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Abstract. Graded Hecke algebras can be constructed geometrically, with con-
structible sheaves and equivariant cohomology. The input consists of a complex
reductive group G (possibly disconnected) and a cuspidal local system on a nilpo-
tent orbit for a Levi subgroup of G. We prove that every such “geometric” graded
Hecke algebra is naturally isomorphic to the endomorphism algebra of a certain
G × C×-equivariant semisimple complex of sheaves on the nilpotent cone gN in
the Lie algebra of G.

From there we provide an algebraic description of the G × C×-equivariant
bounded derived category of constructible sheaves on gN . Namely, it is equiva-
lent with the bounded derived category of finitely generated differential graded
modules of a suitable direct sum of graded Hecke algebras. This can be regarded
as a categorification of graded Hecke algebras.
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Introduction

The story behind this paper started with with the seminal work of Kazhdan and
Lusztig [KaLu]. They showed that an affine Hecke algebra H is naturally isomorphic
with a K-group of equivariant coherent sheaves on the Steinberg variety of a complex
reductive group. (Here H has a formal variable q as single parameter and the
reductive group must have simply connected derived group.) This isomorphism
enables one to regard the category of equivariant coherent sheaves on that particular
variety as a categorification of an affine Hecke algebra. Later that became quite an
important theme in the geometric Langlands program, see for instance [Bez, ChGi,
MiVi].

Our paper is inspired by the quest for a generalization of such a categorification of
H to affine Hecke algebras with more than one q-parameter. That is relevant because
such algebras arise in abundance from reductive p-adic groups and types [ABPS,
§2.4]. However, up to today it is unclear how several independent q-parameters can
be incorporated in a setup with equivariant K-theory or K-homology. The situa-
tion improves when one formally completes an affine Hecke algebra with respect to
(the kernel of) a central character, as in [Lus4]. Such a completion is Morita equiva-
lent with a completion of a graded Hecke algebra with respect to a central character.

Graded Hecke algebras H with several parameters (now typically called k) do
admit a geometric interpretation [Lus3, Lus6]. (Not all combinations of parameters
occur though, there are conditions on the ratios between the different k-parameters.)
For this reason graded Hecke algebras, instead of affine Hecke algebras, play the main
role in this paper.

Such algebras, and minor generalizations called twisted graded Hecke algebras,
appear in several independent ways. Consider a connected reductive group G defined
over a non-archimedean local field F . Let Rep(G(F ))s be any Bernstein block in
the category of (complex, smooth) G(F )-representations. Locally on the space of
characters of the Bernstein centre of G(F ), Rep(G(F ))s is always equivalent with the
module category of some twisted graded Hecke algebra [Sol4, §7]. This is derived
from an equivalence of Rep(G(F ))s with the module category of an algebra which is
almost an affine Hecke algebra, established in full generality in [Sol4].

The same kind of algebras arise from enhanced Langlands parameters for G(F )
[AMS2]. That construction involves complex geometry and the cuspidal support
map for enhanced L-parameters from [AMS1]. It matches specific sets of enhanced L-
parameters for G(F ) with specific sets of irreducible representations of twisted graded
Hecke algebras. For more background we refer to [AMS3], and for applications of
the current paper in that direction we point out the sequel [Sol6].

Like affine Hecke algebras, graded Hecke algebras are related to equivariant sheaves
on varieties associated to complex reductive groups. However, here the sheaves
must be constructible and one uses equivariant cohomology instead of equivariant
K-theory. Just equivariant sheaves do not suffice to capture all the structure of
graded Hecke algebras, one rather needs differential complexes of those. Thus we
arrive at the (bounded) equivariant derived categories of constructible sheaves from
[BeLu]. Via intersection cohomology, such objects have many applications in repre-
sentation theory, see for instance [Lus5].
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Main results
Let G be a complex reductive group and let M be a Levi subgroup of G. To cover all
enhanced Langlands parameters for p-adic groups and all instances of twisted graded
Hecke algebras mentioned above, we must allow disconnected reductive groups. Let
qE be an irreducible M -equivariant cuspidal local system on a nilpotent orbit in the
Lie algebra of M . From these data a twisted graded Hecke algebra H(G,M, qE) can
be constructed [AMS2, §4]. As a graded vector space, it is the tensor product of:

• the algebra O(t) of polynomial functions on Lie(Z(M◦)) = t, with grading 2
times the standard grading,
• C[r], where r is a formal variable of degree 2,
• the (twisted) group algebra of a finite “Weyl-like” group WqE (in degree 0).

We will work in DbG×C×(X), the G × C×-equivariant bounded derived category of

constructible sheaves on a complex variety X [BeLu]. We let G act on its Lie algebra
g via the adjoint representation, and we let λ ∈ C× act on g as multiplication by
λ−2. In [Lus3, Lus6, AMS2] an important object K ∈ DbG×C×(g) was constructed
from qE , by a process that bears some similarity with parabolic induction. With G◦

instead of G × C×, K would be a character sheaf as in [Lus2]. In general it does
not fit entirely with Lusztig’s notion of character sheaves on disconnected reductive
groups, because those are only G◦-equivariant.

Let gN be the variety of nilpotent elements in the Lie algebra g of G and let KN

be the pullback of K to gN . Up to degree shifts, both K and KN are direct sums of
simple perverse sheaves. This KN generalizes the equivariant perverse sheaves used
to establish the (generalized) Springer correspondence [Lus1]. The following result
was already known for connected G, from [Lus3, Lus6].

Theorem A. (see Theorem 2.2)
There exist natural isomorphisms of graded algebras

H(G,M, qE) −→ End∗Db
G×C×

(g)
(K) −→ End∗Db

G×C×
(gN )

(KN ).

We point out that here the additional C×-action makes things much more inter-
esting (like in [KaLu] for K-theory and affine Hecke algebras). Indeed, the simpler
version End∗DbG(g)

(K) is isomorphic to the crossed product of O(t) with a twisted

group algebra of WqE , and that does not involve any Hecke type relations.

LetDbG×C×(gN ,KN ) be the full triangulated subcategory ofDbG×C×(gN ) generated
by KN . By analogy with progenerators of module categories, Theorem A indicates
that DbG×C×(gN ,KN ) should be equivalent to some category of right H(G,M, qE)-

modules. Our geometric objects are differential complexes of sheaves (up to equiv-
alences), and accordingly we need (equivalence classes of complexes of) differential
graded H(G,M, qE)-modules.

Theorem B. (see Theorem 3.3)
There exists an equivalence of triangulated categories between DbG×C×(gN ,KN ) and

Db(H(G,M, qE) −Modfgdg), the bounded derived category of finitely generated dif-
ferential graded right H(G,M, qE)-modules.

This is a geometric categorification of H(G,M, qE), albeit of a different kind than
in [KaLu, Bez]. It is a variation (with G×C× instead of G◦) on the derived version
of the generalized Springer correspondence from [Rid, RiRu2]. In that setting, the
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algebra is O(t) oW (G,T ), which can also be considered as a graded Hecke algebra
with parameters k = 0. Further, one may regard Theorem B as “formality” of
the graded algebra H(G,M, qE), in the following sense. There exists a differential
graded algebra R (with nonzero differential) such that H∗(R) ∼= H(G,M, qE) and
R is formal, that is, quasi-isomorphic with H∗(R). The equivalence in Theorem B
maps DbG×C×(gN ,KN ) to Db(R−Modfgdg) via some Hom-functor, and from there

to Db(H(G,M, qE)−Modfgdg) by taking cohomology.
From a geometric point of view, it is more natural to consider the entire category

DbG×C×(gN ) in Theorem B. It turns out that this category decomposes, like in a

related setting in [RiRu1]:

Theorem C. There exists an orthogonal decomposition

DbG×C×(gN ) =
⊕

[M,qE]G
DbG×C×(gN ,KN ).

Here KN is constructed from an M -equivariant cuspidal local system qE on a nilpo-
tent orbit in Lie(M), and the direct sum runs over G-conjugacy classes of such pairs
(M, qE).

Theorems B and C describes DbG×C×(gN ) as a derived module category. Let us

point out that the category H(G,M, qE) −Modfgdg in Theorem B is much smaller
than the category of ungraded finitely generated right H(G,M, qE)-modules (which
relates to categories of smooth representations of reductive p-adic groups). In the se-
quel to this paper [Sol6] we focus on standard and irreducible H(G,M, qE)-modules,
and we develop further techniques to study those with equivariant derived con-
structible sheaves. That will enable us to prove a version of the Kazhdan–Lusztig
conjecture for reductive p-adic groups.

In words, Theorem C says that the G× C×-equivariant derived category of con-
structible sheaves on the nilpotent cone gN decomposes as a direct sum of subcate-
gories associated to the various involved cuspidal supports (M, qE). Let us speculate
on how this relates to the Langlands program. An element N ∈ gN and a semisimple
element g ∈ G with Ad(g)N = qFN can be used to define a Langlands parameter
for a reductive group over a non-archimedean local field F . It may be an unramified
L-parameter like in [KaLu]: trivial on the inertia group IF and with g the image of
an arithmetic Frobenius element Frob. But one can also start with a more compli-
cated L-parameter φ, let G◦ be the connected centralizer of φ(IF ) in the complex
dual group and let G/G◦ be generated by φ(Frob).

One may hope that an analogue of Theorem C holds for equivariant sheaves on
varieties (or stacks) of Langlands parameters, as defined in [DHKM, Zhu]. It would
say that the relevant sheaves on Langlands parameters can be decomposed as or-
thogonal direct sums of pieces associated to suitable cuspidal supports. That would
be similar to the Bernstein decomposition of the category of the smooth complex
representations of a reductive p-adic group. A result of this kind is already known
for enhanced L-parameters [AMS1, §8], that covers the cases of simple equivariant
constructible sheaves. To fit with the (conjectural) framework for geometrization of
the local Langlands correspondence from [FaSc, Zhu], a version of Theorem C with
equivariant coherent sheaves on varieties of L-parameters is desirable.

Structure of the paper
We start with recalling twisted graded Hecke algebras in terms of generators and
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relations. We generalize a few results from [Sol3], which say that the set of irre-
ducible representations of a graded Hecke algebra is essentially independent of the
parameters k and r. Then we prove a generally useful result:

Theorem D. The global dimension of H(G,M, qE) equals dim(Z(M◦)) + 1.

In Paragraph 2.1 we describe the geometric construction of H(G,M, qE) in detail,
and we establish Theorem A. Next we check that KN is a semisimple object of
DbG×C×(gN ) and we relate it to parabolic induction for perverse sheaves – which is
needed for Theorems B and C. Paragraph 2.3 is mainly preparation for an argument
with localization to exp(Cσ)-invariants in the sequel to this paper. We include it
already here because it is closely related to Paragraph 2.1 and because our analysis
of (G/P )σ = (G/P )exp(Cσ) for σ ∈ t is of independent interest.

Section 3 is dedicated to Theorems B and C. We prove them by reduction to the
setting of [Rid, RiRu1, RiRu2], where sheaves of Q`-modules on varieties over fields
of positive characteristic are considered. This involves checking many things, among
others that H(G,M, qE) is Koszul as differential graded algebra.

Acknowledgements
We thank Eugen Hellmann for some enlightening conversations and the referee for
helpful remarks.

1. Graded Hecke algebras

Let a be a finite dimensional Euclidean space and let W be a finite Coxeter group
acting isometrically on a, and hence also on the linear dual space a∨. Let R ⊂ a∨

be a reduced integral root system, stable under the action of W , such that the
reflections sα with α ∈ R generate W . These conditions imply that W acts trivially
on the orthogonal complement of RR in a∨.

Write t = a ⊗R C and let S(t∨) = O(t) be the algebra of polynomial functions
on t. We also fix a base ∆ of R. Let Γ be a finite group which acts faithfully and
orthogonally on a and stabilizes R and ∆. Then Γ normalizes W and W o Γ is a
group of automorphisms of (a, R). We choose a W oΓ-invariant parameter function
k : R→ C. Let r be a formal variable, identified with the coordinate function on C
(so O(C) = C[r]).

Let \ : Γ2 → C× be a 2-cocycle and inflate it to a 2-cocycle of W o Γ. Recall
that the twisted group algebra C[W o Γ, \] has a C-basis {Nw : w ∈ W o Γ} and
multiplication rules

Nw ·Nw′ = \(w,w′)Nww′ .

In particular it contains the group algebra of W .

Proposition 1.1. [AMS2, Proposition 2.2]
There exists a unique associative algebra structure on C[W oΓ, \]⊗O(t)⊗C[r] such
that:

• the twisted group algebra C[W o Γ, \] is embedded as subalgebra;
• the algebra O(t) ⊗ C[r] of polynomial functions on t ⊕ C is embedded as a

subalgebra;
• C[r] is central;
• the braid relation Nsαξ − sαξNsα = k(α)r(ξ − sαξ)/α holds for all ξ ∈ O(t)

and all simple roots α;
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• NwξN
−1
w = wξ for all ξ ∈ O(t) and w ∈ Γ.

We denote the algebra from Proposition 1.1 by H(t,W o Γ, k, r, \) and we call it
a twisted graded Hecke algebra. It is graded by putting C[W oΓ, \] in degree 0 and
t∨ \ {0} and r in degree 2. When Γ is trivial, we omit \ from the notation, and we
obtain the usual notion of a graded Hecke algebra H(t,W, k, r).

Notice that for k = 0 Proposition 1.1 yields the crossed product algebra

(1.1) H(t,W o Γ, 0, r, \) = C[r]⊗C O(t) oC[W o Γ, \],

with multiplication rule

NwξN
−1
w = wξ w ∈W o Γ, ξ ∈ O(t).

It is possible to scale all parameters k(α) simultaneously. Namely, scalar multipli-
cation with z ∈ C× defines a bijection mz : t∨ → t∨, which clearly extends to an
algebra automorphism of S(t∨). From Proposition 1.1 we see that it extends even
further, to an algebra isomorphism

(1.2) mz : H(t,W o Γ, zk, r, \)→ H(t,W o Γ, k, r, \)

which is the identity on C[W o Γ, \] ⊗C C[r]. Notice that for z = 0 the map mz is
well-defined, but no longer bijective. It is the canonical surjection

H(t,W o Γ, 0, r, \)→ C[W o Γ, \]⊗C C[r].

One also encounters versions of H(t,W o Γ, k, r, \) with r specialized to a nonzero
complex number. In view of (1.2) it hardly matters which specialization, so it suffices
to look at r 7→ 1. The resulting algebra H(t,W oΓ, k, \) has underlying vector space
C[W o Γ, \]⊗C O(t) and cross relations

(1.3) ξ · sα − sα · sα(ξ) = k(α)(ξ − sα(ξ))/α α ∈ ∆, ξ ∈ S(t∨).

Since Γ acts faithfully on (a,∆), and W acts simply transitively on the collection
of bases of R, W o Γ acts faithfully on a. From (1.3) we see that the centre of
H(t,W o Γ, k, \) is

(1.4) Z(H(t,W o Γ, k, \)) = S(t∨)WoΓ = O(t/W o Γ).

As a vector space, H(t,W o Γ, k, \) is still graded by deg(w) = 0 for w ∈ W o Γ
and deg(x) = 2 for x ∈ t∨ \ {0}. However, it is not a graded algebra any more,
because (1.3) is not homogeneous in the case ξ = α. Instead, the above grading
merely makes H(t,W oΓ, k, \) into a filtered algebra. The graded algebra associated
to this filtration is obtained by setting the right hand side of (1.3) equal to 0. In
other words, the associated graded object of H(t,W oΓ, k, \) is the crossed product
algebra (1.1).

Graded Hecke algebras can be decomposed like root systems and reductive Lie
algebras. Let R1, . . . , Rd be the irreducible components of R. Write a∨i = span(Ri) ⊂
a∨, ti = HomR(a∨i ,C) and z = R⊥ ⊂ t. Then

(1.5) t = t1 ⊕ · · · ⊕ td ⊕ z.

The inclusions W (Ri)→W (R), t∨i → t∨ and z∨ → t∨ induce an algebra isomorphism

(1.6) H(t1,W (R1), k)⊗C · · · ⊗C H(td,W (Rd), k)⊗C O(z) −→ H(t,W, k).

The central subalgebra O(z) ∼= S(z∨) is of course very simple, so the study of graded
Hecke algebras can be reduced to the case where the root system R is irreducible.
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1.1. Some representation theory.
We list some isomorphisms of (twisted) graded Hecke algebras that will be use-

ful later on. For any z ∈ C×, H(t,W o Γ, k, r, \) admits a “scaling by degree”
automorphism

(1.7) x 7→ znx if x ∈ H(t,W o Γ, k, r, \) has degree 2n.

Extend the sign representation to a character sgn of W oΓ, trivial on Γ. That yields
the sign involution

(1.8)
sgn : H(t,W o Γ, k, r, \)→ H(t,W o Γ, k, r, \)

sgn(Nw) = sgn(w)Nw, sgn(r) = −r, sgn(ξ) = ξ w ∈W o Γ, ξ ∈ t∨.

Upon specializing r = 1, it induces an algebra isomorphism

sgn : H(t,W o Γ, k, \)→ H(t,W o Γ,−k, \).
More generally, we can pick a sign ε(sα) for every simple reflection sα ∈ W , such
that ε(sα) = ε(sβ) if sα and sβ are conjugate in W oΓ. Then ε extends uniquely to
a character of W o Γ trivial on Γ (and every character of W o Γ which is trivial on
Γ has this form). Define a new parameter function εk by

εk(α) = ε(sα)k(α).

Then there are algebra isomorphisms

(1.9)
φε : H(t,W o Γ, k, r, \) → H(t,W o Γ, εk, r, \),
φε : H(t,W o Γ, k, \) → H(t,W o Γ, εk, \),
φε(Nw) = ε(w)Nw, φε(r) = r, φε(ξ) = ξ, w ∈W o Γ, ξ ∈ O(t).

Notice that for ε equal to the sign character of W , φε agrees with sgn from (1.8) on
H(t,W o Γ, k, \) but not on H(t,W o Γ, k, r, \).

For R irreducible of type Bn, Cn, F4 or G2, there are two further nontrivial possible
ε’s. Consider the characters εs, εl of W with

εs(sα) =

{
1 α long
−1 α short

, εl(sα) =

{
1 α short
−1 α long

.

Since Γ acts isometrically on a, εl and εs are Γ-invariant. Thus we obtain algebra
isomorphisms

φεs : H(t,WoΓ, k, \)→ H(t,WoΓ, εsk, \), φεl : H(t,WoΓ, k, \)→ H(t,WoΓ, εlk, \).

Lemma 1.2. Let H(t,W o Γ, k, \) be a twisted graded Hecke algebra with a real-
valued parameter function k. Then it is isomorphic to a twisted graded Hecke algebra
H(t,W o Γ, εk, \) with εk : R→ R≥0, via an isomorphism φε that is the identity on
O(t⊕ C).

Proof. Define

ε(sα) =

{
1 k(α) ≥ 0
−1 k(α) < 0

.

Since k is Γ-invariant, this extends to a Γ-invariant quadratic character of W . Then
φε has the required properties. �

With the above isomorphisms we will generalize the results of [Sol3, §6.2], from
graded Hecke algebras with positive parameters to twisted graded Hecke algebras
with real parameters.
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For the moment, we let H stand for either H(t,W oΓ, k, r, \) or H(t,W oΓ, k, \).
Every finite dimensional H-module V is the direct sum of its generalized O(t)-weight
spaces

Vλ := {v ∈ V : (ξ − ξ(λ))dimV v = 0 ∀ξ ∈ O(t)} λ ∈ t.

We denote the set of O(t)-weights of V by

Wt(V ) = {λ ∈ t : Vλ 6= 0}.
Let a− be the obtuse negative cone in RR ⊂ a determined by (R,∆). We denote
the interior of a− in RR by a−−. We recall that a finite dimensional H-module V is
tempered if

Wt(V ) ⊂ a− ⊕ ia
and that V is essentially discrete series if, with z as in (1.5):

Wt(V ) ⊂ a−− ⊕ (z ∩ a)⊕ ia.
For a subset U of t we let Modfl,U (H) be the category of finite dimensional H-modules
V with Wt(V ) ⊂ U . For example, we have the category of H-modules with “real”
weights Modfl,a(H). We indicate a subcategory/subset of tempered modules by a
subscript “temp”. In particular, we have the category of finite dimensional tempered
H-modules Modfl(H)temp.

We want to compare the irreducible representations of

H(t,W o Γ, k, \) = H(t,W o Γ, k, r, \)/(r− 1)

with those of

H(t,W o Γ, 0, \) = H(t,W o Γ, k, r, \)/(r).

The latter algebra has Irr(C[W o Γ, \]) as the set of irreducible representations on
which O(t) acts via evaluation at 0 ∈ t. The correct analogue of this for H(t,W o
Γ, k, \), at least with k real-valued, is

Irra(H(t,W o Γ, k, \))temp := Irr(H(t,W o Γ, k, \))temp ∩Modfl,a(H(t,W o Γ, k, \)).

As C[W oΓ, \] is a subalgebra of H(t,W oΓ, k, \), there is a natural restriction map

ResWoΓ : Modfl(H(t,W o Γ, k, \))→ Modf(C[W o Γ, \]).

However, when k 6= 0 this map usually does not preserve irreducibility, not even on
Irra(H(t,W o Γ, k, \))temp.

In the remainder of this paragraph we assume that the parameter function k only
takes real values. Let ε be as in Lemma 1.2. Since φε is the identity on O(t⊕C), it
induces equivalences of categories

Modfl,U (H(t,W o Γ, εk, \)) −→ Modfl,U (H(t,W o Γ, k, \)) U ⊂ t,
Modfl(H(t,W o Γ, εk, \))temp −→ Modfl(H(t,W o Γ, k, \))temp

and a bijection

Irra(H(t,W o Γ, εk, \))temp −→ Irra(H(t,W o Γ, k, \))temp.

Theorem 1.3. Let k : R→ R be a Γ-invariant parameter function.

(a) The set ResWoΓ(IrraH(t,W o Γ, k, \)temp) is a Z-basis of Z Irr(C[W o Γ, \]).

Suppose that the restriction of k to any type F4 component of R has k(α) = 0 for a
root α in that component or is the form εk′ for a character ε : W (F4) → {±1} and
a geometric k′ : F4 → R>0.
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(b) There exist total orders on Irra(H(t,W o Γ, k, \)temp) and on Irr(C[W o Γ, \]),
such that the matrix of the Z-linear map

ResWoΓ : Z Irra(H(t,W o Γ, k, \))temp → Z Irr(C[W o Γ, \])

is upper triangular and unipotent.
(c) There exists a unique bijection

ζH(t,WoΓ,k,\)) : Irra(H(t,W o Γ, k, \))temp → Irr(C[W o Γ, \])

such that ζH(t,WoΓ,εk,\)(π) always occurs in ResWoΓ(π).

Proof. (a) is known from [Sol2, Proposition 1.7]. The proof of that shows we can
reduce the entire theorem to the case where \ is trivial. We assume that from now
on, and omit \ from the notations.

Parts (b) and (c) were shown in [Sol3, Theorem 6.2], provided that k(α) ≥ 0 for all
α ∈ R. Choose ε as in Lemma 1.2, so that εk : R→ R≥0. For V ∈ Modfl(H(t,W, εk))
we have

ResW (φ∗εV ) = ResW (V )⊗ ε,
so we obtain a commutative diagram

(1.10)
Z Irra(H(t,W, εk))temp

ResW−−−→ Z Irr(W )
↓ φ∗ε ↓ ⊗ε

Z Irra(H(t,W, k))temp
ResW−−−→ Z Irr(W )

All the maps in this diagram are bijective and the vertical maps preserve irreducibil-
ity. Thus the theorem for H(t,W, εk) implies it for H(t,W, k).

The commutative diagram (1.10) also allows us to extend [Sol3, Lemma 6.5] from
H(t,W, εk) to H(t,W, k). Then we can finish our proof for H(t,WoΓ, k) by applying
[Sol3, Lemma 6.6]. �

Remark 1.4. Geometric parameter functions will appear in Section 2. Let us make
the allowed parameter functions for a type F4 root system explicit here. Write
k = (k(α), k(β)) where α is short root and β is a long root. The possibilities are

(0, 0), (c, 0), (0, c), (c, c), (2c, c), (c/2, c), (4c, c), (−c, c), (−2c, c), (−c/2, c), (−4c, c),

where c ∈ R× is arbitrary. We expect that Theorem 1.3 also holds without extra
conditions for type F4.

Theorem 1.5. Let H(t,WoΓ, k, \) be as in Theorem 1.3.b. There exists a canonical
bijection

ζH(t,WoΓ,k,\)) : Irr(H(t,W o Γ, k, \))→ Irr(H(t,W o Γ, 0, \))

which (as well as its inverse)

• respects temperedness,
• preserves the intersections with Modfl,a,
• generalizes Theorem 1.3.c, via the identification

Irra(H(t,W o Γ, 0, \))temp = Irr(C[W o Γ, \]).

Proof. As discussed in the proof of Theorem 1.3.a, we can easily reduce to the
case where \ is trivial. In [Sol3, Proposition 6.8], that case is derived from [Sol3,
Theorem 6.2] (under more strict conditions on the parameters k). Using Theorem 1.3
instead of [Sol3, Theorem 6.2], this works for all parameters allowed in Theorem 1.3.
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Although [Sol3, Proposition 6.8] is only formulated for irreducible representations
in Modfl,a(H(t,W o Γ, k)), the argument applies to all of Irr(H(t,W o Γ, k)). �

1.2. Global dimension.
We want to determine the global dimension of H(t,W oΓ, k, r, \). For H(t,W, kr)

that has already been done in [Sol1], and our argument is based on reduction to
that case. A lower bound for the global dimension is easily obtained:

Lemma 1.6. gl. dim(H(t,W o Γ, k, r, \)) ≥ dimC(t⊕ C).

Proof. We abbreviate H = H(t,W o Γ, k, r, \). Pick λ ∈ t such that wλ 6= λ for all
w ∈W oΓ\{1}. Fix any r ∈ C and let Cλ,r be the onedimensional O(t⊕C)-module
with character (λ, r). By [BaMo, Theorem 6.4], which generalizes readily to include
Γ, the O(t)-weights of

(1.11) ResHO(t⊕C)indH
O(t⊕C)Cλ,r

are precisely the wλ with w ∈ W o Γ. These are all different and the dimension of
(1.11) is |W o Γ|, so (1.11) must be isomorphic with

⊕
w∈WoΓ Cwλ,r. By Frobenius

reciprocity

ExtnH
(
indH
O(t⊕C)Cλ,r, indH

O(t⊕C)Cλ,r
) ∼= ExtnO(t⊕C)

(
Cλ,r,ResHO(t⊕C)indH

O(t⊕C)Cλ,r
)

∼=
⊕

w∈WoΓ
ExtnO(t⊕C)

(
Cλ,r,Cwλr

)
= ExtnO(t⊕C)

(
Cλ,r,Cλr

)
.

It is well-known (and can be computed with a Koszul resolution) that the last
expression equals (with T for tangent space)∧n (

Tλ,r(t⊕ C)
)

=
∧n

(t⊕ C).

This is nonzero when 0 ≤ n ≤ dimC(t⊕C), so the global dimension must be at least
dimC(t⊕ C). �

With a general argument, the computation of the global dimension of
H(t,W o Γ, k, r, \) can be reduced to the cases with Γ = {1}.

Lemma 1.7. Let Γ be a finite group acting by automorphisms on a complex algebra
A. Let \ : Γ2 → C× be a 2-cocycle and build the twisted crossed product Ao C[Γ, \]
with multiplication relations as in Proposition 1.1 – the role of H(t,W, k, r) is played
by A. Then

gl.dim(AoC[Γ, \]) = gl.dim(A).

Proof. For any A-module M

Res
AoC[Γ,\]
A ind

AoC[Γ,\]
A M ∼=

⊕
γ∈Γ

γ∗(M).

Hence ExtnA(M ′,M) is a direct summand of

ExtnA
(
M ′,Res

AoC[Γ,\]
A ind

AoC[Γ,\]
A M

) ∼= ExtnA
(
ind

AoC[Γ,\]
A M ′, ind

AoC[Γ,\]
A M

)
.

In particular gl. dim (A) ≤ gl. dim (AoC[Γ, \]).
For any AoC[Γ, \]-module V there is a surjective module homomorphism

p : ind
AoC[Γ,\]
A Res

AoC[Γ,\]
A V → V

x⊗ v 7→ xv
.
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On the other hand, there is a natural injection

ı : V → ind
AoC[Γ,\]
A Res

AoC[Γ,\]
A V

v 7→
∑

γ∈ΓN
−1
γ ⊗Nγv

.

This in fact a module homomorphism. Namely, for a ∈ A:

ı(av) =
∑

γ∈Γ
N−1
γ ⊗Nγav =

∑
γ∈Γ

N−1
γ ⊗ γ(a)Nγv

=
∑

γ∈Γ
N−1
γ γ(a)⊗Nγv =

∑
γ∈Γ

aN−1
γ ⊗Nγv = aı(v).

Similarly, for g ∈ Γ:

ı(Ngv) =
∑

γ∈Γ
N−1
γ ⊗NγNgv =

∑
γ∈Γ

NgN
−1
g N−1

γ ⊗NγNgv

=
∑

γ∈Γ
NgN

−1
γg ⊗Nγgv =

∑
h∈Γ

NgN
−1
h ⊗Nhv = Ngı(v).

Clearly p ◦ ı = |Γ| idV , so

ind
AoC[Γ,\]
A Res

AoC[Γ,\]
A V ∼= V ⊕ ker p as AoC[Γ, \]-modules.

For any second AoC[Γ, \]-module V ′, ExtnAoC[Γ,\](V, V
′) is a direct summand of

ExtnAoC[Γ,\]

(
V ⊕ ker p, V ′

)
= ExtnAoC[Γ,\]

(
ind

AoC[Γ,\]
A Res

AoC[Γ,\]
A V, V ′

)
.

By Frobenius reciprocity the latter is isomorphic with ExtnA
(
V,Res

AoC[Γ,\]
A V ′

)
. Hence

ExtnAoC[Γ,\](V,M) vanishes whenever n >gl. dim(A). �

In view of Lemma 1.7 and the construction of H(t,WoΓ, k, r, \), it can be expected
that it has the same global dimension as O(t ⊕ C). The latter equals dimC(t ⊕ C),
see for instance [Wei, Theorem 4.3.7].

While the global dimensions of these algebras do indeed agree, Lemma 1.7 does
not suffice to show that. One complication is that a map like ı above is not a module
homomorphism in the setting of the group W o Γ and the algebra O(t⊕ C), when
the parameters of the Hecke algebra are nonzero.

Lemma 1.8. For r ∈ C, let Ĥr be the formal completion of H(t,W, k, r) with respect
to the ideal (r− r) of C[r]. Then

gl. dim(H(t,W o Γ, k, r, \)) = supr∈C gl. dim(Ĥr).

Proof. By Lemma 1.7 we may assume that Γ = {1}, so that \ disappears. We
abbreviate H = H(t,W, k, r). All the algebras in this proof are Noetherian, so by
[Wei, Proposition 4.1.5] their global dimensions equal their Tor-dimensions. We will
use both the characterization in terms of Ext-groups and that in terms of Tor-groups,
whatever we find more convenient.

For an H-module V and r ∈ C, we consider the formal completion of V with
respect to the ideal (r− r) of C[r]:

V̂r = V ⊗C[r] C[[r− r]].
Completion is an exact functor, so by [Wei, Corollary 3.2.10]

(1.12) TorHm(V,M)⊗C[r] C[[r− r]] ∼= TorĤrm (V̂r, M̂r).

Every Ĥr-module is of the form V̂r (namely, starting from V̂r as H-module). Thus

(1.12) shows that gl. dim(Ĥr) ≤ gl. dim(H).
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When V and M are finitely generated (which suffices to compute global dimen-
sions), they have projective resolutions consisting of free modules of finite rank [KNS,
Lemma 3]. The centre of H was identified in [Lus4, Proposition 4.5] as

Z(H) = O(t)W ⊕ C[r],

and we see that H has finite rank as module over Z(H). It follows that TorHm(V,M) is
finitely generated as Z(H)-module. By [Sol5, Lemma 2.9], TorHm(V,M) is nonzero if
and only if its formal completion with respect to some character of Z(H) is nonzero.
That happens if and only if (1.12) is nonzero for some r ∈ C. �

It remains to find a good upper bound for the global dimension of Ĥr.

Theorem 1.9. The global dimension of H(t,W o Γ, k, r, \) equals dimC(t) + 1.

Proof. By Lemma 1.7 it suffices to consider the cases with Γ = {1}. The crucial
point of our proof is that the global dimension of the graded Hecke algebra

H/(r− r) = H(t,W, rk)

has already been computed, and equals dimC(t) [Sol1, Theorem 5.3]. For any H/(r−
r)-module V1, [Wei, Theorem 4.3.1] provides an equality of projective dimensions

pdH(V1) = pdH/(r−r)(V1) + pdH(H/(r− r)).
From the short exact sequence

0→ H r−r−−→ H→ H/(r− r)→ 0

we see that pdH(H/(r− r)) = 1. Hence

(1.13) pdH(V1) = pdH/(r−r)(V1) + 1 ≤ dimC(t) + 1.

In other words, TorHm(V1,M) = 0 for all m > dimC(t) + 1.
Let V2 be an H-module on which (r− r)2 acts as 0. In the short exact sequence

0→ (r− r)V2 → V2 → V2/(r− r)V2 → 0,

r−r annihilates both the outer terms, so (1.13) applies to them. Applying TorH∗ (?,M)
to this short exact sequence yields a long exact sequence, and taking (1.13) into ac-
count we see that TorHm(V2,M) = 0 for all m > dimC(t) + 1.

This argument can be applied recursively, and then it shows that

(1.14) TorHm(Vn,M) = 0 if m > dimC(t)+1 and (r−r)nVn = 0 for some n ∈ N.

Assume now that V and M are finitely generated Ĥr-modules. By (1.12) and (1.14)

(1.15) TorĤrm (V/(r− r)nV,M) = 0 for m > dimC(t) + 1 and n ∈ N.

Let P∗ →M be a resolution by free Ĥr-modules Pi of finite rank µi (this is possible

because Ĥr is Noetherian). Then

TorĤrm (V/(r−r)nV,M) = Hm

(
V/(r−r)nV ⊗Ĥr Ĥ

µ∗
r , d∗

)
= Hm

(
(V/(r−r)nV )µ∗ , d∗

)
.

Here the sequence of differential complexes
(
(V/(r−r)nV )µ∗ , d∗

)
, indexed by n ∈ N,

satisfies the Mittag–Leffler condition because the transition maps are surjective. The

inverse limit of the sequence is (V µ∗ , d∗), which computes TorĤrm (V,M). According
to [Wei, Theorem 3.5.8] there is a short exact sequence

0→ lim←−
1TorĤrm+1(V/(r−r)nV,M)→ TorĤrm (V,M)→ lim←−TorĤrm (V/(r−r)nV,M)→ 0.
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For m > dimC(t)+1, (1.15) shows that both outer terms vanish, so TorĤrm (V,M) = 0
as well. Hence

gl. dim(Ĥr) ≤ dimC(t) + 1.

Together with Lemmas 1.6 and 1.8 that finishes the proof. �

2. Equivariant sheaves and equivariant cohomology

We follow the setup from [Lus3, Lus6, AMS1, AMS2]. In these references a
graded Hecke algebra was associated to a cuspidal local system on a nilpotent orbit
for a complex reductive group, via equivariant cohomology. For future applications
to Langlands parameters we deal not only with connected groups, but also with
disconnected reductive groups G.

We work in the G-equivariant bounded derived category DbG(X), as in [BeLu],
[Lus3, §1] and [Lus6, §1]. The formalism of [BeLu] entails that this is not exactly
the bounded derived category of the category of G-equivariant constructible sheaves
on a G-variety X. Morphisms in DbG(X) are defined via a resolution of X by G-
varieties Y as in [BeLu], and on each such Y we use morphisms in a (non-equivariant)
derived category of sheaves. Equivariant cohomology for objects of DbG(X) is defined
via push-forward to a point, representing the result as a complex of sheaves on a
classifying space BG for G and then taking cohomology in Db(BG). For more
background we refer to [Ach, Chapter 6].

We will use some notations and conventions from [Lus6], in particular functors
from or to DbG(X) are by default derived functors. Let [n] be the functor that shifts

degrees by n. For objects A,B of DbG(X) and n ∈ Z, we write

Homn
DbG(X)

(A,B) = HomDbG(X)(A,B[n]).

In the case A = B one obtains the graded algebra

End∗DbG(X)
(A) =

⊕
n∈Z

Homn
DbG(X)

(A,A).

2.1. Geometric construction of graded Hecke algebras.
Recall from [AMS1] that a quasi-Levi subgroup of G is a group of the form

M = ZG(Z(L)◦), where L is a Levi subgroup of G◦. Thus Z(M)◦ = Z(L)◦ and
M ←→ L = M◦ is a bijection between the quasi-Levi subgroups of G and the Levi
subgroups of G◦.

Definition 2.1. A cuspidal quasi-support for G is a triple (M, CMv , qE) where:

• M is a quasi-Levi subgroup of G;
• CMv is the Ad(M)-orbit of a nilpotent element v ∈ m = Lie(M).
• qE is a M -equivariant cuspidal local system on CMv , i.e. as M◦-equivariant

local system it is a direct sum of cuspidal local systems.

We denote the G-conjugacy class of (M, CMv , qE) by [M, CMv , qE ]G. With this cuspidal
quasi-support we associate the groups

(2.1) NG(qE) = StabNG(M)(qE) and WqE = NG(qE)/M.

Let gN be the variety of nilpotent elements in the Lie algebra g = Lie(G). Cus-
pidal quasi-supports are useful to partition the set of G-equivariant local systems
on Ad(G)-orbits in gN . Let E be an irreducible constituent of qE as M◦-equivariant
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local system on CMv (which by the cuspidality of E equals the Ad(M◦)-orbit of v).
Then

W ◦E := NG◦(M
◦)/M◦ ∼= NG◦(M

◦)M/M

is a subgroup of WqE . It is normal because G◦ is normal in G. Write T = Z(L)◦

and t = Lie(T ). It is known from [Lus3, Proposition 2.2] that R(G◦, T ) ⊂ t∨ is a
root system with Weyl goup W ◦E .

Let P ◦ be a parabolic subgroup of G◦ with Levi decomposition P ◦ = M◦ n U .
The definition of M entails that it normalizes U , so

P := M n U

is a again a group, a “quasi-parabolic” subgroup of G. We put

NG(P, qE) = NG(P,M) ∩NG(qE),

ΓqE = NG(P, qE)/M.

The same proof as for [AMS2, Lemma 2.1.b] shows that

(2.2) WqE = W ◦E o ΓqE .

The WqE -action on T gives rise to an action of WqE on O(t) = S(t∨).
We specify our parameters k(α). For α in the root system R(G◦, T ), let gα ⊂ g be

the associated eigenspace for the T -action. Let ∆P be the set of roots in R(G◦, T )
which are simple with respect to P . For α ∈ ∆P we define k(α) ∈ Z≥2 by

(2.3)
ad(v)k(α)−2 : gα ⊕ g2α → gα ⊕ g2α is nonzero,

ad(v)k(α)−1 : gα ⊕ g2α → gα ⊕ g2α is zero.

Then (k(α))α∈∆P
extends to a WqE -invariant function k : R(G◦, T )red → C, where

the subscript “red” indicates the set of reduced (or indivisible) roots. Let \ :
(WqE/W

◦
E )2 → C× be a 2-cocycle (to be specified later). To these data we asso-

ciate the twisted graded Hecke algebra H(t,WqE , k, r, \), as in Proposition 1.1.
To make the connection of the above twisted graded Hecke algebra with the

cuspidal local system qE complete, we involve the geometry of G and g. Write

treg = {x ∈ t : Zg(x) = l} and gRS = Ad(G)(CMv ⊕ treg ⊕ u).

Consider the varieties

ġ = {(X, gP ) ∈ g×G/P : Ad(g−1)X ∈ CMv ⊕ t⊕ u},
ġ◦ = {(X, gP ) ∈ g×G◦/P ◦ : Ad(g−1)X ∈ CMv ⊕ t⊕ u},
ġRS = ġ ∩ (gRS ×G/P ),

ġN = ġ ∩ (gN ×G/P ).

We let G× C× act on these varieties by

(g1, λ) · (X, gP ) = (λ−2Ad(g1)X, g1gP ).

By [Lus3, Proposition 4.2] there is a natural isomorphism

(2.4) H∗G×C×(ġ) ∼= O(t)⊗C C[r].

The same calculation (omitting t from the definition of ġ) shows that

(2.5) H∗G×C×(ġN ) ∼= O(t)⊗C C[r].
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Consider the maps

(2.6)
CMv

f1←− {(X, g) ∈ g×G : Ad(g−1)X ∈ CMv ⊕ t⊕ u} f2−→ ġ,

f1(X, g) = prCMv (Ad(g−1)X), f2(X, g) = (X, gP ).

The group G× C× × P acts on {(X, g) ∈ g×G : Ad(g−1)X ∈ CMv ⊕ t⊕ u} by

(g1, λ, p) · (X, g) = (λ−2Ad(g1)X, g1gp).

Notice that the local system qE on CMv is M × C×-equivariant, because C× is con-
nected and stabilizes nilpotent M -orbits. Further f1 is constant on G-orbits, so
f∗1 qE is naturally a G×C×-equivariant local system. Let ˙qE be the unique G×C×-

equivariant local system on ġ such that f∗2
˙qE = f∗1 qE . Let pr1 : ġ → g be the

projection on the first coordinate. When G is connected, Lusztig [Lus6] has con-
structed graded Hecke algebras from

K := pr1,!
˙qE ∈ DbG×C×(g).

For our purposes the pullback KN of K to the nilpotent variety gN ⊂ g will be more
suitable than K itself.

We can relate ġ and K to their versions for G◦, as follows. Write

(2.7) G =
⊔

γ∈NG(P,M)/M

G◦γM/M and G/P =
⊔

γ∈NG(P,M)/M

G◦γP/P.

Then we can decompose

(2.8) ġ =
⊔

γ∈NG(P,M)/M
{(X, gγP ) ∈ ġ : g ∈ G◦} =⊔

γ∈NG(P,M)/M

{(X, gγPγ−1) : X ∈ g, g ∈ G◦/γP ◦γ−1,Ad(g−1)X ∈ Ad(γ)(CMv + t + u)}

=
⊔

γ∈NG(P,M)/M
ġ◦γ .

Here each term ġ◦γ is a twisted version of ġ◦. Consequently K is a direct sum of

G◦×C×-equivariant subobjects, each of which is a twist of the K for (G◦M, CMv , qE)
by an element of NG(M)/M .

Let ˙qERS be the pullback of ˙qE to ġRS . Let ICG×C×(g × G/P, ˙qERS) be the

equivariant intersection complex determined by ˙qERS , supported on the closure of
ġRS in g×G/P . Notice that pr1 becomes proper on this domain. The map

pr1,RS : ġRS → gRS

is a fibration with fibre NG(M)/M , so (pr1,RS)!
˙qERS is a local system on gRS . It is

shown in [Lus6, Proposition 7.12.c] that

(2.9) K ∼= pr1,! ICG×C×(g×G/P, ˙qERS) ∼= ICG×C×(g, (pr1,RS)!
˙qERS).

The last expression shows that K is a direct sum of simple perverse sheaves with
support gRS . Further, [AMS1, Lemma 5.4] and [Lus6, Proposition 7.14] say that

(2.10) C[WqE , \qE ] ∼= End0
Db
G×C×

(gRS)

(
(pr1,RS)!

˙qERS
) ∼= End0

Db
G×C×

(g)
(K),
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where \qE : (WqE/W
◦
E )2 → C× is a suitable 2-cocycle. As in [AMS2, (8)], we record

the subalgebra of endomorphisms that stabilize Lie(P ):

(2.11) End0
Db
G×C×

(g)

(
pr1,!

˙qE
)
P
∼= C[ΓqE , \qE ].

Now we associate to (M, CMv , qE) the twisted graded Hecke algebra

H(G,M, qE) := H(t,WqE , k, r, \qE),

where the parameters c(α) come from (2.3). As in [AMS2, Lemma 2.8], we can
regard it as

H(G,M, qE) = H(t,W ◦E , k, r) o End0
Db
G×C×

(g)

(
pr1,!

˙qE
)
P
,

and then it depends canonically on (G,M, qE). We note that (2.2) implies

(2.12) H(G◦NG(P, qE),M, qE) = H(G,M, qE).

There is also a purely geometric realization of this algebra. For Ad(G)× C×-stable
subvarieties V of g, we define, as in [Lus3, §3],

(2.13)
V̇ = {(X, gP ) ∈ ġ : X ∈ V},

V̈ = {(X, gP, g′P ) : (X, gP ) ∈ V̇, (X, g′P ) ∈ V̇}.

Let qE∨ be the dual equivariant local system on CMv , which is also cuspidal. It gives

rise to K∨ = pr1,!
˙qE∨, another equivariant intersection cohomology complex on g.

The two projections π12, π13 : V̈ → V̇ give rise to a G×C×-equivariant local system

q̈E = (π12 × π13)∗
(

˙qE � ˙qE∨
)

on V̈,

which carries a natural action of (2.4). As in [Lus3], the action of C[WqE , \
−1
qE ] on

K∨ leads to

(2.14) actions of C[WqE , \qE ]⊗ C[WqE , \
−1
qE ] on q̈E and on HG◦×C×

j

(
V̈, q̈E

)
.

In [Lus3] and [AMS2, §2] a left action ∆ and a right action ∆′ of H(G,M, qE) on

HG×C×
∗ (g̈N , q̈E) are constructed.

Theorem 2.2. (a) The actions ∆ and ∆′ identify HG×C×
∗ (g̈, q̈E) and

HG×C×
∗ (g̈N , q̈E) with the biregular representation of H(G,M, qE).

(b) Methods from equivariant cohomology provide natural isomorphisms of graded
vector spaces

End∗Db
G×C×

(g)
(K) ∼= HG×C×

∗ (g̈, q̈E),

End∗Db
G×C×

(gN )
(KN ) ∼= HG×C×

∗ (g̈N , q̈E).

(c) Parts (a) and (b) induce canonical isomorphisms of graded algebras

H(G,M, qE)→ End∗Db
G×C×

(g)
(K)→ End∗Db

G×C×
(gN )

(KN ).

Proof. (a) When G is connected, this is shown for g̈N in [Lus3, Corollary 6.4] and
for g̈ in the proof of [Lus6, Theorem 8.11], based on [Lus3]. In [AMS2, Corollary 2.9
and §4] both are generalized to possibly disconnected G.
(b) For (g,K) with G connected this is the beginning of the proof of [Lus6, Theorem
8.11]. The same argument applies when G is disconnected, and with (gN ,KN )
instead of (g,K).
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(c) In [Lus6, Theorem 8.11] the first isomorphism is shown when G is connected.
Using parts (a,b) the same argument applies when G is disconnected. Similarly we
obtain

H(G,M, qE) ∼= End∗Db
G×C×

(gN )
(KN ).

These two graded algebra isomorphisms are linked via parts (a,b) and functoriality
for the inclusion gN → g. �

2.2. Semisimplicity of some complexes of sheaves.
For an alternative construction of ˙qE and K, we consider the isomorphism of

G× C×-varieties

(2.15)
G×P (CMv ⊕ t⊕ u) → ġ

(g,X) 7→ (Ad(g)X, gP )
.

We note that the middle term in (2.6) is isomorphic to G × (CMv ⊕ t ⊕ u) via the
map (X, g) 7→ (g,Ad(g−1)X). In these terms, (2.6) becomes

(2.16) CMv
f ′1←− G× (CMv ⊕ t⊕ u)

f ′2−→ G×P (CMv ⊕ t⊕ u),

with the natural maps f ′1 and f ′2. We get ˙qE as G×C×-equivariant local system on

G×P (CMv ⊕ t⊕ u), satisfying f
′∗
2

˙qE = f
′∗
1 qE . In this setup pr1 is replaced by

(2.17)
µ : G×P (CMv ⊕ t⊕ u) → g

(g,X) 7→ Ad(g)X

and then

(2.18) K = µ!
˙qE .

Recall that we defined KN as the pullback KN of K to the variety gN , and that K is
a semisimple complex (that is, isomorphic to a direct sum of simple perverse sheaves,
maybe with degree shifts). We will prove that KN is also semisimple complex of
sheaves. We write

ġN = ġ ∩ (gN ×G/P ).

The maps (2.6) restrict to

(2.19) CMv
f1,N←−−− {(X, g) ∈ gN ×G : Ad(g−1)X ∈ CMv ⊕ u}

f2,N−−−→ ġN ,

which allows us to define a local system ˙qEN on ġN by f∗2,N
˙qE = f∗1,NqEN . Then

˙qEN is the pullback of ˙qE to gN , because f∗1,NqEN is the pullback of f∗1 qE . Let pr1,N

be the restriction of pr1 to ġN . From the Cartesian diagram

(2.20) ġN //

pr1,N

��

ġ

pr1

��
gN // g

we see with base change [BeLu, Theorem 3.4.3] that

(2.21) pr1,N,!
˙qEN equals the pullback KN of K to gN .

Proposition 2.3. There is a natural isomorphism

KN
∼= pr1,N,! ICG×C×(gN ×G/P, ˙qEN ).
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Proof. Notice that the middle term in (2.19) is isomorphic with G × CMv ⊕ u and
that (2.15) provides an isomorphism

ġN ∼= G×P (CMv ⊕ u).

With the commutative diagram

(2.22) CMv

��

CMv ⊕ uprCMv

oo

��
G×P CMv G×P (CMv ⊕ u)

idG×prCMv

oo

we can construct ˙qEN ∈ DbG×C×(G×P (CMv ⊕ u)) in two equivalent ways:

• pullback of qE to Cmv ⊕ u (as P × C×-equivariant local system) and then

equivariant induction indG×C
×

P×C× as in [BeLu, §2.6.3];

• equivariant induction indG×C
×

P×C× of qE to G×P CMv and the pullback to

G×P (CMv ⊕ u).

In these terms

(2.23) KN = µN,! ˙qEN ,

where µN : G ×P (CMv ⊕ u) → gN is the restriction of (2.17). Let jmN : CMv → mN

be the inclusion. Then

(2.24) KN = µN,!(idG × jmN × idu)!
˙qEN ,

where now the domain of µN is mN ⊕ u.
Regarded as M◦ × C×-equivariant local system on CMv , qE is a direct sum of

irreducible cuspidal local systems E . Each of those E is clean [Lus1, Theorem 23.1],
which means that

jmN ,!E = IC(mN , E) = jmN ,∗E .

Taking direct sums over the appropriate E , we find that qE is clean as well:

(2.25) jmN ,!qE = IC(mN , qE) = jmN ,∗qE .

In the diagram (2.22) the map prCMv extends naturally to

prmN : mN ⊕ u→ mN ,

and both are trivial vector bundles. Hence (up to degree shifts)

(2.26) pr∗mN jmN ,!qE = pr∗mN ICP×C×(mN , qE) = pr∗mN jmN ,∗qE =

(jmN × idu)∗pr∗CMv
qE = ICP×C×(mN ⊕ u, pr∗CMv

qE) = (jmN × idu)!pr∗CMv
qE .
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The vertical maps in (2.22) induce equivalences of categories indG×C
×

P×C× , which com-

mute with the relevant functors induced by the horizontal maps in (2.22), so

(2.27)

(idG × jmN × idu)!
˙qEN = (idG × jmN × idu)!indG×C

×

P×C×pr∗CMv
qE

= indG×C
×

P×C×(jmN × idu)!pr∗CMv
qE

= indG×C
×

P×C×ICP×C×(mN ⊕ u, pr∗CMv
qE)

= ICG×C×
(
G×P (mN ⊕ u), indG×C

×

P×C×pr∗CMv
qE
)

= ICG×C×
(
G×P (mN ⊕ u), ˙qEN

)
.

Since G×P (mN ⊕ u) is closed in G×P gN , the last expression is isomorphic with

(2.28) ICG×C×(G×P gN , ˙qEN ).

Via the isomorphism

(2.29) G×P gN ∼= gN ×G/P

obtained from (2.15) by restriction, (2.28) becomes ICG×C×(gN ×G/P, ˙qEN ). Com-
bine that with (2.24) and (2.27). �

The following method to prove semisimplicity ofKN is based on the decomposition
theorem for perverse sheaves of algebraic origin [BBD, Théorème 6.2.5]. The same
method can be applied to K, using the first isomorphism in (2.9).

Lemma 2.4. KN is a semisimple object of DbG×C×(gN ).

Proof. By construction every M◦-equivariant (cuspidal) local system on a Ad(M◦)-
orbit in mN is algebraic. The automorphism group Aut(M◦der) of the derived sub-
group of M◦ is algebraic and defined over Z. The action of M on mN factors through
Aut(M◦der), and hence the cuspidal local system qE on CMv is of algebraic origin.

Like for M , the automorphism group of G◦der is algebraic and defined over Z, and
the adjoints actions of G and P on g factor via that group. Therefore not only
pr∗CMv

qE but also

˙qEN = indG×C
×

P×C×pr∗CMv
qE ∈ DbG×C×(G×P mN ⊕ u)

is of algebraic origin. As the isomorphism (2.35) only involves G via the adjoint

action, it follows that ICG×C×(gN ×G/P, ˙qEN ) is of algebraic origin as well. Since

pr1,N : gN ×G/P → gN

is proper, we can apply the decomposition theorem for equivariant perverse sheaves
[BeLu, §5.3.1] to Proposition 2.3. This is based on the non-equivariant version from
[BBD, §6], and therefore requires objects of algebraic origin. �

For compatibility with other papers we record that, by (2.24), (2.26) and (2.27):

(2.30)

KN
∼= µN,!indG×C

×

P×C×ICP×C×(mN ⊕ u,pr∗CMv
qE)

∼= µN,!indG×C
×

P×C×pr∗mN ICP×C×(mN , qE)

∼= µN,!(idG × prmN )∗indG×C
×

P×C×ICP×C×(mN , qE).
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Like in [Ach, §8.4], the diagram

(2.31) mN → G×P mN

idG×prmN←−−−−−− G×P (mN ⊕ u)
µN−−→ gN

gives rise to a parabolic induction functor

(2.32) IG×C×
P×C× = µN,!(idG × prmN )∗indG×C

×

P×C× : DbP×C×(mN )→ DbG×C×(gN ).

Since U ⊂ P is contractible and acts trivially on mN , inflation along the quotient
map P →M induces an equivalence of categories

DbP×C×(mN ) ∼= DbM×C×(mN ).

With these notions (2.30) says precisely that

(2.33) KN
∼= IG×C

×

P×C× ICM×C×(mN , qE).

For later use we also mention the parabolic restriction functor

(2.34) RG×C×
P×C× =

(
indG×C

×

P×C×
)−1

(idG × prmN )∗µ
!
N : DbG×C×(gN )→ DbP×C×(mN ).

The arguments in Proposition 2.3 and (2.30) admit natural analogues forK. Namely,
with the diagram

mN → G×P mN

idG×prmN←−−−−−− G×P (mN ⊕ t⊕ u)
µ−→ g

instead of (2.31), we get a functor similar to (2.32). That yields an isomorphism

(2.35) K ∼= µ!(idG × prmN )∗indG×C
×

P×C×ICP×C×(mN , qE).

This also follows from [Lus6, Proposition 7.12], at least when G is connected.

2.3. Variations for centralizer subgroups.
Let σ ∈ t, so that M = ZG(T ) ⊂ ZG(σ). We would like to compare Theorem 2.2

with its version for (ZG(σ),M, qE). First we analyse the variety

(G/P )σ := {gP ∈ G/P : σ ∈ Lie(gPg−1)}.
This is also the fixed point set of exp(Cσ) in G/P . Let Z◦G(σ) be the connected
component of ZG(σ).

Lemma 2.5. For any gP ∈ (G/P )σ, the subgroup gP ◦g−1 ∩ Z◦G(σ) of Z◦G(σ) is
parabolic.

Proof. Consider the parabolic subgroup P ′ := gP ◦g−1 of G◦. Its Lie algebra p′

contains the semisimple element σ, so there exists a maximal torus T ′ of P ′ with
σ ∈ t′. Let M ′ be the unique Levi factor of P ′ containing T ′. The unipotent
radical U ′ of P ′ and the opposite parabolic M ′Ū ′ give rise to decompositions of
Z(m′)-modules

g = ū′ ⊕ p′, p′ = Z(m′)⊕m′der ⊕ u′.

Since Z(m′) ⊂ t′ ⊂ Zg(σ), these decompositions are preserved by intersecting with
Zg(σ):

Zg(σ) = Zū′(σ)⊕ Zp′(σ), Zp′(σ) = Z(m′)⊕ Zm′der
(σ)⊕ Zu′(σ).

This shows that Zg(σ) ∩ p′ is a parabolic subalgebra of Zg(σ). Hence Z◦G(σ) ∩ P ′ is
a parabolic subgroup of Z◦G(σ). �

The subgroup ZG(σ) ⊂ G stabilizes (G/P )σ, so the latter is a union of ZG(σ)-
orbits.
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Lemma 2.6. The connected components of (G/P )σ are precisely its Z◦G(σ)-orbits.

Proof. Clearly every Z◦G(σ)-orbit is connected. From (2.7) we get an isomorphism
of varieties

(2.36) G/P =
⊔

γ∈NG(M)/M
γG◦P/P ∼=

⊔
γ
γG◦/P ◦.

Here Z◦G(σ) acts on γG◦/P ◦ by

z · γgP ◦ = γ(γ−1zγ)gP ◦,

so via conjugation by γ−1 and the natural action of γ−1Z◦G(σ)γ = Z◦G(Ad(γ−1)σ)
on G◦/P ◦. Taking exp(Cσ)-fixed points in (2.36) gives

(G/P )σ ∼=
⊔

γ
(γG◦/P ◦)σ

=
⊔

γ
{γgP ◦ : g ∈ G◦, σ ∈ Lie(γgP ◦g−1γ−1)}

=
⊔

γ
γ{gP ◦ : g ∈ G◦,Ad(γ−1)σ ∈ Lie(gP ◦g−1)}

=
⊔

γ
γ(G◦/P ◦)Ad(γ−1)σ.

This reduces the lemma to the case G◦/P ◦, so to the connected group G◦. For
that we refer to [ChGi, Proposition 8.8.7.ii]. That reference is written for Borel
subgroups, but with Lemma 2.5 the proof also applies to other conjugacy classes of
parabolic subgroups. �

It is also shown in [ChGi, Proposition 8.8.7.ii] that every Z◦G(σ)-orbit in (G/P )σ

is a submanifold and an irreducible component.

Lemma 2.7. There are isomorphisms of ZG(σ)-varieties⊔
w∈NZG(σ)(M)\NG(M)

ZG(σ)/ZwPw−1(σ) ∼=
⊔

w∈NZG(σ)(M)\NG(M)

ZG(σ) · wP = (G/P )σ.

Proof. By Lemma 2.6 there exist finitely many γ ∈ G such that

(2.37) (G/P )σ = tγZ◦G(σ) · γP.
Then the same holds with ZG(σ) instead of Z◦G(σ), and fewer γ’s. The ZG(σ)-
stabilizer of γP is

{z ∈ ZG(σ) : zγPγ−1 = γPγ−1} = ZG(σ) ∩ γPγ−1 = ZγPγ−1(σ).

That proves the lemma, except for the precise index set.
Fix a maximal torus T ′ of Z◦G(σ) with T ⊂ T ′. Every parabolic subgroup of G◦

or Z◦G(σ) is conjugate to one containing T ′. The G◦-conjugates of P ◦ that contain
T ′ are the wP ◦w−1 with w ∈ NG◦(T

′), or equivalently with

w ∈ NG◦(T
′)/NP ◦(T

′) = NG◦(T
′)/NM◦(T

′) ∼= NG◦(M
◦)/M◦.

For w,w′ ∈ NG◦(M
◦), wP ◦ and w′P ◦ are in the same Z◦G(σ)-orbit if and only if

w′w−1 ∈ NZ◦G(σ)(M
◦). We find that

(2.38) (G◦/P ◦)σ =
⊔

w∈NZ◦
G

(σ)(M
◦)\NG◦ (M◦)

Z◦G(σ) · wP ◦.

We note that the group

NG◦(M
◦)/M◦ = NG◦(T )/ZG◦(T ) = NG◦(M)/M◦ ∼= NG◦(M)M/M
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normalises P . When we replace G◦/P ◦ by G/P in (2.38), the options for w need
to be enlarged to NG(M)/M . Next we replace Z◦G(σ) by ZG(σ), so that wP and
w′P are in the same ZG(σ)-orbit if and only if w′w−1 ∈ NZG(σ)(M)/M . Notice that
wP ∈ (G/P )σ because

σ ∈ m = Lie(wMw−1) ⊂ Lie(wPw−1).

We conclude that

(G/P )σ =
⊔

w∈NZ◦
G

(σ)(M)\NG(M)

Z◦G(σ) · wP =
⊔

w∈NZG(σ)(M)\NG(M)

ZG(σ) · wP. �

The fixed point set of exp(Cσ) in ġ is

ġσ = ġ∩ (Zg(σ)× (G/P )σ) = {(X, gP ) ∈ Zg(σ)× (G/P )σ : Ad(g−1)X ∈ CMv + t+u}.

Clearly ġσ is related to ˙Zg(σ) and to ˙Zg(σ)
◦
. With (2.38) and (2.8) we can make

that precise:

ġσ =
⊔

w∈NZ◦
G

(σ)(M)\NG(M)

˙Zg(σ)
◦
w =

⊔
w∈NZG(σ)(M)\NG(M)

˙Zg(σ)w(2.39)

˙Zg(σ)w = {(X, gZwPw−1(σ)) ∈ Zg(σ)× ZG(σ)/ZwPw−1(σ) :

Ad(g−1)X ∈ Ad(w)(CMv + t + u)}.

Let j′ : ġσ → ġ be the inclusion and let prσ1 be the restriction of pr1 to ġσ. We define

Kσ = (prσ1 )!j
′∗ ˙qE ∈ DbZG(σ)×C×(Zg(σ)).

From (2.39) we infer that Kσ is a direct sum of the parts Kσ,w (resp. K◦σ,w) coming

from ˙Zg(σ)w (resp. from ˙Zg(σ)
◦
w), and each such part is a version of the K for ZG(σ)

(resp. for Z◦G(σ)), twisted by w ∈ NG(M)/M .
These objects admit versions restricted to subvarieties of nilpotent elements,

which we indicate by a subscript N . In particular

KN,σ = (prσ1,N )!j
′∗
N

˙qEN ∈ DbZG(σ)×C×(Zg(σ)N )

can be decomposed as a direct sum of subobjects KN,σ,w or K◦N,σ,w.

Lemma 2.8. The objects Kσ,Kσ,w ∈ DbZG(σ)×C×(Zg(σ)) and

KN,σ,KN,σ,w ∈ DbZG(σ)×C×(Zg(σ)N ) are semisimple.

Proof. We note that, like in (2.15), there is an isomorphism of ZG(σ)×C×-varieties

˙ZG(σ)w
∼= ZG(σ)×ZwPw−1(σ)

(
Ad(w)(CMv ⊕ t⊕ u) ∩ Zg(σ)

)
.

Here ZwPw−1(σ) is a quasi-parabolic subgroup of G with quasi-Levi factor M and

Ad(w)(CMv ⊕ t⊕ u) ∩ Zg(σ) = CMv ⊕ t⊕
(
Ad(w)u ∩ Zg(σ)

)
with Ad(w)u ∩ Zg(σ) the Lie algebra of the unipotent radical of ZwPw−1(σ). Com-
paring that with the construction of K in (2.17)–(2.18), we deduce that Kσ,w is the
K for the group ZG(σ) and the cuspidal local system Ad(w)∗qE . As K is semisimple,
see (2.9), so is the current Kσ,w.

The same reasoning, now using (2.23), shows that KN,σ,w is the KN for ZG(σ)
and Ad(w)∗qE . By Proposition 2.3.b, KN,σ,w is semisimple.
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The objects Kσ and KN,σ are direct sums of objects Kσ,w and KN,σ,w, so these
are also semisimple. �

The above decompositions of Kσ and KN,σ are the key to analogues of parts of
Paragraph 2.1 for ZG(σ).

Lemma 2.9. Let w,w′ ∈ NG(M)/M . The inclusion Zg(σ)N → Zg(σ) induces an
isomorphism of graded H∗Z◦G(σ)×C×(pt)-modules

Hom∗Db
Z◦
G

(σ)×C×
(Zg(σ))

(K◦σ,w,K
◦
σ,w′) −→ Hom∗Db

Z◦
G

(σ)×C×
(Zg(σ)N )

(K◦N,σ,w,K
◦
N,σ,w′).

Proof. Decompose ˙qE| ˙Zg(σ)
◦
w

as direct sum of irreducible Z◦G(σ) × C×-equivariant

local systems. Each summand is of the form Ad(w)∗Ė , for an irreducible summand

E of qE as M◦-equivariant local system. Similarly we decompose ˙qE| ˙Zg(σ)
◦
w′

as direct

sum of terms Ad(w′)∗Ė . Like in the proof of Lemma 2.8:

(2.40) K◦σ,w =
⊕
E
(pr1,Zg(σ))!Ad(w)∗Ė ,

and similarly for K◦N,σ,w,K
◦
σ,w′ and K◦N,σ,w′ . A computation like the start of the

proof of [Lus6, Theorem 8.11] (already used in Theorem 2.2.b) shows that

(2.41) Hom∗Db
Z◦
G

(σ)×C×
(Zg(σ))

(
(pr1,Zg(σ))!Ad(w)∗Ė , (pr1,Zg(σ))!Ad(w′)∗Ė ′

)
∼= H

Z◦G(σ)×C×
∗

( ¨Zg(σ)
◦
, i∗σ
(
Ad(w)∗Ė � Ad(w′)∗Ė ′

∨))
.

Here ¨Zg(σ)
◦

= ˙Zg(σ)
◦
×Zg(σ) ˙Zg(σ)

◦
and

iσ : ¨Zg(σ)
◦
→ ˙Zg(σ)

◦
× ˙Zg(σ)

◦

denotes the inclusion. The same applies with subscripts N :

(2.42) Hom∗Db
Z◦
G

(σ)×C×
(Zg(σ)N )

(
(pr1,Zg(σ)N )!Ad(w)∗ĖN , (pr1,Zg(σ)N )!Ad(w′)∗Ė ′N

)
∼= H

Z◦G(σ)×C×
∗

( ¨Zg(σ)
◦
N , i
∗
N,σ

(
Ad(w)∗Ė � Ad(w′)∗Ė ′

∨))
.

When w = w′ and E = E ′, (2.41) and (2.42) are computed in [Lus3, Proposition
4.7]. In fact [Lus3, Proposition 4.7] also applies in our more general setting, with

different Ad(w)∗Ė and Ad(w′)Ė ′. Namely, to handle those we add the argument
from the proof of [AMS2, Proposition 2.6], especially [AMS2, (11)]. That works
for both Zg(σ) and for Zg(σ)N , and entails that there are natural isomorphisms of
graded H∗Z◦G(σ)×C×(pt)-modules

(2.43)

H∗Z◦G(σ)×C×( ˙Zg(σ)
◦
)⊗C H0

( ¨Zg(σ)
◦
, i∗σ
(
Ad(w)∗Ė � Ad(w′)∗Ė ′

∨)) ∼= (2.41),

H∗Z◦G(σ)×C×( ˙Zg(σ)
◦
)⊗C H0

( ¨Zg(σ)
◦
N , i
∗
N,σ

(
Ad(w)∗Ė � Ad(w′)∗Ė ′

∨)) ∼= (2.42).

Moreover, the proof of [Lus3, Proposition 4.7] shows that the two lines of (2.43) are
isomorphic via the inclusion Zg(σ)N → Zg(σ). �

Finally, we can generalize the second isomorphism in Theorem 2.2.c.
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Proposition 2.10. The inclusion Zg(σ)N → Zg(σ) induces a graded algebra iso-
morphism

End∗Db
ZG(σ)×C×

(Zg(σ))
(Kσ) −→ End∗Db

ZG(σ)×C×
(Zg(σ)N )

(KN,σ).

Proof. Take the direct sum of the instances of Lemma 2.9, over all
w,w′ ∈ NZ◦G(σ)(M)\NG(M). By (2.39), that yields a natural isomorphism

End∗Db
Z◦
G

(σ)×C×
(Zg(σ))

(Kσ) −→ End∗Db
Z◦
G

(σ)×C×
(Zg(σ)N )

(KN,σ).

Now we take π0(ZG(σ))-invariants on both sides, that replaces End∗Db
Z◦
G

(σ)×C×
(?)

by

End∗Db
ZG(σ)×C×

(?)
. �

3. Description of DbG×GL1
(gN ) with Hecke algebras

We want to make a (right) module category of H = H(G,M, qE) equivalent with
a category of equivariant constructible sheaves. Since we work with complexes of
sheaves, we have to look at differential graded H-modules. Recall that H has no
terms in odd degrees, so that its differential can only be zero. Hence a differential
graded H-module M is just a graded H-module

⊕
n∈ZMn with a differential dM of

degree 1.
Further, as our previous results were formulated with (equivariant) derived cat-

egories, we also have to involve derived categories of H-modules. Thus we arrive
at D(H −Moddg), the derived category of differential graded right H-modules. Its

bounded version is Db(H−Modfgdg), where the subscript stands for “finitely gener-
ated differential graded”. We note that H−Moddg is much smaller than H−Mod,
for instance the only irreducible H-modules it contains are those on which O(t⊕C)
acts via evaluation at (0, 0). In fact the triangulated category Db(H −Modfgdg) is
already generated by a single object, namely H [BeLu, Corollary 11.1.5].

The isomorphism H(G,M, qE) ∼= End∗Db
G×C×

(gN )
(KN ) from Theorem 2.2 gives rise

to an additive functor

(3.1)
DbG×C×(gN ) → Db(H−Modfgdg)

S 7→ Hom∗Db
G×C×

(gN )
(KN , S) .

However, it is not clear whether this functor is triangulated or fully faithful (on
an appropriate subcategory). One problem is that DbG×C×(gN ) is not exactly a

(bounded) derived category, another that Hom∗Db
G×C×

(gN )
is defined rather indirectly.

3.1. Equivalence of triangulated categories.
We will overcome the above problems by constructing a more subtle functor in-

stead of (3.1), which will lead to an equivalence of categories. Let DbG×C×(gN ,KN )

be the triangulated subcategory of DbG×C×(gN ) generated by the simple summands

of the semisimple object KN . We aim to show that it is equivalent with Db(H −
Modfgdg). We follow the strategy outlined in [RiRu2, §4], based on [Rid], but with
G × GL1 instead of G. We need the following objects as substitutes for objects
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appearing in the derived generalized Springer correspondence from [Rid, RiRu2]:

our setting setting from [RiRu2] setting from [Rid]
gN N N
IC(mN , qE) ICc IC({0},Q`)
KN Ac A
C[WqE , \qE ] Q`[W (L)] Q`[W ]
H∗G×C×( ˙gN ) ∼= O(t⊕ C) HL(OL) ∼= Sz∗ H∗G(G/B) ∼= Sh∗

H(G,M, qE) Q`[W (L)] n Sz∗ AG = Q`[W (L)] n Sh∗

IG×C×
P×C× IGP Ψ

RG×C×
P×C× RGP Φ

DbM×C×(mN , IC(mN , qE)) DbL(NL, ICc) ∼= DbZ(pt) DbG(G/B) ∼= DbT (pt)

For the third till sixth lines of the table we refer to, respectively, (2.33), (2.10), (2.5)
and Theorem 2.2.c. To justify the last line of the table, we note that the proof of
[RiRu2, Lemma 2.3 and Proposition 2.4] shows that

(3.2) DbM×C×(mN , IC(mN , qE)) ∼= DbZ(M)◦×C×(pt) = DbT×C×(pt).

In our setting, the topology of the coefficient field C of our sheaves does not play a
role. Since Q`

∼= C as fields, we may just as well look at sheaves of Q`-vector spaces
everywhere.

Our varieties, algebraic groups and (complexes of) sheaves may also be considered
over any algebraically closed ground field instead of C, see [BeLu, §4.3]. In particular
we can take an algebraically closed field ks whose characteristic p is good for G, like
in [Rid, RiRu2]. As we do not require that G is connected, we decree that “good”
also means that p does not divide the order of π0(G). For consistency, we replace
the variety C (on which r is the standard coordinate) by the affine space A1.

This setup has the advantage that one can pass to varieties over finite fields,
and to mixed (equivariant) sheaves. To emphasize that we consider an object with
ground field ks we will sometimes add a subscript s (which comes from [BBD, §6],
where ks arises as the residue field for some discrete valuation ring, which relates ks
to special fibres). In the remainder of this section we will regard G as an algebraic
group, and for an action of G or G ×GL1 we tacitly assume that these groups are
considered over the same field as the varieties on which they act. To that end, and
to get semisimplicty of KN from Lemma 2.4, we assume that G can be defined over a
finite extension of Z. That is hardly a restriction, since by Chevalley’s construction
it holds for any connected complex reductive group.

As explained in [RiRu2, §3.2], the cuspidal local system qE on CMv ⊂ mN admits a
version over a finite field Fq, such that a Frobenius element of Gal(Fq) acts trivially

(after extension of scalars to Fq). Then everything can be set up over Fq with mixed
sheaves, as in [Rid, §4–5]. Like in [Rid, RiRu2], we indicate the analogous objects
over Fq with a subscript ◦. Now the computation of End∗DbG×GL1

(gN,◦)
(KN,◦) in [Rid,

§3.3], including the action of Frobenius, can be carried out in the same way. Here
we use [AMS2] to generalize the relevant parts of [Lus3] to disconnected G. Like in
Theorem 2.2, we obtain

End∗DbG×GL1
(gN,s)

(KN,s) = HQ` = HQ`(G,M, qE),
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the version of H with scalars Q` instead of C. With that settled, the proof of [RiRu2,
Theorem 4.1] applies to (gN,◦,KN,◦). It provides a triangulated category

KbPureG×GL1(gN,◦,KN,◦),

which is a mixed version of DbG×GL1
(gN,s,KN,s) in the sense of [Rid, Definition

4.2]. Next [RiRu2, Theorem 4.2] and [Rid, §6] generalize readily to our setting (but
with objects over the ground field k). In particular these entail an equivalence of
triangulated categories

(3.3) KbPureG×GL1(gN,◦,KN,◦) ∼= Db(HQ` −Modfgdg).

Recall the notion of Koszulity for differential graded algebras from [BGS].

Lemma 3.1. (a) The algebra HQ` is Koszul.

(b) The Koszul dual E(HQ`) of HQ` is a finite dimensional graded algebra.

Proof. (a) Consider the degree zero part HQ`,0 = Q`[WqE , \qE ] as HQ`-module, an-

nihilated by all terms of positive degree. We have to find a resolution of HQ`,0 by

projective graded modules Pn, such that each Pn is generated by its part in degree
n. We will use that the multiplication map

HQ`,0 ⊗Q` O(t⊕ A1)→ HQ`
is an isomorphism of graded vector spaces. Start with the standard Koszul resolution
for O(t⊕ A1):

Q` ← O(t⊕ A1)← O(t⊕ A1)⊗Q`

∧1
(t⊕ A1)← O(t⊕ A1)⊗Q`

∧2
(t⊕ A1)← · · ·

It is graded so that O(t⊕ A1)d ⊗Q`
∧n(t⊕ A1) sits in degree d+ n. Define

Pn = ind
HQ`
O(t⊕A1)

(
O(t⊕ A1)⊗Q`

∧n
(t⊕ A1)

)
= HQ` ⊗Q`

∧n
(t⊕ A1).

Then Pn = HQ`P
n
n and we have a graded projective resolution

P ∗ → ind
HQ`
O(t⊕A1)

(Q`) = HQ`,0.

Thus HQ` fulfills [BGS, Definition 1.1.2] and is Koszul.

(b) In [BGS, §1.2], the Koszul dual E(HQ`) is defined as Ext∗HQ`
(HQ`,0,HQ`,0). This

is easily computed as graded vector space:

E(HQ`) = Ext∗HQ`

(
ind

HQ`
O(t⊕A1)

Q`,HQ`,0
)

= Ext∗O(t⊕A1)

(
Q`,HQ`,0

)
= Ext∗O(t⊕A1)

(
Q`,Q`

)
⊗Q` HQ`,0

=
∧∗

(t⊕ A1)⊗Q` HQ`,0.

Note that both
∧∗(t⊕ A1) and HQ`,0 have finite dimension. �

The opposite algebra of HQ` is of the same kind, namely HQ`(G,M, qE∨) for the

dual local system qE∨. Hence Lemma 3.1 also holds for Hop

Q`
, which means that we

may use the results of [BGS] with right modules instead of left modules.
Lemma 3.1 entails that Db(HQ` − Modfgdg) admits the “geometric t-structure”

from [BGS, §2.13]. Its heart is equivalent with E(HQ`)−Modg, the abelian category
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of graded right E(HQ`)-modules. Next [Rid, Theorem 7.1] shows that (3.3) sends

this t-structure to the “second t-structure” on KbPureG×GL1(gN,◦,KN,◦) from [Rid,
§4.2]. In particular the heart of the second t-structure is equivalent with the heart
of the geometric t-structure:

(3.4) PervKD(gN,◦,KN,◦) ∼= E(HQ`)−Modg.

Choose a resolution of E(HQ`) by free (graded right) modules of finite rank, that is

possible by Lemma 3.1.b. Via (3.4), that yields a projective resolution

· · · → P−2
◦ → P−1

◦ → P 0
◦ → KN,◦

in PervKD(gN,◦,KN,◦). Let F◦ ∈ PervKD(gN,◦,KN,◦) be the image of E(HQ`) and

let Fs be the image of F◦ in DbG×GL1
(gN,s,KN,s) via [RiRu2, Theorem 4.1]. Then

each Pn◦ is a direct sum of finitely many copies of F◦. Let Pns be the image of Pn◦ in
DbG×GL1

(gN,s,KN,s). If I ⊂ Z is a segment such that Fs lies in DIG×GL1
(gN,s,KN,s),

then all Pns belong to DIG×GL1
(gN,s,KN,s). This yields a chain complex

(3.5) · · · → P−2
s → P−1

s → P 0
s → KN,s,

where all objects and all morphisms come from DIG×GL1
(gN,s,KN,s). However, the

entire complex is usually unbounded, because it is likely that Pn◦ and Pns are nonzero
for all n ∈ Z≤0. We define a graded algebra R =

⊕
n∈Z≥0

Rn with

Rn =
⊕

k,j∈Z≤0

HomDbG×GL1
(gN,s,KN,s)

(P ks , P
j
s [n+ k − j]).

The product in R comes from composition in DbG×GL1
(gN,s,KN,s). In [Rid] a similar

R appears with a direct product over k, j, but the arguments (especially the proof of
[Rid, Theorem 7.4]) work better with our direct sum. For M ∈ DbG×GL1

(gN,s,KN,s)
and n ∈ Z≥0 we put

Homn(P ∗s ,M) =
⊕

j∈Z≤0

HomDbG×GL1
(gN,s)

(P js ,M [j + n]),

so that we obtain a functor

Hom∗(P ∗s , ?) =
⊕

n≥0
Homn(P ∗s , ?) : DbG×GL1

(gN,s,KN,s)→ Db(R−Modfgdg).

By [Rid, Theorem 7.4] and [Sch, Proposition 4], R is quasi-isomorphic to its own
cohomology ring and

H∗(R) ∼= End∗DbG×GL1
(gN,s)

(KN,s) ∼= HQ` .

Moreover, by [Rid, Remark 7.5] there exists a quasi-isomorphism R → HQ` . Ac-

cording to [BeLu, Theorem 10.12.5.1 and §11.1], that induces an equivalence of
categories

⊗LRHQ` : Db(R−Modfgdg)→ Db(HQ` −Modfgdg).

Combining all the above, we get an additive functor

(3.6) ⊗LR HQ` ◦ Hom
∗(P ∗s , ?) : DbG×GL1

(gN,s,KN,s)→ Db(HQ` −Modfgdg).

The proof of [RiRu2, Theorem 4.3] explains why the arguments from [Rid, §7 and
Appendix] generalize to our setting. These results show that (3.6) is triangulated,
commutes with the shift operator and sends KN,s to HQ` . Finally, an application of

Beilinson’s lemma (in the version from [Sch, Lemma 6]) proves:
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Theorem 3.2. Transfer the setup of Paragraph 2.1 to groups and varieties over
an algebraically closed field of good characteristic for G, and use Q` as coefficient
field for all sheaves and representations. Then the functor (3.6) is an equivalence of
triangulated categories.

Next we want to transfer Theorem 3.2 back to our original setting with algebraic
varieties over C. We follow the strategy that was used to derive the decomposition
theorem for equivariant perverse sheaves [BeLu, §5.3] from its non-equivariant ver-
sion [BBD, Théorème 6.2.5], which in turn relied on an analogue for varieties over
finite fields. To apply the techniques from [BBD, §6.1], it seems necessary that G
can be defined over a finite extension of Z.

Fix a segment I ⊂ Z and assume that G×GL1 is embedded in GLr. It was noted
in [BeLu, §3.1] that the variety M|I| of k-frames in the affine space A|I|+k is an acyclic
G × GL1-space. Then G × GL1 acts freely on Q := M|I| × gN and the projection

p : Q→ gN is an |I|-acyclic resolution of G×GL1-varieties. Let Q = Q/(G×GL1)
be the quotient variety. By [BeLu, §2.3.2], DIG×GL1

(gN ) is naturally equivalent with

DI(Q|p), the full subcategory of DI(Q) made from all the objects that come from
gN via p.

For a variety X defined over some finite extension of Z, we denote by Xs the base
change to a suitable algebraically closed field of positive characteristic. According
to [BBD, §6.1.10] there is an equivalence of categories

(3.7) DbT ,L(Q,Z`)←→ DbT ,L(Qs,Z`).

Here (T , L) means essentially that only finitely many irreducible objects are used.
Moreover, unlike the rest of the paper, in (3.7) we must allow sheaves whose stalks
have infinite rank as Z`-modules, for otherwise we could never get sheaves of Q`-
modules. We can restrict (3.7) to an equivalence of categories

(3.8) DbT ,L(Q|p,Z`)←→ DbT ,L(Qs|ps,Z`).

We note that, in contrast with [BBD, §6.1.10], constructibility is not an issue here,
because we need only one stratification of Q and Qs, namely that coming from the
G×GL1-orbits on gN . Since there are only finitely many such orbits, for sufficiently
large (T , L) (3.8) becomes an equivalence

DI(Q|p,Z`)←→ DI(Qs|ps,Z`).
With another application of [BeLu, §2.3.2], we find equivalences of triangulated
categories

(3.9) DIG×GL1
(gN ,Z`)↔ DI(Q|p,Z`)↔ DI(Qs|ps,Z`)↔ DIG×GL1

(gN,s,Z`).

This works for any segment I ⊂ Z, so also with Db instead of DI . The composition of
the maps from left to right in (3.9) sends KN to KN,s, so it restricts to an equivalence
of triangulated categories

DbG×GL1
(gN ,KN )←→ DbG×GL1

(gN,s,KN,s).

Combining that with Theorem 3.2, we have proven:

Theorem 3.3. Assume that G can be defined over a finite extension of Z. There
exists an equivalence of triangulated categories

DbG×GL1
(gN ,KN ) −→ Db

(
HQ`(G,M, qE)−Modfgdg

)
,
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which sends KN to HQ`(G,M, qE).

The same holds with the coefficient field C instead of Q`.

We note that replacing Q` by the isomorphic field C is allowed because the topol-
ogy of Q` does not play a role any more (it did when we looked at sheaves of
Z`-modules). This categorifies H(G,M, qE) as differential graded algebra.

3.2. Orthogonal decomposition.
The goal of this paragraph is a description of the entire category DbG×GL1

(gN )
in terms like Theorem 3.3. From [RiRu1] it can be expected that it decomposes as
an orthogonal direct sum of full subcategories of the form DbG×GL1

(gN ,KN ). Here
orthogonality means that there are no nonzero morphisms between objects from
different summands.

We start with an orthogonality statement on the cuspidal level. Let CMv , CMv′ be
nilpotent Ad(M)-orbits in m and let qE , qE be M -equivariant irreducible cuspidal
local systems on respectively CMv and CMv′ . As noted in [Lus3, §2.1.f], qE and qE ′
are automatically M × GL1-equivariant. Let IC(mN , qE), IC(mN , qE ′) be the as-
sociated (M × GL1-equivariant) intersection cohomology complexes. Notice that
ICM×GL1(mN , qE) is the version of KN for M .

Lemma 3.4. Suppose that CMv 6= CMv′ or that CMv = CMv′ and qE , qE ′ are not isomor-

phic in DbM×GL1
(CMv ). Then

Hom∗DbM×GL1
(mN )

(
IC(mN , qE), IC(mN , qE ′)

)
= 0.

Proof. Suppose that the given Hom-space is nonzero. As M◦-equivariant local sys-
tems, we can decompose qE =

⊕
i Ei and qE ′ =

⊕
j E ′j , where the Ei and the E ′j are

irreducible and cuspidal. Then⊕
i,j

Hom∗DbM×GL1
(mN )

(
IC(mN , Ei), IC(mN , E ′j)

)
6= 0.

By [RiRu1, Theorem 3.5 and Proposition A.8], Ei is isomorphic to E ′j for some i, j.

Hence CM◦v = CM◦v′ , so we may assume that v = v′. Recall from (2.25) that qE and
qE ′ are clean (on mN ). With adjunction we compute

(3.10)

Hom∗DbM×GL1
(mN )

(
IC(mN , qE), IC(mN , qE ′)

)
=

Hom∗DbM×GL1
(mN )

(
IC(mN , qE), jmN ,∗qE

′) =

Hom∗DbM×GL1
(CMv )

(
j∗mN IC(mN , qE), qE ′

)
= Hom∗DbM×GL1

(CMv )

(
qE , qE ′

)
.

Let ρ, ρ′ ∈ Irr
(
π0(ZM×GL1(v))

)
be the images of qE and qE ′ under the equivalence

of categories

DbM×GL1
(CMv ) ∼= DbZM×GL1

(v)({v}).

Then (3.10) reduces to

Hom∗Db
ZM×GL1

(v)
({v})

(
ρ, ρ′

)
= Homπ0(ZM×GL1

(v))(ρ, ρ
′).

Since qE and qE ′ are not isomorphic, ρ and ρ′ are not isomorphic, and this expression
vanishes. That contradicts the assumption at the start of the proof. �
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Consider the collection of all cuspidal quasi-supports (M, CMv , qE) for G. Since
each mN admits only very few irreducible M -equivariant cuspidal local systems
[Lus1, Introduction], there are only finitely many G-conjugacy classes of cuspidal
quasi-supports for G. Each such conjugacy class [M, CMv , qE ]G gives rise to a full
triangulated subcategory

DbG×GL1
(gN ,KN ) = DbG×GL1

(
gN , IGP ICM×GL1(mN , qE)

)
,

see (2.33) for the equality.

Theorem 3.5. There is an orthogonal decomposition

DbG×GL1
(gN ) =

⊕
[M,CMv ,qE]G

DbG×GL1

(
gN , IGP ICM×GL1(mN , qE)

)
.

Proof. This is the translation of [RiRu1, Theorem 3.5] to our setting. Almost the
entire proof in [RiRu1, §2–3] is valid in our generality, only the argument with central
characters (near the end of the proof of [RiRu1, Theorem 3.5]) does not work any
more. We extend that to our setting with Lemma 3.4. �

Let us formulate the combination of Theorems 3.3 and 3.5 explicitly.

Corollary 3.6. Assume that G can be defined over a finite extension of Z. There
exists an equivalence of triangulated categories

DbG×GL1
(gN ) −→

⊕
[M,CMv ,qE]G

Db
(
H(G,M, qE)−Modfgdg

)
= Db

(⊕
[M,CMv ,qE]G

H(G,M, qE)−Modfgdg

)
.
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[MiVi] I. Mirković, K. Vilonen, “Geometric Langlands duality and representations of algebraic

groups over commutative rings”, Ann. Math. 166.1 (2007), 95–143
[Rid] L. Rider, “Formality for the nilpotent cone and a derived Springer correspondence”, Adv.

Math. 235 (2013), 208–236
[RiRu1] L. Rider, A. Russell, “Perverse sheaves on the nilpotent cone and Lusztig’s generalized

Springer correspondence”, pp. 273–292 in: Lie algebras, Lie superalgebras, vertex algebras and
related topics, Proc. Sympos. Pure Math. 92, Amer. Math. Soc., Providence RI, 2016

[RiRu2] L. Rider, A. Russell, “Formality and Lusztig’s generalized Springer correspondence”, Al-
gebras Repr. Th. 24 (2021), 699–714
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