GALOIS THEORY 2015/2016 EXERCISE SHEET 6

Questions marked with a star are optional.

- (1) (a) Show that for any field K, and any positive integer n, the number of nth roots of unity in K, i.e. the number of x in K such that $x^n = 1$, is a divisor of n.
 - (b) Using the classification of finite abelian groups, deduce that for any field F, any finite subgroup of F[×] is cyclic.
- (2) Recall that we saw in lectures that the cyclotomic polynomial $\Phi_n(X)$ is irreducible, and deduced that $\mathbb{Q}(\zeta_n)|\mathbb{Q}$ is Galois of degree $\varphi(n)$, with Galois group

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \simeq \prod (\mathbb{Z}/p_i^{n_i})^{\times}$$

- where $n = \prod p_i^{n_i}$ is the decomposition of n into its prime factors.
- (a) Show that for any finite abelian group G, there exists a set of primes p_1, \ldots, p_m , and a surjective group homomorphism

$$\prod_{i=1}^m \mathbb{Z}/(p_i - 1)\mathbb{Z} \to G.$$

(You may use Dirichlet's Theorem on primes in arithmetic progressions without proving it!)

(b) Deduce that for any finite abelian group G, there exists a Galois extension $L|\mathbb{Q}$ such that

$$\operatorname{Gal}(L|\mathbb{Q}) \simeq G.$$

(3) Let *m* be an element of $(\mathbb{Z}/n\mathbb{Z})^{\times}$. Let *k* denote the order of *m* in the group $(\mathbb{Z}/n\mathbb{Z})^{\times}$. Let *H* denote the subgroup of $\operatorname{Gal}(\mathbb{Q}(\zeta_n)|\mathbb{Q})$ generated by the automorphism

$$\zeta\mapsto \zeta^m$$

Let $L = \mathbb{Q}(\zeta_n)^H$.

(a) For every *n*th root of unity ζ , define

$$\alpha(\zeta) := \sum_{i=0}^{k-1} \zeta^{m^i}.$$

Show that for every such ζ , $\alpha(\zeta)$ is an element of $\mathbb{Q}(\zeta_n)$, and that L is generated by the set $\{\alpha(\zeta):\zeta \text{ a primitive } n \text{th root of unity }\}.$

- (b) Using part (a), find an extension of \mathbb{Q} which is Galois with Galois group $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ (here 'find' can be taken to mean: write down elements $\alpha_1, \ldots, \alpha_n$ in \mathbb{C} such that $\mathbb{Q}(\alpha_1, \ldots, \alpha_n)$ is Galois over \mathbb{Q} with Galois group isomorphic to $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$.)
- (c) *Show that $L = \mathbb{Q}(\alpha(\zeta))$ for any primitive *n*th root of unity ζ .

Comments, corrections, questions etc to netandogra@gmail.com.