (x) = F(”I\‘th) ) (4.8)

Let o: $x $-+R be given by
o(£,9) = J fFg'dt . (4.9)

Let {Tt: S-+$}t EIRdenote translation to the right:
(Tt:E)(s) = f(s-1t). (4.10)

Lemma 4.3,

(a) Let f,9 € 8 and consider the observables <f, . and <g,; * >. We have

{<f, >, <g, +>} = g(f,q9) « 1, (4.11)
where 1 is the constant function 1 on v,

(b) If £ € %, then
Tt(<f, e >) = <Tt.f' . >, (4.12)

(c) AO is a Lie algebra under the Poisson bracket operation, and

Tt(Ao) Ci-\o, Vt.

(d) Dom(XH) = {x€V¥|x' € L2(R)} , and for all x € Dom(XH):

d ~
-— T, x = x' = X_(x).
S H (4.13)

Moreover, for all F € AO:

d
3t T (F) = {F,H} on Dom(XH). (4.14)

t=0
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Proof . (a) Let £ € & Then for all x € y:

X o> () = £ (4.15)

Indeed, because f € § < Wl(IR) , we have £' ¢ vy, and also I(f') = f. Therefore for

all u € ¥, all x € ¥:

S(E,u) =< I(£Y),u > = <f,u> = 4 kx4 ru> = (D(<E, *>))_(u). (4.16)
di 2=0 X

This implies (4.15). It follows that, if f,g € § we have for all x € b4

~

o(X

1]

{<£, +>, <g, «>}(x) g LS X x) = olf,g) = <I(E),g'> =

r k4

Il

I fg'dt= g(f,9.

(b) T (<E,+>)(x) =<f, T x>=<T £,x>.

(c) Let £ € § and F(x) = exp(i<f, x>). Then

i I<f, x> ~ i «f;
(DF) _ (u) =d% ot <FixTAw ci<fiuse = Tet HET e ) (4.17)
A=0
by (4.16). We conclude that .F 1is everywhere E'—smooth and
. 5 ‘
X (x) =ie TN e (4.18)
Now, if also g € § and G(x) = e "9"* e have
,;, i + > o~ i<f +qg,x>
{F,G}(x) = G(X_(x),X (x)) = St ER GRS Tie g =6 I 5 (£,9) . (4.19)

From the bilinearity of the Poisson bracket we conclude that {F,G} is defined and

in A for all F,G € AO. We have to check the validity of the Jacobi identity
0 -

{{F,G} K} + {{G,K} F} + {{K,F} G} = 0, (F, G, K€ Ao)- (4.20)

i<k,x?>

It suffices to prove (4.20) for F,G as before and K(x) = e with k € $. The

left~-hand side of (4.20) can be worked out using (4.19); it eguals

_el<f+g+b'><mf3)gﬁ+ggd + (g ,k) Mg+ki)+<ﬂki)0&+fﬂﬁ>-

One checks that, by the antisymmetry of ¢, this is indeed equal to zero. Clearly,
A is t-invariant.
0

(d) First note that, for all x,u € V¥:

(DH) _ (u) =%H(x+xu) =%(—%IIX+HH2 = <X U
)\':O )\=O

Now, u't.<x,u> is of the form u»'g(y,U) = <Iy,u> if and only if x = Iy for some
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y € ¥, which is the case if and only if x' € L?(R). If this is so, then X, (x) =

. 4 ~
y = x'., Of course, x' = 3E Ttx . This proves the first statement.
t=0
To prove the second, put F(x) = exp(i<f,x>), (this is enough), and suppose that
x € Dom(XH). Then
d a ~ d
— T, (F) (x) = — F(T x)' = ——exp(i<f, T x>)1 =
dt 't £=0 dt t £=0 dt £=0
—iei<f’X>—§—<f,"f X > 1ei<f’X><fx'>—
dt t
t=0
. i < > o~ ~ i ~
_ lel £f,x G(f',x') = U(lel<f'x >f',X') - O(XF(X)’ XH(X)) =
= {F,H}(x).

[
We are now in a position to formulate a justification for our choice

of the symplectic form G on ¥ < L?(IR). Our system has to be such that the

vector field associated to the Hamiltonian generates the time evolution:

dN
— T, X = X, (x).
dt "t
t=0 H
The vector field XH is related to G and H as follows:

F(xy(x), +) = (DH) .

Combining, we get:
, u) = (DH)  (u). (4.21)
0

This is the geometric form of the canonical equations of motion of a

Hamiltonian system (compare Lemma 2.4). Now, é% %t;< = x' and
t=0
(DH)x(u) = <x,u >; therefore
VeVt G(x',u) = <x,u>,

and it follows that (put y = x'):
Vyvu: 3(y,u)= <Iy,u>.

We shall conclude this section by showing the connection between

(4.21) and the traditional form of the canonical equations of motion,

4a 5H a .
dtql E, aq:—pi——ﬁ, (1=l,...,n). (4‘22)
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Let op be the symplectic form onZRzn, given by

W) ) = (5, TE) - G

where g, q', p, p' EIRn, and “n is the nxn identity matrix. Then the

differential equation for a curve (g(t), p(t))t s R inimzn, given by

. a (alt) -
o e w2 on(@ (5(5)) + #) = OB gy, prey) ©

is equivalent with

n

da (0 -L,. q(t)\ _ [dH/3g
dt <11 0 >‘<p(t)> = <3H/3p (a(t), p(t)).
This is a vector form of the canonical equations (4.22).

§ 5. A GIBBS MEASURE ON PHASE SPACE

In this section we shall consider thermal eguilibrium states of the
Lamb model. We shall show that, in such a state, the input functions are
graphs of Brownian motion, and, that the motion of the oscillator is

governed by a Langevin equation.

Thermal equilibrium

We choose some positive temperature T, and we absorb the constant T
into the unit of string deflection. This unit will be (kT/a)%, where k 1is
Boltzmann's constant and a the spring constant of the oscillator. (See the
appendix for the use of units, constants and parameters.)

A mathematical description of Gibbs' canonical ensemble at temperature
T, is provided by a probability measure on the space of all possible con-
figurations of the model, its phase space. We shall call it the Gibbs
measure , and to find it we shall use a heuristic argument. After finishing
the construction, we shall verify that the state of the system, thus

obtained, satisfies the classical KMS condition, introduced by Gallavotti

and Verboven [GaV 75]. The analogous construction, for the case of a
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lattice of harmonic oscillators, has been treated in detail by Van Hemmen
[Hem 76].
First we shall argue that L? (IR) is too small a phase space to carry

the Gibbs measure. Let {ej}j:1 be a complete orthonormal set in L2 (IR), We

introduce coordinates on L? (IR) by associating to the point x the sequence
o8]

j=17 defined by

{Ej}

In these coordinates, the Hamiltonian takes the form

Neglecting the fact that these coordinates are not canonical w.r.t. G, we
try to write down a Gibbs measure in the fashion customary for finite

Hamiltonian systems:

p(dx) == u'(d{gj}) 1= Z—1 + exp —(% 2 E;)d £1dE,d¢&3 ..
j=1
This does not define a measure on the set of all sequences {Ej}j:1’ because
we cannot make sense of the expression "d&; d&,d&; ...". However, the

following definition does:

p'(a{g.}) = 1 (—t:_e j dg.\,
3 521

Indeed, a product of countably many copies of a probability measure on IR
defines a probability measure on]RE{ We have thus obtained a probability
space{]REq, u'l}, and we shall transfer u' back onto phase space to get the
Gibbs measure yu.

LetZEu (Eh“) denote expectation w.r.t. u (u')., We would like the

fOllOWiIlg to hold:
i . .« > i R i s - & 2‘
< Ae 7 > A E > J iA ?; < 1 E

=NC -x, (o ag,) -
u W /2T J

This should hold, not only for the vectors Aej, (j € N, A €R), - they were

arbitrary in any case -, but for all f ¢ L2(R) . I.e., for £ = || |- £44
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-1l ell2

T<fre>y 2o . (5.1a)

E (e

Relation (5.1a) is a requirement that our Gibbs probability measure should

satisfy. In words:

Rube : The Linear observable <£, «> should become a Gaussian random variable with mean

zeno and variance I £1%,

Inginite energy congigwiations
nN

On {IR™, y'} , the Ej,(j = 1,2,3...), are independent Gaussian random
variables of variance 1 and mean 0. The law of large numbers says that,
with probability 1,

1im %
N> j

e~
i
N
1l
-

The probability that the sum 2 g§ converges, 1is therefore zero:
3=1

v =g | <))o

This means for our Gibbs me€asure p that
p(L”*(R)) = 0. (5.2)

So our entire phase space has Gibbs measure zero.

This result, surprising as it may be at first sight, can be readily
understood in physical terms as follows.

All configurations of the Lamb model that are given by L?-functions
b', have finite energy. Now, if one heats up the system to a positive
temperature, thermal fluctuations will occur in a homogeneous way over the
full, infinite length of the string, and certainly their total energy will
not be finite. Therefore the vast majority of ensemble elements (almost
all configurations w.r.t. u), will lie outside of L? (IR) .

As is well known in the classical theory of fields, already a finite
stretch of a string (which is a field in one dimension), in thermal
equilibrium carries an infinite amount of energy. Indeed, a finite piece
of string has an infinite number of degrees of freedom, and, according to

the principle of equipartition, each of them gets an amount. ¥ kT of energy.

Notice that the above argument is a re-phrasing of the PrObabiliSticﬁlg
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argunent adduced before, now applied to a finite interval. To drive this
point somewhat further, let {fj}jj1 be an (incomplete) orthonormal system

in L2 (IR) of functions, vanishing outside the interval [s,,s,]. The <fj, >

are Gaussian with variance 1 (and energy % kT). As j increases, the

Fourier transforms %j will become broader and broader. (Indeed, for all
a - .
az o0, f_a|fj(w)]2dtu~>0, (j »«), because the operator A  := X{-a,a] '
. is Hilbert-Schmidt and lA_£.12 = s 3¢, 2 27 .) Thi
F X[s,,s,1 S ilbert-Schmi and |l afy f_al j(m)l dw/27 .) This

. means that the random variables <fj, « > get their variance (energy) from

ﬂ higher and higher frequencies, as j increases. The fact that there is no

cut-off mechanism at high frequencies to prevent the energy I %kTIE(<fj, . >2)
of the stretch of string between s; and s, from diverging, is called an
"ultraviolet catastrophe". The one we have here is of an ancient type, the

same as that of the infinite energy density of the electromagnetic field in

its classical description, that has prompted Planck's hypothesis of a
"quantum of radiation". The effect of this hypothesis was that the high

frequency degrees of freedom got "frozen". And, as a matter of fact, in the

- quantummechanical Lamb model which we shall consider later, a finite

stretch of string has a finite energy.

A measwrie on %'

Having seen that L% (IR) is too small a space to carry the Gibbs
measure, we proceed to construct the latter on a larger space, the space
$' of all tempered distributions. It will not bother us if - as is in fact
the case - this space is much larger than necessary: the measure will be
concentrated (i.e., will put weight 1) on the relevant part. So let &' be
our phase space.

Functions in A,, i.e. functions of the form (cf. § 4),

n i<x,fj>
F = . . .
(x) 21 cy e ,(cjeu:, fjeﬁ),

can be extended in an obvious manner to functions on $°'.

Definition 5.1 . By a cylinder set A < $' we mean a set of the form

A={xe€ §'|{<x,f1>, ..., <x,£ >} €B},

where nx0, B is sone Boral subset ofimn, and fl,...,fn € $. Let % be the
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o-field, generated by the cylinder sets. A cylinder measure on g' is a measure

on the measure space {$', L}.

Because $' is a co-nuclear space, any cylinder measure extends to a
unique Borel measure. But, when speaking of measures on &', we shall always

mean cylinder measures. A piobability measure is a positive measure of total

weight 1.

Definition 5.2 . If u is a probability measure on §', the Fourien thansform i of u

is the function $§ + €, defined by

N(E) = J el<x’f> u(dx).
Xx€EG'
Remark . Let u be a probability measure on $'. Its Fourier transform U has the
properties
(i) ﬁ is continuous & - C,
(i) n(0) =1,
(1ii) ﬂ is positive definite, i.e. for all nz 0; cj € C, fj € ¢ (3 =

1,c..,n)¢

1\
o
.

n ~
*
j %—1 cy oy u(fj £,
k=

Theonem 5.3. (Minlos). Every function $ -~ € having the properties (i), (ii),

and (iii) is the Fourier transform of a unique probability measure on §'.

For the proof we refer to the literature (e.g. [Min 591, [Hid 80], [Hem 76]).

Lemma 5.4. The function C: § ~C: £ exp(-3 Il £11?) has the properties (i), (ii)

and {iii).

Proof. Let H_= & L2 (IRn) , the symmetric Fock space over the complex Hilbert
n=0 ‘
space 1?2 (R), and define the map Epr: g HF by

«©

. &®
Exp (£) = @ SIS

n=0 Vvn!

Then for all f and g in $ we have

1 <f_g:}1= exp (<£,9>) .

n!

B
| o~1 8
o

<Epr £, Epr g> =




It follows that for all m € N; ¢ € c, £.€ %, (3 =1 ,n):
i i yeoe )

m m ~3IE 02 - 3[IE, ||2 <f,,£ >
z C§ckc(fj-fk)= X <c"fe k >-<c eisk )-e 37k =
j.k=1 j,k=1\ 7 k
m -3lI£, I 2
-I)k=1 o e mxpy (£ > o.

8o C is positive definite. Clearly, C also has the properties (i) and (ii).

O
Combining Theorem 5.3 with Lemma 5.4 we obtain our Gibbs measure.
Let ig be the measure on §', given by
[ i<x,f> - - 1| £||?
J e pB(d.x) = g 2 . (5.1b)
x e &

Let Hp be the Hilbert space L’ (g',

motion (cf. § 6)).

uB). (The letter B refers to Brownian

Lemma 5.5, For all f,9€ ¢, <f, > and <g, *» > are in Hp, and

<f,x><g,x>1ﬁ§dx) = <f,g>. (5.3)
X € g
Proof. We have for all f € g

2 .
£,x5 2y (dx) = - & i< x, £ a® -3 2%’
[ <f,x> % p(dx) a&i— [ e u (dx) = - ai?—e 2 £l - ”fuz'

X € g X € g1 =0 A=0

(5.3) follows by polarisation.

O
The map Eq: f» <f, « > is a Gaussian-random-variable-valued distribution .
with covariance
E(E,(f) E,(g)) = <f,qg>. (5.4)
Such a distribution is called a generalised Gaussian stochastic process,
and if it has the covariance (5.4) it is called white noise.
From (5.4) it follows that E; extends to an isometry L2(R) + H., which

BI
we shall also call E;-

Often (5.4) is formally written as

lE(Et Es) = §(t~sg).
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One regains (5.4) from this if one puts

E,(f) = j £(t) E, dt.

Sometimes we shall consider E (f) as an (unbounded) self-adjoint operator
on H. The exp(i E, (f)) span A . We shall consider A, as a {commutative)
*—algebra of multiplication operators on HB. Let M = o r the strong

).

closure of A  in £(HB

Lemma 5.6, M, = Lm(ﬁ',uB) and A, 1is dense in Hg.

proot. tet 300 = (a€x|u (a) =0}, and let £ =2 / 50
— B u U

uB B B
algebra, i.e. the algebra of uB—equivalence classes of measurable subsets of $'.

, be the measure

«©
Then the characteristic functions Xa with A € Zu are the projectors in L (5',UB).
B

Because mo is a strongly closed (i.e. von Neumann-)subalgebra of L (S',uB), the

projectors in mo are the characteristic functions of a sub-measure-algebra Z& of

B
L . We claim that Eu = Zﬁ . Let S ©€R be an interval. Then there is a sequence
B B B .
ia-
i i i - >
{Fn}n €N of linear combinations of {e la € R}, such that Fn(k) xs(k), (n -+ )

for almost all A € R. It follows that for almost all x € $' and all £ € $:

Fn(<f,x>);-l—-_>—;> XS(<f,X>) .

But this implies that xs(<f,- >) is in the strong closure M, of A,, so

{x|<f,x> € 1} € ZL . And because Zu is the smallest o-field containing all such
B B
sets, EL must be equal to ZU . So mo = Lm(ﬁ',u ). Finally, Ao 1 is dense in mo 1=
B B

B
® o, ) L . 2 e _
L (§ ,UB), which again is dense in L% ($ ,uB) Hy. ‘ 0

Decomposition of Hy

Lemma 5.7. There is a unitary map ip : Hp = Hy, such that

Ve ¢ gt ip Bxpp(f) = exp(-i<f, >+ 3 IEI*). 7 (5.5)

Proog. Let us call the r.h.s. of (5.5): ExpB(f). Then

s <Bxpp (£), Expp(g)> = <Exp_ (£), Exp,{g)> = exp(<f,g>).

f,g € 5:

Now, define, for cj € c, fj € %, (4=1,...,m):

lF .
3

I o~18
Il e~18

c, Exp_(f.,) =
3 TPty

c, Exp_(£f.).
1 jop 3 B3

1

This definition makes sense, for suppose that 2 <y Epr(fj) = 0; then also
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m 2 m .
m " ‘
H ), c. Exp (f.)“ = c. ¢, <Exp_(f.), Exp_(f )> =
k
v * m 2
= < < > = =
. E ‘cj C Epr(fj), Epr(fk) “'Z cj Epr(fj)“ 0.
J.k=1 =1

The same computation. shows that iF preserves the norm, so iF extends to a unitary
map from the closed linear span of the Epr(f), to that of the ExpB(f). By Lemma 5.6,

the latter space is HB' It is not hard to see that the former is HF'
0

Remaiks. The maps Epr and ExpB are called Kolmogorov decompositions of the
positive definite kernel $x §-+R: {f,g}lrexp(<f,g>), [EvL 771, (cf. App. B).

Under the isomorphism iF’ the decomposition of H_ into its levels

F
Léymm(ﬂgﬁ corresponds to the Wiener-Kakutani decomposition of Hp =
L% (8", up) .

Already in the classical mechanical context, Fock space comes onto the
scene. We shall see that, due to this fact, quantisation can be a gradual

affair.

The classical KMS condition

If w is a state (i.e. a positive functional of norm 1) on Ao, it is
said to satisfy the classical KMS condition with respect to the evolution T,

at a temperature T, if

v = w({F,G}). (5.6)

1 d
Feea,t k0 oar @O

This condition was introduced by Gallavotti and Verboven [GaV 751 as an
analogue of the Kubo-Martin-Schwinger (KMS) condition in quantum mechanics,
introduced by Haag, Hugenholtz, and Winnink [HHW 671, (cf. Chapter II).
Whereas the quantum KMS condition characterises Gibbs states without
mention of a density operator, the classical KMS condition characterises
Gibbs states without mention of a Liocuville density function. If the system
under consideration is infinite, density operators and density functions no
longer exist, but the KMS conditions retain their meaning.

A probability measure u on $' determines a state wu on Ao as follows:

F(x) u (dx).
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Proposition 5.8. The state Wp satisfies the classical KMS condition w.r.t.

the evolution T at temperature T.

P&OOﬁ. Notice that we have put kT = 1 at the beginning of this section. It suffices
to prove (5.6) for F = exp(i<f, * >) and G = exp(i<g, * >) with £,g €%. With these

substitutions, and using (4.19) in the proof of Lemma 4.3, we transform (5.6) into

d -~ -~
: — u(T, £+ = -0 (£,9)u (E+q). (5.7)
Vf,g€$ a (T £ g) B (£,9) v g
t=0
Now, (5.7) indeed holds for H(+) = exp (- %||'||2), because
%<th,g> =6 (f,9). (5.8)

Remaik. The measure Ug is not the only measure to satisfy the classical KMS
condition. If we translate ug on $' over multiples of the distribution

[ee]

1:£fw [ f(t) dt, we obtain other "KMS measures". We may also take convex

combinations of such translates. Indeed, if pC(A) = uB(A-c » 1), where

A-c+1={x - ce+1]|x € A}, then

ic<l,f> - (£)

n (£) = e - (5.9)

And because <1, Tt'f+-g> =<1, £+g>, U, also satisfies (5.7). Generally,

a probability measure satisfies (5.7) if and only if it is of the form

[ Ue v(de), (5.10)

c €R
where Vv is a probability measure on IR.

In the state w_ , the string in our model is tilted over its whole
length, with a slopecc, apart from the random fluctuations due to the |
thermal excitation. However, .in § 2 we stipulated that "the direction of
the bar is perpendicular to that of the string in its rest position", and

we shall not allow the model to deviate from this. Therefore we shall

choose v = § in (5.10), and consider only the state Wy«
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§ 6. THE LANGEVIN EQUATION

We have seen that E; is white noise. For the time being, the index

"¢" has no meaning; later it will distinguish E, from its quantummechanical

analogues EB(B >0).
Let us define the family {Bt}t e r PY
>
EO(X[O,t]) for t 2 0, and
- <
EO(X[t,O]) for t < 0.
Then {B_} is standard Brownian motion. Now, formally we have
B,'C =B, = EO(Gt) = <<St,x> = x(t) = V2nb'(t). (6.1)
It may be said, therefore, that the input function b has become a Brownian

motion as a result of our heating up the Lamb model.

As we shall now prove, the basic equation (2.7) of the Lamb model,

with v(X) = % A%, turns into the Langevin equation
Lo +ndo +o =vImE (6.2)
dt? ~*t dt *t t t’ *
Theorem 6.1 (Langevin equation). Let E, be as defined in § 5, (cf. (5.4)),

and g € L?(R) as defined in def. 3.1. Define
Q. = E (T q) . (6.3)

Then for all £ € $ we have

(o o]

[(f" -nE'+£) (8) Qdt

-0

VIn E, (£). (6.4)

We shall prove this using a lemma.

Lemma 6.2. The maps

A f»——l——q*f and B: £ b £f"-nf'+f

V2n

both leave § invariant, and, considered as maps $ -+ $, they are each

other's inverse.

Proof. We note that, because g(0) = 0,
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0 0
- i i wt
iwd(w = J iwer®t ) at = - J e" T gty at .
-00 — OO
Therefore, now using the fact that gq'(0) = - ﬁiﬂ
0 0
(1w)?qw) = - { twer®tgr () at = f a"(t) e*Yat + van .
—_ OO —00
It follows that
(o]
. 2 , ~ iwt —
(LAw) +inw + g (w =I (@" -ng'+q)(t)e + ¥Y2n = ¥2n.
- OO
So Gw) = VZn((1w) +inw +1) L,

Now (Af) “{(w) = /—g—- f\(w) = f(w)/(iw)2 +inw -+1\_1. Because § = %, and division
\vom 7/ \ /

by a polynomial without real zeroes keeps f in $, we have 2§ < §. Clearly, BSc .

Moreover, (Bf) {w) = ((iw)2 +inw + Q £(w). It follows that (A oB)f = f, Vf € g
-1
and A = B. 0
Proof o4 the theorem, Choose £ € § and put g = Bf. Then
{ ] —
} (£" = n£'+£) (t) thdt=J g(t)g (+-t)dt = g*q = ¥2n Ag = V2n BBf= /2nf .

Now, because E, is an isomorphism between L?(R) and its image inside HB, we may

write

J (£"-m£'+£) (£) By (T, q) dt = V2n B (£).

In the theory of stochastic differential equations(6.2) would appear

in the following, different form.

L}
Theorem 6.1 . (Langevin equation, stochastic differential form). Let E and g
be as before, and let p = -q' . Define
Q. = E (t q) and P_ = E, (T p) . (6.5)

Then for all s,t€ R with s < t

P, du, and (6.6a)

#3
I
1O
1l
0t
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P, - Py = [(—nPu'Qu)du+/2_n‘ (B, - By) . (6.6b) (Tyrx), £ o= <X T L (7.1
| s

| It determines a unitary group {mt}tEJR on Hy by
Usually, (6.6) us abbreviated as

(Tow) (x) = (T *x). (7.2)
dg, = P dt; dp, = (-nP _-0Q)dt +/2n d By ; (6.7)
The generator of this group is an anti-self-adjoint operator L, whose
A formal manipulation leads from (6.7) to (6.2). (Divide by dt and put ,
action on A, can be expressed as
B, = E We note, however, that this manipulation does not make a strict
|

).
t t
2 LG = {G,H},(G € A ). (7.3) ;
sense, because t Pt is not L?’-differentiable; whereas both (6.2) and '

(6.7) have a well-defined meaning, namely (6.4) and (6.6) respectively. In this section we shall perturb the flow of the harmonic string model \

by adding a term to its potential:
)
Prood of theorem 6.1 . Because E; is an isometry, it suffices to prove that, for
vid) = % A% + w(h). (7.4)
almost all y € R
t
entunbed dynamics and the Mgllen operatohr
aly-t) ~qly-s) = J ply-w) du, and (6.8a) £ 4 ’ £
s We shall explain why, under mild conditions for w, the oscillator
t again satisfies a Langevin equation under the perturbed flow. The
-t) - - = - - - - du + V2 . 6.8b , . . . . . .
ply-1t) -ply-s) J (-=nply-u) -qly-u)) du n X[S,t] (¥) ( ) analogous quantummechanical situation will be studied in detail in Chapter
S
II. Here we only indicate the main lines.
Now, (6.8a) is a direct consequence of the fact that p =-qg' € LZ(ZIR) . To check :
Suppose that w is once continuously differentiable, and bounded from
(6.8b), first put y > t, and note that both sides equal zero. If y < s, we have,
below. Let pg be given by

because q"-nq' +g =0 on (-=,0):

t t g = N cexp(-w(Q)) < up (7.5)
l.h.s. = [ g"(y=-u)du = f (ng' (Y-u) ~g{y-u)) du = r.h.s.
s s with N > 0 chosen such that p‘g(ﬁ') = 1. Define
Finally, for s Sy <t we obtain '
Yy Yy o ngLz(S.,ug).
t
l.h.s. = p(y-t) =-g'(y-t) = —g'(0) + I q"(y-u) du = Then {EZ\:’ = exp(tﬁw)} te R with °Cw given by
Y
. » Lo=L+ (-, wi)}, (7.6)
=/2_nx[s t](y) +J (-np(y-u) ~g(y-u))du. 0 _ w w
! s is a unitary group on HB. Under the isomorphism i® of § 3, Q’t corresponds

to the transpose onto the observables, of the flow {Ft} from § 2,

associated to the potential (7.4); i.e., we have
§ 7. THE STRING MODEL WITH AN ANHARMONIC OSCILLATOR

v cofi (7 (o @ ) = (T) G) (i, (¢ & . (7.7)
Our study of the string model with a harmonic potential has led to an G € Al \<1>< glo ®m) (T 6) ¢ <I>(q) ™)

identification of this model and the standard representation of Brownian Now, consider the limit

w

motion as a flow on {§', uB}. This flow is called "the flow of Brownian ‘ Q(O)G = lim ¢ ¥ . EtG , (G € Ao) . (7.8)
t>o -t

motion" following N. Wiener, and is the group {Tt*}t - given by
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It is not hard to show that, under the condition
[o0] .
— 2
[w'(x)ze P00 < -, (7.9) I
-0

(0) 1

the limit (7.8) exists for each G € AO. The map Qw , thus defined, extends

to an isometry

Qw :HB > HB ’ (7.10)
satisfying
W
Qw Et = Et Qe (7.11)
meo = mo Qw, and (7.12)
0
2,9, =9 +[ —— q(s) thw'(Q)) ds. (7.13)
2w V2N
Now, put
w o_ W
o =Tl Q. (7.14)
Then, from (7.11) and (7.13) it follows that
. t
1 W
Q.0 =5W+I~—q(s—t)w'('5. yds . (7.15)
w =t t 2 Vo s ‘

Integrating both sides of (7.15) with f € $, and using Lemma 6.2, we obtain

o]

ers: J (E" = £' + £) (L) 'Q':__th + I f(t)w'('@"ﬁ) dt = ‘/ﬁgw E (f). (7.16)

-0

Now, with respect to ug, Qy oEo is white noise, because of (7.10):

[ (2, E, <f>)2du‘g’=J E, (£) dug = £ 12 . (7.17)
g g

Therefore, (7.16) is the distribution form of a Langevin equation, namely,

az .w d ~w W
3e70¢ * 0 oge Qg V@Y =Y F, . (7.18)
An alternative form is
DW t]3W .
t t 0 P
d( >=( >dt+< >dBw. (7.19)
'i“f__’ - '1‘52 -v'(Q;':V) VZn t

Nw , i .
Here, By :=Q, B, is a Brownian motion.
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§ 8. A RESULT ON APPROACH TO EQUILIBRIUM, BASED ON THE MARKOV PROPERTY

Consider the particle on the line, introduced in § 1. In this section,
we suppose that it is subject to a stochastic force v2n E, = V2n ét’ where

E is white noise, besides the frictional force and the conservative force

-v' Q).

We shall no longer bother about the origin of the friction and noise
terms; we have seen that these terms can be brought about by a string,
attached to the particle. But perhaps some other heat bath may do the job
just as well. The motion of the particle will be governed by the stochastic

differential equation, (cf. 7.19),

B Qt\ / Pt ' 0
d(Pt/ - \—nPt-v'(Qt)> at + (m)dBt- (8.1)

We shall refer to (8.1) as the Llangevin equation with potentiaf v, and to the

solution {Qt , Pt} as the Omstein-Uhlenbeck process with potential v.

t=0
A basic theorem in the theory of stochastic differential equations
(cf., for instance, [GiS 72]), implies that, if v' satisfies the Lipschitz
condition (1.2), then, given any probability measure v on R?* with finite
second moments, (8.1) has a solution {Qt 'Pt}t;BO with continuous sample

paths and with initial probability distribution v, i.e. with the property

that for all Borel sets A c R?
P({Q, , Py} € A) = v(A). (8.2)

(Here, P( » ) stands for "the probability that - "). This solution is unique
in the sense that every solution of (8.1) has an almost surely continuous
version that equals {Qt ’Pt}t;>0 with probability 1.

As in § 1, we are interested in the question, what happens if t
becomes large.

Now, it is generally believed that, in the limit of weak coupling

between a system and a large reservoir at constant temperature, the system

is driven to its Gibbs state. This state is described by a measure on the
phase space of the system, called the Gibbs measure. In the present case, this

phase space is RR?, and the Gibbs measure, vv say, is given by

v, (dadp) = N - exp(-(v(q) +} p?)) dgdp . (8.3)
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It turns out that, by virtue of the special, singular coupling between
the string and the oécillator in the Lamb model, the string drives the
oscillator to its Gibbs state for all positive values of the coupling
constant n. In fact, this is a property of the Langevin equation (8.1) and
(8.3).

the measure Let us give a definition of this property of approach

to equilibrium.

Deginition 8.1, A measure v, on R®> will be called an attracting equilibiium

measure for the Langevin equation (8.1) if the following holds:

(i) The solution {Qt ,Pt} with initial probability v has probability

t 20
distribution v, at all times.

(ii) For all probability measures v onIR?, absolutely continuous w.r.t.

v the solution {Qt ’Pt}t > 0 with initial probability distribution -

0’
v, satisfies

v limiIP({Qt PPl ER) =V (D).

AEB(RY [0

For the fact that the Gibbs measure is an attracting equilibrium

measure in this sense, proofs have been given in various degrees of rigour,
all making essential use of the independence of the pieces of noise signal
on disjoint time intervals. This independence leads to a predictable
evolution of the probability distribution on R?, described by a partial
differential equation, the Fokker-Planck equation, which can be studied by
semigroup techniques.

Below we shall give a sketch of a proof by Tropper [Tro 77]. First,

we given an outline of the necessary background.

Markov processes and transition probabilities,

The Ornstein-Uhlenbeck process, like any solution of a stochastic
differential equation with a white noise source, is a Markov process (cf.

[Gis 721). This means that the probability (x,A) for the particle to be

t,s
inside the Borel set A cR? at a time s > t, given that it is in x < R? at

time t, is not dependent on the previous history of the particle. If,

moreover, (x,A) only depends on t and s via their difference u =

TTt,s s-t,

the process is called a iime#wmogmm0u5NMA&M}panMA,and one may speak of

T.(¥,A) in an obvious sense. As the Langevin equation contains no explicit
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time dependence, the Ornstein-Uhlenbeck process is indeed time-homogeneous.

The function w: {t,x,A} » 7w _(x,A) has the following properties.

t

(a) x ¥ ﬂt(x,A) is measurable on R? for all t = 0 and all A € B (R?),

(b) A m ﬂt(x,A) is a probability measure on R? for all t > 0 and all x € R?
(c) For all s,t = 0, all x € R?> and all A € B (R?):

(x,A) = J{

y € R?

ﬂs(x,dy)ﬂt(y,A). (8.5)

qTs-i-t
Property (c¢) is called the Chapman-Kolmogorov equation. A function m:

[0,°)x R? x B(IR?) ~ [0,1], satisfying (a), (b), and (c) is called a transition

probability on R?.

The Fokken-Planck semigroup

Let m be the transition probability of the Ornstein-Uhlenbeck process, and

define, for t > 0 and £ € L7(R?):

(2, £) (x) = T (x,dy) £ (y). (8.6)
y € R?
Then Zt is linear, and maps positive functions on positive functions. By
(b), 2,1 =1 and

lz, £, <UEl,

and by (a) and (c),
vs,t =0 Zt-+s - Zt° Zs'
i.e., {Zt}t > 0 is a semigroup of positivity preserving contractions on
=

L”(R?). Let G be its generator. One computes that G is the differential
operator

- 32 d ' d )

= - 92 4 < - A (8.7)
with the formal adjoint

(8.8)

¢* = 2 ( d

9 (9 9 1 9\
3D ap+p)+< P 3q t V(@ 55)-

The semigroup {Zt} is the main tool in the proof of the following theorem

by Tropper [Tro 77].
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Theotem 8.2, Suppose that

(1) v is three times continuously differentiable,

(ii) v" and v'"' are bounded,
(iii) exp (-v) € L'(R), and

(iv) (v")?+ exp(-v) € L' (R).

Then the Gibbs measure (8.3) is an attracting equilibrium measure for the

Langevin equation with potential v .

Proof. For the proof we refer to [Tro 77]. We shall indicate the main steps below.

From (8.6) it follows that ﬂt(x,A) = (ZtXA) (x). Let {Qt ,Pt} be the solution of
(8.1) with initial probability distribution V. Then
r({o ,P.} € ) = i 2v(dx) T (x,B) = [ (Z_xy) dv . (8.9)
X R X € R

Let h(q,p) = v(q)<+%~p2. One checks that G*(é~h) = 0. Suppose that v is the Gibbs

measure vv itself. Then

4 _4d / o %k, h _
dtIP({QtrPt}EA)—EE\N-JZt(e )dqdp)-O,
A

This proves (i) of def. 8.1, It also shows that vv is an invariant measure for
Zéﬁ (t 2 0). Now, consider the Hilbert space L2(1R2,v ). {Zt} extends to a
v

contraction semigroup on this space, and the claim is that for all £ € 1% (R2,v )
v

weak - 1im Zt:E =<f,1> . 1, (8.10)
t >

To prove this, one notes that, for f € Cz(Ig) ,

3% 92f 5£)?
G(f*) - 2f(GF) =n-t- (f%) - 2nf 2o =2q{2EY)" |
napz n 3p? n Bp/
Therefore
d g £)? =2 = -h
o 12, =2<f,Gf> =N-+| 2f(Gf) e dgdp =
t=O 2
R
{ 3f ¥\ - 3f ||?
=N ‘(fz)—zn(— dgqdp = -2 ”——
{2\ op ) )% 1P "l op
IR
So for all t= 0, all f€ CcX(®)
4 2 3 2
oIz £l = -2n ||3—§ z £|" . (8.11)

This equation suggests that Zt:f will loose norm until it becomes p-independent.
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Indeed, it can be shown that Zt -+ v weakly for some sequence {tn}
n

where Y is a function of g alone. But then, it turns out, for t = 0, Zt‘Y also has

i -
neEN with tn o,

to be p-independent. It follows that, as a function in L2(I¥

R vv), the wvector
(3/9p)Gy is zero, and by (8.7) this equals the vector 93Y/8gq. Now, if exp(-h) is
sufficiently nonzero, vy must be a constant. It can be shown that necessarily
Zt:E + vy weakly. As <1 ,Zt:E> = <1,f> for all t, we have y = <1,f>+ 1,

Finally, suppose V<< v, Then v = gv,r 9 € Ll(vv). Approximating g by L’-

functions one concludes

r{o., P} €1) = j (Z,X ) gav, »> v (B), (t ). 5
=2
Remank. It is illustrative to compare potentials like v, and v,, drawn
in Fig. 6. For Vi there are two attracting equilibrium measures V., given
by

v,(dgdp) =N, - 8(xq) - e (P agap. (8.12)

(N, and N_ are normalisation constants). The Gibbs measure is a convex

+

combination of v, and v_, but it is not an attracting equilibrium measure
itself, because the barrier cannot be crossed, and the probabilities to
find the particle on either side, remain constant. The above proof goes
wrong for Vi because 8v/39q = 0 in L% (exp(-h) dgdp) does not imply that y
is a constant. (And indeed, potentials like v, are excluded by the
conditions of the theorem).

However, the theorem implies that potentials like v, do not prevent

the approach to the Gibbs measure, however high the barrier may be.

OF = = = = - - - - -

Fig. 6. Potential v
barrier.

, with infinitely high barrier, and potential v, with very high
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§ 9. A FESULT ON APPROACH TO EQUILIBRIUM, BASED ON THE MIXING PROPERTY.

It could be maintained that the approach to the ergodic problem, used
in the previous section, is an unnatural one. It starts by "projecting out"
the heat bath variables to yield a reduced stochastic evolution of the
oscillator, and then the asymptotic properties of this evolution are
studied. Why not study directly the ergodic properties of the total system,
including the heat bath?

The latter point of viewwill be exploited in this section. As a matter of
fact, the result obtained here will be much weaker than Theorem 8.2, (and
this explains why the Ornstein-Uhlenbeck process is not usually treated
along these lines!). However, in quantum mechanics the oscillator's
evolution in the string model is not a Markov process. It has no reduced
description, as is provided by the Fokker—P}anck semigroup in the classical
case, and the "total system approach" seems to be the only one available,
(cf. § IT.5). When following this approach, it will be illustrative to have
a comparable classical treatment at hand.

We shall preferably formulate matters in terms whose meaning remains
unaltered in guantum mechanics. For instance, we shall speak of a "W*-
dynamical system" instead of a dynamical system in the sense of probability
theory. Upon guantisation, the W*—dynamical system of Brownian motion

barely changes.

Mixing W*-dynamical systems.

The flow of Brownian motion has verylnice ergodic properties. It is
mixing, and hence ergodic. It has become, moreover, the prototype of a
"Kolmogorov flow" and a "Bernoulli flow".

The evolution of the Lamb model at a positive temperature, being
isomorphic to Brownian motion, also deserves these epitheta, as well as the
flows of some other Gaussian models. For a lattice of harmonic oscillators
these results were proved by van Hemmen [Hem 76], and Lanford and Lebowitz
[LaL 75].

For our purposes, the mixing property is of greatest interest. It
implies approach to equilibrium for all functionals of Brownian motion,

notably including the nonlinear ones.
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[ee)
A function F in A; or in M = L (S',UB) will be viewed as a multi=
plication operator on HB’ not as a vector in HB. The corresponding vector
will be denoted by F1l. We extend the evolution'{Tt} to all operators on

HB by defining

T (A) =T, AT, . (9.1)

t

Definition 9.1, By a W*-dynamical system we mean a quadruple {H,M,{a .} _p,E},

where H is a Hilbert space, M a von Neumann algebra of operators on H,

{a,}

£ a group of ¥-automorphisms of M, and £ a vector in H, satisfying

t € R
(i) M& = H, (i.e., £ is cyclic for M),
(i1) v

A E mvt E]R: <gloct(A)€> = <glAg>'

(A von Neumann algebra is a strongly closed, self-adjoint algebra of
operators. As an abstract algebra, it is a W*—algebra. For a general back-
ground in operator algebras, see, for instance, [BrR 791).

For example, if {é,u} is a probability space, and {mt}t emR 2 flow on
¢, then
“(

{L2(o,w), L (&,u), {FPF oo}, 1} (9.2)

is a W*—dynamical system.

Definition 9.2, A W¥-dynamical system will be called mixing if for all A € m,

and all unit vectors ¢ € H,

lim <¢,at(A)w> = <E,AE>. (9.3)
t>too

Recall that a dynamical system {®,u,{mt}} is called mixing if for all

measurable subsets S5,/8,<c9

lim w(s N o (5,)) = u(S,) uis,). (9.4)

t>+too

This is equivalent with the mixing property of the W*—dynamical system

(9.2).

Proposition 9.3, The W*—dynamical system of Brownian motion, {HB,mO,T,l}, is

mixing.

We shall first prove a lemma.
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Lemma 9.4, For all ¢,y € Hp: 1lim <m,Et1p>= <@, 1><1,P> . (9.5)

Proof. For all f,g € $, <f, T, g> > 0, {t+*), and therefore

<Exp_(f), T Exp_(g)> = <Exp_(f), Exp_(T, g)> = exp(<f, T, g>)>1, (t++w),
B t B B B' 't t

Now, 1 = <ExpB(f), 1> <1 ,ExpB(g)> and the statement follows by linear continuation,

O
Proof of Proposition 9.3. Let F € M, and ¢ € Hy, such that llyll = 1. Let e > 0.
As 1 is cyclic for mo, there is G € mo, such that Iy ~ G1ll < e and llgtll = 1. By
Lemma 9.4 we have, for t sufficiently large,
* *
<G Gi.,@t F1>-<G'G1,1><1,Fi>|<e.
Now, <G¥c1, T Fi>=<G1, 1 (F)G1> and <G*G1,1> = 1. Therefore, for t
sufficiently large,
<, 1 (19> - <1, Fi>| < e(@+2Fl). -
(The proof is taylored to prepare for the proof of Prop. II.5.2).
A consequence of Prop. 9.3., is that for all probability measures
U <<pB(absolutely continuous w.r.t. UB), and all measurable subsets A of
3,
, *
Iim  p (T (A)) = u,(A). 9.6
trtoo t B (9-6)

Approach to equilibrium {harmondic case)

We exploit the mixing property to prove approach to equilibrium. The
theorems are special cases of Theorem 8.2, and only the proofs are of

interest.

Theorem 9.5. The Gaussian measure on R?, given by

Il

1 .
vgldadp) = 5= exp(- }(q® +p?)) dgdp (9.7)

is an attracting equilibrium measure for the Langevin equation with

potential v(A) = 1 A2,

Proof. Tet {Qt,Pt}t >0 be as given in Theorem 6.1', and define

Xt : 8 +R? : x H—{Qt(x), Pt(x)},
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Then for all § € B(R?) and all t € R,

_]_ _
:muB({Qt,Pt} € 8) = uB(Xt (s)) = vG(S).

let v<<v .

(cf. Def. 8.1). Now, G By the uniqueness ;

This proves the first statement,

theorem of solutions of stochastic differential equations, it suffices to show that
there exists a solution of the Langevin equation with initial probability distribu-

tion v, and tending to Ve in the sense of (8.4).

By the Radon-Nikodym theorem, there is g € Ll(nh vG), such that v = va.

Define the measure u on 3' by

n = g(QO,PO)uB. (9.8)

Then the process {Qt,P }

e >0 taken w.r.t. the probability measure u meets our
=

requirements. Indeed, for all S € B(R?) we have,

Pu({QO,PO}E S) =1MX;1(SH = J (gox)du,= J gav, = v(s). (9.9)
x 7 (s) s
Moreover, {xt = {Qt,Pt}}t cg 152 stationary process, i.e.
X () = Xo(Tt* x). (9.10)

It follows that

%
W(T_y

-1 -1 -1 _
P ({Q P} €8) = (X " (s) ® 7(8)) T ug (X, (8)) = v (S),

by the mixing property, in the form (9.6).

Finally, we must check that {Qt,Pt} satisfies (8.1) also when taken with

t 20
respect to y = g(QO,PO)uB. Now, {Bt}t > g is statistically independent of Q0 and

P is a Brownian motion w.r.t. u as well as w.r.t. uB.

0’ t't 20

Approach to equilibrium (anharmonic potentials)

The essential feature, going into the above proof, is the stationarity,

the "sweeping along" with the flow, (9.10). of the solution. Indeed, by

(9.6), any measurable subset of §' is "smeared out" to a constant in a weak

sense, by the flow {Tt*}t €R"

We shall exploit this fact further, in generalising Theorem 9.5 to a

class of perturbations of the harmonic potential. Put

v(r) = (9.11)

A2 +w(n).
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be as before, and let w be differentiable,

Theorem 9.6. Let {Qt(Pt}t€1m

with bounded derivative, satisfying the Lipschitz condition

Ay _Az" (9.12)

where

/qat
k < %T%Tag" (9.13)

such that {QZ = Et QY} solves the

Then there is a unique function QY € HB’

equation
1

QZ = Qt - I ;%% q(S"t)W'(QZ)dS . (9.14)

-0

Moreover, the process {QX,PZ}t € R’ with
t
1
P¥=Pt— J—p(s—-t)w'(QVSV) ds , (9.15)
vZn

- 00

is the unique stationary solution of the Langevin equation with potential

(9.11). The probability measure Ve on R?, given by

v (S) =IPUB({QZ,P¥} €8), (9.16)

is an attracting equilibrium measure for this equation.

M. For almost all x € §' w.r.t. Mgr t Qt(x) is continuous, so we need only
prove existence and uniqueness of t » Q‘g(x) , satisfying (9.14), for a fixed,
continuous t & Qt(x) . We use a method, known as "Picard's method", [Nel 67].
Let Cg(IR) be the Banach space of bounded and continuous functions R - R with the
sup norm. Choose x € %' such that t Qt(x) is continuous, and define ex : Cg(]R) -

0
Cb(R) by

t
(o, ) () =-f —— a(s-)w' (Q_(x) +£(s)) as .
e

Then, for all f,g ¢ cﬁ(m),

t
1 (
le, £ - 6_gll = sup ‘ J-——q(s—t) W' (Q () + £(s)) - w'(Q (x) + g(s)))d
X X t _oo/iﬁ- \ s s s
t
1 fgla
< sup j——hw—ﬂ-k-ﬂm— ()| as<k - £ gl - Llalds
‘ /an g [ el qul
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because [ gds = v2n. By (9.13), we have IIexf-— Oxg” Sellf-gll with ¢ <1, so Gx has

a unique fixed point fx € Cg(]R) . Define
Y (x) = Q (x) + £_(t) (9.17)
Q(x) = 9 (x L (B .

Then {QZ} solves (9.14). It is stationary, because it is uniquely determined. By
substitution into (8.1), (or rather its integrated wversion, like (6.6)), one checks
that {QI,P:_’} is a stationary solution of the Langevin equation, (see also Def.
II.4.1). A repetition of the arguments, used in the proof of Theorem 9.5, shows

w
that Vo is an attracting equilibrium measure. Especially, we note that Qt(x) depends

only on {Qs(x)}s <t -
Remarks 1. If w satisfies (9.12)with (9.13), then v is strictly convex.

Indeed, note that k < 1, hence, for A, > Az,

Vi) - v () = (A

A 1

S+ ) =Wt (,)) = (1=K (A, —A,) >0,

2
So v' is strictly increasing, and v is strictly convex.
It follows that v has only one equilibrium point e, (i.e. a zero of

v').

2. The above "pathwise" approach can only work if v has only a single

equilibrium point. For example, put x = 0. Then Qt(x) =0V and for any

£
e € R,suchthat v'(e) = e+w'(e) = 0, the constant function QZ(X) = e
satisfies (9.14) in the phase space point x = 0. Uniqueness of {QZ(X)}there—
fore implies uniqueness of e .

This shows the weakness of the pathwise approach to the existence and
uniqueness question for solutions of the Langevin equation. Indeed, we do

not need uniqueness of the solution in each point of phase space, but only

for some class, of measure one, of rather rough input functions.

3. From Theorem 8.2 we know that the probability distribution Vi of

{QY,PY} is the Gibbs measure (8.3), {(which is called Vg there). This can be
concluded also without use of the Markov property and semigroup analysis,
from (7.5), (7.14) and (7.18).

However, to try and verify directly from (9.14) and (9.15) that Ve is
the Gibbs measure, is a tremendous undertaking, not unlike the efforts made

by Benguria:and Kac in [BeK 817.
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Chapter I
QUANTUM LANGEVIN EQUATIONS

In this chapter, a gquantummechanical version is treated of the string
model, considered in Chapter I. The operator differential equation that is

satisfied by the oscillator in this quantum model, has been given the name

of "quantum Langevin equation". The question of approach to equilibrium for
its solutions, is studied using perturbation theory. It is shown that for a
general class of - convex - perturbations of the harmonic potential, the
oscillator is driven to a certain limit state. This state is close to the

Gibbs state, both for small friction coefficients and for high temperatures.

§ 1. REPRESENTATIONS OF THE CANONICAL COMMUTATION RELATIONS

Let us formulate how a damped oscillator in a heat bath is to be
described in quantum mechanics. We take the point of view, put forward in
[FKM 65], that one should not try to artificially impose friction on the
ordinary, frictionless quantum oscillator, but that one should put the
oscillator in a quantummechanical, friction-producing, environment. The
advantage is that, in this way, one only needs a procedure for the
quantisation of Hamiltonian systems.

Therefore, we shall quantise the Lamb model. We recall that the Lamb

model is isomorphic to a limit of models, considered in [FKM 65]. This
section, and the next, will reproduce the results obtained there, notably
the commutation relation and the correlation of the "quantum noise".

In guantising, we shall apply the rule of Dirac that "Poisson brackets
are to be replaced by commutators":

R e LR (1.1)

Here, h is Planck's constant, divided by 2w, { -, + } is the Poisson bracket,

acting on classical observables, and [+, * ], defined by [A,B] = AB - BA,
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is the commutator, acting on operators on a Hilbert space, which is as yet

to be constructed. The rule (l1.1) we shall apply not to all classical |

observables - it was not meant for them all - but to a large class of |
|

linear ones, namely the linear and continuous functionals x b <f,x> on $', |

where £ € " = §.

By Lemma 4.3 of the previous chapter, we have
{<f, »>, <g, *>} =0 (f,g) 1. (1.2)

Let us postulate then, thatto every £ € % there shall correspond a self-

adjoint operator E(f) on some Hilbert space H, such that for all f,qg € §,
[E(f), E(g)] = 10 (f,g) L. (1.3)

Here, 1 is the identity operator on H. The constant b in (1.1) has been
omitted to make E(f) dimensionless.

Given such a correspondence E, let W(f) be defined by

W(f) = exp(~1E(f)). (1.4)
Then W satisfies

W(E+9) = exp(d o (£,9)) W (£) W (g). (1.5)

The relation (1.3) is called the canonical commutation relation {CCR) over

the symplectic space {%,0}.

Definition 1.1. By a cyclic hepresentation of the CCR over {$,0} one means a triple

{H,W,£}, where H is a Hilbert space, W a strongly continuous map from § to

the unitary operators on H, and £ a unit vector in H, such that (1.5) holds,

and the linear span of the vectors W(f)&, (f € §), is dense in H.

The Stone-von Neumann unigueness theorem says that, for a finite

dimensional symplectic space, all cyclic representations of the CCR are

unitarily equivalent (differing only in the choice of the cyclic vector §).

However, $ is infinite dimensional. This reflects the fact that the

Lamb model has an infinite number of degrees of freedom. There is an

abundance of different (i,e, unitarily inequivalent) cyclic representations

of the CCR over {$,0}, and we still have to specify which of these is going

to yield our quantummechanical Lamb model.

The following concept will help us in classifying the cyclic represen4

tations of the CCR.



_the strip

Let {H,W,t} be such a representation, and define its generating functional

C by
C: 8% >C:£fr <g, W(E) E>. (1.6)
The C has the properties

(1) C is continuous
(ii) cC(0) =1

(iii) For all n =2 0; c. € C, £, € $,(J =1,...,m):

N
Q
™
h

* ] - >
lecj cp e c(fj £.) > 0. (1.7)

(Indeed, the r.h.s. of (1.7) is equal to Hch W(fj)glﬁ .)

Proposition 1.2, Every C: $ » T, satisfying (i), (ii), and (iii) is the

generating functional of a cyclic representation of the CCR over {g,0}. The

latter is determined up to unitary equivalence.
E@ggﬁ. Let V:$ ~ H be a minimal Kolmogorov decomposition of the positive definite
kernel (cf. App. B),
{£,9} H»exp(%—c(f,g))c (f-g). (1.8)
Then the map W(f), defined by
W(E) V (g) = exp(F0(£,9)) V (£+q), (1.9)

extends to a unitary map on H. The W's satisfy (1.5). By (1.9) and the minimality

of

<

, V(0) is a cyclic vector for the W(f), (f € $). Conversely, suppose that
{E,W,E} is a cyclic representation of the CCR. Then fb ﬁ(f)g’ is a minimal
Kolmogorov decomposition of (1.9), and it follows that (E,W,Z} is unitarily

equivalent to {H,W,V(0)}. O

We conclude that it is sufficient to specify a generating functional C,
in order that our representation should be determined. Now, certain of
these functionals are of a special physical interest: those determining a
thermal equilibrium state of the Lamb model. We shall speak of ground
states as thermal equilibrium states at temperature zero.

Let us introduce the following notation. For B € (0,«), let A(B) denote

AlB) = {z € ¢ |0 < Imz< B}. (1.10)

Let A(®) be the closed upper half plane. By C(A(B)) we shall denote the
space of all bounded and continuous functions A(B) - €, which are analytic

on the interior of A(B).

Definition 1.3, A generating functional C on {$,0} is said to satisfy the

{T,B}- KMS condition, with 8 € (0,1, if the function

t b exp (—%(}(f,Ttg)> 'C(f-thg)

extends to a function Gf g € C(A(B)), satisfying

14

Gf,g(t-+i B) = exp(% O(f,Ttgg . C(f%—Ttg),
if B < =,
Remasiks

1. A theorem by Slawny [Sla 72] says that the C*—algebras, generated by the
W(f), (f € $) in different representations of the CCR, are isomorphic.
This implies that there exists one abstract C*—algebra, of which a
representation is given by each of the maps W: g~ £ (H). This algebra is
called "the CCR-algebra over {$,0}", and is the norm closure of the
linear span of certain elements WM (f), (f € §), where N satisfies (1.5).
There is a one-to-one correspondence between the generating functionals

C and states w on this algebra via
C(f) = wW(£)).

Definition 1.3 for B € (0,w), is equivalent with the KMS-condition for
the state w. For g = « it says that w is a ground state.

In the above, $ can be replaced by any real-linear space, o by any anti-
symmetric form on $, and T by any o-preserving flow on 3.

Especially if § is Schwartz's class, and ¢ = 0, C satisfies the condi-
tions of Minlos' theorem (Theorem 5.3 of Ch., I), and W is a unitary
representation of $. A natural choice is

H=12(5",1), (b =C), and W(£) (x) = eT<%/ %>




§ 2. QUANTUM WHITE NOISE

In this section we shall find all generating functionals, satisfying
the {T,R}-KMS condition for some B8 € (0,»], and explicitly construct the
associated representations of the canonical commutation relation. The
construction is similar to that of Araki and Woods for the free Bose gas
[Arw 63], and it generalises the construction of a Bose field over the
"Boson single particle space" {$%,0,T} in the tradition of Segal and

Weinless, [Seg 591 , [Wei 69], to the case of a positive temperature.

Generating qunetionals at T = 0.

Let the functions Pgr B € [-»,0\{0} be defined as follows

k

OB(k) = Iij;:gg r B E (-o,0)\ {0} (2.1)

piw(k) = g (tk)k , (2.2)
and let RB : §x%>C be given by

. ~ dk

RB(f'g) = [ OB(k) f(k)*g(k) Tk (2.3)
Then, because e_kaB(k) = pB(—k), tF>RB(f,Ttg) extends to a function
Ff,g € C(A(B)), satisfying Ff,g(t*'iB) = RB(Ttg,f). Moreover, because
pB(k) pB(-k) = k, we have Im RB(f,g) = 31 0(f,g). One checks that the
generating functional

Cg(f) = exp(- § Ry (£,£)) (2.4)

satisfies the {T,R}-KMS condition.

However, C, is not the only {T,B}-KMS functional. If ¢ :R~+C is

B
continuous and positive definite, with ¢(0) = 1, then the functional CB
14
given by
C = C,(f) - @(f .
B,w(f) 8( ) 2 0(£(0)), (2.5)

also satisfies the {T,B8}-KMS condition, (compare (I.5.9)).

Proposition 2.1, Every {T,B}-KMS functional on {$,0} is of the form (2.5).

For the proof we need a lemma:

Lemma 2.2, If £ € $ is such that £(0) = 0, then for some g € $:

f(t) = 2g(t) - g(t-1) -g(t-v2). (2.6)
Phoog. Put
g = E(A)/(z—e“~e“'6>- 2.7

By the irrationality of /5} the denominator has no zeroces,except A = 0, What is

_ in o iAvVZo-1, o
more, outside (-g,g), (¢>0), (2-e  =-e ) “is bounded by a quadratic in A.
Therefore é € $. The statement follows by Fourier transformation. 0
Phoof of Proposition 2,1. (after [RST 70]) let C be a {T,B}-KMS functional on {%,c}.

We claim that for all f,g € %, the function
t}+C(f+Ttg)/CB(f+Ttg) (2.8)

is a constant.

~3io(£,T 9) -3i0(£,T_9)
Indeed, because both tmre C(f+Tt g) and the Ce(f+Tt g)
extend to functions in €{(A(B)), and because the second function is bounded from
below in norm on A(B), also (2.8) extends to a function y € C(A(B)). Now, if

8 €(0,=), we find that y(t+ if) = y(t) for all t € R, hence y is a constant.

On the other hand, if B = «, then

y(t) = Clg+T_  £) / C (g+T_ £},

B t
extends to a function in €(A(-»)) as well. Again, it follows that (2.8) is a

constant.

Using Lemma (2.2) one derives from this that C(f)/CB(f) depends only on E(O);

i.e., there is a continuous function (: R » ¢ with @(0) = 1, such that C(f) =
CB(f)- m(f(O)). It remains to show that ¢ is positive definite.
Choose a sequence {fn € §} with En(O) = 1 and such that RB(fn,fn) + 0, (n>w),
Then, for all n € N, and all cl,...,cm € C, fl,...,fm € §:
m m ,
0 < j }2{_1 oy o ClOy =N £) = j 15%—103' Ck*“’“j =) - exp (= iy = A PRO(E LE )
k= k=

Taking n » », we find that

m
E ey ck*w(xj-xk> > 0.
jl =1




The spaces H, and By

Consider the symplectic space {L*(R) , 2 Im <+, » >}, Let the

generating functional CF on this space be given by
C.(h) = exp(-3lh{?). (2.9)

It is well known that {HF r Wp

{L?(R) , 2 Im <+, » >}, associated to Cp. Here, H

’lF} is the representation of the CCR over

F is the symmetric Fock

space over L?(R) , l, =1®0@® 0® ..., and W, is given by

_ =1 Im<h, %>
= e

WF(h) cth (2) cth(h-fz), (2.10)

where cth : L2 (R) ~ HF is the Kolmogorov decomposition of the kernel

i Im <h, 2>

{h,2} » e Cp(h-2), (2.11)

given by
— 2 ®
cohy, (h) = Cp(h) Expy (h) = e Hn ™, L op®n (2.12)
n=0 vn!
Another Kolmogorov decomposition of (2.11) is cohB : LY (R) > HB’ given by
_ = 3inl?
coh_(h) = e + Exp, (h), (2.13)
B B

where Expg(h) = exp( -1i< + ,h>+ 3|lRehll® - 3l Imh |2 + i<Reh, Imh>). (2.14)

(ExpB(h) corresponds to :exp(- i<+ ,h>): in the notation of many field
theory books, e.g. [Sim 74], [GlJ 81]). We define WB as in (2.10), with
cth replaced by cohB.

The structures on H_ and H_ correspond under the isomorphism i_ (cf.

F B F

§ 5, Ch. I).

Representations of the CCR at T 2 0

Let us construct representations of the CCR over {$%,c}, associated to

CB' (0 < B<») in the way, indicated in the proof of Proposition 1.2. The

kernel (1.8), with C replaced by CB' is
{£,9} » Co(£)Cy(g)exp (Ry(£,9)) . (2.15)
Now, let Dé : $ »~ L?(IR) be given by
. _ ? -ikt ¥z dk
(Dsf) (t) = J e pB(k) f (k) T (2.16)

Then <0é

£, 01 g> = RB(f,g), and therefore

f e cohB(Déf) (2.17)

is a decomposition of (2.15).

Our representation is the following:
o 1
B r Vg DB,l} . (2.18)

Proposition 2.3. Any representation of the CCR over {$,0} at temperature = 0

is equivalent with

(Hy @ L2(R, v), £»wyop(en@e” PO ey, (2.19)
where v is some probability measure on IR, and exp(—j.%(O)') is a multi-

plication operator on L% (R, V).

P&OOﬁ. This is a direct consequence of Proposition 2.1 and the above construction.

O

KRemark., We see that the quantisation of the Lamb model is not yet uniquely
determined by Definition 1.3, as one might have expected it to be. The
existence of more than one thermal equilibrium state at one temperature,
a feature which the classical and the quantum Lamb model share (cf. § 5,
Ch. I), is usually interpreted as the coexistence of different phases of
the same material. Here, the material consists of free phonons in the
string, and the phenomenon is much like Bose-Einstein condensation: part of
the phonons condense into the "ground state" with "wave function” b' = 1.

In terms of the string, the measure v, occurring in Proposition 2.3,
is the probability distribution of a non-local observable: the systematic
slope that is superimposed on the fluctuations in the string.

As we did in the classical case, we signal this phenomenon, but
neglect it afterwards. Our interest is in a quantum white noise, comparable

to the ordinary white noise, i1.e., without systematic deviations.

Quantum white nodise

Define Eé(f) by

exp(- 1 E!

LE)) = W (0 )

B

For B €(0,%), we define DB = /EIOéand




EB(f) = VB Eé(f); (2.21)
By construction, Eg satisfies the CCR over {$,B0}:
[EB(f) ,EB(g)] = 1pa(f,g) 1. (2.22)
Tts covariance is given by
o gk -k~ dk
<1 'EB(f) EB(g) 1> = J 1-—e”8k £f(k) g(k) T (2.23)

Apart from factors, (2.22) and (2.23) are equivalent with the defining
formulae for the noise, used as a source in the quantum Langevin equation,
in the paper by Benguria and Kac, where this equation was introduced

[BeK 81]. Moreover, our operator-valued distribution EB is clearly a

gquantummechanical version of the random-variable-valued distribution E,.

For these reasons we shall call EBquanﬁm1whéteywiAe at invense femperature B.

The factor VB in (2.21) is introduced to agree with the temperature-

dependent vertical length scale which we have used for the classical Lamb
model from 8§ I.5 onwards, and shall use from now on for the quantum-
(cf. Appendix B).

mechanical Lamb model,

Note that, as a result of this choice of scale, the "classical" white

noise E, shows up in the limit g + 0 of (2.21).

Structwre of the nepresentation

We conclude this section by an examination of the structure of the
representation {HB » Wy ° Vg , 1}. We use the terminology and results of the
Tomita-Takesaki theory on faithful normal states on a von Neumann algebra,

[Tak 701, [BrR 791].

For all B € (-»,®), let M, be the von Neumann algebra, generated by the

B
operators WB(Déf), (f € ). By the KMS-property of CB' the state
Aw <1,Al> is a {B,T}-KMS state on mB. It follows that 1 is not only

cyclic, but also separating for mB, i.e.

v : A1l =0 = A =0. (2.24)

AElHB

*
Because Tt(A)==¢tZ\Et ’EiB is the modular operatorn , associated to {mB'l}'

This is to say, that there exists an anti-unitary involution Jp on Hyy such

that for all A € mB:
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*

J, T Al =A1.

B "iB/2
Jg is called the modular conjugation, associated to {mB,l}. An important

property of JB is the following:

Proposition 2,4, J

is the operation of complex conjugation on HB'

and, because ground states are irreducible, [ArW 631,

(2.25)

(2.26)

Moreover,

B
1) —

m = m_B. (2.27)
Phoof. Let h€ ¥_$. By (2.16), h € D = n*
__~_ﬁ Sﬁ v ( ), Om(TiB/2) and Tis/zll h™. It follows that
z > <k, TZ11> is in €(A(B/2)) for all k € L?(R) , as well as

z > exp <k, T h> = <Bxp (k) , T Exp,(h)> (2.28)
putting z = iB/2, we conclude

*

EiB/Z ExpB(h) = ExpB(h ). (2.29)

On the other hand, we read off from (2.14) that
X _ *

ExpB(h) = ExpB(-h ) . (2.30)

Combining (2.29) and (2.30), we find that
-3 ni? * _ — Hnl?
T. * V] = 2 - =
( ig/2 WB(h) 1) e (EiB/Z ExpB(h)) e ExpB( h)
*
= - = 2.31
W (-h) 1 =W, (h)" 1. ( )

By (2.25) it follows that JB(D = w*, (o € HB). Finally, from (2.30) one shows that

(2.32)

space

JB WB(h) JB = WB(—]1 )y, and from (2.16) that —(DB 0n* = D_B £, (f € §). Therefore,
JB ms JB = m_S, and by (2.26), (2.27) follows.
Finally, let us consider the zero temperature case. We have
-1
005 = 7 (e co,en),
where F is the Fourier transform. Let HF+ c HF be the symmetric Fock
over this "positive frequency one-particle space" (2.32), and let HB+
. +
lF(HF ) . Then
. +
mm]. = HB ,

(2.33)




+
i.e., the set of allf bounded operators on Hy .

§ 3. THE QUANTUM LANGEVIN EQUATION WITH HARMONIC POTENTIAL

Consider the classical Lamb model with harmonic potential v(A) = 1A%,
The position and the momentum of the oscillator at some time t , are re-
presented by the linear observables <T, q,°*~> and ST Prt> (cf. §1I.3).

To find the position and momentum operators in the quantum model, let

us simply apply the quantisation map EB' and write

(B:) = g (p (M) (3.1)
Qt EB\Tt(I ) and
(B,m) < (n)) (3.2)
Pt EB Ttp .
(We explicitly indicate the dependence of g and p on n) . The expressions
on the r.h.s. of (3.1) and (3.2) are not a priori defined, because q(n) and

p(n) are not in $. However, Es has sufficient continuity for its domain to

be extended to contain Tttz(n). The family of operators {Qée'n)}t ¢ mr thus

defined, satisfies the distribution version of the Langevin equation with

the quantum white noise EB as a source:

a*  _(8,n) a ~(B,m, ~(Bm) _ .
acz 9% g % % /20 By g (3.3)

To (3.2), on the other hand, no meaning can reasonably be attributed if
g8 # 0. In the quantum Lamb model, the oscillator moves about too wildly to
have a momentum operator.

This section will be devoted to the proof of the above statements. We
shall slightly generalise them, to make them applicable to all quantum stochastic
differential equations like (3.3) with a polynomial in d4/dt on the l.h.s.

But first, let us note that on a formal level, (3.3) is entirely trivial

as the following computation shows:

\ (éiz + n é% + l> EB(Tt(I(nU

(n))) _

( _
EB\Tt (82 -nd+1)g

v2n EB(TtG) = /27 Eg g

Linean quantum stochastic differential equations

We extend the domain of B, as follows. Define the norm |l 'l% on $ by
£ = .
Il ”B HDB £l (3.4)
(Let DO f = f£f). Let §B be the completion of $§ in this norm. Clearly, DB
extends toc an isometry
v, : o Li(R)
g ¢ .
Now, define E_ by Wy(h) = exp(-1Eg(h)), and EB by
E,odl , (B =2w)
— B 14 14
Egz{ £ (3.5)

EOD ,(SEJR).

A linear observable f can be quantised if and only if it is in §B. Its

quantisation is the operator E,(f).

B

Now, let P be a polynomial of degree n 2 1 with real coefficients, and

without zeroes on the imaginary axis. Consider the formal differential

equation
(4 \x = ,
P\dtjxt EB,t' (3.6)
Here, E is to be read as E_,(6,), where §,(s) = §(s-t), and § is Dirac's
B,t B -t t

delta function. Clearly, dt ¢ §B, so E does not exist as an operator.

B, t
Equation (3.6) will be interpreted in a distribution sense (compare § I.6).

Deginition 3.1, Let B €[0,~]. A family {Xt} of self-adjoint operators on

t €R

Hp is said to solve the (quantum) stochastic differential equation (3.6), if there

exists a dense linear subspace D of HB containing 1, of analytic vectors

for each of the X

e (t €R), and E,(f), (£ € $), such that for all ¢ € D

B
the function t H»Hthllis tempered, and for all f € §:

J (P(—B)f)(t)XtLpdt=EB(f)Lp. (3.7)

Remark. With this definition, {X,(}

t}¢ ¢ g s automatically stationarny, i.e.,

Ve er ¢ X¢ T Tt(Xo). (3.8)

Indeed, the requirement of temperedness for t l—>~!{Xt(p||rules out homogeneous

solutions, because these diverge exponentially as t » @ Or as t » -, Now,




(X also is one, and hence (3.8)

s+t)}s € R

if {XS}S cw 15 2 soluf:ion, {T_t

holds.

Because of this fact, we may as well say that zthe operatorn X, satisgles

(3.6},

Now, given P, let the function dp be the unique tempered solution of

P(-Z))qP = g, (3.9)

Proposition 3.2. The (quantum) stochastic differential equation (3.6) has a

solution if and only if
L 3.10)
dp € 3. (3.
This solution is unique and given by
Xt = EB(thP). (3.11)

To prove this proposition, a lemma is needed.

Lemma 3.3. Let & € L?(R). Then cohB(Q,) is an analytic vector for each of
the operators Ej(h), (h € L* (R)). The map

h - EB(h) cohB () (3.12)
is continuous.

Conolhary 3.4. If t » h. is a bounded and continuous curve in $°, and g €

L!(R), then for all & € L*(R):

EB([ g(t)htdt> coh () = J g(t)(EB(ht)coh(ll))dt.

Prood. Bpproximate g by stepfunctions, and use the continuity of (3.12), and of

S|

g’ O

Prood of Lemma 3.3. For all h,% € L?(R), the function £ o RTE defined by

I

= _ _ 2 2 .
fh,R(A) = <COhB(2), WB(AIH cohB(2)> = exp(- 41X [In | 24ix Im <h,8>)
is the restriction to R of an entire analytic function. It follows that cohB(ﬁ)
is an analytic vector for EB(h). Now,

IE_(h)coh_(2) 12 = =£." (0) = |h|? + 4(Im<h,2>)2 < [|ni(1+4 l2l?).
B B h,%

_So hw EB (h)coh(2) is continuous. 0
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Proof of Proposition 3.2. Suppose ap € 38. The maps f qP*:Eand.fi+ P(-3)f are

each other's inverse as maps $ - $ (this is similar to Lemma I.6.2),and therefore,

for all £ € §, and all % € L2 (R):

o

_ \ _
(qP*P(—B)f)cohB(SL) = EB \J (P(-3)f) (t) Tt dp dt/ cohB(Q) =

—C0

E (f)cohB(R) =B

B 8

= I (P(—a)f)(t)<EB(thP)COhB(QQ at . ‘ (3.13)
-0
Here, we used Corollary 3.4 and the §B—continuity of t b thP . The conditions of

Definition 3.1 are satisfied with Xt given by (3.11), and D by
D = span { coh_ (L?(R)) ). (3.14)
\"B /

The uniqueness of the solution follows from the fact that P has no zeroes in iR,
(see remark, preceding Prop. 3.2).
Conversely, suppose that {Xt} is a solution of (3.6). Then X _ = @t X @: and
0

1€ Dom(XO). Let Vv be the measure on R, satisfying
<X 1,X_ 1> = J KTy (ax) . (3.15)

Then (3.7) implies that for all f € 3,

©w o

[ J(P(—a)f) (t) (P(—‘a)f)(s)/ [ eik(s_t)\)(dk)>dsdt -

It

2
|[E8(f) 1

[e<]

[\%(mlz-

—

[

P(ik)|® v (ak).

On the other hand,

2 dl
B () 11 = (8 or 1) - J Ptk |00 | 55

Therefore,

Py k) ak

V(aK) = (B or 1) 5T oy

2 _ _ 2 . oo
and IquIIB =v(wr) = Xolll <, O

I1?

Remarks. If B = 0, then HqP Ilf3 = IIqP is finite for all P of degree n = 1,

But, if 8.# 0, n has to be strictly greater than 'l. As a consequence, the




Ornstein-Uhlenbeck velocity process, which is the solution of (3.6) with

P(d/dt) = n+d/dt, haé no quantum version. (We recall that the Ornstein-

Uhlenbeck velocity process is the stochastic process‘{Pt}t ¢ g + where P
is the velocity at time t of a particle on a line, subject to noise and

friction only).

In the model we are considering, the polynomial P is

p = -1 p , with P_(x) = %% +nx + 1. (3.16)
n n
vV2n .
We have
||q(n)||2 _ J Bk 2n ako (3.17)
B ) 1o kron)24n2k? 2n
However,
oM = J Bk . 2nk* . &k (3.18)
8 1-e Bk (k2 -1)% +n%k? 27

-0

diverges if B # 0. Hence p(n) 4 §B for B # 0, and there is no momentum
operator for the oscillator in the quantum string model.
In the same vein, there does not exist guantum Brownian motion of the

(8)
t

= =P
type B = EB(X[OIt]),because X[0,t] ¢ $° for B,t # 0.

§ 4. THE QUANTUM LANGEVIN EQUATION WITH ANHARMONIC POTENTIAL

Consider the Quantum Langevin Equation (QLE)

2
d d v 4 ovr(x

4 - /o 4.1
acz Xt nar e t) 2n Eg oo (4.1)

with 0 <B< @»and n > 0. As in § I.9, we take v of the form
V(A = 3A% + w(d), (4.2)
where w is differentiable with bounded and continuous derivative. For

short, we call equation (4.1) the QLE given by {8,n,wl.

Deginition 4,1, A family {Xt}t € R

called a stationary sclution of the QLE given by {B,n,w}, if for all t € R:

of self-adjoint operators on Hp will be

- - (8,n)
e = To(X)) Dom(X,) = Dom(Qg )y

and for all ¢ € Dom(QéB'n))
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t

ko s |

-_— 00

' _ ~(B,m)
q(s - t)w (Xs)cods = Qp ¢ . (4.3)

3 |-
=3

Motivation. suppose that (4.3) holds. Again let D © Hy be the span of cohB(LZ(IO) .

As the integral in (4.3) is uniformly bounded in @, the function t & HXt(D[lis

tempered for all ¢ € D. Therefore, for all g € &,

0 = t o]

f f -

| st vat +J g (t) (J Mw-(xs)¢d5>dt =J amoP Moar . (4.4
Now, put f = -i—-q:kg. By Lemma I.6.2, f takes all values in $, and g = f" -nf'+ £,

2n
Therefore, for all f € §, all ¢ € D:

[ (£"-nE' +£) (£)X_Qat + f E(E)W(X) @dt = V2n B (£) @, (4.5)

B,n

t )} solves the unperturbed QLE.

because {Q(
Evidently, (4.5) is a distribution version of (4.1) in exactly the same manner

as (3.7) is a distribution version of (3.6). For this reason, we shall deal with

(4.3), which is a well-defined, and tractible version of the QLE. Note that, in

fact, all domain difficulties have disappeared, because the integral in (4.3) is a

bounded operator. The form (4.3) of the QLE was also used in [Bek 81].

The following existence and uniqueness theorem for stationary solutions

of the QLE is analogous to the "pathwise perturbation" result, Theorem
I.9.6. Because of noncommutativity a little more care has to be taken. We
introduce some notation.

Let M be the Banach space of all complex measures p on R of finite

total variation, and satisfying
v :pu(-8) = u(s)* (4.6)
sep(wr) * KT8 T : ‘

As the norm HuHM of y we take its total variation. The total variation

measure will be denoted by u+. Especially, u+(HU = HuHM. Let M be the

linear space of real functions of the form

?
il

M is a Banach space in the norm “f”M F=”U”M.

-1iax

£(A) = | e Ldx), (4 € M. ‘ (4.7)
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Theorem 4,2, Let w € # be such that also w" € M, and let v(X)

Let n > 0 and suppose that

“W"”M < liiiﬁB_QEl

rlatM at

= 1A% + w(d).

(4.8)

Then, for all B € [0,»] the QLE given by {8,n,w} has a unique stationary

solution

(B,n,w)_

{0 t — Tt(Q(B,n,W))}

t €ER

Lomma 4.3. Let Q and A be self-adjoint operators on some Hilbert space H,

one of which, A, is bounded. Suppose that £ and f' are in M. Then

NE@Q+a) - £@I < Ul - Al

Proof. First note that for all A = 0,

eiX(Qi-A)_;eikQ” _

Now, let £ = §, with p € M such that J'iklu+(dk)< ©, Then

(s.a.)

(noninesz) map 0+ (%:%) > mZlGy vy

Q0
MA)=I L qe)w(x (@+n) as .
2

s.a.)
Then, for all A,B € mﬁ_w 0] *

A , (s.a.)
and therefore 0 has a unique fixed point Aw € m(_w 0] Put
’

A
eiMQ+A)édﬁQ_nw=“JeiM(Q+M(im
0

; i +
Iz@em-zil = | [ @@ e @] < [l -l -

0
"e(A) - 6(B) "= H} ’—1— q(s—t)Ts(W‘(Q+A)—wl(Q+B))ds
Zw 2
g
<_1_“J|Q[(s)oHW'(Q+A)—w'(Q+B)”ds<“‘ﬂ,n“'§I
v2n

e"“'%-n < x

wm=ummme

O

. o .
Proo4 of the theorem. We drop indices g and n. Let m( @ 0] be the Banach space o

all self-adjoint elements of the algebra m(—w,O] = {Qtlt.E(—m,OJ}n, and define the

(4.9)

I ds

. fqdm-uA-Bm

because fqds = ¥2n. From (4.8) it follows that lo(a) -8 ®) <clla-Bl with ¢ < 1,
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Q =Q + AW' (4.10)

Then Qw = T, ( w) is the unigque solution of (4.3).
t t Q

Remanhé._l. The condition (4.8) is somewhat more restrictive than the
Lipschitz condition (I.9.12) with (I.9.13), which suffices in the classical

case. Indeed, we have, if w,w" € ﬁ,

sup - < sup |[w"(N)| < lw"lg . (4.11)
Al# Ay, ENEEYY M

We do not know, whether the weakening of the result in comparison with

the classical case is inevitable, or just a matter of insufficient methods.

2. Note that Q" is affiliated with W __ |
r

next section.

17 to be called the "past" in the

§ 5. APPROACH TO EQUILIBRIUM

Breakdown of the Markov property

The solutions of the quéntum Langevin equations, treated in the
previous sections, are not Markov processes.

We shall briefly explain this statement.

In the theory of quantum stochastic processes that is emerging in the
present time, (c¢f., for instance, [Dav 76], [Lin 76], [Acc 751, [Lin 791,
[AFL 82]), several quantummechanical generalisations of the concept of a
Markov process have been given. As they are all practically equivalent, let
us cite the one in [Acc 75], that has a convenient algebraic form.

A W*—Atode£u1phmuMA for a physical system that has a von Neumann

algebra N as its observable algebra, is a family {jt} of *-morphisms

t € R

from N into a ("big") von Neumann algebra I on some Hilbert space H,

together with a cyclic vector £ € H. The process is called Aﬂu%ﬂnahy if

ttemr®
and <g€,a  (A)g> = <g,AE>, (t,s €ER; A€ M).

there is a group {o f *-automorphisms of @, such that jt-fs = q

t ojs

Given such a stationary W*-stochastic process, one defines, for I c R,

My = (3,00 |t e 13" . (5.1)




We shall suppose that NR = M, The algebras m(;wlo], m{o} and m[o'm) are

called the past, the pneAent and the f{uture respectively.

The process is called a Markov process if

= (5.2)
E (—,01™0,2) = M0}

where E 0] is a conditional expectation w.r.t. the past, compatible with &,
—,

i.e. a projection Ml ~ m(_mlo], such that for all A € M and all B € m(_mlo],

- (5.3)
E o ) BB =E_, o7(aB), and

<€, B(_, o) BIE> =<E,BE>. (5.4)

The relation (5.2) says that the expectation value of any future variable,
based on a knowledge of the entire past, only depends on the present.
Stated in these terms, it coincides with the probabilistic‘definition of a

Markov process (cf. § I.8, [Doo 531]). The generalisation lies in the

A necessary precondition for (5.2) is the existence of a conditional
expectation onto the past. Now, a theorem of Takesaki says that, if & is
separating for M, and a is the associated modular automorphism group, there
only exist conditional expectations onto subalgebras of i, which are a-
invariant, [Tak 72]. The past m(_mro] is not such a subalgebra, unless
m = m{o}. But then the entire process collapses to the process of an
isolated system. Therefore, in thermal equilibrium, there are no proper
quantum Markov processes.

In the case of the guantum string model, the situation is even worse
than this. Not only in a representation of the CCR over {4,0}, associated
to thermal equilibrium, but in any representation, there does not exist a
momentum operator. The algebra N merely consists of functions of the
position of the oscillator, and is clearly too small for (5.2) to hold.

The relevance of the Markov property (5.2) lies in the fact that, if it

holds, a family {Zt: N -+ N} can be defined by

t> 0

=57t ' (5.5)
Zt I 0E(—OO,O] g

and constituites a semigroup of completely positive maps on the small

applicability of (5.2) to non-commutative algebras of "stochastic variables".
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system's algebra N. It provides a "reduced description" of the small
system's dynamics, and thus it generalises the Fokker-Planck semigroup for
an ordinary Markov process, (cf. § I.8). It has been shown, [AFL 82] that
the Markov property is not only a sufficient, but also a necessary
condition for the existence of such a reduced description.

The quantum string model does not admit a reduced description of the
dynamics of the oscillator. It seems likely that this is the reason, why so
many attempts at a quantummechanical treatment of the damped (harmonic)

oscillator 4n {solation, have met with severe difficulties, [Mes 791],[Dek 81].

Use of the mixing property

Because initial probability distributions of the oscillator's position
do not determine the later distributions, Definition I.8.1 of an attracting
equilibrium measure does not apply in quantum mechanics. We replace it by

the following.

Definition 5.1. A measure v_ on R will be called an attracting equilibaium

measure for the QLE (4.1) if there exists a stationary solution {Xt}t ¢ r °f
this equation, such that for all times t
-i>\Xt .
<1l,e 1> = vO(A), (A € R), (5.6)
and for all y € Hy with fgll = 1,
—iKXt .
lim <y,e v> = v (A, (A €R). (5.7)
oo
Proposition 5.2, Let B €(-«,), Then for all A € mB and all unit vectors
‘P € HBI
lim Y, (A) P> = <1,A 1>, (5.8)
t>too
Proof. In the proof of Proposition I.9.3, put F = A € mB and let G € m_B. (For
B = 0 this changes nothing.) Use the cyclicity of 1 for m_B and the fact that m_s =
mB. O

Remanks. 1. Proposition 5.2. says that {Hy,Mg,t,1} is mixing, (cf. Def.I.9.2).

2, For B = », 1 is not cyclic for !, and {Hék,mw,T,l} is not mixing.




Indeed, because M = £(HB+), (cf. (2.34)), the projection operator P1 on

1 € HB is in W_. But certainly (5.8) is not valid for A = Pl'

Corollary 5.3. Let {Xt}t ¢ g be a stationary solution of the QLE (4.1), and
let v  be its probability distribution, defined by (5.6). Suppose that

exp (-1 Axt) eEm,, (A, t €R). Then v, is an attracting equilibrium measure

B8
for the QLE.

Conclusions and questions

If n and w satisfy (4.8), and B € (0,®), then the solution of the QLE

, given by

approaches the equilibrium distribution vB n.w
4 I

(A) = <1, exp(—.iAQ(B’n’w)) 1>. (5.9)

The following questions are of interest.

1. Is close to the thermal equilibrium distribution of an isolated

v
B/n,wW
quantum oscillator?
2. Is v absolutely continuous w.r.t. Lebesgue measure, and, conversely,

Byn,W

are there no sets of vB n w measure zero and positive Lebesgue measure,
I I

(" fonbidden areas") ?

In terms of the W*—stochastic process, the second question can be

rephrased as follows. It is natural to define

«©

Ng qow =T (Ry Vg ) and .
g = Ng,n,w 7 Mgt dg () = f(Q(B'Q’W))

Does the following hold:

) - L) (5.10)

B,n,wW
To answer the questions 1 and 2 above, a more constructive approach
is needed than the mere application of a fixed point theorem. This approach

is the subject of the following sections.

§ 6. EXISTENCE AND INVERTIBILITY OF M@LLER MORPHISMS

A natural way to solve the quantum Langevin equation with an anharmonic

potential, is to study the anharmonic quantummechanical Lamb model. It

differs from the harmonic Lamb model by a term B_lw(Q(B’n))in its
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Hamiltonian, and it has therefore a different time evolution, T say. Our
question is, whether T inherits the mixing property from T. This is a
question in the general class of stability problems for infinite quantum
systems, (cf. [BrR 81]). In this section we shall prove two stability
theorems for W*—dynamical systems, (Theorems 6.1 and 6.4), applying the
concept of a Mgller morphism. It turns out that the modular theory of
[Tak 70] gives a little extra information.

Let {H,M,a,£} be any W*-dynamical system. The group o = {at}t c R 1S
implemented by a strongly continuous group of unitaries {Ut}t € R’ defined

on M§ by

U AE = a (B) £, (6.1)

and extended continuously to M & = H. Let H be the generator of {Ut}t € R

Then for all A € W,

at(A) = exp(itH) Aexp(-1itH)

Now, let V = v¥ € M, and define for all A € W,

0, (B) = exp(it(H+V)) Aexp (-1t(H+V)). (6.2)

In its turn, {Et} is a "-automorphism group of M, and we call it the

t €R
pertwibation of o by v. It may be the case that again there is a vector & € H,
cyclic for M, and such that for all A € 1,

<Z,d

L (BT> = <E,n T, (6.3)

Then.{H,m,5,§? is another W*—dynamical system, and another strongly

continuous group of unitaries {ﬁt} is defined by

t ER

U,A8 =09, F. (6.4)

We note that, in general, ﬁt # exp(i t(HK+V)).
We want to know, whether the mixing property is stable for pertur-
bations of the above type.

It was proposed by Robinson [Rob 73], to consider the limit

Y, (A) := lim o_
to0

toOLt(A), ‘ (6.5)

in the norm topology of fi. He showed that, if for a noum-dense subset A of M,

it is true that




(o]

v : l il [v,oat(A)]ll dt < =, (6.6)

AEA

then the limit (6.5) exists for all A € A , and Y, extends to an isometric

*—morphism y:M~+m, satisfying

Y e, = Oy oY . (6.7)

This morphism he called a Mgller morphism, by analogy with the Mgller
operators in scattering theory.

Now, if y turns out to be invertiblé, the perturbed evolution o is
similar to o, because of (6.7), and hence inherits its ergodic properties.

Actually, Robinson considered the more general case of a c*-algebra,
but he supposed that t b at(A) is continuous in the operator norm. In the
case of the CCR, the "free" evolution 1 does not have this continuity
property. Indeed, IW(f) -W(g)ll = 2 if £ # g, hence t b W(Tt:E)is not norm-
continuous. As a consequence, the Cc¥*-algebra, generated by the W's, will
not be invariant for the perturbed evolution.

Moreover, in our case of the W*—dynamical system of quantum white
noise, the convergence property (6.6) can be proved at best for a sthongly
dense subset A of M, and then y, does not automatically extend to a map
m~>Mm. If we know a E to exist, however, that satisfies (6.3), something
can nevertheless be proved.

From (6.2) it follows that (cf. [Rob 731),

t
a_t oat(A) = A+1i j a_s([V,us(A)]) ds . (6.8)
0
Theotem 6.1. (Weak stability theorem). Let {H,M,a,£} be a mixing W*—dynamical

system, and let % be the perturbation of o by V, where V = v e M. Suppose

that ¥ € H exists, satisfying (6.3), and assume that (6.6) holds for a
strongly dense sub—*—algebra A of M, containing 1.
Then there is an isometry Q : H-~H with the properties
(1) et =%,
(ii) qu, = ¥.q, -

t t
{(1ii) for all A € A, QA = AQ +i([&_t([v,cxt(A)]) Qdt.

Proog, Let 0 < s < t. Then, for all A € A,
t t
Ha_t °oa (A) - '5_3 oo _(a) N = n J '07_u([v,au(‘A)]) du H < H‘ [v, o (2) ]” du. (6.9)
s s

By (6.6) this can be made arbitrarily small by choosing s large. Therefore,

ti>a_ e at(A) is Cauchy in the operator norm, and the limit (6.5) exists for all

t

A € A, Being the norm-limit of a family of isometric *—morphisms A->M, v is an
0

. . * . . .
isometric " -morphism A - M itself. It satisfies the intertwining relation

Yoo % T e Y, (6.10)

Now, for all A € A we have

EivymT>= 1in €9 oo MT> = lim <0 W) = <E,AE>, (6.11)

Tt tboo

by (6.3) and the mixing property of {H,M,a,E} . Define Q, =AE‘*Y0(A)E by

QAL = v, (ME . (6.12)
Then, for all A € A, by (6.11), and because Yo is a *—morphism,

2,2 el2= lly, @FN2 = <&,y @)y, %= <E,y @*0T = <¢,a" e = lIagll?,
And, because A is strongly dense in I, and ﬁE'= H, & is cyclic for A, and Qo extends
to an isometry @ : H -+ H, with range

oH = v (AT . (6.13)

Finally, let us check the properties, claimed by the theorem.

(1). 0f = y,(E = E, because y (1) = 1.

o~

3 . F _ _ ~s ~
(ii) or all A € A, we have, by (6.10),Q U, BE = Qut(A)E = yo(at(A))E = at(YO(A))E =
= UtYO(A)E = ﬁtQ AE. Because AL = H, the statement follows,

(iii). For all A,B € A we have QABE = YO(AB)E = YO(A)YO(B)E = YO(A)QBg. Therefore,

for all A € A, j
on =y () Q. (6.14)

By (6.8), we have
Y,(B) = A+ i IE_t([v,at(A)])dt. (6.15)
0

The statement (iii) follows. B
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Thermal equilibrium

In the case of thermal equilibrium, some more structure can be added

to the above. It turns out that this structure helps resolving the subtle
question, whether Yy, extends to a *—automorphism vy of I as soon as Q is
unitary. This question is of interest, because we need the inverse of vy to
construct a solution to the QLE.

Suppose that £ is not only cyclic, but also separating for M (cf.
(2.24)), and that o is the associated modular automorphism group of m. If
this is the case, we say that {H,W,a,£} is a W* - dynamical system in thermal
equilibrium. By the perturbation theory of cyclic and separating vectors for
a von Neumann algebra, [Ara 761, there is a vector ¥, cyclic and separating
for 1, such that {g,m,%,%} is again a W*—dynamical system in thermal
equilibrium. Let J, ¥, A and B be the modular conjugations and modular
operators respectively. Then (cf. [Ara 761), A

J=2J. (6.16)
Lemma 6.2. Suppose that, in the situation of Theorem 6.1, {H,M,0,E} is a

W*—dynamical system in thermal equilibrium. Then

Jo = QJ. (6.17)
1 ~1 ~ i
2 = 2 = 2
Proof. We have A UiB/Z and A UiB/Z' For all A € M, AZ € Dom(A?). Now, because
QUt = UtQ,
1 ~1
QAR E = A?QRAE.

Tt follows that for all A € A,

i~

Foaiar = TR

1
2

aag =2y T = v, @) = v, "7 = oa*s = asaiac . (6.18)

*

1
Now, Af is dense in H, and therefore AZAf

By (6.18) it follows that J2 = 9J, and by (6.16), that JQ = QJ.
O

Theorem 6.3. In the situation of Theorem 6.1, let {H,M,a,f} be in thermal
equilibrium. Then the following statements are equivalent:

(1) The *-morphism y, : A >N extends to a *-automorphism y of M,

(11) vy () em',

(iii) QH = H.

J(JA%)AE = JA" &£ = JAE is dense in JH = H.
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Prood. (i) = (ii): Suppose (i) holds. Let B € y (A)'. Then [B,c] = 0 for all ¢ in
the strongly dense subset y(A) of M. Because ¢+ [B,C] is strongly continuous,
[B,c] = 0 for all c €M, so B € N'.

(ii) = (iii): Suppose (ii) holds and let P = QQ*. P is the orthogonal
projection on YO(A)E, so P € YO(A)', and therefore PEM' by (ii). Now, ﬁE = E, S0
(P-—ﬂ)g = 0, and because E is separating for M', P = 1. It follows that QH = H.

(iii) = (i): Suppose § is unitary. Define y(A) = 0ae* for all A € M. Then -
for all A € A we have y () = a0* = v, (2)02* = v, (a) by (6.14). So y extends v,.
Clearly, vy is a *—morphism M-M. We shall show that it is surjective. Choose A € N
and let B = Q*AQ. We claim that B € f; then y(B) = A. Indeed, for all C € A, we

have by Lemma 6.2,

[Jcg , B] = Jeoe*an - o*angcs = o*g(ace*sas - gazace®)aq =
= o*3(ly,(c) , Jas])30 = 0,
because YO(C) €M and JAT € M'. It follows that B € (JAJ)' = (0O ' = N" =M.

O

The Dyson series

If we assume a much stronger decay of the commutator [at(v), - ] than
we did in (6.6), we can prove more about .

For A € I, consider the norm limit

Y (A) := lim o_

0 o Oy (B) . (6.19)
toro

t

The existence of ?0 is generally much harder to prove on the basis of
assumptions concerning the system {H,M,a,£}, than that of Yo+ This is seen
in (6.9): the troublesome evolution § luckily drops out. Such a thing does
not happen when one deals with the limit (6.19). In this case one needs a

convergence assumption on the entire Dyson series for a_, o &t(A), (cf.

[Rob 731]),
a_ °q (a) = ¥ (-0)" | at,...dt Lo, (V) (V) ,A
-t °Op L pee-dty £ ,[...[utl (AT .17
The convergence assumption is that for all A € a ,
nzo ‘J dtl...dtn“[ut V), k.o lag (V),A]..]]“‘<w . (6.21)

0=t >, . .>t n 1
1 n
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Theorem 6.4 (Strong stability theorem). In the situation of Theorem 6.1, ~ ~ ~ ~ o~
: <E,v,(A)E> = lim <E,d_t °@t(A)€> = lim <E,@t(A)€> = <E,AE >, (6.24)

assume that (6.21) holds for all A € A, Then { is unitary and the map o e
vy : B» QBQ* is a *_automorphism of M. ' Define

The following nice lemma helps us to prove this. T AT Y e :AEH-7OUU £, (6.25)

0 0

Lemma 6.5. In the situation of Theorem 6.4, we have, for all A,B € A, By %-24),2% also extends to an isometry & : H - H.

Now, by (6.22) we have for all A,B € A,

1im <E,at(B)&‘t(A)E> = 1im <£&,0, (B)o, (R)E> . (6.22)

t? t
<B"E,QAE> = <E,By (A)E> = lim <€,Bu_t oat(A)€> = lim <E,at(B)at(A)€> =
0 t-ro too
Pnooﬁ. Using the expansion (6.20), we may write
~ ~ ~ ~ o~ ~ ~ ~ X .~
\ lim <£,ut(B)at(A)£> = lim <£,u_t °ut(B)A£> = <€,Y,(B)AE> = <Y0(B )E,AE> =
~ ~s ~et _ ~o - ~ DN and _ ~ = t_>m t_)m .
<E,a, (B)o, (R)E> - <E,0 (B)o, (A)E> <£,at<Boc_t o, (8))€> - <€,Bu_ oo (B)E>
* ~
o \ = <QB §,AE>
= 2 (-1)" I dt,...dt 9(t4-tn)(<6,at(BA(t1,...,tn))€>-<g,BA(t1,...,tn)£>/.
n=0 d>tf>_,,>t >0 ' (6.23) From the fact that & and & are both cyclic for A, it now follows that
n .
. ~ %
Here, A(tl""’tn) = [at wvy,[... oy (v),a]..1], and 6 is Heaviside's function. £ =0. (6.26)
n 1
Now, by the mixing property, the integrand in (6.23) tends to zero for all Being both isometric, § and 5 must be unitary, and each other's inverse.
: : o~ ~ ~ *
n € N, tl""’tn € IR. Its absolute value is bounded by the function Like in (6.14), we have GA = YO(A)Q' For all A € A, QaQ" = YO(A) €M, and
* ~ * . -1 ~
ZHB!['”A(tl""'tn)” , Qa0 = YO(A)€1ﬂ. Let y:B W QBQ , (B € M). Then vy extends Yo and Y extends v, .

To see that y is a *—automorphism of M, note that y and y—l are strongly continuous,
which is summable by assumption (6.21). The statement (6.22) now follows by the

and therefore
dominated convergence theorem.

O
Y = y@A" € yA)" = y )" A =

Prnoog of Theorem 6.4. By looking only at the term with n=1 in (6.21), we see that

By the same argument, y"1(m) cm. O]

(6.21) implies (6.6). Therefore, Yo and ) exist and have the properties derived in

the proof of Theorem 6.1. Now, let again O < s < t. Then for all A € A,
§ 7. CONVERGENCE OF THE DYSON SERIES

la oG (&) —a oo (@ =

-t 7t -s s We shall now show that the stability theorems, proved in the previous
- section, apply to the Lamb model. To this end, we check the validity of the

-] 1 eom Jdtl...dt (0t +t) - 8(s+e A, ...t | -

o n n n n weak" and the "strong" integrability conditions (6.6) and (6.21), for the

@%ﬂ?.HZ%n
following choice of V:
_ -1 )

< Z J dty-ndt Xy 1ty lhace ..ot V =38 W(Q(Bén)) . (7.1)

"0 e > e

Here w is a bounded function R -~ IR, properties of which will be specified.

By (6.21) this can be made arbitrarily small by choosing g large. So tF*a_t 0T, (A)

t

As the strongly dense sub—*—algebra of M, figuring in (6.6) and (6.21), we

8

. ~ *
is Cauch and exists as an isometric -morphism A -~ WM. , ,
Y Y, take ABrn' the *—algebra, finitely generated by the operators . J

Now, if we put B = 1 in (6.22) we see that, for all A € A ,
( ,
W °RpAT g "y - exp(—le(B{:”)), (t,X €R).
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Let us introduce the abbreviation

W, = W, ° DB' (7.3)

Generally speaking, the weak condition (6.6) is not very restrictive
indeed. It is satisfied for many local perturbations of the dynamics of
many infinite systems. However, there is generally no hope of satisfying
(6.21) . The curious fact that for our string model, and then for a
restricted class of w's, (6.21) does hold, is based on the exponential

(B,n)

fall-off of the commutator of the position variable Q of the harmonic

oscillator, attached to the string, taken at different times:
iietBn), ol <ae™® [e-sl (7.4)
with a,b > 0 properly chosen.

Lemma 7.1. For all n > 0 there are positive constants a and b, such that

for all t € R,

(n) -b|t]|

CAC R th(n))l <ae (7.5)
These constants necessarily satisfy

a > b. (7.6)

-l
Example, In the underdamped case, (i.e., n<2), one may choose a= (1-n%/4) ?

and b=n/2.
Provf. We omit superscripts n. Let Pn(x) = x?+nx+1, as in (3.16). We have, for all
t > 0,

/_d_) _p (& _ -
Pn\dt, o(q,th) = Pﬂ Ty p(s)g(s-t)ds 0, (7.7)

because P (-3)g = 0 on (-«,0). So t & o(q,Tt q) satisfies the damped harmonic
n

oscillator equation on (0,«), and because U(q,T_t q) = _O(q’Tt q), (7.5) follows.
d
Now, note that o(g,q) = 0 and I olq,T, q) o0 " o{g,p) = 1. Therefore
1
c(q,th)=——q(—t) , (£ 2=0). (7.8)
van

-1
It follows that f‘g o(q,T @) dt= (2n) 2q(0) = 1. on the other hand,fooolﬁ(q,TtCI) lat <

<fzae—btdt = a/b by (7.5). Therefore, 1 < a/b, i.e., a > Db. 0
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The following lemmas, 7.2 and 7.3, indicate for which choices of

{8 ,n,w} the weak and the strong integrability conditions are satisfied.

Lemma 7.2. Suppose that w € M is such that also w' € M. Then for all AEZAB

(o]

{ .
(o), cmat<e . (7

- 00

Proof. Note that for all f,g € §B,

Iwge) Wy (@) 11 = 2 | sin(1Bo(£,9)) | <Blo(f,9)] .

Now, it suffices to prove (7.9) for A = WB(A q(n)) , (A E€ER). Let w = ﬁ, with u €
Then, "
[ (B, () _” ( () () : ”
||[w\g 0 )ity (Wgha NI = J [WB(A a ), Wo(AT g )] w@ar)
<J Blanr c(q(n),th(n))l cut@any = Blao (q‘”),th(”))l el g (7.

By Lemma 7.1, this is an integrable function of t .

-~

Lemma 7.3. Let w € M be such that also w' and w" are in H. Suppose that

-1
28 Tliwllig + allw"liy < b, (7.

where a and b are positive constants, satisfying (7.5). Then, for all

%w(Q(Bérl])),A]..]]n < o, (7.

o«
1 /(S:n)
Z I dt,...dt H[Ew\Q H \, [...0
n=0 n
0 ..
We shall prove this lemma in several steps.
Let p(n), (n € N), denote the set of ordered sequences r =

rp} of integer numbers, satisfying

0 <rl< r2< ees < rp< n.

Here, p 1is simply the length of r . Let p{(n) also contain the empty

sequence.

Lemna 7.4. For all £y,...,f €F° ,

{rl,rz,...

14

14

.9)

M,

10)

11)

12)

i
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[t Byt (1, o))

ITwg (£) s Lo TWg(£)) Mo (£9) 1. 111 <

bt n-1
n

& <(Finl e ) 5l ;
< K e cRBalr |-e T (2 +Raiz). (7.16)

<2% ] [3Bol(fy, £ ) |x][3BO(E n
1

£ )[xeex|1Bo(E_,£)] .
r€p(n) 2 “p

Proof. Repeated use of the equality

Proof. Let us omit indices B and n, and denote th by qy- An application of

[WB(f)'WB(g)] = -2i sin(4Bo(f,g)) * Welf+g), i
Lemma 7.4 with fo = kzl Ky dg and fﬁl, = }\SL q (¢ =1,...,n), gives the following P
k L |

n
yields: H[Ws(fn),[..[WB(fl),WB(fO)]..]]II =2 S,...5_ , vhere upper bound for the left hand side (l.h.s.) of (7.16):

s, = |sin(Bo(f, £, + S EN |, k= 1,...,n). Now, let Oy = %6|0(fj,fk)|. Then

(L.hos) <2° 7 18

m
0(2 “k 9 '>\r S >

tisfi the followi t b ds:
Sk satisfies ollowing two bounds r€p(n) kel k 1 rl
S <1, (7.13)
o 1 . . 1
i G(Ar1qt ! Arzqt ) I L O()\r 'S 'Anqt )
and r1 r2 jo) rp n
k-1
sk < z ij . , (7.14) This can again be estimated by the use of the bounds on c(qs,qt) , given by
j=0

lo¢ )|<ae—b|s_t|<aeib(s_t)
We claim that these bounds imply that Qg9 '

< .
Sl"’sn = 2 OOr Or r ...Or a° (7.15) as follows:
r€p(n) 1 172 P
b(t. -s.)
a m r, k
< 18"
We proceed by induction. In the first place, (7.15) is valid for n = 1 by (7.14): (L.h.s.) <2 ‘ EZQ (n)( 36 a kzllKk Arll € ) X
81 < YK Now, suppose that (7.15) holds for all n up to some integer m. Then, by
b(tr —tr ) b(tn—tr )
(7.14) and (7.13) respectively, X%Ba]% N le 2 Y oeee x %Bal?\ A [e P _
r, r r 'n
1 72 p
<
S1"'Smsm+1 \Sl"'sm (00,m+1 e F 0m,m+ 1)
m -bs bt
n k n 2 2
=2 ) |k le )'1Ba|)\ ‘e - (lBaK )X-"X<l6a>\ >
< + ( 2 2 2
SO a1 T8 O met V8152 % na Yo S Sy Ty et k=1 X n r€o(n) Ly 5
Now we apply the induction hypothesis, (7.15) for n = 1,...,m, and conclude that Now, the sum over r € p(n) is in fact a sum over all subsets of {1,...,n- 1}, and
therefore we have
m
<
Sl""sm Sm+1 \GO,m+1 + nzl <r€Z(n) OOrl"'Or n)on,m+ 1 = n-1
= e p ) (%Ba}\rz)Xo--x(%Ba)\rz)= M (1 +38ard).
r € p(n) 1 p 2=1
= E o] o ...0 .
Or r,r r ,m+ 1
r€p(m+ 1) 1 12 p By distributing the 21’1 over the factors, we obtain (7.16). 0

We conclude that (7.15) also holds for n = m+ 1, and the statement follows by
Proof o4 Lemma 7.3. Let u € M be such that f exp(-iAx)u(dx) = w()). It suffices to

induction on m. O
prove (7.12) for all A of the form
Lemma 7.5, Let g,n>0 and let a,b >0 be such that \o(q(n),th(n)l < m
. A=w<z.<q ) (7.17)
< a exp(-bitl). Choose n,m € N, and let >\ll'--r)\n € R, tlr'-'ltn € R, k=1 k Sk

Kl,...,Km € R, and s1,...,sm€IR.The-n
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Applying Lemma 7.5, we find that for all {t£}221 the following holds:

+
ITw @ ),Leeelwig ) ,al-- 111 EANCUSRER war)
f { n 1
A ER A1€m
I s
WA g ),[---[W(A q ),W< K, g ]H”
n tn 1 t1 ket k Sk}
m -bs n-1 bt
<({ ) lele ¥ galr_|u(ax Ve 2+par2) v ) xe " =
k=1 k n n' ) 4=1 2 L)
a A_ER A ER
n 2
i1 Pty
— . iff oo ~ : nfl . .
= c, - Ballwlly Clwlg+palwlp®™ e ™. (7.18)
Here cy = ZkzllKk|exp(—k)sk) is a positive constant, determined by the choice (7.17)
of A,
Now note that
t t
bt 0 bt, b(t, -t,) -t bt -t )
n 1 2 1 n n-1 -n
dtl’ dt_ e = dt1 e dt2 e at e =Db .
02t, =2..2t —o - —
n
Therefore the sum in (7.12) is bounded by
Iall + o, ab Hwille T (26 il + allwll ™ 5D
A M =1 M M *
This is a finite number if (7.11) holds. . 0

8. CONCLUSIONS

Let us see, what can be concluded from the analysis in the preceding
sections.

The quantum Langevin equation at positive temperature is entirely
determined by the choice of a friction coefficient n > 0, an inverse
temperature 8 > 0, and a function w . The following three cases deserve
a separate discussion.

A. The functions w and w' are in M. In this case the weak stability
theorem applies.

B. The functions w, w', and w" are in M, and
I 14

81

1

"l

I Y

Fig. 7. Three regions of interest in the {n,”w"Hﬁ}—plane. The curves are the graphs
of Fl and Fz’ given by

o

-1
Fl(n)::<[ |g(q<n),th(n))idt> = tgh (g-- __f,ﬂ___: > if 0 <Kn < 2, and
Vi-n%/4
F (n) =1 if n> 2.
F,(n) = sup{b/ala,b>0 and V_ =0 |G(q(n)’th(n)) ‘<ae—bt}
{n)
lhw"ll g < Jg _dt q( )dt <=El(n)>' (8.1)
Sla'™|at

(Cf. Fig. 7). There is a unique solution to the QLE, (Theorem 4.2).

C. The functions w, w' and w" are in M, and there are a,b > 0 such that

- b [t ]

|o(q(n),th(n%|< ae and ZB_leHM + allw"lly < b. (8.2)

In this case the strong stability theorem applies. In Fig. 7 the region
indicated by the letter C is that part of the {n,HW"HM}—plane, where

(8.2) is satisfied for B sufficiently large, and a,b properly chosen.

Note that C=B=A.

A. Application of the weak stability theorem

Consider the W*—dynamical system at thermal equilibrium, given by

{HB,m +T,1}. Choose w € M such that also w' € M, and let T be the

B
perturbation of T by B_lw(Q(Bén%.Let the perturbed W¥-dynamical system

at thermal equilibrium be {HB,mB,?,E}, with £ > 0 a.e.

By Lemma 7.2, Theorem 6.1, there exist a *—morphism Yo :AB M mB and

N

an isometry & :Hj -~ Hp with the following properties:




Q].:E "YO(]L)‘:IL,

£ G Gy o T T 2 Y
v, 0,0 Mne =aw; "), ana (8.3)

yo(wg(xq(”))) = WB(Xq(n)) + g7t [ ?’_t<[w(Q(B(’)n)),WB(Ath(n))]>dt.(8.4)
0
Let £ﬂ denote the real-linear span of {th(n)lt € R}. Then

£ - Y, ° W.(f) is a representation of the CCR over the symplectic space

B

{ﬁn,BG}.However,Eis not necessarily a cyclic vector. Indeed, it is cyclic

if and only if

v, (A VT = Hy. . (8.5)

14

By (8.3) this is equivalent with the unitarity of Q.

Oon the other hand, we have, for all f € £ﬂ'

<E,y o wB(f)E> = <Ql,y  ° Wg(£)Ql> <Ql,OW, (£)1> = <1,W (f)1> =

b B B
= exp (-1l fllé). (8.6)
Now, let EB be given by v (Wg(Af)) = exp(-iAEB(f)), (f €£,). Then, with
respect to Z, Eg has all the properties of white noise, except that it has
L

some unknown behaviour on the, not necessarily vanishing, subspace (QHB) .

For this reason we shall call EB Amproper quantum white noise. Note that

*oy *
= Q"QE,(£) = E,(f). 8.

Q EB(f)Q B( ) B( ) (8.7)
Therefore, if £ is unitary, EB is unitarily equivalent with quantum white
noi E,.

oise E,

Definition 8.1. We shall say that the family {X 1}, € R of self-adjoint

operators on H_ satisfies the {mproper QLE given by {8,n,w}, if for all t € R,
B Lo

Dom (x,) = Dom(E(r, a")) , x, = T (X,

and for all ¢ € Dom(X,)

(n)

t
( — ~
X0 + | Eﬂi__ﬁw"(xs)q)ds =E (r,aM)o. (8.8)

V21
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Remark. In comparison with Definition 4.1 of the (proper) QLE, the noise

term Q(Bén)= EB(th(n)) has been replaced by the improper quantum white

(n)

noise term ﬁB(Tttq ) , and the evolution T by the evolution T.

Proposition 8§.2. If n > 0, B € (0,»] and w,w' € M, then the family

{7

(Q(B'n))} satisfies the improper QLE.

t t €ER

Proof. We omit indices B and n. Let w = 1 with u € M, Take @ € HB and consider the

difference

Wig -1 Wiig) -1
Y, (—%r—) ¢ - (—(_—%—>m- (8.9)

By (8.4) this is equal to

} (- if3>\)'1 ?_t([w(Q),w(x T, @) ])Lp at. (8.10)
O \
Now,
[wi@ ,wht )] = [ w'a) , W T, @) Jul@r") =
T -igx Aolaq,T.a)
= [ (e - 1)W(Ath)VV(X'q)u(dX'). (8.11)
The integrand in (8.10) is bounded in norm by [G(q,Tt<1)|'Hw'H& « llpll , which is

clearly independent of ) and integrable. By (8.11), as A tends to zero, the

integrand in (8.10) tends to
T_tq Nolq,T, @) wwq)u(dw))cp = olq,T @ T_ (w(©Q)e.

It follows by the dominated convergence theorem that the limit of (8.10), as

A > 0, is equal to

J ola,T a) T_, (w'(Q)) @at. (8.12)
0

Therefore, the same holds for (8.9). As (8.12) is finite for all @, it follows
that the limit, as X » 0, of the first term of (8.9) exists precisely for those ¢,

for which the limit of the second does; i.e.,

Pom (B (q)) = Dom (E(q) ) .
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If ¢ is in this common domain, we have

8

E@o - E(@® = J c(q,Tt<1ﬁLt(W'(Q)NDdt.
0

The statement is proved by noting that O(q,thp =qg(-t)/¥2n, (t=0), that Q =

E(gq), and that ?t<E(q)) = %’(Tt q) . 0

Rémark. Proposition 8.2 says that

0
Q + I L qow (F (@)at = Egla). (8.13)
/21

-0

By (8.7) it follows that

a(t) T, (2%w' (@) @)dt = Q. (8.14)

-

Now, let us suppose for a moment that we could prove, by whatever

means, that © is unitary. Then we have

0
o*on + [ L q(t) T, (w' (2%0R))dt = Q, (8.15)

v2n

i.e., {Tt(Q*QQ)} satisfies the (proper) QLE, (cf. Def. 4.1).
Moreover, by Theorem 6.3, y : A & QAQ* is a *—automorphism of mB.
1

(W(Agq)) €M ,. By the mixing property it follows

Therefore, Q*W(Xq)Q = v 8

that for all unit vectors ¢ € HB’
<P, T (WAD VY > g <L, WAQ 01> = <E, W) B>, (8.16)

So, provided that § is unitary, we have a solution of the QLE with
absolutely continuous spectrum, filling out the whole real line, a solution
which approaches equilibrium under the evolution 1, the equilibrium

distribution vB n,w being given by

14 14

-~

Vg, n,w (M) = <E WO (8.17)

B. The existence and uniqueness theorem

Suppose now, that n > 0 and w,w',w" € M, where Hw"ﬂﬁ satisfies the

inequaltiy (8.1), (see also Fig. 7). Then we have, apart from the solution
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~ . . , W
{Tt(Q)}t ¢ g Of the improper QLE, a unique solution {Tt(Q )}t e g Of the
proper QLE. The latter can be written concisely as follows

— q(t)r, (9" at = 0. (8.18)

v2n

Q¥ +

O

-0

Now, one might be tempted to think that, in some reasonable sense,
these solutions have to be the same. However, attempts to prove this have
failed thus far. It is not clear, how (8.18), together with (8.14), should
lead to (8.15), (and hence, by the uniqueness of Qw, to the conclusion that

A

Q% = a*on).

C. Application of the strong stability theonrem

Let us finally suppose that w,w',w" € M are such that (8.2) holds.
By Lemma 7.3, the strong stability theorem applies. It says that Q is
unitary and that A» QAQ* is a *-automorphism of Mg-

All the conclusions at the end of A follow, especially (8.16) and
(8.17) . This answers the two questions, left open at the end of § 5, at

least for {B,n,w} in the region C.

§ 9. EQUILIBRIUM DISTRIBUTION VERSUS GIBBS DISTRIBUTION

We remind the reader of the question, posed in [BeK 81], which
motivated the present work. It is the following.
Can one prove that the QLE has a solution {Q(B’z’w)}t € R with the

property that, irrespective of the initial state vector vy,

(8.1 W) tr(e_ll'exp(—HSWB))
lim lim <y,exp(-irQ """ )y> = = ? (9.1)
n¥y0 t-w tr exp(- H )
S,B
Here, HSWB = Ix? +w(x) - B*32/0x? is the (Schrddinger) Hamiltonian of the
I

anharmonic quantum oscillator in isolation. The r.h.s. of (9.1) is the

Fourier transform of the probability distribution, say, of the

v
BIOIW

position of such an oscillator in its Gibbs state. (Our units have been

chosen in such a way that B occurs in places where one expects h, cf.

Appendix A).

Strictly speaking, we are able to prove (9.1) only in the trivial case
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w" = 0. Indeed, a look at Fig. 7 tells us that, if w" # 0, the limit n + O
leads us out of the région C, where our result is valid.

On the other hand, it was shown in § 8 that for all {8,n,w} in C the
limit t » « exists and is given by

Lim <y exp (3 Ao By <E,w81xq‘”))2> G:3e,n,w(*)> : (9.2)
While remaining inside the region C, one can get arbitrarily close to the
line n = 0, by choosing Hw"Nﬁsmall. In the remainder of this section we

shall give an estimate of the difference

tr(e-ix

g M)e> - M|, (9.3

"exp (-Hg o)) I-
<E,W ‘ =

) 8,0,w

B tr exp(—Hw

S8

which shows that this difference is small for small values of 7.

Pertunbation of the KMS state

1

By the {T,B}-KMS property of CB : £ exp(- sRB(f,f)), the state w: A+ <1,A1l>

is a {7,R}-KMS state on mB = W, (g)". This is to say that, for all A,B € mB,

B

the function ti+ w(AT, (B)) extends to a function G € ¢(A(B)) with

t A,B

w(Tt(B)A). Moreover, it has been shown that, for all A =

G (t + iB)

A,B
n+1 . . .
{AO,...,An} € mB , there is a unique function G, € €(A_(B)), such that

GA(tl""’tn) = w(Al'rtl(Al)...Ttn(An))
n
Here, ./\.n(B) = {{Zl, .,Zn} €ec'|o<1Im z <...<Imzn< g},
The state EB n,w :AP+<E,Af§>on mB, which is KMS for the perturbation
I 14
of T by V = B_lw(Q(B’n)), is given by
® = A 1 (9.4)
wB,n’w(A) pB,n,w( )/DB n W( Y
where
_ v ! . .
Pg,n,w A = _Z_O( 1) [ ds)...ds) Gy y o (isj...isy). (9.5)
n= 0<s,<...<s, <8

(Cf. [Ara 76], [BrR 811).

€ C(A(BR)) be the two-point function of the oscillator in
(B, s (B,m) ;..
0 Q £ 1>:

N
ow, let FB,n

the Lamb model, i.e. the extension to A(B) of tk<1,Q
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(Z)_I Bk 2n . oikz dk

R LERIE 2m

Using the CCR and the form of CB' one derives that, for all AO,...,Xn € R,
tl""'tn € R:
( (n) (n) (m,\ -
w\WB(XOq )WB(Athlq )"'WB(XnTtn(I )/
- n \
= - AL i~ . - . .
exp( j,]§=0 3>‘k 6 (3 ~k) Fﬁ,n(tj tk)/ (9.6)

Here, we have put 0 = tO. We define: 8(j -k) is equal to 0 if j <k, to % if

j=k and to 1 if j > k. Because F € C(A(B)), (9.6) extends to a function

BN
in C(An(B)), whose restriction to purely imaginary arguments {i sl,...,i.sn}
is given by
) (5, -5,
exp (— 3 A, F (ijs. -s ))
j,k=0 J kK Bum 3 Tk
Therefore, if w = p with p € M, by (9.5),
o waOga™y = T (-0 J ds,...ds Ju(dkl)...J u(da)
n=0 0<s, <...<s_<g - Za
n
X exp |- 3 ALA F i .- .
p( 2j,}§=0 A Fg,plils; sk|)>, (9.7)
where, again, Sg = 0.

We look for a similar formula for the isolated oscillator.

Perturbation of the harmonic osciflaton

The phase space of the harmonic oscillator is the symplectic space

ﬂRzlcx}’ (cf. end of § I.4). The Schrddinger representation Wg 8 of the
14

CCR over ﬂRZ,B(jl} in the Hilbert space L? (R) is given by

W —_ - 14 - .
S,B(allaz) exp(- 1i Balaz)TBuz exp ( ia ).
Now, let q(O) = {1,0} € R? and let Dy :IR?> - IR? be given by
D = (cos t -sint
t sin t cos t/’

Then the position operator Q(Béo) of the oscillator at time t is given by

T
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0

It is well known that

' Ceg 0 _ (B:0) .
exp(itig®/8) 0% exp(-ienglo/p) = @ L (9.8)

(0)y - o= A

Note that W (Mg
5,8
Now define, for A €\£(L20R)),

0

0 -
-1 fs, 8,

{
wg o(B) = tr(ne 518y /er (e

Nl

B)(@f'+u§)), and again we have for

Then (W (al,a ) = exp{(~(3%B8coth

S,B 5,8 z
all Ags..osdy €Ry Eppeeesty €R:

0
©))w (©) g g0, 0, a')

A,D
‘*’s,s<ws,s“oq s, gt 9 .

SYSCICER I P tk)> '

~AT~13

=0

where FB 0 € ¢(A(B)) is the two-point function of the harmonic oscillator,
14

given by

B iz B -iz
F =—F —— e - —F e .
B'O(Z) 2(1L-e B) 2(1-e8)

The analogue of g, W is pBIOIW, given by

w

0
-H - Hg
(A) = tr(Ae S’B)/tr e

o SiB (9.9)
g,0,w

By the perturbation theory of one parameter semigroups of contractions on

a Hilbert space, [Kat 661, we have, (when omitting indices B and n=0),

1/tr (e

-(us+w<Q))> g,

pw(WS()\0 q)) = tr(WS(AO q) e

-5 K /B - (s, -8 ) H /B

S
X e w(Q) e /tr (e ).

- (B-s_)YH./B -H
wi{Q)...w(Q) e .n S >

Now, by (9.8), the integrand is the restriction to purely imaginary

, n
arguments, of the function on An(B), given on R by

|
|
|
|
|
.
|
%
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I
\_—ﬁs
=
o
>

e [ (@) g (Mg (@) g (g qp ) - Tig (A qp )) =

: : " _
= J u(dkl) Jp(dkn)exp<f-j E:O xjxk 0 (J mk)FB'O(tj-—tk)>.

Therefore, (9.7), with W, replaced by W is valid for n = 0.

B S,B'

The estimate

Lemma 9.1. Let >0, n>0. The functions {s,u}»FB n(i|s-—u|) and {s,ul®r
14

(i]s=-u}) -F, (i]ls-ul|) are positive definite kernels on [0,8] x [0,R].

F
8,0 B,n
Moreover, for all s €[0,8],

|FB,O(i s) - FB,n(i s)|<nm_z_oo ZZ%I%C—BIV. (9.10)
-\ B /

Remark. The function ¢ (B), occuring on the r.h.s. of (9.10) with a

coefficient n, has the following behaviour, (cf. Fig. 8):
For all B> 0: ¢(B) <B8/21 and ©(B) <2 ¢ (3)(2—3,”)3. (9.11)

- 3
by, (8w, and 0(8) = 22 () (F) + 08, (8v0).

©(R) = % + O(B

(9.12)

Fig. 8. Graph of @(R).
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Proof. Recall that Pn(x) = x> +nx+1. A computation of the Fourier coefficients of

sk F (i s) on [0,8] results in the, uniformly convergent, series expansion

B,n

(9.13)

Because the Fourier coefficients are positive, {s,u} » FB n(ils-—ul) is positive
!

definite. And, because the difference

1 _ 1 _ 21|m|n/B _ :
) ) e, ) o

is also positive, the difference of the corresponding kernels is positive definite.

- Pinally, the right hand side of (9.14) is bounded by

and (9.10) follows. 0]

Theonem 9.27. Let B,n >0, and let w,w',w" € M. Let Ve now be the equilibrium

e ———— I [

distribution of the oscillator in the Lamb model, and vB 0w the quantum-
! 14

mechanical Gibbs distribution, (cf. (9.1), (9.3)). Then, for all X € R,

tr exp(—H%) HWNM

N -~ R o 2 ufl .
(A) =V w M) < ine(B) (A% +2llw"lig)e .

v - v
B,n,w BIOI ty eXP("HVé)

Remark. We note that no(B) < %%%%%-nss. Therefore, the difference (9.3) can

be made small, either by choosing B small, or by choosing n small. For

fixed w, decreasing B or n leads outside the region C. For B = 0 we regain

the classical result

=V
\)Orn:W 0,0,w’
i.e., the Gibbs measure is independent of the friction coefficient.
Proof., Let w = U, 4 € M. We use Lemma 9.1 to estimate the difference of the un-

normalised KMS states pB n wande 0w By (9.7) and its version for the isolated
! 1 4 7

oscillator, we have

921

(n) (0),
g o w@g0a ™) —og o (g O | <

where sy = 0.
Now, let us call the arguments of the exp functions in (9.15) -x and -y

respectively. Then Lemma 9.1 says that 0 < x <y. It follows that Ie_x-e_y Sy-x

Therefore, the r.h.s. of (9.15) is bounded from above by

-n
Y B { as,...ds Ju“L(dA)...J pran )y x
n=0 n 1 n

0<s, S...Ss SB - ~o0
1 n

IZI

x % ALA (F (ijs,—-s, |)-F i|s, - > .
5 b M9M\Ts,0 o5 = ol = 7g g alsy - b (9.16)

We interchange the sum over j and k with the A-integrals, and perform the latter.
. . ' . +
If j # k, the integral over ijk yields zero, because U is a symmetric measure. If
. _ . , 2 n . . -
J =k =0, it yields A, * ”w”M, and if j = k # O: ”w"”M '"w”nﬁl. The s-integral then
becomes simple to perform, because only zero remains as an argument for the functions

FB,O and F . It gives a factor B"/n!. So (9.16) is equal to

B,n

1 n -
©) « T 02WR + allwell s g

Nl

(Fg,0® - Fg o

Il 5

=3(F, L(0)-F

2 "
8,0 200+ O+l e

B

{(n) (0)

)) (Aq'’))|. To derive from

Here is an upper bound for |p6 (WB(Aq (

MW - pBIOIw WSIB
it an upper bound for the difference of the normalised states (cf. (9.4) and (9.9)),

we argue as follows: If x,y € € and XY, > 0 are such that |xl <§x0 and |y| <y,
0

then

Xy - X X - - -
0 ¥X, %,y (yo xo) xo(y x)

<<J;<
0 \\Yo ’YO'—X0[+iy-x1>‘

Applying this inequality, we obtain




92 l 93

: A2+ 2wl il - !
W) =V o M < Eno®) E— Chapter Il

YPEY
A POINT CHARGE IN A QUANTUM FELD

Ve, mw

The statement follows by (9.9).

In this chapter it is shown that the system of a quantum harmonic

oscillator, coupled to a massless scalar field, becomes equivalent to the

Lamb model in the point charge limit.

g This chapter is based on an earlier paper [Maa 82b].

Inthoduction

In 1964 Schwabl and Thirring [ScT 64] introduced an exactly solvable
model for a molecule in a radiation field in order to discuss general
questions concerning laser physics. The model consists of a harmonic
oscillator, coupled to a massless scalar field by means of an interaction

Hamiltonian

Hy = Q J p(x) ¢ (x)d3x . (1)

Here, Q is the oscillator's position operator, ¢ the field, and p a certain
smooth spherically symmetric function, to be interpreted as a charge
% density.

In fact, the authors were not so much interested in this model, as in
its renormalised version, i.e. the limit of the model as p tends to the
density e8 of a point charge. Now, if one lets p shrink to ed, one must
meanwhile increase the spring constant a of the oscillator, in order that
the relevant gquantity - the two-point function - tends to a limit. Luckily,
this can be done without loosing the positivity of the Hamiltonian as a
function on phase space. Thus "runaway solutions", which are such a
nuisance in the electromagnetic case (cf. [vKa 51]), are avoided,

Now, the formulas obtained by this procedure strongly remind one of

the Lamb model. Indeed, in this chapter we shall show that the renormalised

Schwabl-Thirring model and the Lamb model are isomorphic as symplectic
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spaces (including the symplectic flows). This makes them automatically
isomorphic after quéntisation.

The guantum version of the Schwabl-Thirring model in the natural
Hilbert space of the uncoupled models has been constructed recently by

Asao Arai [Arai 81]. We do not take over his construction here, because in

the point charge limit time-evolution is no longer unitarily implementable

on the abovementioned Hilbert space.

Let us proceed to the construction of the model.

The 4ree field

As a phase space for the relevant, namely the spherically symmetric,

part of the free field we choose o, = gsym(ﬂﬁ)z, the set of all pairs of

spherically symmetric, infinitely differentiable and rapidly decreasing

functions R? +~ R. The natural symplectic form o®° on @0 is given by

[ (“)1“2 - nozﬂl)d3x.

04,007 ® 10y &)
IR3

For o D7 € ¢, let §t(w ® 1) denote the phase space point 0, @D O where

{@t}tEJR is the solution of the free wave equation 0, = Amt with initial

conditions wo = p and @0 = 71, An element x of ®0 can be viewed either as a
point of phase space, evolving according to t - Stx, or as a linear
functional on phase space, acting as y-*OQJx,y), and evolving the other

way: as t—+§_tx =: S,.X. Because S_ preserves Oy , the triple {®0’O®0’{st}}
0

forms a Boson sdingle particle space in the sense of Weinless [Wei 69] . Such
spaces are the starting point for quantisation according to Segal [seg 59].

Now, if v € 5Sym(ﬂiﬂ , let ¢, denote the even function in § (R) ,

defined by

{Lr(w) = J)(wlolo)l (v € R). . (2)

Proposition 1. Let j : & - $(R) be given by

0

Then j is an isomorphism of the Boson single particle spaces {®0,0® ’
u

{St}t c gt and {8(R),o, {Tt}t c ]R}’
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Proof. For every f € 3 (R) there are functions ¥ and T in § (R%), such that
Mo sym
L is the even part and (\0£ is the odd part of v2m £. Therefore, j is invertible.

Now, a consequence of the definition (2) is that
- 2msW(s,0,0) = Yl (s), (s €R). (3)

Therefore, for all x € R ,

G (x) = @x) ®w(x) =

-1 (f(“x”) - £l xlh ® erflzlly - £l
2. Vor =l =l >

~

—1 .1
Now, one checks that j ~ ¢ th =3 "(£(-+t)) satisfies the defining properties of

S, (@ @ 1). It follows that Et oj—l = j_1 o .

Finally, by (3), we have for all @, & T @, @nz € @O:

| ] —i ] ¥ '
o3 Bmp), i, By = o J @l +my )@y 4Ty )t ds |

oo

Il

_1_ ' ] - [l ] — 2 _
o J ((pl,r ﬂ2,r Trl,r (p2,r) ds = 27 s ((.plvr2 - LDZTrl) (s,0,0) ds =

-00

®

B L (@ym, — @ymy)dgx =0 0((01 @m0, By -

=

A direct consequence of the above is that EB °j is a quantisation of

{¢0,0® ,{St}}. We shall treat the interacting system of oscillator and
0

field in the same manner.

The interacting system

Take some p € $ (R?®) , such that p(x) > 0 and B(k) > 0 for all x,

sym

k € R® and B(O) = f pd3x = e. We interpret p as a charge density and e as

a charge., Define the unrenormalised spring constant ap by

. ( lpap 93K |
S R e 5 N P (2
IR3

The phase space of the entire system is ¢ =1]R? ® ¢ , and on it the natural
u

symplectic form Oy is given by

= - = i d x .
= 4Py mdpPy J3 () = @pT,) dg
i ,
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The evolution (§{"):o+e}, . . is defined by gl gepooem-=

qe @ ét ® 0, ® bt, where {qt,wt} is the solution of the differential

equations
g, +agq, = -| po,_d;x, and (5a)
9 o9t t 93
O = Doy = ~d P (5b)
"y : : (p) _ =(p)
with initial conditions g5 = d, 45 = Py ®g = @r Gy = T. Let St = S__t

Again {@,qy{sép)}} is a Boson single particle space.
Let u_ = 0&(-1) 090 and u, = 1€090®0. Then Uy and uy correspond

to the linear observables of position and momentum of the oscillator, in

the sense that for any phase space point x = gbp@®e®m, g@(uq,x) = q and

Q(up,x) = p. Accordingly, uq and up should evolvg with Sép). Let

Qp :IR >R be defined by

0]

(p)
Cp(t) = 9(—t)0®(uq,8_t uq)

Then, for t > 0,z (-t) is equal to the position of the oscillator at time
P

2
, as

t, when initially the system starts in 041 0&0. Now, if api>”W%W
is assured by (4), the Hamiltonian of the system is a strictly positive
quadratic form on &, and hence OQ(X,Sép)y) remains bounded for all x,y € &.
If follows that ip(w) is defined for all w € T with Im w > 0. One then

computes from (5) that

( eiwt dw
Cp(t) = I _wz_l_l_iwnp(w) ‘Q'T?
1 iw(x-y) . \s infinitel
where n_(w) = o S pr(X)pr(y) e dxdy. Notice that np is infinitely
p =y
aifferentiable, |n (w)|< e?/4n, and Re n () = [py(w)[*/4n > 0. It follous
that, if we define
2
[ ] 27 ™ (g) )" at,
n,m
then
© N. (6)
“Cp”n,o ’“Cp“n,l < for all n €
Let ' : ¢ » $(R) : J' (qPpP ¢ ®m) = j(e&m. By {Séo)}we shall mean the
uncoupled evolution, defined by (5) if one sets p = 0.
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Thegrem 2. For all x € ¢, the limit

8% := lim 3" © {0 o slP) (7)

t+o

exists in each of the norms H‘Hn m,(n,m € N). The map Gp thus defined is an
!
isomorphism of the Boson single particle spaces {@,o®,sép)}} and

{SCR),O,{Tt}}. Furthermore,

Sketch of the proof. The equations of motion (5) imply that

a ., (0) o o(p) _ _ -1 (0)
jroe° S_t St X = (2m) 0®(uq'st

e X)T . p_ . (8)

-t r

(p)zd tends to zero as t goes to «, faster than any

w hal
e shall show that OQ(Uq'St

power of t. Indeed, if x is a combination of uq and up, it certainly does by (6).

Moreover, if £ = j(p®w) € $(R), then, by (5),

0
Oquﬁém(O®O@w@wH =J %(QOQ(O®p£t+SUp®des=
-t 0
0
- L Ic (@0t ,1, , £ ds = == (o % o_+ prxe )eu 9
) e e amae T e
-t
where 9§_(t) = 6(-t). The r.h.s. of (9) has the claimed property, being a

convolution product of rapidly decreasing functions. Now, by (8), for all n,m € N:

«©

a ., (0) (p)
I ”aE'j o S_ o S X

_ (p)
t t ”n,mdt B q’St x)
0

|o®(u -”T_t pr”n,m dt

O~—"—8

2n (p)
<c. .
<c ”pr”n,m Jt lc(p(uq,st x) | at,
0

where C is a suitably chosen constant. The above expression is finite; therefore

the limit (7) exists for all x € &, n,m € N and epx is in $(R) because

(p)

. The invertibility of ep is shown by treating S_t (0)

m °o g
t

—_— ———nl
$(R) —-ﬂn n F(R)

14

likewise. Gp is symplectic and intertwines SEO) and T, . In fact,‘ep can be

explicitly computed without difficulty [ScT 64]. Its action on uq or up is obtained

by putting x = uq or up in (8) and integrating.

O
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As a consequence, EB ° Gp is a quantisation of the interacting system | Appendix A : UNITS AND PARAMETERS

(p) " ime t - in thi

{Q'GQ’St }. The position operator at time of the oscillator in this A copy of the harmonic Lamb model is determined by 5 specifications:
f quantisation 18 ' the mass m and the spring constant a of the oscillator, the mass density
[ (B,p). o (p) _ 1 and the tension o of the string, and the temperature T.
; t=E, ¢ 0 o S5 u_ = E (T (p_*17 )) ;
I Q¢ B P t g B e Pl |
I The classical Lamb model has only one genuine parameter, however; we |
. _ N . . — (B,Q) (Blp) '
E and its two-point function FB,p(t) 1= <1,Q° 7, Q H 1> is choose

~ iwt ‘ 1

| i 15, (w)[%e a _ (po)?
| F (£) = Bw . r w n ma) -
| B,p 1 - e Bw [--wz+]_—iump(w)|2 (2m) 2

—00 i

The quantum Lamb model has two, the one above, and, say,

5 On the other hand, the two-point function of the Lamb model is, (cf. § II.9), 1
| { " B = h(a/m)?/kT.

- o .
1 - () := <1 Q(B’n)Q(B’n)l> _ Bw 2nelwt dw Two models with the same values of n and B differ only by some scale
| B/ N - ! 0 t - 1 - BY |-w*+1-1iwnf? 2w °
. —oo factors in space and in time.
- - In order t fact i i i
If we now fix p, define pe(x) - e 3 o (e 1x), and put n = /47 with n r to make the above facts manifest in our notation, we have
e = [ pdx, then we see that chosen the following gquantities as units.
lim F (t) = F (t)y, (£t ER). , Unit of mass s m
E‘l’o Blpe Bln | l
- 1
Unit of time : w , where w = (a/m)2 is the angular frequency
The guantisation EB is Gaussian. Therefore all correlations of the Q(Bép) . of the free motion of the oscillator
(B,n) - ini 101 -
and Q é ,(t € R), are expressible as finite sums of products of two-point Unit of horizontal length : c 1, where ¢ = (@/U)% is the velocity of wave
functions, and it follows that all correlation functions of the Schwabl- propagation along the string
Thirring model tend to the corresponding ones of the Lamb model in the Unit of vertical length . (kT/a)%, the variance of the oscillator's
point charge limit. position in thermal equilibrium.

An advantage of the latter choice of a vertical length unit is that the
scaling equivalence ¢ » A9, T -+ A%T‘, (¢ is the string's deflection), which
is valid for large temperatures, is divided out, so that indeed only n
remains as a parameter in the classical case.

A consequence of this choice is that B tends to show up everywhere,

where one expects an h, and not where one expects 1/kT.

f
[
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Appendix B :KOLMOGOROVyDECOMPOSITIONS OF POSITIVE DEFINITE KERNELS

For details we refer to [EvL 77]. We consider only complex-valued

kernels here.

Let V be a map from a set X to a complex Hilbert space H. Define
K(x,y) = <V(x),V(y)>, (x,¥ € X). (B.1)

Then, for all cj €T, Xj € X, (J = 1,...,n),

n
) c X oy K(Xj,Xk) > 0. (B.2)
k=1
Indeed, the l.h.s. is equal to
n 2
oo Vi - (B.3)
k=1

Now, a map k : XxX~+C is called a kemnel, and if it satisfies (B.2) it is
said to be positive definite. A map V :X>H is called a Kofmogorov decomposition

of « if (B.1) holds. It is called minimal if the span of V(x), (x € X) is

dense in H.

Proposdition B. Let X be a set. Every positive definite kernel ¥ : X x X+ € has,

up to unitary equivalence, a unique minimal Kolmogorov decomposition.

Proof. For an existence proof, cf. [EvL 77]. For the kernels considered in the

present thesis, Kolmogorov decompositions are explicitly indicated. The unigueness

proof is like that of Lemma I.5.7. O
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SAMENVATTING

Het beschrijven van wrijvings-achtige processen is nog steeds een
fundamenteel probleem in de klassieke mechanika, en al helemaal in de
kwantummechanika. Beide theorie&n hebben een uitstekend lopend formalisme
voor het beschrijven van gesloten fysische systemen, maar in dat formalisme
komen remmende werkingen, energie-absorptie, en ook overgangswaarschijn-
lijkheden, niet voor. Van de andere kant zijn wrijvings-achtige processen,
in het domein van de klassieke mechanika, uit de dagelijkse ervaring ver-
trouwd, en een bekend voorbeeld van een wrijvings-achtig proces uit de
kwantummechanika is het naar beneden tuimelen van een elektron door de
diverse schillen van een atoom heen, onder het uitzenden van steeds anders
gekleurde lichtkwanten.

Het heersende idee is, dat dit dilemma grofweg als volgt moet worden
opgelost.

Als een fysisch systeem met maar weinig vrijheidsgraden (d.w.z.
mogelijke onafhankelijke bewegingsrichtingen) geisoleerd is van de buiten-
wereld, of alleen in kontakt staat met een ander systeem met weinig
vrijheidsgraden, dan gedraagt het zich wrijvingsloos, als een perpetuum
"mobile. Maar als het systeem open is, d.w.z. in kontakt staat met een
grote buitenwereld (of "binnenwereld" van molekulen waaruit het is opge-
bouwd), dan kan het, in bkijzondere gevallen, wrijvingsgedrag gaan vertonen.
Voor zuiver wrijvingsgedrag is een buitenwereld met oneindig veel vrij-
heidsgraden nodig. Het tuimelende elektron, bijvoorbeeld, staat in kontakt
met het elektromagnetisch veld om hem heen, dat met zijn bewegingen mee-
golft.

Stel nu, dat zo'n open systeem zich in een buitenwereld bevindt
waarin een zekere (positieve) temperatuur heerst. Dan zullen de thermische
bewegingen van de buitenwereld een chaotische invloed op het systeem uit-

oefenen, "ruis" genaamd. Een beweging, onder invloed van wrijving en ruis,

wordt beschreven door een Langevin-vergelijking. Dit is een uitdrukking van

de wet van Newton, waarin de kracht, naast een gewoon konservatief kracht-
veld, bestaat uit een wrijvingskracht en een ruis-kracht.

In de kwantummechanika ruist de buitenwereld al bij temperatuur nul.
Daar wordt dus wrijvingsgedrag noodzakelijk door een Lahgevin—vergelijking
beschreven.

Het probleem dat in dit proefschrift wordt behandeld, betreft een,
zeer eenvoudig, open kwantumsysteem. De vraag luidt, of de beweging van
dit systeem in zoverre inderdaad een wrijvingsproces is, dat het naar een
toestand van thermisch evenwicht streeft.

Het systeem staat afgebeeld in Fig. 3 op pagina 5. De schuif, in het
krachtveld van de veer, is het systeem. De strak gespannen snaar is de
buitenwereld. Het model is in 1900 bedacht door Lamb.

Geeft men de schuif een tik, dan gaat hij oscilleren in het kracht-

veld van de veer; de snaar volgt de beweging, en er loopt een golf door
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weg, die niet meer terugkomt omdat de snaar oneindig lang is. De energie
van de schuif raakt op, en hij komt tot stilstand. Zodoende vertoont de
schuif, op zichzelf beschouwd, wrijvingsgedrag, terwijl het model als
geheel wrijvingsloos beweegt. Het idee is, dat eigenlijk alle wrijving
zo werkt.

Brengt men verder de snaar op een positieve temperatuur, dan komen er
sidderingen in, zoals op de voorpagina getekend staan. Deze zorgen VvVoor
ruis. In hoofdstuk I wordt aangetoond, dat de schuif inderdaad aan een
Langevin-vergelijking voldoet, en streeft naar een evenwichts-kansverdeling,
de Gibbs-toestand. Het bewijs maakt gebruik van een wrijvings-achtige
eigenschap van het kansproces dat de beweging beschrijft: de Markov-
eigenschap. Deze impliceert het bestaan van overgangswaarschijnlijkheden
van de ene plaats naar de andere, hetgéen leidt tot een diffusie van de
kansdichtheid naar een evenwichts-kansdichtheid.

In hoofdstuk II wordt het Lamb-model kwantummechanisch behandeld.
Hierbij blijkt, dat de schuif geen impuls-operator heeft, geen energie-
operator, en daarom geen energieniveau's om langs naar beneden te springen.
Dit is een voorbeeld van het grote probleem in de kwantummechanische
beschrijving van wrijvingsprocessen: de meeste modellen, en ook de op-
lossingen van Langevin-vergelijkingen, hebben maar zeer weinig wrijvings-
achtige eigenschappen. In het bijzonder is de beweging van de schuif geen
Markov-proces. De methode voor het bewijs van streven naar evenwicht, als
gebruikt in hoofdstuk I, gaat dus niet door.

Dit werd een paar jaar geleden als probleem gesteld door M. Kac. In
hoofdstuk II van dit proefschrift wordt dit probleem tot op zekere hoogte
opgelost, door gebruikmaking van een andere eigenschap, een van het
kwantum-Lamb-model als geheel: de meng-eigenschap.

Tenslotte wordt in hoofdstuk III aangetoond dat het eerder genoemde
tuimelende elektron, in een vereenvoudigd, skalair, "elektromagnetisch
veld" aan dezelfde Langevin-vergelijking voldoet als het kwantum-Lamb-
model. De veer speelt hierbij de rol van het atoom, en de snaar die van
het veld. Dit leidt tot de verrassende konklusie dat ook het tuimelende
elektron geen echt wrijvingsgedrag vertoont: de bekende overgangswaar-
schijnlijkheden bestaan slechts in benadering, en de energie-niveau's

zijn "uitgeveegd" door de koppeling met het veld.
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