GALOIS THEORY 2015/2016 EXERCISE SHEET 3

- (1) Let L|K be a finite extension, and α a nonzero element of L. Let f(X) be the minimal polynomial of α .
 - (a) For β a nonzero element of K, what is the minimal polynomial of $\beta \alpha$?
 - (b) For β as above, what is the minimal polynomial of $\alpha \beta$?
 - (c) What is the minimal polynomial of $1/\alpha$?
- (2) Let $K = \mathbb{C}(A, B, C)$ (where A, B, C are formal variables). Let M be the splitting field of the polynomial

$$f(X) = X^3 + AX^2 + BX + C.$$

- (a) Show that f is irreducible.
- (b) What is the degree of M|K?
- (c) Let α, β and γ be the roots of f(X) in M. Show that $M = \mathbb{C}(\alpha, \beta, \gamma)$.
- (3) Find the degree of a splitting field of the polynomial $f(X) = X^{11} T$ over $\mathbb{F}_3(T)$.
- (4) Let $K = \mathbb{F}_p(T)$, and let a be an element of K. Let $f(X) = X^p X + a$.
 - (a) Show that, for all b in \mathbb{F}_p ,

$$f(X) = f(X+b)$$

1

(b) Suppose that f does not have a root in K. Let L be a splitting field of f. What is the degree of L|K? What is the size of $\operatorname{Hom}_K(L, L)$?

Comments, corrections, questions etc to netandogra@gmail.com.