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Quantum State Preparation via Asymptotic Completeness
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We demonstrate that any quantum state jx� of a single mode radiation field can be prepared with
arbitrarily high fidelity by interaction with a sequence of two-level atoms, prepared in a suitable initial
state. No final state measurement of the atoms is needed.

PACS numbers: 42.50.Dv, 03.67.–a

In order to encode or process quantum information, the
ability to prepare quantum systems in various states is a
necessary prerequisite. A recipe to create an arbitrary state
of the quantized electromagnetic field has been given in
[1], where the authors studied the interaction of a sequence
of two-level atoms with a single mode field sustained by
a high quality resonator. In this scheme, field and atoms
are entangled with each other, after the interaction. Subse-
quently, in order to project the field onto the desired pure
state, a measurement has to be performed on the atoms.
This procedure succeeds only with the finite probability
of the desired measurement result (e.g., detection of all
atoms in the lower state), and requires the ability to detect
the final atomic state with very high efficiency. Therefore,
schemes that avoid the atom-field entanglement have been
proposed: The method described in [2] is based on adia-
batic transfer of atomic ground state Zeeman coherence
(and is limited by the number of available Zeeman levels),
and in [3] an appropriate, time-dependent cavity QED in-
teraction is designed to create the desired field state. Both
methods are essentially guided by general principles of
coherent control: The atom-field system is transferred
from a well-defined initial state to a well-defined target
state through the controlled modulation and application of
atom-cavity coupling strengths and classical driving fields.

In our present contribution, we shall demonstrate that an
arbitrary target state of the quantized single mode radia-
tion field can actually be prepared under a simple, time-

independent atom-field interaction, without any final state
projection, and independently of the initial state of the
field. A necessary condition is the experimentalist’s ability
to entangle a small number N of atoms prior to the atom-
field interaction [4,5]. The larger N , the better the fidelity
of the target state preparation, which approaches 100%

exponentially fast in N .
Our method is an application of a recent mathematical

result [6] on quantum Markov chains, which are described
by a quantum system in subsequent interaction with a se-
quence of infinitely many identical other quantum systems.
As an example of such a quantum Markov chain, we will
examine the photon field in a single mode resonator, i.e., a

quantum harmonic oscillator, that resonantly interacts (via
the Jaynes-Cummings Hamiltonian) with a sequence of N

two-level atoms. Furthermore, we assume full control over
the initial N-atom state jc0�, which may also include en-
tanglement between different atoms (i.e., jc0� need not be
a product of single-atom states). Mathematics predicts [6],
in the limit N ! ` of infinitely many atoms, that any field
state jx� can be created by choosing an appropriate ini-
tial atomic state jc0�, irrespectively of the initial state of
the field. We will show that, given a finite number N of
atoms, the state preparation is still possible with very high
accuracy, and will also devise a strategy to find the optimal
initial atomic state in order to prepare a given field state
jx� with maximum fidelity.

The above physical example of a quantum Markov chain
is experimentally realized in the micromaser [7]. Here the
atoms cross the cavity one after the other, so that at most
one atom is present in the cavity at any time. For simplic-
ity, we assume the interaction time tint (i.e., the time of
flight through the cavity) to be the same for each single
atom, a situation realized to high accuracy in state-of-
the-art experiments [8]. Furthermore, we neglect dissipa-
tion due to incoherent coupling of the cavity field to the
environment, for the sake of transparency of our subse-
quent arguments. With the high quality cavities presently
at use in the laboratory [8], this is a good approximation,
since average photon lifetimes of about 4 orders of mag-
nitude larger than tint can be achieved.

Under these premises, the total atoms-field interaction
is described by the following unitary operator:

UN � e2if�aysN 1as
y
N � · · · e2if�ays11as

y
1 �. (1)

Here a and ay are the photon annihilation and creation op-

erators, and si � jd�ii�uj and s
y
i � ju�ii�dj are the lad-

der operators for the ith two-level atom, with upper and
lower level ju�i and jd�i , respectively. f � gtint is the vac-
uum Rabi angle, with g the strength of the atom-field cou-
pling. If f fulfills a jnt�-trapping state condition [8], i.e.,
f � kp�

p
nt 1 1, with k [ Z, it follows from Eq. (1)

that �n, cjUN jn0, c0� � 0 for all initial and final N-atom
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states jc0� and jc�, and all photon numbers n . nt and
n0 # nt , that is, there is no way of increasing the photon
number population above nt . Hence, if we want to pre-
pare field states including photon numbers higher than n,
we must avoid jnt�-trapping states with nt # n through a
proper choice of the vacuum Rabi angle f.

In the limit of infinitely many atoms, N ! `, the atoms-
field interaction described by Eq. (1) has (if f does not
fulfill a trapping state condition) the property of asymptotic

completeness [6]: Every observable A of the photon field
develops (in the Heisenberg picture) into an observable MA

of the atoms:

lim
N!`

U
y
N �A ≠ 1�UN � 1 ≠ MA . (2)

In other words, the field will lose the memory about its ini-
tial state after the interaction with infinitely many atoms:
The final field state r, i.e., the expectation value �A� �

tr�Ar� of any photon field observable A after the atoms-
field interaction, is completely determined by the initial
atomic state, irrespectively of the initial field state. In par-
ticular, asymptotic completeness, Eq. (2), ensures that any
field state can be prepared by choosing an appropriate ini-
tial atomic state. This can easily be seen when considering
A � jx� �xj, the projector on the desired field state jx�.
Then, after unitary evolution, also Mjx� �xj is a projector
(in the N-atom Hilbert space). If we now choose any state
jc0� from the range of Mjx� �xj as the initial atomic state,
the expectation value of jx� �xj after the atoms-field in-
teraction, i.e., the probability of finding the field finally in
the desired state jx�, is 1. In the Schrödinger picture, this
reads

lim
N!`

UN jx0� ≠ jc0� � jx� ≠ jcx0
�, ; jx0� . (3)

Obviously, the final state shows no entanglement of the
field with the atoms. Therefore, a measurement of the
atomic state will not influence the photon field. Further-
more, the desired field state jx� is created irrespectively of

the initial field state jx0�. Since the information about the
initial field state cannot be lost during a unitary evolution,
it is completely transferred to the final atomic state jcx0

�.
Since in reality we cannot handle an infinite number of

atoms, the question arises how fast the limit of asymptotic
completeness will be reached: How many atoms do we
need to prepare the desired field state jx� within a given
level of accuracy? In order to quantify the accuracy of
the field state preparation, we will use the fidelity F of the
final state with respect to the desired field state jx�. F

is defined as the expectation value of the projector P �

jx� �xj ≠ 1, that is, the probability of finding the state jx�
when performing a measurement. To calculate the fidelity
F, we evaluate P in the Heisenberg picture:

U
y
N �jx� �xj ≠ 1�UN �

X̀

m,n�0

jm� �nj ≠ M�mn�
, (4)

where jm�, jn� are number states of the photon field, with
photon numbers m and n, respectively. This expression,

together with Eq. (1), defines the operators M�mn�, which
act in the 2N -dimensional Hilbert space of the N atoms.
The fidelity F of the final state, given the initial atomic
state jc0�, then reads

F � �c0jM�r0�jc0� , (5)

where the atomic operator M�r0� depends on the initial field
state r0 (which may also be a mixed state),

M�r0�
�

X̀

m,n�0

�njr0jm�M�mn�
. (6)

Hence, the maximum fidelity Fmax is obtained as the
largest eigenvalue of M�r0�, and the associated eigenvector
jc0� is the optimal initial atomic state. From the asymp-
totic completeness, Eq. (2), we know that in the limit
N ! `, M�r0� does not depend on the initial field state
r0, and its eigenvalues are 0 and 1.

In the following, we will consider the vacuum j0� as ini-
tial field state, so that M�r0�

� M�00�. In this case, it is
useful to look also at the time-reversed process: Given
an arbitrary field state jx�, how can we create the vac-
uum state j0�? It seems to be clear that this is achieved
most efficiently by injecting all atoms in the lower state
jd�, so that each atom can absorb the maximum amount
of energy from the photon field, which will then eventu-
ally end up in the vacuum j0�. From this intuitive argu-
ment, the generalized time-reversal symmetry [9] of the
atoms-field interaction, Eq. (1), immediately leads us to
the following conjecture: The optimal strategy to prepare

a given field state jx�, starting from the vacuum j0� as ini-

tial state, is such that all atoms leave the cavity in the lower

state jd . . . d�.
In this case, the maximum fidelity Fmax would be equal

to the maximum overlap F0 of the total final state with
jx� ≠ jd . . . d�:

F0
� max

jc 00
0 �
j�x , d . . . djUN j0, c 00

0 �j2

� �c 0
0jc 0

0� , (7)

where jc 0
0� is the (unnormalized) optimal initial atomic

state

jc 0
0� � �0jUy

N jx , d . . . d� . (8)

Since F0 refers to a definite atomic final state jc� �

jd . . . d�, whereas Fmax includes an additional maximiza-
tion over all possible atomic final states, it is clear that F0

gives a lower bound for the maximum fidelity Fmax:

Fmax $ F0. (9)

Equality holds if and only if the above conjecture: the

optimal final atomic state is jd . . . d� is true.
In the case of a number state, jx� � jn�, Eqs. (7), (8),

and (1) give the following expression for F0:
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F0�n� �

n
Y

j�1

sin2�f
p

j �
X

k01...1kn�N2n

n
Y

i�0

cos2ki �f
p

i �

(10a)

� 1 2

n
X

k�1

cos2N �f
p

k �

3

n
Y

i�1

ifik

sin2�f
p

i �

cos2�f
p

k � 2 cos2�f
p

i �
. (10b)

Equation (10b) is equivalent to Eq. (10a) [if cos2�f
p

k � fi
cos2�f

p
i � for k fi i], but involves a summation over only

one variable k. In the general case jx� �

P

n
i�0 ciji�, one

can show that

F0
�

n
X

i�0

jcij2F0�i� . (11)

Since F0�i� # F0� j� for i . j, any field state including
photon numbers not higher than n can be prepared with
fidelity F $ F0�n�.

From Eq. (10b), we see that F0 ! 1 when N ! ` [if
cos2�f

p
k� , 1 for k # n, i.e., no trapping states], so the

above conjecture Fmax � F0 is at least valid asymptoti-
cally. In order to test its validity for finite N , Fig. 1 shows
a comparison between Fmax and F0, for the preparation
of various number states jx� � jn�, n � 1, . . . , 5, out of
the vacuum j0�, with N � 10 atoms, as a function of the
vacuum Rabi angle f. For most values of f, no differ-
ence between Fmax and F0 can be detected, which confirms
the validity of our conjecture in most cases. However,
we observe also some deviations, mostly near values of f
corresponding to jnt � n�-trapping states. (An exception,
which is not yet fully understood, is the case n � 1, where
the deviations are observed near the j2�-trapping states.)
This is not surprising: Since in the case of a jnt�-trapping
state the photon number cannot exceed nt , we could argue
that the optimal way of creating the state jnt� would be to
inject all atoms in the upper state ju�. This would lead to a
final atomic state different from jd . . . d�, which shows that
the above intuitive argument cannot be right in the case of
trapping states.

If the desired field state jx� is not a number state
(Fig. 2), the agreement of Fmax and F0 is still good, but
not exact—also not for values of f far away from the
relevant trapping state conditions. Hence, for finite N , the
conjecture Fmax � F0 is exactly valid only for number
states, if f is not close to a trapping state.

Finally, Figs. 3 and 4 demonstrate how effective our
state preparation works: Figure 3 shows the maximum
fidelity Fmax for the preparation of jx� � j5� and jx� �
P

5
i�0 ji��

p
6, as a function of the number N of atoms.

Two distinct initial states of the cavity field are treated,
a pure (Fig. 3a) and a mixed (Fig. 3b) state. In both cases,
the straight lines in the semilogarithmic plot demonstrate
that the optimum fidelity 1 is approached exponentially

fast when increasing N , which is already suggested by
the appearance of N as an exponent in Eq. (10b). Also
note that the rate of the exponential approach to Fmax � 1
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FIG. 1. Maximum fidelity Fmax (solid line) and F0 (dot-
ted line) for the preparation of the cavity field state jx� �

j1�, . . . , j5� with a sequence of N � 10 atoms injected into the
resonator, as a function of the vacuum Rabi angle f. The
initial field state is the vacuum j0�. The fairly good agreement
of Fmax with F 0 (note the logarithmic scale) shows that our
conjecture “the optimal final atomic state is jd . . . d�” is valid
for most values of f— in particular, for the optimum regime
below the first trapping state of the field. Deviations of Fmax
from F 0 can (in most cases) be traced back to jn�-trapping

states, which occur at integer multiples of f � p�
p

n 1 1

(vertical dashed lines).

depends on the initial state of the field, but is of the same
order of magnitude in both cases.

To get an idea of how many atoms have to be entangled
prior to the interaction for a given desired fidelity of a
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FIG. 2. Maximum fidelity Fmax (solid line) and F 0 (dotted
line) for the preparation of the truncated phase states jxn� �
Pn

i�0 ji��
p

n 1 1, n � 1, . . . , 5, of the cavity field, with N �

10 atoms injected into the resonator. The initial field state is the
vacuum j0�. The agreement of Fmax with F 0 is still good on
the logarithmic scale. The jn�-trapping states are denoted by the
vertical dashed lines.
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FIG. 3. Maximum fidelity Fmax for the preparation of the
5-photon state jx� � j5� (filled circles), and of the truncated

phase state jx� �

P

5

i�0 ji��
p

6 (open circles) of the cavity field,
respectively, as a function of the number N of atoms injected
into the resonator. Vacuum Rabi angle f � 0.91. Initial field
state: (a) vacuum j0�, (b) thermal equilibrium with average
photon number �n� � 0.55 (corresponding to a temperature of
T � 1 K in the microwave regime). In both cases, Fmax ap-
proaches the ideal value 1 exponentially fast.

target number state, Fig. 4 shows the minimum number
N of atoms needed such that F0�n� . 1 2 e, for e �

1021, 1022, 1023, and 1024. For each value of n, the
optimal value of the vacuum Rabi angle (below the first
trapping state, see Fig. 1) was chosen. Remember that, by
virtue of Eqs. (9) and (11), F0�n� gives a lower bound for
the maximum fidelity Fmax of preparing an arbitrary field
state including photon numbers not higher than n, with
the vacuum j0� as the initial state of the field. As obvious
from the plot, an uncertainty 1 2 Fmax , 1022 (1024) is
achieved injecting about 2n (3n) atoms.

Since the entanglement of a larger number of atoms re-
mains an experimentally formidable task, let us conclude
with some remarks on a finite fidelity F0 � �c0jrajc0� of
the initial state preparation —with ra describing the im-
perfect atomic initial state. Equation (5) is then general-
ized by F � tr�M�r0�ra�, and, consequently, F $ FmaxF0,
with the above estimations on Fmax unaffected. Given the
recent experimental result on the entanglement of four par-
ticles [4], and an entangling procedure that should operate
on even larger particle numbers [5], we are therefore confi-
dent that our novel approach to quantum state preparation
opens an experimentally practicable perspective.

As a matter of fact, the experimental implementation of
our scheme can be considerably facilitated for the prepara-
tion of number states, provided we drop the above require-
ment of the optimal atomic initial state that maximizes F

for given N . Asymptotic completeness, Eq. (2), then im-
plies that a sequence of pairs of subsequent atoms with
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FIG. 4. Minimum number of atoms N needed to prepare
the number state jn� out of the cavity field vacuum j0� with
fidelity F0�n� $ 1 2 e, e � 1021, 1022, 1023, 1024 (from
bottom to top). In each case, the optimum value of the vacuum
Rabi angle f (compare Fig. 1) was chosen. To prepare jn�
with uncertainty e , 1022 (e , 1024), N � 2n (N � 3n)
atoms suffice.

the appropriate two-particle entanglement [10] is sufficient
to prepare these specific target states (at the expense of a
larger number N of atoms to be injected for a desired fi-
delity F). As a by-product, a steady flux of such entangled
atom pairs through the cavity could also be used to stabi-
lize number states against dissipation, if the flux is high
enough compared to the cavity decay rate.
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