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Abstract. We further develop the abstract representation theory of affine Hecke
algebras with arbitrary positive parameters. We establish analogues of several re-
sults that are known for reductive p-adic groups. These include: the relation
between parabolic induction/restriction and Hermitian duals, Bernstein’s second
adjointness and generalizations of the Langlands classification. We check that, in
the known cases of equivalences between module categories of affine Hecke alge-
bras and Bernstein blocks for reductive p-adic groups, such equivalences preserve
Hermitian duality.

We also initiate the study of generic representation of affine Hecke algebras.
Based on an analysis of the Hecke algebras associated to generic Bernstein blocks
for quasi-split reductive p-adic groups, we propose a fitting definition of genericity
for modules over affine Hecke algebras. With that notion we prove special cases
of the generalized injectivity conjecture, about generic subquotients of standard
modules for affine Hecke algebras.
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Introduction

Affine Hecke algebras typically arise in two different ways:

• from a presentation with generators and relations,
• from a Bernstein block of smooth representations of a reductive p-adic group.

Date: September 9, 2023.
2010 Mathematics Subject Classification. 20C08, 22E50.
Keywords: Hecke algebras, parabolic induction, generic representations.

1



2 E.M. OPDAM AND M.S. SOLLEVELD

The former is more general because the q-parameters for roots of different lengths
can be chosen independently, whereas for p-adic groups there is always some alge-
braic relation between the various q-parameters. Affine Hecke algebras are simpler
than p-adic groups, and that has made it possible to derive many results about
representations of reductive p-adic groups by studying Hecke algebras.

The motivation for this paper comes from two directions. Firstly, there are well-
known results in the representation theory of p-adic groups for which no Hecke
algebra version has been worked out. Here we are thinking mainly of more algebraic
aspects, roughly speaking the parts of Renard’s monograph [Ren] that also make
sense for Hecke algebras. We want to prove analogues of those results using only
Hecke algebras, that should be easier than for p-adic groups.

Secondly, we are interested in the generalized injectivity conjecture [CaSh], about
generic subquotients of standard representations of quasi-split reductive p-adic groups.
While this has been verified in many cases [Dij], it remains open in general. We hope
that an approach via Hecke algebras can provide new insights in that conjecture.

Hermitian duals
In the representation theory of groups, contragredients of representations play a

substantial role. Therefore it would be desirable to develop a notion of contragredient
representations for Hecke algebras. While that can be done, there is a problem.
Namely, given a smooth representation π in Bernstein block for a reductive p-adic
group G, the contragredient π∨ need not lie in the same Bernstein block. So, if
this Bernstein block would be equivalent to the module category of an affine Hecke
algebra H, a notion of contragredience for H would never agree with contragredience
for smooth G-representations.

Instead, we prefer to use Hermitian duals of complex G-representations, that is,
the contragredient of the complex conjugate of a representation. The main advantage
is that Hermitian duality for reductive p-adic groups always sends representations
in one Bernstein block to the same Bernstein block [Sol7, Lemma 2.2].

For an affine Hecke algebra H, with underlying (extended) affine Weyl group
W n X and positive q-parameters, there is a natural conjugate-linear involution.
In the Iwahori–Matsumoto presentation, it is given simply by T ∗w = Tw−1 for all
w ∈ W n X. The Hermitian dual of an H-representation (π, V ) is defined as the
vector space V † of conjugate-linear functions V → C, with the action

(1) π†(h)λ(v) = λ(π(h∗)v) v ∈ V, λ ∈ V †.
Before we formulate our first result, let us point out that the affine Hecke algebras
that arise from reductive p-adic groups are often of a slightly more general kind.
Let Γ be a finite group acting on H, preserving all the structure used to define H.
(See Section 8 for the precise setup.) Then we can form the crossed product HoΓ,
which is sometimes called an extended affine Hecke algebra. We may also involve a
2-cocycle \ : Γ2 → C×, which gives rise to a twisted affine Hecke algebra HoC[Γ, \].
Of course Γ may be the trivial group, in which case H o Γ and H o C[Γ, \] reduce
to H. We prove all our results first for H, and we generalize them to H o Γ or
HoC[Γ, \] in Section 8.

Theorem A. (see Theorem 5.3 and Section 8)
Let G be a reductive group over a non-archimedean local field and let Rep(G)s be
a Bernstein block in the category of smooth complex G-representations. Suppose
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that Rep(G)s is equivalent to the module category of a twisted affine Hecke algebra
HoC[Γ, \], via a Morita equivalence as in [Hei] or [Sol6, §10]. Then the equivalence
Rep(G)s ∼= Mod(HoC[Γ, \]) preserves Hermitian duals.

The Hermitian duals from (1) play a crucial role in our new results about repre-
sentations of affine Hecke algebras, they are involved in the proofs of all the main
results mentioned below.

Representation theory of affine Hecke algebras
For good notions of parabolic subalgebras, parabolic induction and parabolic re-

striction for HoC[Γ, \] with Γ nontrivial, we need some conditions on subgroups of
Γ. These are listed in Condition 8.1, which we assume the remainder of the intro-
duction. In our setup, the root system R underlying H comes with a basis ∆, and
parabolic subalgebras HP oC[ΓP , \] are parametrized bijectively by subsets P ⊂ ∆.

Let w∆ be the longest element of W = W (R) and define P op = w∆(−P ). This
is a subset of ∆, which plays the role that an opposite parabolic subgroup plays for
reductive groups. There is a *-algebra isomorphism

ψ∆P : HP oC[ΓP , \] → HP op oC[ΓP op , \]
Tw 7→ Tw∆wPwwPw∆ w ∈WP nX,

where wP is the longest element of WP = W (RP ).

Theorem B. (see Propositions 2.5, 2.7 and Section 8)

(a) Let ρ be a representation of HPoC[ΓP , \]. Then ind
HoC[Γ,\]

HPoC[ΓP ,\]
(ρ†) is canonically

isomorphic to ind
HoC[Γ,\]

HPoC[ΓP ,\]
(ρ)†.

(b) Let π be an HoC[Γ, \]-representation. There is a canonical isomorphism

Res
HoC[Γ,\]

HPoC[ΓP ,\]
(π†) ∼= Res

HoC[Γ,\]

HPopoC[ΓPop ,\]
(π)† ◦ ψ∆P .

For Hecke algebras it is easily seen that the parabolic restriction functor

Res
HoC[Γ,\]

HPoC[ΓP ,\]
: Mod(HoC[Γ, \])→ Mod(HP oC[ΓP , \])

is the right adjoint of the parabolic induction functor

ind
HoC[Γ,\]

HPoC[ΓP ,\]
: Mod(HP oC[ΓP , \])→ Mod(HoC[Γ, \]).

Like for p-adic groups, it required more effort to find the second adjointness relation
for parabolic induction. For graded Hecke algebras that had been achieved in [BaCi],
the arguments for affine Hecke algebras are somewhat more complicated.

Theorem C. (see Theorem 3.1 and Section 8)

(a) The left adjoint of ind
HoC[Γ,\]

HPoC[ΓP ,\]
is

ψ∗∆P ◦ Res
HoC[Γ,\]

HPopoC[ΓPop ,\]
: π 7→ Res

HoC[Γ,\]

HPopoC[ΓPop ,\]
(π) ◦ ψ∆P .

(b) The right adjoint of Res
HoC[Γ,\]

HPoC[ΓP ,\]
is

ind
HoC[Γ,\]

HPopoC[ΓPop ,\]
◦ ψ∆P∗ : ρ 7→ ind

HoC[Γ,\]

HPopoC[ΓPop ,\]
(ρ ◦ ψ−1

∆P ).

This is useful in several ways, for instance to find a filtration of the functor
parabolic induction followed by parabolic restriction (Proposition 8.3).

Recall that the Langlands classification for a reductive p-adic groups says:
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(i) Every standard G-representation has a unique irreducible quotient.
(ii) This yields a bijection between the set of standard G-representations (up to

isomorphism) and the set of irreducible smooth G-representations (also up to
isomorphism).

By definition a standard G-representation is of the form IGP (τ ⊗χ), where P = MU
is a parabolic subgroup of G, τ is an irreducible tempered M -representation and
χ is an unramified character of M in positive position with respect to P . In [Ren]
the positivity of χ was relaxed to a more algebraic regularity condition, such that
(i) remains valid. Via contragredients or Hermitian duals, one can easily derive a
version of the Langlands classification with subrepresentations instead of quotients.

For affine Hecke algebras the normal version of the Langlands classification is
known from [Eve, Sol2], but variations like those mentioned above had not been
worked out yet. We say that an HP oC[ΓP , \]-representation π is WΓ, P -regular if:

for all weights t of π and all w ∈WPΓPD
P,P
+ , wt is not a weight of π, where

DP,P
+ = {d ∈WΓ : d(P ) ⊂ R+, d−1(P ) ⊂ R+, d /∈ ΓP }.

This notion relates to standard H-modules in the following ways (Proposition 4.8).

• Suppose that an irreducible tempered HP -representation τ is twisted by a
weight t in positive position for HP . Then τ ⊗ t is W,P -regular.
• Suppose that an irreducible tempered HP -representation τ is twisted by a

weight t in negative position for HP . Then (τ ⊗ t) ◦ψ−1
∆P is a W,P op-regular

HP op-representation.

Theorem D. (see Theorem 4.7 and Section 8)
Let P ⊂ ∆ and let π be an irreducible representation of HP oC[ΓP , \].

(a) Suppose that π is WΓ, P -regular. Then ind
HoC[Γ,\]

HPoC[ΓP ,\]
(π) has a unique irreducible

quotient, namely ind
HoC[Γ,\]

HPoC[ΓP ,\]
(π) modulo the kernel of the intertwining operator

associated to (w∆wP , P, π).

(b) Suppose that π ◦ ψ−1
∆P is WΓ, P op-regular. Then ind

HoC[Γ,\]

HPoC[ΓP ,\]
(π) has a unique

irreducible subrepresentation, namely the image of the intertwining operator as-
sociated to (wPw∆, P

op, π ◦ ψ−1
∆P ).

Genericity of representations
For quasi-split reductive p-adic groups, the notion of genericity is well-known. For

irreducible representations it is equivalent to the existence of a Whittaker model. It
is especially useful for the normalization of intertwining operators, for γ-factors via
the Langlands–Shahidi method and to select one member from an L-packet in the
local Langlands correspondence.

For arbitrary connected reductive p-adic groups, a similar definition of genericity
is available [BuHe]. In that generality it is convenient to consider representations
which are simply generic, meaning that the multiplicity one property of Whittaker
functionals holds by assumption.

For (extended) affine Hecke algebras no independent definition of genericity was
known, so we provide one. The elements Tw with w ∈WΓ span a finite dimensional
subalgebra H(W, qλ) o Γ of H o Γ. Let detX be the determinant of the action of
WΓ on the lattice X. The Steinberg representation of H(W, qλ) o Γ has dimension
one and is defined by St(Tw) = detX(w). We say that a representation π of H o Γ
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is generic if its restriction to H(W, qλ) o Γ contains St. This definition is justified
by the following result.

Theorem E. (see Proposition 6.2 and Theorem A.1)
Let G be a connected reductive group over a non-archimedean local field. Let Rep(G)s

be a Bernstein block of smooth complex G-representations, such that the underlying
supercuspidal representations are simply generic.

(a) Rep(G)s is equivalent to the module category of an extended affine Hecke algebra
Ho Γ with parameters in R≥1.

(b) With the normalizations from [Sol7, §2], the equivalence Rep(G)s ∼= Mod(HoΓ)
preserves genericity.

For affine Hecke algebras with q-parameters in R≥1, one can hope for a version of
the generalized injectivity conjecture. Using our previous findings in the represen-
tation theory of Hecke algebras, we take some steps in that direction.

By definition the maximal commutative subalgebra A ∼= C[X] of H is the unique
minimal parabolic subalgebra of HoΓ. The basis ∆ of R determines a positive cone
in Hom(X,R>0).

Theorem F. (see Propositions 7.6 and 8.6)
Let Ho Γ be an extended affine Hecke algebra with q-parameters in R≥1.

(a) For t ∈ Hom(X,C×), the parabolically induced representation indHoΓ
A (t) has a

unique generic constituent, say πt.
(b) When |t| lies in the closure of the positive cone in Hom(X,R>0), πt is a subrep-

resentation of indHoΓ
A (t).

(c) When |t−1| lies in the closure of the positive cone in Hom(X,R>0), πt is a
quotient of indHoΓ

A (t).

In spite of this result, the generalized injectivity conjecture does not always hold
for standard H-representations that are induced from parabolic subalgebras other
than A, see Example 7.7. The problem seems to be that arbitrary q-parameters (in
R≥1) offer too much freedom. We expect that the generalized injectivity conjecture
does hold for affine Hecke algebras H whose q-parameters come from reductive p-
adic groups. To all appearances such q-parameters are geometric in the sense of
[Sol5, §5.3], so that algebro-geometric techniques to study representations of such
Hecke algebras are available.

1. Preliminaries

We fix notations and recall a few basic notions about affine Hecke algebras. For
more background we refer to [Lus, Opd2, Sol5].
Let R be a root system with basis ∆ and positive roots R+. LetR = (X,R, Y,R∨,∆)
be a based root datum. It yields a Weyl group W = W (R), with set of simple
reflections S = {sα : α ∈ ∆}. For α ∈ R such that α∨ ∈ R∨ is maximal with respect
to ∆∨, we define the simple affine reflection

s′α : X → X
x 7→ sα(x) + α = x+ (1− 〈x, α∨〉)α.

Then Saff := S ∪ {s′α : α∨ ∈ R∨max} is a set of Coxeter generators for the affine Weyl
group

Waff = 〈Saff〉 = W n ZR.
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It is a normal subgroup of the extended affine Weyl group W (R) = W n X. The
length function ` of Waff extends naturally to W n X. Moreover the set of length
zero elements Ω = {w ∈W nX : `(w) = 0} is a group and

W nX = Waff o Ω.

We fix q ∈ R>1 and we let λ, λ∗ : R→ R be functions such that

• if α, β ∈ R are in the same W -orbit, then λ(α) = λ(β) and λ∗(α) = λ∗(β);
• if α∨ /∈ 2Y , then λ∗(α) = λ(α).

To every simple (affine) reflection we associate a q-parameter, by

qsα = qλ(α) and qs′α = qλ
∗(α).

The Iwahori–Hecke algebra H(Waff , λ, λ
∗, q) can be presented as the vector space

with basis {Nw : w ∈Waff} and multiplication rules (for w ∈Waff and s ∈ Saff)

(1.1) NwNs =

{
Nws if `(ws) = `(w) + 1

Nws + (q
1/2
s − q−1/2

s )Nw if `(ws) = `(w)− 1
.

Notice that q
1/2
s is unambiguous, because qs ∈ R>0. The conjugation action of Ω on

Waff induces an action on H(Waff , λ, λ
∗, q). That enables us to construct the affine

Hecke algebra

H := H(R, λ, λ∗, q) = H(Waff , λ, λ
∗, q) o Ω,

which has a vector space basis {Nw : w ∈ W n X}. This is a version of the
Iwahori–Matsumoto presentation of H(R, λ, λ∗, q). More common, and already used
in [IwMa], is the same presentation expressed in terms of the basis {Tw : w ∈WnX},
where Ts = q

1/2
s Ns for s ∈ Saff .

There is another well-known presentation, due to Bernstein. To that end, we
define elements θx (x ∈ X) by the following recipe. If x = x1−x2 where 〈x1, α

∨〉 ≥ 0
and 〈x2, α

∨〉 ≥ 0 for all α ∈ ∆, then θx = Nx1N
−1
x2

.
The set {θx : x ∈ X} spans a commutative subalgebra A of H, canonically

isomorphic with C[X]. Let H(W, qλ) be the Iwahori–Hecke algebra of W , with
respect to the parameter function qλ : R → R>0. According to Bernstein, the
multiplication maps

(1.2) H(W, qλ)⊗A → H ← A⊗H(W, qλ)

are bijections. The cross relations for multiplication of elements of H(W, qλ) and of
A can be described explicitly. It follows from those relations that the centre of H is
AW , where W acts on A ∼= C[X] via its canonical action on X.

For a set of simple roots P ⊂ ∆ we have a parabolic subrootsystem RP ⊂
R and a parabolic subgroup WP = W (RP ). The parabolic subalgebra HP ⊂
H is generated by A and the Nw with w ∈ WP . One can identify HP with
H(X,RP , Y, R

∨
P , P, λ, λ

∗, q). In particular H∅ = A and H∆ = H.
We write T = HomZ(X,C×), this is a complex torus. It has subtori

TP = HomZ(X/X ∩QP,C×), TP = HomZ(X/P∨⊥,C×),

where P∨⊥ = {x ∈ X : 〈x, α∨〉 = 0 ∀α ∈ P}. Any t ∈ TP gives rise to an algebra
automorphism

ψt : HP → HP
Nwθx 7→ t(x)Nwθx w ∈WP , x ∈ X.
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For an HP -representation π and t ∈ TP we write π ⊗ t = π ◦ ψt.
We define a conjugate-linear involution * on H by(∑

w∈WnX
zwNw

)∗
=
∑

w∈WnX
zwNw−1 .

Here we need qs ∈ R>0 for all s ∈ Saff . We can regard * as an R-linear isomorphism
from H to its opposite algebra. This involution interacts well with the trace

(1.3) τ : H → C, τ(Nw) =

{
1 if w = e
0 if w ∈W (R) \ {e} .

Namely, the formula

(1.4) 〈h1, h2〉 = τ(h1h
∗
2) h1, h2 ∈ H

defines an inner product on H, linear in the first variable. The set {Nw : w ∈W (R)}
is an orthonormal basis of H with this inner product. We note that (1.4) makes the
left regular representation of H pre-unitary (i.e. a *-representation on an inner
product space that need not be complete):

(1.5) 〈h1h2, h3〉 = τ(h1h2h
∗
3) = τ(h2h

∗
3h1) = 〈h2, h

∗
1h3〉 h1, h2, h3 ∈ H.

The parabolic subalgebra HP has its own involution ∗P , which usually differs from
∗|HP . In fact HP is typically not a *-subalgebra of H. Let wP be the longest element
of WP . Recall that wP has order two and that the set of positive roots made negative
by wP is precisely R+

P . By [Opd1, Proposition 1.12]:

(1.6) ∗P (θx) = NwP θ−wP (x)N
−1
wP
.

For P = ∅ we get w∅ = 1, so ∗∅(θx) = θ−x.

For a subset W̃ ⊂ W , let H(W̃ ) be the linear subspace of H(W, qλ) spanned by

{Nw : w ∈ W̃}. Let

WP = {w ∈W : w(P ) ⊂ R+}
be the set of shortest length representatives for W/WP . By (1.2) the multiplication
map H(WP ) ⊗ HP → H is a linear bijection. In particular every h ∈ H can be
written as

(1.7) h =
∑

w∈WP
Nwh

P
w for unique hPw ∈ HP .

The next result is analogous to [BaMo, Proposition 1.4] for graded Hecke algebras.

Lemma 1.1. (h∗)Pe = (hPe )∗P for all h ∈ H.

Proof. By conjugate-linearity it suffices to consider h of the form Nwθx with w ∈W
and x ∈ X. From (1.6) we see that

h∗ = Nw∆θ−w∆(x)N
−1
w∆
Nw−1 and (hPe )∗P =

{
NwP θ−wP (x)N

−1
wP
Nw−1 w ∈WP ,

0 w /∈WP .

We recall from [Hum, §1.8] that

`(w−1) + `(ww∆) = `(w∆) = `(w∆w) + `(w−1).

By definition of the multiplication in H(W, qλ):

Nw∆wNw−1 = Nw∆ = Nw−1Nww∆ ,(1.8)

Nw∆θ−w∆(x)N
−1
w∆
Nw−1 = Nw∆θ−w∆(x)N

−1
ww∆

.(1.9)
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For a simple reflection s ∈ W , N−1
s = Ns + (q

−1/2
s − q1/2

s )Ne. That and the multi-
plication relations in the Bernstein presentation of H [Lus, §3] show that

(1.10) θyN
−1
s −N−1

s θs(y) ∈ A for all y ∈ X.

We denote the Bruhat order on W by ≤. Applying (1.10) recursively, (1.9) can
be expressed as Nw∆

∑
v∈W,v≤ww∆

N−1
v av for suitable av ∈ A. By (1.8) that equals∑

v∈W,v≤ww∆
Nw∆v−1av. Here v−1 ≤ w∆w

−1, so w∆v
−1 ≥ w−1.

Suppose that w /∈WP . Any reduced expression of w−1 contains simple reflections
not in WP , so the same goes for w∆v

−1 with v as above. Hence w∆v
−1 /∈ WP , and

it can be written as uw′ with u ∈WP \{e} and w′ ∈WP . Thus Nw∆v−1av ∈ NuHP .

That works for every v ≤ ww∆, showing that (1.9) lies in H(WP \{e})HP . In other
words, (h∗)Pe = 0.

Suppose that w ∈WP . We need to show that H(WP \{e})HP contains

(1.11) Nw∆θ−w∆(x)N
−1
w∆
Nw−1 −NwP θ−wP (x)N

−1
wP
Nw−1 .

With (1.8) we rewrite this element as(
Nw∆θ−w∆(x)N

−1
wPw∆

−NwP θ−wP (x)

)
N−1
wP
Nw−1 .

Reasoning as above we find

Nw∆θ−w∆(x)N
−1
wPw∆

=
∑

v∈W,v≤wPw∆

Nw∆v−1av.

Here w∆v
−1 ≥ wP , so this only belongs to WP if v = wPw∆. From (1.10) one

obtains

awPw∆ = θwPw∆(−w∆(x)) = θ−wP (x).

Then (1.11) reduces to ∑
v∈W,v<wPw∆

Nw∆v−1avN
−1
wP
Nw−1 .

The same argument as in the case w /∈WP shows that this lies inH(WP \{e})HP . �

2. Hermitian duals

For any complex vector space V , let V † be space of conjugate-linear functions from
V to C. In case V has a topology, it is understood that V † consists of the continuous
conjugate-linear functionals on V . If (π, Vπ) is an H-representation, then H acts on

V †π by

(2.1) (h · λ)(v) = λ(h∗v) h ∈ H, v ∈ Vπ, λ ∈ V †π .

This defines the Hermitian dual (π†, V †π ) of the H-representation (π, Vπ). For any
(ρ, Vρ) ∈ Mod(H) there is a conjugate-linear “transposition” isomorphism

(2.2)
HomH(π, ρ†) ∼= HomH(ρ, π†)

φ 7→ φ†

Here φ† sends w ∈ Vρ to [v 7→ φ(v)w] with v ∈ Vπ.
Sometimes a representation is isomorphic to its Hermitian dual. For example,

suppose that Vπ is a Hilbert space and that the representation π is unitary:

〈π(h)v, v′〉 = 〈v, π(h∗)v′〉 v, v′ ∈ Vπ, h ∈ H.
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Then (π†, V †π ) can be identified with (π, Vπ) via the inner product. Similarly we can
consider the left regular representation of H. Via τ , we can identify

(2.3) H† =
∏

w∈W (R)
CNw,

a completion of H. This H† is naturally an H-bimodule, and (1.5) remains valid for
h1, h3 ∈ H, h2 ∈ H†. Hence the Hermitian dual of H is H†, with H acting by left
multiplication on both. The projectivity of H, in combination with (2.2), implies
that HomH(?,H†) is an exact functor. In other words, H† is an injective H-module.

The module H† enables us to describe Hermitian duals of modules induced from
H(W, qλ). We recall that, as H(W, qλ) is finite dimensional and semisimple, all
its irreducible modules appear in the (left) regular representation. In fact each
irreducible module is the image of suitable a minimal idempotent.

Lemma 2.1. (a) Let V ∈ Mod(H(W, qλ)) be irreducible, and let pV ∈ H(W, qλ) be
an idempotent so that V ∼= H(W, qλ)pV . The Hermitian dual of indHH(W,qλ)V is

H† ⊗H(W,qλ) V
†, with the pairing

〈h1 ⊗ p∗V , h2 ⊗ pV 〉 = τ(h1p
∗
V h
∗
2) h1 ∈ H†, h2 ∈ H.

(b) The functor H†⊗H(W,qλ) : Mod(H(W, qλ)) → Mod(H) is right adjoint to the

restriction functor ResHH(W,qλ).

Proof. (a) The H(W, qλ)-module H(W, qλ)p∗V is the Hermitian dual of H(W, qλ)pV ,
with respect to the pairing

〈h1p
∗
V , h2pV 〉 = τ(h1p

∗
V h
∗
2) h1, h2 ∈ H(W, qλ).

Since H(W, qλ)pV is a direct summand of the left regular representation of H(W, qλ),
indHH(W,qλ)H(W, qλ)pV is a direct summand of the H-representation on

indHH(W,qλ)H(W, qλ) = H.

Similarly H† ⊗H(W,qλ) H(W, qλ)p∗V is a direct summand of the H-module H†. For

h1 ∈ H† and h2 ∈ H we have

〈h1p
∗
V , h2〉 = τ(h1p

∗
V h
∗
2) = 〈h1p

∗
V , h2pV 〉.

Hence the Hermitian dual we want is

H† ⊗
H(W,qλ)

H(W, qλ)p∗V
∼= H† ⊗

H(W,qλ)
V †.

(b) Let Y ∈ Mod(H) and V ∈ Mod(H(W, qλ)). We regard H† ⊗H(W,qλ) V as a set
of conjugate-linear maps from H to V . One checks readily that the maps

HomH(W,qλ)(Y, V ) ←→ HomH(Y,H† ⊗H(W,qλ) V )

f 7→
[
y 7→ [h 7→ f(h∗y)]

]
[y 7→ φ(y)(1)] 7→ φ

are natural bijections. �

The relation between Hermitian duals and tensoring with characters can be de-
scribed easily:

Lemma 2.2. Let (π, Vπ) be an HP -representation and let t ∈ TP . The Hermitian
dual of π ⊗ t is π† ⊗ t̄−1.
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Proof. Take v ∈ Vπ, λ ∈ V †π , w ∈WP and x ∈ X. With (1.6) we compute

λ
(
(π ⊗ t)(Nwθx)v

)
= λ

(
t(x)π(Nwθx)v

)
= t(x)λ

(
π(Nwθx)v

)
= t(x)

(
π†((Nwθx)∗P )λ

)
(v) = t(x)

(
π†((Nwθx)∗P )λ

)
(v)

= t(x)
(
π†(NwP θ−wP (x)N

−1
wP
Nw−1)λ

)
(v)

=
(
(π† ⊗ wP t−1

)(NwP θ−wP (x)N
−1
wP
Nw−1)λ

)
(v)

=
(
(π† ⊗ wP t−1

)((Nwθx)∗P )λ
)
(v).

This shows that (π ⊗ t)† = π† ⊗ wP t−1
. But wP t = t because wP ∈ W (RP ) and

t ∈ HomZ(X/X ∩QP,C×). �

We want to find the relation between parabolic induction (from HP to H) and
Hermitian duals. That will be achieved in a few steps, the first of which is making
the relation between * and ∗P explicit.

Lemma 2.3. For w ∈WP and x ∈ X:

∗ ∗P (Nwθx) = NwNwPw∆θw∆wP (x)N
−1
wPw∆

.

Proof. By definition

∗ ∗P (Nw) = ∗(Nw−1) = Nw.

From (1.6) and the anti-homomorphism property of * we obtain

(2.4) ∗ ∗P (θx) = ∗(N−1
wP

) ∗ (θ−wP (x)) ∗ (NwP ) = N−1
wP
Nw∆θw∆wP (x)N

−1
w∆
NwP .

We note that here the lengths of the involved elements of W add up:

`(wPw∆) + `(wP ) = |R+ \R+
P |+ |R

+
P | = |R

+| = `(w∆)

Therefore NwPNwPw∆ = Nw∆ , and the right-hand side of (2.4) simplifies to
NwPw∆θw∆wP (x)N

−1
wPw∆

, proving the statement for θx.
To conclude, we use that ∗ ∗P is an algebra homomorphism. �

For h ∈ H×, let ch : H → H denote conjugation with h. We define

ψ∆P = cN−1
wPw∆

◦ ∗ ∗P : HP → H.

Since ∗ ∗P and cN−1
wPw∆

are injective algebra homomorphisms, so is ψ∆P . We write

P op = w∆(−P ).

This is a set of simple roots, it may or may not be equal to P . We note that
w∆WPw∆ = WP op . In comparison with reductive groups, P op replaces the notion
of an opposite parabolic subgroup.

Lemma 2.4. (a) For w ∈WP and x ∈ X:

ψ∆P (Nwθx) = Nw∆wPwwPw∆θw∆wP (x).

(b) ψ∆P is an *-algebra isomorphism from HP to HP op, with inverse ψ∆P op.

Proof. (a) Consider the algebra isomorphism

(2.5)
ψwPw∆ : HP op → HP

Nw′θx 7→ NwPw∆w′w∆wP θwPw∆(x) w′ ∈WP op , x ∈ X.
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Then ψ∆P ◦ ψwPw∆ : HP op → H is an injective algebra homomorphism, and by
Lemma 2.3:

(2.6)
ψ∆P ◦ ψwPw∆(Nw′θx) = cN−1

wPw∆

(
NwPw∆w′w∆wPNwPw∆θxN

−1
wPw∆

)
= N−1

wPw∆
NwPw∆w′w∆wPNwPw∆θx.

Notice that ψ∆P ◦ ψwPw∆ is the identity on A and sends H(WP op , q
λ) bijectively

to itself. For α ∈ P op, Nsα commutes with the same elements of A as ψ∆P ◦
ψwPw∆(Nsα). That forces

ψ∆P ◦ ψwPw∆(Nsα) ∈ CNe + CNsα .

Furthermore ψ∆P ◦ ψwPw∆(Nsα) has the same eigenvalues q
1/2
sα and −q−1/2

sα as Nsα ,
so it can only be Nsα or −N−1

sα . The involved constructions work for any q ∈
R>0, and depend continuously on q. For q = 1 we see directly from (2.6) that
ψ∆P ◦ ψwPw∆(Nsα) = Nsα . Hence ψ∆P ◦ ψwPw∆(Nsα) cannot be −N−1

sα for any
q ∈ R>0.

We deduce that ψ∆P ◦ ψwPw∆(Nw′) = Nw′ for w′ any simple reflection in WP op ,
and then the same follows for all w′ ∈WP op . Apply that to w′ = w∆wPwwPw∆.
(b) By part (a) and (2.6), ψ∆P ◦ ψwPw∆ is the identity on HP op . As ψwPw∆ :
HP op → HP is an isomorphism, this shows that ψ∆P is its inverse. By construction
wP op = w∆wPw∆. From that, part (a) and (2.5) we see that ψwPw∆ = ψ∆P op .

Further, from (2.5) and the definition of θx we obtain

ψwPw∆(Nw′) = NwPw∆w′w∆wP for all w′ ∈WP op oX.

This shows that ψwPw∆ is in fact a *-isomorphism, and hence so it its inverse. �

Now we can relate Hermitian duals and parabolic restriction.

Proposition 2.5. Let (π, Vπ) be an H-representation.

(a) The Hermitian dual of the HP -representation ResHHP (π) is isomorphic with

ResHHPop (π†) ◦ ψ∆P .

(b) ResHHP (π†) ∼= ResHHPop (π)† ◦ ψ∆P .

Proof. By definition

ResHHP (π)† = π† ◦ ∗ ∗P = π† ◦ cNwPw∆
◦ ψ∆P .

Since NwPw∆ ∈ H×, multiplication with π†(N−1
wPw∆

) provides an isomorphism from

the right-hand side to π† ◦ ψ∆P . By Lemma 2.4.b, that can be regarded as
ResHHPop (π†) ◦ ψ∆P .
(b) Start with part (a) for P op. Composing the representations on both sides with
ψ−1

∆P op = ψ∆P gives

ResHHP (π†) ∼= ResHHPop (π)† ◦ ψ−1
∆P op = ResHHPop (π)† ◦ ψ∆P . �

We note that the pairing underlying Proposition 2.5.a is

ResHHPop (V †π )× ResHHP (Vπ) → C
(λ, v) 7→ π†(NwPw∆)λ(v) = λ(π(Nw∆wP )v).

Similarly the pairing underlying Proposition 2.5.b is given by

ResHHP (V †π )× ResHHPop (Vπ) → C
(λ, v) 7→ π†(Nw∆wP )λ(v) = λ(π(NwPw∆)v).
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An important special case arise when P = ∅. Then ψ∆∅(θx) = θw∆(x) and Proposi-
tion 2.5 provides isomorphisms

(2.7) ResHA(π)† ∼= ResHA(π†) ◦ ψ∆∅ and ResHA(π†) ∼= ResHA(π)† ◦ ψ∆∅.

We move on to parabolic induction. Consider an HP -representation (ρ, Vρ) and its

induction indHHP (ρ). The underlying vector space is

indHHP (Vρ) = H⊗HP Vρ ∼= H(WP )⊗C Vπ.

Here WP = {w ∈ W : w(P ) ⊂ R+} denotes the set of shortest length represen-
tatives for W/WP and H(WP ) is the linear subspace of H(W, qλ) spanned by the
corresponding Nw. Following [Opd2, (4.24)] we define a sesquilinear pairing

(2.8)
H(WP )⊗C V

†
ρ × H(WP )⊗C Vρ → C

〈h′ ⊗ λ, h⊗ v〉 = τ(h′h∗)λ(v)
.

As preparation for a more general statement, we consider the left regular repre-
sentation of HP . Clearly indHHP (HP ) = H, and we already know H† from (2.3).

Multiplication in H induces a linear bijection m : H(WP ) ⊗ HP → H. The trans-
pose of m is the linear bijection

(2.9) m† : H† → H(WP )† ⊗C HP † ∼= H(WP )⊗C HP † ∼= H⊗HP HP †.

In the middle of (2.9) we identified H(WP )† with H(WP ) via the inner product on
H. Notice that H† and H ⊗HP HP † independently carry H-module structures, the
latter induced from the HP -module structure of HP †.

Lemma 2.6. The map m† : H† → indHHP (HP †) is an isomorphism of H-modules. In

particular indHHP (HP †) with the pairing (2.8) is the Hermitian dual of indHHP (HP ).

Proof. Let a, b ∈WP , h1 ∈ HP and λ ∈ HP †. For h2 ∈ H there are elements

m†
(
h2 · (m†)−1(Na ⊗ λ)

)
and h2 · (Na ⊗ λ) in indHHP (HP †).

We can compare them by pairing Nb ⊗ H(WP ) ⊗ HP , as in (2.8). In the notation
from (1.7), we compute

(2.10) 〈h2 · (Na ⊗ λ), Nb ⊗ h1〉 = 〈h2Na · (1⊗ λ), Nb ⊗ h1〉 =∑
v∈WP

〈Nv(h2Na)
P
v · (1⊗ λ), Nb ⊗ h1〉 = 〈(h2Na)

P
b · λ, h1〉.

We note that, for any w ∈WP , v ∈WP :

(2.11) 〈N∗bNv, Nw〉 = 〈Nu, NbNw〉 = 〈Nu, Nbw〉 =

{
1 v = b, w = e,
0 otherwise.

This implies

(2.12)
(
N∗bNv(h2Na)v

)P
e

=

{
(h2Na)v b = v,
0 b 6= v.

With that the right hand side of (2.10) can be rewritten as

(2.13) 〈(N∗b h2Na)
P
e · λ, h1〉 =

〈
λ,
(
(N∗b h2Na)

P
e

)∗P h1

〉
.
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On the other hand

(2.14)

〈
m†
(
h2·(m†)−1(Na ⊗ λ)

)
, Nb ⊗ h1

〉
=
〈
h2 · (m†)−1(Na ⊗ λ), Nbh1

〉
=
〈
(m†)−1(Na ⊗ λ), h∗2Nbh1

〉
= 〈Na ⊗ λ,m−1(h∗2Nb)h1〉

=
∑

v∈WP
〈Na ⊗ λ,Nv ⊗ (h∗2Nb)

P
v h1〉 = 〈λ, (h∗2Nb)

P
a h1〉

Using (2.12) we identify the last expression in (2.14) with

〈λ, (N∗ah∗2Nb)
P
e h1〉 =

〈
λ,
(
(N∗b h2Na)

∗)P
e
h1

〉
.

Lemma 1.1 guarantees that this equals (2.13), which proves that the bijection m† is
an H-module homomorphism.

By construction m−1 : H → H(WP )⊗HP and m† transfer the pairing between H
and H† to the pairing (2.8). Thus we realized H† = indHHP (HP )† as indHHP (HP †). �

In the special case P = ∅, Lemma 2.6 provides an isomorphism of H-modules

(2.15) indHA(A†) ∼= H†.
Here the embedding of A† in H† comes from (2.9):

(2.16)
ı : A† → H†

a 7→ (m†)−1(Ne ⊗ a)
.

The next result generalizes [Opd1, Theorem 2.20] and [Opd2, Proposition 4.19].

Proposition 2.7. Let (ρ, Vρ) be an HP -representation. The pairing (2.8) induces

an isomorphism indHHP (ρ†) ∼= indHHP (ρ)†.

Proof. We abbreviate indHHP to ind for the duration of this proof.

Recall that {Nw : w ∈ W} is an orthonormal basis of H(W, qλ) for the inner
product (1.4). Hence (2.8) identifies

H(WP )⊗C V
†
ρ
∼= H⊗HP (V †ρ ) with (H(WP )⊗C Vρ)

† ∼= (H⊗HP Vρ)†.
It remains to show that

(2.17) 〈ind(π†)(h∗)x, y〉 equals 〈x, ind(π)(h)y〉

for all h ∈ H, x ∈ ind(V †ρ ), y ∈ ind(Vρ).
Choose a surjective HP -homomorphism p : F ⊗ HP → Vρ, where F ⊗ HP is a

free HP -module. Dually, that yields an injective HP -homomorphism p† : V †ρ →
(F ⊗ HP )†. For v ∈ Vρ with a preimage ṽ ∈ F ⊗ HP and λ ∈ V †ρ with image

λ̃ ∈ (F ⊗HP )†, that means 〈λ, v〉 = 〈λ̃, ṽ〉.
With the functoriality of induction we obtain a surjective H-homomorphism

ind(p) : F ⊗H = ind(F ⊗HP )→ ind(Vρ),

and an injective H-homomorphism

ind(p†) : ind(V †ρ )→ ind
(
(F ⊗HP )†

)
.

Now we encounter the minor complication that it is difficult to work with (F ⊗HP )†

when F has infinite dimension. We overcome that by playing it via finitely generated
submodules. Choose a finite dimensional linear subspace Fy ⊂ F such that

y ∈ ind(p)(Fy ⊗H) = ind
(
p(Fy ⊗HP )

)
.
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It follows from Lemma 2.6 that

(2.18) indHHP
(
F †y ⊗HP †

)
= F †y ⊗ indHHP (HP †) ∼= indHHP (Fy ⊗HP )†,

with the pairing (2.8). The transpose of the inclusion iy : Fy⊗HP → F ⊗HP is the
projection

i†y : (F ⊗HP )† → (Fy ⊗HP )† = F †y ⊗ (HP )†.

To these maps we can also apply ind. In that way (2.17) can be evaluated via the

pairing of ind(Fy ⊗HP ) with ind
(
F †y ⊗ (HP )†

)
given by (2.8). More explicitly:

〈x, ind(π)(h)y〉 = 〈ind(p†)(x), h ind(p)(y)〉 = 〈ind(i†y)ind(p†)(x), h ind(p)(y)〉.

By (2.18) the right-hand side equals

〈h∗ ind(i†y)ind(p†)(x), ind(p)(y)〉 = 〈ind(i†y)ind(p†)(ind(π†)(h∗)x), ind(p)(y)〉

= 〈ind(π†)(h∗)x, y〉.

This establishes (2.17). �

3. Second adjointness

For affine Hecke algebras the standard adjointness for parabolic induction reads

(3.1) HomH
(
indHHP (ρ), π

) ∼= HomHP
(
ρ,ResHHP (π)

)
ρ ∈ Mod(HP ), π ∈ Mod(H).

This can be regarded as an instance of Frobenius reciprocity or of Hom-tensor dual-
ity (since indHHP (Vρ) = H⊗HP Vρ). In terms of reductive p-adic groups, normalized
parabolic induction and normalized Jacquet restriction, (3.1) corresponds to Bern-
stein’s second adjointness:

(3.2) HomG

(
IGP (σ), τ

) ∼= HomM

(
σ, JG

P
(τ)
)
,

where σ ∈ Rep(M), τ ∈ Rep(G) and P, P are opposite parabolic subgroups of G
with P ∩ P = M . The comparison between the two settings stems from [BuKu,
Corollary 8.4], but one needs some modifications that lead to [Sol3, Condition 4.1].
By analogy, the first adjointness for p-adic groups (i.e. Frobenius reciprocity)

(3.3) HomM

(
JGP (τ), σ

) ∼= HomG

(
τ, IGP (σ)

)
should have a counterpart for affine Hecke algebras. In other words, we may expect
that some form of parabolic restriction is left adjoint to some form of parabolic
induction. By Frobenius reciprocity for co-induced modules:

(3.4) HomHP
(
ResHHP (π), ρ

) ∼= HomH
(
π,HomHP (H, ρ)

)
,

where H acts on HomHP (H, π) via right multiplication on H. However, (3.4) is not
yet satisfactory because it does not provide a left adjoint for parabolic induction.

For p-adic groups, one way to prove the second adjointness relation is via con-
tragredients and Jacquet modules, see [Ren, §VI.9.6]. For graded Hecke algebras, a
similar proof works with Hermitian duals instead of contragredients [BaCi, Lemma
3.8.1]. We follow the latter.

Theorem 3.1. Let P ⊂ ∆ and recall that P op = w∆(−P ).

(a) The right adjoint of ResHHP is indHHPop ◦ ψ∆P∗.

(b) The left adjoint of indHHP is ψ∗∆P ◦ ResHHPop .
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Proof. (a) Let (π, Vπ) ∈ Mod(H) and (ρ, Vρ) ∈ Mod(HP ). By the transposition
isomorphism (2.2) and Proposition 2.5
(3.5)

HomHP
(
ResHHP (π), ρ†

) ∼= HomHP
(
ρ,ResHHP (π)†

) ∼= HomHP
(
ρ,ResHHPop (π†) ◦ ψ∆P

)
.

We know from Lemma 2.4 that ψ∆P : HP → HP op is invertible, so that the right-
hand side of (3.5) becomes isomorphic with

(3.6) HomHPop
(
ρ ◦ ψ−1

∆P ,ResHHPop (π†)
)
.

Now we apply Frobenius reciprocity in the form (3.1) and again the transposition
isomorphism:

(3.7) ∼= HomH
(
indHHPop (ρ ◦ ψ−1

∆P ), π†
) ∼= HomH

(
π, indHHPop (ρ ◦ ψ−1

∆P )†
)
.

Using Proposition 2.7, we identify that with

(3.8) HomH
(
π, indHHPop (ρ† ◦ ψ−1

∆P )
)

= HomH
(
π, indHHPop ◦ ψ∆P (ρ†)

)
.

The first isomorphism in (3.5) and the second in (3.7) are conjugate-linear. The
other above isomorphisms are complex linear, so the composition of (3.5)–(3.8) is
again a complex linear bijection. That proves the desired adjointness relation for
(π, ρ′ = ρ†), so whenever ρ′ is the Hermitian dual of some HP -module. The same
argument as in the analogous situation for reductive p-adic groups [Ren, p. 232]
shows why that implies part (a) for all (π, ρ′).
(b) Reverse the roles of P and P op and apply part (a) with ρ′ = ψ∗∆P (ρ) = ρ ◦ψ∆P .
That gives isomorphisms

HomH
(
π, indHHP (ρ′)

) ∼= HomHPop
(
ResHHPop (π), ρ

)
.

Left composition with ψ−1
∆P on both terms of the right-hand side makes this isomor-

phic with HomHP
(
ψ∗∆P ResHHPop (π), ρ′

)
. �

Next we discuss a topic related to second adjointness, namely expressions for
parabolic induction followed by parabolic restriction. In the setting of reductive p-
adic groups this is known as Bernstein’s geometric lemma [Ren, §VI.5.1]. A version
for affine Hecke algebras should provide a filtration of the functor ResHHQ indHHP .
Indeed that was achieved in [DeOp, §11], but restricted to tempered representations.
Here we formulate that result in larger generality.

Let P,Q ⊂ ∆ and let

WP,Q = {w ∈W : w(Q) ⊂ R+, w−1(Q) ⊂ R+}

be the set of shortest length representatives of WP \W/WQ. Each d ∈ WP,Q yields
a bijection d−1(P ) ∩Q→ P ∩ d(Q) and an algebra isomorphism

(3.9)
ψd : Hd−1(P )∩Q → HP∩d(Q)

Nwθx 7→ Ndwd−1θd(x)
.

We choose a total ordering of WP,Q such that ` : WP,Q → Z≥0 becomes a weakly
increasing function. For d ∈ WP,Q and an HQ-representation (π, Vπ), we consider
the linear subspace

(3.10)
(
ResHHP indHHQ

)
≤d(Vπ) =

⊕
d′∈WP,Q,d′≤d

H(WPd
′WQ)A⊗HQ Vπ
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of indHHQ(Vπ). To analyse these subspaces, we need a result of Kilmoyer [Car, The-
orem 2.7.4]:

(3.11) WP ∩ dWQd
−1 = WP∩d(Q) for all d ∈WP,Q.

Using that, the following is shown in [DeOp, (11.3)–(11.6)]:

Proposition 3.2. For each d ∈ WP,Q,
(
ResHHP indHHQ

)
≤d(Vπ) is an HP -submodule

of ResHHP indHHQ(Vπ). There is an isomorphism of HP -modules(
ResHHP indHHQ

)
≤d(Vπ)

/(
ResHHP indHHQ

)
<d

(Vπ) ∼= indH
P

HP∩d(Q)

(
ψd ResH

Q

Hd−1(P )∩Q(Vπ)
)
,

where < d means ≤ d′ for the largest d′ ∈WP,Q which is smaller than d.
In other words, we have a filtration of the functor ResHHP indHHQ, indexed by WP,Q

and with successive subquotients indH
P

HP∩d(Q) ◦ ψd∗ ◦ ResH
Q

Hd−1(P )∩Q.

Notice the analogy with Mackey’s restriction-induction formula for representa-
tions of finite groups. From Proposition 3.2 and the two adjunctions, one can derive
expressions for the Hom-space between two parabolically inducedH-representations.

4. Variations on the Langlands classification

The Langlands classification for a reductive group G over a local field [Lan, Ren]
classifies irreducible admissible G-representations in terms of irreducible tempered
representations of Levi subgroups of G. The analogous result for affine/graded
Hecke algebras can be found in [Eve, Sol2]. Here we want to establish some useful
variations, in particular with subrepresentations instead of quotients.

The complex torus T can be idenfied with the space Irr(A) of irreducible repre-
sentations of A ∼= C[X] = O(T ). If (π, Vπ) is an H-representation, t ∈ T and there
exists v ∈ Vπ \ {0} such that

π(θx)v = t(x)v for all x ∈ X,
then t is a called an A-weight (or simply weight) of π. We denote the set of A-
weights of (π, Vπ) by Wt(π) or Wt(Vπ). If Vπ has finite dimension, then there is a
canonical decomposition in generalized A-eigenspaces:

(4.1) Vπ =
⊕

t∈T
Vπ,t,gen.

The t ∈ T for which Vπ,t,gen 6= 0 are precisely the A-weights of π.

Lemma 4.1. Let (π, Vπ) be a finite dimensional H-representation. Then

Wt(π†) =
{
w∆t

−1
: t ∈Wt(π)

}
.

Proof. Let s ∈ T be a weight of π†, with an eigenvector λ ∈ V †π \ {0}. For any
v ∈ V, x ∈ X we compute, using (1.6),

(4.2) s(x)λ(v) = (π†(θx)λ)(v) = λ(π(θ∗x)v) = λ(π(Nw∆θ−w∆(x)N
−1
w∆

)v).

Write π′ = π ◦ cNw∆
, so that

(π, Vπ) → (π′, Vπ)
v 7→ π(Nw∆)v

is an isomorphism of H-representations. We can rewrite (4.2) as

λ(s(x)v) = λ(π′(θ−w∆(x))v).
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Equivalently, for each x ∈ X, v ∈ Vπ the kernel of λ contains

π′
(
θ−w∆(x) − s(x)

)
v = π′

(
θx′ − s(−w∆(x′))

)
v = π′

(
θx′ − w∆s

−1(x′)
)
v,

where we abbreviated x′ = −w∆(x). Thus π′
(
θx′ −w∆s

−1(x′)
)

is not surjective, for
any x′ ∈ X. Since Vπ has finite dimension, we can use the decomposition, which
shows that w∆s

−1 is a weight of π′. Via the isomorphism π′ ∼= π, it is also a weight
of π.

Hence s 7→ w∆s
−1 maps the weights of π† to the weights of π. As dimVπ < ∞,

π†† = π and the same arguments apply with the roles of π and π† exchanged.
Therefore we have found a bijection between the set of weights of π† and of †, with

inverse t 7→ w∆t
−1

. �

For any t ∈ T we have |t| ∈ HomZ(X,R>0) and log |t| ∈ HomZ(X,R) = Y ⊗Z R.
Given P ⊂ ∆ we define the positive cones

(Y ⊗Z R)P+ = {y ∈ Y ⊗Z R : 〈α, y〉 = 0 ∀α ∈ P, 〈α, y〉 > 0 ∀α ∈ ∆ \ P},
TP+ = exp

(
(Y ⊗Z R)P+

)
⊂ TP .

The same can be done in X ⊗Z R, and then taking anti-duals yields the obtuse
negative cones

(Y ⊗Z R)−P =
{∑

α∈P
cαα

∨ : cα ∈ R≤0

}
,

T−P = exp
(
(Y ⊗Z R)−P

)
⊂ TP .

By definition, a finite dimensional HP -module V is tempered if |t| ∈ T−P for all

t ∈Wt(V ). Similarly we say that V is anti-tempered if |t|−1 ∈ T−P for all t ∈Wt(V ).
These two properties are preserved by taking Hermitian duals:

Lemma 4.2. Let (π, Vπ) be a finite dimensional H-representation. If Vπ is tempered

(resp. anti-tempered), then V †π is tempered (resp. anti-tempered).

Proof. Since −w∆ stabilizes ∆, w∆s
−1 ∈ T∆− if and only if s ∈ T∆−. Apply that

to s = |t| (resp. s = |t|−1) for a weight t of Vπ, and use Lemma 4.1. �

The following result is an obvious generalization of the Langlands classification
for affine Hecke algebras [Eve, Sol2].

Theorem 4.3. Let π ∈ Irr(HP ) and t ∈ TP . Suppose that (i) or (ii) holds:

(i) π is tempered and t ∈ TP+,
(ii) π is anti-tempered and t−1 ∈ TP+.

(a) The H-representation indHHP (π⊗t) has a unique irreducible quotient L(P, π, t). It

is the unique irreducible subquotient ρ of indHHP (π⊗ t) which admits an injective

HP -homomorphism π ⊗ t→ ResHHP (ρ).
(b) Every irreducible H-representation is of the form L(P, π, t), for unique (P, π, t)

as in (i). This also holds with (ii) instead of (i).

Proof. (i) The Langlands classification, as in [Eve, Theorem 2.1] and [Sol2, Theorem
2.2.4], states (a) and (b). Although the characterizing property of L(P, π, t) is not
made explicit in these sources, it plays an important role in [Eve, §2.7] and in [Sol2,
proof of Theorem 2.2.4.a].
(ii) The same proof as for (i) applies, when we rewrite all the arguments in Y ⊗Z R
with respect to −∆ instead of ∆. �
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An H-representation indHHP (π⊗t) as in Theorem 4.3.i is called a standard module,
and L(P, π, t) is called its Langlands quotient. With the usage of Hermitian duals,
we can deduce a version of Theorem 4.3 in terms of “Langlands” subrepresentations.

Proposition 4.4. Let π ∈ Irr(HP ) and t ∈ TP . Suppose that (i) or (ii) holds:

(i) π is tempered and t−1 ∈ TP+,
(ii) π is anti-tempered and t ∈ TP+.

(a) The H-representation indHHP (π ⊗ t) has a unique irreducible subrepresentation,

which we call the Langlands subrepresentation L̃(P, π, t). It is the unique irre-
ducible subquotient σ of indHHP (π⊗t) that admits a surjective HP -homomorphism

ResHHPop (σ) ◦ ψ∆P → π ⊗ t.
(b) Every irreducible H-representation is of the form L̃(P, π, t) for unique (P, π, t)

as in (i). This also holds with (ii) instead of (i).

Proof. We assume (i). The proof when (ii) holds is completely analogous, only using
the other assumption in Theorem 4.3.
(a) By Proposition 2.7 and Lemma 2.2

(4.3) indHHP (π ⊗ t)† ∼= indHHP
(
(π ⊗ t)†

) ∼= indHHP (π† ⊗ t−1
).

Here t̄ = t because it is real-valued, and we know from Lemma 4.2 that π† is tem-
pered. Theorem 4.3.a says that (4.3) has a unique irreducible quotient L(P, π†, t−1),
which can be characterized by the existence of an injection

π† ⊗ t−1 → ResHHP
(
L(P, π†, t−1)

)
.

Passing to Hermitian duals and using (2.2), we find that indHHP (π ⊗ t) has a unique

irreducible subrepresentation σ ∼= L(P, π†, t−1)†. Via Proposition 2.5.a, the charac-
terizing property becomes a surjection ResHHPop (σ) ◦ ψ∆P → π ⊗ t.
(b) Let τ ∈ Irr(H). With Theorem 4.3.b we write τ † ∼= L(P, π, t) for suitable P ⊂ ∆,
tempered π ∈ Irr(HP ) and t ∈ TP+. Then (2.2) gives an injection

τ ∼= L(P, π, t)† → indHHP (π ⊗ t)†.

From the proof of part (a) we know that the right hand side is isomorphic with

indHHP (π ⊗ t−1), where (P, π, t−1) is as in (i). Then part (a) says τ ∼= L̃(P, π, t−1).

The uniqueness in Theorem 4.3.b implies the uniqueness of (P, π, t−1). �

We would like to express the unique Langlands quotient or subrepresentation from
Theorem 4.3 and Proposition 4.4 as the coimage or image of a suitable intertwining
operator. To that end we establish the uniqueness (up to scalars) of those operators.

Lemma 4.5. Let π ∈ Irr(HP ) and assume that the W -stabilizer of t is contained in
WP for all t ∈Wt(π). Then ResHHP indHHQ(ψγ∗π) is a direct sum of HP -representations

indH
P

HP∩d(Q)(ψd∗ψγ∗π) with d ∈WP,Q, whose sets of Z(HP )-weights are mutually dis-
joint.

Proof. From Proposition 3.2.c we know that ResHHP indHHQ(ψγ∗π) has a filtration with
successive subquotients

(4.4) indH
P

HP∩d(Q)

(
ψd ResH

Q

Hd−1(P )∩Q(ψγ π)
)

= indH
P

HP∩d(Q)(ψdψγ π) d ∈WP,Q.
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By construction Wt(ψd∗ψγ∗π) = dγWt(π), and with [Opd2, Proposition 4.20] we
obtain

(4.5) Wt
(
indH

P

HP∩d(Q)(ψd∗ψγ∗ π)
)
⊂ WPdγWt(π).

Equivalently, the set of Z(HP )-weights of indH
P

HP∩d(Q)(ψd∗ψγ∗ π) is contained in

WPdγWt(π)/WP . Suppose that d, d′ ∈WP,Q, t, t′ ∈Wt(π) and

WPdγt ∩WPd
′γt′ 6= ∅.

Pick w1, w2 ∈ WP such that w1dγt = w2d
′γt′. By the irreducibility of π, t and t′

belong to the same WP -orbit. Furthermore we assumed Wt ⊂WP , so

(4.6) w1dγWP = w2d
′γWP .

From that we obtain γ−1d−1w−1
1 w2d

′γ ∈WP and

d−1w−1
1 w2d

′ ∈ γWPγ
−1 = WQ.

We note that now w−1
1 w2d

′ ∈ WPd
′ ∩ dWQ. As WP,Q represents WP \W/WQ, this

shows that d′ = d.
Thus, for different d, d′ ∈WP,Q the HP -representations (4.4) have disjoint sets of

A-weights and disjoint sets of Z(HP )-weights. In particular every extension of one of
these modules by the other is a trivial extension. It follows that the aforementioned
filtration of ResHHP indHHQ(ψγ∗π) actually splits, and that ResHHP indHHQ(ψγ∗π) is the
direct sum of the modules (4.4). �

The conditions in Lemma 4.5 are often satisfied, but they do not cover all cases
of Theorem 4.3. Inspired by [Ren, §VII.3.3], we say that an HP -representation π is
W,P -regular if

(4.7) wt /∈Wt(π) for all t ∈Wt(π) and w ∈WP (WP,P \ {e}).
Let P,Q ⊂ ∆ and γ ∈ W , such that γ(P ) = Q. Like in (3.9), there is an algebra
isomorphism ψγ : HP → HQ.

Lemma 4.6. Let π ∈ Irr(HP ) be W,P -regular.

(a) π has multiplicity one in ResHHP indHHQ(ψγ∗π), and is a direct summand of the
latter.

(b) dim HomH
(
indHHP (π), indHHQ(ψγ∗ π)

)
= 1.

Proof. (a) The element γ−1 ∈ W belongs to WP,Q because γ−1(Q) ⊂ R+ and
γ(P ) ⊂ R+. We follow the proof of Lemma 4.5, with d′ = γ−1. This time we cannot
conclude (4.6), but our weaker assumption still provides a reasonable substitute.
Namely, from w1dγt = w2t

′ we get w−1
2 w1dγt ∈Wt(π), which by the W,P -regularity

of π implies

(4.8) w−1
2 w1dγ /∈WP (WP,P \ {e}).

Notice that dγ(P ) = d(Q) ⊂ R+, which says that dγ ∈ WP . By [Car, Proposition

2.7.5] we can write dγ = ad̃ with d̃ ∈ WP,P and a ∈ WP . It follows that WPdγ =

WP d̃. Then (4.8) forces

d̃ = e and dγ ∈WP ∩WP = {e}.
Hence the representations (4.4) with d 6= γ−1 do not have the central character of
π ∈ Irr(HP ) as Z(HP )-weight. Like in the proof of Lemma 4.5, this entails that π
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appears with multiplicity one in ResHHP indHHQ(ψγ∗π), as a direct summand.
(b) By Frobenius reciprocity

HomH
(
indHHP (π), indHHQ(ψγ∗ π)

) ∼= HomHP
(
π,ResHHP indHHQ(ψγ∗π)

)
.

Now apply part (a). �

Lemma 4.6 tells us that, whenever π ∈ Irr(HP ) is W,P -regular, there exists a
nonzero intertwining operator

(4.9) I(γ, P, π) : indHHP (π)→ indHHQ(ψγ∗ π),

unique up to scalars. The ∆P -genericity is only a very mild restriction. Namely, for
every finite dimensional HP -representation τ there exists a Zariski-open nonempty
subset TPτ ⊂ TP such that τ ⊗ t is ∆P -generic for all t ∈ TPτ .

The next result and its proof are similar to [Ren, Théorème VII.4.2].

Theorem 4.7. Let P ⊂ ∆ and π ∈ Irr(HP ).

(a) Suppose that π is W,P -regular. Then indHHP (π) has a unique irreducible quotient,
namely

indHHP (π)/ ker I(w∆wP , P, π) ∼= im I(w∆wP , P, π).

(b) Suppose that ψw∆wP ∗π is W,P op-regular. Then indHHP (π) has a unique irreducible
subrepresentation, namely the image of

I(wPw∆, P
op, ψw∆wP ∗π) : indHHPop (ψw∆wP ∗π)→ indHHP (π).

Proof. (a) Let ρ be any quotient H-representation of indHHP (π). The quotient map
gives a nonzero element of

HomH(indHHP (π), ρ) ∼= HomHP (π,ResHHP ρ),

so π is a subrepresentation of ResHHP ρ. By Lemma 4.6.a with γ = e, π is a direct

summand of ResHHP ρ, and appears with multiplicity one. The projection ResHHP ρ→
π and the adjunction from Theorem 3.1.a yield a nonzero H-homomorphism from ρ
to indHHPop (ψ∆P∗π). Thus we have H-homomorphisms

(4.10) indHHP (π)→ ρ→ indHHPop (ψ∆P∗π).

Suppose now that ρ is irreducible. Then the second map in (4.10) is injective, and
first map is surjective by definition, so the composition of the two maps in (4.10)
is nonzero. Lemma 4.6.a guarantees that (4.10) is a multiple of I(w∆wP , P, π). In
particular

ker I(w∆wP , P, π) = ker (4.10) = ker
(
indHHP (π)→ ρ

)
.

We conclude that ρ equals indHHP (π ⊗ t)/ ker I(w∆wP , P, π).

(b) Let σ be any subrepresentation of indHHP (π). The inclusion map and Theorem
3.1.b give a nonzero element of

HomH(σ, indHHP (π)) ∼= HomHP
(
ψ∆P op∗(ResHHPopσ), π

) ∼= HomHPop (σ, ψ∆P∗π).

In the setting of Lemma 4.6 we take P op, P, ψ∆P op , ψ∆Pπ in the roles of, respectively,
P,Q, γ, π. Then Lemma 4.6.a says that ψ∆P∗π appears with multiplicity one in

(4.11) ResHHPop indHHP (ψ∆P opψ∆Pπ) = ResHHPop indHHP (π),
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as a direct summand. Since ψ∆P (π) appears in the subrepresentation ResHHPopσ of
(4.11), it is also a direct summand thereof. In particular there exists a nonzero
element of

HomHPop (ψ∆P∗π,ResHHPopσ) ∼= HomHP (indHHPop (ψ∆P∗π), σ).

Thus we have nonzero H-homomorphisms

(4.12) indHHPop (ψ∆P∗π)→ σ → indHHP (π).

Now we assume that σ is irreducible. Then the first map in (4.12) is surjective and
the second map is injective, so their composition is nonzero. The same argument as
for (4.10) shows that σ is isomorphic to

indHHPop (ψ∆P∗π)/ ker I(wPw∆, P
op, ψw∆wP ∗π) ∼= im I(wPw∆, P

op, ψw∆wP ∗π). �

With Theorem 4.7 and Langlands’ geometric lemmas [Lan, §4], we can provide
alternative proofs of Theorem 4.3 and Proposition 4.4.

Proposition 4.8. Let P ⊂ ∆, π ∈ Irr(HP ) and t ∈ TP .

(a) Suppose that
(i) π is tempered and t ∈ TP+ or

(ii) π is anti-tempered and t−1 ∈ TP+.
Then π⊗ t is W,P -regular and the Langlands quotient L(P, π⊗ t) from Theorem
4.3 equals indHHP (π ⊗ t)/ ker I(w∆wP , P, π ⊗ t).

(b) Suppose that
(iii) π is tempered and t−1 ∈ TP+ or
(iv) π is anti-tempered and t ∈ TP+.
Then ψw∆wP ∗(π ⊗ t) is W,P op-regular and the Langlands subrepresentation

L̃(P, π, t) from Proposition 4.4 is the image of I
(
wPw∆, P

op, ψw∆wP ∗(π ⊗ t)
)
.

Proof. First we establish the regularity in all four cases.
(i) Recall from [Lan, Lemma 4.4] that every λ ∈ Y ⊗Z R can be expressed uniquely
as

λ = λ− + λ+, where λ ∈ (Y ⊗Z R)Q−, λ+ ∈ (Y ⊗Z R)Q+, Q = Q(λ) ⊂ ∆.

For any s ∈Wt(π) we have

(4.13) log |st|+ = log |t|, log |st|− = log |s| and Q(log |st|) = P.

Assume that w1 ∈WP , w2 ∈WP,P \ {e} and w1w2st = s′t ∈Wt(π ⊗ t). Then

(4.14) w2st = w−1
1 s′t and log |w2st|+ = log |w−1

1 s′t|+.

By [KrRa, p. 38] log |w−1
1 s′t|+ ≥ log |s′t|+ by [KrRa, (2.13)] log |w2st|+ < log |st|+.

Together with (4.13) we obtain

log |w2st|+ < log |st|+ = log |s′t| ≤ log |w−1
1 s′t|+.

That contradicts (4.13) and hence our assumption is untenable. In other words,
π ⊗ t is W,P -regular.
(ii) Notice that the proof of (i) only involves root systems and Weyl groups, no Hecke
algebras. It can also be applied to the current π ⊗ t, when we replace the basis ∆
of R by −∆.
(iii) As ψw∆wP : HP → HP op is an isomorphism that respects all the structure of
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these affine Hecke algebras, ψw∆wP (π) is tempered and w∆wP (t) ∈ TP op . For α ∈ ∆
there are equalities
(4.15)
〈α, log |w∆wP t|〉 = 〈w∆(α), log |wP t|〉 = 〈w∆(α), log |t|〉 = 〈−w∆(α), log |t−1|〉,

where we used t ∈ TP in the second step. If α ∈ ∆ \ P op, then −w∆α ∈ ∆ \ P and
(4.15) is strictly positive because t−1 ∈ TP+. Therefore w∆wP (t) ∈ TP op+. Now
part (i) says that

ψw∆wP ∗(π ⊗ t) = ψw∆wP ∗(π)⊗ w∆wP (t)

is W,P op-regular.
(iv) With the same method as for (iii) this can be reduced to part (ii).
In the cases (i) and (ii), Theorem 4.7.a says that indHHP (π⊗t) has a unique irreducible
quotient, which moreover has the given shape. In the cases (iii) and (iv) Theorem
4.7.b says that indHHP (π⊗ t) has a unique irreducible subrepresentation, namely the
image of the indicated intertwining operator. �

5. Comparison with Hermitian duals for reductive p-adic groups

Consider a non-archimedean local field F and a reductive group G over F , con-
nected in the Zariski topology. We briefly call G a reductive p-adic group. As is
well-known, affine Hecke algebras often arise from Bernstein blocks in the category
Rep(G) of smooth complex G-representations. In such a situation there are two no-
tions of a Hermitian dual: in Rep(G) and in the module category of the appropriate
affine Hecke algebra. We will show that in many such cases the two Hermitian duals
agree.

Let M be a Levi factor of a parabolic subgroup P of G, and let σ ∈ Irr(G) be
supercuspidal. The inertial equivalence class s = [M,σ]G determines a Bernstein
block of Rep(G)s in Rep(G). By tensoring with a suitable unramified character we
may assume that σ is unitary. Then its smooth Hermitian dual σ† can be identified
with σ itself. It is not hard to show that the smooth Hermitian dual functor stabilizes
every Bernstein block in Rep(G), see [Sol7, Lemma 2.2].

One way to relate Rep(G)s to Hecke algebras stems from [Hei]. Let M1 ⊂ M be
the subgroup generated by all compact subgroups of M , and let σ1 be an irreducible
subrepresentation of ResMM1(σ). Let ind denote smooth induction with compact
supports, in contrast to Ind, which will denote smooth induction without any support
condition.

Then ΠsM = indMM1(σ1) is a progenerator of Rep(M)sM , where sM = [M,σ]M .

Moreover Πs = IGP ΠsM is a progenerator of Rep(G)s, see [Ren, §VI.10.1]. As worked
out in [Roc, Theorem 1.8.2.1], there is an equivalence of categories

(5.1)
Rep(G)s → Mod(EndG(Πs)

op)
π 7→ HomG(Πs, π)

.

It is known from [Sol6] that EndG(Πs)
op is always very similar to an affine Hecke

algebra. To stay within the setting of the paper we assume in the remainder of this
section:

Condition 5.1. ResMM1(σ) is multiplicity-free and EndG(Πs)
op is isomorphic to an

affine Hecke algebra H with q-parameters in R≥1, via an isomorphism as in [Hei] or
[Sol6, §10.2].
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This condition and [Sol6, §10] imply that EndM (ΠsM )op is isomorphic to the

minimal parabolic subalgebra H∅ ∼= C[X] of H. By [Ren, (IV.2.1.2)] there are
isomorphisms
(5.2)

Π†s = IGP
(
indMM1(σ1)

)† ∼= IGP
(
indMM1(σ1)†

) ∼= IGP
(
IndMM1(σ†1)

) ∼= IGP
(
IndMM1(σ1)

)
.

In particular Π†s contains Πs as a dense submodule. The action of Hop = EndG(Πs)

on Πs extends to an action on Π†s in the following way. Write v ∈ Π†s as a limit of
elements vn ∈ Πs. For h ∈ Hop we define h · v = limn→∞ h · vn.

Then HomG(Πs,Π
†
s) becomes an H×Hop-module with action

(5.3) h · f · h′ = h′ ◦ f ◦ h h, h′ ∈ H ∼= EndG(Πs)
op, f : Πs → Π†s.

Proposition 5.2. Assuming Condition 5.1, HomG(Πs,Π
†
s) is isomorphic to H† as

H-bimodules.

Proof. First we consider the supercuspidal case, so with ΠsM = indMM1(σ1). With
Frobenius reciprocity we compute
(5.4)

HomM

(
ΠsM ,Π

†
sM

)
= HomM

(
indMM1(σ), indMM1(σ)†

) ∼= HomM1

(
σ, indMM1(σ1)†

)
.

Hermitian duals turn ind into Ind, so the right-hand side of (5.4) is also

(5.5) HomM1

(
σ1, IndMM1(σ†1)

) ∼= HomM1

(
σ1, IndMM1(σ1)

)
.

An analogous computation (with ind instead of Ind) applies to EndM (ΠsM ). We
note that the set

Mσ = {m ∈M : m · σ1
∼= σ1}

is a finite index subgroup of M which does not depend on the choice of σ1, see [Roc,
§1.6]. With the Mackey decomposition we obtain

A ∼= EndM (ΠsM )op ∼=
⊕

m∈Mσ/M1
HomM1(σ1,m · σ1),

so in particular X = Mσ/M1. Similarly (5.4) and (5.5) become

(5.6) HomM1

(
σ1, IndMM1(σ1)

) ∼= ∏
m∈Mσ/M1

HomM1(σ1,m · σ1).

This is isomorphic to A† ∼=
∏
x∈X C{x} as C[X]-bimodule, so

(5.7) HomM (ΠsM ,Π
†
sM

) ∼= A†.
In the non-supercuspidal case (5.2) gives an H-isomorphism

(5.8) HomG(Πs,Π
†
s)
∼= HomG

(
Πs, I

G
P (indMM1(σ1)†)

)
.

By [Roc, Proposition 1.8.5.1] the right-hand side is naturally isomorphic with

indHA HomM

(
ΠsM , indMM1(σ1)†

)
.

From the supercuspidal case we know that this H-module is isomorphic with
indHA(A†), which by Lemma 2.6 is isomorphic with H†. It remains to see that the
resulting H-module isomorphism

(5.9) φ : H† → HomG(Πs,Π
†
s)

is an isomorphism of H-bimodules. We already knew from (2.3) that H ⊂ H†. On

the H-submodule HomG(Πs,Πs) of HomG(Πs,Π
†
s), the isomorphisms (5.8), (5.4),
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(5.5) and (5.6) become just the identity. Hence (5.9) extends the given algebra
isomorphism H ∼= EndG(Πs)

op.
By Proposition 2.7, any element h+ of H† admits a unique expression as

(5.10) h+ =
∑

w∈W

∑
x∈X

cw,xNwı(θx) cw,x ∈ C,

with ı as in (2.16). The element h+
w :=

∑
x∈X cw,xθx belongs to A†, which via (5.7)

and IGP embeds naturally in HomG(Πs,Π
†
s). From (5.6) we see that

φı(h+
w) = φı

(∑
x∈X

cw,xθx
)

=
∑

x∈X
cw,xφı(θx).

Using the H-linearity of φ we find

(5.11)

φ(h+) = φ
( ∑
w∈W

Nwı(h
+
w)
)

=
∑
w∈W

Nw · φı(h+
w) =

∑
w∈W

Nw ·
∑
x∈X

cw,xφı(θx)

=
∑
w∈W

φ(Nw)
∑
x∈X

cw,xφı(θx) =
∑
w∈W

∑
x∈X

cw,xφ(Nwı(θx)).

This shows that φ commutes with infinite sums of elements of H in the form (5.10).
Hence φ commutes with limits of sequences in H that converge in H†. Let (h+

n )∞n=1

be a sequence in H with limit h+ ∈ H†. For any h ∈ H, (5.11) yields

φ(h+h) = φ
(

lim
n→∞

h+
n h
)

= lim
n→∞

φ(h+
n h).

As φ|H is an algebra homomorphism, the right-hand side equals

lim
n→∞

φ(h+
n )φ(h) = lim

n→∞
φ(h+

n ) · h = φ(h+) · h,

where the dot indicates the right action of H on HomG(Πs,Π
†
s) from (5.3). �

Proposition 5.2 serves as the starting point for the next result. It says that the
Hermitian dual functors in Rep(G)s and in Mod(H) match via (5.1).

Theorem 5.3. Let π ∈ Rep(G)s and assume Condition 5.1. Then the H-modules
HomG(Πs, π

†) and HomG(Πs, π)† are isomorphic.

Proof. First we consider the special case where HomG(Πs, π) is a finitely generated
H-module. Since H is Noetherian, there exists a projective resolution

(5.12) HomG(Πs, π)
d0←− H⊗ F0

d1←− H⊗ F1 ← · · ·

where each H ⊗ Fi is a free H-module with a finite dimensional multiplicity space
Fi. We note that here di(i > 0) is determined entirely by the map

di|Fi : Fi ∼= C1⊗ Fi → H⊗ Fi−1.

The conjugate-transpose of (5.12) is an injective resolution

(5.13) HomG(Πs, π)†
d†0−→ H† ⊗ F †0

d†1−→ H† ⊗ F †1 → · · ·

Via the equivalence of categories (5.1), (5.12) becomes a projective resolution of
G-representations

(5.14) π
d0←− Πs ⊗ F0

d1←− Πs ⊗ F1 ← · · ·
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Here di(i > 0) is determined by the map di|Fi : Fi → EndG(Πs) ⊗ Fi−1 given by
di|Fi above composed with H ∼= EndG(Πs)

op. The conjugate-transpose of (5.14) is
the injective resolution

(5.15) π†
d†0−→ Π†s ⊗ F

†
0

d†1−→ Π†s ⊗ F
†
1 → · · ·

in Rep(G)s. Again applying (5.1), we obtain an injective resolution

(5.16) HomG(Πs, π
†)

HomG(Πs,d
†
0)

−−−−−−−−→ HomG(Πs,Π
†
s)⊗ F

†
0

HomG(Πs,d
†
1)

−−−−−−−−→ HomG(Πs,Π
†
s)⊗ F

†
1 → · · ·

The maps HomG(Πs, d
†
i ) are still determined by di|Fi . To (5.16) we can apply Propo-

sition 5.2, that yields

(5.17) HomG(Πs, π
†)→ H† ⊗ F †0 → H

† ⊗ F †1 → · · ·
The maps in this sequence (except the leftmost) are induced by di|Fi , so they equal
the maps in (5.13). We deduce isomorphisms of H-modules

HomG(Πs, π)† ∼= ker
(
H† ⊗ F †0 → H

† ⊗ F †1
) ∼= HomG(Πs, π

†).

Now we consider the general case. Write HomG(Πs, π) as the direct limit of its
finitely generated submodules HomG(Πs, πi), where i runs through some index set.

Then π ∼= lim−→πi and π† ∼= lim←−π
†
i , which gives

HomG(Πs, π
†) ∼= lim←−HomG(Πs, π

†
i ).

By (5.17), the right-hand side is isomorphic to

lim←−HomG(Πs, πi)
† ∼=

(
lim−→HomG(Πs, πi)

)† ∼= HomG(Πs, π)†. �

Theorem 5.3 implies among others that the equivalence of categories (5.1) sends
Hermitian representations (i.e. π† ∼= π) to Hermitian representations.

6. Equivalent characterizations of genericity

Recall that a G-representation π is called generic if there exist

• a nondegenerate character ξ of the unipotent radical U of a minimal parabolic
subgroup B of G,
• a nonzero U -homomorphism from π to ξ.

More precisely, π is (U, ξ)-generic if

HomG

(
π, IndGU (ξ)

) ∼= HomU (π, ξ) is nonzero.

Following [BuHe], we say that π is simply generic if dim HomU (π, xi) = 1. For
irreducible representations of quasi-split reductive p-adic groups, simple genericity
is equivalent to genericity [Shal, Rod].

From [BuHe, (2.1.1)] we know that indGU (ξ)† ∼= IndGU (ξ), and hence there is a
natural conjugate-linear isomorphism

(6.1) HomG

(
π, IndGU (ξ)

) ∼= HomG(indGU (ξ), π†).

By (5.1) the right-hand side of (6.1) is isomorphic to

(6.2) HomEndG(Πs)

(
HomG(Πs, indGU (ξ)),HomG(Πs, π

†)
)
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Recall that s = [M,σ]G and notice that ξ restricts to a nondegenerate character of
U ∩M . Suppose now that π ∈ Rep(G)s and assume Condition 5.1. By Theorem
5.3, (6.2) is isomorphic to

HomH
(
HomG(Πs, indGU (ξ)),HomG(Πs, π)†

)
.

The explicit structure of affine Hecke algebras (in comparison with reductive p-adic
groups) will make it possible to characterize genericity of π much more simply than
above. Recall that the Steinberg representation of St : H(W, qλ) → C is given by

St(Ns) = −q−1/2
s for every simple reflection s ∈W .

Part (a) of the next result stems from [BuHe]. We include it because it compares
well with part (b), which generalizes [ChSa, MiPa].

Theorem 6.1. (a) Suppose that σ is not (U ∩M, ξ)-generic. Then
HomG(Πs, indGU (ξ)) = 0 and no object of Rep(G)s is (U, ξ)-generic.

(b) Assume that σ is simply (U ∩M, ξ)-generic and assume Condition 5.1. Then

HomG(Πs, indGU (ξ)) ∼= indHH(W,qλ)(St) as H-modules.

Proof. Recall that Πs = IGP (indMM1(σ1)) for an irreducible subrepresentation σ1 of

ResMM1(σ1). By [BuHe, Theorem 2.2] there is a natural isomorphism JG
P

indGU (ξ) ∼=
indMU∩M (ξ). With Bernstein’s second adjointness we find

(6.3)
HomG(Πs, indGU (ξ)) = HomG

(
IGP (indMM1(σ1)), indGU (ξ)

)
∼= HomM

(
indMM1(σ1), indMU∩M (ξ)

)
.

(a) The non-genericity of σ implies, by [BuHe, Corollary 4.2], that the component
of indMU∩M (ξ) in Rep(M)sM is zero. Hence (6.3) reduces to 0. That and (6.1)–(6.2)
imply the second claim of part (a).
(b) Since U ∩M ⊂ M1, there is a unique irreducible constituent σ1 of ResMM1(σ)
such that HomU∩M (σ1, ξ) is nonzero. Then

(6.4) dimC HomU∩M (σ1, ξ) = 1 and σ1 appears with multiplicity 1 in ResMM1(σ).

Now [BuHe, Proposition 9.2] says that

indMU∩M (ξ) ∼= indMM1(σ1).

By Condition 5.1 EndM (sM ) ∼= A ∼= C[X]. Hence (6.3) is isomorphic to

(6.5) EndM (indMM1(σ1)) ∼= EndM (ΠsM ) ∼= C[X]

as modules for EndM (sM ) ∼= C[X]. That makes our setup is almost the same as in
[Sol7, §2], which means that the arguments from there remain valid in our setting.
Then [Sol7, Lemma 3.1] proves the theorem. �

The Hermitian duals of the representations in Theorem 6.1 can be described in
various ways, which has interesting consequences.

Proposition 6.2. Assume Condition 5.1 and that σ is simply (U ∩M, ξ)-generic.

(a) There are isomorphisms of H-modules

HomG(Πs, IndGU (ξ)) ∼= HomG(Πs, indGU (ξ))† ∼= indHH(W,qλ)(St)† ∼= H† ⊗
H(W,qλ)

St.
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(b) For π ∈ Rep(G)s there are isomorphisms of complex vector spaces

HomU (π, ξ) ∼= HomG(π, IndGU (ξ)) ∼= HomH
(
HomG(Πs, π),H† ⊗

H(W,qλ)
St
)

∼= HomH(W,qλ)(HomG(Πs, π),St).

(c) A representation π ∈ Rep(G)s is (U, ξ)-generic if and only if the H(W, qλ)-
module HomG(Πs, π) contains St.

Proof. (a) The first isomorphism is an instance of Theorem 5.3, the second is The-
orem 6.1 and the third is Lemma 2.1.a for V = St = St†.
(b) The first isomorphism is a version of Frobenius reciprocity and the third is
Lemma 2.1.b. The second isomorphism follows from the equivalence of categories
(5.1) and part (a).
(c) This follows from part (b) and the semisimplicity of H(W, qλ). �

We note that Proposition 6.2.c is almost the same as [Sol7, Theorem 3.4]. The
latter was only proven for representations of finite length, and did not include Propo-
sition 6.2.a,b.

7. Generic representations of affine Hecke algebras

Let us return to a more general setting, where H is an affine Hecke algebra with
q-parameters in R≥1, but H does not have to come from a reductive p-adic group.
Motivated by Proposition 6.2, we put

Definition 7.1. An H-module V is generic if and only if ResHH(W,qλ)V contains St.

From this definition the multiplicity one property of generic constituents of stan-
dard modules, as in [Shal, Rod] for quasi-split reductive p-adic groups, follows
quickly.

Lemma 7.2. Let P ⊂ ∆ and let V ∈ Mod(HP ).

(a) V is generic if and only if indHHP V is generic.

(b) Suppose V is irreducible and generic. Then dim HomH(W,qλ)(indHHP V,St) = 1

and indHHP V has a unique generic irreducible subquotient. This constituent ap-

pears with multiplicity one in indHHP V .

Proof. (a) The Bernstein presentation of H shows that

ResHH(W,qλ)

(
indHHP V

)
= ind

H(W,qλ)

H(WP ,qλ)

(
ResH

P

H(WP ,qλ)V
)
.

Then by Frobenius reciprocity

(7.1) HomH(W,qλ)(indHHP V,St) ∼= HomH(WP ,qλ)(V,St).

(b) By [Sol7, Lemma 3.5]

dim HomH(W,qλ)(indHHP V,St) ≤ 1,

and by part (a) it is not 0. In view of the semisimplicity of H(W, qλ), this shows that
indHHP V contains a unique copy of St, say Cv. It follows that indHHP V has a generic
irreducible subquotient, which appears with multiplicity one. It can be described as
Hv modulo the maximal submodule that does not contain v. �
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We will investigate when the generic constituent of indHHP V is a quotient or a sub-
representation. That is related to the generalized injectivity conjecture [CaSh] about
representations of reductive p-adic groups. It asserts that the generic irreducible
subquotient of a generic standard representation is always a subrepresentation.

The last isomorphism in Proposition 6.2.b provides a useful alternative (but equiv-
alent) condition for genericity of an H-representation π, namely that

HomH(π,H† ⊗H(W,qλ) St) is nonzero.

By Proposition 2.7 there are isomorphisms of A-modules

(7.2)
ResHA(H† ⊗H(W,qλ) St) ∼= ResHA(indHA(A†)⊗H(W,qλ) St)

∼= A† ⊗C H(W, qλ)⊗H(W,qλ) St ∼= A†.

The composed isomorphism is given explicitly by

A† → H† ⊗H(W,qλ) St

h 7→ ı(h)⊗ 1
,

where ı is as in (2.16). For t ∈ T we write

ft = ı
(∑

x∈X
x(t)−1θx

)
∈ H†.

In these terms

(7.3) HomH
(
indHA(t),H† ⊗H(W,qλ) St

) ∼= HomA
(
t,A†

) ∼= Cft.

Lemma 7.3. Let P ⊂ ∆ and let π be an irreducible generic HP -representation.

(a) For any t ∈ TP : dim HomH
(
indHHP (π ⊗ t),H† ⊗H(W,qλ) St

)
= 1.

(b) Let s ∈ T be a weight of π. Then the image of indHHP (π ⊗ t) in H† ⊗H(W,qλ) St,

via a nonzero H-homomorphism as in part (a), is generated as H-module by
fst ⊗ 1.

Proof. (a) This follows from Lemmas 2.1.b and 7.2.b.
(b) For any weight s of π, Frobenius reciprocity yields a nonzero (and hence sur-

jective) HP -homomorphism indH
P

A (s) → π. Hence the unique (up to scalars) HP -
homomorphism π → H† ⊗H(W,qλ) St can be inflated to a nonzero H-homomorphism

φs : indH
P

A (s)→ H†⊗H(W,qλ) St. Similarly the unique (up to scalars) homomorphism

π ⊗ t→ H† ⊗H(W,qλ) St inflates to

φst : indH
P

A (st)→ H† ⊗H(W,qλ) St.

By (7.3) we may assume that

φst(h⊗ 1) = h(fst ⊗ 1).

Let vs be the image of Ne⊗1 ∈ indH
P

A (s) in π, by irreducibility it generates π. Then
φst factors through a homomorphism π⊗ t→ H†⊗H(W,qλ) St that sends vs to fst⊗1.
Frobenius reciprocity produces a homomorphism

(7.4)
Wh(P, π ⊗ t, vs) : indHHP (π ⊗ t) → H† ⊗H(W,qλ) St

indHHP (π ⊗ t)(h)vs 7→ h(fst ⊗ 1)
.

Clearly the image of Wh(P, π ⊗ t, vs) is generated by fst ⊗ 1. �
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The Wh(P, π⊗ t, vs) with t ∈ TP form an algebraic family of H-homomorphisms,
in the sense that for any fixed h ∈ H the image Wh(P, π⊗ t, vs)(h⊗ vs) is a regular
function of t.

To analyse the unique irreducible generic subquotient of indHHP (π⊗t), which exists
by Lemma 7.2.b, we use a version of Shahidi’s local constant [Shah]. Let us set up
the intertwining operators I(γ, π ⊗ t) more systematically. For α ∈ ∆ we define
ı◦sα ∈ C(T )W ⊗O(T )W H by

(7.5) 1 + qλ(α)/2Nsα = (1 + ı◦sα)
θαq

(λ(α)+λ∗(α))/2 − 1

θα − 1

θαq
(λ(α)−λ∗(α))/2 + 1

θα + 1
.

By [Lus, §5], sα 7→ ı◦sα extends to a group homomorphism

(7.6) W →
(
C(T )W ⊗O(T )W H

)×
: w 7→ ı◦w.

These elements provide an algebra isomorphism

C(T ) oW → C(T )W ⊗O(T )W H
fw 7→ fı◦w

.

Assume that P,w(P ) ⊂ ∆. It follows from (7.5) that

ı◦wNsαı
◦
w−1 = Nsw(α)

for all α ∈ P.

Hence the isomorphism ψw : HP → Hw(P ) equals conjugation by ı◦w in C(T )W⊗O(T )W

H. Let t ∈ TP and (π, Vπ) ∈ Mod(HP ). Consider the bijection

C(T )W ⊗O(T )W H⊗HP Vπ → C(T )W ⊗O(T )W H⊗Hw(P ) Vπ
h⊗ v 7→ hı◦w−1 ⊗ v

,

where Vπ is endowed with the representation π ⊗ t. For t in a Zariski-open dense
subset of TP , this defines an intertwining operator

I(w,P, π, t) : indHHP (π ⊗ t)→ indHHw(P )(ψw(π ⊗ t)),

which is rational as function of t ∈ TP . By (7.6), whenever γw(P ) ⊂ ∆:

(7.7) I(γ,w(P ), ψw(π), w(t)) ◦ I(w,P, π, t) = I(γw, P, π, t).

The Whittaker functionals from (7.4) satisfy

Wh(w(P ), ψw(π ⊗ t), vs) ◦ I(w,P, π, t) ∈ HomH
(
indHHP (π ⊗ t),H† ⊗H(W,qλ) St

)
,

at least away from the poles of I(w,P, π, t). By Lemma 7.3 there exists a unique
C(w,P, π, t) ∈ C ∪ {∞} such that

(7.8) Wh(P, π ⊗ t, vs) = C(w,P, π, t)Wh(w(P ), ψw(π ⊗ t), vs) ◦ I(w,P, π, t).

For γ = w−1, (7.7) implies

(7.9) C(w−1, w(P ), ψw(t), w(t)) = C(w,P, π, t)−1.

Notice that C(w,P, π, ?) is a rational function on TP , because all the other terms
in (7.8) are so. This C(w,P, π, t) is the local constant for affine Hecke algebras,
analogous to [Shah]. We note that this is based on the normalized intertwining
operators that involve ı◦w. An even stronger analogy with [Shah] can be obtained
by using intertwining operators based on the elements ıw from [Opd2, (4.1)]. The
normalization of the intertwining operators does not affect the poles of the local
constants.
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Lemma 7.4. Let π ∈ Irr(HP ) be generic. Then C(w,P, π, ?) is regular at t ∈ TP if
and only if ker I(w,P, π, t) ⊂ kerWh(P, π ⊗ t, vs).

Proof. Suppose that C(w,P, π, t) =∞. Then

Wh(w(P ), ψw(π ⊗ t), vs) ◦ I(w,P, π, t) = 0,

so im I(w,P, π, t) is not generic. In the short exact sequence

0→ ker I(w,P, π, t)→ indHHP (π ⊗ t)→ im I(w,P, π, t)→ 0,

the middle term is generic by Lemma 7.3. Hence Wh(w,P, π⊗ t, vs) does not vanish
on ker I(w,P, π, t), and the latter is generic.

When C(w,P, π, t) ∈ C×, the equivalence is clear from (7.8).
Suppose that C(w,P, π, t) = 0. Then I(w,P, π, t) has a pole at t ∈ TP , caused

by a pole of ı◦w−1 . Let f be a holomorphic function on a neighborhood U of t in TP ,
such that f(t′)I(w,P, π, t′) is regular and nonzero on U . We can replace (7.8) by

(7.10) Wh(P, π ⊗ t, vs) = CWh(w(P ), ψw(π ⊗ t), vs) ◦ f(t)I(w,P, π, t),

for some C ∈ C ∪ {∞}. As Wh(P, π ⊗ t, vs) is nonzero, so is C. Then (7.10) shows
that Wh(w(P ), ψw(π ⊗ t), vs) is nonzero on im f(t)I(w,P, π, t). Therefore C 6= ∞,
and we conclude that Wh(P, π⊗ t, vs) factors through f(t)I(w,P, π, t). In particular

ker I(w,P, π, t) ⊂ ker f(t)I(w,P, π, t) ⊂ kerWh(P, π ⊗ t, vs). �

Next we prove some cases of the generalized injectivity conjecture for affine Hecke
algebras. For that we need qs ≥ 1 for all s ∈ Saff , otherwise the statement would be
false (the Steinberg representation of H would violate it).

Theorem 7.5. Assume that λ(α) ≥ λ∗(α) ≥ 0 for all α ∈ R. Let t ∈ TP and let
π ∈ Irr(HP ) be generic, tempered and anti-tempered.

(a) When t−1 ∈ TP+, the unique generic irreducible subquotient of indHHP (π ⊗ t) is

L(P, π ⊗ t) = indHHP (π ⊗ t)
/

ker I(w∆wP , P, π ⊗ t).

(b) When t ∈ TP+, the unique generic irreducible subquotient of indHHP (π⊗ t) is its

unique irreducible subrepresentation L̃(P, π, t).

Proof. (a) In view of Proposition 4.8.ii and Lemma 7.4, it suffices to check that
C(w∆wP , P, π, ?) does not have a pole at t. By (7.9), it is equivalent to show that

(7.11) C(wPw∆, P
op, ψw∆wP (π), w∆wP (t)) is nonzero.

Suppose that (7.11) is zero. By (7.8), I(wPw∆, P
op, ψw∆wP (π), w∆wP (t)) has a pole

at t. It is known from [Opd2, Theorem 4.33.i] that every such t is a zero of(
α(w∆wP (rt))− q(λ(α)+λ∗(α))/2

)(
α(w∆wP (rt)) + q(λ(α)−λ∗(α))/2

)
,

for some weight r of π and −α,wPw∆(α) ∈ R+. Equivalently, such a t satisfies

(7.12)
(
β(rt)− q(λ(α)+λ∗(α))/2

)(
β(rt) + q(λ(α)−λ∗(α))/2

)
= 0

for some weight r of π and β,−w∆wP (β) ∈ R+. The eligible β are precisely the
roots in R+ \ R+

P . From t−1 ∈ TP+ we get β(t) ∈ (0, 1) for all β ∈ R+ \ R+
P . By

the temperedness and anti-temperedness of π, |r| = 1. Hence |β(rt)| < 1, which
in combination with λ(α) ≥ λ∗(α) ≥ 0 implies that (7.12) never holds under our
assumptions. Hence (7.11) is valid.
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(b) In the proof of Proposition 4.8.iii we checked that ψw∆wP (π) is again tempered
and anti-tempered, and that w∆wP (t)−1 ∈ TP op+. By part (a)

indHHPopψw∆wP (π ⊗ t)/ ker I(wPw∆, ψw∆wP (π ⊗ t)) ∼= im I(wPw∆, ψw∆wP (π ⊗ t))

is generic. This is an irreducible subrepresentation of indHHP (π⊗ t), and from Propo-
sition 4.8.iv we know that there exists only one such subquotient. �

One interesting application of Theorem 7.5 concerns the induction of suitable
characters of A.

Proposition 7.6. Suppose that λ(α) ≥ λ∗(α) ≥ 0 for all α ∈ R, and let t ∈ T .

(a) Suppose |t−1| lies in the closure of T ∅+. Then the unique generic irreducible
constituent of indHA(t) is a quotient.

(b) Suppose |t| lies in the closure of T ∅+. Then the unique generic irreducible con-
stituent of indHA(t) is a subrepresentation.

Proof. Write P = {α ∈ ∆ : |α(t)| = 1}. Then indH
P

A (t|t|−1) is an HP -representation
all whose A-weights belong to HomZ(X,S1), so it is both tempered and anti-

tempered. By [Sol2, Proposition 3.1.4.a] indH
P

A (t|t|−1) is completely reducible, say
a direct sum of irreducible subrepresentations ρi. As |t| ∈ TP :

(7.13) indH
P

A (t) = indH
P

A (t|t|−1)⊗ |t| =
⊕

i
ρi ⊗ |t|,

where all the weights of ρi⊗|t| have absolute value |t|. Lemma 7.3.a guarantees that
exactly one of the ρi ⊗ |t| is generic, say it is ρ1 ⊗ |t|. Now the arguments for the
two parts diverge:
(a) By Theorem 7.5.a indHHP (ρ1 ⊗ |t|) has a generic irreducible quotient π. In view

of (7.13) and the transitivity of parabolic induction, π is also a quotient of indHA(t).
(b) By Theorem 7.5.b indHHP (ρ1⊗ |t|) has a generic irreducible subrepresentation π.

By (7.13) π is also a subrepresentation of indHA(t). �

Proposition 7.6 is a Hecke algebra version of the generalized injectivity conjecture
for inductions of supercuspidal representations of reductive p-adic groups [CaSh,
Theorem 1]. For the current status of the generalized injectivity conjecture we
refer to [Dij]. Possibly our Hecke algebra interpretation can be useful to establish
more cases. However, the generalized injectivity conjecture does not hold for all
affine Hecke algebras with parameters λ(α) ≥ λ∗(α) ≥ 0, as witnessed by the next
example.

Example 7.7. Consider the based root datum

R =
(
Z2, B2,Z2, C2, {α = e1 − e2, β = e2}

)
.

We take λ(β) = λ∗(β) = 1 and λ(α) = λ∗(α) = 6. (It would also work with any
number > 2 instead of 6.) The algebra H = H(R, λ, λ∗, q) has a one-dimensional
discrete series representation δ given by:

• A acts on δ via the weight tδ = (q−5, q),

• δ(Nsα) = −q−3 and δ(Nsβ ) = q1/2.

As Wtδ = {e}, δ is the unique irreducible H-representation with A-weight tδ. No-
tice that δ is not generic. We will show that δ occurs as the unique irreducible
subrepresentation of a standard module.
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Let Stα be the Steinberg representation of H{α}, a generic discrete series repre-
sentation with A-weight (q−3, q3). For (q2, q2) ∈ T {α}+, Stα⊗(q2, q2) has the unique
A-weight t = (q−1, q5). By [Sol5, Lemma 3.3] the standard module

π = indHH{α}
(
Stα ⊗ (q2, q2)

)
has set of A-weights

W {α}t = {t, sβt, sαsβt, sβsαsβt = tδ}.

By considering the invertibility of intertwining operators, one sees that t, sβt and
sαsβt sit together in one irreducible subquotient of π. That representation in-
volves the maximal weight t of π, so by Theorem 4.3.a it is the Langlands quotient
L
(
{α},Stα, (q

2, q2)
)
. Further tδ is not a weight of L

(
{α},Stα, (q

2, q2)
)
, because

the only irreducible H-representation with that property is δ. Thus π is reducible
and has a subquotient δ, which is in fact a subrepresentation because it equals
the kernel of π → L

(
{α},Stα, (q

2, q2)
)
. Lemma 7.2.b says that π has a unique

generic irreducible constituent and it is not δ, so it must be the Langlands quotient
L
(
{α},Stα, (q

2, q2)
)
.

A weaker version of the generalized injectivity conjecture is known as the stan-
dard module conjecture [CaSh]. It asserts that the Langlands quotient of a generic
standard representation is generic if and only if that standard module is irreducible.
This has been proven for all quasi-split reductive p-adic groups [HeMu, HeOp]. Using
Section 6, one can deduce the standard module conjecture for all affine Hecke alge-
bras whose parameters come from a generic Bernstein component for a quasi-split
reductive p-adic group.

Nevertheless, our above counterexample to the generalized injectivity conjecture
is also a counterexample to the standard module conjecture for affine Hecke algebras
with arbitrary parameters ≥ 1.

8. Affine Hecke algebras extended with finite groups

For comparison with reductive p-adic groups it is useful to consider a slightly
larger class of algebras. Let Γ be a finite group acting on the based root datum
R = (X,R, Y,R∨,∆). Then Γ acts on W by

γ(sα) = sγα = γsαγ
−1 α ∈ R,

where the conjugation takes place in AutZ(X). This yields a semidirect product
(X oW ) o Γ. We also suppose that Γ acts on A ∼= C[X] ∼= O(T ), such that the
induced action on A×/C× ∼= X recovers the given action on X. Thus Γ acts on
T = Irr(A), but it need not fix a point of T .

Further we assume that the label functions λ, λ∗ : R → R are Γ-invariant. Then
Γ acts on H by the algebra automorphisms

γ(Nwθx) = Nγ(w)γ(θx) γ ∈ Γ, w ∈W,x ∈ X.

The algebraHoΓ = ΓnH has an Iwahori–Matsumoto basis {Nw : w ∈ (XoW )oΓ}
and a Bernstein basis {θxNw : x ∈ X,w ∈ W o Γ}. The length function of X oW
extends naturally to X o (W o Γ), and then it becomes zero on Γ. The involution
* of H extends to H o Γ by N∗γ = Nγ−1 for γ ∈ Γ. We extend the trace τ of H to
Ho Γ by defining τ |HNγ = 0 for all γ ∈ Γ \ {e}.
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More generally we can involve a 2-cocycle \ : Γ2 → C×. It gives rise to a twisted
group algebra C[Γ, \], with multiplication rules

Nγ ·Nγ′ = \(γ, γ′)Nγγ′ .

From that we can build the twisted affine Hecke algebra H o C[Γ, \], which is like
H o Γ, only with C[Γ] replaced by C[Γ, \]. These twisted algebras can also be
constructed with central idempotents. Namely, let

(8.1) 1→ Z+
Γ → Γ+ → Γ→ 1

be a finite central extension, such that the pullback of \ to Γ+ splits. Then there
exist a minimal idempotent p\ ∈ C[Z+

Γ ] and an algebra isomorphism

φ\ : p\C[Γ+]→ C[Γ, \].

For each lift γ+ ∈ Γ+ of γ ∈ Γ, φ\(p\Nγ+) ∈ C×Nγ . Then p\ is also a central

idempotent in Ho Γ+ and

(8.2) HoC[Γ, \] ∼= p\(Ho Γ+) = (Ho Γ+)p\.

Since p\ comes from a unitary character of Z+
Γ , it stable under the natural *-

operation on C[Γ+]. We define the * on C[Γ, \] by

φ(p\Nγ+)∗ = φ(p\N
∗
γ+) = φ(p\N

−1
γ+ ).

In combination with the * on H, this endows (8.2) with a *-operation. We define
the trace on HoC[Γ, \] just like for Ho Γ.

To deal with parabolic induction, we use a subgroup ΓP ⊂ Γ for each P ⊂ ∆.

Condition 8.1. (i) ΓP ⊂ ΓQ whenever P ⊂ Q,

(ii) the action of ΓP on T stabilizes P, TP and TP (and hence normalizes WP ),
(iii) ΓP acts on TP by multiplication with elements of the finite group TP ∩ TP ,
(iv) if γ ∈W o Γ, P ⊂ ∆ and γ(P ) ⊂ ∆, then γΓPγ

−1 = Γγ(P ),

(v) \ is trivial on Γ2
∅.

Let Γ+
P be the inverse image of ΓP in Γ+ for the map (8.1), then Condition

8.1 holds for Γ+ as well. We say that HP o C[ΓP , \] is a parabolic subalgebra of
H o C[Γ, \]. Notice that H∆ o C[Γ∆, \] = H o C[Γ∆, \] (but Γ∆ need not be the

whole of Γ). By Condition 8.1.iii, Γ∅ acts trivially on T ∅ = T , so Γ∅ acts trivially
on H. Together with Condition 8.1.v that implies

(8.3) H∅ oC[Γ∅, \] = A⊗ C[Γ∅].

By Condition 8.1.ii ΓP stabilizes P,X ∩QP and X ∩ (P∨)⊥. Then Condition 8.1.iii
says that ΓP fixes QX ∩ (P∨)⊥ ∼= QX/QP pointwise. Let us write the action of
γ ∈ Γ on A ∼= C[X] as

γ(θx) = zγ(x)θγ(x) where zγ ∈ T.

For t ∈ TP = Hom(X/X ∩QP,C×), w ∈WP , x ∈ X we compute

(8.4)
γ(ψt(θxNw)) = γ(t(x)θxNw) = t(x)zγ(x)θγ(x)Nγ(w),

ψt(γ(θxNw)) = ψt(zγ(x)θγ(x)Nγ(w)) = t(γ(x))zγ(x)θγ(x)Nγ(w).

These two lines are equal because γ fixes X/X ∩ QP pointwise, so that t(γ(x)) =
t(x). Thus ψt ∈ Aut(HP ) is ΓP -equivariant and extends to an automorphism of
HP o C[ΓP , \]. That enables us to define π ⊗ t for π ∈ Mod(HP o C[ΓP , \]) and



34 E.M. OPDAM AND M.S. SOLLEVELD

t ∈ TP .

Assuming all the above, we will check what is needed to make the results from
the previous sections valid for H o Γ and for H o C[Γ, \]. To ease the notation
we will sometimes write things down for H o Γ and then indicate how they can be
generalized to H o C[Γ, \]. Of course this means that everywhere we should also
replace HP by HP o C[ΓP , \] and H(W, qλ) by H(W, qλ) o C[Γ, \]. The role of WP

can be played by ΓPWP , where ΓP ⊂ Γ is a set of representatives for Γ/ΓP . Notice
that ΓPWP is a set of shortest length representatives for W oΓ/WP oΓP , because

ΓPWP (P ) ⊂ ΓP (R+) = R+.

In Lemma 1.1 we replace h = Nwθx by Nγwθx and Nw−1 by N∗γw = Nw−1N∗γ ∈
C×Nw−1Nγ−1 . For γ ∈ Γ \ΓP both (h∗)Pe and (hPe )∗P are zero, while for γ ∈ ΓP the
calculations from the proof of Lemma 1.1 remain valid with an extra factor N∗γ at
the right.

In Section 2 and Theorem 3.1 there are few additional complications, almost
everything holds just as well for H o C[Γ, \]. Only in Lemma 2.2 we need to be
careful: the same argument works for H o Γ+, and from there we can restrict to
HoC[Γ, \] via (8.2).

To generalize Proposition 3.2 we need some preparations. Let P,Q ⊂ ∆ and let
DP,Q be a set of shortest length representatives for WPΓP \WΓ/WQΓQ. In contrast

with WP,Q, DP,Q need not be unique. Like in (3.9), every d ∈ DP,Q gives rise to an
algebra isomorphism

ψd : Hd−1(P )∩Q o (d−1ΓPd ∩ ΓQ) → HP∩d(Q) o (ΓP ∩ dΓQd
−1)

θxNwNγ 7→ θd(x)Ndwd−1Ndγd−1
.

Kilmoyer’s result (3.11) can be generalized as follows:

Lemma 8.2. Let d ∈ DP,Q.

(a) d−1WPd ∩WQ equals Wd−1(P )∩Q.

(b) d−1(WP o ΓP )d ∩ (WQ o ΓQ) equals Wd−1(P )∩Q o (d−1ΓPd ∩ ΓQ).

Proof. Write d = γdwd with γd ∈ Γ and wd ∈W . For α ∈ P we have `(dsα) < `(d),
so d(α) ∈ R+. As γd(R

+) = R+, also wd(α) ∈ R+. For α ∈ P we have `(sβd) < `(d),

so R+ 3 d−1(β) = w−1
d γ−1

d (β). Thus wd(Q) ⊂ R+ and w−1
d (γ−1

d P ) ⊂ R+, which

means that wd ∈W γ−1
d (P ),Q.

(a) We compute

d−1WPd ∩WQ = w−1
d γ−1

d WPγdwd ∩WQ = w−1
d Wγ−1

d (P )wd ∩WQ.

By (3.11) the right hand side equals Ww−1
d γ−1

d (P )∩Q = Wd−1(P )∩Q.

(b) First we note that by Condition 8.1.iv

d−1(WP o ΓP )d = w−1
d γ−1

d (WP o ΓP )γdwd = w−1
d (γ−1

d WPγd o γ−1
d ΓPγd)wd

= w−1
d (Wγ−1

d (P ) o Γγ−1
d (P ))wd.

Consider w1 ∈WQ, γ1 ∈ ΓQ, w2 ∈Wγ−1
d (P ), γ2 ∈ Γγ−1

d (P ) such that

(8.5) w1γ1 = w−1
d w2γ2wd.
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Via the isomorphism W o Γ/W ∼= Γ we see that γ1 = γ2 ∈ ΓQ ∩ Γγ−1
d (P ). Then

γ2wdγ
−1(Q) = γ2wd(Q) ⊂ γ2(R+) = R+,

(γ2wdγ1)−1(P ) = γ1w
−1
d γ−1

2 (P ) = γ1w
−1
d (P ) ⊂ γ1(R+) = R+,

so γ2wdγ
−1
1 = γ1wdγ

−1 ∈WP,Q. Now

w1 = w−1
d w2(γ2wdγ

−1
1 ) ∈WQ ∩ w−1

d w−1
d WPD

P,Q,

which by [Car, Lemma 2.7.2] is only possible when γ2wdγ
−1 = wd. Hence

(8.6) w1 = w−1
d w2wd ∈WQ ∩ w−1

d Wγ−1
d (P )wd,

and from (3.11) we know that the right hand side equals WQ∩d−1(P ). From (8.5)

and (8.6) we obtain γ1 = w−1
d γ2wd, so

(WQ o ΓQ) ∩ w−1
d (Wγ−1

d (P ) o Γγ−1
d (P ))wd = WQ∩γ−1

d (P ) o (ΓQ ∩ w−1
d Γγ−1

d (P )wd)

= WQ∩d−1(P ) o (ΓQ ∩ wdγ−1
d ΓPγdwd) = WQ∩d−1(P ) o (ΓQ ∩ d−1ΓPd). �

Let (π, Vπ) ∈ Mod(HQ o ΓQ). Analogous to (3.10), indHoΓ
HQoΓQ

(Vπ) has linear

subspaces

(ResHoΓ
HPoΓP

indHoΓ
HQoΓQ

)≤d(Vπ) =
⊕

d′∈DP,Q,d′≤d

H(WPΓPd
′WQΓQ)A⊗HQoΓQ Vπ.

With Lemma 8.2 at hand, the proof of Proposition 3.2 becomes valid for HoΓ. The
above also works for HoC[Γ, \], that is only a notational difference. The result is:

Proposition 8.3. For each d ∈ DP,Q, (ResHoΓ
HPoΓP

indHoΓ
HQoΓQ

)≤d(Vπ) is an HP oΓP -

submodule of indHoΓ
HQoΓQ

(Vπ). There is an isomorphism of HP o ΓP -modules(
ResHoΓ

HPoΓP
indHoΓ
HQoΓQ

)
≤d(Vπ)

/(
ResHoΓ

HPoΓP
indHoΓ
HQoΓQ

)
<d

(Vπ) ∼=

indH
PoΓP
HP∩d(Q)o(ΓP∩dΓQd−1)

(
ψd∗ Res

HQoΓQ

Hd−1(P )∩Qo(d−1ΓP d∩ΓQ)
(Vπ)

)
.

Thus the functor ResHoΓ
HPoΓP

indHoΓ
HQoΓQ

has a filtration with successive subquotients

indH
PoΓP
HP∩d(Q)o(ΓP∩dΓQd−1)

◦ ψd∗ ◦ Res
HQoΓQ

Hd−1(P )∩Qo(d−1ΓP d∩ΓQ)
,

where d runs through DP,Q.
The same holds with C[Γ, \] instead of C[Γ].

In Section 4 the elementary Lemmas 4.1 and 4.2 also hold for H o Γ. However,
the Langlands classification and its variations (Theorem 4.3 and Propositions 4.4,
4.8) are just not valid any more in this form. An extension of Theorem 4.3 to HoΓ
was established in [Sol2, Corollary 2.2.5], but it is more involved.

The main issue with the Langlands classification for H o Γ is the uniqueness,
as witnessed by the following example. Let R = A2,∆ = {α, β}, X = ZR and
let Γ = {e, γ} with γ the unique nontrivial automorphism of (X,∆). The parabolic

subalgebras ofHoΓ are A,H{α},H{β} andHoΓ. Pick a t ∈ T ∅+ which is fixed by γ.
Then indHA(t) has a unique irreducible quotient but indHoΓ

A (t) has two inequivalent
irreducible quotients.
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Lemma 4.5 and its proof still work with our standard modifications. However,
to generalize Lemma 4.6 and Theorem 4.7 we first have to extend the notion of
W,P -regularity. We say that an HP o C[ΓP , \]-representation π is WΓ,P -regular if

wt /∈Wt(π) for all t ∈Wt(π) and all w ∈WPΓPD
P,P
+ , where

DP,P
+ = {d ∈WΓ : d(P ) ⊂ R+, d−1(P ) ⊂ R+, d /∈ ΓP }.

Lemma 8.4. Let P,Q ⊂ ∆ and γ ∈WΓ such that γ(P ) = Q and let
π ∈ Irr(HP oC[ΓP , \]) be WΓ,P -regular.

(a) The representation π appears with multiplicity one in

Res
HoC[Γ,\]

HPoC[ΓP ,\]
ind
HoC[Γ,\]

HQoC[ΓQ,\]
(ψγ∗π), as a direct summand.

(b) dim HomHoC[Γ,\]

(
ind
HoC[Γ,\]

HPoC[ΓP ,\]
(π), ind

HoC[Γ,\]

HQoC[ΓQ,,\]
(ψγ∗π)

)
= 1.

Proof. (a) Since γ(P ) ⊂ R+ and γ−1(Q) ⊂ R+, γ−1 has minimal length in
WPΓPγ

−1WQΓQ. Hence we may choose DP,Q so that it contains γ−1. We follow
the proof of Lemma 4.5 with d′ = γ−1. Instead of (4.6) we find w1, w2 ∈ WP o ΓP
and t ∈Wt(π) such that w−1

2 w1dγt ∈Wt(π). The WΓ,P -regularity of π says that

(8.7) w3w
−1
2 w1dγ /∈WPΓPD

P,P
+ for all w3 ∈WPΓP .

Notice that dγ(P ) = d(Q) ⊂ R+, which means that dγ ∈ ΓWP . Suppose that dγ
does not have minimal length in WPdγ. There exists α ∈ P with γ−1d−1(α) ∈ −R+.
Then γ−1d−1sα(α) ∈ R+ and

`(sαdγ) = `(γ−1d−1sα) < `(γ−1d−1) = `(dγ).

As γ−1(Q) ⊂ R+, d−1(α) /∈ Q and α /∈ d−1(Q). That gives

(sαdγ)(P ) = sαd(Q) ⊂ sα(R+ \ {α}) ⊂ R+.

The reasoning can be applied to sαdγ. Repeating that if necessary, we find w4 ∈
WP such that w4dγ(P ) ⊂ R+ and w4dγ has minimal length in WPdγ. Thus

(w4dγ)−1(P ) ⊂ R+, w4dγ ∈ DP,P
+ ∪ ΓP and dγ ∈ WP (DP,P

+ ∪ ΓP ). Combining

that with (8.7), we find dγ ∈WPΓP = ΓPWP . Also dγ ∈ ΓWP , so in fact dγ ∈ ΓP .
Then ΓPd = ΓPγ

−1, and using d, γ−1 ∈ DP,Q we obtain d = γ−1. From this point
on, we can conclude in the same way as in the proof of Lemma 4.6.a.
(b) This can be shown exactly as in the proof of Lemma 4.6. �

Lemma 8.4.c yields a nonzero intertwining operator

I(γ, P, π) : ind
HoC[Γ,\]

HPoC[ΓP ,\]
(π)→ ind

HoC[Γ,\]

HQoC[ΓQ,\]
(ψγ∗π),

unique up to scalars. With those operators Theorem 4.7 and its proof become valid
for H o C[Γ, \]. That provides H o C[Γ, \] with a substitute for the uniqueness of
Langlands quotients and Langlands representations (for H). We warn that Propo-
sition 4.8 fails for HoΓ: π ∈ Irr(HP oΓP ) tempered and t ∈ TP+ does not enforce
WΓ,P -regularity of π ⊗ t.

We may relax Condition 5.1 by replacing H with H o C[Γ, \], let us call that
Condition 5.1’. The advantage is that it becomes valid for more Bernstein compo-
nents of representations of p-adic groups. For instance, Condition 5.1’ applies to
all smooth representations of classical groups [Hei, AMS] and in those cases Con-
dition 8.1 follows from the same checks as in [Sol3, §5]. Under Condition 5.1’, the
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indecomposability of Rep(M)sM forces Mod(H∅ o C[Γ∅, \]) to be indecomposable.
Hence the algebra (8.3) is also decomposable, which forces Γ∅ = {1}. All the argu-
ments and results in Section 5 remain valid with HoC[Γ, \] instead of H, no further
adjustments are necessary.

In the setting of Section 6, Condition 5.1’ turns out to hold automatically with
trivial 2-cocycle, see Theorem A.1. The crucial part of the proof of Theorem 6.1
is the reference to [Sol7, §2]. Since that work was conceived for algebras of the
form H o Γ, Theorem 6.1 applies to all extended affine Hecke algebras that satisfy
Condition 5.1’ with \ = 1. More precisely, we extend the Steinberg representation
of H(W, qλ) to H(W, qλ) o Γ by

St(NwNγ) = St(Nw)detX(γ) w ∈W,γ ∈ Γ,

where detX means the determinant of the action of γ on X. The more general
version of Theorem 6.1.b says:

(8.8) HomG(Πs, indGU (ξ)) ∼= indHoΓ
H(W,qλ)oΓ

(St) as Ho Γ-representations.

That and Proposition 6.2 prompt us to define:

(8.9) an Ho Γ-module V is generic if and only if ResHoΓ
H(W,qλ)oΓ

(V ) contains St.

With this definition, the part from Proposition 6.2 up to and including Lemma 7.4
generalizes readily to Ho Γ. For representations of HoC[Γ, \] with \ nontrivial in
H2(Γ,C×), genericity is not defined. In such cases C[Γ, \] does not possess onedi-
mensional representations, so we do not have a good analogue of detX .

Let us discuss the relation between generic representations of H and of H o Γ.
The definition of the Steinberg representation of H(W, qλ) shows that γ(St) = St
for all γ ∈ Γ. It follows that

(8.10) the action of Γ on Mod(H) preserves genericity.

Suppose now that (π, Vπ) is an irreducible generic H-representation. By Lemma
7.2.b there exists a unique (up to scalars) vector vSt ∈ Vπ \ {0} on which H(W, qλ)
acts according to St. Let Γπ be the stabilizer (in Γ) of π ∈ Irr(H). Schur’s lemma
says there exists a unique (up to scalars) linear bijection

π(γ) : Vπ → Vπ such that π(γ(h)) = π(γ)π(h)π(γ)−1 for all h ∈ H.

As γ(St) = St, π(γ)vSt must belong to CvSt. We normalize π(γ) by the condition
π(γ)vSt = vSt. In this way (π, Vπ) extends to a representation of Ho Γπ.

Clifford theory [RaRa, Appendix] tells us how any irreducibleHoΓ-representation
containing π can be constructed. Namely, let (ρ, Vρ) ∈ Irr(Γπ) and let H o Γπ act
on Vπ ⊗ Vρ by

(hNγ(v1 ⊗ v2) = π(hNγ)v1 ⊗ ρ(γ)v2.

Then π o ρ := indHoΓ
HoΓπ

(Vπ ⊗ Vρ) is irreducible and

(8.11)
Irr(Γπ) → Irr(Ho Γ),
ρ 7→ π o ρ

is injection with as image

(8.12) {V ∈ Irr(Ho Γ) : ResHoΓ
H (V ) contains Vπ}.
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As for the genericity of π o ρ:

HomH(W,qλ)oΓ(π o ρ,St) = HomH(W,qλ)oΓ(indHoΓ
HoΓπ

(Vπ ⊗ Vρ),St)

∼= HomH(W,qλ)oΓπ(π ⊗ ρ, St).

By Lemma 7.2.b and because π(Γπ) fixes vSt, the last expression is isomorphic with
HomΓπ(ρ, detX). We conclude that

(8.13) π o ρ is

{
generic if ρ = detX ,
not generic otherwise.

Conversely, consider an irreducible generic H o Γ-representation (σ, Vσ). Let π be
an irreducible H-subrepresentation of σ. Then indHoΓ

H (π) surjects onto π, so every

irreducible H-subquotient of σ is isomorphic to γ(π) for some γ ∈ Γ. As ResHoΓ
H(W,qλ)

σ

contains St, at least one of the γ(π) is generic. In view of (8.8), actually all of them
are generic, and in particular π. Then (8.11)–(8.13) show that

(8.14) σ ∼= π o detX = indHoΓ
HoΓπ

(π ⊗ detX).

Next we generalize Theorem 7.5 and Proposition 7.6. Since the statements really
change, we formulate them as new results.

Theorem 8.5. Assume that λ(α) ≥ λ∗(α) ≥ 0 for all α ∈ R. Let t ∈ TP and
let π ∈ Irr(HP o ΓP ) be tempered, anti-tempered and generic. The unique generic
irreducible constituent of indHoΓ

HPoΓP
(π ⊗ t):

(a) is a quotient when t−1 ∈ TP+,
(b) is a subrepresentation when t ∈ TP+.

Proof. With (8.14) we can write

π ∼= indH
PoΓP
HPoΓP,τ

(τ ⊗ detX),

where τ is an irreducible generic HP -subrepresentation of π. Notice that Wt(τ) ⊂
Wt(π), so that τ is also tempered and anti-tempered. By Condition 8.1.ii,iii:

(8.15)

indHoΓ
HPoΓP

(π ⊗ t) ∼= indHoΓ
HPoΓP

(
indH

PoΓP
HPoΓP,τ

(τ ⊗ detX)⊗ t
)

∼= indHoΓ
HPoΓP

(
indH

PoΓP
HPoΓP,τ

(τ ⊗ t⊗ detX)
)

∼= indHoΓ
HPoΓP,τ

(τ ⊗ t⊗ detX) ∼= indHoΓ
HoΓP,τ

(
indHHP (τ ⊗ t)⊗ detX

)
.

(a) Theorem 7.5.a says that the quotient L(P, τ ⊗ t) of indHHP (τ ⊗ t) is generic. By
the uniqueness in Theorem 4.3.b, ΓL(P,τ,t) ∩ ΓP = ΓP,τ⊗t, which by the remarks
following (8.8) equals ΓP,τ . From (8.13) we know that

(8.16) L(P, τ, t) o detX = indHoΓ
HoΓP,τ

(L(P, τ, t)⊗ detX) is generic.

Clearly (8.16) is a quotient of the final term in (8.15).

(b) This is analogous to part (a), instead of L(P, τ, t) we use L̃(P, τ, t) from Propo-
sition 4.4. �

Proposition 8.6. Assume that λ(α) ≥ λ∗(α) ≥ 0 for all α ∈ R, and let t ∈ T . The
unique generic irreducible constituent of indHoΓ

A (t):

(a) is a quotient if |t−1| lies in the closure of T ∅+,

(b) is a subrepresentation if |t| lies in the closure of T ∅+.
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Proof. (a) Proposition 7.6.a says that indHA(t) has a generic irreducible quotient, say
π. By (8.13), π o detX is the unique generic irreducible H o Γ-representation that
contains π. With Frobenius reciprocity we compute

(8.17) HomHoΓ

(
indHoΓ
A (t), πodetX

) ∼= HomA(t, πodetX) = HomA(t, indAoΓ
AoΓπ

π).

The right hand side of (8.17) contains

HomA(t, π) ∼= HomH(indHA(t), π) 6= 0.

Hence (8.17) is nonzero, which means that π o detX is a quotient of indHoΓ
A (t).

(b) Proposition 7.6.b yields a generic irreducible subrepresentation of indHA(t), say
σ. From (8.13) is a generic irreducible Ho Γ-representation. We compute

(8.18) HomHoΓ

(
σ o detX , indHoΓ

A (t)
)

= HomHoΓ

(
indHoΓ
HoΓσ

(σ ⊗ detX), indHoΓ
A (t)

)
∼= HomHoΓσ

(
σ ⊗ detX , indHoΓ

A (t)
)
⊃ HomHoΓσ

(
σ ⊗ detX , indHoΓσ

A (t)
)
.

It follows from Clifford theory, in the version [Sol1, Theorem 11.2], that

indHoΓσ
H (σ) ∼=

⊕
ρ∈Irr(Γσ)

(σ ⊗ ρ)⊕ dim ρ.

Hence there exist injective Ho Γσ-homomorphisms

σ ⊗ detX → indHoΓσ
H (σ)→ indHoΓ

H (indHAt) = indHA(t).

Thus all terms in (8.18) are nonzero, which by irreducibility means that σo detX is
a subrepresentation of indHoΓ

A (t). �

Let us summarize the findings of this section.

Corollary 8.7. Suppose that Γ is as at the start of Section 8, and assume in partic-
ular Condition 8.1. All the results of Sections 2–5 generalize to H o C[Γ, \], except
Theorem 4.3 and Propositions 4.4, 4.8. Sections 6 and 7 generalize to Ho Γ.

Appendix A. Hecke algebras for simply generic Bernstein blocks

Let G be a reductive p-adic group and let U be the unipotent radical of a minimal
parabolic subgroup of G. Let ξ be a nondegenerate character of U . Let P = MUP
be a parabolic subgroup of G containing U . Let (σ,E) be an irreducible unitary
supercuspidal M -representation which is simply (U ∩M, ξ)-generic, that is,

dim HomU∩M (σ, ξ) = 1.

We call Rep(G)s with s = [M,σ] a simply generic Bernstein block for G, because
most irreducible representations in there are simply (U, ξ)-generic. In this appendix
we show that Rep(G)s is equivalent to the module category of an extended affine
Hecke algebra.

Let (σ1, E1) be the unique irreducible generic M1-subrepresentation from (6.4).
Recall from [Ren, §VI.10.1] that Πs = IGP (indMM1(σ1)) is a progenerator of Rep(G)s.
By abstract category theory [Roc, Theorem 1.8.2.1], Rep(G)s is naturally equivalent
with Mod(EndG(Πs)

op).

Theorem A.1. In the above simply generic setting, EndG(Πs)
op is isomorphic to

an extended affine Hecke algebra H o Γ with q-parameters in R≥1. Conditions 5.1’
and 8.1 are satisfied.
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Proof. We follow [Sol6, §10], with some improvements that are made possible by the
simple genericity of σ. Notice that [Sol6, Working hypothesis 10.2] holds by (6.4).
On the supercuspidal level with ΠsM = indMM1(σ1), [Sol6, Lemma 10.1] says that

(A.1) EndM (ΠsM ) = EndM (ΠsM )op = C[O3] = C[Mσ/M
1],

where Mσ is stabilizer of E1 in M . In [Sol6, Lemma 10.3] the multiplicity one of σ1

in σ implies that the operator ρσ,w : E → E automatically stabilizes E1. Therefore
we may choose as the element mw ∈M from [Sol6, Lemma 10.3.a] just the identity
element. We do that that for all w in the group

W (M,O) = W (ΣO,µ) oR(O)

from [Sol6], which will play the role of W o Γ. With that simplification, the 2-
cocycle \J : W (M,O)2 → C× ×Mσ/M

1 takes values in C×. Then [Sol6, Theorem
10.9] gives:

• an affine Hecke algebra H = H(O, G), with lattice Mσ/M
1 = X∗(O3) and a

reduced root system ΣO,µ,

• parameters qα = q
(λ(α)+λ∗(α))/2
F and qα∗ = q

(λ(α)−λ∗(α))/2
F with

1 6= qα ≥ qα∗ ≥ 1 for all α ∈ ΣO,µ,
• elements T ′r for r ∈ R(O), such that as vector spaces

EndG(Πs) =
⊕

r∈R(O)
H T ′r.

From [Sol6, (10.20) and Lemma 10.4.a] we see that these T ′r multiply as in the twisted
group algebra C[R(O), \J ]. Conjugation by T ′r is an automorphism ofH(O, G), which
by [Sol6, Theorem 10.6.a] has the desired effect on A ∼= C[O3]. For a simple root α,
[Sol6, (10.24)] shows that

T
′−1
r T ′sαTr ∈ C1 + CT ′r−1sαr

.

From that and the quadratic relations that Tsα and T ′r−1sαr
= T ′sr−1α

satisfy, we

deduce that T
′−1
r T ′sαTr must equal T ′r−1sαr

. Altogether this shows that EndG(Πs) is

the twisted affine Hecke algebra H(O, G) oC[R(O), \J ]. There is an isomorphism

(H(O, G) oC[R(O), \J ])op → H(O, G) oC[R(O), \−1
J ]

which is the identity on A and sends each T ′w with w ∈W (M,O) to T
′−1
w . Thus

(A.2) EndG(Πs)
op ∼= H(O, G) oC[R(O), \−1

J ].

By (6.3), (6.5) and (A.1)

(A.3) HomM (ΠsM , indGU (ξ)) ∼= EndM (indMM1(σ1)) ∼= C[Mσ/M
1].

That brings us almost to the setting of [Sol7, §2], with (A.2) and (A.3) the arguments
from there work. In particular the Whittaker datum (U, ξ) can be used to normalize
the operators T ′w with w ∈ W (M,O), and [Sol7, Theorem 2.7] provides canonical
algebra isomorphisms

EndG(Πs) ∼= H(O, G) oR(O) ∼= (H(O, G) oR(O))op ∼= EndG(Πs)
op.

That also finishes the verification of Condition 5.1’. Condition 8.1 was checked in
[Sol3, §5]. �
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We specialize to the cases where G is quasi-split. It turns out that the q-
parameters from Theorem A.1 have an interesting property, which means that H is
close to an affine Hecke algebra with equal parameters.

We may assume that σ corresponds to the basepoint of O3 in the proof of Theorem
A.1, so that all α ∈ ΣO,µ take the value 1 at σ. Let σ′ = σ ⊗ χ be a twist of σ
by a unitary unramified character of χ of M . Via Mσ ⊂ M we can consider χ as a
character of the lattice Mσ/M

1 involved in H. We define a set of roots (in fact a

root system) Σσ′ ⊂ ΣO,µ and a parameter function kσ
′

by

• if sα(σ′) = σ′ and χ(α) = 1, then α ∈ Σσ′ and kσ
′
α = log(qα)/ log(qF ),

• if sα(σ′) = σ′, χ(α) = −1 and qα∗ 6= 1, then α ∈ Σσ′ and kσ
′
α = log(qα∗)/ log(qF ),

• α /∈ Σσ′ for other α ∈ ΣO,µ.

With [Lus, Lemma 3.15] is not difficult to see that

Σe
σ′ = {α ∈ ΣO,µ : sα(σ′) = σ′}

is a root system and that χ(α) ∈ {±1} for every α ∈ Σe
σ′ . By the W (ΣO,µ)-invariance

of λ and λ∗, the function kσ
′

is W (Σe
σ′)-invariant. The set Σσ′ is obtained from Σe

σ′

by omitting the W (Σe
σ′)-stable collection of roots with χ(α) = −1 and qα∗ = 1.

All such roots are short in a type B irreducible component of Σe
σ′ . Thus, for each

irreducible component Re of Σe
σ′ , the part in Σσ′ is either Re or the set of long roots

in Re. This shows that Σσ′ is really a root system.
By W (Σσ′)-invariance, the function kσ

′
takes the same value on all roots of a fixed

length in one irreducible component.

Proposition A.2. Let G be quasi-split and recall the notations from Theorem A.1
and above. Let R be an irreducible component of Σσ′, let α ∈ R be short and let
β ∈ R be long. Then kσ

′
α /k

σ′
β equals either 1 or the square of the ratio of the lengths

of the coroots α∨ and β∨ (so equals 1, 2 or 3).

Proof. We recall from [Sol6, (3.7)] that the parameters qα and qα∗ in the proof of
Theorem A.1 come from poles of Harish-Chandra’s function µα. In the notation
from [Sol6], µα has factors

(A.4)
(1−Xα)

(1− q−1
α Xα)

(1 +Xα)

(1 + q−1
α∗Xα)

,

where Xα corresponds to evaluation at a certain element h∨α ∈ M/M1. In [HeOp]
one specializes to twists of σ′ by unramified characters with values in R>0, which
means the only the left half or the right half in (A.4) remains interesting, the other
half is put in a holomorphic function and then ignored. Which of the two halves to
chose agrees with how we selected qα or qα∗ for kσ

′
. Thus, in the notation of [HeOp,

§3], (A.4) becomes a factor

(A.5)
(
1− q〈ν,α

∨〉
F

)/(
1− q−1/εᾱ+〈ν,α∨〉

F

)
.

Hence qα or qα∗ from [Sol6] equals q
1/εᾱ
F from [HeOp], and kσ

′
α = 1/εᾱ. Now we need

to prove that εᾱ/εβ̄ equals 1 or the square of the ratio of the lengths of α and β.

That is precisely the condition needed in [HeOp, Theorem 4.1]. It was shown to
hold for all generic Bernstein blocks of quasi-split reductive p-adic groups in [HeOp,
§5–6]. �
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Proposition A.2 enables one to reduce the representation theory of H o Γ (as in
Theorem A.1) to extended graded Hecke algebras with equal parameters, via [Lus,
§8–9] or [Sol2, §2.1].
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