GALOIS THEORY 2015/2016 EXERCISE SHEET 11

- (1) Let V_4 denote the subgroup of S_4 generated by the elements of cycle type (2, 2). By considering the action of S_4 on the set of elements of cycle type (2, 2) by conjugation, show that V_4 is a normal subgroup of S_4 , and the quotient S_4/V_4 is isomorphic to S_3 .
- (2) Let $\mathbb{C}(T_1, T_2, T_3, T_4)$ be the field of fractions of a polynomial algebra in four variables.
 - (a) Let K denote the fixed field $\mathbb{C}(T_1, T_2, T_3, T_4)^{S_4}$ with respect to the natural action of S_4 on the set $\{T_1, T_2, T_3, T_4\}$. Show that the polynomial

$$F(X) = (X - T_1T_2 - T_3T_4)(X - T_1T_3 - T_2T_4)(X - T_1T_4 - T_2T_3)$$

1

lies in K[X].

- (b) Let L be the splitting field of F, thought of as a subextension of $\mathbb{C}(T_1, T_2, T_3, T_4)|K$. Show that the Galois group of L|K is S_3 , and that the Galois group of $\mathbb{C}(T_1, T_2, T_3, T_4)|L$ is V_4 .
- (c) Use this to write $\mathbb{C}(T_1, T_2, T_3, T_4)|K$ as a radical extension.

Comments, corrections, questions etc to netandogra@gmail.com.