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Summary. The notion of a quantum Poisson process over a quantum measure 
space is introduced. This process is used to construct new quantum Markov 
processes on the matrix algebra M,  with stationary faithful state qS. If (Jd, #) 
is the quantum measure space in question ( J t  a yon Neumann algebra 
and # a faithful normal weight), then the semigroup e tL of transition operators 
on (M,, ~b) has generator 

L: M,~M, :  a~i[h,a]+(id|174174 

where u is an arbitrary unitary element of the centraliser of (M, | Jg, ~b | #). 

1. Introduction 

In probability theory, semigroups of transition operators on a probability space 
describe Markov processes. Constructing the full Markov process from such 
a semigroup is called dilating the semigroup. 

In quantum mechanics irreversible behaviour of physical systems is described 
by dynamical semigroups on operator  algebras. "Explaining" such irreversible 
behaviour by finding possible embeddings into a reversibly evolving world again 
corresponds to dilating these semigroups. Whereas the dilation of a Markovian 
semigroup is uniquely determined in the commutative (i.e., classical probabilistic) 
situation, in the generalised non-commutative (quantum probabilistic) setting 
it is not. It is therefore a challenge to find new constructions of dilations. A 
general theory of dilations can be found in the work of B. Kiimmerer [Kiim 1], 
[Kfim 2], [Kfim 3]. 

Many dilations consist of coupling a system to some external "quan tum 
noise", which is the subject of the quantum stochastic calculus of Hudson and 
Parthasarathy ( [HuP 1], [HuP2] ,  [ApH],  [HuLl ,  [BSW], [Lin]). In the present 
paper we apply this calculus to construct new dilations, as was done in several 
preceding publications ( [HuP2] ,  [Fr i l ,  21, [Maa],  [LiM]).  We adopt  the 
approach of Kfimmerer and only admit semigroups and dilations which leave 
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some faithful normal state invariant. This restriction brings the theory close 
in spirit to probability theory where all states are faithful. Physically it corre- 
sponds to the assumption of a positive temperature. As a consequence of this 
restriction only certain combinations of the known noises dA, dA*, dA, dF and 
dF* of [HuP 1], [-ApH] are allowed. Besides the finite temperature Brownian 
motion ( [HuLl ,  [Lin])  and its fermion counterpart  ( [ApH] ,  [BSW]), we found 
an (apparently !) new non-commutative example, which may be called a "quan- 
tum Poisson process ". It is a generalisation of the classical Poisson process, 
as occurring in Fock space in the description in [HuP 1]. It can be used as 
a noise source in order to dilate semigroups which were covered neither by 
the construction in [KfiM], nor  by constructions based on quantum Brownian 
motion ( [FrG] ,  [LiM],  [ApH]) .  A concrete version of such a "new"  dilation 
was found back in the work of Diimcke [Diim] as a description of an N-level 
system interacting with a quantum gas in the low density limit. 

While the present work was being prepared, K/immerer [Kiim2] superseded 
our main theorem by a much stronger result, characterising the class of all 
dilatable dynamical semigroups in continuous time in terms of those in discrete 
time. In fact, he first introduced the term "non-commutat ive Poisson process" 
for a mathematical object quite closely related to ours. Nevertheless we feel 
that the method of the present paper is sufficiently different from Kiimmerer's 
to justify a separate presentation; in particular the contact made with quantum 
stochastic calculus, and the actual occurrence of Poisson-distributed noise opera- 
tors may appeal to some readers. 

It occurred to us during the preparation that our quantum Poisson process 
is in fact so canonical, that it should be known already. And indeed we learned 
later that the same object has been investigated in the late sixties by Streater 
and Wulfsohn [StW], and Araki [Ara] in their study of infinitely divisible 
representations of the current algebra. Obviously, at that time no connection 
with Tomita-Takesaki theory or with quantum stochastic calculus could be 
laid. And finally, the idea of something like our quantum Poisson process being 
constructable by stochastic calculus, has recently occurred to almost all groups 
of investigators in this field; we wish to mention an article of Evans and Hudson 
[EvH].  

This paper is organised as follows. In Sect. 2 we define the quantum Poisson 
process over a W*-algebra ~ with a finite faithful normal weight #, and then 
we generalise the construction to L ~ (~ , ) |  The connection with quantum 
stochastic calculus is discussed in Sect. 3, where quantum stochastic differential 
equations involving Poisson noise are studied. This calculus is applied to con- 
struct dilations of a class of quantum dynamical semigroups on the matrix 
algebra M, in Sect. 4. Some examples are given in Sect. 5, where also the question 
of detailed balance is briefly considered. 

2. The Quantum Poisson Process 

By a quantum measure space we mean a pair (Jr #), where ~ is a W* algebra 
and ~ is a faithful normal semifinite weight on J/l. A quantum measure space 
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is called finite if #01)< + o% and a quantum probability space if #(1)=1 (i.e., 
if # is a state on Jr 

Via the well-known Gel'fand-Naimark-Segal (GNS) construction, a finite 
quantum measure space admits a canonical representation ~ as operators on 
a Hilbert space ~,, with a cyclic and separating vector 4 inducing the weight 
# as #(a)=(4 ,  ~(a)4),  aeJr the triple (~,  re, 4) will be called the GNS triple 
associated with (d/l, #). There is a canonical commutant anti-representation 7c' 
of Jr on ~ ,  with the same cyclic and separating vector 4, inducing the same 
weight # on ~ .  The Tomita-Takesaki theory [-TOT] associates with a finite 
quantum measure space ( ~ ,  #) a positive self-adjoint modular operator A u on 
~ ,  defined by the relation (Aau/2n(a) 4, Alu/2~(b) 4 ) =  (re(b*) 4, ~(a*) 4), a, b e ~ ,  
and the modular automorphism group {a~: telR} of (Jr #), defined by noah(a) 
= A~'rc(a)  A2 it, aeJ/t, telR. 

Most of the above statements admit generalisations to the situation where 
# is not finite but only semifinite; however, a cyclic and separating vector 4 
in W inducing the weight no longer exists in this situation. 

Let (Jr #) be a finite quantum measure space, with GNS triple (~,  re, #). 
We construct a quantum probability space (~U,, v) associated with (rig, #), and 
a linear map N of dg into the unbounded operators affiliated with ~,, to be 
called the quantum Poisson process over (~1, #), as follows. 

Let i f (W)  be the symmetric Fock space over ~ and let for t / eW the expo- 
nential vector O(~)ef~-(W) be given by 

0 ( ~ ) = @  1 | 
n = o ~ .  r] " 

For (eYf, define the unitary Weyl operator W(~) on ~-(Jf) by 

For x e N l ( ~ )  (the unit ball of N(2~)), a bounded operator F(x) is defined 
on ~ - ( ~ )  by 

r(x)  ~(~) = ~(x  ~), ~ e w .  

We note that [[F(x)][ =1,  F(x)*=F(x*) and that, if u is unitary on ~ ,  F(u) is 
unitary on ~ ( ~ ) .  Moreover, x,, X e ~ l ( ~ )  and x = w - l i m  x, imply that F(x) 
= w- lim C(x.). "~ ~ 

The above notions are well-known. But now we wish to consider the yon 
Neumann subalgebra JV" of N(~-(2/f)) generated by the bounded operators 

V(a)= w ( 4 ) - l r ( ~ ( a ) )  w(0, ae~l,  (2.1) 

where Jr 1 is the unit ball of J/g, and the state v on Jg" defined as the restriction 
to X of the vector state determined by ~(0). We note first that JV coincides 
with the weak closure of the linear span of {V(a): a e J l l } ,  since V(a)V(b) 
= V(ab). Next, we have 
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Theorem 2.1. The Fock vacuum vector ~b(O) is cyclic and separating for ~ so 
that (~,, v) is a quantum probability space. The associated modular automorphism 
group {a~: t eN}  satisfies 

a;(V(a))= V(aUt (a)), aeJ///1, telR. (2.2) 

Proof Using the canonical commutant  anti-representation re' of d//, we may 
define 

V'(b)  = W ( O -  ~ r(~ ' (b))  W(0: b e ~ ,  

and consider the von Neumann subalgebra .AT of N ( ~ ( ~ ) )  generated by { V' (b): 
bed/g1}. Then .AT csV ' ,  since 

V(a) V'(b)= W(4) -~ r(~(a)) r(~'(b)) W(O 

= w ( 0  - l r ( ~ ( a )  ~'(b)) W(O 
= W(O -~ F(rc'(b) ~(a)) W(O 

: W ( 4 ) - 1 / - ( g ,  (b)) F(rc (a)) W(O = V' (b) V(a). 

In order to prove that ~(0) is cyclic and separating for ~ ,  it suffices therefore 
to prove that ~b(0) is cyclic for both sg" and .A 7. Now, we have 

V(a) ~p (0) = exp [--  �89 II 4112] w ( -  0 0 (~ (a) 4) 

= exp [ - II 4 II 2 + (4, ~ (a) 4 )]  0 ( [rc (a) - ~] 4). 

In particular, let a be unitary in ~ ,  say a=exp[iOb] with b=b*ed / / ,  0eN.  
Then we see that the closure of the linear span of the vectors {V(a) r a e ~ l }  
contains the vectors of the form 

- i ~0)"~p ((exp [iOrc(b)] - ~ )  4) 0=o' b = b * e J//{ , 

whose n-particle component  is (n!)l/2Dz(b) 4] | and whose p-particle compo- 
nents for p>n  vanish identically. Since 4 is cyclic in ~ for rc(Jr 0,  the set of 
such vectors is total in ~ ( ~ ) ;  so ~(0) is cyclic in ~ ( J f )  for sV. A similar 
argument applies to ~7, since 4 is also cyclic in ~ for rc'(Jg). This proves 
the first part of the theorem. 

To prove the second part, we define a group zt of automorphisms of Y 
by 

zt(V(a))  = v ( ~ ( a ) ) ,  

and show that h = a~. Now, the modular group a~ of a quantum probability 
space ( d ,  c 0 is characterized by the KMS-condition, [TOT] which requires the 
existence for every pair a, b e d  of a KMS-function Fa, b, i.e., a bounded and 
continuous function on the strip {zelE:0__<Imz<l}, analytic on its interior 
and with boundary values 

Fa, b(t)=#(a~(a)b) and Fa, b(t+i)=#(ba~(a)), (teN). 
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Now, given a, be Jet 1 a KMS-function for V(a), V(b) with respect to (~,, v) and 
zt is given by 

Fv (,), v (b) (z) = exp (F,, b (Z) -- # (11)). 

This follows from the facts that v('ct(V(a))V(b))=v(V(crU,(a)b)) and 
v(V(b) zt(V(a)))=v(V(baUt(a))), together with the computation 

v(v(x))  = (4'(o), w ( ~ ) -  ~ r(~) w(~) 4,(o)5 

=e-II~ll ~ (4'(~), C(x) 4' (~)5 =e-I1r (4'(~), 4'(x ~)5 
= e<~,xr ll~l[2 = eU(X )_u(~). (2.3) 

Since the span of the operators { V(a):a ~ ~1}  is strongly dense in ~/~,, the existence 
of an (~,, v) KMS-function Fx, y follows for all x, y~JV [BrR] and the theorem 
is proved. []  

The remaining part of the construction of the quantum Poisson process 
is actually contained in some papers of the late sixties [StW], [Aral  dealing 
with infinitely divisible representations of the current algebra, well before the 
births of Tomita-Takesaki theory and of quantum stochastic calculus. We shall 
nevertheless include proofs of the theorems below, to make the present paper 
self-contained. 

Definition 2.2. For  a self-adjoint element a of J~, let N(a) denote the (unbounded 
self-adjoint) generator of the strongly continuous unitary group V(ei~"), (o~elR). 
For  an arbitrary element x of ~ ,  let N(x) be the closure of the restriction 

of N + iN \ 2i ] to the linear span of the exponential vectors. 

The second half of the above definition makes sense because the span of 
{ 4 ' ( ~ ) : q ~ }  is a core for N(a), (a* = a ~ ) .  

We call (~,, v; N) the quantum Poisson process over (~,, v). This name is 
motivated by the following proposition. 

Proposition 2.3. Let pedg  be an orthogonal projection. Then the spectrum of 
X (p) is N = {0, 1, 2, ... }. I f  g (p)= ~ nP, is its spectral decomposition, then 

n~N 

v(P,) = e-U(P) #(P)" (2.4) 
n! 

Proof If N(p)=  S 2E(d 2), then the probability measure v o E on IR has the charac- 
teristic function 

~ v (e i'N(p)) = v o V(e i~p) = exp (g (e i~p - 11)) = exp ((e i~ - 1) g (p)). 

This is the characteristic function of the Poisson distribution (2.4) of expectation 
#(p). Since v is faithful, the spectrum of N(p) is the support of roE, namely 
N. [] 
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Remarks. 1. The conclusion that sp (N (p)) c N can also be drawn from the explicit 
form 

N (a) = W(r 1(0 �9 n (a) G (n (a) @ 4 + 4 | n (a)) @ ...) W(r 

2. An orthogonal projection p~Jg  in the quantum probability space (J/t, 
#/#(4)) can be interpreted as an event which is true with probability #(p)/#(4) 
and false with probability #(4-p)/1~(4). The quantum probability space (~,, v) 
describes a collectivity of an expected number of #(4) draws out of (J/t, #/#(4)). 
The event P, e J (  mentioned in Proposition 2.3 is the event that p "takes place" 
n times. 

If Jft is commutative, we may write Jg  = L ~ ((2,/2) for some ordinary finite 
measure space (f2,/2), where /2 induces the weight # on/gl .  If/2 is non-atomic, 
then (~,, v; N) has the following explicit representation: 

where kg= {cool2: co finite}, and g is given by its value on the subsets S , ,~c  ~P 
(B a measurable subset of f2), S,.~={co~Tt: Ico~Bl=n} by ~(S,,~)= 
exp{-/2(B)}/2(B)"/n! The Poisson process N is then given by N(1B)= Ico c~ BI. 
This is the ordinary Poisson process over (f2,/2). 

If ~g is noncommutative, we may say that the quantum Poisson process 
over ( ~ ,  #) "lumps together in a noncommutative way" a collection of (infinitely 
many) ordinary Poisson processes. 

If A denotes the map of J/l into the unbounded operators in ~(Jr defined 
by linear extension of 

A (x) = infinitesimal generator of F(exp [i c~x] ) 

for x = x* c ~ (Jr), the above construction identifies N (a) with 
W(~)-a AOr(a))W(~). We might also use a unitarily equivalent representation 
and identify N(a) with A(rc(a)), upon replacing the Fock vacuum 0(0) by the 
coherent vector W(~) 0 (0) = exp { - �89 ~ II 2} ~ (4). The latter representation dis- 
plays more clearly the nature of N(a) as a number operator, but the former 
is more convenient for our further developments, and we shall keep to it. 

Next we would like to construct a quantum Poisson process over the quan- 
tum measure space (L ~ (IR) | Jg, 2 @ ~), where 2 is the weight on L ~176 (IR) induced 
by the Lebesgue measure on IR. (This indeed brings us to the question of infinitely 
divisible representations, as in [StW], [Ara].) However, since this quantum mea- 
sure space is not finite, we cannot apply the above construction directly. We 
consider first the yon Neumann subalgebras L~176 T ] ) Q J g  of L~176174 
for S <  TeN,  and the corresponding restrictions 2Es ' r l |  # of the weight 2 | ~. 
For all S, T~IR with S < T, (L~ T ] ) |  JE, 2Es ' T1 | #) is a finite quantum mea- 
sure space, and we may consider the quantum Poisson process 
(JV~Ls, T1, V~S, rl;N~s, T1) over it. Fortunately, all the operators NEs, rl(x): 
x~L ~ ([S, T ] ) |  Jg, S < TdR,  may be regarded as acting on the same Hilbert 
space o~, as the following proposition shows. 
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Proposition 2.4. Let (M[, #) be a finite quantum measure space, and let X be 
the weakly dense *-subalgebra of L ~ (IR) |  defined by 

X =  U L*([  S , T ] ) |  (2.5) 
S < T ~ (  

Then there exists a Hilbert space ~ a yon Neumann algebra JV of operators 
on o~ a faithful normal state v on .At and a linear map N from X into the 
unbounded operators on ~ affiliated with JV" such that, for all S < T in ~ ,  the 
quantum Poisson process ( ~ s ,  rl, V[s, T]; N[S, TI) over (L~([S, T1) | M/, 2is, T] @#) 
may be realized as the restriction of (~,, v; N) to U ~ ( [S, T] ) | M[ c X.  By "restric- 
tion of (~,, v; N)"  to a *-subalgebra ~ of X,  we mean that N is restricted to 
act on 9J, .At is replaced by its yon Neumann subalgebra ~A@ generated by N(y): 
y ~ l ,  and v is restricted to JV'e. 

Proof (Sketch.) Let f f  be the Fock space over L2(It) |  J~. For all S <  T in 
IR, we may write 

= ~ ( L  2 (( -- o% S] ) | ~ )  | ~,~(L 2 ( IS, T] ) | Tt ~ @ ~ ( L  2 fiT, + 00)) @ Jg(') 

The quantum Poisson process (.A@, r], V[s, rl ; NLs, r]) is naturally defined on ~ s ,  r] 
via Definition 2.2. For x in L ~176 ( IS, T] ) | M/, let 

N (x) = 11o% ~ | NEs ' rl(x) | ~ t T "  (2.6) 

If S < s < t __< T and x ~ U ~ (Is, t] ) | J~, then x may be also regarded as an element 
of L~([S, T])| Note that, for xeL~ t])|162 (2.6) is actually indepen- 
dent of S and T so long as S < s  and T>t .  Then, let ~ = { N ( x ) :  x e X } " ,  and 
let v be the restriction to .At of the vector state determined by ~(0). It is easy 
to check that the triple (~,, v; N) has all the required properties. []  

With some abuse of language, the triple (~,, v; N) defined in Proposition 2.4 
will be called the quantum Poisson process over (L ~ (N) | M[, 2 | l~). 

3. Stochastic Calculus 

Here we develop a quantum stochastic calculus for the quantum Poisson process, 
add an initial space and study unitary solutions of quantum stochastic differen- 
tial equations. Similar results have been obtained independently by Evans and 
Hudson [-Evil]. 

The following propositions make contact with the quantum stochastic calcu- 
lus of Hudson and Parthasarathy. We shall denote by A*, A and A the creation, 
preservation (gauge) and annihilation operators, given in [HuP 1] : 

A*(O 4,(~) = d ~,(~ + ~ )  ~=o: ~' ~ ;  

A(x) O ( q ) = d  O(e~xtl) ~=o" x ~ ( ~ ) ,  tleJt~ 

A(~) O(t/)= (~, r/) O(r/): ~, r/~Jr ~. 
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Proposition 3.1. For all exponential vectors O(t/): 7~d/~, the quantum Poisson 
process N(a): ae~/ /  over (Jg, #) satisfies 

N(a)  ~9(7) = [A*(u(a) ~)+A(rc(a))+A(rc(a*) ~)+#(a)]  0(7). (3.1) 

Proof  Since the maps a~--,N(a), (~--,A*((), x~--~A(x) are linear and (~--~A(() is 
conjugate-linear, it suffices to prove (3.1) for a = a* e ~ .  We calculate 

a ~(7) ~=o 
N(a)  O(rl) = -- i d~a W ( ~ ) - I  F(exp [ic~z(a)]) W(~) 

d ~=0 -= - i  daa [exp{ - � 89  II ~ II 2 - (4, 7)} W ( -  r 0(exp [ iaz(a)]  (4 +7))] 

= --i ~ exp{-- l[ ~ll 2 -  (4,  7 ) - - (  --4, e i~n(a) (~- l -7 ) ) }  O(ei~(")(~ + 7)-- ~) ~=0 

= -- i ~ exp (r (e i''~(a) _ 11) (~ + 7))  O ( ei~'~(")7 + (e i~(~) -- 11) ~) ~ = o 

=(~ ,  n(a) (r + t/)) 0(r/) 

+ lim 1 [O ( ei~ ~ (") q + ( ei~ ~(a) _ 2) r -- Ill (e i'" (a) I,]) - t -  Ill (e iCt n (a) n) - -  @ (7) ] 
~ 0  lO~ 

= (~, re(a) r ~b(7 ) + (re(a*) ~, 7) O(t/) 

- - i ~ O ( 7 + i c ~ r c ( a  ) -- i  
=0 

= [# (a) + A (re (a*) 4) + A* (n (a) r + A (re (a)) ] 0 (q)- 

Now we consider the quantum Poisson process over (L~(N)|  rig, 2 |  
Accordingly, the Fock space over J4 ~ will be replaced by the Fock space over 
L2(N)Q~4F. Following Hudson and Parthasarathy [-HuP2], we shall consider 
creation, preservation and annihilation operators given by 

A*(ff)=A*(lto, t]| t e n  +, ~e~,, 

At(x) =A(lto, t I | x): t e n  +, x6~(W) ,  

At(~)=A( l to , t l |  t e n  +, ~ ,  

where lt0,t] e L2 (~) n L ~176 (~) denotes the indicator function of the interval [0, t]. 
With reference to Proposition 2.4 we introduce the notation 

N~(a)=N(l to , t] |  t e n  +, aeJ/g. (3.e) 

As an immediate consequence of Proposition 3.1 we have, for all a in J{, 

N~ (a) = A* Oz (a) 4) + At (n (a)) + At (re (a*) 4) + # (a) t, (3.3) 
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in the sense that both sides have the same action on exponential vectors. We 
shall write symbolically 

dN~(a)=N~+at(a)--N~(a), t e n  +, aedg. 

The precise meaning of the stochastic differential dN~(a) is as in the quantum 
stochastic calculus of Hudson and Parthasarathy (see also Accardi and Partha- 
sarathy [AcP] ). 

Proposition 3.2. In the sense of the stochastic calculus of Hudson and Parthasa- 
rathy, we have the Itd formula 

dNt(a)dNt(b)=dNt(ab), a, beJd/. (3.4) 

Proof Since for all T >  t we have 

N(a) = W(1E0 ' rl | 4)- 1 &(re(a)) W(1Eo ' rl @ 4), 

where At(x)=A(l;o,tl| xeN(d( )  is as in Hudson and Parthasarathy, this 
follows directly from their relation [HuP 1] 

dAt(x)dAt(y)=dAt(xy), x, yeN(g/Y). [] 

In order to construct dilations of dynamical semigroups, we shall consider 
stochastic differential equations for unitary operators in M , |  ~g, where M, 
is the algebra of all complex n x n matrices. An element X of M,  | Jg" may 
be regarded as an n xn  matrix (Xij)/,j=l ...... with entries X/j in Jg'. Similarly, 
an element x of M,  |  may be regarded as an n x n matrix (x/j)/,j= 1 ...... with 
entries x/j in ~ .  Let ( ~ , v ; N )  be the quantum Poisson process over 
(L ~176 OR)| Jg, 2 | #) introduced in Proposition 2.4, so that for all t > 0 and a e Jd( 
the operator  Nt(a) is defined in Y = Y(L  2 (IR) | ~ ) .  Then, for x = (x/j) in M, | J/L, 
let 

N t ( X )  = ( N t ( x i j ) ) i , j = l  . . . . . .  �9 

The matrix N~(x) is an unbounded operator  on (E"| ,~, affiliated with M, | 
It should be clear that, for all a in M,  (a~jelE) we have by linearity 

Nt (x) (a | ~ )  = Nt (xlj) ajk 
j i , k = l  . . . . .  n 

/ / \ \  n 

=(N(,~-,(x'iaJk)))j,k=l ...... = Nt(x(a @ 11~) ) (3.5) 

and similarly 
(a | ll~) N(x) = N((a | t ~ )  x). (3.6) 

For  any fixed x in M,  | J~, the family {Nt(x)" t>O} is an example of an 
adapted process in the sense of Hudson and Parthasarathy. Roughly, a family 
{X,: t_>_ O} of operators in 112" | .,~ (L 2 OR) | 240) is called adapted if X t is of the 
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form ~ | 174  when the Hilbert space in which Xt acts is identified with 
o~(L2((- oo, 0 ] ) |  ~ ) |  [ r  | g(L2([0,  t]) | Ye] | ~(L2(Et, + oo))| Ye). 

The following theorem is a result of the same kind as Sect. 7 of [HuP 1]. 
It has been obtained independently also by Evans and Hudson [EvH]. 

Theorem 3.4. For x in M ,  | J/Z and h= h* in M , ,  consider the quantum stochastic 
differential equation 

d Ut = [-dNt (x) - i h | ~ d t] G, (3.7) 

with initial condition Uo = ~. Then there exists a unique adapted solution Ut (t > O) 
affiliated with M , |  Y .  The operators G are unitary for all t in IR + if and 
only if x is of the form 

x = u -  11: u unitary in M,  | rid. (3.8) 

Proof The existence and uniqueness of the adapted solution is proved as in 
Proposition 7.1 of [HuP 1], see also Evans and Hudson [Evil] .  It is clear from 
the construction that the solution is affiliated with M, | ~ .  To discuss unitarity, 
we imitate Theorem 7.1 of [HuP 1] and consider the operators 

X,=G*G,  Y,=G<*: teR +, 

satisfying the quantum stochastic differential equations 

dXt = (d G*) G + G* (d G) + (d G*) (d G) 
= G* [dN(x*) + dNdx) + dN(x*) dN(x)] 

= G* dN(x* +x+x*x) u, (3.9) 

and (with similar manipulations) 

d Y t = [ d N d x ) - i h |  Yt+ Y t [ d N t ( x * ) + i h |  YtdNdx* ). (3.10) 

If x = u--~,  u unitary, then d X  t-- 0 for all t and X t is identically equal to its 
initial value ~; on the other hand, the constant ~ is the (unique) solution of 
(3.10). Hence G* G =11= Ut Uff for all t. Conversely, if Ut is unitary for all t, 
we must have dXt = 0 = d Yt for all t. It follows that 

x* + x + x* x = O = x + x* + x x*, 

which means that x is of the form (3.8). [] 

In the next section, we shall also need the following. 

Lemma 3.5. Let a and ~ be automorphisms of M ,  | and of M ,  | Y respective- 
ly, satisfying 

Nt(a(x)) = rY(N(x)), x e M ,  | Jr t e n  + (3.11) 

(where ~ is extended to the operators affiliated with M ,  | ~A# in the obvious way), 
and let U, be the solution of the quantum stochastic differential equation (3.7). 
Then cT(G) = G, for all t if and only if a ( x ) = x  and ~(h | 1 7 4  11. 
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Proof. Suppose first that o-(x)=x and 6 ( h | 1 7 4  and let Z t =  6(Ut). Then 

d Z , = 6 ( d U , ) = 6 ( [ d N ( x ) - i h |  dr] U~) 

= 6(dNt(x) - ih | ~ d t) ~(Ut) 

= [dNt (a (x)) - i ~ (h | 11) d t] Zt 

= [-dNt ( x ) -  i(h | 1) dt] Zt. 

So Z t satisfies the same quantum stochastic differential equation as U~. It follows 
from (3.11) that 6(U t) is adapted if Ut is; therefore ~ (U t)= Z t = Ut. 

Conversely, if Ut is known to be invariant under ~ for all t, we must have 

dNt(a(x))-- i~(h | 11) d t = dN~(x)- ih | 11 dt, 
that is 

dNt(a(x)-  x)= - i  [h | ~ - 6 ( h  | ] d t. 

But dN and d t are linearly independent, hence a (x) = x and h | 11 = ff (h | 11). [] 

4. Dilations of Dynamical Semigroups on 34. 

We apply the quantum Poisson process Nt to construct Markov dilations of 
dynamical semigroups on M,  in the sense of Kiimmerer [Kfim 1]. Such dilations 
are non-commutative generalisations of stationary Markov processes. For con- 
venience we recall the relevant definitions. A morphism T: (s~r q51)~(d2, ~b2) 
between the quantum probability spaces (d~, ~ba) and (d2, q~2) is a completely 
positive map T: ~41 -~r  satisfying T(11d, ) =11d2 and q~2 o T=  ~b 1. By a dynamical 
system one means a triple ( d ,  ~b, Tt), where ( d ,  ~b) is a quantum probability 
space and (Tt)__> 0 is a semigroup of morphisms (~ ,  ~b)~(d ,  ~b) with To=id d. 
Such a dynamical system is said to be reversible if Tt is an automorphism for 
all t>0 .  In a reversible dynamical system the semigroup can be extended to 
a group (Tt)t~e by defining Tt..=(T_t) -1 for t<0 .  

A dynamical system (sJ, q~, Tt) is said to possess a dilation (s~, ~, ~ ;j) if 
(s], q~, ~) is a reversible dynamical system and j is a morphism (s~', qS)---, (s~?, q~) 
such that for some morphism E: (~7, q~)~ ( d ,  ~b) the following diagram corn- 
mutes for all t > 0 :  

(d, 4) ~t , ( d , ~ )  

'1 l" 
(~, ~) ~ , (.J, q~) 

(4.1) 

If T 1 is any morphism of ( d ,  q~), then ( d ,  q~, T1) is said to possess a dilation 
of first order (~ ,  ~), T1;j) i f  the diagram (4.1) commutes for t=0 ,  1 (where we 
define To=id~ and To=idd) .  Such a dilation of first order is said to be inner 
if T1 is an inner automorphism of (s~ 7, $'), i.e. ]Fl(a)=u*au for all a ~  and 
for some unitary u in the centraliser of (s~, q~). (The centraliser of a quantum 
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probability space is the fixed point set of its modular group; u is fixed under 
@ if and only if q~(u*.u)= q~(').) From the commuting diagram (4.1) with t = 0  
it follows that j is an injective *-homomorphism, and j o E is a conditional expec- 
tation onto the W*-subalgebra j ( d )  of ~7 with respect to the state q~. From 
the existence of this conditional expectation it follows [Tak] that 
@(j(d))  ~ j ( d ) .  For an interval I~IR, let d~ denote the W*-subalgebra of s ]  
generated by U ~oj (d) .  One can show that conditional expectations E~ onto 

t e l  

these subalgebras exist in (s], q~). The dilation (s], q~, ~) is  said to be a Markov 
dilation if 

E(_ co, ol ~r ~) = sJ~0}. (4.2) 

We are now ready to formulate our main result. 

Theorem 4.1. Let (a be a faithful state on the algebra M ,  of all complex n x n 
matrices. Let M: (M,,  O)--*(M,, c~) be a morphism possessing an inner dilation 
of  first order, and let L: M,---, M ,  be given by 

L(a) = M (a) -- a, (ae M,). (4.3) 

Then the dynamical system (M.,  O, eeL) possesses a Markov dilation. 

Proof Since M.  is a factor of type I, every dilation of first order of (M., r M) 
must be of the "tensor" form (M. |  Jg, ~b| ~ ;  id| for some quantum 
probability space (d/, #) [K/iml]. Since ~ is an inner automorphism of 
(M, |  r 1 7 4  it is of the form M = A d u , = u * . u  with a~| So we may 
write for a e M,: 

L(a) = (id | #) (u* (a | 11) u ) -  a. (4.4) 

Now let (~,, v; N) be the quantum Poisson process over (L~ Jg, 2 | #) 
introduced in Sect. 3. Let (U,);~o be the solution of the quantum stochastic 
differential equation 

d U, = d Nt (u - ~) G (4.5) 

with initial condition Uo=t .  Since u is fixed under o-~ | we may conclude 
from Lemma 3.5 and Theorem 2.1 that Ut is fixed under a~ | hence Ad Ut 
is an inner automorphism of (M, | JV, r @ v). We now continue the construction 
as usual ([HuP2], [Fri], [Maa]): we introduce the right shift (St)rE~ on JV 
by 

S~(N ( lts, u ~ | a)) = N(1Es+,,.+ 0 | a) 

and show in the usual way that 

G+s=(id| (s,t=>0), 

so that, upon defining ~ on M, | ,/~ by 

~ :=Ad Uto(id| (t>O), 
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(M, | X,, q~ | v, ~) becomes a reversible dynamical system. Now we define a 
family of morphisms Tt: (M,, ~b)~ (m, ,  qS) by the diagram 

(M., q~) Tt , (M., qS) 

i d @ l  l idQv (4.6) 

(M.| 6| ~ ,(M.| 6N9  

It remains to prove that T t = d L. We first need the following lemma. 

Lemma 4.2. For all x e M ,  |  and t~lR we have 

(i d | v) (dNt (x)) = (i d | #) (x) d t (4.7) 
and 

(id | v) (Uff dNt(x) Ut)=(id|174174 Ut)dt. (4.8) 

Proof Equation (4.7) is an immediate consequence of (3.3). Then also (4.8) follows 
upon taking into account the continuous tensor product structure of the symmet- 
ric Fock space over La(N) | Yf and the adaptedness of Ut. []  

We may now calculate Tt as follows. For all aEM, we have 

dTt(a)=(id| [d(Ut* (a | 11) Ut)] 

= (id | v) [(d Ut*) (a | 11) Ut + Ut* (a | 11) (d Ut) + (d Ut*) (a | 11) (d Ut)] 

= (id | v) JUt* {dNt (u* - 11) (a | 11) + (a | 11) dNt(u- 11) 

+ dNt(u* -11) (a | 11) dNt(u -11)} Ut]. 

Taking into account equations (3.5) and (3.6), the It6 formula (3.4) and the 
linearity of Nt, we obtain 

d T~ (a) = (i d | v) [ Ut* dNt ((u* - 11) (a | 11) + (a | 11) (u - 11) 

+ (u* -- 11) (a | 11) (u-- 11)) Ut] 

= (id | v) JUt* dNt(u* (a | 11) u - a | 11) UJ. 

Applying the lemma we conclude that 

d Tt (a) = (id | v) [Ut* (i d | #) [-u* (a | 11~t) u -  a | 11~] | 11w) Ut] d t 

= (id | v) o Ad Ut [L(a) | 11N] d t = Tt (L(a)) d t. 

So indeed T~=e tL, and (Mn |  O| ~; id| is a dilation of (M,, qS, etL). 
The Markov property (4.2) follows from the adaptedness of Ut. []  

Obviously, we may scale the time in the dynamical semigroup by changing 
the total mass #(11) of the auxiliary quantum measure space (J//, #) (which is 
1 in the above construction). Also, the addition of a derivation to L does not 
affect the dilatability of e tz. Hence we have the following. 
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Corollary 4.3. I f  L: M ,  ~ M,  is of the form 

L: a ~ r ( M ( a ) - a ) + i [ h ,  a], (4.9) 

with h=h* in the centraliser of (M~, ~)), r>O and M a morphism of (M.,  (a) 
possessing an inner dilation of  first order, then (M.,  c~, e tL) possesses a Markov 
dilation (" of Poisson type"). 

Note that L may be written equivalently as 

L(a) = ( id @ !~) (u* (a | 11) u -  a | ~ll) + i [h, a] 

= l ( i d | 1 7 4 1 7 4  (4.10) 

where u is a unitary element of the centraliser of (M, | J/t, ~b |  

Remarks. 1. It was shown by Kfimmerer and Maassen [KtiM-] that 
(M,, qS, exp [tL])  admits a Markov dilation using a classical Poisson process 
if and only if L is of the form (4.9) where M is a convex combination of Aduj 
with uj unitary in M, .  Corollary 4.3 may be considered as a generalization 
of this result. A much more powerful generalization has been obtained by 
Kfimmerer [Kfim2], who can dispense with our conditions that d = M ,  and 
that the tensor dilation of the morphism M be inner, and who has characterized, 
in addition, the class of quantum dynamical semigroups admitting a Markov 
dilation with a faithful normal invariant state ~. 

2. The generators of the form (4.10) are essentially those found by Diimcke 
in his study of the low-density limit for an N-level system coupled to a heat 
bath which is a quantum gas. Then Jg  is the algebra of observables for one 
bath particle, u is the collision operator (S-matrix) for the system interacting 
with one bath particle, and/~ is the one-particle reduced state of the bath (strictly 
speaking,/~ is a weight, and not even a finite weight after the thermodynamic 
limit for the bath has been taken). When the gas is dilute, collisions are infre- 
quent, each collision takes a microscopic time to develop its asymptotic effect 
(the bath observable a is changed to M(a), and reservoir particles hitting the 
system at different (macroscopic) times may be regarded as uncorrelated, thus 
allowing the replacement of J/t by L ~ (IR) | ~ as algebra of one-particle observ- 
ables. Infrequent events tend to acquire a Poisson distribution in time, with 
some rate r. Then, neglecting the free time evolution determined by h, one 
should have some time evolution of the kind a ( t + d t ) = r M ( a ( t ) ) d t +  

d 
(1 - r) a(t) d t, giving ~ -  a(t) = r [M(a ( t ) ) -  a(t)]. A more detailed comparison of 

the low-density limit with the quantum Poisson process can be found in [Fri3]. 
A similar physical comment could be applied to Kfimmerer's construction of 
the "non-commutative Poisson process" in [Kiim2]. 

5. Examples 

In order to illustrate the results of Sect. 4, we have to construct examples of 
morphisms M: (M,, q~)-~(M,, ~b) admitting an inner tensor dilation of first order 
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(M, | ~/ ,  q5 | #, Ad u; i d | ~), u unitary in M,  | ~/g and satisfying a~ | U(u)= u 
for all real t. 

For  the sake of concreteness we shall consider the case in which also d// 
is the algebra M v of all complex p x p matrices (p and n may be different). 
Without loss of generality, we may then assume that 

4)(a)=tr[pa], a ~ M , ,  

#(b)=t r [~2b] ,  b~Mp;  

where p and ~a are strictly positive diagonal matrices (with the appropriate 
dimensionalities) with unit trace: 

p = diag(p 1 . . . . .  p,), Pl, ..., Pn >0, ~ pj= 1, 
j=l 

p 

41, " " ,  ~p>O,  Z ~ = 1 .  
r= l  

Cz = diag(~2 . . . .  , ~pa), 

The reason for the notation 42 is that the GNS space for (Mp, #) may be identi- 
fied with Mp, with inner product  (q, ~ ) =  tr [-q* ~] and with cyclic and separating 
vector (~j). 

Then the modular automorphism groups a~ and a~ u are given by 

~r~(a)=pltap -it, a ~ M , ,  t~IR, 

~r~(b)=~2itb~-2it, b~Mp, t6lR. 

Now we have to characterize the unitary matrices u in M , |  which 
are invariant under o-~ | = o-~ | o-~. Note first that, upon letting (er~) . . . .  1 ..... p 
be the canonical matrix units in Mp, any matrix u in M,  | Mp may be expanded 
as 

p 
u =  ~ vr~| (5.1) 

r ,s=l  

where v~s is a matrix in M, for each r, s. 

Lemma 5.1. A matrix u in M , |  Mp with the expansion (5.1) is unitary if and 
only if 

p 

F~ V*rVq~=~r~, r , s = l , . . . , p ,  (5.2) 
q=l  

and is invariant under ~ | ~ if and only if 

pV, sp 1_  2 -2 v (5.3) - - ( i s ~  ) ~s, r , s = l , . . . , p .  

Proof Straightforward calculation shows that (5.2) is equivalent to u*u = ~ and 
that (5.3) is equivalent to (~r~ | ch") (u) = u for all real t. []  
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Proposition 5.2. A map M of M,  into itself is a morphism (M,, ~)-~(M,,  ~b) 
admitting an inner tensor dilation with the auxiliary algebra isomorphic to a matrix 
algebra if and only if, for some integer p, some p-tuple (~1 . . . .  , ~p) of positive 

P 

numbers with ~, ~2 = 1 and for some matrices (v~) . . . .  1 . . . . .  p in M, satisfying condi- 

tions (5.2) and (5.3) one has 

P 

M ( a ) =  Z 2 , ~ Vrs avr~: a~M,.  (5.4) 
r , s = l  

Proof Immediate. []  

We are now ready to produce some classes of examples. 

Example 1. (Essentially commutative dilations:) Suppose that in (5.1) one has, 
for all r, s = 1 . . . . .  p. 

vr~ = c~,~ u~: ur unitary commuting with p. 

Then conditions (5.2) and (5.3) are satisfied, and M takes the form of a convex 
combination of automorphisms: 

P 

M(a)= ~ ~ u *  au~: aEM,. 
r ~ l  

Note that the dilation is constructed with the use of the commuting processes 
Nt(e~): r = 1 . . . .  , p, which are independent (classical) Poisson processes with in- 
tensities 4 2 , by Proposition 2.3. Then we are back to the situation studied in 
[KiiM]. 

Example 2. (Compensating transitions.) An obvious way to satisfy conditions 
(5.2) and (5.3) is to let p=n, #2=p  and v,~=es,. The resulting expression for 
M is 

M ( a ) =  ~ 2 ~s ers aesr. 
r~s=  l 

The physical interpretation is as follows. The bath particles are identical to 
(but distinguishable from) the system of interest. When a bath particle hits the 
system, transitions between energy levels may occur; a transition from level 
s to level r for the system is compensated by the reverse transition for the 
bath particle. 

Example 3. (Combination of Examples 1 and 2.) Let n = kp, k integer, and assume 
(M,, c~)= (Mp, #)|  (Mk, z), where z denotes the normalised trace. Put 

vr~=esr| Wr~Mk, r , s = l , . . . , p ;  
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then condition (5.3) is obviously satisfied, and condition (5.2) becomes 

P 

eq~e~q| ~=~ wq* wq~=~ forall  q,r. 
q = l  

In words, each wr~ must be unitary. The resulting M is 

P 

M (a) = ~ ~2 [e~ | w*~] a [-e~ | w~], a e M,.  
r , s : l  

In particular, for a = % | b, beMk, we have 

P 

M(e~|  ~ e~,| 
r = l  

Example 4. (Generalisation of Example 2.) Let again p = n, ~2= p. Operators v~ 
satisfying (5.3) can be chosen as 

n 

v,s=(1-cS~)c~e~+6~s ~ d, kekk, 
k = l  

where % and drk are complex coefficients. In the case that p has a nondegenerate 
spectrum satisfying the additional condition that Pi P j-1 = Pk P71 for i:4j implies 
i = k and j  = l (i.e., the spectrum of o-~ = pit(.) p-it does not have accidental degen- 
eracies), the above is the only way to satisfy (5.3). Imposing the requirement 
that also (5.2) is satisfied, we obtain, after some straightforward calculations, 

(1-CS~q)lcr for all r,q; 

c~ d-~ + ~ d~ = 0 for r + s. 

Note  that it follows from the second equation that ICrsl2/lCsr[ 2= [dr~12/ld~rl 2, and 
combining this with the first equation we obtain I Crs[Z = I%12 (r 4= s). Then, upon 
multiplying each v~ by a suitable phase factor, which does not change the 
expression (5.4) of M, we may assume that crs = % >  0. Then d~ = -d~r  if c~ ~ 0. 
If r = s  or cry=0, we have d~=exp[i0r~]  and there is no condition relating 
drs with dsr. 

The expression for M becomes 

M oI=   sCr ersaesr+ D lekkaelz, 
r ~ s = l  k , / = l  
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n 

where (Dkz) is the hermitian matrix given by Dkl= Y" d~k d,l. Finally, we take 
r = l  

up again the general discussion with some remarks on the property of detailed 
balance. The generator L = M- - id  admits a q%adjoint generator L + satisfying 

c~ (L + (a) b) = 0 (aL (b)), a, b e M,  ; (5.5) 

clearly, L + is given by M § - i d ,  where 

c~(M + (a) b)= 4)(aM(b)), a, beM, .  (5.6) 

We compute explicitly 

O(aM(b)) = 
P 

r , s  = 1 

P 

2 
r , s  = 1 

P 

2 
r , s  = 1 

P 

2 
r,  s =  l 

42 tr [p a v*s b v~s] 

~ tr [-p p -  1 v~ p a v*~ b] 

2 2 4, (~ 47 2)- 1 tr [p v~s a v*~ b] 

42tr[pvr, av*~b], a, b e m , ,  

which proves that 

P P 

M +(a)= ~ ~z vr~av*~= ~ 42 VsraV*, a~M,.  (5.7) 
r , s =  l r , s =  l 

The semigroup exp[-tL] is said to satisfy the detailed balance condition with 
respect to q5 if L - L  + (which in the present case is the same as M - M  +) is 
a derivation of M, [KFGVl .  

We recall that the semigroups admitting a Markov dilation with a faithful 
normal invariant state constructed by means of quantum Brownian motion 
satisfy the detailed balance condition [Fri 2]. This need not be true for dynamical 
semigroups admitting a Poisson dilation. In the case of coupling to a classical 
Poisson process, as in Example 1, this was already remarked by Kfimmerer 
and Maassen [KiiM]. In the case of Example 2, detailed balance holds, with 
M = M § In Example 3, detailed balance need not hold; we have in general 

and, for a = % | b, 

P 
M+(a )=  ~ 2 ~s (ers | wsr) a(es, | w*), 

r , s ~  l 

P 

M+ (es,|  2 . - ~  ~ err| 
r = l  
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so that counterexamples to detailed balance can be constructed as in [-KfiM]. 
Finally, for Example 4 we have 

M(a) - -M + (a)= ~ (2i Im Dk~ ) ekk aeu 
k, l=l  

2 is symmetric; it follows, in particular, that the restriction since the matrix Crs 
of exp [Lt] to the diagonal matrices satisfies the detailed balance condition. 

In conclusion, we may say that it is comparatively easy to construct examples 
of dilations (with an invariant state q~) of dynamical semigroups not satisfying 
the detailed balance condition, if the modular automorphism group cr~ associated 
with the invariant state ~b presents accidental degeneracies (Examples 1 and 
3), whereas in the opposite case of no accidental degeneracies all known examples 
(like Examples 2 and 4) satisfy detailed balance. In particular, the Davies model 
of heat conduction l-Day], even in its extremely simplified version given in 
[Fri 2], which displays neither accidental degeneracies nor detailed balance (thus 
far) resists all attempts at providing it with a dilation having an invariant state. 

Acknowledgements. We wish to thank B. Kiimmerer for stimulating discussions, and R.F. Streater 
for bringing Refs. [StW], [Ara] to our attention. 
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