GALOIS THEORY 2015/2016 EXERCISE SHEET 2

(1) Define the polynomials $\Phi_n(X) \in \mathbb{Q}(X)$ inductively as follows. $\Phi_1(X)$ is defined to be X-1. For n > 1, define $\Phi_n(X)$ by

$$\Phi_n(X) := \frac{X^n - 1}{\prod \Phi_d(X)}$$

where the product is over all integers $1 \le d < n$ such that d divides n.

- (a) Show that $\Phi_n(X)$ is in $\mathbb{Q}[X]$ and that its roots in \mathbb{C} are exactly the primitive *n*th roots of unity.
- (b) Let ζ be a root of $\Phi_n(X)$. Calculate the size of $\operatorname{Hom}_{\mathbb{Q}}(\mathbb{Q}(\zeta), \mathbb{C})$.
- (c) Deduce that the polynomial $\Phi_n(X)$ is irreducible over \mathbb{Q} .
- (2) Let ζ be a primitive 7th root of unity in \mathbb{C} .
 - (a) Show that

$$\alpha := \zeta + \zeta^2 + \zeta^4$$

is a root of the polynomial $X^2 + X + 2$.

(b) Suppose that, over $\mathbb{Q}(\alpha)$, $\Phi_7(X)$ factorises as

$$\Phi_7(X) = \prod_{i=1}^n F_i(X),$$

where $F_i(X)$ is a monic irreducible polynomial in $\mathbb{Q}(\alpha)[X]$ of degree $d_i > 0$. What is n, and what are d_1, \ldots, d_n ?

(3) For each of the following fields K and polynomials f(X) in K[X], find the degree [L:K] of a splitting field L, and the size of the group $\operatorname{Hom}_K(L,L)$.

1

- (a) $K = \mathbb{C}(T), f(X) = X^n T.$
- (b) $K = \mathbb{Q}(\zeta_3), f(X) = X^3 2.$
- (c) $K = \mathbb{Q}, f(X) = X^3 2.$
- (d) $K = \mathbb{F}_p(T), f(X) = X^p T.$

Comments, corrections, questions etc to netandogra@gmail.com.