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We consider a quantum system consisting of n identical, but distinguishable
subsystems (”particles”) described by Hilbert spaces of dimension d .

A state on such a system is called completely symmetric if it is symmetric both
for the global rotation of all the individual Hilbert spaces together (”Werner
state”) and for permutations of the particles.

The state is called entangled if it can not be written as a convex combination
of product states.

For a given completely symmetric state, we want to find out if it is entangled
or not, and, if so, to quantify how entangled it is.
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Entanglement is a central issue in quantum information theory.

The study of n party-entanglement is considered difficult. It is complicated by
the fact that the state space of n systems of size d has a large dimension:
d2n − 1.

The number of parameters is greatly reduced by requiring the state to be
completely symmetric. The dimension d drops out entirely, and the number of
parameters becomes (one less than) the number of possible partitions of the n
particles.

For example, for 2 quantum identical systems of arbitrary size d there is only
one parameter.

An advantage of this restraint is that we can lean on a vast body of results
from classical mathematics: the representation theory of Sn and SU(d), as
pioneered by Frobenius, Schur, Weyl, Littlewood, . . . .

But also some recent work in pure mathematics turns out to be surprisingly
relevant to our question.
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◮ A measure of entanglement.
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and the only symmetric projections are

p± :=
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The only SU(d)-symmetric states (i.e. Werner states) are convex
combinations of

ρ± := (anti-)symmetric state: x 7→ trp±x

trp±
=

tr
(

1l±F
2

x
)

dimH±
.

The Werner states are given by

ρ = λρ+ + (1− λ)ρ−, 0 ≤ λ ≤ 1 .
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Then the separable state

x 7→
〈

ψ ⊗ ϕ,P(x)ψ ⊗ ϕ
〉

=

∫

SU(d)

〈

(u ⊗ u)ψ ⊗ ϕ, x(u ⊗ u)ψ ⊗ ϕ
〉

du

is a Werner state, and coincides with ρ on F . Hence it equals ρ.
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there are representations of two groups: Sn and SU(d):

Sn ∋ σ : π(σ)ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn := ψσ−1(1) ⊗ ψσ−1(2) ⊗ · · · ⊗ ψσ−1(n)

SU(d) ∋ u : π
′(u)ψ1 ⊗ ψ2 ⊗ . . .⊗ ψn := uψ1 ⊗ uψ2 ⊗ · · · ⊗ uψn

The classical Schur-Weyl duality theorem states that these two group actions
do not only commute, but the algebras they generate are actually each other’s
commutant. In particular they have the same center:

Z := Z(n, d) := π(Sn)
′ ∩ π′(SU(d))′ .

The minimal projections in this center cut both group representations into
their irreducible components, and they are labeled by Young diagrams.

For example

3⊗ 3⊗ 3 = (10⊗ 1+)⊕ (8⊗ 2)⊕ (1⊗ 1−) .

= ⊕ ⊕ .
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Let An denote the group algebra of Sn:

f : Sn → C to be viewed as
∑

σ∈Sn

f (σ)σ .

Multiplication inAn is convolution:

(f ∗ g)(σ) =
∑

τ∈Sn

f (τ )g(τ−1
σ) .

The unit is δe , where e is the identity element of Sn.
Adjoint operation:

f ∗(σ) = f (σ−1) .

Every unitary representation of Sn automatically extends to a representation of
An.
In our case

π(f ) : ψ1 ⊗ . . .⊗ ψn 7→
∑

σ∈Sn

f (σ)ψσ−1(1) ⊗ . . .⊗ ψσ−1n .
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We let f ∈ An act on the Hilbert space l2(Sn) by convolution on the left:

h 7→ f ∗ h .

The trace on this ”Hilbert space” is of a particularly simple form:

trreg(f ) :=
∑

σ∈Sn

〈δσ, f ∗ δσ〉 =
∑

σ∈Sn

(f ∗ δσ)(σ) = n! · f (e) ,

and will be called the regular trace.

The normalized version τreg := 1
n!
trreg is the regular trace state.
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The center of the group algebra of Sn

Zn := An ∩A′
n .

We have f ∈ Zn if and only if for all σ, τ ∈ Sn: f (στ ) = f (τσ):
The center consists of the class functions. Hence

dimZn = #(conjugacy classes of Sn)

= #(partitions of n) =: P(n) .

On the other hand, since Zn is an abelian matrix algebra, it must be of the
form

Zn =

P(n)
⊕

i=1

Cpi

for some orthogonal set of minimal projections pi in the center.
The states on the center form a simplex with extreme points ρi given by

ρi(pj) = δij .
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representations
The center Zn of the group algebra An has dimension P(n).
So it contains P(n) minimal projections p1, p2, . . . , pP(n):

pi (σ
−1) = pi(σ), pi ∗ pj = δijpi and

P(n)
∑

i=1

pi = δe .

They cut the algebra A = An into factors piA:

A =

P(n)
⊕

i=1

piA ≃
P(n)
⊕

i=1

Md(i) .

Hence
d(i)2 = tr(pi ) = n! · pi (e) .

Now define the character χi : Sn → C by:

χi(σ) :=
n!

d(i)
pi(σ) .

Then these functions form an orthonormal set in the sense that

〈χi , χj〉 =
∑

σ

χi(σ)χj(σ) =
(n!)2

d(i)d(j)
pi ∗ pj (e) = n!

d(i)2
· n!pi (e)δij = n! · δij .
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Interpretation of the characters χi

Lemma
The character χi(σ) is the trace of σ in its irreducible representation labelled
by i.

Proof.
The space piHreg looks like Md(i) ≃ C

d(i) ⊗ C
d(i).

On this space A and its commutant A′ act as

piA ≃ Md(i) ⊗ 1l and pi (A′) ≃ 1l⊗Md(i) .

Let us now choose a minimal projection qi ∈ pi (A′).

Then the regular representation acts irredicibly on the range of piqi .
Now, in the regular representation we may calculate

χi (σ) =
n!

d(i)
pi(σ) =

1

d(i)
n!(pi∗δσ)(e) = 1

d(i)
trreg(pi∗δσ) = trreg(pi∗qi∗δσ) ,
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Young frames

The irreducible representations of Sn (and hence also the minimal central
projections and the characters) are labelled by Young frames with n boxes:

Y = .

(Hook length rule)

d(Y ) =
n!

∏

hook lengths
.

For example:

d

( )

=
5!

4× 3× 2
= 5 hook lengths: 4 3 1

2 1
.



An exclusion principle



An exclusion principle

Theorem
Let n, d ∈ N. Let Y denote a Young frame with n boxes and height h(Y ).
Then

πn,d(pY ) = 0 iff h(Y ) > d .



An exclusion principle

Theorem
Let n, d ∈ N. Let Y denote a Young frame with n boxes and height h(Y ).
Then

πn,d(pY ) = 0 iff h(Y ) > d .

Proof.
This can be shown using the explicit representation of pY ; see, for example,
B. Simon: ‘Representations of finite and compact groups’.



An exclusion principle

Theorem
Let n, d ∈ N. Let Y denote a Young frame with n boxes and height h(Y ).
Then

πn,d(pY ) = 0 iff h(Y ) > d .

Proof.
This can be shown using the explicit representation of pY ; see, for example,
B. Simon: ‘Representations of finite and compact groups’.

For example, the symmetric subspace, having Young frame , is nonzero in
(Cd)⊗4 for every one-particle dimension d , but, according to Pauli’s exclusion

principle, the antisymmetric subspace, with Young frame , needs d ≥ 4.



An exclusion principle

Theorem
Let n, d ∈ N. Let Y denote a Young frame with n boxes and height h(Y ).
Then

πn,d(pY ) = 0 iff h(Y ) > d .

Proof.
This can be shown using the explicit representation of pY ; see, for example,
B. Simon: ‘Representations of finite and compact groups’.

For example, the symmetric subspace, having Young frame , is nonzero in
(Cd)⊗4 for every one-particle dimension d , but, according to Pauli’s exclusion

principle, the antisymmetric subspace, with Young frame , needs d ≥ 4.

Hence the above theorem generalizes this exclusion principle.
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Observables (operators) on H := C
d ⊗ . . .⊗ C

d can be ‘twirled’ and averaged:

Ta :=

∫

SU(d)

(u ⊗ . . .⊗ u)∗ a (u ⊗ . . .⊗ u) du ;

Ma :=
1

n!

∑

σ∈Sn

π(σ) aπ(σ) .

Clearly, Ta ∈ π′(SU(d))′, and in the same way Ma ∈ π(Sn)
′.

Hence P := TM = MT projects onto the center π(Zn),
Dually P∗ takes a state ϑ, restricts it to the center, and then extends it to a
completely symmetric state on B(H):

(P∗
ϑ)(a) := ϑ(Pa) .

Theorem (Separability of completely symmetric states)
Let ϑ be a completely symmetric state on B

(

(Cd)⊗n
)

. Then ϑ is separable iff
its restriction to Z lies in the convex hull of the restricted product states.

Conclusion: We must calculate the shadow of the product states!
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Proof.
If ϑ is separable, then it is a convex combination of product states, so its
restriction to Z is a convex combination of such restrictions.
Conversely, if for all z ∈ Z we have

ϑ(z) =
∑

i

µi 〈ψi , zψi 〉 ,

for some positive weights µi with sum 1 and unit product vectors ψi , then
since ϑ is completely symmetric, we have for all x ∈ B(H),

ϑ(x) = ϑ(Px) =
∑

i

µi 〈ψi ,Pxψi 〉

=
1

n!

∑

i

∑

σ∈Sn

∫

SU(d)

µi

〈

π(σ)(u ⊗ . . .⊗ u)ψi , x π(σ)(u ⊗ . . .⊗ u)ψi

〉

du ,

which is a convex inegral of product states, hence separable.
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The trace state

Theorem
The strace state moves towards the regular trace as d → ∞.

Proof.
First we calculate:

tr
⊗n
d (π(σ)) =

d
∑

i1=1

· · ·
d
∑

in=1

〈ei1 ⊗ · · · ⊗ ein , π(σ) ei1 ⊗ · · · ⊗ ein 〉

=

d
∑

i1=1

· · ·
d
∑

in=1

δi1 i
σ
−1(1)

· · · δin i
σ
−1(n)

.

= d#(cycles of σ)
.

since for every cycle one summation variable remains. Hence:

τ
⊗n
d (py ) =

d(Y )

n!

∑

σ∈Sn

χY (σ)
1

dn
tr

⊗n
d (π(σ)) → d(Y )2

n!
, (d → ∞) .
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The state space S(Z) of the center Z is a simplex whose corners are the states

ρY : pY ′ 7→ δYY ′ .

The product states throw their shadow on this simplex:
the affine components of the product state ψ1 ⊗ . . .⊗ ψn are the weights

wψ(Y ) := 〈ψ1 ⊗ . . .⊗ ψn, π(pY )ψ1 ⊗ . . .⊗ ψn〉 .

We note that the the regular trace has the following weights:

wreg(Y ) := τreg(pY ) =
d(Y )2

n!
.

Now here’s our basic connection between entanglement and classical
mathematics:

Theorem
The density of a product state ψ1 ⊗ . . .⊗ψn with respect to the regular trace is
the normalized immanant of the Gram matrix of ψ1, ψ2, . . . , ψn.
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Let A be an n × n matrix, and let Y be a Young frame with n boxes.
Then the immanant ImmY (A) of this matrix associated to Y is defined as

ImmY (A) :=
∑

σ∈Sn

χY (σ) a1σ(1)a2σ(2) · · · anσ(n) .

The normalized immanant ĨmmY (A) is defined so as to have Ĩmm(1l) = 1:

ĨmmY (A) :=
ImmY (A)

d(Y )
.

Note the following well-known special cases:

Imm (A) = det(A) and Imm (A) = per(A) .

We mention the following inequalities: for all positive definite matrices A and
all Young frames Y :

det(A) ≤ ĨmmY (A) ≤ per(A) .

The first inequality was proved by Schur in 1918, the second was conjectured
by Elliott Lieb in 1967, and is still open!
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The weight formula

Proof.
This is not more than a concatenation of definitions connecting quantum
information (entanglement) to algebra (immanants).
The weight of the extreme point ρY in the expansion of the pure product state
ψ1 ⊗ . . .⊗ ψn is equal to

wψ(Y ) = 〈ψ1 ⊗ . . .⊗ ψn, π(pY )ψ1 ⊗ . . .⊗ ψn〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn, π(σ)ψ1 ⊗ . . .⊗ ψn〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)〈ψ1 ⊗ . . .⊗ ψn, ψσ−1(1) ⊗ · · · ⊗ ψσ−1(n)〉

=
d(Y )

n!

∑

σ∈Sn

χY (σ)

n
∏

j=1

〈ψj , ψσ−1(j)〉

=
d(Y )

n!
ImmY (G(ψ)) =

d(Y )2

n!
ĨmmY (G(ψ)) .
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Optimal Bell inequalities for n = 3

For n = 3 the separable region is a polytope, having a finite number (3) of
extreme points.
We need only two linear (‘Bell’) inequalities in order to distinguish the
separable from the entangled completely symmetric states.

ρ(p+ + 5p−) ≥ 1 ;

ρ(4p+ + p−) ≥ 1 .

They correspond to the green lines in the figure.

Questions:

◮ Is the separable completely symmetric region (the ‘shadow’) always a
polytope?

◮ What is the general shape of this region?

◮ Does is grow or shrink with increasing n?
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Theorem
Only the state ρ+ = ρ (n boxes) is separable, all other extremal
states ρY on Zn,d are entangled.

Proof.
Choose ϑ ∈ C

d .
Since ϑ⊗ . . .⊗ ϑ ∈ H+, we have

〈
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〉

= 1. Hence
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)

, a convex integral of product states.
Conversely, suppose that Y 6= (n boxes), and that ρY is separable:

ρY (a) =
∑

i

〈ψi , aψi 〉

Then 0 = ρY (p+) =
∑

i
〈ψi , p+ψi 〉, i.e. p+ψi = 0 for all i .

However, product vectors with this property do not exist!
Indeed, suppose that the product vector ψ1 ⊗ . . .⊗ ψn is orthogonal to p+H.
Then it is orthogonal to all vectors of the form ϑ⊗ . . .⊗ ϑ with ϑ ∈ C

d :

0 = 〈ϑ⊗ . . .⊗ ϑ, ψ1 ⊗ . . .⊗ ψn〉 =
n
∏

j=1

〈ϑ,ψj 〉 . But:
n
⋃

j=1

{ψj}⊥ 6= C
d
,

the left hand side having Lebesgue measure 0.
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Theorem
For all separable states ρ we have

ρ(p−) ≤ 1

n!

with equality only for the regular trace state.

Proof.
The determinant of the Gram matrix of an n-tuple of unit vectors is equal to

det
(

〈ψi , ψj 〉
)

= det
(

n
∑

k=1

〈ψi , ek〉〈ek , ψj 〉
)

=
∣

∣det
(

〈ψi , ek〉
)∣

∣

2
= vol(ψ1, ψ2, . . . , ψn)

2 ≤ 1 ;

Hence

〈ψ1 ⊗ . . .⊗ ψn, p− ψ1 ⊗ . . .⊗ ψn〉 ≤ τreg(p−) =
1

n!
.



The Schur and Lieb inequalities

We have 2P(n)− 3 inequalities, which divide the state space S(Zn) into
compartments, and claim the the shadow of the product states falls into one of
them.

Schur’s 1918 inequality states that for all separables states ρ and all Young
frames Y 6= {−}:

ρ(pY ) ≥ d(Y )2 ρ(p−) .

Lieb’s 1967 conjecture hopes that for all separable ρ and all Young frames

Y 6= {+}:
ρ(pY ) ≤ d(Y )2 ρ(p+) .

The last trivial inequality says that for all separable ρ:

ρ(p−) ≤ ρ(p+) .

These are all Bell inequalities.
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Lieb

trivial

These are all Bell inequalities, but not all optimal.
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Hope crashed at n = 5

Our hope was, to prove that for all n ∈ N the separable completely symmetric
states would form a polytope.
However, this hope breaks down at n = 5:

Theorem (Barrett, Hall, Loewy (1999) translated)
The set of all completely symmetric separable states on B

(

(Cd)⊗5
)

has an
infinite number of extremal points.

In 1999 they showed that, already in the five qubit situation, the set of
separable states on the center possesses a part that is bulging outward.
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;

When ρ is a state on B(H), we define its entanglement E(ρ) by

E(ρ) := ‖ρ‖V .
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Properties

The maximal tensor norm has all the required properties of an entanglement
measure:

◮ E(ρ) ≥ 1 for all ρ; E(ρ) = 1 iff ρ is separable;

◮ E((T1 ⊗ . . .⊗ Tn)ρ) ≤ E(ρ) for all quantum operations T1,T2, . . . ,Tn on
B(Cd );

◮ E(ρ⊗ ϑ) ≤ E(ρ) · E(ϑ).
(Here we would actually prefer equality!)
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n!

d(Y ) · ImmY (G(ψmax))
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where ψmax is that n-tuple of unit vectors in C
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In particular, the antisymmetric state has entanglement

E(ρ−) = n! .


