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1 Introduction

The following theorem is well-known from linear algebra.

Theorem 1. [Cayley-Hamilton]|[T] Let ¢ be a linear endomorphism of a fi-
nite dimensional vector space, and X,(T) = det(T1 — /) its characteristic

polynomial. Then X, vanishes when applied to ¢ itself: X,(¢) = 0.

The characteristic polynomial of ¢ thus provides us with a relation of the
form /" = ag+a - £+ ...+ a,_1 - "' This relation is useful, eg. for finding

the inverse of ¢, or calculating high powers of /.

In this thesis, we will look at polynomial endomorphisms of C[z1, ..., zy].

Definition 2. A polynomial endomorphism of Cxq,...,zy| is a map F:
CN — CN that is an N-tuple of functions: F = (F,..., Fy), where every

F;, € Clxy,...,zn]. The F; are called coordinate functions. Thus,
F:(xy,...,zon) — (Fi(z1,. .. 2N), ..., En(z1,. .., 2N))-

The identity mapping, which maps (x1,...,2zy) to (z1,...,2y), is denoted
by I. We define deg F' as maxj<;<ydeg F; and F' = FoFo...0oF.
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For some polynomial endomorphisms of Clzy,...,zy], it is easy to see
that there also exists a relation of the form F" =ag + ...+ ap_; - F* L

For example, let
F(z,y) = (z+y%y).
Then
F(z,y) = (x +2y%,y),
and we see that
(F2—=2-F 4 I)(z,y) = (0,0)

From now on the all zero vector will be denoted by 0.

Another example of a polynomial endomorphism is the Nagata automor-
phism [2], defined as

F(x,y,2) = (x — 2yA — 2A% y + 2A, 2), where A = xz + ¢
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Then
F%(z,y,2) = (x — 4yA — 42A% y + 22, 2),

F3(x,y,2) = (x — 6yA — 92A% y + 327, 2).

This leads to the relation
(—F3+3F%* - 3F + I)(,y,2) = 0.

The question arises, how to find such a non-trivial relation for an arbi-
trary polynomial endomorphism, if it exists, without having to try a lot of
possibilities. In the case of a linear endomorphism ¢, the relation is eas-
ily obtained from the characteristic polynomial, which depends only on the
eigenvalues of /. If a polynomial endomorphism F' satisfies such a relation,
one would expect that, in a way similar to the linear case, there would exist
a closed formula depending only on the eigenvalues of the linear part of F.
Thus, we want to find a formula p € C[T], p(T) = >_",pi - T", such that

In [B], a closed formula for a vanishing polynomial of F' is discusssed, for
F a locally finite polynomial endomorphism (LFPE, see definition H), with
F(0) = 0. This closed formula turns out to depend on the eigenvalues of the
linear part of F', and on sup,,.ydeg F™. This thesis comprises a proof that

this closed formula (see proposition [§), being

0= [ @,

|| <supy, ¢y deg £

with \; the eigenvalues of the linear part of F', is a vanishing polynomial for
F. This means that p(F) =>""" p;- F' = 0.



2 Locally finite polynomial endomorphisms

Recall from definition B that a polynomial endomorphism of CV is a map
F: CN — C" that is an N-tuple of coordinate functions: F = (F},..., Fy),
where every F; € Clzy,...,zx]. From now on, we denote the polynomial
endomorphism (z1,xs,...,2y5) by X. The set of all polynomial endomor-
phisms of C¥ is denoted by End(C™).

For each F' € End(C"), we define F'# to be the map

F#: Clxy,...,on] — Clzy, ..., zn],
r—rolkF.
This means that for every i € {1,..., N}, F# replaces every occurrence of

z; in r by the i-th coordinate function of F. The map F# is a C-linear
endomorphism of the vector space Clzy, ..., zy], since it clearly holds that
F#(r +s) = F#(r) + F#(s), for all r,s € C[xy,...,2y], and F#(a-r) =
a - F#(r), for all a € C. Notice that F#(G#(r)) = r o G(F) and thus
(F#)™ = (F™)#. The set of all linear endomorphisms of a vector space V' is
denoted by L(V).

Definition 3. A linear endomorphism ¢ € £(C[zy,...,zy]) is called locally
finite if for all r € Clxy, ..., zy] holds that dim Span, .y £"(r) < +o0.

For F € End(CY), and p € C[T],p=>""",p; - T", we denote Y ;" p; - F*
by p(F). We define Zp := {p € C[T] | p(F) = 0}.

Proposition 4. For a polynomial endomorphism F', the following conditions

are equivalent.
i) Ir # {0},
ii) sup,,cydeg F™ < 400,
iii) F# is locally finite.

Proof. 1) = ii):
Since Zp = {p € C[T] | p(F) = 0} # {0}, there exists a p € C[T] such that
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p # 0 and p(F) = 0. Let m be the degree of p, then p(F) = > " p; - F",
thus

m—1

F™ == pi-F".

i=0
Hence, F™ € Span(F°, F', ..., F™ 1), By induction, it follows that F" €
Span(F° F! ... F™~1) for every n € N. Thus,

supdeg F" < max deg F* < +o00.
neN 0<k<m—1

i) = iii):
From sup,,cydeg F" < +oo follows that there exists a €' € N such that
for every n € N degF" < C. For r € Clxy,...,zn|,r o F™ is obtained
by replacing every occurrence of x; by the i-th coordinate function of F™
(denoted by (F™);), for every i € {1,..., N}. The degree of ro F" is equal to
the degree in the case that a coordinate function (F™);, for which deg(F™); =

deg F'™, is used in a monomial with degree degr. So,
degro F" =degr-deg F" <degr-C = dimSpan,y o F" < +oo,

hence F7# is locally finite.

iii) = 1):
Note that dim Span,,cy 7 o F™ < 400, for every r € Clzy,...,zx], implies
that dim Span,,.y F™ < +00. Therefore, there exists a finite set I, such that
for every j € N: there exist coefficients a; € C with F7 = %", a; - F'. Now
fix j € N\I and fix the a;’s such that F/ = >"._,a; - F". Define

p(T) = (> a;-T") =T’
iel
Then
p(F)=> ai- F'—=F =0=peIp
il
Since j ¢ I, Y ,c;a;- T" # T7, so p # 0. This implies that Zp # {0}.
]

Definition 5. A polynomial endomorphism F € End(C") is called locally

finite if F satisfies the conditions in proposition Hl



3 A characteristic polynomial for LFPE’s

As mentioned before, we want to find a way to produce for every locally
finite polynomial endomorphism F, with F'(0) = 0, a vanishing polynomial.
It turns out that the characteristic polynomial of F'#, restricted to a certain
vector space W is such a vanishing polynomial for F'. We will first define

this vector space W.

Definition 6. For F € End(C"), define W' := Span,,.y((F%)"(x;)), and
Wi=W'4+... + W

Definition 7. For a linear endomorphism ¢ € £(C[zy, ..., zn]), F(¢) denotes
the set of finite dimensional subspaces U of C[z, . .., zy] for which ¢/(U) C U.

We will use the following two lemmas while proving that F#‘W is a van-

ishing polynomial of F'.
Lemma 8. Let F' € End(C") be locally finite. Then W € F(F#).

Proof. By proposition B, the fact that F is locally finite means that F7# is
locally finite. By definition B, this implies that

Vr € Clzy, ..., o] : dim Span, . (F#)"(r) < +oo.

In particular, for every i € {1,..., N}, dim W' = dim Span,,. ((F#)"(z;)) <
+00. From this follows that dim W < ZlgigN dim W* < +o0. Together with
the fact that F#(W) C W, this implies that W € F(F#).

U

Lemma 9. Let F' € End(CY) be such that Vi € {1,...,N} : F#(z;) = 0.
Then F' = 0.

Proof. For every i-th coordinate function of F', we have F; = x; o F' =
F#(x;) = 0. Thus all coordinate functions of F' are zero, i.e. F = 0.
O

Lemma 10. Let F € End(CY). Then X(p# w), the characteristic polynomial

of F#y, is a vanishing polynomial of F.



Proof. Consider the linear map F#y : W — W. Theorem [ states that

Xp#w) = 2oiro@ - T" is a vanishing polynomial for F'#y,, hence

Xpsun (FHw) =0
= W g ker(X(F#yv)(F#))
= (Xpeu)(F*)(z;) =0,Vj € {1,...,N}.

By definition of F#,

0 = (Xps wry(F7))(25) = Zaz’ (FF) (y) = Zai - (zj 0 FY),

which is the j-th coordinate function of Y ;" a; - F*, and thus is equal to
zj o Xp# wy(F). From lemma [, it follows that Xp#u)(F) = 0, hence
X(p# w) 1s a vanishing polynomial of F'.

U

Now that we have found that X{z# y(F) = 0, we will use this in order

to find a closed formula giving a vanishing polynomial of F'.

We define M as the linear subspace of C[zy,...,xy] such that M =
{r € Clzy,...,zN] ‘ r(0) = 0}. More generally, M* is the linear subspace of

Clzy, ..., zn| containing only those polynomials r € Clzy, ..., zy] for which
every monomial has degree at least k.

For a = (a1, ay,...,ay) € NV we define F* := FEy? - Fy™, and
la] == a1 +as+ ...+ ay.

Lemma 11. Let F € End(C") be such that F(0) = 0, then Vk > 0 :
F#(MF) C M*.

Proof. Since F(0) = 0, we have F;(0) = 0, for all i,1 < i < N. So every
F, € M. Let r be in M*, then

r= Z T+ X,

aeNN | |a|>k

with r, € C. Then

F#(ry=roF = Z ro -+ F7.

aeNN | |a|>k
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From F* = F{"Fy? - - - Fy™, |a] > k, and the fact that every F; € M, we see
that F'® is a product of at least k elements of M, and thus F* € MF. Since
MPF is closed under addition, it follows that F#(r) € M*, hence F#(M*) C
ME.

U

Recall that W = Span,,.y((F#)"(x;))1<i<y and d = sup, oy deg F". For
1 <k<d+1, we define Wy, := W N MF,

Lemma 12. Let F € End(C") be such that F(0) = 0, then F#(W,) C
Wi, Vk > 0.

Proof. Note that F#(W,,) = F#(W N M*) C F#(M*). By lemma [, we
have F# (M) C M* Vk > 0. Also, it is obvious that F#(W,) C F#(W) C
W. Thus, F#(W,) C W N M*F = W, Vk > 0.

]

Lemma 13. Let F € End(C") be such that F(0) = 0, and such that
d = sup,cydeg I < oco. Let Wy be defined as above. Then W = W; D
W2 2 2Wd+1:{0}.

Proof. Since M" is the set of polynomials r € Clxy, ..., zy] for which every
monomial has degree at least k, we have that M* D MFL for 1 < k < d.
By definition of Wy, it follows that W3 D Wy O ... D Wyyy.

Recall that z; o ™ is the i-th coordinate function of F™. Since F'(0) = 0, we
have deg(xz;0 F™) > 1, for 1 <1i < N and every n € N. The set {x;0 F" } n e
N,1 <4 < N} is a spanning set for . Thus, every element of W is in M?,
and thus W C M. From this, it follows that W = W N M! = W;.

For 1 <7< N, and every n € N,

. ) < . ny _ n
deg(x; o F )_lrgnjzgcvdeg(%OF) deg F" < d+1,

since d = sup,,cydeg F". Thus, every basis element of W has degree less
than d 4+ 1. This implies that every polynomial in W consists of monomials
of degree less than d + 1, except for 0, hence Wy, = {0}.

]



As we will see in lemma [[3, the characteristic polynomial &(z# y,) can be
written as a product of other characteristic polynomials. We will use these
characteristic polynomials in our search for a closed formula that vanishes

for F'. Therefore, the following endomorphisms are needed.

Definition 14. For the linear map F#, and ¢ € {1,...,d}, we define L;
to be the endomorphism induced by F #|W on W;/Wi,q, that is:

Li: Wi/Wisw — Wi/ Wi
w; + W1 — F#(w;) + Wi,

where w; € W;.

The map L; is well defined: Let b € @. Then L;(b) = F#(b) +W;,,. Since
F# is linear, this equals F#(b—a)+ F#(a) +W,,,. Using that b—a € W, 4,
lemma [ implies that F#(b— a) € Wiy, and thus L;(b) = F#(a) + Wiy, =

L;(@). This makes L; independent of the choice of representatives.

Lemma 15. The characteristic polynomial X(p# y of F #w can be found
using the characteristic polynomials of the linear maps L; defined above, in
the following way:

d

Xrwwy=Xp, - Xy - XL

Proof. Note that lemma [[3 implies that W =2 W, /Wo @ ... & W4/ Waiq =: V.

There is an isomorphism

p: W=V

w — (W, ..., Wa),

where wj; is the coset of w in W; /Wi, 1. Define a linear endomorphism L on
V', such that Ly, w,,, = L, for every i € {1,...,d}. By definition of the L;,
we then have ¢! F#;, ¢ = L. Now A7, ‘ Xr, and deg X7, = dim W; /Wiy,
thus
d d
deg(] [ Az,) = dim(] [ Wi/Wis1) = dim W = dim V = deg X
i=1 i=1
Since characteristic polynomials are monic, this means that Hle X, =X, =
XF#\W'
O



Now, we let F#|, induce endomorphisms on the spaces M’/ M in a

way similar to how F#y, induced L; on W;/Wi,;.

Definition 16. The linear map F #| M induces an endomorphism K; on
MY/ M1 in the following way:

Kz' . Mi/Mi—i-l N Mi/Mi—i-l
m; + MH_I — F#(ml) + MH_I,

where m; € M".

Similar to definition [[4 using lemma [ we find that the K; are well
defined. Furthermore, definition [ ensures that Ky, w,,, = L.

By L(F;), we denote the linear part of F; € Clzy,...,xy]. Also, we call
(L(FY),...,L(Fy)) the linear part of a polynomial endomorphism F, and
denote this by L(F).

We are now able to show how the characteristic polynomial Xk, depends

on the eigenvalues of F.

Lemma 17. Let the K; be defined as above, with F' € End(C") such that
F(0) = 0. Let @ € NV and A\* = A{'---\%¥, where )\; is the eigenvalue
of the linear part of F;. Then, for the characteristic polynomial Xk,, the

following holds
X, = [[(T =)

|a|=i

Proof. Assume that £(F') is represented by a diagonal matrix. The canonical
basis for M*/ M is
{X* 4+ MT |af =i}

For these basis elements,
Ki(Xa—i—MH_l) :F#(Xa) +Mi+l _ Fa+Mi+l.
We can write

F = (L(Fy) + H)™ - (L(Fy) + Hy)™,



where H; = F; — L(F;), the higher order part of F;. Notice that |a] = i
implies that the terms containing higher order parts will end up in M**1.

Hence
Fo = L(F)% - L(Fy)™ + M

and

Ki(X* + M™) = L(F)* + M
By assumption, L£(F) is represented by a diagonal matrix. Thus, L(F) =
()\1X1, ey )\NXN) and

Ki(Xa +Mi+1) _ XquXlocl . ._)\OlNNXRlTN +Mi+l =\ X —i—MH—l.

In particular, K; : X® — \*X2, for every a € NV with |a| = i. Thus, the
matrix of K; in the canonical basis is a diagonal matrix with the A%’s on the
diagonal. This yields J, _;(T" — A%) as the characteristic polynomial of K;.
When L(F) is not represented by a diagonal matrix, one can show with a bit
more effort that K; is conjugated to an upper triangular matrix, with the A®

on the diagonal. This leads to the same conclusion.
O

The following proposition shows that for each locally finite polynomial
endomorphism F', with F'(0) = 0, a vanishing polynomial exists that depends

only on the eigenvalues of F' and on sup,,cydeg F™.

Proposition 18. Let F' € End(CY) be such that F(0) = 0 and d =

sup,cnydeg F™ < oo. Let \; denote the eigenvalues of the linear part of

F. Then
[T -

la|<d

is a vanishing polynomial of F'.

Proof. Lemma [ states that Xz« ), the characteristic polynomial of F’ v,
is a vanishing polynomial of F. We will show that this polynomial divides

the polynomial mentioned in the proposition. It follows from lemma [[H] that

d
Xp#w) = H XL,

i=1
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Notice that, by definition of the Kj, we have that K;y, w,,, = L;. This
implies that X7, } Xk,, for every i € {1,...,d}. In lemma [[7 we saw that

X, = (T =),

|a|=i

Hence,
d
1%
i=1

This last expression is equal to [],,<4,(T" =A%), which proves the proposition.
U

HXKi =[ITIT-x.

i=1 |o|=i
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