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Abstract. Let G be a reductive p-adic group and let Rep(G)s be a Bernstein
block in the category of smooth complex G-representations. We investigate the
structure of Rep(G)s, by analysing the algebra of G-endomorphisms of a progen-
erator Π of that category.

We show that Rep(G)s is “almost” Morita equivalent with a (twisted) affine
Hecke algebra. This statement is made precise in several ways, most importantly
with a family of (twisted) graded algebras. It entails that, as far as finite length
representations are concerned, Rep(G)s and EndG(Π)-Mod can be treated as the
module category of a twisted affine Hecke algebra.

We draw two major consequences. Firstly, we show that the equivalence of
categories between Rep(G)s and EndG(Π)-Mod preserves temperedness of finite
length representations. Secondly, we provide a classification of the irreducible
representations in Rep(G)s, in terms of the complex torus and the finite group
canonically associated to Rep(G)s. This proves a version of the ABPS conjecture
and enables us to express the set of irreducible G-representations in terms of the
supercuspidal representations of the Levi subgroups of G.

Our methods are independent of the existence of types, and apply in complete
generality.

In 2023 an appendix was added, to solve a problem with preservation of tem-
peredness in Paragraph 9.1.
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Introduction

This paper investigates the structure of Bernstein blocks in the representation
theory of reductive p-adic groups. Let G be such a group and let M be a Levi
subgroup. Let (σ,E) be a supercuspidal M -representation (over C), and let s be
its inertial equivalence class (for G). To these data Bernstein associated a block
Rep(G)s in the category of smooth G-representations Rep(G), see [BeDe, Ren].

Several questions about Rep(G)s have been avidly studied, for instance:

• Can one describe Rep(G)s as the module category of an algebra H with an
explicit presentation?
• Is there an easy description of temperedness and unitarity ofG-representations

in terms of H?
• How to classify the set of irreducible representations Irr(G)s?
• How to classify the discrete series representations in Rep(G)s?

We note that all these issues have been solved already for M = G. In that case the
real task is to obtain a supercuspidal representation, whereas in this paper we use a
given (σ,E) as starting point.

Most of the time, the above questions have been approached with types, follow-
ing [BuKu2]. Given an s-type (K,λ), there is always a Hecke algebra H(G,K, λ)
whose module category is equivalent with Rep(G)s. This has been exploited very
successfully in many cases, e.g. for GLn(F ) [BuKu1], for depth zero representations
[Mor1, Mor2], for the principal series of split groups [Roc1], the results on unitarity
from [Ciu] and on temperedness from [Sol5].

However, it is often quite difficult to find a type (K,λ), and even if one has it, it
can be hard to find generators and relations for H(G,K, λ). For instance, types have
been constructed for all Bernstein components of classical groups [Ste, MiSt], but
so far the Hecke algebras of most of these types have not been worked out. Already
for the principal series of unitary p-adic groups, this is a difficult task [Bad]. At
the moment, it seems unfeasible to carry out the full Bushnell–Kutzko program for
arbitary Bernstein components.
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We follow another approach, which builds more directly on the seminal work of
Bernstein. We consider a progenerator Π of Rep(G)s, and the algebra EndG(Π).
There is a natural equivalence from Rep(G)s to the category EndG(Π)-Mod of right
EndG(Π)-modules, namely V 7→ HomG(Π, V ).

Thus all the above questions can in principle be answered by studying the algebra
EndG(Π). To avoid superfluous complications, we should use a progenerator with an
easy shape. Fortunately, such an object was already constructed in [BeRu]. Namely,
let M1 be subgroup of M generated by all compact subgroups, write B = C[M/M1]
and EB = E⊗CB. The latter is an algebraic version of the integral of the representa-
tions σ⊗χ, where χ runs through the group Xnr(M) of unramified characters of M .
Then the (normalized) parabolic induction IGP (EB) is a progenerator of Rep(G)s. In
particular we have the equivalence of categories

E : Rep(G)s −→ EndG(IGP (EB))-Mod
V 7→ HomG(IGP (EB), V )

.

For classical groups and inner forms of GLn, the algebras EndG(IGP (EB)) were al-
ready analysed by Heiermann [Hei1, Hei2, Hei4]. It turns out that they are iso-
morphic to affine Hecke algebras (sometimes extended with a finite group). These
results make use of some special properties of representations of classical groups,
which need not hold for other groups.

We want to study EndG(IGP (EB)) in complete generality, for any Bernstein block
of any connected reductive group over any non-archimedean local field F . This en-
tails that we can only use the abstract properties of the supercuspidal representation
(σ,E), which also go into the Bernstein decomposition. A couple of observations
about EndG(IGP (EB)) can be made quickly, based on earlier work.

• The algebra B acts on EB by M -intertwiners, and IGP embeds B as a com-
mutative subalgebra in EndG(IGP (EB)). As a B-module, EndG(IGP (EB)) has
finite rank [BeRu, Ren].
• Write O = {σ ⊗ χ : χ ∈ Xnr(M)} ⊂ Irr(M). The group NG(M)/M acts

naturally on Irr(M), and we denote the stabilizer of O in NG(M)/M by
W (M,O). By [BeDe], the centre of EndG(IGP (EB)) is isomorphic to

C[O/W (M,O)] = C[O]W (M,O).
• Consider the finite group

Xnr(M,σ) = {χc ∈ Xnr(M) : σ ⊗ χc ∼= σ}.
For every χc ∈ Xnr(M,σ) there exists an M -intertwiner σ ⊗ χ → σ ⊗ χcχ,
which gives rise to an intertwiner φχc in EndM (EB) and in EndG(IGP (EB))
[Roc2].
• For every w ∈W (M,O) there exists an intertwining operator

Iw(χ) : IGP (σ ⊗ χ)→ IGP (w(σ ⊗ χ)),

see [Wal]. However, it is rational as a function of χ ∈ Xnr(M) and in general
has non-removable singularities, so it does not automatically yield an element
of EndG(IGP (EB)).

Based on this knowledge and on [Hei2], one can expect that EndG(IGP (EB)) has a
B-basis indexed by Xnr(M,σ)×W (M,O), and that the elements of this basis behave
somewhat like a group. However, in general things are more subtle than that.
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Main results.
The action of any w ∈ W (M,O) on O ∼= Xnr(M)/Xnr(M,σ) can be lifted to a
transformation w of Xnr(M). Let W (M,σ,Xnr(M)) be the group of permutations
of Xnr(M) generated by Xnr(M,σ) and the w. It satisfies

W (M,σ,Xnr(M))/Xnr(M,σ) = W (M,O).

Let K(B) = C(Xnr(M)) be the quotient field of B = C[Xnr(M)]. In view of the
rationality of the intertwining operators Iw, it is easier to investigate the algebra

EndG(IGP (EB))⊗B K(B) = HomG

(
IGP (EB), IGP (EB ⊗B K(B))

)
.

Theorem A. (see Corollary 5.8)
There exist a 2-cocycle \ : W (M,σ,Xnr(M))2 → C× and an algebra isomorphism

EndG(IGP (EB))⊗B K(B) ∼= K(B) oC[W (M,σ,Xnr(M)), \].

Here C[W (M,σ,Xnr(M)), \] is a twisted group algebra, it has basis elements Tw
that multiply as TwTw′ = \(w,w′)Tww′ . The symbol o denotes a crossed product: as
vector space it just means the tensor product, and the multiplication rules on that
are determined by the action of W (M,σ,Xnr(M)) on K(B).

Theorem A suggests a lot about EndG(IGP (EB)), but the poles of some involved op-
erators make it impossible to already draw many conclusions about representations.
In fact the operators Tw with w ∈ W (M,O) involve certain parameters, powers of
the cardinality qF of the residue field of F . If we would manually replace qF by 1,
then EndG(IGP (EB)) would become isomorphic to B o C[W (M,σ,Xnr(M)), \]. Of
course that is an outrageous thing to do, we just mention it to indicate the relation
between these two algebras.

To formulate our results about EndG(IGP (EB)), we introduce more objects. The
set of roots of G with respect to M contains a root system ΣO,µ, namely the set of
roots for which the associated Harish-Chandra µ-function has a zero on O [Hei2].
This induces a semi-direct factorization

W (M,O) = W (ΣO,µ) oR(O),

where R(O) is the stabilizer of the set of positive roots. We may and will assume
throughout that σ ∈ Irr(M) is unitary and stabilized by W (ΣO,µ). The Harish-
Chandra µ-functions also determine parameter functions λ, λ∗ : ΣO,µ → R≥0. The
values λ(α) and λ∗(α) encode in a simple way for which χ ∈ Xnr(M) the normal-

ized parabolic induction IMα

M(P∩Mα
(σ ⊗ χ) becomes reducible, see (3.7) and (9.5).

(Here Mα denotes the Levi subgroup of G generated by M and the root subgroups
Uα, U−α.)

To the data O,ΣO,µ, λ, λ∗, q1/2
F one can associate an affine Hecke algebra, which

we denote in this introduction byH
(
O,ΣO,µ, λ, λ∗, q1/2

F

)
. There is a large subalgebra

End◦G(IGP (EB)) ⊂ EndG(IGP (EB))

such that the categories of finite length right modules of H
(
O,ΣO,µ, λ, λ∗, q1/2

F

)
and

of End◦G(IGP (EB)) are equivalent. Suppose that \ descends to a 2-cocycle \̃ of R(O).
Then the crossed product

H̃(O) := H
(
O,ΣO,µ, λ, λ∗, q1/2

F

)
oC[R(O), \̃]
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is a twisted affine Hecke algebra [AMS3, §2.1]. It is reasonable to expect that

EndG(IGP (EB)) is Morita equivalent with H̃(O). Indeed this is “almost” true, and
in important cases known already.

• The group R(O) is always trivial for GLn(F ) [BuKu1], for inner forms of
general linear groups [SeSt, Hei2] and for unipotent representations [Lus2,
Sol6].
• The 2-cocycle \ of W (M,σ,Xnr(M)) is trivial for symplectic groups and

special orthogonal groups [Hei2] and for principal series representatons of
split groups [Roc1].

In these cases all the involved 2-cocycles are trivial, and there are equivalences of
categories

Rep(G)s ∼= EndG(IGP (EB))−Mod ∼= H
(
O,ΣO,µ, λ, λ∗, q1/2

F

)
oR(O)−Mod.

However, examples with inner forms of SLn [ABPS3] suggest that such a Morita
equivalence for EndG(IGP (EB)) might not hold for arbitrary groups. It is conceivable
that the 2-cocycles are always trivial for (quasi-)split reductive F -groups, but we
would not know how to prove that.

In our completely general setting, we shall need to decompose EndG(IGP (EB))-
modules according to their B-weights (which live in Xnr(M)). The existence of
such a decomposition cannot be guaranteed for representations of infinite length,
and therefore we stick to finite length in most of the paper. All the algebras we
consider have a large centre, so that every finite length module actually has finite
dimension. For Rep(G)s “finite length” is equivalent to “admissible”, and we denote
the corresponding subcategory by Repf(G)s.

It is known from [Lus1, AMS3] that the category of finite dimensional right

modules H̃(O) − Modf can be described with a family of (twisted) graded Hecke
algebras. Write X+

nr(M) = Hom(M/M1,R>0) and note that its Lie algebra is
a∗M = Hom(M/M1,R). For a unitary u ∈ Xnr(M), there is a graded Hecke al-
gebra Hu, built from the following data: the tangent space a∗M ⊗R C of Xnr(M)
at u, a root subsystem Σσ⊗u ⊂ ΣO,µ and a parameter function kuα induced by λ
and λ∗. Further W (M,O)σ⊗u decomposes as W (Σσ⊗u)oR(σ⊗ u), and \ induces a
2-cocycle of the local R-group R(σ⊗u). This yields a twisted graded Hecke algebra
Hu oC[R(σ ⊗ u), \u] [AMS3, §1].

We remark that these algebras depend mainly on the variety O and the group
W (M,O). Only the subsidiary data ku and \u take the internal structure of the
representations σ ⊗ χ ∈ O into account. The parameters kuα, depend only on the
poles of the Harish-Chandra µ-function (associated to α) on {σ⊗uχ : χ ∈ X+

nr(M)}.
It is not clear to us whether, for a given σ ⊗ u, they can be effectively computed in
that way, further investigations are required there.

We do not know whether a 2-cocycle \̃ as used in H̃(O) always exists. Fortunately,
the description of EndG(IGP (EB))−Modf found via affine Hecke algebras turns out
to be valid anyway.

Theorem B. (see Corollaries 8.1 and 9.4)
For any unitary u ∈ Xnr(M) there are equivalences between the following categories:

(i) representations in Repf(G)s with cuspidal support in
W (M,O){σ ⊗ uχ : χ ∈ X+

nr(M)};
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(ii) modules in EndG(IGP (EB))−Modf with all their B-weights in
W (M,σ,Xnr(M))uX+

nr(M);

(iii) modules in H(R̃u,W (M,O)σ⊗u, k
u, \u)−Modf with all their C[a∗M⊗RC]-weights

in a∗M .

These equivalences commute with parabolic induction and Jacquet restriction (which
for (ii) and (iii) are just induction and restriction between the appropriate algebras).

Futhermore, suppose that there exists a 2-cocycle \̃ on R(O) ∼= W (M,O)/W (ΣO,µ)
which on each subgroup W (M,O)σ⊗u is cohomologous to \u. Then the above equiv-
alences, for all unitary u ∈ Xnr(M), combine to an equivalence of categories

EndG(IGP (EB))−Modf −→ H̃(O)−Modf .

Via E, the left hand side is always equivalent with Repf(G)s.

We stress that Theorem B holds for all Bernstein blocks of all reductive p-adic
groups. It provides a good substitute for types, when those are not available or too
complicated. The use of graded (instead of affine) Hecke algebras is only a small
concession, since the standard approaches to the representation theory of affine
Hecke algebras with unequal parameters run via graded Hecke algebras anyway.

Let us point out that on the Galois side of the local Langlands correspondence,
analogous structures exist. Indeed, in [AMS1, AMS2, AMS3] twisted graded Hecke
algebras and a twisted affine Hecke algebra were associated to every Bernstein com-
ponent in the space of enhanced L-parameters. By comparing twisted graded Hecke
algebras on both sides of the local Langlands correspondence, it might be possible
to establish new cases of that correspondence.

For representations of EndG(IGP (EB)) and Hu oC[R(σ⊗ u), \u] there are natural
notions of temperedness and essentially discrete series, which mimic those for affine
Hecke algebras [Opd]. The next result generalizes [Hei3].

Theorem C. (see Theorem 9.6 and Proposition 9.5)
Choose the parabolic subgroup P with Levi factor M as indicated by Lemma 9.1.
Then all the equivalences of categories in Theorem B preserve temperedness.

Suppose that ΣO,µ has full rank in the set of roots of (G,M). Then these equiva-
lences send essentially square-integrable representations in (i) to essentially discrete
series representations in (ii), and the other way round.

Suppose Σσ⊗u has full rank in the set of roots of (G,M), for a fixed unitary
u ∈ Xnr(M). Then the equivalences in Theorem B, for that u, send essentially
square-integrable representations in (i) to essentially discrete series representations
in (iii), and conversely.

Now that we have a good understanding of EndG(IGP (EB)), its finite dimen-
sional representations and their properties, we turn to the remaining pressing is-
sue from page 2: can one classify the involved irreducible representations? This
is indeed possible, because graded Hecke algebras have been studied extensively,
see e.g. [BaMo1, BaMo2, COT, Eve, Sol1, Sol2, Sol4]. The answer depends in a
well-understood but involved and subtle way on the parameter functions λ, λ∗, ku.

With the methods in this paper, it is difficult to really compute the param-
eter functions λ and λ∗. Whenever a type (K, τ) and an associated Hecke al-
gebra H(G,K, τ) for Rep(G)s are known, H(G,K, τ) is Morita equivalent with

EndG(IGP (EB)). In that case the values q
λ(α)
F and q

λ∗(α)
F can be read off from
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H(G,K, τ), because they only depend on the reducibility of certain parabolically
induced representations and those properties are preserved by a Morita equivalence.
But, that does not cover all cases.

We expect that the functorial properties of the progenerators IGP (EB) enable us
to reduce the computation of λ(α), λ∗(α) to cases where G is simple and adjoint or
simply connected. Thus it may be possible to prove that the parameter functions
λ, λ∗ are integers and of “geometric type”, as Lusztig conjectured in [Lus3]. We
work that out in the sequel [Sol8] to this paper.

The classification of Irr(G)s becomes more tractable if we just want to understand
Irr
(
EndG(IGP (EB))

)
and Irr(Hu o C[R(σ ⊗ u, \u]) as sets, and allow ourselves to

slightly adjust the weights (with respect to respectively B and C[a∗M ⊗R C]) in the
bookkeeping. Then we can investigate Irr(Hu o C[R(σ ⊗ u, \u]) via the change of
parameters ku → 0, like in [Sol3, Sol7]. That replaces

Hu oC[R(σ ⊗ u), \u] by C[a∗M ⊗R C] oC[W (M,O)σ⊗u, \u],

for which Clifford theory classifies the irreducible representations.

Theorem D. (see Theorem 9.7)
There exists a bijection

ζ ◦ E : Irr(G)s −→ Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
such that, for π ∈ Irr(G)s and a unitary u ∈ Xunr(M):

• the cuspidal support of ζ ◦ E(π) lies in W (M,O)uX+
nr(M) if and only if all

the C[Xnr(M)]-weights of (ζ ◦ E(π)) lie in W (M,σ,Xnr(M))uX+
nr(M),

• π is tempered if and only if all the C[Xnr(M)]-weights of (ζ ◦ E)(π) are
unitary.

Notice that on the right hand side the parameter functions λ, λ∗ and ku are no
longer involved. Recall that in the important cases mentioned on page 5, \ is trivial.
Then Theorem D and standard Morita equivalences provide bijections

Irr(G)s −→ Irr
(
C[Xnr(M)] oW (M,σ,Xnr(M))

)
−→ Irr

(
C[O] oW (M,O)

)
.

Clifford theory identifies Irr(C[O] oW (M,O)) with the extended quotient

O//W (M,O) = {(χ, ρ) : χ ∈ O, ρ ∈ Irr(W (M,O)χ)}/W (M,O).

For GLn(F ) such a bijection between Irr(G)s and O//W (M,O) was already known
from [BrPl], and for principal series representations of split groups from [ABPS1,
ABPS2]. In general, in the language of [ABPS4],

Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
is a twisted extended quotient (O//W (M,O))\. With that interpretation Theorem
D proves a version of the ABPS conjecture [ABPS4, §2.3] and:

Theorem E. (see Theorem 9.9)
Theorem D (for all possible s = [M,σ]G together) yields a bijection

Irr(G) −→
⊔

M

(
Irrcusp(M)//(NG(M)/M)

)
\
,

where M runs over a set of representatives for the conjugacy classes of Levi subgroups
of G and Irr(M)cusp denotes the set of irreducible supercuspidal M -representations.
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It is quite surprising that such a simple relation between the space of irreducible
representations of an arbitrary reductive p-adic group and the supercuspidal repre-
sentations of its Levi subgroups holds.

We note that Theorem D is about right modules of the involved algebra. If we
insist on left modules we must use the opposite algebra, which is isomorphic to
C[Xnr(M)] o C[W (M,σ,Xnr(M)), \−1]. Then we would get the twisted extended
quotient (O//W (M,O))\−1 .

The only noncanonical ingredient in Theorem D is the 2-cocycle \. It is trivial
on W (ΣO,µ), but apart from that it depends on some choices of M -isomorphisms
w(σ⊗χ)→ σ⊗χ′ for w ∈ R(O) and χ, χ′ ∈ Xnr(M). From Theorem B we see that
the restrictions \u of \ have a definite effect on the involved module categories.

Moreover, by (8.2) \−1
u must be cohomologous to a 2-cocycle obtained from the

Hecke algebra of an s-type (if such a type exists). This entails that in many cases \u
must be trivial. At the same time, this argument shows that in some instances, like
[ABPS3, Example 5.5] and Example 2.G, the 2-cocycles \u and \ are cohomologically
nontrivial. It would be interesting if \ could be related to the way G is realized as
an inner twist of a quasi-split F -group, like in [HiSa].

Besides IGP (EB), a smaller progenerator of Rep(G)s is available. Namely, let E1

be an irreducible subrepresentation of ResMM1(E) and build IGP (indMM1(E1)). We
investigate the Morita equivalent subalgebra

EndG
(
IGP (indMM1(E1))

)
⊂ EndG

(
IGP (EB)

)
as well, because it should be even closer to an affine Hecke algebra.

Unfortunately this turns out to be difficult, and we unable to make progress
without further assumptions. In the large majority of cases, the restriction of (σ,E)
to M1 decomposes without multiplicities bigger than one. (That does not always
hold though, see Example 2.G.) With such multiplicity one as working hypothesis,
we can slightly improve on Theorem B.

Theorem F. Suppose that the multiplicity of E1 in ResMM1(E) is one. There exists

a 2-cocycle \J : W (M,O)2 → C[O]× and an algebra isomorphism

EndG
(
IGP (indMM1(E1))

) ∼= H(O,ΣO,µ, λ, λ∗, q1/2
F

)
oC[R(O), \J ].

On the right hand side the first factor is a subalgebra but the second factor need not
be. The basis elements Jr with r ∈ R(O) have products

JrJr′ = \J(r, r′)Jrr′ ∈ C[O]×Jrr′ .

Thus, the price we pay for the smaller progenerator IGP (indMM1(E1)) consists of
more complicated intertwining operators from the R-group R(O). In concrete cases
this may be resolved by an explicit analysis of R(O). In general Theorem 10.9 could
be useful to say something about the relation between unitarity in Rep(G)s and
unitarity in EndG

(
IGP (indMM1(E1))

)
−Mod.

Structure of the paper.
Most results about endomorphism algebras of progenerators in the cuspidal case
(M = G) are contained in Section 2. A substantial part of this was already shown
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in [Roc2], we push it further to describe EndM (EB) better. Section 3 is elementary,
its main purpose is to introduce some useful objects.

Harish-Chandra’s intertwining operators JP ′|P play the main role in Section 4.
We study their poles and devise several auxiliary operators to fit Jw(P )|P into

HomG

(
IGP (EB), IGP (EB ⊗B K(B))

)
. The actual analysis of that algebra is carried

out in Section 5. First we express it in terms of operators Aw for w ∈ W (M,O),
which are made by composing the JP ′|P with suitable auxiliary operators. Next we
adjust the Aw to Tw and we prove Theorem A. Sections 2–5 are strongly influenced
by [Hei2], where similar results were established in the (simpler) case of classical
groups.

At this point Lemma 5.9 forces us to admit that in general EndG(IGP (EB)) proba-
bly does not have a nice presentation. To pursue the analysis of this algebra, we lo-
calize it on relatively small subsets U of Xnr(M). In this way we get rid of Xnr(M,σ)
from the intertwining group W (M,σ,Xnr(M)), and several issues simplify. For max-
imal effect, we localize with analytic rather than polynomial functions on U – after
checking (in Section 6) that it does not make a difference as far as finite dimensional
modules are concerned. We show that the localization of EndG(IGP (EB)) at U , ex-
tended with the algebra Cme(U) of meromorphic functions on U , is isomorphic to a
crossed product Cme(U) oC[W (M,O)σ⊗u, \u].

A presentation of the analytic localization of EndG(IGP (EB)) at U is obtained in
Theorem 6.11: it is almost Morita equivalent to an affine Hecke algebra. The only
difference is that the standard large commutative subalgebra of that affine Hecke
algebra must be replaced by the algebra of analytic functions on U .

This presentation makes it possible to relate the localized version of EndG(IGP (EB))
to the localized version of a suitable graded Hecke algebra. We do that in Section 7,
thus proving the first half of Theorem B. In Section 8 we translate that to a classi-
fication of Irr(G)s in terms of graded Hecke algebras. Next we study the change of
parameters ku → 0 in graded Hecke algebras, and derive the larger part of Theorem
D. All considerations about temperedness can be found in Section 9. There we finish
the proofs of Theorems B, C, D and E.

Finally, in Section 10 we study the smaller progenerator IGP (indMM1(E1)). Varying
on earlier results, we establish Theorem F.

Acknowledgement.
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paper. We are also grateful to the referees for their work and their useful comments,
especially for pointing out Example 2.G.

1. Notations

We introduce some of the notations that will be used throughout the paper.
F : a non-archimedean local field
G: a connected reductive F -group
P: a parabolic F -subgroup of G
M: a F -Levi factor of P
U : the unipotent radical of P
P: the parabolic subgroup of G that is opposite to P with respect to M
G = G(F ) (and M =M(F ) etc.): the group of F -rational points of G
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We often abbreviate the above situation to: P = MU is a parabolic subgroup of G

Rep(G): the category of smooth G-representations (always on C-vector spaces)
Repf(G): the subcategory of finite length representations
Irr(G): the set of irreducible smooth G-representations up to isomorphism
IGP : Rep(M)→ Rep(G): the normalized parabolic induction functor
Xnr(M): the group of unramified characters of M , with its structure as a complex
algebraic torus
M1 =

⋂
χ∈Xnr(M) kerχ

Irr(M)cusp subset of supercuspidal representations in Irr(M)
(σ,E): an element of Irrcusp(M)
O = [M,σ]M : the inertial equivalence class of σ for M , that is, the subset of Irr(M)
consisting of the σ ⊗ χ with χ ∈ Xnr(M)
Rep(M)O: the Bernstein block of Rep(M) associated to O
s = [M,σ]G: the inertial equivalence class of (M,σ) for G
Rep(G)s: the Bernstein block of Rep(G) associated to s
Irr(G)s = Irr(G) ∩ Rep(G)s

W (G,M) = NG(M)/M
NG(M) acts on Rep(M) by (g · π)(m) = π(g−1mg). This induces an action of
W (G,M) on Irr(M)
NG(M,O) = {g ∈ NG(M) : g · σ ∼= σ ⊗ χ for some χ ∈ Xnr(M)}
W (M,O) = NG(M,O)/M = {w ∈W (G,M) : w · σ ∈ O}

Xnr(M,σ) = {χ ∈ Xnr(M) : σ ⊗ χ ∼= σ}
B = C[Xnr(M)]: the ring of regular functions on the complex algebraic torusXnr(M)
K(B) = C(Xnr(M)): the quotient field of B, the field of rational functions on
Xnr(M)
The covering map

Xnr(M)→ O : χ 7→ σ ⊗ χ

induces a bijection Xnr(M)/Xnr(M,σ)→ O. In this way we regard O as a complex
algebraic variety. We define C[Xnr(M)/Xnr(M,σ)],C[O] and C(Xnr(M)/Xnr(M,σ)),
C(O) like B and K(B).

2. Endomorphism algebras for cuspidal representations

This section relies largely on [Roc2]. Let

indMM1 : Rep(M1)→ Rep(M)

be the functor of smooth, compactly supported induction. We realize it as

indMM1(π, V ) = {f : M → V | π(m1)f(m) = f(m1m) ∀m ∈M,m1 ∈M1,

supp(f)/M1 is compact},

with the M -action by right translation. (Smoothness of f is automatic because M1

is open in M .)
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Regard (σ,E) as a representation of M1, by restriction. Bernstein [BeRu, §II.3.3]
showed that indMM1(σ,E) is a progenerator of Rep(M)O. This entails that

V 7→ HomM

(
indMM1(E), V

)
is an equivalence between Rep(M)O and the category EndM

(
indMM1(σ,E)

)
−Mod of

right modules over theM -endomorphism algebra of indMM1(σ,E), see [Roc2, Theorem

1.5.3.1]. We want to analyse the structure of EndM
(
indMM1(σ,E)

)
.

For m ∈ M , let bm ∈ C[Xnr(M)] be the element given by evaluating unramified
characters at m. We let m act on C[Xnr(M)] by

m · b = bmb b ∈ C[Xnr(M)].

Then specialization/evaluation at χ ∈ Xnr(M) is an M -homomorphism

spχ : C[Xnr(M)]→ (χ,C).

Let δm ∈ indMM1(C) be the function which is 1 on mM1 and zero on the rest of
M . Let C[M/M1] be the group algebra of M/M1, considered as the left regular
representation of M/M1. There are canonical isomorphisms of M -representations

(2.1)
C[Xnr(M)] → C[M/M1] → indMM1(C)

bm 7→ mM1 7→ δm−1
.

We endow E ⊗C indMM1(C) with the tensor product of the M -representations σ and

indMM1(triv). There is an isomorphism of M -representations

(2.2)
E ⊗C indMM1(C) ∼= indMM1(E)

e⊗ f 7→ [ve⊗f : m 7→ f(m)σ(m)e]∑
m∈M/M1 σ(m−1)v(m)⊗ δm 7→ v

.

Composing (2.1) and (2.2), we obtain an isomorphism

(2.3)

indMM1(E) → E ⊗C C[Xnr(M)]
v 7→

∑
m∈M/M1 σ(m)v(m−1)⊗ bm

ve⊗δ−1
m

7→ e⊗ bm
.

With (2.3), specialization at χ ∈ Xnr(M) becomes a M -homomorphism

(2.4) spχ : indMM1(σ,E)→ (σ ⊗ χ,E).

As M/M1 is commutative, the M -action on E ⊗C C[Xnr(M)] is C[Xnr(M)]-linear.
Via (2.3) we obtain an embedding

(2.5) C[Xnr(M)]→ EndM
(
indMM1(σ,E)

)
.

For a basis element bm ∈ C[Xnr(M)] and any v ∈ indMM1(E), it works out as

(2.6) (bm · v)(m′) = σ(m−1)v(mm′).

For any χc ∈ Xnr(M) we can define a linear bijection

(2.7)
ρχc : C[Xnr(M)] → C[Xnr(M)]

b 7→ [bχc : χ 7→ b(χχc)]
.

This provides an M -isomorphism

idE ⊗ ρχc : indMM1(σ)→ indMM1(σ ⊗ χc).
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Let (σ1, E1) be an irreducible subrepresentation of ResMM1(σ,E), such that the sta-
bilizer of the subspace E1 ⊂ E in M is maximal. We denote the multiplicity of σ1 in
σ by µσ,1. Every other irreducible M1-subrepresentation of σ is isomorphic to m ·σ1

for some m ∈M , and σ(m−1)E1 is a space that affords m · σ1. Hence µσ,1 depends
only on σ and not on the choice of (σ1, E1). (But note that, if µσ,1 > 1, not every
M1-subrepresentation of E isomorphic to σ1 equals σ(m−1)E1 for an m ∈M .)

Following [Roc2, §1.6] we consider the groups

M2
σ =

⋂
χ∈Xnr(M,σ) kerχ,

M3
σ = {m ∈M : σ(m)E1 = E1},

M4
σ = {m ∈M : m · σ1

∼= σ1}.
Notice that Xnr(M,σ) = Irr(M/M2

σ). There is a sequence of inclusions

(2.8) M1 ⊂M2
σ ⊂M3

σ ⊂M4
σ ⊂M.

Since M1 is a normal subgroup of M and M/M1 is abelian, all these groups are
normal in M . By this normality, for any m′ ∈M :

(2.9)
M3
σ = {m ∈M : σ(m)σ(m′)E1 = σ(m′)E1},

M4
σ = {m ∈M : m · (m′ · σ1) ∼= m′ · σ1}.

In other words, M4
σ consists of the m ∈ M that stabilize the isomorphism class of

one (or equivalently any) irreducible M1-subrepresentation of σ. In particular M2
σ

and M4
σ only depend on σ. On the other hand, it seems possible that M3

σ does
depend on the choice of E1.

Furthermore [M : M4
σ ] equals the number of inequivalent irreducible constituents

of ResMM1(σ) and, like (2.2),

ind
M2
σ

M1(C) ∼= C[Xnr(M)/Xnr(M,σ)].

By [Roc2, Lemma 1.6.3.1]

(2.10) [M4
σ : M3

σ ] = [M3
σ : M2

σ ] = µσ,1.

Example 2.G. Consider the group called G in [HeVi, §4.4]. This is a connected
reductive p-adic group, an extension of a four-dimensional torus (of split rank two)
by the norm one elements in the multiplicative group of a division algebra. Moreover
G is compact modulo centre, it has a unique maximal compact subgroup K = G1 and

K \G/K = G/G1 ∼= Z2.

In [HeVi, Proposition 4.4] a particular character χ of K is exhibited, and it is proven
that the Hecke algebra H(G,K,χ) is not commutative.

Let σ be an irreducible quotient of indGK(χ). Then σ is supercuspidal (by the
compactness of G/Z(G)), and µσ,1 = 2. The last claim can be checked as follows.

The arguments in [HeVi] entail that H(G,K,χ) has a vector space basis {Tg :
g ∈ G/G1} and that the centre of this Hecke algebra is the span of the basis vectors
indexed by a certain subgroup G′χ/G

1. By the calculations in [HeVi, Proposition 4.4]
G′χ is a proper subgroup of G, which guarantees the noncommutativity of H(G,K,χ).

Computations in the same spirit show that G′χ/G
1 corresponds to

(2Z)2 ⊂ Z2 ∼= G/G1.

Moreover the basis of H(G,K,χ) can be chosen so that

Tg · Tg′ = \(g, g′)Tgg′ g, g′ ∈ G,
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where \ : (G/G′χ)2 → {±1} is a nontrivial 2-cocycle. Since (G/G′χ) ∼= (Z/2Z)2,
there is only one such 2-cocycle (up to coboundaries). One checks that, for any one-
dimensional representation τ of H(G′χ,K, χ), H(G,K,χ)/ ker τ is a group algebra of

(Z/2Z)2 twisted by a nontrivial 2-cocycle, so isomorphic with M2(C). It follows that
every irreducible representation σ′ of H(G,K,χ) has dimension two, and restricts
with multiplicity two to H(G1,K, χ) ∼= C. Hence the irreducible G-representation σ
corresponding to σ′ restricts with multiplicity µσ,1 = 2 to G1. In this example

G = G4
σ, G′χ = G2

σ and [G4
σ : G3

σ] = [G3
σ : G2

σ] = 2.

When µσ,1 = 1, the groups M2
σ ,M

3
σ and M4

σ coincide with the group called Mσ in
[Hei2, §1.16]. Otherwise all the different m ∈M4

σ/M
3
σ give rise to different subspaces

σ(m)E1 of E. We denote the representation of M3
σ (resp. M2

σ) on E1 by σ3 (resp.
σ2). The σ1-isotypical component of E is an irreducible representation (σ4, E4) of
M4
σ . More explicitly

(2.11) E4 =
⊕

m∈M4
σ/M

3
σ

σ(m)E1
∼= ind

M4
σ

M3
σ
(σ3, E1).

From (2.11) we see that

(2.12) (σ,E) ∼= indMM4
σ
(σ4, E4) ∼= indMM3

σ
(σ3, E1).

The structure of (σ4, E4) can be analysed as in [GeKn, §2]:

Lemma 2.1. (a) In the above setting

Res
M4
σ

M3
σ
(σ4) =

⊕
χ∈Irr(M3

σ/M
2
σ)
σ3 ⊗ χ.

(b) All the σ3 ⊗ χ are inequivalent irreducible M3
σ-representations.

(c) There is a group isomorphism

M4
σ/M

3
σ −→ Irr(M3

σ/M
2
σ)

nM3
σ 7→ χ3,n

defined by n · σ3
∼= σ3 ⊗ χ3,n.

Proof. (a) For any χ ∈ Xnr(M,σ) we have σ⊗χ ∼= σ, so σ3⊗ResMM3
σ
χ is isomorphic

to an M3
σ-subrepresentation of E. As M1-representation it is just σ1, so σ3⊗ResMM3

σ
χ

is even isomorphic to a subrepresentation of E4. As every character of M3
σ/M

2
σ can

be extended to a character of M/M2
σ (that is, to an element of Xnr(M,σ)), all the

σ3 ⊗ χ with χ ∈ Irr(M3
σ/M

2
σ) appear in E4.

Further, all the M3
σ-subrepresentations (n−1·σ3, σ(n)E1) of (σ4, E4) are extensions

of the irreducible M2
σ-representation (σ2, E1). Hence they differ from each other only

by characters of M3
σ/M

2
σ [GoHe, Lemma 2.14]. This shows that Res

M4
σ

M3
σ
(σ4, E4) is a

direct sum of M3
σ-representations of the form σ3 ⊗ χ with χ ∈ Irr(M3

σ/M
2
σ).

By Frobenius reciprocity, for any such χ:

(2.13) HomM4
σ

(
ind

M4
σ

M3
σ
(σ3 ⊗ χ), σ4

) ∼= HomM3
σ
(σ3 ⊗ χ, σ4) 6= 0.

Thus there exists a nonzero M4
σ-homomorphism ind

M4
σ

M3
σ
(σ3 ⊗ χ)→ σ4. As these two

representations have the same dimension and σ4 is irreducible, they are isomorphic.
Knowing that, (2.13) also shows that dim HomM3

σ
(σ3 ⊗ χ, σ4) = 1.
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(b) The previous line is equivalent to: every σ3 ⊗ χ appears exactly once as a M3
σ-

subrepresentation of σ4. As Res
M4
σ

M3
σ
(σ4) has length [M4

σ : M3
σ ] = [M3

σ : M2
σ ], that

means that they are mutually inequivalent.
(c) This is a consequence of parts (a), (b) and the Mackey decomposition of

Res
M4
σ

M3
σ
(σ4, E4). �

For χ ∈ Irr(M/M3
σ) we define an M -isomorphism

(2.14)
φσ,χ : (σ,E) → (σ ⊗ χ,E)

σ(m)e1 7→ χ(m)σ(m)e1 e1 ∈ E1,m ∈M.

This says that φσ,χ acts as χ(m)id on the M3
σ-subrepresentation σ(m)E1 of E. By

Lemma 2.1 these φσ,χ form a basis of EndM3
σ
(E). We can extend φσ,χ to an M -

isomorphism

(2.15)
φχ = φσ,χ ⊗ ρ−1

χ : indMM1(σ,E) → indMM1(σ,E)
e⊗ δm 7→ φσ,χ(e)⊗ χ(m)δm

,

where e ∈ E,m ∈M and the elements are presented in E ⊗C indMM1(C) using (2.2).
Via (2.3), this becomes

(2.16) φχ ∈ AutM (E ⊗C C[Xnr(M)]) : e⊗ b 7→ φσ,χ(e)⊗ ρ−1
χ (b),

where e ∈ E, b ∈ C[Xnr(M)]. Given E1, φχ is canonical.
For an arbitrary χ ∈ Irr(M/M2

σ) = Xnr(M,σ) we can also construct such M -
homomorphisms, albeit not canonically. Pick n ∈ M4

σ (unique up to M3
σ) as in

Lemma 2.1.c, such that χ3,n = χ|M3
σ
. Choose an M3

σ-isomorphism

φσ3,χ : (σ3, E1)→ ((n−1 · σ3)⊗ χ, σ(n)E1).

We note that, when χ /∈ Irr(M/M3
σ), ψσ3,χ cannot commute with all the φσ,χ′ for

χ′ ∈ Irr(M/M3
σ) because it does not stabilize E1.

For compatibility with (2.14) we may assume that

(2.17) φσ3,χχ′ = φσ3,χ for all χ′ ∈ Irr(M/M3
σ).

By Schur’s lemma φσ3,χ is unique up to scalars, but we do not know a canonical
choice when M3

σ 6⊂ kerχ. By (2.12)

HomM (σ, σ ⊗ χ) = HomM (indMM3
σ
(σ3), σ ⊗ χ) ∼= HomM3

σ
(σ3, σ ⊗ χ),

while ((n−1 ·σ3)⊗χ, σ(n)E1) is contained in (σ⊗χ,E) as M3
σ-representation. Thus

φσ3,χ determines a φσ,χ ∈ HomM (σ, σ ⊗ χ), which is nonzero and hence bijective.
Then ρχ from (2.7) and the formulas (2.15) and (2.16) provide

(2.18) φχ = φσ,χ ⊗ ρ−1
χ ∈ AutM (indMM1(E)) ∼= AutM (E ⊗C C[Xnr(M)]).

For χc ∈ Xnr(M) and χ ∈ Xnr(M,σ), we see from (2.18) that

(2.19) spχc ◦ φχ = φχ ◦ spχcχ−1 .

We also note that, regarding b ∈ C[Xnr(M)] as multiplication operator:

(2.20) b ◦ φχ = φχ ◦ bχ ∈ EndM
(
E ⊗C C[Xnr(M)]

)
.

For all χ, χ′ ∈ Irr(M/M2
σ), the uniqueness of φσ3,χ up to scalars implies that there

exists a \(χ, χ′) ∈ C× such that

(2.21) φχφχ′ = \(χ, χ′)φχχ′ .
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In other words, the φχ span a twisted group algebra C[Xnr(M,σ), \]. By (2.17) we
have

(2.22) \(χ, χ′) = 1 if χ ∈ Irr(M/M3
σ) or χ′ ∈ Irr(M/M3

σ).

If desired, we can scale the φσ,χ so that φ−1
σ3,χ = φσ3,χ−1 . In that case φ−1

χ = φχ−1

and \(χ, χ−1) = 1 for all χ ∈ Irr(M/M2
σ). When µσ,1 > 1, not all φχ commute

and \ is nontrivial. Then it is unlikely that all the φχ with χ ∈ Xnr(M,σ) can be
normalized simultaneously in a canonical way, because they can always be rescaled
by a character of Xnr(M,σ).

The next result is a variation on [Hei2, Proposition 3.6].

Proposition 2.2. (a) The set {φσ,χ : χ ∈ Xnr(M,σ)} is a C-basis of EndM1(E).
(b) With respect to the embedding (2.5):

EndM (indMM1(σ,E)) =
⊕

χ∈Xnr(M,σ)

C[Xnr(M)]φχ =
⊕

χ∈Xnr(M,σ)

φχC[Xnr(M)].

Proof. (a) By (2.11) and Lemma 2.1

ResMM3
σ
(σ,E) =

⊕
m∈M/M3

σ

(m−1 · σ, σ(m)E1),

and all these summands are mutually inequivalent. Hence

(2.23) EndM3
σ
(E) =

⊕
m∈M/M3

σ

EndM3
σ
(σ(m)E1) =

⊕
m∈M/M3

σ

C idσ(m)E1
.

The operators φσ,χ with χ ∈ Irr(M/M3
σ) provide a basis of (2.23), because they are

linearly independent.
For every χ3 ∈ Irr(M3

σ/M
2
σ) we choose an extension χ̃3 ∈ Irr(M/M2

σ). Then

{φσ,χ : χ ∈ Irr(M/M2
σ)} = {φσ,χ̃3φσ,χ : χ ∈ Irr(M/M3

σ), χ3 ∈ Irr(M3
σ/M

2
σ)}.

It follows from (2.11) that

ResMM1(σ,E) =
⊕

m∈M/M4
σ

(
(m · σ1)µσ,1 , σ(m)E4

)
,

EndM1(E) ∼=
⊕

m∈M/M4
σ

EndM1(σ(m)E4) ∼=
⊕

m∈M/M4
σ

σ(m)EndM1(E4)σ(m−1).

In view of the already exhibited basis of (2.23), it only remains to show that

(2.24)
{

idσ(m)E1
φχ̃3

∣∣
E4

}
is a C-basis of EndM1(E4). Every φχ̃3 permutes the irreducibleM3

σ-subrepresentations
σ(m)E1 of E4 according to a unique n ∈M4

σ/M
3
σ , so the set (2.24) is linearly inde-

pendent. As

dim EndM1(E4) = dim EndM1

(
σ
µσ,1
1

)
= µ2

σ,1 = [M4
σ : M3

σ ][M3
σ : M2

σ ],

equals the cardinality of (2.24), that set also spans EndM1(E4).
(b) As M1 ⊂M is open, Frobenius reciprocity for compact smooth induction holds.
It gives a natural bijection

EndM (indMM1(E))→ HomM1(E, indMM1(E)).

By (2.3) the right hand side is isomorphic to

HomM1(E,E ⊗C C[Xnr(M)]) = EndM1(E)⊗C C[Xnr(M)],
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where the action of Xnr(M) becomes multiplication on the second tensor factor on
the right hand side. Under these bijections φχ ∈ AutM (indMM1(E)) corresponds to

φσ,χ ⊗ 1 ∈ EndM1(E)⊗C C[Xnr(M)].

We conclude by applying part (a). �

We remark that (2.21), (2.20) and Proposition 2.2.b mean that

(2.25) EndM (E ⊗C C[Xnr(M)]) = C[Xnr(M)] oC[Xnr(M,σ), \],

the crossed product with respect to the multiplication action ofXnr(M,σ) onXnr(M).
This description confirms that

(2.26) Z
(
EndM (E ⊗C C[Xnr(M)])

)
= C[Xnr(M)/Xnr(M,σ)] ∼= C[O].

Let us record what happens when we replace regular functions on the involved
complex algebraic tori by rational functions. More generally, consider a group Γ and
an integral domain R with quotient field Q. Suppose that V is a CΓ × R-module,
which is free over R. Then R ⊂ EndΓ(V ) and there is a natural isomorphism of
R-modules

(2.27) HomΓ(V, V ⊗R Q) ∼= EndΓ(V )⊗R Q.

Applying this to (2.3) and Proposition 2.2 we find

(2.28) HomM

(
indMM1(E), indMM1(E)⊗C[Xnr(M)] C(Xnr(M)

) ∼=⊕
χ∈Xnr(M,σ)

φχC(Xnr(M)) = C(Xnr(M)) oC[Xnr(M,σ), \],

which generalizes [Hei2, Proposition 3.6].

3. Some root systems and associated groups

Let AM be the maximal F -split torus in Z(M), put AM = AM (F ) and let
X∗(AM ) = X∗(AM ) be the cocharacter lattice. We write

aM = X∗(AM )⊗Z R and a∗M = X∗(AM )⊗Z R.

Let Σ(G,M) ⊂ X∗(AM ) be the set of nonzero weights occurring in the adjoint
representation of AM on the Lie algebra of G, and let Σred(AM ) be the set of
indivisible elements therein.

For every α ∈ Σred(AM ) there is a Levi subgroup Mα of G which contains M and
the root subgroup Uα, and whose semisimple rank is one higher than that of M .
Let α∨ ∈ aM be the unique element which is orthogonal to X∗(AMα) and satisfies
〈α∨, α〉 = 2.

Recall the Harish-Chandra µ-functions from [Sil2, §1] and [Wal, §V.2]. The re-
striction of µG to O is a rational, W (M,O)-invariant function on O [Wal, Lemma
V.2.1]. It determines a reduced root system [Hei2, Proposition 1.3]

ΣO,µ = {α ∈ Σred(AM ) : µMα(σ ⊗ χ) has a zero on O}.

For α ∈ Σred(AM ) the function µMα factors through the quotient map AM →
AM/AMα . The associated system of coroots is

Σ∨O,µ = {α∨ ∈ aM : µMα(σ ⊗ χ) has a zero on O}.
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By the aforementioned W (M,O)-invariance of µG, W (M,O) acts naturally on ΣO,µ
and Σ∨O,µ. Let sα be the unique nontrivial element of W (Mα,M). By [Hei2, Propo-

sition 1.3] the Weyl group W (ΣO,µ) can be identified with the subgroup of W (G,M)
generated by the reflections sα with α ∈ ΣO,µ, and as such it is a normal subgroup
of W (M,O).

The parabolic subgroup P = MU of G determines a set of positive roots ΣO,µ(P )
and a basis ∆O,µ of ΣO,µ. Let `O be the length function on W (ΣO,µ) specified by
∆O,µ. Since W (M,O) acts on ΣO,µ, `O extends naturally to W (M,O), by

`O(w) = |w(ΣO,µ(P )) ∩ ΣO,µ(P̄ )|.

The set of positive roots also determines a subgroup of W (M,O):

(3.1)
R(O) = {w ∈W (M,O) : w(ΣO,µ(P )) = ΣO,µ(P )}

= {w ∈W (M,O) : `O(w) = 0}.

As W (ΣO,µ) ⊂W (M,O), a well-known result from the theory of root systems says:

(3.2) W (M,O) = R(O) nW (ΣO,µ).

Recall that Xnr(M)/Xnr(M,σ) is isomorphic to the character group of the lattice
M2
σ/M

1. Since M2
σ depends only on O, it is normalized by NG(M,O). In particular

the conjugation action of NG(M,O) on M2
σ/M

1 induces an action of W (M,O) on
M2
σ/M

1.
Let νF : F → Z ∪ {∞} be the valuation of F . Let h∨α be the unique generator of

(M2
σ ∩M1

α)/M1 ∼= Z such that νF (α(h∨α)) > 0. Recall the injective homomorphism
HM : M/M1 → aM defined by

〈HM (m), γ〉 = νF (γ(m)) for m ∈M,γ ∈ X∗(M).

In these terms HM (h∨α) ∈ R>0α
∨. Since M2

σ has finite index in M , HM (M2
σ/M

1) is
a lattice of full rank in aM . We write

(M2
σ/M

1)∨ = HomZ(M2
σ/M

1,Z).

Composition withHM and R-linear extension of mapsHM (M2
σ/M

1)→ Z determines
an embedding

H∨M : (M2
σ/M

1)∨ → a∗M .

Then H∨M (M2
σ/M

1)∨ is a lattice of full rank in a∗M .

Proposition 3.1. Let α ∈ ΣO,µ.

(a) For w ∈W (M,O): w(h∨α) = h∨w(α).

(b) There exists a unique α] ∈ (M2
σ/M

1)∨ such that H∨M (α]) ∈ Rα and 〈h∨α, α]〉 = 2.
(c) Write

ΣO = {α] : α ∈ ΣO,µ},
Σ∨O = {h∨α : α ∈ ΣO,µ}.

Then (Σ∨O,M
2
σ/M

1,ΣO, (M
2
σ/M

1)∨) is a root datum with Weyl group W (ΣO,µ).
(d) The group W (M,O) acts naturally on this root datum, and R(O) is the stabilizer

of the basis determined by P .

Proof. (a) Since M2
σ/M

1 and ΣO,µ are W (M,O)-stable, we have

w̃(M2
σ ∩Mα,1)w̃−1 = M2

σ ∩Mw(α),1.
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Hence w(h∨α) is a generator of (M2
σ ∩Mw(α),1)/M1. As w(α)(w(h∨α)) = α(h∨α), it

equals h∨w(α).

(b) Let α∗ ∈ Rα ⊂ a∗M be the unique element which satisfies

〈HM (h∨α), α∗〉 = 2.

The group W (ΣO,µ) acts naturally on aM by

(3.3) sα(x) = x− 〈x, α〉α∨ = x− 〈x, α∗〉HM (h∨α).

This action stabilizes the lattice HM (Mσ/M
1). By construction h∨α is indivisible in

M2
σ/M

1. It follows that for all x ∈ HM (M2
σ/M

1) we must have 〈x, α∗〉 ∈ Z. This
means that α∗ lies in H∨M (M2

σ/M
1)∨, say α∗ = H∨M (α]).

(c) By construction the lattices M2
σ/M

1 and (M2
σ/M

1)∨ are dual and W (M,O) acts
naturally on them. In view of (3.3), the map

M2
σ/M

1 →M2
σ/M

1 : m̄ 7→ m̄− 〈m̄, α]〉h∨α
coincides with the action of sα. Hence it stabilizes Σ∨O. Similarly, for y ∈ a∗M :

y − 〈HM (h∨α), y〉HM (α]) = y − 〈α∨, y〉α = sα(y).

This implies that the map

(M2
σ/M

1)∨ → (M2
σ/M

1)∨ : y 7→ y − 〈h∨α, y〉α]

coincides with the action of sα and stabilizes ΣO. Thus (Σ∨O,M
2
σ/M

1,ΣO, (M
2
σ/M

1)∨)
is a root datum and the Weyl groups of ΣO and Σ∨O can be identified with W (ΣO,µ).
(d) By part (a) W (M,O) acts naturally on the root datum, extending the action of
W (ΣO,µ). The characterization of R(O) is obvious from (3.1) and the definition of
ΣO and Σ∨O. �

We note that ΣO and Σ∨O have almost the same type as ΣO,µ. Indeed, the roots

H∨M (α]) are scalar multiples of the α ∈ ΣO,µ, the angles between the elements of ΣO
are the same as the angles between the corresponding elements of ΣO,µ. It follows
that every irreducible component of ΣO,µ has the same type as the corresponding
components of ΣO and Σ∨O, except that type Bn/Cn might be replaced by type
Cn/Bn.

For α ∈ Σred(M) \ ΣO,µ, the function µMα is constant on O. In contrast, for
α ∈ ΣO,µ it has both zeros and poles on O. By [Sil2, §5.4.2]

(3.4) s̃α · σ′ ∼= σ′ whenever µMα(σ′) = 0.

As ∆O,µ is linearly independent in X∗(AM ) and µMα factors through AM/AMα ,

there exists a σ̃ ∈ O such that µMα(σ̃) = 0 for all α ∈ ∆O,µ. In view of [Sil3,
Theorem 1.6] this can even be achieved with a unitary σ̃. We replace σ by σ̃, which
means that from now on we adhere to:

Condition 3.2. (σ,E) ∈ Irr(M) is unitary supercuspidal and µMα(σ) = 0 for all
α ∈ ∆O,µ.

By (3.4) the entire Weyl group W (ΣO,µ) stabilizes the isomorphism class of this
σ. However, in general R(O) need not stabilize σ. We identify Xnr(M)/Xnr(M,σ)
with O via χ 7→ σ ⊗ χ and we define

(3.5) Xα = bh∨α ∈ C[Xnr(M)/Xnr(M,σ)].
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For any w ∈W (M,O) which stabilizes σ in Irr(M), Proposition 3.1.a implies

(3.6) w(Xα) = Xw(α) for all α ∈ ΣO,µ.

Let qF be the cardinality of the residue field of F . According to [Sil3, §1] there exist
qα, qα∗ ∈ R≥1, c′sα ∈ R>0 for α ∈ ΣO,µ, such that

(3.7) µMα(σ ⊗ ·) =
c′sα(1−Xα)(1−X−1

α )

(1− q−1
α Xα)(1− q−1

α X−1
α )

(1 +Xα)(1 +X−1
α )

(1 + q−1
α∗Xα)(1 + q−1

α∗X
−1
α )

as rational functions on Xnr(M)/Xnr(M,σ) ∼= O.
We have only little explicit information about the qα and the qα∗ in general (c′sα is

not important). Obviously, knowing them is equivalent to knowing the poles of µMα .
These are precisely the reducibility points of the normalized parabolic induction
IMα
P∩Mα

(σ ⊗ χ) [Sil2, §5.4]. When these reducibility points are known somehow, one
can recover qα and qα∗ from them. In all cases that we are aware of, this method
shows that qα and qα∗ are integers. We refer to [Sol8] for further investigations in
this direction.

We may modify the choice of σ in Condition 3.2, so that, as in [Hei2, Remark 1.7]:

(3.8) qα ≥ qα∗ for all α ∈ ∆O,µ.

Comparing (3.7), Condition 3.2 and (3.8), we see that qα > 1 for all α ∈ ΣO,µ. In

particular the zeros of µMα occur at

{Xα = 1} = {σ′ ∈ O : Xα(σ′) = 1}

and sometimes at

{Xα = −1} = {σ′ ∈ O : Xα(σ′) = −1}.

Lemma 3.3. Let α ∈ ΣO,µ and suppose that µMα has a zero at both {Xα = 1}
and {Xα = −1}. Then the irreducible component of Σ∨O containing h∨α has type
Bn (n ≥ 1) and h∨α is a short root.

Proof. Consider any h∨α ∈ Σ∨O which is not a short root in a type Bn irreducible

component. Then α] is not a long root in a type Cn irreducible component of ΣO,
so there exists a x ∈ Σ∨O ⊂M2

σ/M
1 with 〈x, α]〉 = −1. Then

sα(x) = x− 〈x, α]〉h∨α = x+ h∨α ∈M2
σ/M

1.

In X∗(Xnr(M)/Xnr(M,σ)) this becomes sα(x) = xXα. Assume that there exists a
σ′ ∈ O with µMα(σ′) = 0 and Xα(σ′) = −1. We compute

x(s̃α · σ′) = (sαx)(σ′) = (xXα)(σ′) = x(σ′)Xα(σ′) = −x(σ′).

As x ∈ X∗(Xnr(M)/Xnr(M,σ)), this implies that s̃α ·σ′ is not isomorphic to σ′. But
that contradicts (3.4), so the assumption cannot hold. �

Consider r ∈ R(O). By the definition of W (M,O) there exists a χr ∈ Xnr(M)
such that

(3.9) r̃ · σ ∼= σ ⊗ χr.

Lemma 3.4. (a) The maps α 7→ qα, α 7→ qα∗ and α 7→ c′sα are constant on W (M,O)-
orbits in ΣO,µ.

(b) For α ∈ ∆O,µ and r ∈ R(O), either Xα(χr) = 1 or Xα(χr) = −1 and qα = qα∗.
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Proof. It follows directly from the definitions in [Wal, §V.2] that

(3.10) µMw(α)(w̃ · σ′) = µMα(σ′) for all w ∈W (M,O).

Since every W (ΣO,µ)-orbit in ΣO,µ meets ∆O,µ, (3.8) generalizes to

(3.11) qα ≥ qα∗ ∀α ∈ ΣO,µ.

As W (ΣO,µ) stabilizes σ, (3.10), (3.11) and (3.5) imply that part (a) holds at least
on W (ΣO,µ-orbits in ΣO,µ.

For r ∈ R(O) we work out (3.10):

µMα(σ ⊗ χ) = µMr(α)(r̃ · (σ ⊗ χ)) = µMr(α)(σ ⊗ χrr(χ)) =

spχrr(χ)

( c′srα(1−Xrα)(1−X−1
rα )

(1− q−1
rαXrα)(1− q−1

rαX
−1
rα )

(1 +Xrα)(1 +X−1
rα )

(1 + q−1
rα∗Xrα)(1 + q−1

rα∗X
−1
rα )

)
=

spχ

( c′sα(1−Xrα(χr)Xα)(1−X−1
rα (χr)X

−1
α )

(1− q−1
α Xrα(χr)Xα)(1− q−1

α X−1
rα (χr)X

−1
α )
×

(1 +Xrα(χr)Xα)(1 +X−1
rα (χr)X

−1
α )

(1 + q−1
α∗Xrα(χr)Xα)(1 + q−1

α∗X
−1
rα (χr)X

−1
α )

)
Comparing the zero orders along the subvarieties {Xα = constant}, we see that
Xrα(χr) ∈ {1,−1}. Then we look at the pole orders.

When Xrα(χr) = 1, we obtain qrα = qα and qrα∗ = qα∗.
When Xrα(χr) = −1, we find qrα = qα∗ and qrα∗ = qα. Together with (3.11) that

implies qrα = qα∗ = qrα∗ = qα.
Knowing all this, another glance at (3.10) reveals that c′srα = c′sα . �

Of course, χr is in general not unique, only up to Xnr(M,σ). If r̃ · σ ∼= σ, then
we take χr = 1, otherwise we just pick one of eligible χr. We note that then

r̃−1 · σ ∼= σ ⊗ r−1(χ−1
r ),

which implies

(3.12) r−1(χr)χr−1 ∈ Xnr(M,σ).

For r ∈ R(O) of order larger than two, we may take χr−1 = r−1(χ−1
r ).

Lemma 3.5. For all w ∈W (ΣO,µ), r ∈ R(O): w(χr)χ
−1
r ∈ Xnr(M,σ).

Proof. We abbreviate w′ = r−1w−1r. Since wrw′r−1 = 1 ∈W (M,O),

w̃ · r̃ · w̃′ · r̃−1 · σ ∼= σ ∈ Irr(M).

We can also work out the left hand side stepwise. Recall from Condition 3.2 that
W (ΣO,µ) stabilizes σ ∈ Irr(M). With (3.12) we compute

w̃ · r̃ · w̃′ · r̃−1 · σ ∼= w̃ · r̃ · w̃′ · (σ ⊗ χr−1)

∼= w̃ · r̃ · w̃′ · (σ ⊗ r−1(χ−1
r ))

∼= w̃ · r̃ · (σ ⊗ w′r−1(χ−1
r ))

∼= w̃ · (σ ⊗ χr ⊗ rw′r−1(χ−1
r ))

∼= σ ⊗ w(χr)⊗ wrw′r−1(χ−1
r ) = σ ⊗ w(χr)χ

−1
r . �
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Now we have three collections of transformations of O:

σ ⊗ χ 7→ w(σ ⊗ χ) ∼= σ ⊗ w(χ) w ∈W (ΣO,µ),
σ ⊗ χ 7→ r(σ ⊗ χ) ∼= σ ⊗ r(χ)χr r ∈ R(O),
σ ⊗ χ 7→ σ ⊗ χχc χc ∈ Xnr(M,σ).

These give rise to the following transformations of Xnr(M):

(3.13)
w : χ 7→ w(χ) w ∈W (ΣO,µ),
r : χ 7→ r(χ)χr r ∈ R(O),
χc : χ 7→ χχc χc ∈ Xnr(M,σ).

Let W (M,σ,Xnr(M)) be the group of transformations of Xnr(M) generated by
the w, r and φχc from (3.13). Since Xnr(M,σ) is W (M,O)-stable, it constitutes a
normal subgroup of W (M,σ,Xnr(M)). Further W (ΣO,µ) embeds as a subgroup in
W (M,σ,Xnr(M)), and R(O) as the subset {r : r ∈ R(O)}.

By (3.2) and Lemma 3.5, the multiplication map

(3.14) Xnr(M,σ)×R(O)×W (ΣO,µ)→W (M,σ,Xnr(M))

is a bijection (but usually not a group homomorphism). We note that R(O) does
not necessarily normalize W (ΣO,µ) in W (M,σ,Xnr(M)):

rwr−1(χ) = rw(r−1(χ)r−1(χ−1
r ))

= r(wr−1(χ)wr−1(χ−1
r )) = (rwr−1)(χ)(rwr−1)(χ−1

r )χr.

Rather, W (M,σ,Xnr(M)) is a nontrivial extension of W (M,O) by Xnr(M,σ).
Via the quotient maps

W (M,σ,Xnr(M))→W (M,O)→W (ΣO,µ)

we lift `O to W (M,σ,Xnr(M)).

4. Intertwining operators

We abbreviate

EB = E ⊗C B = E ⊗C C[Xnr(M)] ∼= indMM1(E).

By [BeRu, §III.4.1] or [Ren], the parabolically induced representation IGP (EB) is a
progenerator of Rep(G)s, Hence, as in [Roc2, Theorem 1.8.2.1],

(4.1)
E : Rep(G)s → EndG(IGP (EB))-Mod

V 7→ HomG(IGP (EB), V )

is an equivalence of categories. This equivalence commute with parabolic induction,
in the following sense. Let L be a Levi subgroup of G containing L. Then PL
and PL are opposite parabolic subgroups of G with common Levi factor L. The
normalized parabolic induction functor IGPL provides a natural injection

(4.2) EndL(ILP∩L(EB)) −→ EndG(IGP (EB)),

which allows us to consider EndL(ILP∩L(EB)) as a subalgebra of EndG(IGP (EB)). We
write sL = [M,σ]L and we let EL be the analogue of E of L.

Proposition 4.1. [Roc2, Proposition 1.8.5.1]



22 ENDOMORPHISM ALGEBRAS FOR P -ADIC GROUPS

(a) The following diagram commutes:

Rep(G)s
E−−−−→ EndG(IGP (EB))−Mod

↑ IGPL ↑ ind
EndG(IGP (EB))

EndL(ILP∩L(EB))

Rep(L)sL
EL−−−−−→ EndL(ILP∩L(EB))−Mod

(b) Let JG
PL

: Rep(G) → Rep(L) be the normalized Jacquet restriction functor and

let prsL : Rep(L) → Rep(L)sL be the projection coming from the Bernstein
decomposition. Then the following diagram commutes:

Rep(G)s
E−−−−→ EndG(IGP (EB))−Mod

↓ prsL ◦ J
G
PL

↓ Res
EndG(IGP (EB))

EndL(ILP∩L(EB))

Rep(L)sL
EL−−−−−→ EndL(ILP∩L(EB))−Mod

We want to find elements of EndG
(
IGP (EB)

)
that do not come from EndM (EB).

Harish-Chandra devised by now standard intertwining operators for IGP (E). How-
ever, they arise as a rational functions of σ ∈ O, so their images lie in IGP (E ⊗C
C(Xnr(M))) and they may have poles. We will exhibit variations which have fewer
singularities.

We denote the M -representation (2.3) on EB by σB. Similarly we have the M -
representation σK(B) on

EK(B) = E ⊗C K(B) = EB ⊗B K(B) = E ⊗C C(Xnr(M)).

The specialization at χ ∈ Xnr(M) from (2.4) is a M -homomorphism

spχ : (σB, EB)→ (σ ⊗ χ,E).

It extends to the subspace of EK(B) consisting of functions that are regular at χ.

Let δP : P → R>0 be the modular function. We realize IGP (E) as

{f : G→ E | f is smooth, f(umg) = σ(m)δ
1/2
P (m)f(g) ∀g ∈ G,m ∈M,u ∈ U}.

As usual IGP (σ)(g) is right translation by g. With IGP , we can regard spχ also as a
G-homomorphism

IGP (σB, EB)→ IGP (σ ⊗ χ,E).

Fix a maximal F -split torus A0 in G, contained inM. Let x0 be a special vertex in
the apartment of the extended Bruhat–Tits building of (G, F ) associated to A0. Its
isotropy group K = Gx0 is a good maximal compact subgroup of G, so it contains
representatives for all elements of the Weyl group W (G,A0) and G = PK by the
Iwasawa decomposition.

The vector space IGP (E) is naturally in bijection with

IKP∩K(E) = {f : K → E | f is smooth, f(umk) = σ(m)f(k)

∀k ∈ K,m ∈M ∩K,u ∈ U ∩K}.

Notice that this space is the same for (σ,E) and (σ ⊗ χ,E), for any χ ∈ Xnr(M).
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4.1. Harish-Chandra’s operators JP ′|P .
Let P ′ = MU ′ be another parabolic subgroup of G with Levi factor M . Following

[Wal, §IV.1] we consider the G-map

(4.3)
JP ′|P (σ) : IGP (E) → IGP ′(E)

f 7→
[
g 7→

∫
(U∩U ′)\U ′ f(u′g)du′

] .
The integral does not always converge. Rather, JP ′|P should be considered as a map

Xnr(M)× IKP∩K(E) → IKP ′∩K(E)
(χ, f) 7→ JP ′|P (σ ⊗ χ)f

,

where IKP∩K(E) is identified with IGP (σ ⊗ χ,E) as above. With this interpretation
JP ′|P is rational in the variable χ [Wal, Théorème IV.1.1]. In yet other words, it
defines a map

(4.4)
IKP∩K(E) → IKP ′∩K(E)⊗C C(Xnr(M))

f 7→
[
χ 7→ JP ′|P (σ ⊗ χ)f

] .

For h ∈ G, let λ(h) be the left translation operator on functions on G:

λ(h)f : g 7→ f(h−1g).

For every w ∈W (G,M) we choose a representative w̃ ∈ NK(M) (that is is possible
because the maximal compact subgroup K is in good position with respect to A0 ⊂
M). Then w(P ) := w̃P w̃−1 is a parabolic subgroup of G with Levi factor M and
unipotent radical w̃Uw̃−1. For any π ∈ Rep(M), λ(w̃) gives a G-isomorphism

λ(w̃) : IGP ′(π)→ IGw(P ′)(w̃ · π).

We let w ·EB (resp. w ·EK(B)) be the vector space EB (resp. EK(B)) endowed with
the representation w̃ · σ (resp. w̃ · σK(B)).

Using [Wal, Théorème IV.1.1] we define

(4.5)
JK(B),w : IGP (EB) → IGP (w · EK(B))

f 7→
[
χ 7→ λ(w̃)Jw−1(P )|P (σ ⊗ χ)spχ(f)

] .
It follows from [Wal, Proposition IV.2.2] that JP ′|P and JK(B),w extend to G-
isomorphisms

(4.6)
JP ′|P : IGP (EK(B)) → IGP ′(EK(B)),
JK(B),w : IGP (EK(B)) → IGP (w · EK(B)).

The algebra B embeds in EndG(IGP (EB)) and in EndG(IGP ′(EK(B))) via (2.5) and
parabolic induction. That makes JP ′|P and JK(B),w B-linear.

The group W (G,M) acts on B = C[Xnr(M)] and K(B) = C(Xnr(M)) by

w · bm = bw(m) = bw̃mw̃−1 , (w · b)(χ) = b(w−1χ),

for w ∈W (G,M),m ∈M, b ∈ K(B), χ ∈ Xnr(M). This determinesM -isomorphisms

τw : (w̃ · σB, w · EB) → ((w̃ · σ)B, (w · E)B)
(w̃ · σK(B), w · EK(B)) → ((w̃ · σ)K(B), (w · E)K(B))

e⊗ b 7→ e⊗ w · b
.

With functoriality we obtain G-isomorphisms

IGP ′(w(EB))→ IGP ′((w · E)B) and IGP ′(w(EK(B)))→ IGP ′((w · E)K(B)),
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which we also denote by τw. Composition with (4.5) gives

τw ◦ JK(B),w : IGP (EB)→ IGP ((w · E)K(B)).

In order to associate to w an element of HomG

(
IGP (EB), IGP (EK(B))

)
, it remains to

construct a suitable G-intertwiner from IGP ((w · E)K(B)) to IGP (EK(B)). For this we
do not want to use τw−1 ◦JK(B),w−1 , then we would end up with a simple-minded G-

automorphism of IGP (EK(B)) (essentially multiplication with an element of K(B)).

We rather employ an idea from [Hei2]: construct a G-intertwiner IGP (w ·E)→ IGP (E)
and extend it to IGP ((w · E)B)→ IGP (EB) by making it constant on Xnr(M).

With this motivation we analyse the poles of the operators JP ′|P and JK(B),w.
They are closely related to zeros of the Harish-Chandra µ-functions. Namely, for
α ∈ Σred(M):

(4.7) JP∩Mα|sα(P∩Mα)(σ ⊗ χ)Jsα(P∩Mα)|P∩Mα
(σ ⊗ χ) =

constant

µMα(σ ⊗ χ)

as rational functions of χ ∈ Xnr(M) [Wal, §IV.3 and V.2].

Proposition 4.2. Let P ′ = MU ′ be a parabolic subgroup of G with Levi factor M ,
and consider JP ′|P in the form (4.4).

(a) All the poles of JP ′|P occur at⋃
α∈ΣO,µ(P )∩ΣO,µ(P ′)

{χ ∈ Xnr(M) : µMα(σ ⊗ χ) = 0}.

(b) Suppose that χ2 ∈ Xnr(M) satisfies µMα(σ ⊗ χ2) = 0 for precisely one α ∈
ΣO,µ(P ) ∩ ΣO,µ(P ′). Then JP ′|P has a pole of order one at χ2 and

(Xα(χ)−Xα(χ2))JP ′|P (σ ⊗ χ) : IGP (σ ⊗ χ)→ IGP ′(σ ⊗ χ)

is bijective for all χ in a certain neighborhood of χ2 in Xnr(M).
(c) There exists a neighborhood V1 of 1 in Xnr(M) on which∏

α∈ΣO,µ(P )∩ΣO,µ(P ′)

(Xα − 1)JP ′|P : IKP∩K(E)→ IKP∩K(E)⊗C C(Xnr(M))

has no poles. The specialization of this operator to χ ∈ V1 is a G-isomorphism
IGP (σ ⊗ χ)→ IGP ′(σ ⊗ χ).

Proof. As in [Wal, p. 279] we define

d(P, P ′) = |{α ∈ Σred(AM ) : α is positive with respect to both P and P ′}|.

Choose a sequence of parabolic subgroups Pi = MUi such that d(Pi, Pi+1) = 1,
P0 = P and Pd(P,P ′) = P ′. From [Wal, p. 283] we know that

JP ′|P = JP ′|Pd(P,P ′)−1
◦ · · · ◦ JP2|P1

◦ JP1|P .

In this way we reduce the whole proposition to the case d(P, P ′) = 1. Assume that,
and let α ∈ Σred(AM ) be the unique element which is positive respect to both P
and P ′.

When α 6∈ ΣO,µ, [Hei2, Proposition 1.10] says that the specialization of JP ′|P at
any χ ∈ Xnr(M) is regular and bijective. That proves parts (a) and (c) for such a
P ′, while (b) is vacuous because µMα is constant on O [Sil3, Theorem 1.6].
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Suppose now that α ∈ ΣO,µ. We have

(U ∩ U ′)\U ′ ∼= U−α ⊂Mα.

Hence JP ′|P arises by induction from JP ′∩Mα|P∩Mα
, and it suffices to consider the

latter operator. We apply [Hei2, Lemme 1.8] with Mα in the role of G, that yields
parts (a) and (b) of our proposition. Part (c) follows because Xα − 1 has a zero of
order one at {Xα = 1}. �

4.2. The auxiliary operators ρw.
With Proposition 4.2 we define, for w ∈W (G,M), a G-homomorphism

ρ′σ⊗χ,w = λ(w̃)spχ
∏

α∈ΣO,µ(P )∩ΣO,µ(w−1(P ))

(Xα − 1)Jw−1(P )|P (σ ⊗ χ) : IGP (σ ⊗ χ)→ IGP (w̃(σ ⊗ χ))

We note that ρ′σ⊗χ,w is not canonical, because it depends on the choice of a repre-
sentative w̃ ∈ NK(M) for w.

Lemma 4.3. For w ∈ W (ΣO,µ), ρ′σ,w arises by parabolic induction from an M -

isomorphism ρ−1
σ,w : (σ,E)→ (w̃ · σ,E).

Proof. We compare ρ′σ⊗χ with Harish-Chandra’s operator [Wal, §V.3]

◦cP |P (w, σ ⊗ χ) ∈ HomG×G
(
EndC(σ ⊗ χ,E),EndC(w̃(σ ⊗ χ))

)
.

By Proposition 4.2 and [Wal, Lemme V.3.1] both are rational as functions of χ ∈
Xnr(M), and regular on a neighborhood of 1. For generic χ the G-representations
IGP (σ⊗χ) and IGP (w̃(σ⊗χ)) are irreducible, so there ◦cP |P (w, σ⊗χ) specializes to a
scalar times conjugation by ρ′σ⊗χ,w. It follows that ρ′σ⊗·,w equals a rational function
times the intertwining operator associated by Harish-Chandra to w and σ.

Let us make this more precise. By Condition 3.2 there exists an M -isomorphism

φw̃ : (w̃ · σ,E)→ (σ,E).

For any χ ∈ Xnr(M), it gives an M -isomorphism w̃ · σ ⊗ wχ → σ ⊗ wχ. Consider
the G-homomorphism

(4.8) IGP (φw̃) ◦ ρ′σ⊗χ,w : IGP (σ ⊗ χ,E)→ IGP (σ ⊗ wχ,E).

By the above, this is equal to a rational function times the operator

(4.9) ◦cP |P (w, σ ⊗ χ) ∈ HomG(IGP (σ ⊗ χ), IGP (σ ⊗ wχ))

considered in [Sil1, Sil2]. By the easier part of the Knapp–Stein theorem for p-
adic groups [Sil1, p.244], [Sil2, §5.2.4], the operator (4.9) specializes at χ = 1 to
the identity, while by Proposition 4.2 the operator (4.8) specializes at χ = 1 to an
isomorphism. Hence (4.8) for χ = 1 is a nonzero scalar multiple of the identity
operator and

ρ′σ,w = zIGP (φw̃)−1 = IGP (zφ−1
w̃ )

for some z ∈ C×. �

From ρ′σ,w and Lemma 4.3 we obtain an isomorphism of M -B-representations

ρ−1
σ,w ⊗ idB : (σB, E ⊗C B)→ ((w̃ · σ)B, E ⊗C B).

Applying IGP ′ with P ′ = MU ′, this yields an isomorphism of G-B-representations

(4.10) IGP ′(ρ
−1
σ,w ⊗ idB) : IGP ′(EB)→ IGP ′((w̃ · E)B)
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whose specialization at P ′ = P, χ = 1 is ρ′σ,w. (However, its specialization at other
χ ∈ Xnr(M) need not be equal to ρ′σ⊗χ,w.) To comply with the notation from [Hei2]
we define

(4.11) ρP ′,w = IGP ′(ρσ,w ⊗ idB) : IGP ′((w̃ · E)B)→ IGP ′(EB).

Following the same procedure with K(B) instead of B, we can also regard ρP ′,w as
an isomorphism of G-B-representations

IGP ′(ρσ,w ⊗ idK(B)) : IGP ′((w̃ · E)K(B))→ IGP ′(EK(B)).

When P ′ = P , we often suppress it from the notation. We need a few calculation
rules for the operators ρP ′,w.

Lemma 4.4. Let w,w1, w2 ∈W (ΣO,µ).

(a) JP ′|P (σ ⊗ ·) ◦ ρP,w = ρP ′,w ◦ JP ′|P (w̃σ ⊗ ·) : IGP ((w̃ · E)K(B))→ IGP ′(EK(B)).

(b) As operators IG
w−1

2 w−1
1 (P )

(EK(B))→ IGP (EK(B)):

ρw1τw1λ(w̃1)ρw−1
1 (P ),w2

τw2λ(w̃2) =∏
α

(
spχ=1

µMα(σ ⊗ ·)
(Xα − 1)(X−1

α − 1)

)
ρw1w2τw1w2λ(w̃1w2)

where the product runs over ΣO,µ(P ) ∩ ΣO,µ(w−1
2 (P )) ∩ ΣO,µ(w−1

2 w−1
1 (P )).

(c) For r ∈ R(O):

λ(r̃)ρr−1(P ),wλ(r̃)−1 = ρP,r̃·σ,rwr−1λ
(
r̃wr−1r̃w̃−1r̃−1

)
.

Proof. (a) In this setting JP ′|P is invertible (4.6), so we can reformulate the claim
as

JP ′|P (w̃ · σ ⊗ ·)−1 ◦ ρ−1
P ′,w ◦ JP ′|P (σ ⊗ ·) = ρ−1

P,w.

The left hand side one first transfers everything from IGP to IGP ′ by means of
∫

(U∩U ′)\U ′ ,

then we apply ρ−1
P ′,w = IGP ′(ρ

′′
σ,w ⊗ idB) and finally we transfer back from IGP ′ to IGP

(in the opposite fashion). In view of (4.10), this is just a complicated way to express
ρ−1
P,w = IGP (ρ′′σ,w ⊗ idB).

(b) The map

τw1λ(w̃1)ρP ′,w2λ(w̃1)−1τ−1
w1

: IGw1(P ′)((w̃1w̃2 · E)K(B))→ IGw1(P ′)((w̃1 · E)K(B))

is denoted simply ρw2 in [Hei2]. We note that part (a) proves the first formula of
[Hei2, Proposition 2.4] in larger generality, without a condition on w. Knowing this,
the claim can shown in the same way as the second part of [Hei2, Propsition 2.4]
(on page 729).
(c) By definition

ρ−1
r−1(P ),w

= λ(s̃α)spχ=1

∏
α(Xα(χ)− 1)Jw−1r−1(P )|r−1(P )(σ ⊗ χ),

ρ−1
P,r̃·σ,rwr−1 = λ

(
r̃wr−1

)
spχ=1

∏
β(Xβ(χ)− 1)Jrw−1r−1(P )|P (r̃ · σ ⊗ χ).

Here α runs over ΣO,µ(r−1P ) ∩ ΣO,µ(w−1r−1P ) and β over

ΣO,µ(P ) ∩ ΣO,µ(rw−1r−1P ) = r
(
ΣO,µ(r−1P ) ∩ ΣO,µ(w−1r−1P )

)
.
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It follows that

λ(r̃)ρ−1
r−1(P ),w

λ(r̃)−1 = λ
(
r̃w̃r̃−1

)
spχ=1

∏
β
(Xβ(χ)− 1)Jrw−1r−1(P )|P (r̃ · σ ⊗ χ)

= λ
(
r̃w̃r̃−1r̃wr−1

−1)
ρ−1
P,r̃·σ,rwr−1 .

Taking inverses yields the claim. �

Now we associate similar operators to elements of the group R(O) from (3.1) and
(3.2). We may assume that the representatives w̃ ∈ NK(M) are chosen so that

(4.12) r̃wO = r̃w̃O for all r ∈ R(O), wO ∈W (ΣO,µ).

For r ∈ R(O), Proposition 2.2 and [Hei2, Proposition 1.10] say that Jr(P )|P is rational
and regular on Xnr(M), and that its specialization at any χ is a G-isomorphism
IGP (σ ⊗ χ) → IGr(P )(σ ⊗ χ). For such r we construct an analogue of ρw in a simpler

way. Let χr be as in (3.9) and pick an M -isomorphism

(4.13) ρσ,r : r̃ · σ → σ ⊗ χr.
Recall ρχr from (2.7). It combines with ρσ,r to an M -isomorphism

ρσ,r ⊗ ρ−1
χr : ((r̃ · σ)B, EB)→ (σB, EB),

which is not B-linear when χr 6= 1. With parabolic induction we obtain a G-
isomorphism

ρP ′,r = IGP ′(ρσ,r ⊗ ρ−1
χr ) : IGP ′((r̃ · σ)B, EB)→ IGP ′(σB, EB).

The same works with K(B) instead of B.
We note that Lemma 4.4.a also applies to ρr, with the same proof:

(4.14) JP ′|P (σ⊗·)◦ρP,r = ρP ′,r◦JP ′|P (r̃σ⊗χ−1
r ⊗·) : IGP ((r̃ ·E)K(B))→ IGP ′(EK(B)).

For an arbitrary w ∈ W (M,O), we use (3.2) and (4.12) to write w̃ = r̃w̃O with
r ∈ R(O) and wO ∈W (ΣO,µ). Then we put χw = χr and

ρσ,w = ρσ,rρσ,wO : w̃ · σ ⊗ χ → σ ⊗ χrχ,
ρP ′,w = ρP ′,rτrλ(r̃)ρr−1(P ′),wOλ(r̃)−1τ−1

r : IGP ′((w · E)B) → IGP ′(EB).

Let us discuss the multiplication relations between all the operators constructed in
this section and the φχ with χ ∈ Xnr(M,σ) from (2.18). Via IGP ′ , we regard φχ also

as an element of HomG(IGP ′(EB)). We note that

(4.15) spχ′ ◦ φχ = spχ′ ◦ (φσ,χ ⊗ ρ−1
χ ) = φσ,χ ⊗ spχ′χ−1 χ′ ∈ Xnr(M).

From the very definition of JP ′|P in (4.3) we see that

φ−1
σ,χ ◦ JP ′|P (σ ⊗ χ′χ) ◦ φσ,χ = JP ′|P (σ ⊗ χ′),

which quickly implies

(4.16) JP |P ′ ◦ φχ = φχ ◦ JP |P ′ ∈ HomG

(
IGP (EK(B)), I

G
P ′(EK(B))

)
.

For any w ∈W (M,O), we take

(4.17) φw̃·σ,w(χ) ∈ HomM (w̃ · σ, w̃ · σ ⊗ w(χ))

equal to φσ,χ as C-linear map. Next we define

φww(χ) = φw̃·σ,w(χ) ⊗ ρ−1
w(χ) ∈ EndM ((w · E)B),
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and we tacitly extend to an element of EndG(IGP (w · E)B) by functoriality. Then

(4.18) τwλ(w̃)φχ = τwλ(w̃)(φσ,χ⊗ρ−1
χ ) = (φw̃·σ,w(χ)⊗ρ−1

w(χ))τwλ(w̃) = φww(χ)τwλ(w̃).

By the irreducibility of σ there exists a z ∈ C× such that

(4.19) ρσ,wφw̃·σ,w(χ) = zφσ,w(χ)ρσ,w : w̃ · σ → σ ⊗ w(χ).

With that we compute

(4.20)

ρw ◦ φww(χ) = IGP
(
(ρσ,w ⊗ idB)(φw̃·σ,w(χ) ⊗ ρ−1

w(χ))
)

= IGP
(
zφσ,w(χ)ρσ,w ⊗ ρ−1

w(χ)

)
= zIGP

(
φσ,w(χ) ⊗ ρ−1

w(χ)

)
IGP
(
ρσ,w ⊗ idB

)
= zφw(χ)ρw.

From (4.16)–(4.20) we deduce that

ρwτwλ(w̃)Jw−1(P )|P ′φχ = zφw(χ)τwλ(w̃)Jw−1(P )|P ′ ∈ HomG

(
IGP ′(EB), IGP (EK(B))

)
.

5. Endomorphism algebras with rational functions

5.1. The operators Aw.
Let B and the φχ with χ ∈ Xnr(M,σ) from (2.18) act on IGP (EB) and IGP (EK(B))

by parabolically inducing their actions on EB and EK(B). For w ∈ W (M,O) we
combine the operators JK(B),w, τw and ρw from Section 4 to a G-homomorphism

Aw = ρw ◦ τw ◦ JK(B),w : IGP (EB)→ IGP (EK(B)).

With (4.6) we can also regard Aw as an invertible element of EndG
(
IGP (EK(B))

)
.

According to [Hei2, Proposition 3.1], Aw does not depend on the choice of the
representative w̃ ∈ NK(M) of w. Hence Aw is canonical for w ∈W (ΣO,µ), while for
w ∈ R(O) it depends on the choices of χr and ρ′′r ∈ HomM (σ, r̃ · σ ⊗ χ−1

r ). Further
[Hei2, Lemme 3.2] says that, for every χ ∈ Xnr(M) such that Jw−1(P )|P (σ ⊗ χ) is
regular:

sp(wχ)χwAw(v) = ρwλ(w̃)Jw−1(P )|P (σ ⊗ χ)spχ(v) v ∈ IGP (EB).

Consequently, for any b ∈ B = C[Xnr(M)]:

(5.1) sp(wχ)χwAw(bv) = ρw ◦ λ(w̃) ◦ Jw−1(P )|P (b(χ)spχ(v))

= b(χ)sp(wχ)χwAw(v) = sp(wχ)χw

(
(w · b)χ−1

w
Aw(v)

)
.

In view of Proposition 4.2.a, this holds for χ in a nonempty Zariski-open subset of
Xnr(M). Thus

(5.2) Aw ◦ b = (w · b)χ−1
w
◦Aw ∈ HomG

(
IGP (EB), IGP (EK(B))

)
.

From (4.16)–(4.20) we see that for all w ∈ W (M,O), χ ∈ Xnr(M,σ) there exists a
z(w,χ) ∈ C× such that

(5.3) Aw ◦ φχ = z(w,χ)φw(χ) ◦Aw ∈ HomG

(
IGP (EB), IGP (EK(B))

)
.

Compositions of the operators Aw are not as straightforward as one could expect.

Proposition 5.1. Let w1, w2 ∈W (ΣO,µ).
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(a) As G-endomorphisms of IGP (EK(B)):

Aw1 ◦Aw2 =
∏

α

(
spχ=1

µMα(σ ⊗ ·)
(Xα − 1)(X−1

α − 1)

)
µMα(σ ⊗ w−1

2 w−1
1 ·)

−1Aw1w2

= Aw1w2

∏
α

(
spχ=1

µMα(σ ⊗ ·)
(Xα − 1)(X−1

α − 1)

)
µMα(σ ⊗ ·)−1

where the products run over ΣO,µ(P ) ∩ ΣO,µ(w−1
2 (P )) ∩ ΣO,µ(w−1

2 w−1
1 (P )).

(b) If `O(w1w2) = `O(w1) + `O(w2), then Aw1w2 = Aw1 ◦Aw2.
(c) For α ∈ ∆O,µ:

A2
sα =

4c′sα
(1− q−1

α )2(1 + q−1
α∗ )2µMα(σ ⊗ ·)

.

Proof. The second equality in part (a) is an instance of (5.2).
Lemma 4.4 is equivalent to two formulas established in [Hei2, Proposition 2.4] for

classical groups. With those at hand, the parts (a) and (b) can be shown in the
same way as [Hei2, Proposition 3.3 and Corollaire 3.4]. Part (c) is a special case of
part (a), made explicit with (3.7). �

For r ∈ R(O), Proposition 4.2.a implies that Jr−1(P )|P does not have any poles

on O. Hence it maps IGP (EB) to itself, and

(5.4) Ar = ρP,rτrλ(r̃)Jr−1(P )|P ∈ EndG(IGP (EB)).

The maps Ar with r ∈ R(O) behave more multiplicatively than in Proposition 5.1,
but still they do not form a group homomorphism in general.

Proposition 5.2. Let r, r1, r2 ∈ R(O) and w,w′ ∈W (ΣO,µ).

(a) Write χ(r1, r2) = χr1r1(χr2)χ−1
r1r2 ∈ Xnr(M,σ) and recall φχ(r1,r2) from (2.7).

There exists a \(r1, r2) ∈ C× such that

Ar1 ◦Ar2 = \(r1, r2)φχ(r1,r2) ◦Ar1r2 .
(b) Ar ◦Aw = Arw.
(c) There exists a \(w′, r) ∈ C× such that

Aw′ ◦Ar = \(w′, r)φw′(χ−1
r )χr

◦Aw′r.

If w′(χr) = χr, then \(w′, r) = 1 and Aw′ ◦Ar = Aw′r.

Proof. (a) By (4.13)

σ ⊗ χr1r2 ∼= r̃1r2 · σ ∼= r̃1r̃2 · σ ∼= r̃1 · (σ ⊗ χr2) ∼= r̃1 · σ ⊗ r1(χr2) ∼= σ ⊗ χr1r1(χr2).

Hence the unramified characters χr1r2 and χr1r1(χr2) differ only by an element
χc ∈ Xnr(M,σ) (as already used in the statement). With (4.14) we compute

Ar1 ◦Ar2 = ρr1τr1λ(r̃1)Jr−1
1 (P )|P (σ ⊗ ·)ρr2τr2λ(r̃2)Jr−1

2 (P )|P (σ ⊗ ·)

= ρP,r1τr1λ(r̃1)ρr−1(P ),r2Jr−1
1 (P )|P (r̃2 · σ ⊗ ·)τr2λ(r̃2)Jr−1

2 (P )|P (σ ⊗ ·)

= ρP,r1τr1λ(r̃1)ρr−1(P ),r2τr2λ(r̃2)Jr−1
2 r−1

1 (P )|r−1
2 P (σ ⊗ ·)Jr−1

2 (P )|P (σ ⊗ ·).

Now we use that r1, r2 ∈ R(O), which by [Hei2, Proposition 1.9] or [Wal, IV.3.(4)]
implies that the J-operators in the previous line compose in the expected way. Hence

(5.5) Ar1 ◦Ar2 = ρP,r1τr1λ(r̃1)ρr−1(P ),r2τr2λ(r̃2)Jr−1
2 r−1

1 (P )|P (σ ⊗ ·).



30 ENDOMORPHISM ALGEBRAS FOR P -ADIC GROUPS

Comparing (5.5) with the definition of Ar1r2 , we see that it remains to relate

(5.6) ρP,r1τr1λ(r̃1)ρr−1(P ),r2τr2λ(r̃2)

to ρP,r1r2τr1r2λ(r̃1r2). Both (5.6) and

φχ(r1,r2)ρP,r1r2τr1r2λ(r̃1r2)

give G-homomorphisms

IG
r−1
2 r−1

1 (P )
(σ ⊗ χ)→ IGP

(
(σ ⊗ χr1r1(χr2))⊗ χ−1

r1 r1(χ−1
r2 )χ

)
that are constant in χ ∈ Xnr(M), because r̃i ∈ K. For generic χ the involved
G-representations are irreducible, so then

(5.7) spχρP,r1τr1λ(r̃1)ρr−1(P ),r2τr2λ(r̃2) = \(χ)spχφχ(r1,r2)ρP,r1r2τr1r2λ(r̃1r2)

for some \(χ) ∈ C×. But then \(χ) does not depend on χ (for generic χ), so it is
a constant \(r1, r2) and in fact (5.7) already holds without specializing at χ. With
(5.5) we find the required expression for Ar1 ◦Ar2 .
(b) Pick any χ ∈ Xnr(M,σ). With Lemma 4.4.a one easily computes

(5.8) spχAr ◦Aw = spχArw =

ρP,rλ(r̃)ρr−1(P ),wλ(w̃)Jw−1r−1(P )|P (σ ⊗ w−1r−1(χχ−1
r ))spw−1r−1(χχ−1

r ).

(c) We relate this to part (b) by setting w = r−1w′r. By Lemma 4.4, (5.8) becomes

(5.9) ρP,rρP,r̃·σ,wλ(w̃′)λ(r̃)Jw−1r−1(P )|P (σ ⊗ w−1r−1(χχ−1
r ))spw−1r−1(χχ−1

r ).

A similar computation yields

(5.10) spχ′Aw′ ◦Ar =

ρP,w′λ(w̃′)ρw′−1(P ),rλ(r̃)Jw−1r−1(P )|P (σ⊗w−1r−1(χ′)r−1(χ−1
r ))spw−1r−1(χ′)r−1(χ−1

r )

Thus it remains to compare

(5.11) ρP,rρP,r̃·σ,wspχχ−1
r

and ρP,w′λ(w̃′)ρw′−1(P ),rλ(w̃′)−1spχ′w′(χ−1
r ).

Lemma 3.5 guarantees that w′(χ−1
r )χr ∈ Xnr(M,σ). Recall the convention (4.17).

By Schur’s lemma there exists a \(w′, r) ∈ C× such that

(5.12) ρσ,rρr̃·σ,w = \(w′, r)φσ,w′(χ−1
r )χr

ρσ,w′ρw̃′σ,r : w̃′r̃σ ⊗ χχ−1
r → σ ⊗ χ.

Instead of Arwr−1 ◦ Ar we consider φw′(χ−1
r )χr

◦ Aw′ ◦ Ar. Set χ′ = χw′(χr)χ
−1
r ,

compose (5.10) on the left with \(w′, r)φσ,w′(χ−1
r )χr

and recall (2.19). With (5.12)

we find

spχ\(w
′, r)φw′(χ−1

r )χr
Aw′Ar = \(w′, r)φσ,w′(χ−1

r )χr
spχ′Aw′Ar =

ρσ,rρr̃·σ,wλ(w̃′)λ(r̃)Jw−1r−1(P )|P (σ ⊗ w−1r−1(χχ−1
r ))spw−1r−1(χχ−1

r ).

The last line equals (5.9) and (5.10). This holds for every χ ∈ Xnr(M), so we obtain
the desired expression for Aw′ ◦Ar.

If in addition w′(χr) = χr, then

ρ−1
σ,r ◦ ρσ,w′ ◦ ρw̃′σ,r = ρr̃·σ,w.

In that case the two sides of (5.11) are equal (with χ′ = χ). �
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With Bernstein’s geometric lemma we can determine the rank of EndG(IGP (EB))
as B-module:

Lemma 5.3. The B-module EndG(IGP (EB)) admits a filtration with successive sub-
quotients isomorphic to HomM (w ·EB, EB), where w ∈W (M,O). This same holds
for HomG

(
IGP (EB), IGP (EK(B))

)
, with subquotients HomM (w · EB, EK(B)).

Proof. This is similar to [Roc2, Proposition 1.8.4.1]. Let rGP : Rep(G) → Rep(M)
be the normalized Jacquet restriction functor associated to P = MU . By Frobenius
reciprocity

(5.13) HomG(IGP (EB), IGP (EB)) ∼= HomM (rGP I
G
P (EB), EB).

According to Bernstein’s geometric lemma [Ren, Théorème VI.5.1], rGP I
G
P (EB) has

a filtration whose successive subquotients are

IM(M∩w−1Mw)(M∩P ) ◦ w ◦ r
M
M∩wMw−1)(M∩P )EB

with w ∈W (M,A0)\W (G,A0)/W (M,A0). That induces a filtration of (5.13) with
subquotients isomorphic to

(5.14) HomM

(
IM(M∩w−1Mw)(M∩P ) ◦ w ◦ r

M
M∩wMw−1)(M∩P )EB, EB

)
.

By the Bernstein decomposition and the definition of W (M,O), (5.14) is zero unless
w ∈ W (M,O). For w ∈ W (M,O), (5.14) simplifies to HomM (w · EB, EB), which
we can analyse further with (2.28). Thus (5.13) has a filtration with subquotients

(5.15) HomM (w · EB, EB) ∼=
⊕

χ∈Xnr(M,σ)

φχB =
⊕

χ∈Xnr(M,σ)

Bφχ

where w runs through W (M,O). The same considerations apply to
HomG

(
IGP (EB), IGP (EK(B))

)
. �

Now we can generalize [Hei2, Theorem 3.8] and describe the space of
G-homomorphisms that we are after in this subsection:

Theorem 5.4. As vector spaces over K(B) = C(Xnr(M)):

HomG

(
IGP (EB), IGP (EK(B))

)
=

⊕
w∈W (M,O)

⊕
χ∈Xnr(M,σ)

K(B)Awφχ.

Proof. We need Proposition 2.2 and (5.2). With those, the proof (for classical
groups) in [Hei2, Proposition 3.7] applies and shows that the operators φχAw with
w ∈ W (M,O) and χ ∈ Xnr(M,σ) are linearly independent over K(B). Further by
(5.15), with the second EB replaced by EK(B), the dimension of

HomG

(
IGP (EB), IGP (EK(B))

)
over K(B) is exactly |Xnr(M,σ)| |W (M,O)|. �

Since all elements of K(B)Awφχ extend naturally to G-endomorphisms of
IGP (EK(B)), Theorem 5.4 shows that HomG

(
IGP (EB), IGP (EK(B))

)
is a subalgebra

of EndG(IGP (EK(B))). The multiplication relations from Proposition 5.2 become
more transparant if we work with the group W (M,σ,Xnr(M)) from (3.13). For
χc ∈ Xnr(M,σ), r ∈ R(O) and w ∈W (ΣO,µ) we define

Aχcrw = φχcArAw ∈ EndG(IGP (EK(B))).
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By (2.21) and Propositions 5.1 and 5.2, all the Aχrw are invertible in
EndG(IGP (EK(B))). By (2.20) and (5.2), for b ∈ C(Xnr(M)):

(5.16) Aχcrw bA
−1
χcrw = (rw · b)χ−1

c χ−1
r

= b ◦ (χcrw)−1 ∈ C(Xnr(M)).

This implies that we may change the order of the factors in Theorem 5.4, for any
w ∈W (M,O), χc ∈ Xnr(M,σ):

(5.17) BAwφχ = AwφχB and K(B)Awφχ = AwφχK(B).

5.2. The operators Tw.
To simplify the multiplication relations between the Aw, we will introduce a vari-

ation. For any α ∈ ΣO,µ we write

gα =
(1−Xα)(1 +Xα)(1− q−1

α )(1 + q−1
α∗ )

2(1− q−1
α Xα)(1 + q−1

α∗Xα)
∈ C(Xnr(M)).

By (3.6) and Lemma 3.4.a

(5.18) w · gα = gw(α) α ∈ ΣO,µ, w ∈W (M,O).

Our alternative version of Asα (α ∈ ∆O,µ) is

(5.19) Tsα = gαAsα =
(1−Xα)(1 +Xα)(1− q−1

α )(1 + q−1
α∗ )

2(1− q−1
α Xα)(1 + q−1

α∗Xα)
Asα .

By Proposition 5.1 the only poles of Asα are those of (µMα)−1, and by Proposition
4.2 they are simple. A glance at (5.19) then reveals that

(5.20) the poles of Tsα are at {Xα = qα} and, if qα∗ > 1, at {Xα = −qα∗}.

Proposition 5.5. The map sα 7→ Tsα extends to a group homomorphism w 7→ Tw
from W (ΣO,µ) to the multiplicative group of EndG(IGP (EK(B))).

Proof. It suffices to check that the relations in the standard presentation of the
Coxeter group W (ΣO,µ) are respected. For the quadratic relations, consider any
α ∈ ∆O,µ. With (5.2) and Proposition 5.1.c we compute

T 2
sα = gαAsαgαAsα = gαg−αA

2
sα

=
(1−Xα)(1 +Xα)(1−X−1

α )(1−X−1
α ) c′sα

(1− q−1
α Xα)(1 + q−1

α∗Xα)(1− q−1
α X−1

α )(1 + q−1
α∗X

−1
α )µMα(σ ⊗ ·)

= 1.

For the braid relations, let α, β ∈ ∆O,µ with sαsβ of order mαβ ≥ 2. Then

sαsβsα · · · = sβsαsβ · · · (with mαβ factors on both sides),

and this is an element of W (ΣO,µ) of length mαβ. We know from Proposition 5.1.b
that

(5.21) AsαAsβAsα · · · = AsβAsαAsβ · · · (with mαβ factors on both sides).

Applying (5.18) repeatedly, we find
(5.22)

TsαTsβTsα · · · = gα(sα · gβ)(sαsβ · gα) · · ·AsαAsβAsα · · · =
(∏

γ
gγ
)
AsαAsβAsα · · · ,

where the product runs over {α, sα(β), sαsβ(α), . . .}. Similarly

(5.23) TsβTsαTsβ · · · =
(∏

γ′
gγ′
)
AsβAsαAsβ · · · ,
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where γ′ runs through {β, sβ(α), sβsα(β), . . .}.
We claim that {α, sα(β), sαsβ(α), . . .} is precisely the set of positive roots in the

root system spanned by {α, β}. To see this, one has to check it for each of the four
reduced root systems of rank 2 (A1 × A1, A2, B2, G2). In every case, it is an easy
calculation.

Of course this applies also to {β, sβ(α), sβsα(β), . . .}. Hence the products in (5.22)
and (5.23) run over the same set. In combination with (5.21) that implies

TsαTsβTsα · · · = TsβTsαTsβ · · · ,
as required. �

Since Tw is the product of Aw with an element of K(B), the relation (5.2) remains
valid:

(5.24) Tw ◦ b = (w · b) ◦ Tw b ∈ K(B), w ∈W (ΣO,µ).

The Tw also satisfy analogues of (5.3) and Proposition 5.2.c:

Lemma 5.6. Let w ∈W (ΣO,µ), r ∈ R(O) and χc ∈ Xnr(M,σ).

(a) ArTwφχc = z(rw, χc)φrw(χc)ArTw.
(b) TwAr = \(w, r)φw(χ−1

r )χr
ArTr−1wr.

If w(χr) = χr, then \(w, r) = 1 and A−1
r TwAr = Tr−1wr.

Proof. (a) In view of (5.3), it suffices to consider r = 1 and w = sα with α ∈ ∆O,µ.
The element Xα ∈ C[Xnr(M)] is Xnr(M,σ)-invariant, so gα ∈ C(Xnr(M)) is also
Xnr(M,σ)-invariant. Then (5.3) implies

Tsαφχc = gαAsαφχc = gαz(sα, χc)φsα(χc)Asα = z(sα, χc)φsα(χc)Tsα .
(b) First we consider the case w = sα with ∆O,µ. By Proposition 5.2.c

TsαAr = gαAsαAr = gα\(sα, r)φsα(χ−1
r )χr

ArAr−1sαr

With (5.18) we obtain

(5.25) TsαAr = \(sα, r)φsα(χ−1
r )χr

Argr−1(α)Ar−1sαr = \(sα, r)φsα(χ−1
r )χr

ArTr−1sαr.

For a general w ∈ W (ΣO,µ) we pick a reduced expression w = sα1sα2 · · · sαk . Then
part (a) enables us to apply (5.25) repeatedly. Each time we move one Tsαi over Ar,
we pick up the same correction factors as we would with A’s instead of T ’s. As the
desired formula with just A’s is known from Proposition 5.2.c, this procedure yields
the correct formula.

If w(χr) = χr, then the special case of Proposition 5.2.c applies. �

Let χc ∈ Xnr(M,σ), r ∈ R(O), w ∈W (ΣO,µ) we write, like we did for Aχcrw:

(5.26) Tχcrw = φχcArTw ∈ EndG(IGP (EK(B))).

Recall that the φχc can be normalized so that φ−1
χc = φχ−1

c
. Similarly, we can

normalize the Ar so that A−1
r = Ar−1 . Then

\(χc, χ
−1
c ) = 1 and \(r, r−1) = 1.

Lemma 5.7. Let χc, χ
′
c ∈ Xnr(M,σ), r, r′ ∈ R(O), w, w′ ∈W (ΣO,µ).

(a) There exists a \(χcrw, χ
′
cr
′w′) ∈ C× such that

Tχcrw ◦ Tχ′cr′w′ = \(χcrw, χ
′
cr
′w′)Tχcrwχ′cr′w′ .
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(b) If in addition r = χ′c = 1 and w(χr′) = χr′, then \(χcw, r
′w′) = 1.

(c) The map \ : W (M,σ,Xnr(M))2 → C× is a 2-cocycle.

Proof. (a) In the setting of Proposition 5.2 we write r3 = rr′ and w3 = r−1wr. That
gives the following equalities in W (M,σ,Xnr(M)):

(5.27) rr′ = χ(r, r′)r3 and wr′ = (w(χ−1
r′ )χr′)r

′w3.

Thus the already established Propositions 5.2 and 5.5, as well as (2.21) and Lemma
5.6 can be regarded as instances of the statement.

We denote equality up to nonzero scalar factors by =̇. With aforementioned
available instances we compute

Tχcrw ◦ Tχ′cr′w′ = φχcArTwφχ′cAr′Tw′
=̇ φχcφrw(χ′c)

ArTwAr′Tw′
=̇ φχcφrw(χ′c)

Arφw(χ−1
r′ )χr′

Ar′Tr′−1wr′Tw′

=̇ φχcφrw(χ′c)
φr(w(χ−1

r′ )χr′ )
ArAr′Tr′−1wr′w′(5.28)

=̇ φχcφrw(χ′c)
φr(w(χ−1

r′ )χr′ )
φχ(r,r′)Arr′Tr′−1wr′w′

=̇ φχcrw(χ′c)r(w(χ−1
r′ )χr′ )χ(r,r′)Arr′Tr′−1wr′w′

In each of the above steps we preserved the underlying element of W (M,σ,Xnr(M)),
so in the notation from (5.27)

χcrwχ
′
cr
′w′ = χcrw(χ′c)r(w(χ−1

r′ )χr′)χ(r, r′)r3w3w
′.

(b) When r = χ′c = 1 and w(χr′) = χr′ , the second, fifth and sixth steps of (5.28)
become trivial. Thanks to Propositions 5.1.b and 5.2.c the third and fourth steps
become equalities, so the entire calculation consists of equalities.
(c) This follows from the associativity of EndG(IGP (EK(B))). �

By (5.16) and (5.24)

(5.29) Tχcrw b T −1
χcrw = (rw · b)χ−1

c χ−1
r

= b ◦ (χcrw)−1 ∈ C(Xnr(M)).

We embed the twisted group algebra C[W (M,σ,Xnr(M)), \] in
HomG(IGP (EB), IGP (EK(B))) with the operators Tχcrw. Then Theorem 5.4 and Lemma
5.7 show that the multiplication map

K(B)⊗C C[W (M,σ,Xnr(M)), \]→ HomG

(
IGP (EB), IGP (EK(B))

)
is bijective. That and (5.29) can be formulated as:

Corollary 5.8. The algebra HomG

(
IGP (EB), IGP (EK(B))

)
is the crossed product

C(Xnr(M)) oC[W (M,σ,Xnr(M)), \]

with respect to the canonical action of W (M,σ,Xnr(M)) on C(Xnr(M)) = K(B).

We end this section with some investigations of the structure of EndG(IGP (EB)).
By the theory of the Bernstein centre [BeDe, Théorème 2.13], its centre is

(5.30) Z
(
EndG(IGP (EB))

)
= C[O]W (M,O) = C[Xnr(M)]W (M,σ,Xnr(M)).

From Lemma 5.3 and (5.15) we know that EndG(IGP (EB)) is a free B-module of
rank |W (M,σ,Xnr(M))|. The φχc with χc ∈ Xnr(M,σ) and the Ar with r ∈ R(O)
belong to EndG(IGP (EB)), but the Aw with w ∈W (ΣO,µ) \ {1} do not, because they
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have poles. To see whether these poles can be removed in a simple way, we analyse
their residues.

Lemma 5.9. Let α ∈ ∆O,µ and χ± ∈ Xnr(M) with Xα(χ±) = ±1.

(a) spχ+
(1−Xα)Asα is a scalar multiple of spχ+φχ+sα(χ−1

+ ).

If sα(χ+) = χ+, then spχ+
(1 − Xα)Asα = ±spχ+

. If χ+ ∈ Xnr(Mα), then

spχ+
(1−Xα)Asα = spχ+

.

(b) Suppose that qα∗ > 1. Then spχ−(1 +Xα)Asα is a scalar multiple of

spχ−φχ−sα(χ−1
− ). In case sα(χ−) = χ−:

spχ−(1 +Xα)Asα = ±(1 + q−1
α )(1− q−1

α∗ )

(1− q−1
α )(1 + q−1

α∗ )
spχ− .

Remark. With a closer analysis of the operators Jsα(P )|P (σ⊗χ), as in [Wal, §IV.1],
it could be possible to prove that the signs ± in this lemma are always +1.

Proof. (a) By Proposition 4.2, spχ+
(1−Xα)Asα defines a G-isomorphism

IGP (σ ⊗ sα(χ+))→ IGP (σ ⊗ χ+), parabolically induced from an Mα-isomorphism

IMα
P∩Mα

(σ ⊗ χ+)→ IMα
P∩Mα

(σ ⊗ sα(χ+)).

The same holds for spχ+φχ+sα(χ−1
+ ). Further, IMα

P∩Mα
(σ ⊗ χ+) is irreducible [Sil2,

§4.2]. By Schur’s lemma, these two operators are scalar multiples of each other.
Suppose now that sα(χ+) = χ+. By the above spχ+

(1−Xα)Asα ∈ Cspχ+
. From

Proposition 5.5 and (5.19) we see that in fact spχ+
(1−Xα)Asα = ±spχ+

.

The variety Xnr(Mα) ⊂ Xnr(M) is connected and fixed pointwise by sα. The
sign in ±spχ+

established above depends algebraically on χ+, so it is constant on

Xnr(Mα). Therefore it suffices to consider χ+ = 1. Let us unravel the definitions:

spχ=1(1−Xα)Asα = spχ=1(1−Xα)ρsατsαJK(B),sα

= IGP (ρσ,sα ⊗ spχ=1)(1−Xα)τsαλ(s̃α)Jsα(P )|P (σ ⊗ ·)(5.31)

= IGP (ρσ,sα ⊗ spχ=1)τsαλ(s̃α)(1−X−1
α )Jsα(P )|P (σ ⊗ ·)

= IGP (ρσ,sα)spχ=1λ(s̃α)(Xα − 1)Jsα(P )|P (σ ⊗ ·).

By construction IGP (ρσ,sα) is the inverse of

spχ=1τsαλ(s̃α)(Xα − 1)Jsα(P )|P (σ ⊗ ·) = spχ=1λ(s̃α)(Xα − 1)Jsα(P )|P (σ ⊗ ·),

see (4.10) and (4.11). We find spχ=1(Xα − 1)Asα = spχ=1.

(b) This is analogous to part (a). For the second claim we use that (gαAsα)2 = 1
and

�(5.32) spχ−(gαAsα) =
(1− q−1

α )(1 + q−1
α∗ )

(1 + q−1
α )(1− q−1

α∗ )
spχ−(1 +Xα)Asα .

Remark 5.10. Lemma 5.9 shows that some of the poles of Asα may occur at
χ’s that are not fixed by sα, so those poles cannot be removed by adding an ele-
ment of C(Xnr(M)) to Asα. For instance, suppose that Xα/3 ∈ X∗(Xnr(M)) and

(Xα/3)(χ) = e2πi/3. Then Xα(χ) = 1 but (Xα/3)(sαχ) = e−2πi/3. Similar consider-
ations apply to Tsα. In particular the method from [Hei2, §5] does not apply in our
generality.
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This problem is only made worse by the possible nontriviality of \ on Xnr(M,σ)2.
Although we expect that there exist |W (M,σ,Xnr(M))| elements that generate
EndG(IGP (EB)) as B-module, we do not have good candidates. That renders it hard
to find a nice presentation of EndG(IGP (EB)).

6. Analytic localization on subsets on Xnr(M)

In this and the upcoming sections, when we talk about modules for an algebra,
we tacitly mean right modules. Each of the algebras H we consider has a large
commutative subalgebra A such that H has finite rank as A-module. For an H-
module V , we denote the set of A-weights by Wt(V ).

Every finite dimensional H-module V decomposes canonically, as A-module, as
the direct sum of the subspaces

Vχ := {v ∈ V : (a− a(χ))dimV (v) = 0}
for χ ∈ Wt(V ). For this reason it is much easier to work with representations
of finite length. We denote the category of finite dimensional right H-modules by
H −Modf . For a subset U ⊂ Irr(A), we let H −Modf,U be the full subcategory of
H −Modf formed by the modules all whose A-weights lie in U .

For Rep(G)s, the role of weights is played by the cuspidal support. When π ∈
Rep(G)s has finite length, we define Sc(π) as the set of σ′ ∈ O which appear in the
Jacquet restriction JGP (π).

Lemma 5.9 does not provide enough control over the poles of Asα to deal with
all of them in one stroke. Therefore we approach EndG(IGP (EB)) via localization on
suitable subsets of Xnr(M). Let U be a W (M,σ,Xnr(M))-stable subset of Xnr(M),
open with respect to the analytic topology. Then U is a complex submanifold of
Xnr(M), so we can consider the algebra Can(U) of complex analytic functions on
U . The natural map C[Xnr(M)] → Can(U) is injective because U is Zariski dense
in Xnr(M). This and (5.30) enable us to construct the algebra

EndG(IGP (EB))an
U := EndG(IGP (EB)) ⊗

BW (M,σ,Xnr(M))
Can(U)W (M,σ,Xnr(M)).

Its centre is

(6.1) Z
(
EndG(IGP (EB))an

U

)
= Can(U)W (M,σ,Xnr(M)).

We note that by [Opd, Lemma 4.4]

(6.2) C[Xnr(M)] ⊗
C[Xnr(M)]W (M,σ,Xnr(M))

Can(U)W (M,σ,Xnr(M)) ∼= Can(U).

The subalgebra Can(U) of EndG(IGP (EB))an
U plays the same role as B = C[Xnr(M)]

in EndG(IGP (EB)).

Remark 6.1. The set of C[Xnr(M)]-weights of any module for EndG(IGP (EB)) or
EndG(IGP (EB))an

U is stable under the subgroup Xnr(M,σ)R(O) ⊂W (M,σ,Xnr(M)),
because Tχcr belongs to EndG(IGP (EB)) for all χc ∈ Xnr(M,σ), r ∈ R(O) and this
element satisfies (5.24).

Lemma 6.2. There are natural equivalences between the following categories:

(i) EndG(IGP (EB))an
U −Modf ;

(ii) EndG(IGP (EB)) − Modf,U , or equivalently those V ∈ EndG(IGP (EB)) − Modf

with all weights of the centre in U/W (M,σ,Xnr(M));
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(iii) finite length representations in Rep(G)s, whose cuspidal support is contained
in {σ ⊗ χ : χ ∈ U}.

These equivalences commute with parabolic induction and Jacquet restriction in the
sense of Proposition 4.1.

Proof. The equivalence between (ii) and (iii) follows from (4.1) and the way the B-
action on IGP (EB) is constructed in (2.5). We saw in Proposition 4.1 how it relates
to induction and restriction.

The equivalence between (i) and (ii) is analogous to [Opd, Proposition 4.3]. For
a Levi subgroup L of G containing M there are analogous algebras

EndL(ILP∩L(EB)) ⊂ EndL(ILP∩L(EB))an
U .

The equivalence between (i) and (ii) for these two algebras works in the same way,
basically it only depends on the inclusion C[Xnr(M)] ⊂ Can(U). Hence these equiv-
alences of categories commute with induction and restriction between the level of L
and the level of G. �

Now we specialize to very specific submanifolds of Xnr(M). Let

(6.3) Xnr(M) = Xunr(M)×X+
nr(M) = Hom(M/M1, S1)×Hom(M/M1,R>0)

be the polar decomposition of the complex torus Xnr(M). Fix a unitary unramified
character u ∈ Xunr(M). The following condition is a variation on [Opd, Condition
4.9] and [Sol3, Condition 2.1.1].

Condition 6.3. Let Uu be a (small) connected open neighborhood of u in Xnr(M),
such that

• Uu is stable under the stabilizer of u in W (M,σ,Xnr(M)) and under X+
nr(M);

• W (M,σ,Xnr(M))u ∩ Uu = {u};
• <(Xα(χu−1)) > 0 for all α ∈ Σσ⊗u, χ ∈ Uu.

We note that such a neighborhood Uu always exists because W (M,σ,Xnr(M)) is
finite and its action on Xnr(M) preserves the polar decomposition (6.3). The first
two bullets of Condition 6.3 entail that W (M,σ,Xnr(M))Uu is homeomorphic to
W (M,σ,Xnr(M))u × Uu. The last bullet implies that, if µMα(σ ⊗ χ) = 0 for some
χ ∈ Uu and α ∈ Σred(AM ), then µMα(σ ⊗ u) = 0. This replaces the conditions on
Uu in relation to the functions cα in [Opd, Sol3].

In the remainder of this section we consider

(6.4) U := W (M,σ,Xnr(M))Uu,

an open neighborhood of W (M,σ,Xnr(M))uX+
nr(M). By Lemma 6.2 the family of

algebras EndG(IGP (EB))an
U , for all possible u ∈ Xunr(M), suffices to study the entire

category of finite length representations in Rep(G)s.
We want to find a presentation of EndG(IGP (EB))an

U , as explicit as possible. For
w ∈ W (M,σ,Xnr(M)) we write Uwu = w(Uu). By (6.2) EndG(IGP (EB))an

U contains
the element 1wu ∈ Can(U) defined by

1wu(χ) =

{
1 χ ∈ Uwu
0 χ ∈ U \ Uwu

.
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The 1wu with wu ∈W (M,σ,Xnr(M))u form a system of mutually orthogonal idem-
potents in Can(U) and

(6.5) 1U =
∑

wu∈W (M,σ,Xnr(M))u
1wu.

This yields a decomposition of Can(U)-modules

EndG(IGP (EB))an
U =

⊕
wu,vu∈W (M,σ,Xnr(M))u

1wuEndG(IGP (EB))an
U 1vu

=
⊕

wu,vu∈W (M,σ,Xnr(M))u

Can(Uwu)EndG(IGP (EB))an
U C

an(Uvu).

Here the submodules with wu = vu are algebras, while those with wu 6= vu are not.

Lemma 6.4. The inclusion 1uEndG(IGP (EB))an
U 1u → EndG(IGP (EB))an

U is a Morita
equivalence.

Proof. The Morita bimodules are EndG(IGP (EB))an
U 1u and 1uEndG(IGP (EB))an

U . Most
of the required properties are automatically fulfilled, it only remains to verify that
1u is a full idempotent in Y := EndG(IGP (EB))an

U :

(6.6) Y 1uY should equal Y.

In view of (6.5), it suffices to show that 1wu ∈ Y 1uY for all w ∈W (M,σ,Xnr(M)).
By (3.14) there exist χc ∈ Xnr(M,σ), r ∈ R(O) and v ∈ W (ΣO,µ) such that

w = χcrv. We may and will assume that `O(χcrv) is minimal under the condition
χcrvu = wu. By (5.24)

Tv1uTv−1 = 1vuTvT −1
v = 1vu.

We claim that spvχTv and spχT −1
v are regular for all χ ∈ Uu, or equivalently

(6.7) Tv does not have poles on Uu and T −1
v does not have poles on Uvu.

We will prove this with induction to `O(v). The case `O(v) = 0 is trivial. For the
induction step, write v = sαv

′ with α ∈ ∆O,µ and `O(v′) = `O(v) − 1. By the
minimality of `O(χcrv), v′u 6= vu. Then

sα(Uv′u) ∩ Uv′u = Uvu ∩ Uv′u = ∅.

By [Lus1, Lemma 3.15] Xα(χ) 6= 1 for all χ ∈ Uv′u and, if Xα ∈ 2X∗(Xnr(M)),
also Xα(χ) 6= −1 for all χ ∈ Uv′u. If Tsα would have a pole on Uv′u, then Uv′u =
X+

nr(M)Uv′u and (5.20) entail that

(6.8) ∃χ ∈ Uv′u : Xα(χ) = 1 or qα∗ > 1 and ∃χ ∈ Uv′u : Xα(χ) = −1.

That would contradict the already derived properties of Uv′u, so Tsα is regular on
Uv′u. Notice that v′ has minimal length for sending u to Xnr(M,σ)R(O)−1v′u,
because v has minimal length under the condition vu ∈ Xnr(M,σ)R(O)−1wu. Hence
the induction hypothesis applies, and it tells us that Tv′ is regular on Uu. We
conclude that Tv = TsαTv′ is regular on Uu.

If we replay the argument up to (6.8) with Uvu and Uvu′ exchanged, we arrive at
the conclusion that Tsα is regular on Uvu. By the induction hypothesis T −1

v′ does

not have poles on Uv′u. Therefore T −1
v = T −1

v′ Tsα is regular on Uvu, affirming (6.7).
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From (6.7) and (5.24) we obtain Tv1u = 1vuTv ∈ Y and Tv−11vu = 1uTv ∈ Y . By
(5.4) and (2.15):

Tχcrv1u = φχcArTv1u ∈ Y and 1uTv−1r−1χ−1
c

= 1uT −1
v A−1

r φ−1
χc ∈ Y.

Then (5.29) says

1wu = 1χcrvu = Tχcrv1uTvr−1χ−1
c

= φχcArTv1u1uT −1
v A−1

r φ−1
χc ∈ Y.

This confirms (6.6). �

For later use we analyse the Morita equivalence from Lemma 6.4 more deeply.

Lemma 6.5. (a) There are equivalences of categories

1uEndG(IGP (EB))an
U 1u −Mod ←→ EndG(IGP (EB))an

U −Mod
V 1u 7→ V
Vu 7→ Vu ⊗

1uEndG(IGP (EB))an
U 1u

EndG(IGP (EB))an
U

.

(b) Let V ∈ EndG(IGP (EB))an
U −Mod. The C[Xnr(M)]-weights of V 1u are precisely

the C[Xnr(M)]-weights of V that lie in Uu.
(c) Let W u be a set of shortest length representatives for

W (M,σ,Xnr(M))/W (M,σ,Xnr(M))u and let Vu ∈ 1uEndG(IGP (EB))an
U 1u−Modf .

The C[Xnr(M)]-weights of Vu ⊗
1uEndG(IGP (EB))an

U 1u

EndG(IGP (EB))an
U are

{χcrw(χ) : χ is a C[Xnr(M)]-weight of Vu}.

Proof. (a) follows from the explicit form of the bimodules in Lemma 6.4.
(b) is clear from the definition of 1u.
(c) Since Vu has finite dimension, we can decompose it according to its C[Xnr(M)]-
weights (or equivalently its Can(Uu)-weights). For every such weight χ ∈ Uu and
every n ∈ Z≥1 we write

V χ,n
u = {v ∈ Vu : v(f − f(χ))n = 0 ∀f ∈ Can(Uu)}.

Then Vu =
∑

χ,n V
χ,n
u . From Corollary 5.8 we see that

spχ(EndG(IGP (EB))an
U ) is spanned by {spχ(fw,χTw) : w ∈W (M,σ,Xnr(M))},

where fw,χ ∈ C[Xnr(M)] is such that spχ(fw,χTw) is regular and nonzero (or zero if
that is not possible). Hence

V := Vu ⊗
1uEndG(IGP (EB))an

U 1u

EndG(IGP (EB))an
U

equals
∑

χ,n,w V
χ,n
u fw,χTw. Since V χ,n

u fw,χTw ⊂ Vu for W (M,σ,Xnr(M))u,

V =
∑

χ,n

∑
w∈Wu

V χ,n
u fw−1,χT −1

w .

From (6.7) we know that spχT −1
w is regular for all χ ∈ Uu and w ∈ W u, so we can

take fw−1,χ = 1u. For v ∈ V χ,1
u we see from (5.24) that

vT −1
w f = v(w−1f)T −1

w Tχcr = f(wχ)vT −1
w ∀f ∈ Can(U).

Hence vT −1
w is a Can(U)-weight vector for the weight wχ. It remains to see that V

has no other Can(U)-weights. Suppose∑
χ,n≥1

∑
w∈Wu

vχ,n,w−1T −1
w ∈ V
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is a weight vector not in
∑

χ

∑
w∈Wu V

χ,1
u T −1

w , where vχ,n,w−1 ∈ V χ,n
u . Then the

same holds for
v :=

∑
χ,n>1

∑
w∈Wu

vn,χ,w−1T −1
w ,

so vχ,n,w−1 ∈ V χ,n
u \ {0} for some χ, n > 1, w. We may assume that n is minimal

for this property. Then direct computation of v(f − f(wχ))n−1 shows that for some

f ∈ Can(U) it has a nonzero term in
∑

χ

∑
w∈Wu V

χ,1
u T −1

w . Therefore v cannot be

a weight vector, and we indeed found all C[Xnr(M)]-weights already. �

Lemma 6.5.a is compatible with parabolic induction and restriction, but we have
to be careful with the formulation. Let L be a Levi subgroup of G containing M
and let WL(M,σ,Xnr(M)) be the version of W (M,σ,Xnr(M)) for L. Then

UL := WL(M,σ,Xnr(M))Uu

is a union of connected components of U and Can(UL) is a subalgebra of Can(U).
From IGPL and (6.2) we obtain a natural injective algebra homomorphism

EndL(ILP∩L(EB))an
UL
→ EndG(IGP (EB))an

U .

We warn that in general this homomorphism is not unital, so naive restriction may
not send unital modules to unital modules. Instead, we define a functor

ResUL : EndG(IGP (EB))an
U −Mod −→ EndL(ILP∩L(EB))an

UL
−Mod

V 7→ V 1UL
.

On the other hand, the restricted homomorphism

1uEndL(ILP∩L(EB))an
UL

1u → 1uEndG(IGP (EB))an
U 1u is unital.

Lemma 6.6. The following diagrams, with horizontal maps from Lemma 6.5.a,
commute:

1uEndG(IGP (EB))an
U 1u −Mod ←→ EndG(IGP (EB))an

U −Mod
↑ ind ↑ ind

1uEndL(ILP∩L(EB))an
UL

1u −Mod ←→ EndL(ILP∩L(EB))an
UL
−Mod

1uEndG(IGP (EB))an
U 1u −Mod ←→ EndG(IGP (EB))an

U −Mod
↓ Res ↓ ResUL

1uEndL(ILP∩L(EB))an
UL

1u −Mod ←→ EndL(ILP∩L(EB))an
UL
−Mod

Proof. Consider the first diagram, with horizontal maps from left to right. It
commutes because all arrows are inductions from subalgebras. Next consider the
second diagram with horizontal maps from right to left. It commutes because
1u1ULV = 1uV .

As the horizontal maps are equivalences, the diagrams remain commutative if we
reverse the directions of one or two horizontal arrows. �

Lemma 6.4 tells us that we should understand the subalgebra 1uEndG(IGP (EB))an
U 1u

of EndG(IGP (EB))an
U better. Let Cme(U) be the ring of meromorphic functions on U .

We proceed via

(6.9)
HomG

(
IGP (EB), IGP (EK(B))

)
⊂

EndG(IGP (EB)) ⊗
BW (M,σ,Xnr(M))

Cme(U)W (M,σ,Xnr(M)) =: EndG(IGP (EB))me
U .

For the same reasons as in (6.2), Cme(U) embeds in EndG(IGP (EB))me
U .



ENDOMORPHISM ALGEBRAS FOR p-ADIC GROUPS 41

For χc ∈ Xnr(M,σ) and w ∈W (M,O), (5.16) says that

(6.10) 1uφχcAw1u =

{
1uφχcAw = φχcAw1u χcw(u) = u

0 otherwise

Since Xnr(M,σ) acts freely on Xnr(M), for a given w ∈ W (M,O) there exists at
most one χc = χc(w) ∈ Xnr(M,σ) such that χcw fixes u. Let W (M,O)σ⊗u be the
W (M,O)-stabilizer of σ ⊗ u ∈ Irr(M). Then

(6.11)
Ωu : W (M,O)σ⊗u → W (M,σ,Xnr(M))u

w 7→ χc(w)w

is a group isomorphism. With Theorem 5.4, (5.19) and (6.10) this yields

(6.12)

1uEndG(IGP (EB))me
U 1u =

⊕
w∈W (M,O)σ⊗u

Cme(Uu)AΩu(w) =

⊕
w∈W (M,O)σ⊗u

Cme(Uu)AΩu(w) =
⊕

w∈W (M,O)σ⊗u

Cme(Uu)TΩu(w).

6.1. Localized endomorphism algebras with meromorphic functions.
Consider the set of roots

Σσ⊗u := {α ∈ Σred(AM ) : µMα(σ ⊗ u) = 0}.

This is a root system [Sil1, §1], that can be shown with the same argument as
for Proposition 3.1.c. The parabolic subgroup P = MU of G determines a positive
system Σσ⊗u(P ) and a basis ∆σ⊗u of Σσ⊗u. The relevant R-group (the Knapp–Stein
R-group) is

R(σ ⊗ u) = {w ∈W (M,O)σ⊗u : w(Σσ⊗u(P )) = Σσ⊗u(P )}

Like in (3.2)

(6.13) W (M,O)σ⊗u = W (Σσ⊗u) oR(σ ⊗ u).

We note that R(σ ⊗ u) need not be contained in R(O), even though W (Σσ⊗u) ⊂
W (ΣO,µ).

To obtain generators of 1uEndG(IGP (EB))an
U 1u with nice and simple relations, we

vary on the previous constructions. We follow the setup from Sections 3–5, but now
with base point σ ⊗ u of O, root system Σσ⊗u, Weyl group W (Σσ⊗u) and R-group
R(σ ⊗ u). On Xnr(M) we have new functions Xu

α(χ) := Xα(u)−1Xα(χ). We recall
that by (3.7) Xα(u) ∈ {1,−1} for all α ∈ Σσ⊗u.

Further, E is by default endowed with the M -representation σ ⊗ u, and we get a
slightly different version JuP ′|P of JP ′|P . Instead of ρ′σ,w we use

ρ′σ⊗u,w := λ(w̃)spχ=1

∏
α∈Σσ⊗u(P )∩Σσ⊗u(w−1P )

(Xu
α − 1)Juw−1(P )|P (σ ⊗ uχ).

Then Lemmas 4.3 and 4.4 remain true with obvious small modifications. In partic-
ular, in Lemma 4.4.b we have to replace the product over

α ∈ ΣO,µ(P ) ∩ ΣO,µ(w−1
2 (P )) ∩ ΣO,µ(w−1

2 w−1
1 (P ))

by the analogous product (with σ ⊗ u instead of σ) over

α ∈ Σσ⊗u(P ) ∩ Σσ⊗u(w−1
2 (P )) ∩ Σσ⊗u(w−1

2 w−1
1 (P )).
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For r ∈ R(σ ⊗ u) we can now take χr = 1 and

(6.14) ρσ⊗u,r : r̃(σ ⊗ u)→ σ ⊗ u.
With these we define ρuP ′,rw and

Aurw = ρurw ◦ τrw ◦ JuK(B),rw rw ∈W (M,O)σ⊗u.

as before. The superscripts u are meant to distinguish these operators from their
ancestors without u (or rather with u = 1). Then (5.2) becomes

(6.15) Aurw ◦ b = (rw · b) ◦Aurw b ∈ C(Xnr(M)).

Let w1, w2 ∈W (Σσ⊗u) and r1, r2 ∈ R(σ ⊗ u). By Proposition 5.1:
(6.16)

Auw1
◦Auw2

=
∏

α

(
spχ=1

µMα(σ ⊗ u⊗ ·)
(Xu

α − 1)((Xu
α)−1 − 1)

)
µMα(σ ⊗ u⊗ w−1

2 w−1
1 ·)

−1Auw1w2
,

where the product runs over

α ∈ Σσ⊗u(P ) ∩ Σσ⊗u(w−1
2 (P )) ∩ Σσ⊗u(w−1

2 w−1
1 (P )).

In particular for α ∈ ∆σ⊗u:

(6.17) (Ausα)2 =
4c′sα

(1−Xα(u)q−1
α )2(1 +Xα(u)q−1

α∗ )2µMα(σ ⊗ u⊗ ·)
.

Similarly Proposition 5.2 yields the following multiplication rules:

(6.18)

Aur1 ◦A
u
w1

= Aur1w1
,

Auw2
◦Aur2 = Auw2r2 ,

Aur1 ◦A
u
r2 = \u(r1, r2)Aur1r2 .

Here \u is a two-cocycle R(σ ⊗ u)2 → C×. By appropriate normalizations of the
ρσ⊗u,r we can achieve that

(6.19) \u(1, r) = \u(r, 1) = 1 and \u(r, r−1) = 1

for all r ∈ R(σ⊗u). In other words, we may assume that Au1 = 1 and (Aur )−1 = Aur−1 .
The arguments for Theorem 5.4 apply only partially in the current situation, be-

cause we may have fewer than |W (M,O)| operators Aurw. Rather, [Hei2, Proposition
3.7] shows that in EndG(IGP (EB))⊗B K(B)

(6.20) {Aurw : rw ∈W (M,O)σ⊗u} is K(B)-linearly independent.

We note that (6.16) and (6.17) mean that, when Xα(u) = −1, in effect the roles of
qα and qα∗ are exchanged. With that in mind we define

guα =
(1−X2

α)(1−Xα(u)q−1
α )(1 +Xα(u)q−1

α∗ )

2(1−Xα(u)q−1
α Xα)(1 +Xα(u)q−1

α∗Xα)
∈ C(Xnr(M)),

and T usα := guαA
u
sα . This gives rise to elements T uw for w ∈ W (Σσ⊗u), which satisfy

the analogues of Proposition 5.5, Lemma 5.6 and Lemma 5.7 – with W (M,O)σ⊗u
instead of W (M,σ,Xnr(M)).

To show that the set (6.20) spans (6.12) as Cme(Uu)-module, we vary on the
proofs of [Hei2, Théorème 3.8] and of Theorem 5.4.

Lemma 6.7. Regard Can(U),HomG

(
IGP (EB), IGP (EK(B))

)
and Cme(U) as subsets

of, respectively, EndG(IGP (E⊗CC
an(U))),HomG

(
IGP (E⊗CC

an(U)), IGP (E⊗CC
me(U))

)
and EndG(IGP (E ⊗C C

me(U))).
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(a) Then 1uEndG(IGP (EB))me
U 1u equals

span
(
Cme(Uu)HomG

(
IGP (EB), IGP (EK(B))

)
Can(Uu)

)
=

⊕
w∈W (M,O)σ⊗u

Cme(Uu)Auw.

(b) The elements AurT uw with rw ∈ W (M,O)σ⊗u span a subalgebra isomorphic to
C[W (M,O)σ⊗u, \u], where \u is the 2-cocycle from (6.18). This provides an
algebra isomorphism

1uEndG(IGP (EB))me
U 1u ∼= Cme(Uu) oC[W (M,O)σ⊗u, \u],

where we take the crossed product with respect to the canonical action of
W (M,O)σ⊗u on Cme(Uu).

Proof. (a) Recall from Lemma 5.3 and (5.15) that HomG

(
IGP (EB), IGP (EK(B))

)
has

a filtration with successive subquotients isomorphic to

HomM (w · EB, EK(B)) ∼=
⊕

χc∈Xnr(M,σ)
φχcK(B),

where w runs through W (M,O)σ⊗u. Considering the left hand side as a subset of
HomM

(
w ·(E⊗CC

an(U)), E⊗CC
me(U)

)
, we can compose it on the left with Cme(U)

and on the right with Can(U). Using (2.20) we find

span
(
Cme(Uu)HomM (w · EB, EK(B))C

an(Uu)
) ∼={ ⊕

χ∈Xnr(M,σ)C
me(Uu)φχC

an(Uu) wXnr(M,σ)Uu ∩ Uu 6= ∅
0 otherwise

.

In view of the construction of Uu, the above condition on w is equivalent to w ∈
W (M,O)σ⊗u. Furthermore Cme(Uu)φχC

an(Uu) = 0 for all χ ∈ Xnr(M,σ)\{1}. We
conclude that

(6.21) span
(
Cme(Uu)HomG

(
IGP (EB), IGP (EK(B))

)
Can(Uu)

)
has a filtration with subquotients isomorphic to

span
(
Cme(Uu)HomM (w · EB, EK(B))C

an(Uu)
) ∼= Cme(Uu) w ∈W (M,O)σ⊗u.

In particular (6.21) has dimension |W (M,O)σ⊗u| over Cme(Uu) (notice that Cme(Uu)
is a field because Uu is connected). By (6.20) the Auw are Cme(Uu)-linearly indepen-
dent, so

⊕
w∈W (M,O)σ⊗u

Cme(Uu)Auw is the whole of (6.21).

(b) The properties involving the elements AurT uw can be shown in the same way as
at the end of Section 5. �

Remark 6.8. The elements AurT uw from Lemma 6.7.b multiply like the elements of
W (M,O)σ⊗u (up to a 2-cocycle trivial on W (Σσ⊗u)), they normalize Cme(Uu) and
act on it in a prescribed way. Furthermore, our construction consists entirely of
steps needed to achieve those properties. In this sense, these elements AurT uw are
canonical up to rescaling the Aur .

6.2. Localized endomorphism algebras with analytic functions.
We set out to find a Can(Uu)-basis of 1uEndG(IGP (EB))an

U 1u. An element of
1uEndG(IGP (EB))me

U 1u lies in 1uEndG(IGP (EB))an
U 1u precisely when it does not have

any poles on Uu. By (6.16) the poles of Asα (α ∈ ∆σ⊗u) are precisely the zeros
of µMα(σ ⊗ u ⊗ ·). In view of Condition 6.3, the only poles on Uu are those at
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{Xu
α = 1} = {Xα = Xα(u)}. The intersection of this set with Uu is connected and

equals
U sαu = uXnr(Mα) ∩ Uu.

By Lemma 5.9.a, for α ∈ ∆σ⊗u, χ ∈ U sαu :

(6.22) spχ(1−Xu
α)Ausα = spχ.

For α ∈ ΣO,µ we define

fα =
X2
α(qαqα∗ − 1) +Xα(qα − qα∗)

X2
α − 1

=
Xu
α(qαqα∗ − 1) +Xα(u)(qα − qα∗)

Xu
α − (Xu

α)−1
.

When qα∗ = 1 (which happens for most roots), fα reduces to

(Xα + 1)(qα − 1)

Xα −X−1
α

=
qα − 1

1−X−1
α
.

By (3.6) and Lemma 3.4.a

(6.23) w · fα = fw(α) α ∈ ΣO,µ, w ∈W (M,O).

One checks that, for α ∈ ∆σ⊗u, χ ∈ U sαu :

spχ
(
(1−Xu

α)fα
)

= spχ

(qαqα∗ − 1 +Xα(u)(qα − qα∗)
−1− (Xu

α)−1

)
= −(qα −Xα(u))(qα∗ +Xα(u))/2.

(6.24)

By (6.22) and (6.24), the element

(qα −Xα(u))(qα∗ +Xα(u))

2
Asα + fα ∈ HomG

(
IGP (EB), IGP (EK(B))

)
does not have any poles on Uu. Therefore

T usα := 1u
(qα −Xα(u))(qα∗ +Xα(u))

2
Asα + 1ufα

belongs to 1uEndG(IGP (EB))an
U 1u. We note that

1 + fα =
X2
αqαqα∗ − 1 +Xα(qα − qα∗)

X2
α − 1

=
(Xu

αqα −Xα(u))(Xu
αqα∗ +Xα(u))

(Xu
α)2 − 1

,

T usα = 1u(1 + f−α)T usα + 1ufα = T usα(1 + fα)1u + fα1u ∈ 1uEndG(IGP (EB))an
U 1u.

(6.25)

The quadratic relations for the operators T usα read:

Lemma 6.9. (T usα + 1u)(T usα − qαqα∗1u) = 0 for α ∈ ∆σ⊗u.

Proof. With (6.25) and the multiplication rules for T usα in (5.24) we compute

(6.26) (T usα + 1u)(T usα − qαqα∗1u) =

1u
(
(1 + f−α)T usα + fα1u + 1u

)(
(1 + f−α)T usα + fα − qαqα∗

)
=

1u

(
(1+f−α)(1+fα)T usα +(1+f−α)T usα(fα−qαqα∗+f−α+1)+(fα+1)(fα−qαqα∗)

)
= 1u

(
(1 + f−α)T usα(fα + f−α + 1− qαqα∗) + (1 + fα)(fα + f−α + 1− qαqα∗)

)
.

By direct calculation fα + f−α + 1− qαqα∗ = 0, so the last line of (6.26) reduces to
0. �
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With (5.2) we compute, for b ∈ Cme(Uu):

b T usα =
(qα −Xα(u))(qα∗ +Xα(u))

2
Ausα(sα · b) + fαb

= T usα(sα · b) + fα(b− sα · b)(6.27)

= T usα(sα · b) +
(
qαqα∗ − 1 +X−1

α (qα − qα∗)
)
(1−X−2

α )−1(b− sα · b).

Any w ∈W (Σσ⊗u) can be written as a reduced word s1s2 · · · s`O(w) in the generators
sα with α ∈ ∆σ⊗u. We pick such a reduced expression and we define

(6.28) T uw = T us1T
u
s2 · · ·T

u
s`O(w)

∈ 1uEndG(IGP (EB))an
U 1u.

Lemma 6.10. Let w ∈W (Σσ⊗u) and r ∈ R(σ ⊗ u).

(a) The operator (6.28) does not depend on the choice of the reduced expression
w = s1s2 · · · s`O(w).

(b) (Aur )−1T uwA
u
r = T ur−1wr.

Proof. (a) In view of the defining relations in the Coxeter group W (Σσ⊗u), it suffices
to show the following statement. Let α, β ∈ ∆σ⊗u with sαsβ of order mαβ > 1. Then

(6.29) T usαT
u
sβ
T usα · · ·T

u
sα/β

= T usβT
u
sαT

u
sβ
· · ·T usβ/α (mαβ factors on both sides).

Consider the affine Hecke algebra H with root system {h∨α : α ∈ Σσ⊗u}, torus

Xnr(M), parameter q
1/2
F and labels

λ(h∨α) = log(qαqα∗)/ log(qF ), λ∗(h∨α) = log(qαq
−1
α∗ )/ log(qF ).

By definition H is generated by a subalgebra C[Xnr(M)] and elements Tsα (α ∈
∆σ⊗u) that satisfy:

• the braid relations (6.29) from W (Σσ⊗u);
• (Tsα + 1)(Tsα − qαqα∗) = 0;
• bTsα = Tsα(sα · b) + fα(b− sα · b) b ∈ C[Xnr(M)].

Alternatively, H⊗C[Xnr(M)]W (Σσ⊗u) C(Xnr(M))W (Σσ⊗u) can be generated by

C(Xnr(M)) and the elements

(6.30) τsα := (Tsα + 1)(1 + fα)−1 − 1.

These elements stem from [Lus1, §5.1], where 1 + fα is denoted G(α). By [Lus1,
Proposition 5.2] they satisfy the same relations as our T usα , namely Proposition 5.5

and (5.24). That gives a new presentation ofH⊗C[Xnr(M)]W (Σσ⊗u)C(Xnr(M))W (Σσ⊗u),

with defining relations

• the braid relations from W (Σσ⊗u) (but now for the τsα);
• τ2

sα = 1;
• bτsα = τsα(sα · b) b ∈ C(Xnr(M)).

We map Uu to Xnr(M) by considering u ∈ Uu and 1 ∈ Xnr(M) as basepoints, so
χ 7→ u−1χ. That gives an injection

(6.31) C(Xnr(M))→ Cme(Uu).

We checked that the τsα and the T usα satisfy the same relations. Hence there is a
unique algebra homomorphism

H⊗C[Xnr(M)]W (Σσ⊗u) C(Xnr(M))W (Σσ⊗u) −→ 1uEndG(IGP (EB))me
U 1u
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that extends (6.31) and sends τw to T uw for w ∈ W (Σσ⊗u). From (6.25) and (6.30)
we see that Tsα is mapped T usα for α ∈ ∆σ⊗u. As the Tsα satisfy the braid relations
(6.29), so do the T usα .
(b) From the definition of T usα and Proposition 5.2.c we obtain

(6.32) T usαA
u
r = 1u

(qα −Xα(u))(qα∗ +Xα(u))

2
AurAsr−1α

+Aur1ufr−1α = AurT
u
sr−1α

.

Recall from (6.19) that (Aur )−1 = Aur−1 . Applying that and (6.32) repeatedly, we
find

(6.33) (Aur )−1T uwA
u
r = (Aur )−1T us1T

u
s2 · · ·T

u
s`O(w)

Aur = T ur−1s1r
T ur−1s2r

· · ·T ur−1s`O(w)r
.

Since conjugation by r ∈ R(σ ⊗ u) preserves the lengths of elements of W (Σσ⊗u),

r−1wr = (r−1s1r)(r
−1s2r) · · · (r−1s`O(w)r)

is a reduced expression. Now part (a) guarantees that the right hand side of (6.33)
equals T ur−1wr. �

The arguments from [Hei2, §5] apply to the operators Aur and T uw in
HomG(IGP (EB), IGP (EK(B))), provided that we only look at Uu ⊂ Xnr(M). In par-
ticular [Hei2, Proposition 5.9] proves that, for any χ ∈ Uu:

(6.34) {spχAurT uw : rw ∈W (M,O)σ⊗u} is C-linearly independent

in HomG

(
IGP (EB), IGP (E, σ ⊗ χ)

)
.

Theorem 6.11. The algebra

1uEndG(IGP (EB))an
U 1u = span

(
Can(Uu)EndG(IGP (EB))Can(Uu)

)
can be expressed as⊕

r∈R(σ⊗u)

⊕
w∈W (Σσ⊗u)

Can(Uu)Aur T
u
w =

⊕
w∈W (Σσ⊗u)

⊕
r∈R(σ⊗u)

T uw A
u
r C

an(Uu).

Proof. By (6.15), for all rw ∈W (M,O)σ⊗u,

1uA
u
rT

u
w = 1uA

u
rT

u
w1u = AurT

u
w1u

and it is a nonzero element of 1uEndG(IGP (EB))an
U 1u. Lemma 6.7 tells us that⊕

rw∈W (M,O)σ⊗u

Can(Uu)AurT
u
w ⊂ 1uEndG(IGP (EB))an

U 1u ⊂
⊕

rw∈W (M,O)σ⊗u

Cme(Uu)AurT
u
w.

With (6.34) that entails, for any χ ∈ Uu, the C-vector space

{spχ(A) : A ∈ 1uEndG(IGP (EB))an
U 1u} has a basis {spχAurT uw : rw ∈W (M,O)σ⊗u}.

Suppose that frw ∈ Cme(Uu) and

A :=
∑

rw∈W (M,O)σ⊗u
frwA

u
rT

u
w ∈ 1uEndG(IGP (EB))an

U 1u.

It remains to show that all the frw belong to Can(Uu). Consider any χ ∈ Uu. By
the above there are unique zrw ∈ C such that

spχ(A) =
∑

rw∈W (M,O)σ⊗u
zrwspχA

u
rT

u
w.

Then frw(χ) = zrw. Hence none of the frw has a pole at any χ ∈ Uu. In other
words, they are analytic. �



ENDOMORPHISM ALGEBRAS FOR p-ADIC GROUPS 47

Theorem 6.11 and the multiplication rules (6.15), (6.18), Lemma 6.9, (6.27),
(6.28), Lemma 6.10 provide a presentation of 1uEndG(IGP (EB))an

U 1u. We note that
it is quite similar to an affine Hecke algebra (when R(σ ⊗ u) = 1) or to a twisted
affine Hecke algebra [AMS3, Proposition 2.2]. The only difference is that the com-
plex torus T in the definition of an affine Hecke algebra has been replaced by the
complex manifold Uu, and C[T ] by Can(Uu).

This observation enables us to compute the centre of 1uEndG(IGP (EB))U1u with
the methods from [Lus1, Proposition 3.11] and [Sol3, §1.2]:

(6.35) Z
(
1uEndG(IGP (EB))an

U 1u
)

= Can(Uu)W (M,O)σ⊗u .

7. Link with graded Hecke algebras

We will provide an easier presentation of 1uEndG(IGP (EB))U1u, which comes from
a graded Hecke algebra [Lus1]. Let us recall the construction of the graded Hecke
algebras that we want to use, starting from the affine Hecke algebra H in the proof
of Lemma 6.10. We replace the complex torus Xnr(M) = Hom(M/M1,C×) by its
Lie algebra

Lie(Xnr(M)) = Hom(M/M1,C) = a∗M ⊗R C.

The algebra of regular functions C[Xnr(M)] = C[M/M1] is replaced by the algebra
of polynomial functions

C[Lie(Xnr(M))] = C[a∗M ⊗R C] = S(aM ⊗R C),

where S denotes the symmetric algebra of a vector space. The group W (M,O) acts
naturally on Lie(Xnr(M)) and on C[a∗M ⊗R C].

Recall that in Proposition 3.1 we associated to every α ∈ ΣO,µ elements h∨α ∈
M/M1 ⊂ aM , α] ∈ a∗M . These elements form root systems Σ∨O and ΣO, respectively.
The quadruple(

aM , {h∨α, α ∈ Σσ⊗u}, a∗M , {α] : α ∈ Σσ⊗u}, {h∨α, α ∈ ∆σ⊗u}
)

will be denoted R̃u, and is sometimes called a degenerate root datum. Let ku :
Σσ⊗u → R≥0 be the W (M,O)σ⊗u-invariant parameter function

kuα =

{
log(qα) if Xα(u) = 1
log(qα∗) if Xα(u) = −1

.

We also need the 2-cocycle

\u : R(σ ⊗ u)2 = (W (M,O)σ⊗u/W (Σσ⊗u))2 → C×

from Lemma 6.7. It gives rise to a twisted group algebra C[W (M,O)σ⊗u, \u] with
basis {Nw : w ∈W (M,O)σ⊗u} and multiplication rules

Nw1Nw2 = \u(w1, w2)Nw1w2 .

Lemma 7.1. Recall the bijection Ωu : W (M,O)σ⊗u → W (M,σ,Xnr(M))u from
(6.11). The 2-cocycles \u and \◦Ωu of W (M,O)σ⊗u are cohomologous. Further, Ωu

induces a canonical algebra isomorphism

Ω̃u : C[W (M,O)σ⊗u, \u]→ C[W (M,σ,Xnr(M))u, \].



48 ENDOMORPHISM ALGEBRAS FOR P -ADIC GROUPS

Proof. By definition

(7.1) Aur′T uw′ ◦AurT uw = \u(r′w′, rw)Aur′rT ur−1w′rw

for rw, r′w′ ∈ W (M,O)σ⊗u. For a generic χ ∈ Xnr(M), IGP (σ ⊗ χ) and IGP (σ ⊗
Ωu(rw)−1χ) are irreducible. Both spχA

u
rT uw and spχTΩu(rw) are G-homomorphisms

IGP (σ ⊗ χ)→ IGP (σ ⊗ Ωu(rw)−1χ),

so they differ only by a scalar factor (at least away from their poles). Furthermore
spχA

u
rT uw and spχTΩu(rw) are rational functions of χ ∈ Xnr(M), so there exists a

unique furw ∈ C(Xnr(M)) such that

(7.2) AurT uw = furwTΩu(rw).

By (5.20) TΩu(rw) and AurT uw are regular at every unitary χ ∈ Xnr(M), in particular
at u. Specializing (7.1) at u and combining it with (7.2), we obtain

fur′w′(u)spu(TΩu(r′w′))f
u
rw(u)spu(TΩu(rw)) = spu(Aur′T uw′)spu(AurT uw ) =

\u(r′w′, rw)spu(Aur′rT ur−1w′rw) = \u(r′w′, rw)fur′w′rw(u)spu(TΩu(r′w′rw)).

On the other hand, by Lemma 5.6

spu(TΩu(r′w′))spu(TΩu(rw)) = \(Ωu(r′w′),Ωu(rw))spu(TΩu(r′w′rw)).

Comparing the expressions with TΩu(?) we find that

(7.3)
\(Ωu(r′w′),Ωu(rw))

\u(r′w′, rw)
=

fur′w′rw(u)

fur′w′(u)furw(u)
.

By definition, this says that \u and \ ◦ Ωu are cohomologous 2-cocycles. Moreover
(7.3) shows that

AurT
u
w 7→ furw(u)TΩu(rw) r ∈ R(σ ⊗ u), w ∈W (Σσ⊗u)

defines the algebra isomorphism Ω̃u we were looking for. It is canonical because
every furw is unique. �

The graded Hecke algebra associated to the above data is the vector space
C[a∗M ⊗R C]⊗C C[W (M,O)σ⊗u, \u] with multiplication rules

(i) C[a∗M ⊗R C] and C[W (M,O)σ⊗u, \u] are embedded as subalgebras;
(ii) for f ∈ C[a∗M ⊗R C] and α ∈ ∆σ⊗u:

fNsα −Nsα(sα · f) = kuα
f − sα · f

h∨α
;

(iii) Nrf = (r · f)Nr for f ∈ C[a∗M ⊗R C] and r ∈ R(σ ⊗ u).

This algebra is denoted

(7.4) H(R̃u,W (M,O)σ⊗u, k
u, \u).

Weights of representations of this algebra are by default with respect to the commu-
tative subalgebra C[a∗M ⊗R C]. An advantage of (7.4) over EndG(IGP (EB)) is that a
lot is known about its representation theory, even with arbitrary parameters kuα. It
is easy to see that the centre of (7.4) is

Z
(
H(R̃u,W (M,O)σ⊗u, k

u, \u)
)

= C[a∗M ⊗R C]W (M,O)σ⊗u .
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To interpolate between 1uEndG(IGP (EB))an
U 1u and a graded Hecke algebra, we need a

version of the latter with analytic functions instead of polynomials. Let Ũ ⊂ a∗M⊗RC
be an open W (M,O)σ⊗u-stable subset. Like in [Sol3, §1.5] we consider the algebra

H(R̃u,W (M,O)σ⊗u, k
u, \u)an

Ũ
:=

H(R̃u,W (M,O)σ⊗u, k
u, \u) ⊗

C[a∗M⊗RC]W (M,O)σ⊗u
Can(Ũ)W (M,O)σ⊗u .

As vector space it is

(7.5) H(R̃u,W (M,O)σ⊗u, k
u, \u)an

Ũ
= Can(Ũ)⊗C C[W (M,O)σ⊗u, \u],

compare with Theorem 6.11. The multiplication relations (ii) and (iii) in the defi-

nition of H(R̃u,W (M,O)σ⊗u, k
u, \u) now hold for all f ∈ Can(Ũ).

Lemma 7.2. (a) The following categories are naturally equivalent:

• H(R̃u,W (M,O)σ⊗u, k
u, \u)an

Ũ
−Modf ;

• H(R̃u,W (M,O)σ⊗u, k
u, \u)−Modf,Ũ .

(b) For a Levi subgroup L of G containing M , there is a version of

H(R̃u,W (M,O)σ⊗u, k
u, \u) that uses only those elements of W (M,O)σ⊗u and

Σσ⊗u that come from L. With that as parabolic subalgebra, the above equivalence
of categories commutes with parabolic induction and restriction in the same sense
as Lemma 6.2.

Proof. This can be shown in the same way as [Opd, Proposition 4.3] and Lemmas
6.2. �

We can also involve meromorphic functions on Ũ , in an algebra

(7.6) H(R̃u,W (M,O)σ⊗u, k
u, \u)me

Ũ
:=

H(R̃u,W (M,O)σ⊗u, k
u, \u) ⊗

C[a∗M⊗RC]W (M,O)σ⊗u
Cme(Ũ)W (M,O)σ⊗u ,

which as vector space equals

Cme(Ũ)⊗C C[W (M,O)σ⊗u, \u].

As in [Lus1, §5.1] we define, for α ∈ ∆σ⊗u, the following element of (7.6):

(7.7) T̃sα = −1 + (Nsα + 1)
h∨α

kuα + h∨α
.

According to [Lus1, Proposition 5.2], sα 7→ T̃sα extends uniquely to a group homo-

morphism w 7→ T̃w from W (Σσ⊗u) to the multiplicative group of (7.6), and

T̃wf = (w · f)T̃w f ∈ Cme(Ũ), w ∈W (Σσ⊗u).

An argument analogous to Lemma 6.10.b shows that

NrT̃wN−1
r = T̃rwr−1 r ∈ R(σ ⊗ u), w ∈W (Σσ⊗u).

It is easy to see from (7.7) that the C(a∗M ⊗R C)-span of the T̃w coincides with the
C(a∗M ⊗R C)-span of the Nw (w ∈W (Σσ⊗u). With (7.5) that yields

(7.8) H(R̃u,W (M,O)σ⊗u, k
u, \u)me

Ũ
=

span
(
Cme(Ũ)H(R̃u,W (M,O)σ⊗u, k

u, \u)
)

=
⊕

rw∈W (M,O)σ⊗u
NrT̃wCme(Ũ).
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In view of the above multiplication relations, (7.8) means that the algebra (7.6) is a
crossed product

(7.9) Cme(Ũ) oC[W (M,O)σ⊗u, \u],

where the latter factor is spanned by the NrT̃w. We note that these elements NrT̃w
are canonical in the same sense as Remark 6.8.

Now we specialize to a particular Ũ . The analytic map

expu : a∗M ⊗R C = Hom(M/M1,C) → Hom(M/M1,C×) = Xnr(M)
λ 7→ u exp(λ)

is a W (M,O)σ⊗u-equivariant covering. Notice that

expu(a∗M ) = uX+
nr(M).

Let log(Uu) be the connected component of exp−1
u (Uu) that contains 0. By Condition

6.3 expu : log(Uu) → Uu is an isomorphism of analytic varieties. In particular
f 7→ f ◦ expu provides W (M,O)σ⊗u-equivariant algebra isomorphisms

Can(Uu)→ Can(log(Uu)) and Cme(Uu)→ Cme(log(Uu))

From Lemma 6.7, (7.8) and the multiplication relations in these algebras, we see
that expu induces an algebra isomorphism

Φu : 1uEndG(IGP (EB))me
U 1u → H(R̃u,W (M,O)σ⊗u, k

u, \u)me
log(Uu)

fAurT uw 7→ (f ◦ expu)NrT̃w
.

Proposition 7.3. The algebra homomorphism Φu is canonical. It restricts to an
algebra isomorphism

1uEndG(IGP (EB))an
U 1u −→ H(R̃u,W (M,O)σ⊗u, k

u, \u)an
log(Uu).

For a Levi subgroup L of G containing M , we looked at parabolic subalgebras in
Lemmas 6.6 and 7.2. For any such L, Φu restricts to an isomorphism between the
respective parabolic subalgebras.

Proof. We note that as linear map Φu can be expressed in terms of Lemma 6.7.b
and (7.9) as
(7.10)

exp∗u⊗id : Cme(U) oC[W (M,O)σ⊗u, \u]→ Cme(log(Uu)) oC[W (M,O)σ⊗u, \u].

As discussed in Remark 6.8, the basis elements AurT wu and NrT̃w are constructed in
a canonical way, apart from possible renormalizations of the Aur and the Nr. But the
multiplication relations between the Nr are defined in terms of the multiplication
rules for the Aur , so that automatically works in the same way for the source and
the target of Φu. Hence (7.10) shows that Φu is canonical.

By construction Φu(Can(Uu)) = Can(log(Uu)) and Φu(1uA
u
r ) = Nr, where 1uA

u
r ∈

1uEndG(IGP (EB))an
U 1u and Nr ∈ H(R̃u,W (M,O)σ⊗u, k

u, \u). Hence, by Theorem
6.11 it suffices to show that

Φu(T uw) ∈ H(R̃u,W (M,O)σ⊗u, k
u, \u)an

log(Uu) and Φ−1
u (Nw) ∈ 1uEndG(IGP (EB))an

U 1u

for all w ∈ W (Σσ⊗u). The argument for that is a variation on [Lus1, Theorem 9.3]
and [Sol3, Theorem 2.1.4]. By (6.28) for the T uw, it suffices to consider w = sα with
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α ∈ ∆σ⊗u. We compute

Φu(1u + T usα) = Φu((1u + 1uT usα)(1 + fα))

= (1 + T̃ usα)(1 + fα ◦ expu)

= (Nsα + 1)
( h∨α
kuα + h∨α

)(X2
αqαqα∗ +Xα(qα − qα∗)− 1

X2
α − 1

)
◦ expu

= (Nsα + 1)
h∨α

kuα + h∨α

e2h∨αqαqα∗ +Xα(u)eh
∨
α(qα − qα∗)− 1

e2h∨α − 1

= (Nsα + 1)
( h∨α
e2h∨α − 1

)((eh
∨
αqα −Xα(u))(eh

∨
αqα∗ +Xα(u))

kuα + h∨α

)
By Condition 6.3, for all v ∈ log(Uu)

(7.11) h∨α(v) = log(Xα(u−1 expu(v))) has imaginary part in (−π/2, π/2).

Hence h∨α
e2h
∨
α−1

is an invertible analytic function on log(Uu). When Xα(u) = 1, (7.11)

entails that eh
∨
αqα∗+Xα(u) is an invertible and analytic on log(Uu), and by l’Hopital’s

rule, so is
eh
∨
αqα −Xα(u)

kuα + h∨α
=

eh
∨
αqα − 1

log(qα) + h∨α
.

Similarly, when Xα(u) = −1, eh
∨
αqα −Xα(u) and

eh
∨
αqα∗ +Xα(u)

kuα + h∨α
=

eh
∨
αqα∗ − 1

log(qα∗) + h∨α

are invertible analytic functions on log(Uu). The above computation and these
considerations about invertibility allow us to conclude that

Φu(1u + T usα) = 1u + Φu(T usα) ∈ H(R̃u,W (M,O)σ⊗u, k
u, \u)an

log(Uu).

Applying Φ−1
u to the entire computation and rearranging, we obtain

Φ−1
u (Nsα + 1) = (1u + 1uT

u
sα)
(h∨α(eh

∨
αqα −Xα(u))(eh

∨
αqα∗ +Xα(u))

(e2h∨α − 1)(kuα + h∨α)

)−1
◦ exp−1

u .

We just argued that the function between the large brackets is invertible and analytic
on log(Uu). So its composition with exp−1

u is invertible and analytic on Uu. In
particular Φ−1

u (Nsα + 1) = Φ−1
u (Nsα) + 1u lies in 1uEndG(IGP (EB))an

U 1u.
On both sides of (7.10), the parabolic subalgebra (with meromorphic functions)

associated to L is obtained by using only the elements of W (M,O)σ⊗u that come
from L. Clearly Φu restricts to an isomorphism between those subalgebras. The
above calculations can be restricted to those subalgebras, and then they show that
Φu also provides an isomorphism between the parabolic subalgebras with analytic
functions. �

8. Classification of irreducible representations

8.1. Description in terms of graded Hecke algebras.
In Sections 6 and 7 we investigated the following algebra homomorphisms:

EndG(IGP (EB)) ↪→ EndG(IGP (EB))an
U ←↩ 1uEndG(IGP (EB))an

U 1u
∼−→ H(R̃u,W (M,O)σ⊗u, k

u, \u)an
log(Uu) ←↩ H(R̃u,W (M,O)σ⊗u, k

u, \u).
(8.1)
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Corollary 8.1. There are equivalences between the following categories:

(i) H(R̃u,W (M,O)σ⊗u, k
u, \u)−Modf,a∗M

;

(ii) EndG(IGP (EB))−Modf,W (M,σ,Xnr(M))uX+
nr(M);

(iii) {π ∈ Repf(G)s : Sc(π) ⊂W (M,O){σ ⊗ uχ : χ ∈ X+
nr(M)}.

Once the 2-cocycle \u has been fixed (by normalizing the elements Aru and Nr), these
equivalences are canonical. The equivalences commute with parabolic induction and
Jacquet restriction, in the sense of Proposition 4.1.

Proof. Since \u is given, we may apply Proposition 7.3. By Lemmas 6.2, 6.4, 6.7,
7.2 and Proposition 7.3, the homomorphisms (8.1) provide canonical equivalences
between the categories of finite dimensional modules of the respective algebras, with
the restriction that we only consider modules all whose central weights lie in, re-
spectively U/W (M,σ,Xnr(M)) (twice), Uu/W (M,O)σ⊗u and log(Uu)/W (M,O)σ⊗u
(twice). Restricting from log(Uu) to a∗M and from Uu to uX+

nr(M), we obtain the
equivalence between (i) and (ii).

The equivalence between (ii) and (iii) can be shown in the same way as in Lemma
6.4. It is always canonical.

The compatibility with parabolic induction and (Jacquet) restriction was already
checked in all the results we referred to in this proof. �

Sometimes it is more convenient to use left modules instead of right modules. That
could have been achieved by considering the G-endomorphisms of IGP (EB) as acting
from the right. Then we would get the opposite algebra EndG(IGP (EB))op, and item
(ii) of Corollary 8.1 would involve left modules of EndG(IGP (EB))op. The construc-

tions summarised in (8.1) relate those to left modules of H(R̃u,W (M,O)σ⊗u, k
u, \u)op.

Fortunately, with the multiplication rules (i)–(iii) before (7.4) it is easy to identify
the opposite algebra of a (twisted) graded Hecke algebra. Namely, there is an algebra
isomorphism

(8.2)
H(R̃u,W (M,O)σ⊗u, k

u, \u)op → H(R̃u,W (M,O)σ⊗u, k
u, \−1

u )
Nrwf 7→ fNw−1r−1

.

The only subtlety to check in (8.2) is that the 2-cocycles match up – for that one
needs (6.19).

Thus the categories in Corollary 8.1 are also equivalent with the category of finite
dimensional left H(R̃u,W (M,O)σ⊗u, k

u, \−1
u )-modules, all whose C[a∗M⊗RC]-weights

lie in a∗M . In other words, for the algebras that we consider it does not make too
much difference whether we use left or right modules.

For χc ∈ Xnr(M,σ), the M -representations σ⊗u and σ⊗uχc are equivalent, and
sometimes it is hard to distinguish them. Fortunately, the equivalences of categories
from Corollary 8.1 are essentially the same for σ ⊗ u and σ ⊗ uχc. To make that
precise, we assume that in (6.14) the choices are made so that

(8.3) ρr,σχcu = φσ,χcρr,σ⊗uφ
−1
σ,χc .

Lemma 8.2. Let χc ∈ Xnr(M,σ).

(a) The algebras H(R̃u,W (M,O)σ⊗u, k
u, \u) and H(R̃χcu,W (M,O)σ⊗χcu, k

χcu, \χcu)
are equal.

(b) Let V ∈ H(R̃u,W (M,O)σ⊗u, k
u, \u)−Modf,a∗M

. Then its image in

EndG(IGP (EB)) − Modf via Corollary 8.1 coincides with the image of V as



ENDOMORPHISM ALGEBRAS FOR p-ADIC GROUPS 53

H(R̃χcu,W (M,O)σ⊗χcu, k
χcu, \χcu)-module in EndG(IGP (EB))−Modf , obtained

from Corollary 8.1 for χcu.

Proof. (a) The M -representations σ ⊗ u and σ ⊗ uχc are the same in Irr(M) and
W (M,O) acts on that set, so W (M,O)σ⊗u = W (M,O)σ⊗χcu. By the Xnr(M,σ)-

invariance of µMα , R̃u = R̃χcu and ku = kχcu.
Conjugation with φχc provides an algebra isomorphism

Ad(φχc) : 1uEndG(IGP (EB))an
U 1u → 1χcuEndG(IGP (EB))an

U 1χcu,

and similarly with meromorphic functions on U . By (8.3) this isomorphism sends
T uw (w ∈ W (M,O)σ⊗u) to T χcuw , so the 2-cocycles \u and \χcu of W (M,O)σ⊗u
coincide. Furthermore Ad(φχc) sends f ∈ Can(Uu) to f(χ−1

c ·), which equals
(expu ◦ exp−1

χcu)∗f . Thus Proposition 7.3 gives a commutative diagram

(8.4)
H(R̃u,W (M,O)σ⊗u, k

u, \u) → 1uEndG(IGP (EB))an
U 1u

|| ↓ Ad(φχc)

H(R̃χcu,W (M,O)σ⊗χcu, k
χcu, \χcu) → 1χcuEndG(IGP (EB))an

U 1χcu

.

(b) Let us retrace what happens in (8.1). First we translate V to a module for
1uEndG(IGP (EB))an

U 1u (on the same vector space). Then we apply the Morita equiv-
alence in Lemma 6.4. That yields a module

V ′ := EndG(IGP (EB))an
U ⊗

1uEndG(IGP (EB))an
U 1u

V =
⊕

u′∈W (M,σ,Xnr(M))u

Vu′ ,

where Vu′ ∈ 1u′EndG(IGP (EB))an
U 1u′−Modf has the same dimension as V . This V ′ is

also the EndG(IGP (EB))-module that results from (8.1). From the proof of Lemma
6.4 we see that Vu′ = V Tw′ for a w′ ∈ W (M,σ,Xnr(M)) which satisfies w′u′ = u
and whose length is minimal for that property. In particular Vuχc = V φ−1

χc .

Hence the module of 1χcuEndG(IGP (EB))an
U 1χcu obtained from V ′ via Lemma 6.4

is Ad(φ−1
χc )∗. In view of the commutative diagram (8.4), this procedure recovers V

as module of H(R̃χcu,W (M,O)σ⊗χcu, k
χcu, \χcu). Then Corollary 8.1 for χcu implies

that V in the latter sense has the same image in EndG(IGP (EB))−Modf as V in the
former sense. �

A weaker version of Lemma 8.2 holds for all points in W (M,σ,Xnr(M))u.

Lemma 8.3. Let w be an element of W (M,σ,Xnr(M)) which is of minimal length
in the coset wW (M,σ,Xnr(M))u.

(a) Conjugation by Tw gives rise to an algebra isomorphism

Ad(Tw) : H(R̃u,W (M,O)σ⊗u, k
u, \u)→ H(R̃w(u),W (M,O)σ⊗w(u), k

w(u), \w(u))

with Ad(Tw)(CNv) = CNwvw−1 for v ∈W (M,O)σ⊗u and Ad(Tw)(Nv) = Nwvw−1

for v ∈W (Σσ⊗u).

(b) Let V ∈ H(R̃u,W (M,O)σ⊗u, k
u, \u)−Modf with Wt(V ) ⊂ a∗M . Then V and

Ad(T −1
w )∗V ∈ H(R̃w(u),W (M,O)σ⊗w(u), k

w(u), \w(u))−Modf

have the same image in EndG(IGP (EB)) −Modf (via Corollary 8.1 for, respec-
tively, σ ⊗ u and σ ⊗ w(u)).
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Proof. (a) From the proof of Lemma 6.4 we see that Tw1u ∈ EndG(IGP (EB))an
U and

Tw1uT −1
w = 1w(u). Therefore conjugation by Tw gives an algebra isomorphism

Ad(Tw) : 1uEndG(IGP (EB))an
U 1u → 1w(u)EndG(IGP (EB))an

U 1w(u),

which on Can(Uu) is just f 7→ f ◦ w−1. The elements TwT uv T −1
w with v ∈W (Σσ⊗u)

satisfy the same multiplication relations as the elements T uwvw−1 and they have the

same specialization at w(u) (namely the identity on IGP (E), by Lemma 5.9.a). There-

fore Ad(Tw)(T uv ) = T w(u)
wvw−1 . The same applies to the Aur with r ∈ R(σ ⊗ u), but

for those we can only say that spw(u)TwAurT −1
w and spw(u)Awrw−1 are equal up to a

scalar factor. Hence Ad(Tw)(Aur ) is a scalar multiple of Aw(u)
wrw−1 .

Via Proposition 7.3 Ad(Tw) becomes an algebra isomorphism

H(R̃u,W (M,O)σ⊗u, k
u, \u)an

log(Uu) → H(R̃w(u),W (M,O)σ⊗w(u), k
w(u), \w(u))

an
w(log(Uu)).

It restricts to f 7→ f ◦w on Can(log(Uu)) and sends Nv to Nwvw−1 for v ∈W (Σσ⊗u),
and to a scalar multiple of that for v ∈ W (M,O)σ⊗u. Now it is clear that Ad(Tw)
restricts to the required isomorphism between (twisted) graded Hecke algebras.
(b) This can be shown in the same way as Lemma 8.2.b. �

Corollary 8.1 tells us that there is a surjection from the union of the sets

{π ∈ Irr
(
H(R̃u,W (M,O)σ⊗u, k

u, \u)
)

: Wt(π) ⊂ a∗M}

with u ∈ Xunr(M) to Irr
(
EndG(IGP (EB))

)
. For u and u′ in differentW (M,σ,Xnr(M))-

orbits, the images in Irr
(
EndG(IGP (EB))

)
are disjoint. For u and u′ in the same

W (M,σ,Xnr(M))-orbit, Lemma 8.3.b tells us precisely which modules of

H(R̃u,W (M,O)σ⊗u, k
u, \u) and H(R̃u′ ,W (M,O)σ⊗u′ , k

u′ , \u′)

have the same image – the relation between them comes from an element w ∈
W (M,σ,Xnr(M)) with w(u) = u′. If we agree that W (M,σ,Xnr(M))u acts trivially

on Irr
(
H(R̃u,W (M,O)σ⊗u, k

u, \u)
)
, it does not matter which w with w(u) = u′ we

pick. Thus we obtain a bijection⊔
u∈Xunr(M)

{π ∈ Irr
(
H(R̃u,W (M,O)σ⊗u, k

u, \u)
)

: Wt(π) ⊂ a∗M}/W (M,σ,Xnr(M))

−→ Irr
(
EndG(IGP (EB))

)
.(8.5)

Here the group action of W (M,σ,Xnr(M)) on the disjoint union comes from the
relations described in Lemma 8.3.

8.2. Comparison by setting the q-parameters to 1.
It is interesting to investigate what happens when in Corollary 8.1 we replace the

parameter function ku by 0. It is known that the analogous operation for affine Hecke
algebras gives rise to a bijection on the level of irreducible representations [Sol3,
Sol7]. Replacing all the ku by 0 corresponds to manually setting all the parameters
qα and qα∗ to 1. In view of Corollary 5.8, that transforms EndG(IGP (EB)) into
C[Xnr(M)]oC[W (M,σ,Xnr(M)), \]. Therefore we start by analysing the irreducible
representations of that simpler crossed product algebra.
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Lemma 8.4. There is a canonical bijection⊔
u∈Xunr(M)

{π ∈ Irr
(
C[Xnr(M)]oC[W (M,σ,Xnr(M))u, \]

)
: Wt(π) ⊂ uX+

nr(M)}/
W (M,σ,Xnr(M))

−→ Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
.

Here w ∈W (M,σ,Xnr(M)) acts on the disjoint union by pullback along the algebra
isomorphism Ad(N−1

w ) :

C[Xnr(M)] oC[W (M,σ,Xnr(M))w(u), \]→ C[Xnr(M)] oC[W (M,σ,Xnr(M))u, \].

Proof. Choose a central extension Γ of W (M,σ,Xnr(M)) such that \ becomes trivial
in H2(Γ,C×). Then there exists a central idempotent
p\ ∈ C[ker(Γ→W (M,σ,Xnr(M)))] such that

(8.6) C[W (M,σ,Xnr(M)), \] ∼= p\C[Γ].

The isomorphism sends CNw to Cp\Nw̃, for any lift w̃ ∈ Γ of w ∈W (M,σ,Xnr(M)).
Lift the W (M,σ,Xnr(M))-action on Xnr(M) to Γ and note that (8.6) gives rise

to a bijection
(8.7)
Irr
(
C[Xnr(M)]oC[W (M,σ,Xnr(M)), \]

)
←→ {V ∈

(
C[Xnr(M)]oC[Γ]

)
: p\V 6= 0}.

By Clifford theory every irreducible representation π of C[Xnr(M)] o C[Γ] is of the
form

(8.8) ind
C[Xnr(M)]oC[Γ]
C[Xnr(M)]oC[Γχ](χ⊗ ρ),

where χ ∈ Xnr(M) and ρ ∈ Irr(Γχ). Moreover the pair (χ, ρ) is determined by π,
uniquely up to the Γ-action

γ(χ, ρ) = (γ(χ),Ad(N−1
γ )∗ρ).

When u is the unitary part of χ, Γu ⊃ Γχ. Again by Clifford theory, every irreducible
representation of C[Xnr(M)] o Γu is of the form

ind
C[Xnr(M)]oC[Γu]
C[Xnr(M)]oC[Γu,χ](χ⊗ ρ),

where (χ, ρ) is unique up to the action of Γu. Hence there is a canonical bijection⊔
χ∈uX+

nr(M)

Irr(Γχ)
/

Γu −→ {π ∈ Irr(C[Xnr(M)] o Γu) : Wt(π) ⊂ uX+
nr(M)}.

Comparing this with Clifford theory for C[Xnr(M)] o C[Γ], we deduce a canonical
bijection⊔
u∈Xunr(M)

{π ∈ Irr
(
C[Xnr(M)]oC[Γu]

)
: Wt(π) ⊂ uX+

nr(M)}
/

Γ→ Irr(C[Xnr(M)]oΓ).

Now we restrict on both sides to the subsets that are not annihilated by p\ and we
use (8.7). �

It is possible to vary on Lemma 8.4 by taking on the left hand side a vari-
ety in which uX+

nr(M) embeds, for instance a∗M ⊗R C with as embedding exp−1
u :
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uX+
nr(M)→ a∗M . Then Lemma 8.4 provides a canonical bijection between

Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
and⊔

u∈Xunr(M)
{π ∈ Irr

(
C[a∗M ⊗R C] oC[W (M,σ,Xnr(M))u, \]

)
: Wt(π) ⊂ a∗M}/

W (M,σ,Xnr(M)).(8.9)

With Lemma 7.1 we can identify (8.9) with⊔
u∈Xunr(M)

{π ∈ Irr
(
C[a∗M ⊗R C] oC[W (M,O)σ⊗u, \u]

)
: Wt(π) ⊂ a∗M}/

W (M,σ,Xnr(M)).(8.10)

Notice that

C[a∗M ⊗R C] oC[W (M,O)σ⊗u, \u] = H(R̃u,W (M,O)σ⊗u, 0, \u),

a (twisted) graded Hecke algebra with all parameters kα equal to 0. In [Sol1, Sol3]
we studied how graded Hecke algebras behave under deformations of the parameters
kα. To formulate that properly, we recall some results from the representation theory
of graded Hecke algebras.

For P ⊂ ∆σ⊗u, we denote the Weyl group generated by the reflections sα with
α ∈ P by WP . The set C[a∗M⊗RC]C[WP ] constitutes a parabolic subalgebra H(P, k)

of H(R̃u,W (Σσ⊗u), k). As algebra, it decomposes as a tensor product

C[spanC(P )]C[WP ]⊗ C[(a∗M ⊗R C)⊥P ],

where the subscript ⊥ P denotes the subspace orthogonal to the set of coroots P∨.
The Langlands classification, proven for graded Hecke algebras in [Eve], expresses

irreducible representations in terms of parabolic subalgebras, tempered representa-
tions and parabolic induction. See Definition 9.2 for temperedness. We need an
extension that includes R-groups like R(σ⊗u). Such a version was proven for affine
Hecke algebras in [Sol3, §2.2]. In view of Lusztig’s second reduction theorem [Lus1,
§9], generalized in [Sol3, Corollary 2.1.5], that extended Langlands classification also
applies to graded Hecke algebras.

Proposition 8.5. [Sol3, Corollary 2.2.5]
Let Γ be a finite group acting linearly in a∗M , stabilizing Σσ⊗u and ∆σ⊗u.

(a) Suppose that the following data are given: P ⊂ ∆σ⊗u, t ∈ (a∗M )⊥P which is
strictly positive with respect to ∆σ⊗u \ P , a tempered τ ∈ Irr(H(P, k)), an irre-
ducible representation ρ of C[ΓP,τ,t, κ] (where the 2-cocycle κ is determined by

the action of ΓP,τ,t on τ). Then the H(R̃u,W (Σσ⊗u)Γ, k)-representation

ind
H(R̃u,W (Σσ⊗u)Γ,k)
H(P,k)oC[ΓP,τ,t]

((τ ⊗ t)⊗ ρ)

has a unique irreducible quotient. It is called the Langlands quotient and we
denote it by an L.

(b) For every π ∈ Irr(H(R̃u,W (Σσ⊗u)Γ, k)) there exist data as in part (a), unique
up to the action of Γ, such that

π ∼= L
(

ind
H(R̃u,W (Σσ⊗u)Γ,k)
H(P,k)oC[ΓP,τ,t]

((σ ⊗ t)⊗ ρ)
)
.

In Proposition 8.5.a we can combine τ and ρ in

(8.11) τ ′ := ind
H(P,k)oΓP,t
H(P,k)oΓP,τ,t

(τ ⊗ ρ),
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an irreducible tempered representation such that

ind
H(R̃uW (Σσ⊗u)Γ,k)
H(P,k)oC[ΓP,t]

(τ ′ ⊗ t) ∼= ind
H(R̃uW (Σσ⊗u)Γ,k)
H(P,k)oC[ΓP,τ,t]

((τ ⊗ t)⊗ ρ).

Then Proposition 8.5 holds also with the alternative data P, τ ′, t.

Theorem 8.6. There exists a bijection

ζu : {V ∈ Irr
(
H(R̃u,W (M,O)σ⊗u, k

u, \u)
)

: Wt(V ) ⊂ a∗M}
−→ {V ∈ Irr

(
C[a∗M ⊗R C] oC[W (M,O)σ⊗u, \u]

)
: Wt(V ) ⊂ a∗M}

such that

• π is tempered if and only if ζu(π) is tempered,
• ζu is compatible with the Langlands classification from Proposition 8.5.

Proof. First we get rid of the 2-cocycle \u. Choose a central extension

1→ Z(σ ⊗ u)→ Γ→ R(σ ⊗ u)→ 1

such that \u becomes trivial in H2(Γ,C×). Let p\u ∈ C[Z(σ ⊗ u)] be a central
idempotent such that

p\uC[Z(σ ⊗ u)] ∼= C[R(σ ⊗ u), \u].

For both k = ku and k = 0 that gives a bijection

Irr
(
H(R̃u,W (M,O)σ⊗u, k, \u)

)
→ {V ∈ Irr

(
H(R̃u,W (Σσ⊗u)Γ, k)

)
: p\uV 6= 0}.

Hence it suffices to construct the required bijection with Γ instead of R(σ ⊗ u),
provided that it does not change the Z(σ ⊗ u)-characters of representations.

Consider π ∈ Irr
(
H(R̃u,W (Σσ⊗u)Γ, k)

)
with Wt(π) ⊂ a∗M . By Proposition 8.5,

with the modified data from (8.11), we have

(8.12) π ∼= L
(

ind
H(R̃u,W (Σσ⊗u)Γ,k)
H(P,k)oC[ΓP,t]

(τ ′ ⊗ t)
)
,

for data (P, τ ′, t) that are unique up to the Γ-action. Since both Wt(π) and t lie in
a∗M and Wt(τ ′) + t consists of weights of π [Eve], we must have Wt(τ ′) ⊂ a∗M . By
[Sol1, Theorem 6.5.c] the restrictions to C[WPΓP,t] of the set

(8.13) {V ∈ Irr
(
H(P, k) oC[ΓP,t]

)
is tempered and Wt(V ) ⊂ a∗M}

form a Q-basis of the representation ring of WPΓP,t. As Z(σ⊗u) ⊂ ΓP,t, we can find
a bijection ζP,t from (8.13) to Irr(WPΓP,t), such that ζP,t(V ) occurs in V |C[WPΓP,t].

We regard ζP,t(V ) as a C[a∗M⊗RC]oC[WPΓP,t]-representation on which C[a∗M⊗RC]
acts via evaluation at 0 ∈ a∗M .

Now we define

(8.14) ζu(π) := L
(

ind
H(R̃u,W (Σσ⊗u)Γ,0)
H(P,0)oC[ΓP,t]

(ζP,t(τ
′)⊗ t)

)
.

By Proposition 8.5, this is a well-defined irreducible representation of
H(R̃u,W (Σσ⊗u)Γ, 0). The only weight of ζP,t(τ

′) is 0, so by [BaMo2, Theorem 6.4]

Wt(ζu(π)) ⊂W (Σσ⊗u)Γt ⊂ a∗M .
The analogy between (8.12) and (8.14) is our compatibility with the extended Lang-
lands classification. The construction of ζu also works in the other direction (with
ζ−1
P,t), so it is bijective. Since ζu is built from operations that do not change anything

in Z(σ ⊗ u), it preserves the Z(σ ⊗ u)-characters of representations. �
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A canonical choice for the bijection ζP,t in the above proof is provided by [Sol7,
Theorem 6.2]. By that and [Sol7, Proposition 6.10], the map ζu is canonical once the
2-cocycle \u has been fixed. But, there is one caveat. Namely, [Sol7] deals with all
parameter functions k : R→ R≥0, except for root systems of type F4, for those only
certain positive parameter functions are analysed. In the sequel [Sol8] we show that
all the parameter functions ku occurring in this paper are among those investigated
in [Sol7].

For any w ∈W (M,σ,Xnr(M)), conjugation with Tw in EndG(IGP (EB))⊗B K(B)
defines an isomorphism

Ad(Tw) : C[W (M,σ,Xnr(M))u, \]→ C[W (M,σ,Xnr(M))w(u), \].

Recall from Lemma 7.1 that C[W (M,O)σ⊗u, \u] is embedded in
C[W (M,σ,Xnr(M))u, \] as the span of W (M,σ,Xnr(M))u. Thus Ad(Tw) can be
transferred to an algebra isomorphism

Ad(Nw) : C[W (M,O)σ⊗u, \u]→ C[W (M,O)σ⊗w(u), \w(u)],

which sends CNΩu(v) to CNΩw(u)(wvw
−1). We denote the differential of w : Uu →

Uw(u) also by w, but now from a∗M ⊗R C to itself. For f ∈ C[a∗M ⊗R C] we define

Ad(Nw)f = f ◦w−1. These instances of Ad(Nw) combine to an algebra isomorphism

Ad(Nw) : H(R̃u,W (M,O)σ⊗u, k
u, \u)→ H(R̃w(u),W (M,O)σ⊗w(u), k

w(u), \w(u)).

For w ∈ W (M,σ,Xnr(M))u, this is just the inner automorphism Ad(NΩu(w)) of

H(R̃u,W (M,O)σ⊗u, k, \u). For other w ∈ W (M,σ,Xnr(M)) the notation Ad(Nw)
is only suggestive, because we have not defined an element Nw.

With all that set, we define a bijection
(8.15)

Ad(N−1
w )∗ : Irr

(
H(R̃u,W (M,O)σ⊗u, k

u, \u)
)
→ H(R̃u′ ,W (M,O)σ⊗u′ , k

u′ , \u′),

for any w ∈ W (M,σ,Xnr(M)) such that w(u) = u′. Since inner automorphisms
act trivially on the set of irreducible representation of an algebra, (8.15) does not
depend on the choice of w with w(u) = u′. Clearly, the construction of Ad(Nw) also

works with k = 0 instead of ku and kw(u).
However, because of the lack of canonicity of ζu it is not clear whether

ζw(u) ◦Ad(N−1
w )∗ = Ad(N−1

w )∗ ◦ ζu.
To achieve that desirable equality we can enforce it in the following way. For every
W (M,σ,Xnr(M))-orbit in Xunr(M) we fix one representative u. Then we define

(8.16) ζw(u) := Ad(N−1
w )∗ ◦ ζu ◦Ad(Nw)∗ :

{V ∈ Irr
(
H(R̃w(u),W (M,O)σ⊗w(u), k

w(u), \w(u))
)

: Wt(V ) ⊂ a∗M}
−→ {V ∈ Irr

(
C[a∗M ⊗R C] oC[W (M,O)σ⊗w(u), \w(u)]

)
: Wt(V ) ⊂ a∗M}.

When w is of minimal length in wW (M,σ,Xnr(M))u, it sends ∆σ⊗u to ∆σ⊗w(u).

Then w(a∗M )−u = (a∗M )−w(u), so Ad(N−1
w )∗ preserves temperedness. That particular

Ad(N−1
w )∗ also maps a Langlands datum (P, τ, t′) (as in Proposition 8.5) to another

Langlands datum, so it respects the compatibility with the Langlands classification
from (8.12) and (8.14).

As ζu′ , as defined in (8.16), does not depend on the choice of w with w(u) = u′,
this means that ζu′ always satisfies the requirements of Theorem 8.6.
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Corollary 8.7. There exists a bijection

ζ : Irr(EndG(IGP (EB))→ Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M))], \]

)
such that Wt(π) ⊂W (M,σ,Xnr(M))uX+

nr(M) if and only if
Wt(ζ(π)) ⊂W (M,σ,Xnr(M))uX+

nr(M).

Proof. With (8.5) we decompose Irr
(
EndG(IGP (EB))

)
as a disjoint union over

Xunr(M), modulo an action ofW (M,σ,Xnr(M)). Notice that theW (M,σ,Xnr(M))-
actions in (8.5) and (8.15) agree, because both are induced by Ad(Tw). By Theorem
8.6 the terms in the disjoint union in (7.6) are in bijection with{

V ∈ Irr
(
C[a∗M ⊗R C] oC[W (M,O)σ⊗u, \u]

)
: Wt(V ) ⊂ a∗M

}
.

By (8.16) the bijections from Theorem 8.6 are W (M,σ,Xnr(M))-equivariant. That
brings us to the left hand side of Lemma 8.4. Applying that lemma, we finally obtain
the required bijection. �

9. Temperedness

Like in [Hei3, Sol5], we want to show that the equivalence of categories

E : Rep(G)s → EndG(IGP (EB))-Mod

preserves temperedness. At the moment we have not even defined temperedness for
representations of EndG(IGP (EB)), so we address that first. We also consider (es-
sentially) discrete series representations of Hecke algebras, which correspond, under
some extra conditions, to (essentially) square-integrable representations in Rep(G)s.

Our definition will mimick that for affine Hecke algebras [Opd, §2]. It depends on
the choice of the parabolic subgroup P with Levi factor M . Before we just picked
one, in this section we have to be more careful.

Recall that A0 is a maximal F -split torus of G, contained inM. By the standard
theory of reductive groups [Spr] there are (non-reduced) root systems Σ(M,A0) and
Σ(G,A0) in X∗(A0). Further Σ(G,M) ∪ {0} is the image of Σ(G,A0) ∪ {0} in the
quotient X∗(A0)⊗Z R/RΣ(M,A0).

The root system ΣO,µ is contained in Σred(AM ) ⊂ Σ(G,M). We write

ΣO,µ+̃Σ(M,A0) = {α ∈ Σ(G,A0) : α+ RΣ(M,A0) ∈ RΣO,µ},
a parabolic root subsystem of Σ(G,A0).

Lemma 9.1. There exists a basis ∆ of Σ(G,A0) which contains a basis ∆M of
Σ(M,A0) and a basis ∆OM of ΣO,µ+̃Σ(M,A0).

Proof. Choose a linear function t onX∗(A0)⊗ZR such that, for all α ∈ Σ(M,A0), β ∈
ΣO,µ+̃Σ(M,A0) \ Σ(M,A0) and γ ∈ Σ(G,A0) \ ΣO,µ+̃Σ(M,A0):

0 < |t(α)| < |t(β)| < |t(γ)|.
Now take the system of positive roots

Σ(G,A0)+ := {α ∈ Σ(G,A0) : t(α) > 0}
and let ∆ be the unique basis of Σ(G,A0) contained therein. Then ∆ consists of the
positive roots that cannot be written as sums of positive roots with smaller t-values.
Hence ∆ consists of a basis of Σ(M,A0), added to that some roots to create a basis
of ΣO,µ+̃Σ(M,A0) and completed with other roots (all with t-values as small as
possible) to a basis of Σ(G,A0). �
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Let P0 be the ”standard” minimal parabolic F -subgroup of G determined by A0

and ∆ and put P = P0M. Then Σ(G,M) is spanned by ∆ \ ∆M and ∆OM \ ∆M
spans RΣO,µ. We note that

(a∗M )⊥∆O,µ := {x ∈ a∗M : 〈α∨, x〉 = 0 ∀α ∈ ∆O,µ} = {x ∈ a∗M : 〈α∨, x〉 = 0 ∀α ∈ ∆OM}

always contains a∗G = X∗(AG) ⊗Z R, but can be larger (if ΣO,µ has smaller rank
than Σ(G,M)). Consider the obtuse negative cones with respect to ∆O,µ:

a∗−M =
{∑

α∈∆O,µ
xαα : xα ∈ R≤0

}
,

a∗−−M =
{∑

α∈∆O,µ
xαα : xα ∈ R<0

}
.

Definition 9.2. Let π be a finite dimensional EndG(IGP (EB))-representation. Then
π tempered if Wt(π) ⊂ Xunr(M) exp(a∗−M ). We say that π is discrete series if

(a∗M )⊥∆O,µ = 0 and Wt(π) ⊂ Xunr(M) exp(a∗−−M ). We call π essentially discrete

series if Wt(π) ⊂ exp((a∗M )⊥∆O,µ ⊗R C)Xunr(M) exp(a∗−−M ).

These definitions also apply to 1uEndG(IGP (EB))an
U 1u, provided that we replace

∆O,µ by ∆σ⊗u. This means replacing a∗−M by

(a∗M )−u :=
{∑

α∈∆σ⊗u
xαα : xα ∈ R≤0

}
and similarly adjusting a∗−−M to (a∗M )−−u and (a∗M )⊥∆σ⊗u to (a∗M )⊥∆σ⊗u.

Let k : Σσ⊗u → R be a W (M,O)σ⊗u-invariant function. We say that V ∈
H(R̃u,W (M,O)σ⊗u, k, \u)−Modf is tempered if Wt(V ) ⊂ ia∗M + (a∗M )−u , essentially

discrete series if Wt(V ) ⊂ (a∗M )⊥∆σ⊗u + ia∗M + (a∗M )−−u and discrete series if it is

essentially discrete series and (a∗M )⊥∆σ⊗u = 0.

We note that Definition 9.2 also makes sense for localized or completed versions
of Hecke algebras, because those still have a root system and a large commutative
subalgebra with respect to which one can consider weights.

9.1. Preservation of temperedness and discrete series.
We will investigate these aspects of the relation between Rep(G)s and

EndG(IGP (EB))−Mod via graded Hecke algebras. From Corollary 8.1 we recall the
equivalence of categories between

• EndG(IGP (EB))−Modf,W (M,σ,Xnr(M))uX+
nr(M),

• H(R̃u,W (M,O)σ⊗u, k
u, \u)−Modf,a∗M

.

Proposition 9.3. (a) The above equivalence of categories preserves temperedness.
(b) The above equivalence of categories preserves discrete series.
(c) Any V ∈ EndG(IGP (EB))−Modf,W (M,σ,Xnr(M))uX+

nr(M) is essentially discrete se-

ries if and only if the corresponding module for H(R̃u,W (M,O)σ⊗u, k
u, \u) is

essentially discrete series and Σσ⊗u has full rank in ΣO,µ.

Proof. We have to consider all the steps in (8.1), for those give rise to the equivalence
of categories in Corollary 8.1. Pullback along

EndG(IGP (EB))→ EndG(IGP (EB))an
U
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does not change the C[Xnr(M)]-weights, nor the root system, so that step certainly
preserves everything under consideration. Similarly pullback along

H(R̃u,W (M,O)σ⊗u, k
u, \u) −→ H(R̃u,W (M,O)σ⊗u, k

u, \u)an
log(Uu)

is innocent for our purposes.
The algebra isomorphism

1uEndG(IGP (EB))an
U 1u −→ H(R̃u,W (M,O)σ⊗u, k

u, \u)an
log(Uu)

from Proposition 7.3 has the effect expu on weights. Since the root systems on both
sides are the same,

expu(ia∗M + (a∗M )−u ) = Xunr(M) exp((a∗M )−u ),

expu(ia∗M + (a∗M )−−u ) = Xunr(M) exp((a∗M )−−u ),

expu
(
(a∗M )⊥∆σ⊗u + ia∗M + (a∗M )−−u

)
= exp

(
(a∗M )⊥∆σ⊗u

)
Xunr(M) exp((a∗M )−−u ).

From Definition 9.2 we see that the equivalence of categories coming from this alge-
bra isomorphism preserves temperedness and (essentially) discrete series.

It remains to investigate the Morita equivalent inclusion

(9.1) 1uEndG(IGP (EB))an
U 1u −→ EndG(IGP (EB))an

U

from Lemma 6.4. Notice that here the root system changes from Σσ⊗u to ΣO,µ. Let

V ∈ EndG(IGP (EB))an
U −Modf be a module corresponding to Vu ∈

1uEndG(IGP (EB))an
U 1u −Modf . The relation between the C[Xnr(M)]-weights of Vu

and V was described in Lemma 6.5, in terms of a set of representatives W u for
W (M,σ,Xnr(M))/W (M,σ,Xnr(M))u.

In Definition 9.2 the unitary parts of C[Xnr(M)]-weights are irrelevant, the condi-
tions depend only on the absolute values of C[Xnr(M)]-weights. Therefore it suffices
to consider these weights as elements of Xnr(M)/Xnr(M,σ) ∼= O, or equivalently
as characters of C[Xnr(M)/Xnr(M,σ)]. We indicate this by Wt’(V ) and Wt’(Vu).
Then Lemma 6.5 becomes

Wt′(Vu) = Wt′(V ) ∩Xnr(M,σ)Uu/Xnr(M,σ),

Wt′(V ) = {w(χ) : w ∈W u, χ ∈Wt′(Vu)}.

In view of Remark 6.1, Wt’(V ) is stable under R(O). Therefore we may replace W u

by R(O)W (ΣO,µ)u, where W (ΣO,µ)u is a set of shortest length representatives for
W (ΣO,µ)/W (ΣO,µ)u. Since Wt’(Vu) is stable under R(σ ⊗ u) and

W (ΣO,µ)u ⊂ R(σ ⊗ u)W (Σσ⊗u),

we may also take for W (ΣO,µ)u a set of shortest length representatives of
W (ΣO,µ)/W (Σσ⊗u), then still

Wt′(V ) = {rw(χ) : r ∈ R(O), w ∈W (ΣO,µ)u, χ ∈Wt′(Vu)}.
Now we are in a setting where, under the Morita equivalence from Lemma 6.5,
the root systems and C[Xnr(M)/Xnr(M,σ)]-weights behave exactly as in [AMS3,
Theorem 2.5.c]. That enables us to apply the arguments for [AMS3, Proposition
2.7] (which can easily be rephrased in terms of a root datum and an extended
Weyl group acting on it). The conclusions from [AMS3, §2] about the behaviour
of temperedness and (essentially) discrete series with respect to (9.1) are exactly as
stated in the proposition. �
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Now we will translate EndG(IGP (EB)) to the module category of an affine Hecke
algebra, as far as possible. Every finite dimensional EndG(IGP (EB))-module decom-
poses canonically as a direct sum of submodules, each of which has weights in just
one set W (M,σ,Xnr(M))uX+

nr(M). Combining that with Corollary 8.1 and Lemma
8.3, we obtain equivalences of categories between Repf(G)s, EndG(IGP (EB))−Modf

and

(9.2)
⊕

u∈Xunr(M)
H(R̃u,W (M,O)σ⊗u, k

u, \u)−Modf,a∗M

/
W (M,σ,Xnr(M)).

To make sense of this as category, the action of w ∈W (M,σ,Xnr(M)) on the sum-
mands indexed by u with w(u) = u is supposed to be trivial. Hence the quotient
operation only takes place in the index set Xunr(M), and the result can be considered
as a direct sum of module categories, indexed by Xunr(M)/W (M,σ,Xnr(M)). Un-
fortunately this is not canonical, it depends on the choice of a set of representatives
for the action of Xnr(M,σ) on Xunr(M).

With Lemma 8.2 we can rewrite (9.2) as

(9.3)
⊕

u∈Xunr(M)/Xnr(M,σ)
H(R̃u,W (M,O)σ⊗u, k

u, \u)−Modf,a∗M

/
W (M,O).

This is very similar to the module category of an affine Hecke algebra with torus
Xunr(M)/Xnr(M,σ) = Irr(M2

σ/M
1). To make that precise, consider the algebra

End◦G(IGP (EB)) := EndG(IGP (EB))
⋂⊕

w∈W (ΣO,µ)
C(Xnr(M))Tw.

Corollary 5.8 and Tr ∈ EndG(IGP (EB))× for r ∈ R(O) entail that

EndG(IGP (EB)) =
⊕

r∈R(O)
End◦G(IGP (EB))Tr.

All the calculations in Sections 6–8 also work with End◦G(IGP (EB)), provided we
replace W (M,O) by W (ΣO,µ) and W (M,σ,Xnr(M)) by Xnr(M,σ) oW (ΣO,µ) ev-
erywhere. (These restrictions only make the computations easier.)

For any u ∈ Xunr(M), Lemmas 5.7 and 7.1 imply that the 2-cocycle \u of
W (M,O)σ⊗u is trivial on W (ΣO,µ)σ⊗u. The proof of Lemma 7.1 provides a canon-
ical normalization for the involved T uw , so that \u disappears in this setting. In the
end we find that, like (9.3), End◦G(IGP (EB))−Modf is equivalent with

(9.4)
⊕

u∈Xunr(M)/Xnr(M,σ)
H(R̃u,W (ΣO,µ)σ⊗u, k

u)−Modf,a∗M

/
W (ΣO,µ).

Recall the root datum

(Σ∨O,M
2
σ/M

1,ΣO, (M
2
σ/M

1)∨)

from Proposition 3.1. Endow it with the basis determined by P , parameter qF and
the labels

(9.5) λ(h∨α) = log(qαqα∗)/ log(qF ), λ∗(h∨α) = log(qαq
−1
α∗ )/ log(qF ).

To these data we associate the affine Hecke algebra

(9.6) H(O, G) := H
(
Σ∨O,M

2
σ/M

1,ΣO, (M
2
σ/M

1)∨, λ, λ∗, qF
)
.

From Lusztig’s reduction theorems [Lus1], in the form [AMS3, Theorems 2.5 and
2.9], we see that H(O, G)−Modf is also equivalent with (9.4). The group R(O) acts
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on the root system and on the algebra (9.6), preserving all the structure. With a
2-cocycle

(9.7) \̃ : (W (M,O)/W (ΣO,µ))2 → C×

we build a twisted affine Hecke algebra

H(O, G) oC[R(O), \̃]

as in [AMS3, Proposition 2.2]. Let \̃u be the restriction of \̃ to W (M,O)σ⊗u. From

[AMS3, Theorems 2.5 and 2.9] we see that H(O, G)oC[R(O), \̃]−Modf is equivalent
with
(9.8) ⊕
u∈Xunr(M)/Xnr(M,σ)

H(R̃u,W (Σσ⊗u), ku) oC[R(σ ⊗ u), \̃u]−Modf,a∗M

/
W (M,O).

Notice that here we do not see the entire 2-cocycle \̃, only its restrictions to the
subgroups W (M,O)σ⊗u. Let us summarise the above observations:

Corollary 9.4. (a) There exists an equivalence of categories

End◦G(IGP (EB))−Modf ←→ H(O, G)−Modf .

Thus EndG(IGP (EB)) has a subalgebra, over which it is of finite rank, and that
subalgebra is almost Morita equivalent with an affine Hecke algebra.

(b) Suppose that \̃u is cohomologous to \u, for each u ∈ Xunr(M). Then the cate-

gories H(O, G)oC[R(O), \̃]−Modf and EndG(IGP (EB))−Modf are equivalent.

Although the equivalences of categories in Corollary 9.4 look like Morita equiv-
alences, they are not quite, because we do not know whether they extend to mod-
ules of infinite length. Let us describe part (b) more explicitly. Start with V ∈
EndG(IGP (EB))−Modf . Decompose it as

V =
⊕

u∈Xunr(M)
Vu where Wt(Vu) ⊂ uX+

nr(M).

Pick a fundamental domain X̃ for the action of Xnr(M,σ) on Xunr(M). Then put

Ṽ =
⊕

u∈X̃ Vu, this is the associated H(O, G) oC[R(O), \̃]-module. The
C[Xnr(M)/Xnr(M,σ)]-action can be read of directly, to reconstruct how the rest

of H(O, G) o C[R(O), \̃] acts one needs Lemmas 8.2 and 8.3. The effect of this

equivalence on weights is simple. Whenever a module Ṽ of H(O, G)oC[R(O), \̃] has
a weight χXnr(M,σ) ∈ Xnr(M)/Xnr(M,σ), all elements of χXnr(M,σ) ⊂ Xnr(M)
are weights of V ∈ EndG(IGP (EB))−Modf , and conversely.

The problem with Corollary 9.4.b lies in the existence of a 2-cocycle \̃ with the
mentioned properties. We do not know whether such a 2-cocycle exists in general.
Of course it is easy to fulfill the condition for one given u ∈ Xunr(M), but then it

could fail for different u′ ∈ Xunr(M). Nevertheless, even if we cannot find such a \̃,
we can still work in similar spirit.

Recall from the proof of Theorem 8.6 that there is a central extension ΓO of
R(O) such that H(O, G) o C[R(O), \̃] − Mod is equivalent with the subcategory
of H(O, G) o ΓO − Mod determined by the appropriate character of ker(ΓO →
R(O)). That allows us to apply results about extended affine Hecke algebras like

H(O, G) o ΓO to twisted affine Hecke algebras like H(O, G) oC[R(O), \̃].
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It is known from [AMS3, §2.1–2.2] that the equivalence between H(O, G) o
C[R(O), \̃] − Modf and (9.8) is compatible with parabolic induction and restric-
tion, temperedness, discrete series and the Langlands classication, and its effect on
weights is also well-understood. All this is analogous to the equivalence between
EndG(IGP (EB))−Modf and (9.2), as we worked out in Corollary 8.1 and Proposition
9.3. As a consequence, most results about finite dimensional modules of extended
affine Hecke algebras can be interpreted in terms of the category (9.8).

That applies in particular to the results of [Sol5] that do not involve infinite
dimensional modules or topological completions of Hecke algebras. In that paper it
is assumed that Rep(G)s is equivalent with the module category of an extended affine
Hecke algebra, and properties of such an equivalence are derived. In fact, all the
proofs and results of [Sol5] outside Paragraphs 1.2, 2.1 and 3.3 can be reformulated
with (9.8) instead of the module category of a twisted affine Hecke algebra, because
they only use properties that are respected by such equivalences of categories. If we
do that, we do not need all of \̃ any more, it suffices to know its restrictions \̃u.

Once we realize that, we can generalize [Sol5]. Namely, we can replace \̃ by

a family of 2-cocyles \̃u of W (M,O)σ⊗u, parametrized by Xnr(M)/Xnr(M,σ) and
equivariant (up to coboundaries) for W (M,O), but not necessarily constructed from

a single 2-cocycle \̃ on W (M,O). From Lemmas 8.2.a and 8.3.a we know that \u is
such a family of 2-cocycles. Thus, we want to apply [Sol5] with (9.3) instead of an
extended affine Hecke algebra.

To do so, it remains to verify the precise assumptions in [Sol5, §4.1] for the
equivalence between (9.3) and Repf(G)s. The results about parabolic induction and
restriction in Corollary 8.1 take care of [Sol5, Condition 4.1.(i)–(ii)]. Next, [Sol5,
Conditions 4.1.(iii) and 4.2.(ii)] are about inclusions of parabolic subalgebras asso-
ciated to Levi subgroups L of G containing M . These are fulfilled by the naturality
of the inclusion (4.2) and because for graded Hecke algebras we are using standard
parabolic subalgebras anyway.

In [Sol5, Condition 4.2.iii] it is required that Σ+
O,µ lies in the cone Q≥0Σ(G,M)+

and that QΣO,µ has a Q-basis consisting of simple roots of Σ(G,M). Both are
guaranteed by Lemma 9.1.

Let ΣO,L be the parabolic root subsystem of ΣO,µ consisting of roots that come
from the action of AM on the Lie algebra of L. Then

NL(M,O)/M = W (ΣO,L) oR(O, L), where R(O, L) = R(O) ∩NL(M,O)/M.

In [Sol5, Condition 4.2.iv] it is required firstly that R(O, L) stabilizes ΣO,L – which
is clear. Secondly, when ΣO,L has full rank in Σ(L,M), [Sol5, Condition 2.1] has to
be fulfilled. That says

• R(O, L) ⊂ R(O, L′) if L ⊂ L′;
• the action of R(O, L) on Xnr(M) stabilizes the subsets exp(CΣO,L) and

Xnr(M)L := exp((a∗M )⊥L ⊗R C), where

(a∗M )⊥L = {x ∈ a∗M : 〈α∨, x〉 = 0 ∀α ∈ ΣO,L};

• R(O, L) acts on Xnr(M)L by multiplication with elements of Xnr(M)L ∩
exp(CΣO,L).

The first of these bullets is obvious. By the full rank assumption

(9.9) (a∗M )⊥L = {x ∈ a∗M : 〈α∨, x〉 = 0 ∀α ∈ Σ(L,M)} = a∗L = X∗(AL)⊗Z R.
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Recall that the action of r ∈ R(O, L) on Xnr(M) consists of a part which is linear
on the Lie algebra and a translation by χr. By the R(O, L)-stability of ΣO,L, the
linear part stabilizes exp(CΣO,L). Further the linear part of the action of r fixes

a∗L pointwise, so by (9.9) it fixes Xnr(M)L pointwise. The definition of χr in (3.9)
shows that it is an unramified character of L which is trivial on Z(L). This means
that χr ∈ Xnr(M)L ∩ exp(CΣO,L). Hence the second and third bullets hold.

We have verified everything needed to make the arguments in [Sol5, §4.2] about
finite length representations work with (9.3). Recall that a G-representation (of
finite length) is called essentially square-integrable if its restriction to the derived
group of G is square-integrable.

Proposition 9.5. Consider the equivalence between Repf(G)s and⊕
u∈Xunr(M)/Xnr(M,σ)

H(R̃u,W (M,O)σ⊗u, k
u, \u)−Modf,a∗M

/
W (M,O)

coming from Corollary 8.1 and Lemma 8.2.

(a) This equivalence preserves temperedness.
(b) Suppose that Σσ⊗u has smaller rank than Σ(G,M). Then Repf(G)s contains no

essentially square-integrable representations with cuspidal support in
W (M,O){σ ⊗ uχ : χ ∈ X+

nr(M)}.
(c) Suppose that Σσ⊗u has full rank in Σ(G,M). The equivalence provides a bijec-

tion between the following sets:
• essentially square-integrable objects of Repf(G)s with cuspidal support in
W (M,O){σ ⊗ uχ : χ ∈ X+

nr(M)},
• essentially discrete series objects of H(R̃u,W (M,O)σ⊗u, k, \u)−Modf,a∗M

.

This remains valid if we add ”tempered” and/or ”irreducible” on both sides.
(d) When Z(G) is compact, part (c) holds without ”essentially”.

Proof. With [AMS3, Proposition 2.7 and Theorem 2.11.d] we translate the notions
of temperedness and (essentially) discrete series for extended affine Hecke algebras
to notions for (9.7). Then we apply [Sol5, Theorem 4.9 and Proposition 4.10], as
discussed above. �

With Proposition 9.3 we can translate Proposition 9.5 into a statement about
EndG(IGP (EB)).

Theorem 9.6. (a) The equivalence E : Rep(G)s → EndG(IGP (EB))−Mod restricts
to an equivalence between the subcategories of finite length tempered representa-
tions on both sides.

(b) If ΣO,µ has smaller rank than Σ(G,M), then Repf(G)s contains no essentially
square-integrable representations.

(c) Suppose that ΣO,µ has full rank in Σ(G,M). Then E provides a bijection between
the following sets:
• essentially square-integrable representations in Repf(G)s,
• essentially discrete series representations in EndG(IGP (EB))−Modf .

This remains valid if we add ”tempered” and/or ”irreducible” on both sides.
(d) When Z(G) is compact, part (c) also holds without ”essentially”.

9.2. The structure of Irr(G)s.
It is interesting to combine the previous results on temperedness with Corollaries

8.1 and 8.7.
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Theorem 9.7. There exist bijections

Irr(G)s
E−→ Irr

(
EndG(IGP (EB))

) ζ−→ Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
such that, for π ∈ Irr(G)s and u ∈ Xunr(M):

• the cuspidal support Sc(π) lies in W (M,O)uX+
nr(M)⇐⇒

Wt(E(π)) ⊂W (M,σ,Xnr(M))uX+
nr(M)⇐⇒

Wt(ζ ◦ E(π)) ⊂W (M,σ,Xnr(M))uX+
nr(M)

• π is tempered ⇐⇒ E(π) is tempered ⇐⇒Wt(ζ ◦ E(π)) ⊂ Xunr(M)

Proof. The bijections and the first bullet come from Corollaries 8.1 and 8.7. Let

V0 ∈ Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
with Wt(V ) ⊂ W (M,σ,Xnr(M))uX+

nr(M). Then Wt(V0) ⊂ Xunr(M) if and only if
the irreducible representation V1 of C[Xnr(M)]oC[W (M,σ,Xnr(M))u, \] associated
to it by Lemma 8.4 has u as its only weight. This is the case if and only if the
irreducible representation V2 of C[a∗M ⊗R C] oC[W (M,O)σ⊗u, \u] obtained from V1

as in (8.10) has 0 ∈ a∗M as its only weight.
Now V2, a representation of a twisted graded Hecke algebra

H(R̃u,W (M,O)σ⊗u, 0, \u) with Wt(V2) ⊂ a∗M , is tempered if and only if Wt(V2) =
{0}. To see that, notice that the weights of V2 form full W (Σσ⊗u)-orbits. Every
W (Σσ⊗u)-orbit in a∗M , except {0}, contains elements outside the cone (a∗M )−u .

By Theorem 8.6 V2 is tempered if and only if

ζ−1
u (V2) ∈ Irr

(
H(R̃u,W (M,O)σ⊗u, k

u, \u)
)

is tempered. Next Proposition 9.5 says that ζ−1
u (V2) is tempered if and only if

its image V3 in Irr(EndG(IGP (EB))) is so. Comparing the above with the proof of
Corollary 8.7, we see that V3 equals ζ−1(V0). Finally, in Theorem 9.6.a we showed
that ζ−1(V0) is tempered if and only if E−1(ζ−1(V0)) is tempered. �

The space Irr
(
C[Xnr(M)]oC[W (M,σ,Xnr(M)), \]

)
admits an alternative descrip-

tion, which clarifies the geometric structure in Theorem 9.7.

Lemma 9.8. There is a canonical bijection⊔
χ∈Xnr(M)/Xnr(M,σ)

Irr(C[W (M,O)σ⊗χ, \χ])
/
W (M,O) −→

Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
.

Here \χ is defined as the restriction of \u to (W (M,O)σ⊗χ)2, where u is the unitary
part of χ.

Proof. Let the central extension Γ of W (M,σ,Xnr(M)) and the central idempotent
p\ be as in the proof of Lemma 8.4, so that

p\C[Γ] ∼= C[W (M,σ,Xnr(M)), \].

By (8.7) and (8.8), every irreducible representation π of
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \] is of the form

ind
C[Xnr(M)]oC[W (M,σ,Xnr(M)),\]
C[Xnr(M)]oC[W (M,σ,Xnr(M))χ,\]

(χ⊗ ρ),

where χ ∈ Xnr(M) and ρ ∈ Irr(C[W (M,σ,Xnr(M))χ, \]). The pair (χ, ρ) is deter-
mined by π, uniquely up to the action of Γ given by

γ(χ, ρ) = (γ(χ),Ad(γ−1)∗ρ).
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Since Γ is a central extension of W (M,σ,Xnr(M)), this action descends to an action
of W (M,σ,Xnr(M)) on the collection of such pairs. This yields a bijection

(9.10)
⊔

χ∈Xnr(M)
Irr(C[W (M,σ,Xnr(M))χ, \])

/
W (M,σ,Xnr(M)) −→

Irr
(
C[Xnr(M)] oC[W (M,σ,Xnr(M)), \]

)
.

Recall from Lemma 7.1 that C[W (M,σ,Xnr(M))χ, \] is canonically isomorphic with
C[W (M,O)σ⊗χ, \χ]. For χc ∈ Xnr(M,σ) there are group isomorphisms

(9.11) W (M,O)σ⊗χ
Ωχ−−→W (M,σ,Xnr(M))χ

Ad(χc)−−−−→

W (M,σ,Xnr(M))χχc
Ωχχc←−−−W (M,O)σ⊗χχc .

It follows from (8.4) that conjugation with φχc induces an algebra isomorphism

C[W (M,σ,Xnr(M))χ, \]→ C[W (M,σ,Xnr(M))χcχ, \]

which via Lemma 7.1 translates to the identity map

C[W (M,O)σ⊗χ, \χ]→ C[W (M,O)σ⊗χcχ, \χcχ].

Hence, in (9.10) we can canonically identify all the terms associated to χ’s in one
Xnr(M,σ)-orbit. If we do that, the action of W (M,σ,Xnr(M)) descends to an action
of

W (M,O) = W (M,σ,Xnr(M))/Xnr(M,σ)

and the left hand side of (9.10) becomes⊔
χ∈Xnr(M)/Xnr(M,σ)

Irr(C[W (M,O)σ⊗χ, \χ])
/
W (M,O). �

We note that in Lemma 9.8 \χ is not necessarily equal to \◦Ωu|W (M,O)σ⊗χ . These
2-cocycles are merely cohomologous (by Lemma 7.1 with u the unitary part of χ).
An advantage of \χ is that it factors via(

W (M,O)σ⊗u/W (Σσ⊗u)
)2 ∼= R(σ ⊗ u)2.

The action of w ∈W (M,O) on the left hand side of Lemma 9.8 comes from isomor-
phisms

(9.12) C[W (M,O)σ⊗χ, \χ] ∼= C[W (M,σ,Xnr(M))χ, \]
Ad(Nw)−−−−−→

C[W (M,σ,Xnr(M))w(χ), \] ∼= C[W (M,O)σ⊗w(χ), \w(χ)].

Here the outer automorphisms are described in Lemma 7.1, while the middle iso-
morphism is computed in C[W (M,σ,Xnr(M)), \]. In particular we still make use of
the entire 2-cocycle \, not just of the \χ.

Define the root system Σσ⊗χ like Σσ⊗u. By Lemma 8.3, the composed isomor-
phism (9.12) sends Nv to Nwvw−1 for v ∈W (Σσ⊗χ), and to a scalar multiple of that
for v ∈W (M,O)σ⊗χ. Since

Xnr(M)/Xnr(M,σ)→ O : χ 7→ σ ⊗ χ

is bijective, we can rewrite the left hand side of Lemma 9.8 as

(9.13)
⊔

σ′∈O
Irr(C[W (M,O)σ′ , \σ′ ])

/
W (M,O).
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In the terminology of [ABPS4, §2.1], (9.13) is the twisted extended quotient(
O//W (M,O)

)
\
.

Theorem 9.9. (a) There exists a bijection

ζ̃ ◦ E : Irr(G)s →
(
O//W (M,O)

)
\
,

such that, for π ∈ Irr(G)s and u ∈ Xunr(M):
• the cuspidal support Sc(π) lies in W (M,O){σ ⊗ uχ : χ ∈ X+

nr(M)} if and

only if ζ̃ ◦ E(π) has O-coordinate in W (M,O){σ ⊗ uχ : χ ∈ X+
nr(M)};

• π is tempered if and only if ζ̃ ◦ E(π) has a unitary (or equivalently tempered)
O-coordinate.

(b) This gives rise to bijection

Irr(G) −→
⊔

M

(
Irrcusp(M)//W (G,M)

)
\
,

where M runs over a set of representatives for the conjugacy classes of Levi
subgroups of G.

Proof. (a) This follows from Theorem 9.7, Lemma 9.8 and (9.13).
(b) We write O = Oσ, so that the space of supercuspidal representations of M
becomes

Irrcusp(M) =
⊔

sM=[M,σ]M
Irr(M)sM =

⊔
sM=[M,σ]M

Oσ.

Let Irr(G,M) be the subset of Irr(G) with supercuspidal support in Irr(M). Part
(a) gives rise to a bijection

(9.14) Irr(G,M) =
⊔

s=[M,σ]G
Irr(G)s −→

⊔
s=[M,σ]G

(
Oσ//W (M,Oσ)

)
\
.

Now we must be careful because ζ̃ ◦ E is not entirely canonical. We choose a set of
σ ∈ Irrcusp(M) representing all possible inertial equivalence classes (for G) in (9.14),
and (for each such σ) a set of representatives w ∈ NG(M)/M forNG(M)/NG(M,Oσ).
For σ′ ∈ Oσ and such a w, we define \w·σ′ as the push-forward of \σ′ along Ad(Nw)
Then the set in (9.13) can be enlarged to

(9.15)
⊔

σ,w

⊔
σ′∈O

Irr(C[W (M,Oσ)w·σ′ , \w·σ′ ])

and the action of W (M,O) in (9.13) extends to an action of W (G,M) = NG(M)/M
on (9.15). As in [ABPS4, (29)], that puts (9.14) in bijection with(⊔

sM=[M,σ]M
Oσ//W (G,M)

)
\

=
(
Irrcusp(M)//W (G,M)

)
\
.

When we let M run over a set of representatives for the conjugacy classes of Levi
subgroups of G, Irr(G,M) exhausts Irr(G) and we find the claimed bijection. �

Theorem 9.9.a reveals some geometry hidden in Irr(G)s and proves a version of
the ABPS conjecture, namely [ABPS4, Conjecture 2].
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10. A smaller progenerator of Rep(G)s

In our main results we do not obtain an affine Hecke algebra, rather a category
which is almost equivalent to the category of finite length modules of an affine
Hecke algebra. On the other hand, it is known that in many cases Rep(G)s is really
equivalent to the module category of an affine Hecke algebra. To obtain more results
in that direction, we study progenerators of Rep(G)s that are strictly contained in
IGP (EB).

10.1. The cuspidal case.
From (2.22) we see that χ 7→ φχ yields a group homomorphism

(10.1) Irr(M/M3
σ)→ AutM

(
indMM1(E)

) ∼= AutM
(
E ⊗C C[Xnr(M)]

)
.

In other words, the group Irr(M/M3
σ) acts on indMM1(E) and on E ⊗C C[Xnr(M)].

With the isomorphism (2.3) one can easily express the space of invariants under
Irr(M/M3

σ):

(10.2)
(
indMM1(E)

)Irr(M/M3
σ)

= indMM1(E1).

Recall that every irreducible M1-subrepresentation of E is isomorphic to (m−1 ·
σ1, σ(m)E1) for some m ∈M . More precisely, it follows from (2.8) and (2.10) that

ResMM1(σ,E) ∼=
⊕

m∈M/M4
σ

(m · σ1)µσ,1 .

Since σ1 and m · σ1 have isomorphic induction to M :

(10.3) indMM1(σ,E) ∼=
⊕

m∈M/M4
σ

indMM1(m · σ1)µσ,1 ∼= indMM1(σ1, E1)[M :M4
σ ]µσ,1 .

Notice that

[M : M4
σ ]µσ,1 = [M : M3

σ ]

is the length of ResMM1(E). From (10.3) we see that indMM1(σ1, E1) is, like indMM1(σ,E),

a progenerator of Rep(M)O – this was already shown by Bernstein [BeRu]. Further
(10.3) implies

(10.4) EndM (indMM1(σ,E)) ∼= EndM (indMM1(σ1, E1))⊗C M[M :M3
σ ](C),

where Md(C) denotes the algebra of d × d complex matrices. For comparison with
[Hei2] we analyse the Morita equivalent subalgebra EndM (indMM1(σ1, E1)) as well.
Now (2.6) cannot be used in general, because σ(m−1) need not preserve E1. So
we cannot easily embed C[Xnr(M)] ∼= C[M/M1] in EndM (indMM1(σ1, E1)). The
formula (2.6) does still apply when m ∈ M3

σ/M
1, which means that (2.6) provides

a homomorphism

M3
σ/M

1 → AutM (indMM1(σ1, E1)).

That extends C-linearly to an embedding

(10.5) ind
M3
σ

M1(C) ∼= C[M3
σ/M

1] → EndM (indMM1(σ1, E1))
δm 7→ m−1M1 7→ σ3(m)λm

,

where σ3(m)λm(v)(m′) = σ3(m)v(m−1m′) for v ∈ indMM1(σ1, E1). We note that
C[M3

σ/M
1] can be regarded as the ring of regular functions on the complex torus

O3 := Irr(M3
σ/M

1),
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a degree µσ,1 cover of Xnr(M)/Xnr(M,σ). Another way to construct the embedding
(10.5) uses that (σ1, E1) extends to the M3

σ-representation σ3. The same reasoning
as in (2.3) gives an isomorphism of M3

σ-representations

ind
M3
σ

M1(E1)→ E1 ⊗C C[O3].

Since C[O3] is commutative, the M3
σ-action on E1⊗CC[O3] is C[O3]-linear. We find

(10.6) indMM1(E1) ∼= indMM3
σ
(E1 ⊗C C[O3])

and C[O3] acts on it by M -intertwiners, induced from the action on E1 ⊗C C[O3].
As worked out in [Roc2, Proposition 1.6.3.2], the subalgebra

(10.7) C[M2
σ/M

1] ∼= C[Xnr(M)/Xnr(M,σ)]

is the centre of EndM (indMM1(σ1, E1)). In view of (10.4), C[M2
σ/M

1] is also the

centre of EndM (indMM1(σ,E)) – which can be derived directly from Proposition 2.2.

Furthermore EndM (indMM1(σ1, E1)) is free of rank µ2
σ,1 as a module over its centre.

The commutative subalgebra

C[M3
σ/M

1] ∼= C[O3],

embedded in EndM (indMM1(σ1, E1)) as in (10.5) or (10.6), is free of rank µσ,1 as a

module over C[M2
σ/M

1]. To find generators for EndM (indMM1(σ1, E1)) as a mod-
ule over C[M3

σ/M
1], we consider any m ∈ M4

σ . By definition there exists an M1-
isomorphism

φm,σ1 : (σ1, E1)→ (m−1 · σ1, E1).

Regarding the subspace of indMM1(E1) supported on mM1 as the M1-representation

m−1 · σ1, φm,σ1 becomes an element of HomM1(σ1, indMM1(σ1)). Applying Frobenius
reciprocity, we obtain

(10.8) φm ∈ EndM (indMM1(σ1, E1)), φm(v) = φm,σ1λm(v).

For m ∈M3
σ we can take φm,σ1 = σ3(m), and then (10.8) recovers (10.5).

Lemma 10.1. For every m ∈M4
σ/M

1 and for every m ∈M4
σ/M

3
σ we pick a repre-

sentative m̃ ∈M4
σ .

(a) The set {φm̃ : m ∈M4
σ/M

1} is a C-basis of EndM (indMM1(σ1, E1)).
(b) With respect to the embedding (10.5):

EndM
(
indMM1(σ1, E1)

)
=

⊕
m∈M4

σ/M
3
σ

φm̃C[M3
σ/M

1] =
⊕

m∈M4
σ/M

3
σ

φm̃C[O3].

Proof. (a) By Frobenius reciprocity

(10.9) EndM (indMM1(σ1, E1)) ∼= HomM1(σ1, indMM1(σ1))

∼= HomM1

(
σ1,
⊕

m∈M/M1
(m−1 · σ1)

)
.

By the definition of M4
σ , this reduces to⊕

m∈M4
σ/M

1
HomM1(σ1,m

−1 · σ1),

where each summand is one-dimensional. For every m ∈ M4
σ , the element φm ∈

EndM (indMM1(σ1, E1)) comes by construction from the nonzero element φm,σ1 ∈
HomM1(σ1,m

−1 · σ1). It follows that, for any m1 ∈ M1, φm and φmm1 differ only
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by a scalar, and that the φm̃ with m ∈M4
σ/M

1 form a basis of (10.9).
(b) This follows directly from part (a) and (10.5). �

It is known from [Roc2, (1.6.1.1)] that the operators φm with m ∈M4
σ commute up

to scalars. However, by [Roc2, Proposition 1.6.1.2] the algebra EndM (indMM1(σ1, E1))
is commutative if and only if µσ,1 = 1.

From (2.27), (10.6) and Lemma 10.1.b we obtain

(10.10) HomM

(
indMM1(E1), indMM1(E1)⊗C[O3] C(O3)

) ∼= ⊕
m∈M4

σ/M
3
σ

φm̃C(O3).

The action of Irr(M/M3
σ) on indMM1(E) from (10.1) extends naturally to an action

on indMM1(E) ⊗C[Xnr(M)] C(Xnr(M)). From [Hei2, Proposition 4.3], with the same
proof, we obtain

(10.11)
(
indMM1(E)⊗C[Xnr(M)] C(Xnr(M)

)Irr(M/M3
σ)

= indMM1(E1)⊗C[O3] C(O3).

Unfortunately, we did not succeed in making the isomorphism (10.4) explicit in
terms of the endomorphisms of indMM1(E) and indMM1(E1) exhibited above. Clearly

C[O3] ⊂ EndM (indMM1(E1))

corresponds naturally to a subalgebra of

C[Xnr(M)] ⊂ EndM (indMM1(E)).

From Lemma 10.1 and (2.20) we see that the φm̃ with m ∈ M4
σ/M

3
σ should corre-

spond to linear combinations of the φχ with χ ∈ Xnr(M,σ) and χ|M3
σ

= χ3,m, but

we did not find a canonical choice. Thus, although the progenerators indMM1(E) and

indMM1(E1) of the cuspidal Bernstein component Rep(M)O are equally good, they
look somewhat differently. It seems technically difficult to analyse
EndG

(
IGP (indMM1(E1))

)
in general.

Many complications with the 2-cocycles \ stem from the multiplicity µσ,1 of the

M1-subrepresentation E1 in ResMM1E. In Section 2 we saw that \
∣∣
Xnr(M,σ)

is trivial

if and only if µσ,1 = 1. Recall that µσ,1 depends on σ but not on the choice of E1.
It is known from [Roc2, Remark 1.6.1.3] that µσ,1 = 1 in many cases:

• when the maximal F -split central torus of M has dimension ≤ 1,
• when M is quasi-split and (σ,E) is generic,
• for finite products (

∏
iMi,�iσi) with each (Mi, σi) as in the above cases.

We note that the first bullet includes semisimple groups, general linear groups,
unitary groups and inner forms of such groups, while the second bullet includes all
tori. On the other hand, in Example 2.G we saw that µσ,1 = 2 also occurs.

Working hypothesis 10.2. We are given (σ,E) ∈ Irrcusp(M) such that the re-
striction of σ to M1 is multiplicity free, that is, µσ,1 = 1.

We stress that this hypothesis does not imply that the restriction of (σ,E) to the
derived subgroup Mder is multiplicity-free. Indeed, a counterexample to that can be
found in [AdPr, §7].

As Working hypothesis 10.2 constitutes a major difference between the assump-
tions from [Hei2] and from this paper, it should not come as a surprise that it makes
better results possible. We will investigate how far we can get, following [Hei2]
rather closely. So, in the remainder of this section we assume Working hypothesis
10.2 (then it also holds for σ ⊗ χ with χ ∈ Xnr(M) because M1 ⊂ kerχ).
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From (2.10) we know that M2
σ ,M

3
σ and M4

σ now coincide to a single group, which
we call Mσ. Lemma 10.1 reduces to

EndM
(
indMM1(σ1, E1)

)
= C[Mσ/M

1] = C[O3].

Further Xnr(M,σ) = Irr(M/Mσ) and (2.14)–(2.16) provide a group homomorphism

Xnr(M,σ)→ AutM (EB) : χc 7→ φχc .

In particular \
∣∣
Xnr(M,σ)

= 1 and (2.25) simplifies to

EndM (EB) = C[Xnr(M)] oXnr(M,σ).

10.2. The non-cuspidal case.
As before, we also write φχc for IGP (φχc) ∈ AutG(IGP (EB)). Then (10.2) implies

(10.12) (IGP (EB))Xnr(M,σ) = IGP
(
(EB)Xnr(M,σ)

)
= IGP (indMM1(E1)).

By (10.3) the progenerator IGP (EB) of Rep(G)s is isomorphic to IGP (indMM1(E1))[M :Mσ ].

In particular IGP (indMM1(E1)) is also a progenerator of Rep(G)s and

(10.13)
EndG(IGP (EB)) ∼= EndG

(
IGP (indMM1(E1))

)
⊗C M[M :Mσ ](C),

EndG(IGP (EB))Xnr(M,σ)×Xnr(M,σ) = EndG
(
IGP (indMM1(E1))

)
.

Here we use that Xnr(M,σ) embeds in AutG(IGP (EB)), which acts from the left and
from the right on EndG(IGP (EB)).

Under Working hypothesis 10.2, [Hei2, §4.1–4.4] holds for G,M, σ.

Lemma 10.3. Assume Working hypothesis 10.2 and let w ∈W (M,O).

(a) There exists a mw ∈M , unique up to Mσ, such that:
• σ(mw)ρσ,wE1 = E1,

• bmwAw stabilizes IGP (EK(B))
Xnr(M,σ).

(b) For sα with α ∈ ΣO,µ, we can take msα ∈M ∩M1
α, and then there is a canonical

choice up to M1.

Proof. (a) Working hypothesis 10.2 entails that there is a mw ∈ M , unique up to
Mσ, which fulfills the first bullet. The proof of [Hei2, Lemme 4.5] then shows the
second bullet.
(b) The element msα ∈ M ∩M1

α comes from the proof of [Hei2, Lemme 4.5]. As
M ∩M1

α/M
1 ∼= Z, there is a unique choice msαM

1 such that νF (α(msα)) is positive
and minimal. �

As in [Hei2, §4.6] we define Jsα = bmsαAsα for α ∈ ∆O,µ, but not for other
w ∈W (ΣO,µ). By (5.2) and Proposition 5.1.c:

(10.14) J2
sα = bmsα (sα · bmsα )A2

sα = A2
sα =

4c′sα
(1− q−1

α )2(1 + q−1
α∗ )2µMα(σ ⊗ ·)

.

Let w ∈W (ΣO,µ), with a reduced expression w = s1s2 · · · s`(w). Then [Hei2, Lemme
4.7.i] shows: the operator

(10.15) Jw := Js1Js2 · · · Js`(w)

depends only on w, not on the chosen reduced expression. For r ∈ R(O) we define

Jrw := bmrArJw = JrJw.
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By Lemma 10.3 and (5.4), Jr belongs to EndG(IGP (EB)Xnr(M,σ)). On the other hand,
the Jw with w ∈ W (ΣO,µ) \ {1} have poles, just like the Aw. The multiplication
rules for these elements are similar to Proposition 5.2:

Lemma 10.4. Assume Working hypothesis 10.2, let r, r1, r2 ∈ R(O) and w ∈
W (ΣO,µ).

(a) Write χ(r1, r2) = χr1r1(χr2)χ−1
r1r2 ∈ Xnr(M,σ). There exists a \J(r1, r2) ∈

C[Xnr(M)/Xnr(M,σ)]× ∼= C× ×Mσ/M
1 such that

Jr1 ◦ Jr2 = \J(r1, r2)φχ(r1,r,2) ◦ Jr1r2 .

(b) There exists a \J(w, r) ∈ C[Xnr(M)/Xnr(M,σ)]× such that

Jw ◦ Jr = \(w, r)φw(χ−1
r )χr

◦ Jwr.

Proof. (a) By (5.2) and Proposition 5.2.a

(10.16)

Jr1Jr2 = bmr1Ar1bmr2Ar2 = bmr1 (r1 · bmr2 )χ−1
r1
Ar1Ar2

= bmr1 (r1 · bmr2 )(r1 · bmr2 )(χ−1
r1 )Ar1Ar2

= bmr1 br̃1mr2 r̃
−1
1
bmr2 (r−1

1 χ−1
r1 )\(r1, r2)φχ(r1,r2)Ar1r2 .

On the other hand, by (2.20)

(10.17) φχ(r1,r2)Jr1r2 = φχ(r1,r2)bmr1r2Ar1r2

= (bmr1r2 )χ(r1,r2)−1φχ(r1,r2)Ar1r2 = bmr1r2χ(r1, r2)−1(mr1r2)φχ(r1,r2)Ar1r2 .

Inserting (10.17) into (10.16), we obtain

(10.18) bmr1 br̃1mr2 r̃
−1
1
b−1
mr1r2

χ(r1, r2)(mr1r2)(r−1
1 χ−1

r1 )(mr2)\(r1, r2)φχ(r1,r2)Jr1r2 .

This element stabilizes IGP (EK(B))
Xnr(M,σ), so by the uniqueness of mw (up to Mσ):

m := mr1 r̃1mr2 r̃
−1
1 m−1

r1r2 lies in Mσ.

The three middle terms in (10.18) are nonzero scalars, so (10.18) is of the form
bmzφχ(r1,r2)Jr1r2 for some z ∈ C×.
(b) This can be derived from Proposition 5.2.c, analogous to part (a). �

It is clear from Theorem 5.4 that {Jwφχc : w ∈ W (M,O), χc ∈ Xnr(M,σ)} is a
K(B)-basis of HomG

(
IGP (EB), IGP (EK(B))

)
. Consider the idempotent

pXnr(M,σ) := |Xnr(M,σ)|−1
∑

χc∈Xnr(M,σ)
φχc ∈ EndG(IGP (EB)).

It satisfies pXnr(M,σ)I
G
P (EB) = IGP (EB)Xnr(M,σ) and

(10.19) pXnr(M,σ)HomG

(
IGP (EB), IGP (EK(B))

)
pXnr(M,σ) =

HomG

(
IGP (EB)Xnr(M,σ), IGP (EK(B))

Xnr(M,σ)
)
.

Proposition 10.5. Assume Working hypothesis 10.2. As vector spaces over
K(B)Xnr(M,σ) = C(Xnr(M)/Xnr(M,σ)):

HomG

(
IGP (EB)Xnr(M,σ), IGP (EK(B))

Xnr(M,σ)
)

=
⊕

w∈W (M,O)

K(B)Xnr(M,σ)JwpXnr(M,σ).
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Proof. By Lemma 10.3.a, each Jw defines an element JwpXnr(M,σ) of

HomG

(
IGP (EB)Xnr(M,σ), IGP (EK(B))

Xnr(M,σ)
)
. By Theorem 5.4 these elements are

linearly independent over K(B) and over K(B)Xnr(M,σ). This proves the inclusion
⊃ of the proposition.

Further, Lemma 10.3.a also shows that, for every χc ∈ Xnr(M,σ),

JwpXnr(M,σ) = pXnr(M,σ)JwpXnr(M,σ) = φχcJwpXnr(M,σ).

Since Jw is invertible in EndG(IGP (EK(B))), this also equals

(10.20) pXnr(M,σ)Jw = pXnr(M,σ)Jwφχc .

With Theorem 5.4 we deduce

(10.21)

HomG

(
IGP (EB)Xnr(M,σ), IGP (EK(B))

Xnr(M,σ)
)

=(⊕
w∈W (M,O)

⊕
χc∈Xnr(M,σ)

K(B)φχcJw

)Xnr(M,σ)×Xnr(M,σ)
=⊕

w∈W (M,O)

(
pXnr(M,σ)

⊕
χc∈Xnr(M,σ)

K(B)φχcJwpXnr(M,σ)

)
=⊕

w∈W (M,O)
pXnr(M,σ)K(B)pXnr(M,σ)Jw.

From (2.20) we see that

pXnr(M,σ)K(B)pXnr(M,σ) = K(B)Xnr(M,σ)pXnr(M,σ).

Combine that with (10.21) and (10.20). �

As HomG(IGP (EB), IGP (EK(B)) is an algebra, so the vector space in Proposition
10.5. The multiplication relations between the elements Jw with w ∈ W (ΣO,µ) are
similar to those in Proposition 5.1.a, but with some extra factors bm inserted. The
relations between the other Jw with w ∈ W (M,O) are given in Lemma 10.4 (al-
though in part (a) we do not need φχ(r1,r2) because it is the identity on IGP (EK(B))).
Like in Paragraph 5.2, we can simplify these multiplication relations by replacing
the Jw with slightly different operators.

For α ∈ ∆O,µ we define

(10.22) T ′sα = gαJsα .

Then Proposition 5.5 holds for these T ′sα , with the same proof: (10.22) extends to a
group homomorphism

(10.23) W (ΣO,µ)→ AutG
(
IGP (EK(B))

Xnr(M,σ)
)

: w 7→ T ′w.

Now we can replay the proof of Lemma 5.6.b for the T ′wJr, using Lemma 10.4.b as
a substitute for Proposition 5.2.c. That leads to:

(10.24) T ′wJr = \J(w, r)JrT ′r−1wr w ∈W (ΣO,µ), r ∈ R(O),

where \J(w, r) ∈ C[Xnr(M)/Xnr(M,σ)]× is as in Lemma 10.4. Recall that

Xnr(M)/Xnr(M,σ)→ O : χ 7→ σ ⊗ χ

is a bijection and that W (M,O) acts naturally on O (which induces an action on
C[O]).

Theorem 10.6. Assume Working hypothesis 10.2.
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(a) The set {JrT ′w : r ∈ R(O), w ∈W (ΣO,µ)} is a C(O)-basis of

HomG

(
IGP (EB)Xnr(M,σ), IGP (EK(B))

Xnr(M,σ)
)
. For any b ∈ C(O):

JrT ′w ◦ b = (rw · b) ◦ JrT ′w.
(b) There exists a 2-cocycle \J : W (M,O)2 → C[O]× (with respect to the action of

W (M,O) on C[O]) such that, for all r1, r2 ∈ R(O), w1, w2 ∈W (ΣO,µ):

Jr1T ′w1
Jr2T ′w2

= \J(r1w1, r2w2)Jr1r2T ′r−1
2 w1r2w2

.

When r2 = 1, this simplifies to \J(r1w1, w2) = 1.

Proof. (a) The expression for JrT ′wb follows from (5.16) and (5.24). This implies
that

JrT ′w(JrJw)−1 ∈ C[O]× ∀r ∈ R(O), w ∈W (ΣO,µ).

Then Proposition 10.5 says that the JrT ′w, just like the JrJw, form a C(O)-basis.
(b) With (10.23), (10.24) and Lemma 10.4.a we compute

Jr1T ′w1
Jr2T ′w2

= Jr1\(w1, r2)Jr2T ′r−1
2 w1r2

T ′w2
= (r1 · \J(w1, r2))Jr1Jr2T ′r−1

2 w1r2w2

= (r1 · \J(w1, r2))\J(r1, r2)Jr1r2T ′r−1
2 w1r2w2

.

This means that we must define

\J(r1w1, r2w2) = (r1 · \J(w1, r2))\J(r1, r2).

The above computation with r2 = 1 shows that \J(r1w1, w2) = 1. In view of the

associativity of EndG
(
IGP (EK(B))

Xnr(M,σ)
)
, we can work out the product

Jr1T ′w1
◦ Jr2T ′w2

◦ Jr3T ′w3

in two equivalent ways. Comparing the resulting expressions in

C[O]×Jr1r2r3T ′r−1
3 r−1

2 w1r
−1
3 w2r3w3

,

we deduce that \J is a 2-cocycle. �

Next we aim for a version of Theorem 10.6 with regular (instead of merely rational)
functions on O. As T ′sα = bmsαTsα and bmsα ∈ C[O]×, the poles of T ′sα are the same
as the poles of Tsα . We know those from (5.20): they are simple and occur at

(10.25) {Xα = qα} and (if qα∗ > 1) at {Xα = −qα∗}.
Since Xα = bh∨α and h∨α is indivisible in Mσ/M

1, any set of the form

{σ′ ∈ O : Xα(σ′) = constant}
is connected. By Lemma 3.3 and the same indivisibility of h∨α, sα pointwise fixes
{σ′ ∈ O : Xα(σ′) = 1} and (if qα∗ > 1) {σ′ ∈ O : Xα(σ′) = −1}.

For σ′ ∈ O and v ∈ IGP (EB)Xnr(M,σ) = IGP (indMM1(E1)) we define

spσ′(v) = |Xnr(M,σ)|−1
∑

χc∈Xnr(M,σ)
φχc(spχ(v)),

for any χ ∈ Xnr(M,σ) with σ′ ∼= σ ⊗ χ. By the invariance property of v, this does
not depend on the choice of χ. In view of (2.14), it is a well-defined map

spσ′ : IGP (EB)Xnr(M,σ) → E1.

Lemma 10.7. Assume Working hypothesis 10.2. Let α ∈ ∆O,µ and σ+, σ− ∈ O
with Xα(σ±) = ±1.
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(a) spσ+
(1−Xα)Jsα = spσ+

T ′sα = spσ+
.

(b) Suppose that qα∗ > 1. There exists εα ∈ {0, 1} such that spσ−T
′
sα = (−1)εαspσ−.

Proof. (a) From T ′sα = gαJsα and the definition of gα we see that

spσ+
T ′sα = spσ+

(1−Xα)Jsα .

By Lemma 5.9, spχ+
(1−Xα)Asα = spχ+

for all χ+ ∈ Xnr(Mα). From Lemma 10.3.b

we see that also spχ+
(1−Xα)Jsα = spχ+

. As

{χ ∈ Xnr(M) : Xα(χ)} → {σ′ ∈ O : Xα(σ′) = 1}
is a covering, there exists a χ+ ∈ Xnr(Mα) with σ ⊗ χ+

∼= σ+. Consequently

spσ+
(1−Xα)Jsα = |Xnr(M,σ)|−1

∑
χc∈Xnr(M,σ)

φχc ◦ spχ+
= spχ+

.

(b) Pick χ− ∈ Xnr(M) with σ ⊗ χ− ∼= σ−. From Lemma 5.9 we know that

(10.26) spχ−T
′
sα = zspχ−φχ−sα(χ−1

− )

for some z ∈ C×. On IGP (EB)Xnr(M,σ) the operator φχ−sα(χ−1
− ) acts as the identity,

so there (10.26) reduces to spχ−T
′
sα = zspχ− . Using (T ′sα)2 = 1, we deduce z = ±1.

By definition, that means
spσ−T

′
sα = ±spσ− .

Since {σ′ ∈ O : Xα(σ′) = −1} is connected and this sign ± depends continuously
on σ′, the sign is a constant (−1)εα . �

Recall the elements fα ∈ C(O) for α ∈ ΣO,µ from (6.23). One readily checks that

(1 + f−α)T ′sα = (qα −Xα)(qα∗ +Xα)Jsα/2.

For α ∈ ∆O,µ we take εα as in Lemma 10.7 if qα∗ > 1, and εα = 0 if qα∗ = 1. We
define

T ′sα = (1 + f−α)Xεα
α T ′sα + fα = (Xεα

α T ′sα + 1)(1 + fα)− 1.

Lemma 10.8. Assume Working hypothesis 10.2. For all α ∈ ∆O,µ, T ′sα lies in

EndG
(
IGP (EB)Xnr(M,σ)

)
.

Proof. By (10.25) the operators (qα−Xα)(qα∗+Xα)Jsα/2, fα and T ′sα can only have
poles at {σ′ ∈ O : Xα(σ′) = ±1}. Select σ± ∈ O with Xα(σ±) = ±1. By Lemma

10.7, as operators on IGP (EB)Xnr(M,σ):

spσ+
(1−Xα)(1 + f−α)Xεα

α T ′sα = −spσ+
(1−Xα)fα = spσ+

(qα − 1)(qα∗ + 1)/2
spσ−(1 +Xα)(1 + f−α)Xεα

α T ′sα = −spσ−(1 +Xα)fα = spσ−(qα + 1)(qα∗ − 1)/2

Hence spσ+
(1 −Xα)T ′sα = 0 and spσ−(1 + Xα)T ′sα = 0, which means that T ′sα does

not have any poles and sends IGP (EB)Xnr(M,σ) to itself. �

In view of Theorem 10.6.a, the proof of Lemma 6.9 remains valid in the current
setting, and shows that

(T ′sα + 1)(T ′sα − qαqα∗) = 0.

Similarly (6.27) holds for T ′sα and b ∈ C(O). Next, the proof of Lemma 6.10.a also
holds in our setting, if we take u = 1 and replace Xnr(M) by O. That provides a
consistent definition of T ′w for w ∈ W (ΣO,µ). The multiplication relations between
these T ′w and the Jr with r ∈ R(O) are not as nice as in Lemma 6.10.b, because
Lemma 10.4 is weaker than Proposition 5.2.
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Fortunately [Hei2, §5.7–5.12] still works for the elements JrT
′
w.

Theorem 10.9. Assume Working hypothesis 10.2. The set {JrT ′w : r ∈ R(O), w ∈
W (ΣO,µ)} is a C[O]-basis of EndG

(
IGP (EB)Xnr(M,σ)

)
. The subalgebra⊕

w∈W (ΣO,µ)
C[O]T ′w

is canonically isomorphic to the affine Hecke algebra H(O, G) from (9.6).

Proof. The first claim is [Hei2, Théorème 5.10] in our generality. The second claim
follows from the proof of Lemma 6.10.a. It generalizes [Hei2, Proposition 7.4]. �

From Theorem 10.6 we see that conjugation by Jr stabilizes the subalgebra
H(G,O). However, it seems that J−1

r T ′wJr need not be contained in CT ′r−1wr, or
even in C[O]T ′r−1wr. Therefore the main conclusions (§7.6–7.8) of [Hei2] do not
necessarily hold in our setting.

Recall from (4.1) and (10.13) that

(10.27) EndG
(
IGP (EB)Xnr(M,σ)

)
−Mod = EndG

(
IGP (indMM1(E1))

)
−Mod

is naturally equivalent with Rep(G)s and with EndG(IGP (EB)) − Mod. However,
with only the above description available, deriving the representation theory of
EndG

(
IGP (EB)Xnr(M,σ)

)
from that of H(O, G) is quite involved. One problem is

that Clifford theory (as in the proof of Lemma 8.4) is not available if the values of
\J are not central in H(O, G). A way around that is by localization on subsets of
O, as in Section 6. In fact any Uu ⊂ Xnr(M) satisfying Condition 6.3 is diffeomor-

phic to its image in O, and the analytic localization of EndG
(
IGP (EB)Xnr(M,σ)

)
on

Uu is canonically isomorphic to 1uEndG(IGP (EB))an
U 1u. In this way the results from

Sections 6–8 provide an analysis of (10.27) in terms of a family of (twisted) graded
Hecke algebras.

For aspects of (10.27) that cannot be translated to graded Hecke algebras, like
those involving modules of infinite length, one must understand the 2-cocycle

\J : W (M,O)2 → C[O]×

well. In practice that means one needs either irreducibility of ResMM1(E) (for then we
can take mw = 1 for all w) or an explicit easy description of R(O), like for classical
groups in [Hei2, Proposition 1.15 and §2.5]. Here we must warn the reader that
exactly this aspect of [Hei2] is incomplete, it was corrected in [Hei4, Appendix A].

Appendix A. Correction (from 2023)

In the recent preprint [Oha], the algebras EndG(IGP (EB)) are compared with simi-
lar endomorphism algebras from [Mor1]. The main results of [Oha] made the author
realize that there could be an issue with the preservation of temperedness proven
in Theorem 9.6. Further investigations revealed that there is indeed a problem, and
that it stems from [Hei3]. In this appendix we explain the problem and we show
how it can be fixed.

By Definition 9.2, a finite dimensional EndG(IGP (EB))-module V is tempered if
all its C[Xnr(M)]-weights t ∈ Xnr(M) satisfy the following condition:

(A.1) log |t| ∈ Hom(M2
σ/M

1,R) lies in the negative cone
{ ∑
α]∈∆O

cαα
] : cα ∈ R≤0

}
.
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Equivalently, |t(m)| ≤ 1 whenever m ∈ M2
σ/M

1 lies in the positive Weyl chamber
with respect to the simple roots h∨α ∈ ∆∨O. Here the bases ∆O of ΣO and ∆∨O of Σ∨O
are determined by P . This is the same notion of temperedness as commonly used
for affine Hecke algebras, e.g. in [Opd, Sol3].

According to Theorem 9.6, the equivalence of categories

Repf (G)s ∼= EndG(IGP (EB))−Modf

preserves temperedness. The proof proceeds by reduction to results of [Sol5]. One
of the conditions needed to apply [Sol5] is that the definition of positivity for roots
in Σ∨O corresponds (via Xnr(M) which is present on both sides) to the definition of
positivity for roots in Σred(AM ). This is checked in Lemma 9.1 and shortly before
Proposition 9.5.

Unfortunately, the comparison between these two root systems is made in the
wrong way. Namely, for a positive root α ∈ Σred(AM ), νF ◦ α ∈ a∗M is regarded as
positive. That results in a definition of h∨α as element of R>0α

∨($F )∩M2
σ/M

1. This
use of νF ◦α as positive element stems from [Hei2, Hei3], on which Section 9 is partly
based. As a consequence Theorem 9.6 and [Hei3, Théorème 5] suffer from the same
problem: they do not send tempered G-representations to tempered EndG(IGP (EB))-
representations, but to anti-tempered EndG(IGP (EB))-representations. Here anti-
tempered means that the above condition (A.1) for temperedness is replaced by

log |t| ∈ Hom(M2
σ/M

1,R) lies in
{∑

α]∈∆O
dαα

] : dα ∈ R≥0

}
.

Let us work out explicitly why this is the case, in contrast to the statements of
Theorem 9.6 and [Hei3, Théorème 5]. Consider a root α ∈ Σred(AM ) which is
positive with respect to P . Then |α|F ∈ Xnr(M) is an unramified character in
positive position with respect to P , as used in Casselman’s criteria for temperedness
of G-representations [Wal, Proposition III.2.2]. Since |α(α∨($F ))|F < 1, it follows
that |α|F becomes a negative multiple of α] in [Hei2] and in Section 3. That is off
by a minus sign from what is needed in [Sol5], and therefore the “preservation of
temperedness” in Theorem 9.6 and [Hei3, Théorème 5] relates to the preservation
of temperedness in [Sol5, §4.2] by inserting an extra minus sign in the criterion for
temperedness.

For example, consider the Steinberg representation St of G = GL2(F ), with P
the standard Borel subgroup and α the unique positive root of the diagonal torus
T . Then EndG(IGP (EB)) is an affine Hecke algebra of type GL2 [Sol7, §2.5] and

JG
P

(St) = δ
1/2

P
= |α|−1/2

F .

Let V be the EndG(IGP (EB))-module which corresponds to St under the equivalence

of categories (4.1). By Proposition 4.1.b, JG
P

(St) corresponds to Res
EndG(IGP (EB))

C[Xnr(T )] V

under the equivalence of categories (4.1) for T . In other words, Res
EndG(IGP (EB))

C[Xnr(T )] V is

the map O(Xnr(T ))→ C coming from evaluation at |α|−1/2
F ∈ Xnr(T ). The element

h∨α = α∨($F ), from Proposition 3.1 and [Hei2], satisfies

|α|−1/2
F (h∨α) = |α(α∨($F ))|−1/2

F = |$F |−1
F = qF .
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Thus log |t| = log(qF )α]/2 for the unique C[Xnr(T )]-weight t = |α|−1/2
F of V . As

log(qF ) > 0, we find that V is an anti-tempered EndG(IGP (EB))-module.

Now that we have seen all this, it is clear how the problem can be fixed: we
replace every h∨α ∈M2

σ/M
1 by −h∨α. Equivalently, the requirement

(A.2) νF (α(h∨α)) > 0 is substituted by |α(h∨α)|F > 1.

It is best to replace HM by −HM at the same time, so that HM (h∨α) does not change.
That leads to a definition of HM which is in any case more common:

(A.3) q
〈HM (m),γ〉
F = |γ(m)|F m ∈M,γ ∈ X∗(M).

We point out that the specific formulas for HM and for h∨α as element of G are never
actually used in this paper. They only play an implicit role in the part of Paragraph
9.1 after Corollary 9.4, because only that part makes use of [Hei3, Sol5]. Hence
our entire paper remains valid with (A.2) and (A.3) instead of the conventions just
before Proposition 3.1. With this improvement Proposition 9.5 and Theorem 9.6
really become valid as stated. The same goes for the results that use those two,
namely Theorems C, D, E, 9.7 and 9.9.

The same improvement could be used in [Hei2, Hei3], that would leave everything
in [Hei2] valid and would repair the issue for [Hei3].
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