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Abstract

We introduce a new and general notion of canonical extension for algebras in the
algebraic counterpart AlgS of any finitary and congruential logic S. This defini-
tion is logic-based rather than purely order-theoretic and is in general different
from the definition of canonical extensions for monotone poset expansions, but
the two definitions agree whenever the algebras in AlgS are based on lattices. As
a case study on logics purely based on implication, we prove that the varieties
of Hilbert and Tarski algebras are canonical in this new sense.

1. Introduction

Abstract Algebraic Logic (AAL) is a general framework for studying the
connections between algebra and logic. In particular it relates logics, taken as
consequence relations, and their associated classes of algebras. The basic set-up
implies that the appropriate algebras are at least quasiordered and, for logics in
the important class of congruential logics1, the algebras are ordered. Canonical
extension is a general tool for ordered algebras which allows for the smooth
development of representation theory and duality, and operates even at the
limits of availability of such tools. Since representation theory and duality are
central and powerful tools for the treatment of algebras pertinent to logic such as
modal algebras, Heyting algebras, MV-algebras2, and the algebraic counterparts
of substructural logics, and since canonical extension has been particularly useful
in several of these settings [10, 11, 12, 3], it is natural to explore whether
canonical extension can be developed as a logical construct within AAL rather
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1Congruential logics are referred to as strongly selfextensional in [4] and fully selfextensional
in [15, 16].
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than just as a purely order theoretic construct. This is exactly what this paper
does.

We now give a short, non-technical, account of the gist of our results and an
outline of the paper before introducing the machinery necessary to talk more
precisely about our work. Central in the theory of canonical extension is a
choice of filters and ideals, from which the canonical extension is obtained as
its least completion, see [13], and our paper [14] on a parametric treatment of
such completions with respect to varying families of filters and ideals of a poset.
Central in AAL is the notion of logical filter that is, in general, different from
the purely order-theoretic notion of filter as a down-directed upset. In addition
to the notion of logical filter, we need a notion of logical ideal in order to be
able to give a logic-inspired notion of canonical extension. Our first contribution
is giving such a notion and showing that the logical notions of filter and ideal
agree with the order theoretic ones used in canonical extension for a wide and
distinguished class of logics. Specifically, congruential logics with the properties
of conjunction (PC) and disjunction, in a weak form (PWD) or a strong form
(PD), have algebras that are lattices (or distributive lattices in the strong case)
and in this setting the logical and order-theoretic notions of filters and ideals
agree. This is an encouraging preliminary result.

Of fundamental importance in logic is of course implication, and implication,
without necessarily having conjunctions - or at least without having disjunctions
- is an important test case for theories pertinent to logic. Thus it is not sur-
prising that both AAL and canonical extension have already been tested in
this setting. Canonical extension has been successfully applied to obtain the
first fully uniform and modular treatment of relational semantics for the basic
hierarchy of substructural logics [3] and, in AAL, logics with the property of
deduction-detachment (PDD) have been extensively studied (cf. [4] and [16]).
A case in point is that of Hilbert logic, that is, the implication fragment of intu-
itionistic logic. This is a very well behaved logic from the point of view of AAL
and its associated algebras are subalgebras of the implication reducts of Heyting
algebras. Thus it is desirable that a logically determined notion of canonical ex-
tension should preserve this property. However, canonical extension, as defined
in [3], fails badly: the canonical extension of a Hilbert algebra is not a Heyting
algebra in general; in fact, it is not even necessarily a Hilbert algebra. Our
second and main purpose in this paper is to understand this mismatch between
AAL and canonical extension which occurs once we leave the lattice setting.

We give an AAL inspired notion of logic-based canonical extension, i.e. based
on the logical filters and our associated notion of logical ideal. We show that the
classes of Hilbert and Tarski algebras are canonical with respect to this logic-
based canonical extension and that the logic-based canonical extension of a
Hilbert algebra is a (complete) Heyting algebra. In addition, we reconcile logic-
based canonical extensions with the purely order theoretic canonical extensions
given in [3] by showing that, for any finitary congruential logic with PDD S
and any algebra A ∈ AlgS, the logic-based canonical extension of A is equal to
the order canonical extension of the meet-semilattice of the finitely generated
logical S-filters of A.
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This paper is organized as follows. In Section 2 we expound the necessary
preliminaries on basic notions of AAL, in particular on congruential logics, recall
some properties characterizing the behaviour of conjunction, disjunction and
implication w.r.t. the entailment relation of a logic S and discuss some of their
effects on the algebras of AlgS. Moreover, we introduce the notion of logical
ideal induced by S on the algebras of the corresponding similarity type. In
Section 3 we recall the concepts and results of [14] that we will need in this
paper. Section 4 is the central one, where we introduce the notion of logic
canonical extension for the algebras A ∈ AlgS, for every finitary congruential
logic S. It essentially consists in taking the canonical extension, as defined
in [3], of the meet-semilattice of the finitely generated logical S-filters of A in
AlgS. In Sections 5 and 6 we show that Hilbert algebras and Tarski algebras
are canonical w.r.t. the notion of canonical extensions introduced in Section 4.

2. Congruential logics and logical ideals

2.1. General concepts
In this subsection we are going to introduce the basic concepts of Abstract

Algebraic Logic that we will use in the paper, as well as the new notion of
logical ideal. For a general view of AAL the reader is addressed to [5] and the
references therein.

Consequence operations and their duals
Given a set A, a consequence operation (or closure operator) on A is a map

C : P(A)→ P(A) such that for every X,Y ⊆ A: (1) X ⊆ C(X), (2) if X ⊆ Y ,
then C(X) ⊆ C(Y ) and (3) C(C(X)) = C(X). C is finitary if in addition
satisfies (4) C(X) =

⋃
{C(Z) : Z ⊆ X,Z finite}.

Given a consequence operation C on A, a set X ⊆ A is C-closed if C(X) =
X. The set of all C-closed subsets of A is a closure system on A, i.e. it contains
A and it is closed under intersections of arbitrary non-empty families. The
family of C-closed subsets of A will be denoted by CC . If C is finitary, then
CC is an algebraic closure system, that is, it is closed under unions of up-
directed families. It is well-known that a closure system C on a set A defines
a consequence operation CC on A by setting CC(X) =

⋂
{Y ∈ C : X ⊆ Y } for

every X ⊆ A. The CC-closed sets are exactly the elements of C. Moreover, C is
algebraic if and only if CC is finitary.

The dual consequence operation of C is the map Cd : P(A)→ P(A) defined
by

Cd(X) = {a ∈ A : C(a) ⊇
⋂
b∈Y C(b) for some finite Y ⊆ X}

for every X ⊆ A. So a ∈ Cd(∅) if and only if A =
⋂
b∈∅ C(b) ⊆ C(a), and

therefore Cd(∅) = {a ∈ A : C(a) = A}.
Other straightforward consequences of the definition of Cd are that Cd is a

finitary consequence operation on A and for every a, b ∈ A,

a ∈ C(b) iff b ∈ Cd(a).
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The specialization quasi-order of a consequence operation
For every consequence operation C on A, the specialization quasi-order of

C is the binary relation ≤AC on A defined by

a ≤AC b iff C(b) ⊆ C(a).

This means that

a ≤AC b iff ∀X ∈ CC(a ∈ X ⇒ b ∈ X),

which justifies its name. For every a, b ∈ A

a ≤AC b iff b ≤ACd a,

so the specialization quasi-order of Cd is the converse quasi-order of ≤AC .

Logics
Let L be a propositional language (i.e. a set of connectives, that we will

also regard as a set of function symbols) and let FmL denote the algebra of
formulas (or term algebra) of L over a denumerable set V of variables, i.e. the
absolutely free L-algebra over V . A logic (or deductive system) of type L is
a pair S = 〈FmL,`S〉 where the consequence or entailment relation `S is a
relation between subsets of the carrier FmL of FmL and elements of FmL such
that the operator C`S : P(FmL)→ P(FmL) defined by

ϕ ∈ C`S (Γ) iff Γ `S ϕ

is a consequence operation with the property of invariance under substitutions;
this means that for every substitution σ3 and for every Γ ⊆ FmL,

σ[C`S (Γ)] ⊆ C`S (σ[Γ]).

A logic is finitary if the consequence operation C`S is finitary. The propositional
language of a logic S will be denoted LS .

The interderivability relation of a logic S is the relation ≡S defined by

ϕ ≡S ψ iff ϕ `S ψ and ψ `S ϕ.

S satisfies the congruence property if ≡S is a congruence of FmL4.

Logical filters
Let S be a logic of type L and A an L-algebra (from now on, we will drop

reference to the type L, and when we refer to an algebra or class of algebras
related to S, we will always assume that the algebra and the algebras in the
class are of the same type of S).

3A substitution is any σ ∈ End(FmL).
4Logics with the congruence property are also known as selfextensional logics.
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A subset F ⊆ A is an S-filter of A if for every Γ ∪ {ϕ} ⊆ Fm and every
h ∈ Hom(FmL,A),

if Γ `S ϕ and h[Γ] ⊆ F, then h(ϕ) ∈ F.

The collection FiS(A) of the S-filters of A is a closure system. And FiS(A) is an
algebraic closure system if S is finitary. The consequence operation associated
with FiS(A) is denoted by CA

S . Thus, for every X ⊆ A, CA
S (X) is the S-filter

of A generated by X. If S is finitary, then CA
S is finitary for every algebra A.

An S-filter F of A is finitely generated if F = CA
S (X) for some finite X ⊆ A.

FiωS(A) denotes the collection of the finitely generated S-filters of A.
On the algebra of formulas Fm, CFm

S coincides with C`S and the CFm
S -

closed sets are the S-theories; they are exactly the sets of formulas that are
closed under the relation `S .

The S-specialization quasi-order
For every finitary logic S and every algebra A, the S-specialization quasi-

order of A, denoted by ≤A
S , is the specialization quasi-order associated with

CA
S . Thus, for every a, b ∈ A,

a ≤A
S b iff CA

S (b) ⊆ CA
S (a) iff a `CA

S
b

and
a ≤A
S b iff (CA

S )d(a) ⊆ (CA
S )d(b) iff b `(CA

S )d a.

Clearly, every S-filter is an up-set w.r.t. ≤A
S . Let ≥A

S denote the converse
relation of ≤A

S . Then the equivalence relation ≡A
S associated with ≤A

S is ≤A
S

∩ ≥A
S . Thus, for every a, b ∈ A,

a ≡A
S b iff CA

S (a) = CA
S (b).

The relation ≡A
S is not in general a congruence for every A, even if S satisfies

the congruence property.

Logical ideals
As we remarked early on in the introduction, in order to give an account of

canonical extensions within AAL, we need to introduce a logic-based notion of
ideal. Just like the S-filters, the logical ideals should be defined purely in terms
of the consequence relation of S. Moreover, they should reduce to the familiar
lattice ideals whenever S has enough metalogical properties. The following
definition satisfies both requirements (see also Proposition 2.8 below).

Let S be a finitary logic and A an algebra of its type. An S-ideal of A is
a closed set of the dual consequence operation (CA

S )d of CA
S , i.e. it is a (CA

S )d-
closed set. The closure system of the S-ideals of A will be denoted by IdSA.
By the definition of (CA

S )d, IdSA is always an algebraic closure system.
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The canonical algebraic counterpart of a logic
One of the main conceptual achievements of AAL is the identification of the

canonical algebraic counterpart AlgS of every logic S (see [5]). AlgS can be
defined in several equivalent ways: the definition we present here is the most
convenient for the purposes of this paper. For every logic S, AlgS is the class
of those algebras A such that the identity relation ∆A is the only congruence
of A that is included in ≡A

S . That is,

AlgS := {A : ∀θ ∈ CoA(if θ ⊆ ≡A
S then θ = ∆A)}.

2.2. Congruential logics
Definition 2.1. A logic S is congruential if for every algebra A, ≡A

S is a
congruence of A.

Of course, if S is congruential, then S has the congruence property; but the
converse is not true (cf. [2]).

If a logic S is congruential, AlgS can be characterized in a simpler way:
indeed, since ≡A

S is a congruence for every algebra A, we get

AlgS = {A : ≡A
S = ∆A}.

Recalling that ≡A
S was defined as ≤A

S ∩ ≥A
S , we get that for every congruen-

tial logic S, A ∈ AlgS if and only if ≤A
S is a partial order. In fact this condition

characterizes congruentiality:

Theorem 2.2. A logic S is congruential if and only if for every algebra A,
A ∈ AlgS iff 〈A,≤A

S 〉 is a poset.

This innocuous-looking fact identifies congruential logics as the largest class
of logics to which the theory of canonical extensions can be applied.

Definition 2.3. For every congruential logic S and every A ∈ AlgS the poset
〈A,≤A

S 〉 is the S-poset of A.

Note that if S is congruential, then for every A ∈ AlgS and every a ∈ A,
CA
S (a) is the principal up-set ↑a relative to ≤A

S and (CA
S )d(a) is the principal

down-set ↓a; so {↑a : a ∈ A} ⊆ FiSA and {↓a : a ∈ A} ⊆ IdSA.

2.3. Consequence relations and logical connectives
So far the treatment has been uniform in every algebraic similarity type

L, but conjunction, disjunction and implication will play a prominent role in
what follows. Therefore in this section we are going to present the well-known
properties characterizing these connectives in terms of their behaviour w.r.t. the
entailment relation of a logical system S, and discuss their effects on the algebras
of AlgS, especially when S is congruential. For the sake of greater generality,
we will not assume that either connective mentioned above is primitive in the
language, but only that it can be defined from the connectives in LS :
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1. S satisfies the property of conjunction (PC-∧) relative to the term t1(x, y)
that we rewrite as x ∧ y, if for all formulas ϕ and ψ, (a) ϕ ∧ ψ `S ϕ, (b)
ϕ ∧ ψ `S ψ and (c) ϕ,ψ `S ϕ ∧ ψ.

2. S satisfies the property of weak disjunction (PWD-∨) relative to the term
t2(x, y) that we rewrite as x ∨ y, if for all formulas ϕ, ψ and δ: (a) ϕ `S
ϕ ∨ ψ, ϕ `S ψ ∨ ϕ and (b) if ϕ `S δ and ψ `S δ, then ϕ ∨ ψ `S δ. If
the following stronger condition holds: (b’) for every set of formulas Γ, if
Γ, ϕ `S δ and Γ, ψ `S δ, then Γ, ϕ ∨ ψ `S δ, then S satisfies the property
of disjunction (PD-∨) relative to t2(x, y).

3. S satisfies the property of deduction (PDe-→) relative to a term t3(x, y)
that we rewrite as x→ y, if for every set of formulas Γ∪{ϕ,ψ}, if Γ, ϕ `S
ψ, then Γ `S ϕ → ψ. S satisfies the property of detachment (PDt-→) if
for every set of formulas Γ ∪ {ϕ,ψ}, if Γ `S ϕ → ψ, then Γ, ϕ `S ψ. If
both (PDe-→) and (PDt-→) hold for S, then S satisfies the property of
deduction-detachment (PDD-→) relative to x→ y.

In the remainder, we will assume that the terms relative to which the various
properties hold are fixed, and drop reference to them.

Proposition 2.4. If S is finitary and satisfies (PWD) and (PDD), then S
satisfies (PD).

Proof. To prove that S satisfies (PD), it is enough to see that if Γ, ϕ `S δ and
Γ, ψ `S δ, then Γ, ϕ∨ψ `S δ. If Γ, ϕ `S δ and Γ, ψ `S δ, then, since S is finitary,
we can assume that {ψ1, . . . , ψn}, ϕ `S δ and {ψ1, . . . , ψn}, ψ `S δ for some
ψ1, . . . , ψn ∈ Γ. Then by (PDD) we obtain ϕ `S ψ1 → (. . .→ (ψn → δ) . . .) and
ψ `S ψ1 → (. . .→ (ψn → δ) . . .). So by (PWD), ϕ ∨ ψ `S ψ1 → (. . .→ (ψn →
δ) . . .). Hence by (PDD), {ψ1, . . . , ψn}, ϕ∨ψ `S δ. Therefore, Γ, ϕ∨ψ `S δ.

It is well known that if S satisfies (PC) and (PD), the distributive laws for
the corresponding ∧ and ∨ hold:

ϕ ∧ (ψ ∨ δ)a`S(ϕ ∧ ψ) ∨ (ϕ ∧ δ) and ϕ ∨ (ψ ∧ δ)a`S(ϕ ∨ ψ) ∧ (ϕ ∨ δ).

The properties introduced so far can be stated using the consequence oper-
ation C`S associated with `S :

1. S satisfies (PC) iff C`S (ϕ ∧ ψ) = C`S (ϕ,ψ) for all formulas ϕ,ψ.
2. S satisfies (PWD) iff C`S (ϕ∨ψ) = C`S (ϕ)∩C`S (ψ) for all formulas ϕ,ψ.
3. S satisfies (PD) iff for every set of formulas Γ ∪ {ϕ,ψ}, C`S (Γ, ϕ ∨ ψ) =
C`S (Γ, ϕ) ∩ C`S (Γ, ψ).

4. S satisfies (PDD) iff for every set of formulas Γ ∪ {ϕ,ψ}, ψ ∈ C`S (Γ, ϕ)
iff ϕ→ ψ ∈ C`S (Γ).

This is useful because we can then extend these properties to closure operators
on arbitrary algebras: for every algebra A and every closure operator C on A,

1. C satisfies (PC) if C(a ∧A b) = C(a, b) for every a, b ∈ A,
2. C satisfies (PWD) if C(a ∨A b) = C(a) ∩ C(b) for every a, b ∈ A,
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3. C satisfies (PD) if C(X, a ∨A b) = C(X, a) ∩ C(X, b) for every a, b ∈ A
and every X ⊆ A,

4. C satisfies (PDD) if b ∈ C(X, a) iff a→A b ∈ C(X), for every X ⊆ A and
every a, b ∈ A.

Let Φ be any of the properties introduced at the beginning of this section
and let S be a logic satisfying Φ. Φ transfers to every algebra if for every algebra
A the closure operator CA

S satisfies Φ relative to the same term for which S
satisfies Φ. For example, a logic S satisfying (PDD) transfers (PDD) to every
algebra if, for every algebra A, CA

S satisfies (PDD), that is, if for every algebra
A, every X ⊆ A, and every a, b ∈ A, b ∈ CA

S (X, a) iff a→A b ∈ CA
S (X).

If S satisfies (PC), (PD) or (PDD), then the property transfers to every
algebra. Proving this for (PC) is easy. Proofs that the other two properties
transfer to every algebra can be found in [4], cf. Thm. 2.48 and Thm. 2.52.

As we already mentioned, not every logic satisfying the congruence prop-
erty is congruential. But if either (PC) or (PDD) holds for S, the congruence
property is enough for S to be congruential. These facts were first proved in
[4] (see also [15, 16] for simpler proofs). Moreover, if S satisfies either (PC) or
(PDD), and if in addition S satisfies (PWD), then this property transfers to
every algebra of the corresponding similarity type.

Proposition 2.5. For every congruential logic S satisfying (PC) and (PWD)
and every algebra A, CA

S satisfies (PWD).

Proof. To show that S transfers (PWD) to every algebra, let A be an algebra
and a, b ∈ A. Since p `S p∨q and q `S p∨q, we get CA

S (a∨b) ⊆ CA
S (a)∩CA

S (b).
Conversely, if c ∈ CA

S (a)∩CA
S (b), since (PC) transfers, we get CA

S (a∧c) = CA
S (a)

and CA
S (b∧c) = CA

S (b), i.e. a∧c ≡A
S a and b∧c ≡A

S b. Since by assumption ≡A
S

is a congruence, this implies that CA
S (a∨ b) = CA

S ((a∧ c)∨ (b∧ c)). Now notice
that (p∧ r)∨ (q ∧ r) `S r, because by assumption S satisfies (PC) and (PWD).
Therefore, since CA

S ((a∧ c)∨ (b∧ c)) is an S-filter, then c ∈ CA
S ((a∧ c)∨ (b∧ c)).

Hence c ∈ CA
S (a ∨ b).

Proposition 2.6. For every finitary logic S satisfying (PDD) and (PWD) and
every algebra A, CA

S satisfies (PD).

Proof. By Proposition 2.4, S satisfies (PD). But (PD) transfers to every algebra
(cf. [4], Thm. 2.48), which implies the statement.

The fact that a congruential logic S satisfies (PC) has important conse-
quences for the structure of the algebras in AlgS and the shape of their S-filters.

In order to avoid unnecessary complications in stating the results we assume
in the remainder of the section that S has theorems, namely there is at least
one formula ϕ such that `S ϕ. This holds for every S with (PDD) and implies
that the S-filters are non-empty.

Proposition 2.7. If S is congruential and satisfies (PC), then for every algebra
A ∈ AlgS, 〈A,∧A〉 is a meet-semilattice, the semilattice order is ≤A

S , and the
semilattice filters are the S-filters of A.
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Proof. Proof that 〈A,∧A〉 is a meet semilattice and its semilattice filters are
the non-empty S-filters of A can be found in [15]. To see that the semilattice
order ≤ is ≤A

S , simply note that for every a, b ∈ A, a ≤A
S b iff CA

S (b) ⊆ CA
S (a)

iff CA
S (a ∧ b) = CA

S (b) iff a ∧ b = b iff a ≤ b.

If S in addition satisfies (PWD) then also the logical and order-theoretic
notions of ideals can be identified:

Proposition 2.8. For every finitary congruential logic S satisfying (PC) and
(PWD) and every algebra A ∈ AlgS, 〈A,∧A,∨A〉 is a lattice with the following
properties:

1. the lattice order ≤ is ≤A
S ,

2. the lattice filters are the S-filters of A,
3. the lattice ideals are the non-empty S-ideals of A.

If in addition S satisfies (PD), then 〈A,∧A,∨A〉 is distributive.

Proof. The fact that 〈A,∧A,∨A〉 is a lattice easily follows from the fact that
CA
S satisfies (PC) and (PWD) and that for every a, b ∈ A, CA

S (a) = CA
S (b)

iff a = b. (1) and (2) follow from Proposition 2.7. For (3), if J is an S-ideal
of A, then J is a down-set: if a ≤A

S b ∈ J , then CA
S (b) ⊆ CA

S (a), so a ∈ J .
Moreover, if a, b ∈ J , since by (PWD) CA

S (a)∩CA
S (b) = CA

S (a∨ b), we get that
a ∨ b ∈ J . This shows that J is a lattice ideal. Conversely, if I is a lattice
ideal, a1, . . . , an ∈ I and CA

S (a1) ∩ . . . ∩ CA
S (an) ⊆ CA

S (b), then by (PWD),
CA
S (a1)∩ . . .∩CA

S (an) = CA
S (a1 ∨ . . .∨ an). Hence, b ≤A

S a1 ∨ . . .∨ an. Since I
is a lattice ideal, a1∨ . . .∨an ∈ I and therefore b ∈ I. Therefore I is an S-ideal.
If in addition S satisfies (PD), then, using the fact that both (PC) and (PD)
transfer to every algebra and that ≡SA= ∆A, it is easy to show that 〈A,∧A,∨A〉
is distributive.

The considerations above imply that in the setting of congruential logics S
satisfying (PC) and (PWD) the theory of canonical extensions for lattice expan-
sions presented in [9] can be applied directly to the algebras in AlgS, provided
that the operations on these algebras are either order preserving or order revers-
ing in each coordinate. Moreover, for congruential logics satisfying (PC) and
(PD), the theory of canonical extensions for distributive lattice expansions [8]
applies.

2.4. Congruential logics satisfying (PDD)
Congruential logics satisfying (PDD) have been studied in [4, 16] from the

perspective of AAL. In this subsection we are going to report the facts that are
relevant for this paper.

Let L = {→}. The least finitary congruential L-logic S that satisfies (PDD)
is the →-fragment of intuitionistic logic maybe add reference here???, and
its algebraic counterpart AlgS is the variety of Hilbert algebras.

A Hilbert algebra (cf. [19], positive implication algebra) is an algebra A =
〈A,→〉 that satisfies the following equations:
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H1. x→ x ≈ y → y

H2. (x→ x)→ x ≈ x
H3. x→ (y → z) ≈ (x→ y)→ (x→ z)
H4. (x→ y)→ ((y → x)→ y) ≈ (y → x)→ ((x→ y)→ x).

The variety of Hilbert algebras can be obtained as the class of →-subalgebras
of the →-reducts of Heyting algebras.

Results in [16] imply that a finitary and congruential logic S satisfies (PDD)
relative to a definable binary term x → y if and only if AlgS is a subvariety of
the variety of LS -algebras axiomatized by the equations H1-H4.

Rather than working in the most general setting, in this paper we restrict
our attention to finitary congruential logics satisfying (PDD). The results we
obtain can be easily extended to finitary congruential logics satisfying (PC) and
(PDD) and also to finitary congruential logics satisfying (PD) and (PDD).

3. Preliminaries on ∆1-completions and canonical extensions of posets

Let P = 〈P,≤〉 be a poset. A subset X ⊆ P is an up-set if for every x ∈ X
and every y ∈ P , if x ≤ y then y ∈ X. Down-sets are defined order-dually. For
every x ∈ P , the least down-set (resp. up-set) to which x belongs is denoted by
↓x (↑x). A subset X ⊆ P is down-directed if for every x, y ∈ X there exists
some z ∈ X such that z ≤ x, y. Up-directed subsets are defined order-dually. A
poset-filter of a poset 〈P,≤〉 is a non-empty down-directed up-set and a poset-
ideal is a non-empty up-directed down-set. In [3] poset-filters and poset-ideals
of a poset are called filters and ideals respectively.

A completion of a poset P is a pair 〈C, e〉 such that C is a complete lattice
and e is an embedding of P into C. We will suppress the embedding e and
identify P with its image under e. If C is a completion of P , the joins of sets of
elements of P are called the open elements of C (relative to P ) and the meets of
sets of elements of P are called the closed elements of C (relative to P ). The set
of closed elements is denoted by K(C) and the set of open elements by O(C).
A ∆1-completion of P ([14]) is a completion C in which K(C) is join-dense and
O(C) meet-dense, that is, it is a completion C each element of which can be
obtained both as a join of elements in K(C) and as a meet of elements in O(C).

If P is a lattice, the canonical extension of P introduced in [9] is the unique
(up to isomorphism fixing P ) ∆1-completion C such that for every filter F and
every ideal I of P , if

∧
C F ≤

∨
C I, then F ∩ I 6= ∅. In [3], the canonical

extension for any poset P is defined as the unique (up to isomorphism fixing P )
∆1-completion C of P such that the following two properties hold:

1. for every poset-filter F of P and every poset-ideal I of P , if
∧

C F ≤
∨

C I,
then F ∩ I 6= ∅,

2. every element of C is a join of the meets of the elements of some family of
poset-filters of P and a meet of the joins of the elements of some family
of poset-ideals of P .
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In [14], special ∆1-completions of a poset P are defined parametrically, for any
collection F of up-sets of P such that {↑x : x ∈ P} ⊆ F and any collection
I of down-sets of P such that {↓x : x ∈ P} ⊆ I. This parametric definition
encompasses the canonical extensions defined in [3]. In the remainder of this
section, we will briefly expound the relevant concepts and results of [14] about
these ∆1-completions.

Let P be a poset, F be a family of up-sets of P and I be a family of down-
sets of P such that {↑x : x ∈ P} ⊆ F and {↓x : x ∈ P} ⊆ I. If C is a completion
of P , let

KF (C) = {a ∈ C : a =
∧
C
F for some F ∈ F}

OI(C) = {a ∈ C : a =
∨
C
I for some I ∈ I}.

The elements of KF (C) (resp. OI(C)) are the F-closed (I-open) elements of C.
Every F-closed element is closed and every I-open element is open.

A completion C of P is (F , I)-compact if for every F ∈ F and I ∈ I, if∧
C F ≤C

∨
C I, then F ∩ I 6= ∅. A completion C of P is (F , I)-dense if KF (C)

is join-dense in C and OI(C) is meet-dense in C. Thus, every (F , I)-dense
completion is in particular a ∆1-completion.

An (F , I)-compact and (F , I)-dense completion of P is an (F , I)-completion
of P . Thus, every (F , I)-completion is a ∆1-completion. For every poset P and
every F , I as above, an (F , I)-completion of P exists and it is unique up to an
isomorphism that fixes P (cf. [14]).

Let us now describe the main steps of the proof of existence given in [14]:
First we consider the polarity (F , I, R), where R ⊆ F×I is the relation defined
by

FRI iff F ∩ I 6= ∅.

Then we associate the following quasi-ordered set Int(F , I, R) to the polarity:
The domain of Int(F , I, R) is the disjoint union F ] I of F and I5, and the
quasi-order is defined by setting, for every F,G ∈ F and every I, J ∈ I,

1. F ≤∗ G iff G ⊆ F ,
2. I ≤∗ J iff I ⊆ J ,
3. F ≤∗ I iff F ∩ I 6= ∅,
4. I ≤∗ F iff for every p ∈ F and every q ∈ I, q ≤ p.

Then we consider the quotient F⊕PI of Int(F , I, R) by the equivalence relation
≡ = ≤∗ ∩ ≥∗ and denote the quotient partial order by ≤. The elements of the
quotient are denoted by [F ] for F ∈ F and by [I] for I ∈ I. The only non-
singleton ≡-classes are of the form {↑p, ↓p} for every p ∈ P . Let [p] = [↑p] = [↓p].

Finally, the (F , I)-completion of P is the MacNeille completion of the poset
F ⊕P I with the embedding η : P → F ⊕P I given by p 7→ [p] = [↑p] = [↓p].

5We assume, using the same notation, that F and I are disjoint copies of F and I.
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4. S-Canonical extensions for finitary congruential logics

Let S be a finitary congruential logic. Recall that because of congruentiality,
for every algebra A ∈ AlgS it is possible to define the S-poset of A as 〈A,≤A

S 〉.
From the logical point of view we take in this paper, the definition of “canon-

ical extension” for A ∈ AlgS ought to be in principle based on taking the
(FiSA, IdSA)-completion of 〈A,≤A

S 〉. On the other hand, for this definition to
be independent of the algebraic signature of A, the consequence relation of S
should be represented purely in terms of the order-theoretic properties of the
S-poset (and so every operation/logical connective in the algebraic signature
should be extended to the completion, as is done for the modal operators in
the Boolean case). When S satisfies (PC), the S-poset is in particular a meet-
semilattice, and the hypothesis of S being finitary makes it possible to encode
the consequence relation of S purely in terms of the partial order ≤A

S , because
any consequence only depends on a finite number of premisses, which in turn
can be encoded by their finite meet. But if the S-poset is not a meet-semilattice,
the consequence relation cannot any more be encoded purely in terms of ≤A

S ,
because the finite subsets cannot be replaced by their infima, since these may
not exist.

The solution we propose here to remedy this defect is based on the fact
that the poset 〈FiωSA,⊇〉 of the finitely generated S-filters of A is a meet-
semilattice. Indeed, instead of defining the canonical extension of A as some
(F , I)-completion of the S-poset 〈A,≤A

S 〉, we will define it as a certain (F , I)-
completion of the meet-semilattice FiωSA. We will see that the order-theoretic
properties of FiωSA are well suited to encode the consequence relation of S:
indeed, the poset-filters of FiωSA are in one-to-one correspondence with the S-
filters of A. An analogous correspondence holds between certain S-ideals of A
and certain poset-ideals of FiωSA.

We will define the S-canonical extension AS of A as the canonical exten-
sion, in the sense of [3], of FiωSA; that is, as its (F , I)-completion, where F is
the collection of its poset-filters (non-empty down-directed up-sets) and I the
collection of its poset-ideals (non-empty up-directed down-sets). The most im-
portant result of this section is Theorem 4.20: in the special case in which AS

satisfies the (∨,
∧

)-distributive law, AS is isomorphic to the (F , I)-completion
of 〈A,≤A

S 〉 such that F is the set of the S-filters of A and I is the set of the
non-empty up-directed S-ideals.

4.1. The meet-semilattice FiωSA
Let Pω(X) denote, as usual, the set of finite subsets of X. Y ⊆ω X will

mean that Y is a finite subset of X.
Let S be a finitary congruential logic and A ∈ AlgS, which we assume fixed

throughout the section. In what follows we will give an alternative presentation
of FiωSA that is based on identifying every finitely generated S-filter with the
equivalence class of the finite sets that generate it. Let us define the relation
≤S on Pω(A) as follows:

X ≤S Y iff Y ⊆ CA
S (X).

12



This relation is a quasi-order. Its associated equivalence relation ∼S identifies
two finite subsets X,Y of A if X ≤S Y and Y ≤S X, that is, if CA

S (X) =
CA
S (Y ). The equivalence class of X ⊆ω A will be denoted by X. Thus, for

X,Y ⊆ω A,
X = Y iff CA

S (X) = CA
S (Y ).

Let Pω(A)/∼S be the quotient of Pω(A) by∼S . The partial order induced on
Pω(A)/∼S by≤S will be also denoted by≤S . Note that for everyX,Y ∈ Pω(A),

X ≤S Y iff CA
S (Y ) ⊆ CA

S (X).

Hence, for every X ∈ Pω(A), X ≤S ∅.

Lemma 4.1. For every X,Y ∈ Pω(A)/∼S , the meet of X,Y w.r.t. ≤S exists
and

X ∧ Y = X ∪ Y .

Proof. Since CA
S (X), CA

S (Y ) ⊆ CA
S (X ∪ Y ), we have X ∪ Y ≤S X,Y . Con-

versely, suppose that Z ≤S X,Y . Then CA
S (X), CA

S (Y ) ⊆ CA
S (Z); therefore

CA
S (X ∪Y ) ⊆ CA

S (Z). Hence, Z ≤ X ∪ Y , which shows that X ∪ Y is the meet
of X and Y .

Proposition 4.2. The poset 〈Pω(A)/∼S ,≤S〉 is a meet-semilattice with top
element.

We denote by L∧S(A) the poset 〈Pω(A)/∼S ,≤S〉 and we refer to it as the
meet S-semi-lattice of A.

The poset L∧S(A) is in fact isomorphic to the poset 〈FiωSA,⊇〉. We will
rather work with L∧S(A) than with 〈FiωSA,⊇〉 because the results we present in
this paper are mainly proved using sets of generators.

Let j : A→ Pω(A)/∼S be the map defined by

j(a) = {a}.

For simplicity we will abuse notation and write a for {a}.

Proposition 4.3. The map j is an order embedding from 〈A,≤A
S 〉 into L∧S(A)

and L∧S(A) is meet-generated by j[A].

Proof. For every a, b ∈ A, a ≤A
S b iff CA

S (b) ⊆ CA
S (a) iff a ≤S b, which shows

that j is an order embedding. Let X ∈ Pω(A)/∼S . Since X =
⋃
a∈X{a}, by

Proposition 4.1, X =
∧
{a : a ∈ X} =

∧
{j(a) : a ∈ X}.

Remark 4.4. If S satisfies (PC), then every finitely generated S-filter of every
L-algebra A is generated by a single element. Therefore, all the elements of
Pω(A)/∼S are of the form a. In this case j is an isomorphism between 〈A,≤A

S 〉
and L∧S(A).
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4.2. S-filters of A and filters of L∧S(A)
We are now going to show that the collection F of the poset-filters of L∧S(A),

ordered by inclusion, is order-isomorphic to 〈FiSA,⊆〉.
For every F ∈ F , let F ∗ =

⋃
{CA
S (X) : X ∈ F}. Clearly, if F1, F2 ∈ F and

F1 ⊆ F2, then F ∗1 ⊆ F ∗2 .

Lemma 4.5. For every F ∈ F , F ∗ is an S-filter of A.

Proof. It is enough to show that CA
S (F ∗) ⊆ F ∗. Suppose a ∈ CA

S (F ∗). Because
S is finitary, a ∈ CA

S (X) for some X ⊆ω F ∗ =
⋃
{CA
S (Y ) : Y ∈ F}. Then

for every b ∈ X, b ∈ CA
S (Yb) for some Yb ⊆ω A such that Yb ∈ F . Since F is

down-directed, there exists some Y ⊆ω A such that Y ∈ F and Y ≤S Yb for
every b ∈ X. Then CA

S (Yb) ⊆ CA
S (Y ) for every b ∈ X, so X ⊆ CA

S (Y ) and
hence a ∈ CA

S (Y ). Therefore, a ∈ F ∗.

Let G be an S-filter of A. Consider the set

G = {X : X ⊆ω G}

and notice that since G is an S-filter, for every Y ⊆ω A,

Y ∈ G iff Y ⊆ G.

Lemma 4.6. If G is an S-filter of A, then G ∈ F .

Proof. Suppose that X ≤S Y and X ∈ G. Thus Y ⊆ CA
S (X) ⊆ G. Hence

Y ∈ G, which shows that G is an up-set. Now suppose that X,Y ∈ G. Then
X,Y ⊆ G, so X∪Y ⊆ω G. Therefore X ∪ Y ∈ G. Now, since CA

S (X), CA
S (Y ) ⊆

CA
S (X∪Y ), we get X ∪ Y ≤S X and X ∪ Y ≤S Y , which shows that G is down-

directed. Finally, since ∅ ∈ G, G is non-empty.

Lemma 4.7. If F ∈ F , then F ∗ = F .

Proof. If X ∈ F , then CA
S (X) ∈ {CA

S (X) : X ∈ F}, so X ⊆ CA
S (X) ⊆⋃

{CA
S (X) : X ∈ F}, which shows that X ∈ F ∗. If X ∈ F ∗, then X ⊆ω F ∗.

So for each b ∈ X, b ∈ CA
S (Yb) for some Yb such that Yb ∈ F . Since F is

down-directed, there exists some Y ⊆ω A such that Y ∈ F and Y ≤S Yb, for
every b ∈ X. Then CA

S (Yb) ⊆ CA
S (Y ) for every b ∈ X. So, X ⊆ CA

S (Y ), and
hence Y ≤S X. Since F is an up-set, this shows that X ∈ F .

Lemma 4.8. If G is an S-filter, then (G)∗ = G.

Proof. By definition, and because S is finitary, (G)∗ =
⋃
{CA
S (Y ) : Y ∈ G} =⋃

{CA
S (Y ) : Y ⊆ω G} = G.

The two lemmas above show that the maps (.)∗ : F → FiSA and (.) :
FiSA → F are order isomorphisms (when both sets are ordered by inclusion),
and are inverse to one another.
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4.3. Poset-ideals of L∧S(A)
In this subsection, we will turn to the relationship between S-ideals of A and

poset-ideals of L∧S(A). While in general the analogous correspondence cannot
be established as is done for the filters, there is an exact correspondence between
interesting subclasses on both sides.

Recall that a poset-ideal I of a meet-semilattice 〈P,∧〉 is prime if it is proper
and for every a, b ∈ P , if a ∧ b ∈ I, then a ∈ I or b ∈ I.

The following characterization of the prime poset-ideals of L∧S(A) will be
useful in understanding how poset-ideals of L∧S(A) are related to S-ideals of A.

Lemma 4.9. A poset-ideal I of L∧S(A) is prime iff for every X ∈ I there exists
some a ∈ X such that a ∈ I.

Proof. For the right-to-left direction, let I be a poset-ideal of L∧S(A) such that
for every X ∈ I there exists some a ∈ X such that a ∈ I. Then ∅ 6∈ I, so I
is proper. Suppose that X ∪ Y = X ∧ Y ∈ I. By the assumption on I, there
exists some a ∈ X ∪ Y such that a ∈ I. Then X ≤S a or Y ≤S a. Since I is a
down-set, we get that X ∈ I or Y ∈ I.

Conversely, let I be prime and let X ∈ I. Since I is proper, X 6= ∅. It is
easy to see by induction on the cardinality of X that there exists some a ∈ X
such that a ∈ I.

There is a bijective correspondence between the non-empty S-ideals of A
which are up-directed w.r.t. ≤A

S and the poset-ideals of L∧S(A) satisfying a
property that we are going to introduce below and which is satisfied by the
prime poset-ideals. The correspondence we establish allows us to introduce a
notion of prime S-ideal which will be very useful in what follows.

A poset-ideal I of L∧S(A) is an A-ideal if for every X ∈ I there exists some
a ∈ A such that X ≤S a and a ∈ I. Notice that, by Lemma 4.9, every prime
poset-ideal of L∧S(A) is an A-ideal.

For every poset-ideal I of L∧S(A), let us define

I? = {a ∈ A : a ∈ I}.

The map (·)? is clearly monotone: if I1 ⊆ I2, then I?1 ⊆ I?2 .

Proposition 4.10. If I is a poset-ideal of L∧S(A), then I? is an S-ideal of A.
If, in addition, I is an A-ideal, then I? is up-directed (w.r.t. ≤A

S ).

Proof. For the first part, it is enough to show that (CA
S )d(I?) ⊆ I?: Let b ∈ A

and a0, . . . , an ∈ I? such that CA
S (a0) ∩ . . . ∩ CA

S (an) ⊆ CA
S (b). Since I is up-

directed and a0, . . . , an ∈ I, there exists some X ∈ I such that ai ≤S X for
every i ≤ n. Then X ⊆ CA

S (a0) ∩ . . . CA
S (an) ⊆ CA

S (b). Therefore b ≤S X.
This implies that b ∈ I, and so b ∈ I?. If CA

S (b) = A, since I is non-empty,
there exists some X ∈ I such that X ⊆ CA

S (b) and therefore, as before, we have
b ∈ I?.

Let I be an A-ideal and let a, b ∈ I?. Then a, b ∈ I. Since I is up-directed,
a, b ≤S X for some X ∈ I. Since I is an A-ideal, there exists some c ∈ A such
that X ≤S c and c ∈ I. Hence c ∈ I?, and a, b ≤A

S c.
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For every S-ideal J of A, let us define

J = {X ∈ L∧S(A) : CA
S (X) ∩ J 6= ∅}.

Note that J = ↓{a : a ∈ J} and that the map (·) is monotone: if J1 ⊆ J2, then
J1 ⊆ J2.

Proposition 4.11. For every J ∈ IdSA, if J is non-empty and up-directed
w.r.t. ≤A

S , then J is an A-ideal of L∧S(A).

Proof. Let J be a non-empty up-directed S-ideal of A. Then it follows straight-
forwardly from the definition that J is a non-empty down-set. To show that it
is up-directed, let X,Y ∈ J . Then let a, b ∈ J such that X ≤S a and Y ≤S b.
Since J is up-directed, a, b ≤A

S c for some c ∈ J . Then a, b ≤S c. There-
fore, X,Y ≤S c ∈ J . Finally, from the definition of J it follows that it is an
A-ideal.

Proposition 4.12. If J is a non-empty S-ideal of A, then (J)? = J .

Proof. Since S-ideals are down-sets w.r.t. ≤A
S , (J)? = {a ∈ A : a ∈ J} = {a ∈

A : CA
S (a) ∩ J 6= ∅} = {a ∈ A : ↑a ∩ J 6= ∅} = {a ∈ A : a ∈ J} = J .

Proposition 4.13. For every A-ideal I of L∧S(A), I? = I.

Proof. By assumption, if X ∈ I, then X ≤S a for some a ∈ I. So a ∈ CA
S (X)∩

I? 6= ∅, hence X ∈ I?. Conversely, if X ∈ I? then there exists some a ∈
CA
S (X) ∩ I?. Hence X ≤S a ∈ I and so X ∈ I.

The two propositions above imply that:

Proposition 4.14. The maps (·) and (·)? establish order isomorphisms between
the non-empty up-directed S-ideals of an algebra A ∈ AlgS and the A-ideals of
L∧S(A), both collections being ordered by inclusion.

Note that since every prime poset-ideal of L∧S(A) is an A-ideal, its corre-
sponding S-ideal is up-directed.

The previous considerations naturally lead to the following notion:

Definition 4.15. An S-ideal J of A is prime if J is a prime poset-ideal of
L∧S(A). Equivalently, J is prime if J is non-empty, up-directed and X ∩ J 6= ∅
for every X ⊆ω A such that CA

S (X) ∩ J 6= ∅.

Proposition 4.16. The maps (·) and (·)? establish order isomorphisms between
the prime S-ideals of an algebra A ∈ AlgS and the prime poset-ideals of L∧S(A),
both collections being ordered by inclusion.
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4.4. The S-canonical extension of A

Let S be a finitary congruential logic and A ∈ AlgS. The theory of canonical
extensions for posets developed in [3] can now be applied to the meet-semilattice
L∧S(A). That is, we can define the canonical extension of A as the canonical
extension (L∧S(A))σ of the poset L∧S(A) as canonical extensions are defined in
[3, Definition 2.2]. We recall that the order-theoretic canonical extension is the,
unique up to an isomorphism, dense and compact completion m : L∧S(A) →
(L∧S(A))σ of L∧S(A) as described in Section 3. For a concrete incarnation, the
existence proof given there, tells us that (L∧S(A))σ may be seen as the MacNeille
completion of the amalgam given there of the order filters and order ideals of
L∧S(A) with the embedding that identifies an element of a ∈ L∧S(A) with the
class {↑a, ↓a}.

Definition 4.17. The S-canonical extension of A is the (F , I)-completion of
L∧S(A) where F is the family of poset-filters and I the family of poset-ideals of
L∧S(A). The S-canonical extension of A will be denoted by AS .

By composing the canonical embedding η : L∧S(A) → (L∧S(A))σ with the
embedding j : 〈A,≤A

S 〉 → L∧S(A) defined above Proposition 4.3, we obtain an
order embedding

k := (η ◦ j) : A→ (L∧S(A))σ.

The correspondences between S-filters of A and poset-filters of L∧S(A) and be-
tween non-empty up-directed S-ideals of A and A-ideals of L∧S(A) underlie the
following facts:

Lemma 4.18.
1. For every S-filter G of A,

∧
k[G] =

∧
m[G],

2. For every non-empty up-directed S-ideal J of A,
∨
k[J ] =

∨
m[J ].

Proof. 1. Let G be an S-filter of A. Notice that, for every X ⊆ω G,

X =
∧
{j(a) : a ∈ X};

moreover, since it is a canonical embedding, m preserves all finite meets. This
implies that m(X) =

∧
k[X], and so,∧

m[G] =
∧
{m(X) : X ⊆ω G} =

∧
{
∧
k[X] : X ⊆ω G} =

∧
k[G].

2. Let J be a non-empty up-directed S-ideal of A. Since j[J ] ⊆ J , we get
that k[J ] ⊆ m[J ] and so

∨
k[J ] ≤

∨
m[J ]. For the converse inequality, since J is

non-empty and up-directed, J is an A-ideal, hence for every X ∈ J there exists
some aX ∈ J such that X ≤S aX , which implies that

∨
m[J ] =

∨
m[{aX : X ∈

J}]. But aX ∈ J implies aX ∈ J . Thus k[{aX : X ∈ J}] ⊆ k[J ] and so,∨
m[J ] =

∨
m[{aX : X ∈ J}] =

∨
k[{aX : X ∈ J}] ≤

∨
k[J ].
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Let us finish this subsection by showing that the prime poset-ideals of L∧S(A)
and the completely meet-prime elements of AS exactly correspond:

Proposition 4.19.
1. For every poset-ideal I of L∧S(A), I is prime iff

∨
m[I] is completely

meet-prime in AS .
2. If c ∈ AS is completely meet-prime, then c =

∨
m[I] for some prime

poset-ideal I of L∧S(A)

Proof. 1. For simplicity let us suppress the embedding m. For the ‘if’ direction,
by Lemma 4.9, in order to show that I is prime, it is enough to show that
for every X ∈ I there exists some a ∈ X such that a ∈ I. If X ∈ I, then∧
a∈X a = X ≤

∨
I. Since

∨
I is completely meet-prime, a ≤

∨
I for some

a ∈ X. Hence a ∈ I by compactness.
For the converse implication, let I be a prime poset-ideal of L∧S(A). Since every
element of AS is a meet of joins of poset-ideals of L∧S(A), to show that

∨
I is

completely meet-prime, it is enough to show that if {Is : s ∈ S} is a collection
of poset-ideals of L∧S(A) and

∧
s∈S

∨
Is ≤

∨
I, then

∨
Is ≤

∨
I for some s ∈ S.

Suppose for contradiction that
∨
Is 6≤

∨
I for every s ∈ S. Then for every s ∈ S

there exists some Xs ∈ Is such that Xs 6∈ I. The fact that Xs ∈ Is implies that
Xs ≤

∨
Is, and so, ∧

s∈S
Xs ≤

∧
s∈S

∨
Is ≤

∨
I. (4.1)

Since I is prime, if Xs 6∈ I for every s ∈ S, then
∧
s∈S′ Xs /∈ I for every S′ ⊆ω S.

This implies that ∧
s∈S

Xs 6≤
∨
I : (4.2)

indeed if
∧
s∈S Xs ≤

∨
I, then by the compactness of AS we would get that∧

s∈S′ Xs ≤
∨
I (i.e.

∧
s∈S′ Xs ∈ I) for some S′ ⊆ω S. Now (4.1) and (4.2)

contradict one another.
2. If c ∈ AS is completely meet-prime, then c ∈ M∞(AS) ⊆ OI(AS) (cf.

[14]), hence c =
∨
I for some poset-ideal I of L∧S(A). Then by the ‘if’ direction

of the first item of this proposition, I is prime.

4.5. AS satisfying the (∨,
∧

)-distributive law
We will now work under the additional hypothesis that AS satisfies the

(∨,
∧

)-distributive law
p ∨

∧
S =

∧
s∈S

p ∨ s

because, as we will see, this situation applies to the setting of congruential logics
satisfying (PDD). The most important result of this section is that, under this
additional hypothesis, AS coincides (up to an isomorphism fixing A) with the
(F , I)-completion of A, F being the collection of S-filters of A and I being the
collection of the non-empty up-directed S-ideals of A.
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Recall that if a complete lattice satisfies the (∨,
∧

)-distributive law, then
every completely meet-irreducible element is completely meet-prime and if it
satisfies the (∧,

∨
)-distributive law, then every completely join-irreducible ele-

ment is completely join-prime.
We are now ready to show the main result of this section.

Theorem 4.20. If AS satisfies the (∨,
∧

)-distributive law, then AS is the
(F , I)-completion of A, for the collection F of S-filters and the collection I of
the non-empty up-directed S-ideals of A.

Proof. Let AS be the domain of AS . By definition, if a ∈ AS then

a =
∨
{
∧
m[F ] | F ∈ X}

for some collection X of poset-filters of L∧S(A). By Lemmas 4.7 and 4.18 (1),
we get that for every F ∈ X ,∧

m[F ] =
∧
m[F ∗] =

∧
k[F ∗]

and because of Lemma 4.5 we conclude that every element of AS is a join of
meets of S-filters. Similarly, every a ∈ AS is a meet of joins of non-empty
up-directed S-ideals: indeed, a =

∧
M for some subset M of completely meet-

irreducible elements of AS (cf. [3]); since by assumption AS satisfies the (∨,
∧

)-
distributive law, every c ∈ M is completely meet-prime, therefore, by Propo-
sition 4.19 (2), c =

∨
m[I] for some prime poset-ideal I of L∧S(A). Since I,

being prime, is an A-ideal of L∧S(A), by Proposition 4.10 I? is a non-empty
up-directed S-ideal of A and by Lemmas 4.13 and 4.18 (2), we get

c =
∨
m[I] =

∨
m[I?] =

∨
k[I?].

Therefore every element of AS is a a meet of joins of non-empty up-directed
S-ideals.

Let us show that AS is (F , I)-compact. Let G ∈ F and J ∈ I be such that∧
k[G] ≤

∨
k[J ]. Since by Lemma 4.18

∧
k[G] =

∧
m[G] and

∨
k[J ] =

∨
m[J ],

we get that
∧
m[G] ≤

∨
m[J ]. Then the compactness of AS w.r.t. the poset-

filters and poset-ideals of L∧S(A) implies that there exists some X ∈ G ∩ J .
Since J is an A-ideal, there exists some a ∈ A such that X ≤S a and a ∈ J .
Then a ∈ G ∩ J 6= ∅.

In order to be able to apply Theorem 4.20 we will need the following result.

Proposition 4.21. If AS satisfies the (∧,
∨

)-distributive law, then AS is a
completely distributive lattice.

Proof. Because AS is the canonical extension of the poset L∧S(A), AS is join
generated by its completely join-irreducible elements, and so it is join generated
by its completely join-prime elements. Therefore AS is a completely distributive
lattice (cf. Thm. 16 in Ch. XII.4 of [1]).
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5. The canonicity of Hilbert algebras

In the previous section we introduced the S-canonical extension AS of A;
this construction extends the known lattice-based settings of canonical exten-
sions and uniformly applies to every A ∈ AlgS for every finitary and congruential
logic S. We also showed that, if AS satisfies the (∨,

∧
)-distributive law, then

AS is the (F , I)-completion of A corresponding to the choice of the collections
F of S-filters and I of non-empty up-directed S-ideals of A.

In this section we are going to show that, if our notion of canonical extension
is based on this construction, the variety of Hilbert algebras is indeed canonical.
This will be a consequence of a canonicity result that we show for every A ∈
AlgS, S being any finitary and congruential logic satisfying (PDD) relative to
a definable binary term x → y. Our proof strategy goes as follows: using a
lemma due to Köhler and Pigozzi [18], we will show that for every finitary
congruential logic S satisfying (PDD) and every A ∈ AlgS, the meet operation
of L∧S(A) has a right adjoint w.r.t. one coordinate (i.e. it is residuated). Then,
by applying Proposition 3.6 in [3], the σ-extension of the meet in AS has also
a right adjoint, and this right adjoint is the π-extension →π of the right adjoint
of the meet in L∧S(A). Therefore 〈AS ,

∧
,
∨
,→π,⊥,>〉 is a complete Heyting

algebra. In particular this implies both that 〈AS ,→π〉 is a Hilbert algebra
and that AS satisfies the (∧,

∨
)-distributive law, hence by Proposition 4.21 it

satisfies the (∨,
∧

)-distributive law, and so by Theorem 4.20, AS is the (F , I)-
completion of A corresponding to the choice of the collections F of S-filters and
I of non-empty up-directed S-ideals of A.

5.1. L∧S(A) as an implicative meet-semilattice
Let S be a finitary and congruential logic satisfying (PDD) relative to a

binary term x → y and let A ∈ AlgS. We are going to show that L∧S(A)
is an implicative meet-semilattice, that is, its meet operation is residuated. It
suffices to show that for every X,Y ∈ Pω(A)∗ there exists a unique Z ∈ Pω(A)∗,
denoted by X → Y , such that for every W ∈ Pω(A)∗

W ∧X ≤S Y iff W ≤S X → Y .

We will refer to X → Y as the residuum of X relative to Y (w.r.t. the meet).
In order to show that L∧S(A) is an implicative meet-semilattice, we will use

the following Lemma, proved in [18] in its order-dual version. We report its
proof here for the reader’s convenience.

Lemma 5.1 (Köhler and Pigozzi). Let 〈L,∧〉 be a meet-semilattice and X be
a set of generators X of L. If for every a, b ∈ X the residuum a→ b exists and
belongs to X, then the residuum a→ b exists for every a, b ∈ L.

Proof. Let us argue by cases and show that if a ∈ L and b ∈ X then a → b
exists. Since X is a set of generators, a = a0 ∧ . . .∧ an for some a0, . . . , an ∈ X.
Then, for every c ∈ L, c∧a ≤ b iff (c∧a0∧. . .∧an−1)∧an = c∧(a0∧. . .∧an) ≤ b
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iff c ∧ a0 ∧ . . . ∧ an−1 ≤ an → b. So by applying the assumption n times, we
obtain that

c ∧ a ≤ b iff c ≤ a0 → (. . . (an → b) . . .).

Thus, a→ b = a0 → (. . . (an → b) . . .).
Suppose now that a ∈ L and b ∈ L. Assume that b = b0 ∧ . . . ∧ bm for some

b0, . . . , bm ∈ X. By the previous case, a → bi exists for every i ≤ m. Now,
c∧ a ≤ b iff c∧ a ≤ b0 ∧ . . .∧ bm iff c∧ a ≤ bi for every i ≤ m, iff c ≤ a→ bi for
every i ≤ m. Thus,

c ∧ a ≤ b iff c ≤ (a→ b0) ∧ . . . ∧ (a→ bm).

Hence, a→ b = (a→ b0) ∧ . . . ∧ (a→ bm).

Let A ∈ AlgS. In order to apply the Lemma of Köhler and Pigozzi to the
meet-semilattice L∧S(A), recall that by Proposition 4.3 the set {a : a ∈ A}
meet-generates L∧S(A). Then, if →A is the interpretation of → in A:

Lemma 5.2. For every a, b ∈ A, a→A b is the residuum in L∧S(A) of a relative
to b.

Proof. Since by assumption CA
S satisfies (PDD), for every X ∈ Pω(A)∗, X ∧

a ≤S b iff CA
S (b) ⊆ CA

S (X, a) iff a→A b ∈ CA
S (X) iff X ≤S a→A b.

As an immediate consequence of Lemmas 5.2 and 5.1 we then obtain:

Proposition 5.3. L∧S(A) is a residuated meet-semilattice.

Let →∗ denote the residuum of the meet in L∧S(A):

Proposition 5.4. The order embedding j : A→ L∧S(A) is a→-homomorphism.

Proof. By Lemma 5.2, j(a→A b) = a→A b = a→∗ b = j(a)→∗ j(b).

Let us now consider the π-extension of →∗ to AS , which is defined first on
every f ∈ KF (AS) and i ∈ OI(AS), F being the set of poset-filters and I the
set of poset-ideals of L∧S(A):

f →π i =
∨
{x→ y : x, y ∈ L∧S(A), f ≤ x, y ≤ i}

and then, for every u, v ∈ AS ,

u→π v =
∧
{f →π i : u ≥ f ∈ KF (AS) and v ≤ i ∈ OI(AS)}.

Let k : A→ (L∧S(A))σ be defined as the composition (m◦j) of the embedding
j : A→ L∧S(A) and the canonical embedding m : L∧S(A)→ (L∧S(A))σ.

Proposition 5.5. The map k : A→ (L∧S(A))σ defined above is a→-homomorphism,
that is, for every a, b ∈ A,

k(a→A b) = k(a)→π k(b).
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Proof. By construction, →π is an extension of →∗; hence m is a →-homomor-
phism. The statement follows from this and Proposition 5.4.

By Proposition 3.6 in [3], →π is the residuum of the σ-extension of the meet
of L∧S(A). On the other hand, the σ-extension of the meet of L∧S(A) is the meet
of AS (cf. [9] add precise reference); therefore we get:

Proposition 5.6. 〈AS ,→π〉 is a complete Heyting algebra. So its →-reduct is
a Hilbert algebra.

Every complete Heyting algebra satisfies the (∧,
∨

)-distributive law. Then
by Proposition 4.21, AS is completely distributive, which implies that AS sat-
isfies also the (∨,

∧
)-distributive law, and so by Proposition 4.20, AS is the

(F , I)-completion of A, for the collection F of S-filters and the collection I of
the non-empty up-directed S-ideals of A. Therefore,

Theorem 5.7. The (F , I)-completion 〈AS ,→π〉 of a Hilbert algebra 〈A,→〉,
for the collection F of S-filters and the collection I of the non-empty up-directed
S-ideals of A, is a Hilbert algebra.

This justifies the definition of the canonical extension of each Hilbert algebra
A = 〈A,→〉 as 〈AS ,→π〉.

5.2. An internal description of the π-extension
The canonicity of Hilbert algebras was shown in a nonstandard way, the

standard way being the much stronger proof that axioms H1–H4, possibly in-
dependently of one another, are canonical. Instead, we derived it in one step,
as a byproduct of the fact that the meet-semilattice L∧S(A) is residuated. The
standard proof of canonicity would be based on an internal description of the
residuum operation →∗ and of its extension →π restricted to F-closed and I-
open elements of AS . In this section we are going to provide this internal
description. This will be crucial for proving the canonicity of axiomatic exten-
sions of Hilbert algebras (such as Tarski algebras, see next section). In order to
provide this internal description, we will not use the abstract characterization
of AS , but rather the specific way in which AS is obtained by the construction
described in Section 3. To this end we will first introduce some notation: for
every sequence a0, . . . , an of elements of A and every b ∈ A let us inductively
define the element (an, . . . , a0; b) ∈ A as follows:

(a0; b) := a0 →A b and (ai+1, . . . , a0; b) := ai+1 →A (ai, . . . , a0; b).

So, for instance, (a2, a1, a0; b) = a2 →A (a1 →A (a0 →A b)).
Since S satisfies (PDD), for every A ∈ AlgS the operation→A is order reversing
in the first coordinate and order preserving in the second coordinate w.r.t. the
partial order ≤A

S . Moreover:

1. (an, . . . , a0; b) = (ap(n), . . . , ap(0); b) for every permutation p of the indices
{0, . . . , n},
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2. (an, . . . , a0; b) ≤A
S (an+1, an, . . . , a0; b),

3. (a, a; b) = (a; b).

Because of property (1) above, we can introduce the following notation for every
non-empty and finite X = {a0, . . . , an} ⊆ A and every b ∈ A:

X → b := (an, . . . , a0; b) and ∅ → b := b.

Note that:

(a) By Property (2), for every X,Y ⊆ω A and every b ∈ A, if X ⊆ Y then
X → b ≤A

S Y → b,
(b) for every X ⊆ω A and every a, b ∈ A, X ∪ {b} → a = b→ (X → a).

For every X,Y ⊆ω A let us define

X → Y := {X → b : b ∈ Y },

and then let us define the binary operation → in L∧S(A) as follows:

X → Y := X → Y = {X → b : b ∈ Y }.

Note that if X or Y is empty, then X → Y = ∅. This definition does not depend
on the choice of the representatives X and Y , as is shown in the next lemma:

Lemma 5.8. For every X,Y, Z ⊆ω A,

CA
S (Y ) ⊆ CA

S (Z ∪X) iff CA
S ({X → b : b ∈ Y }) ⊆ CA

S (Z).

Hence, if X = X ′ and Y = Y ′ then {X → b : b ∈ Y } = {X ′ → b′ : b′ ∈ Y ′}.

Proof. Assume that CA
S (Y ) ⊆ CA

S (Z∪X): if Y = ∅, then {X → b : b ∈ Y } = ∅,
so CA

S ({X → b : b ∈ Y }) ⊆ CA
S (Z). If Y 6= ∅, let b ∈ Y and let us show

that X → b ∈ Z. By assumptions, b ∈ Y ⊆ CA
S (Y ) ⊆ CA

S (Z ∪ X); so, by
(PDD), X → b ∈ CA

S (Z). Conversely, if CA
S ({X → b : b ∈ Y }) ⊆ CA

S (Z) and
a ∈ Y , then X → a ∈ CA

S ({X → b : b ∈ Y }) ⊆ CA
S (Z). Hence by (PDD),

a ∈ CA
S (Z ∪ X). For the second part of the statement, we will only show the

left-to-right inclusion. By the first part of the statement, it is enough to prove
that CA

S (Y ) ⊆ CA
S ({X ′ → b′ : b′ ∈ Y ′} ∪ X). Since CA

S (Y ) = CA
S (Y ′), it is

enough to show that Y ′ ⊆ CA
S ({X ′ → b′ : b′ ∈ Y ′} ∪ X), so if a ∈ Y ′ then

X ′ → a′ ∈ CA
S ({X ′ → b′ : b′ ∈ Y ′} ∪X), so by (PDD),

a′ ∈ CA
S ({X ′ → b′ : b′ ∈ Y ′} ∪X ∪X ′) = CA

S ({X ′ → b′ : b′ ∈ Y ′} ∪X),

as desired.

Recall that the residuum of the meet-semilattice L∧S(A) was denoted by→∗.
The next proposition says that → is the internal description of →∗:
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Proposition 5.9. For every X,Y , Z ∈ Pω(A)∗,

Z ∧X ≤S Y iff Z ≤S X → Y .

Hence, →∗ coincides with →.

Proof. Z ∧X ≤S Y iff Z ∪X ≤S Y iff CA
S (Y ) ⊆ CA

S (Z ∪X) iff CA
S ({X → b :

b ∈ Y }) ⊆ CA
S (Z) iff Z ≤S {X → b : b ∈ Y } iff Z ≤S X → Y .

Next, let us give an internal description of the extension→π restricted to the
F-closed and I-open elements of AS , F and I being the collections of poset-
filters and poset-ideals of L∧S(A) respectively. To simplify the notation, let us
abbreviate m[F ] as [F ] and m[I] as [I] for every F ∈ F and I ∈ I. Then, by
definition,

[F ]→π [I] =
∨
{[X → Y ] : X ∈ F, Y ∈ I}

and
[I]→π [F ] =

∧
{[G]→π [J ] : [G] ≤ [I] and [F ] ≤ [J ]}.

Proposition 5.10. For every F ∈ F and I ∈ I,

[F ]→π [I] = [{Z : (∃X ∈ F ) Z ∧X ∈ I}]
= [{Z : (∃X ∈ F )(∃Y ∈ I) Z ≤S X → Y }].

Proof. Let us first show that

Y = {Z : (∃X ∈ F ) X ∪ Z ∈ I} ∈ I.

If Z ′ ≤S Z ∈ Y, then CA
S (Z) ⊆ CA

S (Z ′) and X ∪ Z ∈ I for some X ∈ F .
Therefore, CA

S (X∪Z) ⊆ CA
S (X∪Z ′), so X ∪ Z ′ ≤S X ∪ Z. Hence, X ∪ Z ′ ∈ I,

which shows that Z ′ ∈ Y. If Z,Z ′ ∈ Y, then X ∪ Z,X ′ ∪ Z ′ ∈ I for some
X,X ′ ∈ F . Since I is up-directed, X ∪ Z,X ′ ∪ Z ′ ≤S Y for some Y ∈ I. Then,

Z ≤S X → Y ≤S (X ∧X ′)→ Y and Z ′ ≤S X ′ → Y ≤S (X ∧X ′)→ Y .

So, in order to show that Y is up-directed, it is enough to show that

(X ∧X ′)→ Y ∈ Y.

Since (X ∧X ′) ∧ ((X ∧X ′) → Y ) ≤S Y ∈ I and I is a down-set, then we get
(X ∧X ′) ∧ ((X ∧X ′) → Y ) ∈ I. Because X ∧X ′ ∈ F , we can conclude that
(X ∧X ′)→ Y ∈ Y, as desired.
To show that [F ]→π [I] ≤ [Y], it is enough to show that for every X ∈ F and
Y ∈ I, [X → Y ] ≤ [Y] : indeed, note that X → Y ∈ Y, because

X ∧ (X → Y ) ≤S Y ∈ I.

Now, in order to show the first equality, it is enough to show that if u ∈ AS and
[X → Y ] ≤ u for every X ∈ F and every Y ∈ I, then [Y] ≤ u. By denseness,
u =

∧
{[H] : H ∈ I, u ≤ [H]}, so it is enough to show that if H ∈ I and
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u ≤ [H], then [Y] ≤ [H], i.e. that Y ⊆ H. If Z ∈ Y, then X ∪ Z ∈ I for
some X ∈ F . Then [X → X ∪ Z] ≤ u ≤ [H], and so X → X ∪ Z ∈ H. From
X ∧ Z ≤S X ∧ Z, we get that Z ≤S X → X ∪ Z, which implies that Z ∈ H.
For the second equality, it is enough to show that for every Z, Z ∧ X ∈ I for
some X ∈ F iff Z ≤S X → Y for some X ∈ F and some Y ∈ I. Both directions
are easy consequences of Proposition 5.9.

Proposition 5.11. For every F ∈ F and I ∈ I,

[I]→π [F ] = [{Z : (∃X ∈ F )(∃Y ∈ I) Y → X ≤S Z}].

Proof. Let us fix F ∈ F and I ∈ I, and let us show that

X = {Z : (∃X ∈ F )(∃Y ∈ I) Y → X ≤S Z} ∈ F .

By construction, X is an up-set. To show that X is down-directed, let Z,Z ′ ∈ X.
Then, Y → X ≤S Z and Y ′ → X ′ ≤S Z ′ for some X,X ′ ∈ F and Y , Y ′ ∈ I.
Since I is up-directed, Y , Y ′ ≤S Y ′′ for some Y ′′ ∈ I. Then,

Y ′′ → X ∪X ′ ≤S Y → X ∪X ′ ≤S Y → X ≤S Z

and
Y ′′ → X ∪X ′ ≤S Y ′ → X ∪X ′ ≤S Y ′ → X ≤S Z ′.

Hence,
Y ′′ → (X ∧X ′) = Y ′′ → X ∪X ′ ≤S Z ∧ Z ′.

Since X ∧X ′ ∈ F , we can conclude that Z ∧ Z ′ ∈ X, as desired.
Since X ∈ F , we get [X] =

∧
{[Z] : Z ∈ X} (cf. [14]add precise reference).

Therefore, in order to show that

[I]→π [F ] :=
∧
{[G]→π [J ] : [G] ≤ [I], G ∈ F and [F ] ≤ [J ], J ∈ I} = [X],

it is enough to show that:

(a) if Z ∈ X, then [G] →π [J ] ≤ [Z] for some G ∈ F and some J ∈ I such
that [G] ≤ [I] and [F ] ≤ [J ];

(b) if G ∈ F , J ∈ I are such that [G] ≤ [I] and [F ] ≤ [J ], then [G]→π [J ] ≤
[Z] for some Z ∈ X.

(a): if Z ∈ X, then Y → X ≤S Z for some X ∈ F and Y ∈ I. Then take G = X
and J = Y : indeed, [Y ] → [X] = [Y → X] ≤ [Z] and moreover [F ] ≤ [X]
and [Y ] ≤ [I]. (b): if G ∈ F , J ∈ I such that [G] ≤ [I] and [F ] ≤ [J ], then
G ∩ I 6= ∅ 6= F ∩ J , so Y ∈ G and X ∈ J for some X ∈ F, Y ∈ I. Then
[G]→π [J ] ≤ [Y ]→ [X] and Y → X ∈ X.
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6. Tarski algebras are canonical

A Tarski algebra is a Hilbert algebra 〈A,→〉 that satisfies the equation

T : (x→ y)→ x ≈ x.

In this section we will prove the canonicity of Tarski algebras by showing that
for every Hilbert algebra A,

A |= T implies that AS |= T .

Lemma 6.1. For every Tarski algebra A, every X ⊆ω A and every a ∈ A,

(a→ X)→ a = a.

Proof. By induction on the cardinality of X. If X = ∅,

(a→ X)→ a = (a→ ∅)→ a = ∅ → a = a.

If X = {b}, then (a→ X)→ a = (a→ b)→ a = a, because the equation
(a→ b)→ a = a holds in every Tarski algebra. Suppose now that the statement
is true for every X of cardinality n > 0, and let us show it holds for every
X of cardinality n + 1. If X = {b0, . . . , bn}, then, by inductive hypothesis,
(a→ X)→ a = (a→ bn)→ ({a→ bn−1, . . . , a→ b0} → a) = (a→ bn)→ a =
a.

Lemma 6.2. For every Tarski algebra A and every X,Y ⊆ω A,

(Y → X)→ Y ≤ Y .

Proof. Since Y =
∧
a∈Y a, it is enough to show that for every a ∈ Y ,

(Y → X)→ Y ≤ a.

If a ∈ Y , then Y ≤ a and so a → X ≤ Y → X. Hence, (Y → X) → a ≤
(a → X) → a = a, the last equality holding by the lemma above. Moreover,
(Y → X)→ Y ≤ (Y → X)→ a. Thus, (Y → X)→ Y ≤ a.

Corollary 6.3. If A is a Tarski algebra, then L∧S(A) is a Tarski algebra.

Proof. The algebra 〈L∧S(A),→〉, as a subalgebra of 〈AS ,→π〉, is a Hilbert al-
gebra. So, if X,Y ⊆ω A, then Y ∧ (Y → X) ≤ Y , which implies that
Y ≤ (Y → X) → Y . This, together with the lemma above, concludes the
proof.

Theorem 6.4. For every Tarski algebra A and every u, v in AS ,

(u→π v)→π u = u.
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Proof. By residuation, and since u ∧ (u →π v) ≤ u, we get that u ≤ (u →π

v)→π u. For the converse inequality, let us first show that for every u, v ∈ AS ,
(u→π v)→π u ≤ u iff for every I ∈ I and every G ∈ F ,

([I]→π [G])→π [I] ≤ [I].

Indeed, by density, u =
∧
{[I] : I ∈ I, u ≤ [I]}, so it is enough to show that,

if u ≤ [I] and [G] ≤ v, then (u →π v) →π u ≤ ([I] →π [G]) → [I]. By
assumptions, [I]→π [G] ≤ [I]→π v ≤ u→π v, hence

(u→π v)→π u ≤ ([I]→π [G])→π u ≤ ([I]→π [G])→π [I].

Let us show that, for every I ∈ I and every G ∈ F ,

([I]→π [G])→π [I] ≤ [I].

By Proposition 5.11, ([I]→π [G])→π [I] = [X]→π [I], where

X = {Z : (∃X ∈ G)(∃Y ∈ I) Y → X ≤S Z} ∈ F .

So, by Propositions 5.10 and 5.11:

([I]→π [G])→π [I] = [X]→π [I]

= [{W : (∃Z ∈ X)(∃Y ∈ I) W ≤S Z → Y }]
= [{W : (∃X ∈ G)(∃Y , ∃Y ′ ∈ I) W ≤S (Y ′ → X)→ Y }].

and moreover,

Y = {W : (∃X ∈ G)(∃Y , ∃Y ′ ∈ I) W ≤S (Y ′ → X)→ Y } ∈ I.

Hence, to show that [Y] ≤ [I], we need to show that Y ⊆ I. If W ∈ Y, then
W ≤S (Y ′ → X)→ Y for some X ∈ G, Y , Y ′ ∈ I. Since I is up-directed, then
Y , Y ′ ≤S Y ′′ for some Y ′′ ∈ I. Thus, Y ′′ → X ≤S Y ′ → X, and so, using the
lemma above,

W ≤S (Y ′ → X)→ Y ≤S (Y ′′ → X)→ Y ≤S (Y ′′ → X)→ Y ′′ ≤S Y ′′,

which implies that W ∈ I.
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