GALOIS THEORY 2015/2016 EXERCISE SHEET 5

- (1) Do the following extensions of fields exist? In each case, either give an example or show non-existence.
 - (a) A finite extension L|K which is normal but not separable.
 - (b) A finite extension L|K which is separable but not normal.
 - (c) A finite extension L|K, and a subextension F, such that L|K is separable but L|F is not separable.
 - (d) A finite extension L|K, and a subextension F, such that L|K is separable but F|K is not separable.
 - (e) A finite extension L|K, and a subextension F, such that L|K is normal but L|F is not normal.
 - (f) A finite extension L|K, and a subextension F, such that L|K is normal but F|K is not normal.
 - (g) A finite extension L|K, and a subextension F, such that F|K and L|F are normal but L|K is not normal.
 - (h) A finite extension L|K which is neither normal nor simple.
- (2) Let L|K be a finite extension. Let F_1 and F_2 be subextensions.
 - (a) Suppose F_1 and F_2 are separable. Show that F_1F_2 is separable.
 - (b) Suppose F_1 and F_2 are normal. Show that F_1F_2 is normal.
- (3) Let p > 2 be an odd prime number.
 - (a) Show that $f(X) = X^4 + 1$ is not irreducible in $\mathbb{F}_p[X]$. Find the irreducible factors of f(X) when p = 3, 5 and 17.

1

(b) For which p is $X^2 + 1$ irreducible in $\mathbb{F}_p[X]$?

Comments, corrections, questions etc to netandogra@gmail.com.