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Hochschild homology of reductive p-adic groups

Maarten Solleveld

Abstract. Consider a reductive p-adic group G, its (complex-valued) Hecke algebraH(G) and the
Harish-Chandra–Schwartz algebra S(G). We compute the Hochschild homology groups of H(G)
and of S(G), and we describe the outcomes in several ways.

Our main tools are algebraic families of smooth G-representations. With those we construct
maps from HHn(H(G)) and HHn(S(G)) to modules of differential n-forms on affine varieties. For
n = 0 this provides a description of the cocentres of these algebras in terms of nice linear functions
on the Grothendieck group of finite length (tempered) G-representations.

It is known from [34] that every Bernstein ideal H(G)s of H(G) is closely related to a crossed
product algebra of the form O(T) oW . Here O(T) denotes the regular functions on the variety T of
unramified characters of a Levi subgroup L of G, and W is a finite group acting on T . We make this
relation even stronger by establishing an isomorphism between HH∗(H(G)s) and HH∗(O(T) oW),
although we have to say that in some cases it is necessary to twist C[W] by a 2-cocycle.

Similarly we prove that the Hochschild homology of the two-sided ideal S(G)s of S(G) is iso-
morphic to HH∗(C∞(Tu) o W), where Tu denotes the Lie group of unitary unramified characters
of L. In these pictures of HH∗(H(G)) and HH∗(S(G)) we also show how the Bernstein centre of
H(G) acts.

Finally, we derive similar expressions for the (periodic) cyclic homology groups of H(G) and
of S(G) and we relate that to topological K-theory.
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Introduction

The Hochschild homology of an algebra A (by default over C) is a fairly subtle invariant.
For finitely generated commutative algebras it gives more or less the differential forms
on the underlying affine variety – exactly that when the algebra is smooth, and otherwise
HH∗(A) detects some singularities of the variety. For general algebras Hochschild homo-
logy is related to noncommutative versions of differential forms [18, Chapter 1].

The vector space HH0(A) is particularly interesting, because it equals the cocentre
A/[A, A] and via the trace pairing contains information about the set of irreducible rep-
resentations of A. The higher Hochschild homology groups HHn(A) also have their uses:
they say something about higher extensions of A-modules (via Hochschild cohomology)
and they interact with further invariants of algebras like (periodic) cyclic homology. When
A is the group algebra of a discrete group Γ, HH∗(A) computes the group cohomology of
the groups ZΓ(γ) with γ ∈ Γ [12].

Categories of representations of reductive p-adic groups
Let G be a reductive group over a non-archimedean local field, connected as algebraic
group. We aim to determine the Hochschild homology of G, by which we mean the Hoch-
schild homology of a suitable group algebra of G. The most natural choice is the Hecke
algebra H(G), because the category Mod(H(G)) of nondegenerate left H(G)-modules
is naturally equivalent to the category Rep(G) of complex smooth G-representations. By
definition

HHn(H(G)) = TorH(G)⊗H(G)
op

n (H(G),H(G)),

so HHn(H(G)) depends only on the category ofH(G)-bimodules, which is equivalent to
the category of smooth G × Gop-representations.

Alternatively we have the Harish-Chandra–Schwartz algebra S(G), whose category of
nondegenerate left modules equals the category Rept (G) of tempered G-representations,
according to the conventions from the appendix of [26]. We consider S(G) as a bornolo-
gical algebra and use the complete bornological tensor product ⊗̂ [19]. In that setting

HHn(S(G)) = TorS(G)⊗̂S(G)
op

n (S(G),S(G)),

which depends only on the category of bornological S(G)-bimodules.
On the other hand, the full group C∗-algebra C∗(G) or its reduced version C∗r (G)would

not be suitable here, because

HHn(C∗(G)) = HHn(C∗r (G)) = 0 for n > 0.

We approach our main goal with representation theory. We start with the Bernstein decom-
position

Rep(G) =
∏

s∈B(G)
Rep(G)s,

which induces decompositions in two-sided ideals

H(G) =
⊕

s∈B(G)
H(G)s and S(G) =

⊕
s∈B(G)

S(G)s . (1)
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Hochschild homology decomposes accordingly, so we may focus on the algebras H(G)s
and S(G)s . We will make ample use of the Morita equivalence between H(G)s and the
opposite algebra of EndG(Πs), where Πs is a progenerator of Rep(G)s [25, Theorem
1.8.2.1]. In [34] we made a detailed analysis of EndG(Πs)op , which links it to algebras
whose Hochschild homology groups have already been determined.

Let σ be a supercuspidal representation of a Levi subgroup L of G, representing s =
[L, σ]. Let L1 ⊂ L the group generated by all compact subgroups of L. Then the compactly
induced representation indL

L1 (σ) is a progenerator of Rep(L)[L,σ]. Let PL be a parabolic
subgroup of G with Levi factor L. As shown first in [7, §III.4.1], it follows from Bernstein’s
second adjointness theorem that the parabolically induced representation

Πs = IGPL
indL

L1 (σ) (2)

is a progenerator of Rep(G)s . This progenerator was especially convenient for the compu-
tations in [34], and therefore we use it throughout this paper.

To s one can associate a finite group W(L, s) of transformations of the complex torus
of unramified characters Xnr(L), satisfying

Z(Rep(G)s) � Z(EndG(Πs)op) � O(Xnr(L))W (L,s).

There exists a 2-cocycle \s of W(L, s) such that the twisted group algebra
C[W(L, s), \s] acts “almost" on the objects of Rep(G)s by intertwining operators. Here
“almost" means that these intertwining operators depend rationally on χ ∈ Xnr(L), and they
can have poles. In this setting [34, TheoremA] provides an isomorphism of O(Xnr(L))W (L,s)-
algebras

C(Xnr(L))W (L,s) ⊗
O(Xnr(L))W (L,s)

EndG(Πs)op � C(Xnr(L)) o C[W(L, s), \s]. (3)

This isomorphism is canonical on C(Xnr(L)) and on a Weyl group contained in W(L, s).
However, for the remaining elements of W(L, s) the images on the left hand side of (3) are
in general only canonical up to scalars.

Although H(G)s and O(Xnr(L)) o C[W(L, s), \s] are usually not Morita equivalent,
it has turned out that these algebras nevertheless share many properties. By (1) and the
definition of temperedness for G-representations, the category Rept (G)s of tempered rep-
resentations in Rep(G)s � Mod(H(G)s) is Mod(S(G)s). This subcategory is stable under
tensoring with elements of Xunr(G), the group of unitary unramified characters of G. Like
above, from [33] one can expect strong similarities between S(G)s and C∞(Xunr(L)) o
C[W(L, s), \s].

Let R(A) denote the Grothendieck group of the category of finite length A-representa-
tions. We abbreviate R(G)s = R(H(G)s) and Rt (G)s = R(S(G)s).

Theorem A. (see Theorem 2.5)
There exists a group isomorphism

ζ∨ : R(G)s → R
(
O(Xnr(L)) o C[W(L, s), \s]

)
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which restricts to a bijection

ζ∨t : Rt (G)s → R
(
C∞(Xunr(L)) o C[W(L, s), \s]

)
.

These bijections are compatible with parabolic induction and with twists by unramified
characters. When an isomorphism (3) has been fixed, ζ∨ and ζ∨t are canonical.

Hochschild homology and twisted extended quotients
In a sense that we will make precise later, Theorem A induces isomorphisms on Hoch-
schild homology.

Theorem B. (see Theorems 2.14 and 3.13)
There exist C-linear bijections (canonical when (3) has been fixed)

HHn(ζ
∨) : HHn

(
O(Xnr(L)) o C[W(L, s), \s]

)
→ HHn(H(G)s),

HHn(ζ
∨
t ) : HHn

(
C∞(Xunr(L)) o C[W(L, s), \s]

)
→ HHn(S(G)s).

The Hochschild homology of twisted crossed product algebras like

O(Xnr(L)) o C[W(L, s), \s] and C∞(Xunr(L)) o C[W(L, s), \s]

was determined in [35, §1]. It can be interpreted in terms of the twisted extended quotient

(Xnr(L)//W(L, s))\s :=
{
(χ, πχ) : χ ∈ Xnr(L), πχ ∈ Irr(C[W(L, s), \s])

}
/W(L, s).

Loosely speaking, HHn

(
O(Xnr(L)) o C[W(L,s), \s]

)
is the O(Xnr(L))W (L,s)-module of dif-

ferential n-forms on (Xnr(L)//W(L, s))\s , and similarly for

HHn

(
C∞(Xunr(L)) o C[W(L, s), \s]

)
and (Xunr(L)//W(L, s))\s .

Let Irrcusp(L) be the set of supercuspidal irreducible L-representations (up to isomorph-
ism), so that Irr(L)s is one Xnr(L)-orbit in Irrcusp(L). The group W(G, L) = NG(L)/L acts
naturally on Irr(L). Let W(G, L)s be the stabilizer of Irr(L)s in W(G, L). The covering map

Xnr(L) → Irr(L)s : χ 7→ σ ⊗ χ

induces a bijection (
Xnr(L)//W(L, s)

)
\s
−→

(
Irr(L)s//W(G, L)s

)
\s
.

Combining such maps we obtain a bijection⊔
s∈Irrcusp(L)/Xnr(L)oW (G,L)

(
Xnr(L)//W(L, s)

)
\s
−→

(
Irrcusp(L)//W(G, L)

)
\L
,

where \L is a shorthand for the data from the various 2-cocycles \s . This twisted extended
quotient (in the more general sense from [2, §2.1]) is related to the ideal⊕

s∈Irrcusp(L)/Xnr(L)oW (G,L)
H(G)s of H(G).
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Let Lev(G) be a set of representatives for the conjugacy classes of Levi subgroups of
G. Theorem B and the above entail that HHn(H(G)) can be regarded as the Z(Rep(G))-
module of algebraic differential n-forms on⊔

L∈Lev(G)

(
Irrcusp(L)//W(G, L)

)
\L
.

Similarly we may interpret HHn(S(G)) as the Z(Rept (G))-module of smooth differential
n-forms on ⊔

L∈Lev(G)

(
Irrtcusp(L)//W(G, L)

)
\L
.

Notice that these descriptions mainly involve data that are much easier than Rep(G)s ,
only the 2-cocycles \s contain information about non-supercuspidal representations. For-
tunately \s is known to be trivial in many cases, and we expect that it is trivial whenever
G is quasi-split. We find it remarkable that such a simple description of a strong invariant
of very complicated algebras is possible.

Hochschild homology via families of representations
For more precise statements we employ algebraic families of G-representations. The fam-
ilies relevant for us come from a parabolic subgroup P = MU of G and a tempered
representation η of a Levi factor M of P. All the representations IGP (η ⊗ χ) with χ ∈

Xnr(M) can be realized on the same vector spaceVP,η , and their matrix coefficients depend
algebraically on χ. The family of representations

F(M, η) = {IGP (η ⊗ χ) : χ ∈ Xnr(M)}

induces a O(Xnr(L))W (L,s)-algebra homomorphism

FM,η : H(G)s → O(Xnr(M)) ⊗ EndC,fr(VP,η)

f 7→ [χ 7→ IGP (σ ⊗ χ)( f )]
,

where the subscript fr stands for finite rank. Via Morita equivalences and the Hochschild–
Kostant–Rosenberg theorem, that yields a map

HHn(FM,η) : HHn(H(G)s) → Ω
n(Xnr(M)).

For χ ∈ Xunr(M) the members ofF(M, η) are tempered. Then Harish-Chandra’s Plancherel
isomorphism (Theorem 1.2) shows that for f ∈ S(G)s the matrix coefficients of IGP (η ⊗
χ)( f ) are smooth functions on Xunr(M). We obtain a map

HHn(F
t
M,η) : HHn(S(G)s) → Ω

n
sm(Xunr(M)),

where the subscript sm means smooth differential forms on a real manifold. With [35,
§1.2] this setup can be generalized to algebraic families of virtual representations, then we
may speak of algebraic families in C ⊗Z R(G)s or in C ⊗Z Rt (G)s .
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For each w ∈ W(L, s) and each connected component Xnr(L)wc of Xnr(L)w , we will
construct a particular algebraic family

F(w, c) =
{
ν1
w,χ : χ ∈ Xnr(L)wc

}
in C ⊗Z R(G)s .

From \s : W(L, s) ×W(L, s) → C× we get a character \ws of ZW (L,s)(w).

Theorem C. (see Theorems 2.13.b and 3.10)
(i) The algebraic families F(w, c) induce a C-linear bijection

HHn(H(G)s) →
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w) ⊗ \ws
)W (L,s)

.

(ii) Their tempered versions Ft (w, c) =
{
ν1
w,χ : χ ∈ Xunr(L)wc

}
induce an isomorphism

of Fréchet spaces

HHn(S(G)s) →
(⊕

w∈W (L,s)
Ω

n
sm(Xunr(L)w) ⊗ \ws

)W (L,s)
.

The canonicity of Theorem B can be formulated in similar terms. Namely, for each
algebraic family F(M, η) in Rep(G)s there are equalities

HHn(FM,η) ◦ HHn(ζ
∨) = HHn(FM,ζ∨(η)),

HHn(F
t
M,η) ◦ HHn(ζ

∨
t ) = HHn(F

t
M,ζ∨(η)

).

Hochschild homology groups in degree 0
Theorem C admits a nice alternative description in degree n = 0. Let us say that a linear
function on C ⊗Z R(G)s is regular if it transforms every algebraic family F(M, η) into a
regular function on Xnr(M). Similarly we call a linear function on C ⊗Z Rt (G)s smooth if
it transforms Ft (M, η) into a smooth function on Xunr(M).

Theorem D. (see Propositions 2.9 and 3.11)
(i) The trace pairingH(G)s × R(G)s → C induce a natural isomorphism of

Z(Rep(G)s)-modules

HH0(H(G)s) → (C ⊗Z R(G)s)∗reg.

(ii) The trace pairing S(G)s × Rt (G)s → C induces a natural isomorphism of
Z(Rept (G)s)-modules

HH0(S(G)s) → (C ⊗Z Rt (G)s)∗∞.

We note that Theorem D.(i) was already shown in [6], with much more elementary
methods. Theorem D.(ii) implies that the traces of irreducible tempered representations in
Rep(G)s span a dense subspace of the space of trace functions on S(G)s .
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The action of the Bernstein centre
Theorems B and C do not yet reveal how the Bernstein centre

Z(Rep(G)s) � O(Xnr(L))W (L,s)

acts on HHn(H(G)s). That action is more tricky than it could seem, because the bijections
in Theorem A do not always match the canonical actions of O(Xnr(L))W (L,s) on the two
sides. We are aided by the finer decomposition of Rt (G) and S(G) in “Harish-Chandra
blocks". Namely, to each square-integrable (modulo centre) representation δ of a Levi
subgroup M of G one canonically associates a direct factor Rt (G)d of Rt (G), and a two-
sided ideal S(G)d of S(G). If the supercuspidal support of δ is (L, σ), then Rt (G)d ⊂
Rt (G)s where d = [M, δ] and s = [L, σ]. The Plancherel isomorphism (see [37] or Theorem
1.2) entails:

S(G)s =
⊕

d∈∆s
G

S(G)d (4)

for a suitable finite set ∆s
G

of square-integrable (modulo centre) representations of Levi
subgroups of G. This gives rise to a decomposition

HHn(S(G)s) =
⊕

d∈∆s
G

HHn(S(G)d).

ForH(G)s no decomposition like (4) exists. Nevertheless something similar can be achieved
with Hochschild homology groups, see below.

Again by Harish-Chandra’s Plancherel isomorphism (Theorem 1.2)

Z(Rept (G)d) � C∞(Xunr(M))W (M,d),

for a certain finite group W(M, d) of transformations of Xnr(M). Represent the
O(Xnr(L))W (L,s)-character of δ by χδt+δ , where χδ ∈ Xunr(L) and t+δ ∈ Hom(L,R>0). The
natural map Z(Rep(G)s)→ Z(Rept (G)d)makes C∞(Xunr(M))W (M,d) into a set of functions
on χδt+δ Xunr(M) ⊂ Xnr(L).

Theorem E. (see Theorem 3.14.b, Lemma 3.8 and Lemma 2.10)
(i) There exists a canonical decomposition

HHn(H(G)s) =
⊕

d∈∆s
G

HHn(H(G)s)d,

where HHn(H(G)s)d is the inverse image of HHn(S(G)d) under the natural map
HHn(H(G)s) → HHn(S(G)s).

(ii) Suppose that Z(Rept (G)d) does not annihilate the contribution (via Theorem C) of
Ωn

sm(Xunr(L)wc ) to HHn(S(G)s) . Then we can arrange that Xunr(L)wc is contained in
χδXunr(M). For χ ∈ Xunr(L)wc , Z(Rept (G)d) acts on the fibre of HHn(S(G)s) over
W(L, s)(w, χ) via the character W(M, d)χ−1

δ χ.
(iii) In the setting of part (ii), for χ ∈ Xnr(L)wc , Z(Rep(G)s) acts on the fibre of

HHn(H(G)s) over W(L, s)(w, χ) via the character W(L, s)t+δ χ.
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Other homology theories
There are standard techniques to derive the cyclic homology HC∗(A) and the periodic
cyclic homology HP∗(A) from the Hochschild homology of a C-algebra A [18]. In our
cases A = H(G)s and A = S(G)s , we can get them as the homology of HH∗(A) with
respect to the usual exterior differential on forms.

Theorem F. (see (4.7), (4.8) and Corollary 4.3)
Theorem C induces isomorphisms

HPn(H(G)s) � HPn(S(G)s) �
⊕

m∈Z

(⊕
w∈W (L,s)

Hn+2m
dR (Xnr(L)w) ⊗ \ws

)W (L,s)
.

The periodic cyclic homology of a Fréchet algebra relates to its topological K-theory
via a Chern character. We can pass from S(G)s to its C∗-completion via suitable Morita
equivalent Fréchet subalgebras. In this way we compute the topological K-theory of any
Bernstein block in the reduced C∗-algebra of G:

Theorem G. (see Theorem 4.2)
There is an isomorphism of vector spaces

K∗
(
C∗r (G)

s
)
⊗Z C � K∗W (L,s),\s (Xunr(L)) ⊗Z C.

Here K∗
W,\

denotes W-equivariant K-theory, twisted by a 2-cocycle \. Theorem G con-
firms [2, Conjecture 5], modulo torsion elements in the K-groups.

Relation with previous work and outlook
The Hochschild homology of H(G) has been determined earlier in [21]. The methods
of Nistor are completely different from ours, he obtains a description of HHn(H(G)) in
terms of several algebraic subgroups of G and of the continuous group cohomology of
certain modules. This arises from a generalization of the standard techniques for discrete
groups, a filtration ofH(G) as bimodule, and spectral sequences. In [21, §6] a “parabolic
induction map" HHn(H(G)) → HHn(H(M)) is constructed, for a Levi subgroup M of G.
It would be interesting to relate this to our methods and results, maybe that could provide
some information about supercuspidal representations.

A technique prominent in Nistor’s work is localization of HH∗(H(G)) at conjugacy
classes in G. That can be regarded as a higher order version of taking the trace of a rep-
resentation at a conjugacy class. Of particular interest is the localization of HH∗(H(G)) at
the set of compact elements of G, for that yields the periodic cyclic homology HP∗(H(G))
[16]. While localization at one conjugacy class in G appears to be intractable in our setup,
localization at all compact elements is within reach. Since every compact element lies in
the kernel of every unramified character, such localization removes all differential forms
that are not locally constant on (subvarieties of) Xnr(L). Moreover, in the description from
Theorem C the locally constant differential forms constitute a set of representatives for
HP∗(H(G)), that follows from Lemma 4.4 (and with Theorem F it also works for S(G)).
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Hence the localization of HH∗(H(G)) at the compact elements of G is given precisely by
the subspace of locally constant differential forms.

At the same time HP∗(H(G)) is naturally isomorphic to the equivariant homology
of the Bruhat–Tits building of G, which yields yet another, more geometric, picture of
HH∗(H(G)) and HH∗(S(G)). It would be nice if the Bernstein decomposition of H(G)
and of S(G) could be expressed in such geometric terms, as suggested in [4].

Structure of the paper
This paper is part of a larger project that includes [35] and [17]. Initially those two and
the current text were conceived as one paper. When that grew too big, two parts were
split off and transformed into independent papers. Although neither [35] nor [17] deals
with p-adic groups, both prepare for this paper. Many results in Section 2 rely on the
study of the Hochschild homology of slightly simpler algebras in [35]. In Section 3 we
need several nontrivial results about topological algebras and modules involving smooth
functions. These are formulated and proven in larger generality in [17].

Section 1 is preparatory, its main purpose is to describe precisely what kind of fam-
ilies of representations we will use. Already there we see that it is convenient to replace
H(G)s by its subalgebra of functions that are biinvariant under a well-chosen compact
open subgroup K .

We start our investigations of the Hecke algebra in earnest by transforming it into
simpler algebras via Morita equivalences, in Paragraph 2.1. This relies largely on [34],
but we go a little further and establish Theorem A. In Paragraph 2.2 we set up a good
array of algebraic families of G-representations, and we approach HHn(H(G)s) via formal
completions at central characters. That yields a rough description in terms of differential
forms on varieties like Xnr(M), not yet indexed by W(L,s) as desired, but already sufficient
for Theorem D.i. The local results thus obtained are glued together in Paragraph 2.3. When
that is done, Theorems B, C and E forH(G)s follow quickly.

For the Schwartz algebra S(G) no such simplifying Morita equivalences are available,
but Harish-Chandra’s Plancherel isomorphism from Theorem 1.2 works better than for
H(G). Our main technique to determine HHn(S(G)s) is to derive it from HHn(H(G)s)
via a comparison of formal completions with respect to central characters. To carry out
that strategy completely, we need to check that the relevant modules are Fréchet spaces,
which is done in Paragraph 3.1. In Paragraph 3.2 we first show Theorem E.ii, so that we
can work with C∞(Xunr(M))W (M,d)-modules. That plays a role in the proof of Theorem
C.ii, from which Theorem D.ii follows readily. Then we establish Theorem B.ii and we
compare HHn(S(G)d) with HHn(H(G)s)d.

Section 4 contains the derivation of the (periodic) cyclic homology of H(G)s and of
S(G)s . We also draw conclusions for the topological K-theory of G. In the final section
we work out the examples G = SL2(F) and G = GLn(F).
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1. Algebraic families of G-representations

Let G be a connected reductive group defined over a non-archimedean local field F, and
consider the group of rational points G = G(F). Let Rep(G) be the category of smooth
G-representations and let Rep f (G) be the subcategory of finite length representations. Let
R(G) be the Grothendieck group of Rep f (G). By imposing temperedness we obtain the
category Reptf (G) and the Grothendieck group Rt (G).

We fix a Haar measure on G we letH(G) be the algebra of locally constant compactly
supported complex-valued functions on G, endowed with the convolution product. Recall
that the Schwartz algebra S(G) [37, §III.6] satisfies Irr(S(G)) = Irrt (G), where the lat-
ter denotes the space of irreducible tempered G-representations. We fix a compact open
subgroup K of G and we consider the algebras H(G, K) and S(G, K) of K-biinvariant
functions in, respectively,H(G) and S(G). By definition

H(G) = lim
−−→K

H(G,K) and S(G) = lim
−−→K

S(G,K),

where the inductive limit runs over the set of all compact subgroups K of G, partially
ordered by reverse inclusion.

Let Xnr(G) be the group of unramified characters of G and let Xunr(G) be the subgroup
of unitary unramified characters. The first is a complex algebraic torus and the second is a
compact real torus of the same dimension.

Let P be a parabolic subgroup of G with a Levi factor M , and let IGP : Rep(M) →
Rep(G) be the normalized parabolic induction functor. Let σ ∈ Reptf (M) and suppose that
the space IGP (Vσ)

K , which has finite dimension by the admissibility of IGP (σ), is nonzero.
Since IGP (Vσ) can be realized as a space of functions on a good maximal compact subgroup
of G, we may identify the vector spaces

IGP (Vσ)
K and IGP (Vσ ⊗ χ)

K for χ ∈ Xnr(M).

Every f ∈ S(G,K) gives a family of operators IGP (σ ⊗ χ)( f ) on IGP (Vσ)
K , parametrized by

χ ∈ Xunr(M). It turns out [37, Proposition VII.1.3] that IGP (σ ⊗ χ)( f ) depends smoothly
on χ. When f ∈ H(G, K), this even works for all χ ∈ Xnr(M), and the outcome depends
algebraically on χ. More precisely, this enables us to define algebra homomorphisms

FM,σ : H(G,K) → O(Xnr(M)) ⊗ EndC(IGP (Vσ)
K )

F t
M,σ : S(G,K) → C∞(Xunr(M)) ⊗ EndC(IGP (Vσ)

K )

f 7→ [χ 7→ IGP (σ ⊗ χ)( f )]
. (1.1)

Recall the natural pairing

HH0(H(G,K)) × Rep f (G) → C

(h, π) 7→ tr(π(h),Vπ) = tr(π(h),VK
π )

. (1.2)

This and its analogue for S(G,K) induce bilinear maps

HH0(H(G,K)) × C ⊗Z R(G) → C,

HH0(S(G,K)) × C ⊗Z Rt (G) → C.
(1.3)
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We say that a linear function f on C ⊗Z R(G) is regular if

Xnr(M) → C : χ 7→ f (IGP (σ ⊗ χ)) is a regular function,

for all (M, σ) as above. Similarly we call f ∈ (C ⊗Z Rt (G))∗ smooth if

Xunr(M) → C : χ 7→ f (IGP (σ ⊗ χ)) is a smooth function,

for all (M, σ) as above. We write

(C ⊗Z R(G))∗reg = { f ∈ (C ⊗Z R(G))∗ : f is regular},
(C ⊗Z Rt (G))∗∞ = { f ∈ (C ⊗Z Rt (G))∗ : f is smooth}.

With these notations, (1.1) and (1.3) induces maps

HH0(H(G,K)) → (C ⊗Z R(G))∗reg,

HH0(S(G,K)) → (C ⊗Z Rt (G))∗∞.
(1.4)

It is easy to see that the former is a homomorphism of Z(H(G, K))-modules and that the
latter is is a homomorphism of Z(S(G,K))-modules.

The normalized parabolic induction functor IGP induces a Z-linear map

IGM : R(M) → R(G).

It may be denoted this way, because given a Levi subgroup M of G it does not depend on
the choice of the parabolic subgroup P with Levi factor M . We define

RI (G) = R(G) ∩ Q ⊗Z
∑

M(G
IGM (R(M)),

where the sum runs over all proper Levi subgroups M of G. We say that a finite dimen-
sional G-representation is elliptic if it admits a central character and does not belong to
RI (G). By [6, Proposition 3.1] every Bernstein component of Irr(G) contains only a finite
number of Xnr(G)-orbits of irreducible elliptic representations. It follows from the Lang-
lands classification that every such Xnr(G)-orbit contains a tempered G-representation.

Definition 1.1. Let η ∈ Irr(M) be elliptic and tempered. Then

F(M, η) = {IGP (η ⊗ χ) : χ ∈ Xnr(M)}

is an algebraic family of G-representations. Its dimension is dimC(Xnr(M)), that is, the
dimension of the maximal split torus in Z(M). The subset

F
t (M, η) = {IGP (η ⊗ χ) : χ ∈ Xunr(M)}

is a tempered algebraic family of G-representations, also of dimension
dimR(Xunr(M)) = dimC(Xnr(M)).
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We fix a minimal parabolic subgroup P0 of G and a maximal split torus S0 of P0. A
parabolic (resp. Levi) subgroup of G is standard if it contains P0 (resp. S0). In the above
definition it suffices to consider standard parabolic and standard Levi subgroups of G,
because every pair (P, M) is G-conjugate to a standard such pair.

Consider a Bernstein block Rep(G)s of Rep(G), determined by a tempered super-
cuspidal representation of a standard Levi subgroup L of G. Let R(G)s be the Grothendieck
group of Rep f (G)

s . Similarly we define Rt (G)s as the Grothendieck group of the category
Reptf (G)

s of tempered modules in Rep f (G)
s . If we restrict to standard parabolic/Levi sub-

groups of G (as we will often do tacitly), Rep(G)s contains only finitely algebraic families
of G-representations as in Definition 1.1. Moreover, by [6, Corollary 3.1] these families
span Q ⊗Z R(G)s .

We want to minimize the redundancy, by choosing a smaller collection of algebraic
families of G-representations. One step in that direction is to determine which members of
an algebraic family are equivalent in R(G). To that end we briefly recall Harish-Chandra’s
Plancherel isomorphism for G [37].

Consider a Levi subgroup M of G and an irreducible square-integrable modulo centre
representation (δ,Vδ) of M . Harish-Chandra’s disjointness theorem [37, Proposition III.4.1]
asserts that every irreducible tempered G-representation is a direct summand of IGP (δ) for
such a pair (M, δ), which moreover is unique up to G-conjugation. Irreducible square-
integrable modulo centre representations of M become discrete series upon restriction to
the derived subgroup of M , so the only way to deform them continuously is twisting with
unitary unramified characters of M . Therefore the connected components of the space
Irrt (G) are parametrized by pairs (M, δ) modulo the equivalence relation

(M, δ) ∼ (gMg−1, g · (δ ⊗ χ)) g ∈ G, χ ∈ Xunr(M). (1.5)

We denote such an equivalence class by d = [M, δ]. (When δ is supercuspidal, we also have
the equivalence class s = [M, δ], which includes the tensoring by non-unitary unramified
characters and determines an entire Bernstein component of Irr(G).)

Let P be a parabolic subgroup of G with Levi factor M and let χ ∈ Xunr(M). To
(M, δ, χ)we associate the tempered G-representation IGP (δ ⊗ χ), whose isomorphism class
does not depend on the choice of P. Then the connected component of Irrt (G) associated
to (M, δ) consists of the irreducible summands (or equivalently subquotients) of the rep-
resentations IGP (δ ⊗ χ) with χ ∈ Xunr(M).

The Plancherel isomorphism describes the image of F t
M,δ , as the invariants for an

action of a certain finite group. The group

Xnr(M, δ) = {χ ∈ Xnr(M) : δ ⊗ χ � δ}

is finite and contained in Xunr(M), because it consists of characters that are trivial on
Z(M). Consider the subset

Irr(M)d = {δ ⊗ χ : χ ∈ Xnr(M)} of Irr(M).
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The map χ 7→ δ ⊗ χ provides a diffeomorphism

Xnr(M)/Xunr(M, δ) → Irr(M)d . (1.6)

It is not canonical, because it depends on the choice of δ in Irr(M)dt . For each χ′ ∈

Xnr(M, δ) we fix a unitary M-isomorphism δ � δ ⊗ χ′, and we induce it to a family of
G-isomorphisms

I(χ′, P, δ, χ) : IGP (δ ⊗ χ) → IGP (δ ⊗ χ
′χ). (1.7)

We write
Wd = {w ∈ NG(M)/M : w stabilizes Irr(M)d}.

By [33, Lemma 3.3] the action of an element w ∈ Wd on Irr(M)d can be lifted (non-
canonically) along (1.6), to an automorphism of the complex algebraic variety Xnr(M)
such that

w · (δ ⊗ χ) � δ ⊗ w(χ) for all χ ∈ Xunr(M).

By [37, Lemme V.3.1] there exists a unitary G-isomorphism

I(w, P, δ, χ) : IGP (δ ⊗ χ) → IGP (δ ⊗ w(χ)), (1.8)

depending smoothly and rationally on χ ∈ Xunr(M). Let W(M, d) be the group of trans-
formations of Xnr(M) generated by Xnr(M, δ) and the actions of elements of Wd. Now we
apply [33, Lemma 3.3] to the covering of tori

Xnr(M) → Xnr(M)/Xnr(M, δ),

and we obtain a short exact sequence

1→ Xnr(M, δ) → W(M, d) → Wd → 1. (1.9)

The intertwining operators (1.7) and (1.8) give rise to analogous families of G-isomor-
phisms for any element of W(M, d). These are far from unique, but for any fixed χ ∈

Xunr(M) they are unique up to scalars. The group W(M, d) acts on
C∞(Xunr(M)) ⊗ EndC(IGP (Vδ)

K ) by

(w · ( f ⊗ A))(χ) = f (w−1 χ) ⊗ I(w, P, δ, w−1 χ)AI(w, P, δ, w−1 χ)−1.

Let ∆G,K be a set of representatives for the (M, δ) with IGP (Vδ)
K , 0, modulo the equival-

ence relation (1.5). We assume that every M occurring here is a Levi factor of a standard
parabolic subgroup P.

Theorem 1.2. [37, §VIII.1]
There is an isomorphism of Fréchet algebras

S(G,K) →
⊕
(M,δ)∈∆G,K

(
C∞(Xunr(M)) ⊗ EndC

(
IGP (Vδ)

K
) )W (M,d)

f 7→
⊕
(M,δ)∈∆G,K

F t
M,δ( f )

.
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An important ingredient of the proof of this theorem is Harish-Chandra’s commut-
ing algebra theorem [27, Theorem 5.5.3.2], a description of the involved spaces of G-
homomorphisms. Namely, for χ1, χ2 ∈ Xunr(M):

HomG

(
IGP (δ ⊗ χ), IGP (δ ⊗ χ

′)
)
= span{I(w, P, δ, χ) : w ∈ W(M, d), w(χ) = χ′}. (1.10)

Consider an algebraic family F(M ′, η′) contained in Rep(G)s . We may assume that M ′ ⊃
M and η′ ⊂ IM

′

M′∩P0M
(δ ⊗ χ0) for some (M, δ) ∈ ∆G,K . Let W(M ′, M, η′) be the subgroup

of W(M, s) that stabilizes

F(M ′, η′) = {IGP0M′
(η′ ⊗ χ′) : χ′ ∈ Xnr(M ′)},

with respect to the action via the intertwining operators I(w, P, δ, ?).

Lemma 1.3. Two members of F(M ′, η′) in the same W(M ′, M, η′)-orbit have the same
trace. Two generic members of F(M ′, η′) have the same trace if and only if they belong
to the same W(M ′, M, η′)-orbit. Here a generic point if F(M ′, η′) means: if an element
w ∈ W(M, s) fixes the point or the intertwining operator associated to w has a singularity
at the cuspidal support of the point, then then w has that property for all members of
F(M ′, η′).

Proof. The action of w ∈ W(M, d) on the collection of direct summands of the IGP (δ ⊗ χ)
comes from an algebraic action on Xnr(M) and conjugation by some operator. Hence, for
a generic π = IGP0M′

(η′ ⊗ χ′) ∈ F(M ′, η′), the representation wπ lies in F(M ′, η′) if and
only if w ∈ W(M ′, M, η′). In combination with (1.10), that implies the second claim for
generic tempered members of F(M ′, η′).

In fact Harish-Chandra’s commuting algebra theorem (1.10) also holds for generic
χ1, χ2 ∈ Xnr(M), one only needs to avoid the poles of the intertwining operators I(w,P, δ, χ).
This follows for instance from [1, Theorem 1.6]. Then the above argument can be applied
to all generic members, and yields the first claim.

For any f ∈ H(G) and w ∈ W(M ′, M, η′),

tr
(
f , IGP0M′

(η′ ⊗ χ′)
)

and tr
(
f , IGP0M′

(η′ ⊗ wχ′)
)

are algebraic functions of χ′ ∈ Xnr(M ′). These two functions agree for generic tempered
χ′ ∈ Xunr(M ′), so they agree on the whole of Xnr(M ′).

Now we can finally describe how to choose a minimal set of algebraic families of
G-representations in Rep(G)s .

We start with the family F(L, σ) and proceed recursively. Suppose that for every
dimension D > d we have chosen a set of D-dimensional algebraic families F(Mi, ωi),
where i runs through some index set ID , with the following property: for generic χi ∈

Xnr(Mi) the set{
IGPj
(ωj ⊗ χj) : j ∈ ID,D > d, Sc(IGPj

(ωj ⊗ χj)) = Sc(IGPi
(ωi ⊗ χi))

}
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is linearly independent in Q ⊗Z R(G)s . Here we regard all χj in one W(Mj, M, ωj)-orbit
as the same, because by Lemma 1.3 they yield the same element IGPj

(ωj ⊗ χj) in R(G)s .
Next we consider the set of d-dimensional algebraic families F(M ′i , ω

′
i) with (P

′
i, M ′i )

standard. Suppose that for generic χ′i ∈ Xnr(M ′i ), the representation IG
P′i
(ω′i ⊗ χ′i ) is Q-

linearly independent from{
IGPj
(ωj ⊗ χj) : j ∈ ID,D > d, Sc(IGPj

(ωj ⊗ χj)) = Sc(IGP′i (ω
′
i ⊗ χ

′
i ))

}
,

were we still regard χj as an element of Xnr(Mj)/W(Mj, M, ωj). Then we add F(M ′i , ω
′
i)

to our collection of algebraic families.
Consider the remaining d-dimensional algebraic families. For F(M ′j, ω

′
j) we look at

the same condition as for F(M ′i , ω
′
i), but now with respect to the index set ∪D>d ID ∪ {i′}

instead of ∪D>d ID . If that condition is fulfilled, we add F(M ′j, ω
′
j) to our set of algebraic

families. We continue this process until none of the remaining d-dimensional algebraic
families is (over generic points of that family) Q-linearly independent from the algebraic
families that we chose already. At that point our set of d-dimensional algebraic families is
complete, and we move on to families of dimension d − 1.

In the end, this algorithm yields a collection

{F(Mi, ωi) : i ∈ Id, 0 ≤ d ≤ dim Xnr(L)}

such that:
• the representations

{IGPi
(ωi ⊗ χi), i ∈ ∪d Id, χi ∈ Xnr(Mi)} (1.11)

span Q ⊗Z R(G)s ,
• if we remove any index from ∪d Id , the previous bullet does not hold any more,
• for generic χ ∈ Xnr(Mi), IGPi

(ωi ⊗ χi) does not belong to the span in Q ⊗Z R(G)s of
the other families F(Mj, ωj).

We note that these conditions do not imply that (1.11) is a basis ofQ ⊗Z R(G)s . Some linear
dependence is still possible for representations with a specific cuspidal support (L, σ ⊗ χ),
namely when the algebraic R-group of σ ⊗ χ acts on IGP0L

(σ ⊗ χ) via a projective, non-
linear representation. That does not happen often though.

The formula (1.1) for the partial Fourier transform FM,δ also applies with any elliptic
M-representation instead of δ (which is square-integrable modulo centre). For each i ∈
∪

dim Xnr(L)
d=0 Id , this provides algebra homomorphisms

FMi,ηi : H(G,K) → O(Xnr(Mi)) ⊗ EndC(IGPi
(Vηi )

K )

F t
Mi,ηi

: S(G,K) → C∞(Xunr(Mi)) ⊗ EndC(IGPi
(Vηi )

K )

f 7→ [χ 7→ IGPi
(ηi ⊗ χ)( f )]

. (1.12)
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These induce maps on Hochschild homology

HHn(FMi,ηi ) : HHn(H(G,K)) → Ωn(Xnr(Mi)),

HHn(F
t
Mi,ηi
) : HHn(S(G,K)) → Ωn

sm(Xunr(Mi)).
(1.13)

We added a subscript sm to emphasize that we consider smooth differential forms on a
real manifold. We will describe HHn(H(G, K)) and HHn(S(G, K)) in terms of the maps
(1.13).

2. The Hecke algebra of G

LetB(G) be the set of inertial equivalence classes s = [L, σ]G . LetH(G)s be the two-sided
ideal ofH(G) corresponding to Rep(G)s , so that

H(G) =
⊕

s∈B(G)
H(G)s . (2.1)

At this point we need the following continuity property of the functors HHn from [18,
E.1.13]. Namely, let A = lim

−−→i
Ai be an inductive limit of algebras. Then

HHn(A) � lim
−−→i

HHn(Ai) n ∈ Z≥0. (2.2)

In particular
HHn(H(G)) =

⊕
s∈B(G)

HHn(H(G)s). (2.3)

We fix a Bernstein block Rep(G)s in Rep(G), where s = [L, σ]G . According to [5] there
exist arbitrarily small compact open subgroups K of G such that

H(G,K)s = H(G)s ∩H(G,K)

is Morita equivalent withH(G)s . Notice thatH(G,K)s is unital butH(G)s is not. In fact
H(G)s is the direct limit of the algebrasH(G,Ki)

s , where each Ki has the same property
as K and ∩∞

i=1Ki = {1}. All the inclusionsH(G,Ki)
s →H(G,Kj)

s induce isomorphisms
on Hochschild homology, by Morita invariance. Applying (2.2) another time, we find

HHn(H(G)s) � lim
i→∞

HHn(H(G,Ki)
s) � HHn(H(G,K)s).

The centre ofH(G,K)s is isomorphic to the centre of the category Rep(G)s . The latter can
be made more explicit with the notations from Section 1. Namely, (1.6) induces an algebra
isomorphism

O(Irr(L)s) � O(Xnr(L)/Xnr(L, σ)) = O(Xnr(L))Xnr(L,σ).

An instance of the short exact sequence (1.9) gives

1→ Xnr(L, σ) → W(L, s) → Ws → 1,
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By [5, Proposition 3.14] and (1.9) there are isomorphisms

Z(H(G,K)s) � Z(Rep(G)s) � O(Irr(L)s)Ws � O(Xnr(L))W (L,s). (2.4)

It is also known from [5, §3.13] that

H(G,K)s has finite rank as Z(H(G,K)s)-module. (2.5)

2.1. Structure of the module category

We aim to describeH(G,K)s and its modules locally on Xnr(L). We write

X+nr(L) = Hom(L,R>0)

and we fix u ∈ Xunr(L). Let W(L, s)u be the stabilizer of u in W(L, s). We let Uu ⊂ Xnr(L)
be a connected neighborhood of u in Xnr(L) (for the analytic topology) satisfying [34,
Condition 6.3]:
• Uu is stable under W(L, s)u and under X+nr(L),
• W(L, s)u ∩Uu = {u},
• a technical condition to ensure that u is the “most singular" point of Uu .
The tangent space at 1 of the complex torus Xnr(L) is

t := C ⊗Z X∗(L),

and the exponential map exp : t → Xnr(L) is equivariant for W(L, s)1. We modify it to a
W(L, s)u-equivariant map

expu : t → Xnr(L)
λ 7→ u exp(λ) .

This means that we regard t also as the tangent space of Xnr(L) at u. Let logu be the branch
of exp−1

u with logu(u) = 0. By [34, Condition 6.3] expu restricts to a diffeomorphism,
logu(Uu) → Uu . From [34, §7] we get a root system Φu in t, whose Weyl group is a
subgroup of W(L, s)u , a basis ∆u of Φu , a parameter function ku : ∆u → R≥0 and a 2-
cocyle \u of W(L, s)/W(Φu). In [34] some of these objects have a subscript σ ⊗ u instead
of u, but since W(L, s)u is naturally isomorphic with (Ws)σ⊗u , we may omit σ⊗. To these
data one can associate a twisted graded Hecke algebra H(t,W(L, s)u, ku, \u). For any Levi
subgroup M of G containing L, there is a parabolic subalgebra H(t,W(M, L, s)u, ku, \u),
constructed in the same way.

Theorem 2.1. [34, Corollary 8.1 and its proof, Proposition 9.5.a]
There is an equivalence between the following categories:
• finite length G-representations, all whose irreducible subquotients have cuspidal sup-

port in (L, σ ⊗W(L, s)Uu) = {(L, σ ⊗ χ) : χ ∈ W(L, s)Uu},
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• finite length right H(t,W(L, s)u, ku, \u)-modules, all whose
O(t)W (L,s)u -weights belong to logu(Uu).

This equivalence of categories commutes with parabolic induction and preserves tempered-
ness.

The opposite algebra of H(t,W(L, s)u, ku, \u) is naturally isomorphic to

HG
u := H(t,W(L, s)u, ku, \−1

u ).

via the simple map

Tw f 7→ Tw−1 f w ∈ W(L, s)u, , f ∈ O(t). (2.6)

Hence we may replace right H(t,W(L, s)u, ku, \u)-modules by left HG
u -modules in The-

orem 2.1. We note that Z(H(G,K)s) � O(Xnr(L))W (L,s) corresponds to
Z(HG

u ) � O(t)
W (L,s)u via the maps expu and logu . For later use we sketch the steps taken

in [34] to obtain the algebra HG
u in Theorem 2.1.

Construction 2.2. (i) Let Πs be the progenerator of Rep(G)s from (2). Then there are
equivalences of categories

Mod(H(G,K)s) � Rep(G)s � Mod(EndG(Πs)op). (2.7)

In particular the centres of the algebras H(G, K)s and EndG(Πs)op are canonically
isomorphic.

(ii) Localize EndG(Πs)op at W(L, s)Uu by extending its centre O(Xnr(L))W (L,s) to the
algebra of W(L, s)-invariant analytic functions Can(W(L, s)Uu)

W (L,s) on W(L, s)Uu .
We call the resulting algebra EndG(Πs)opW (L,s)Uu

.

(iii) The maximal commutative subalgebra of EndG(Πs)opW (L,s)Uu
is

Can(W(L, s)Uu) =
⊕

w∈W (L,s)/W (L,s)u
Can(wUu).

The algebra 1UuEndG(Πs)opW (L,s)Uu
1Uu is a Morita equivalent subalgebra of

EndG(Πs)opW (L,s)Uu
.

(iv) Localize HG
u at logu(Uu) by extending its centre O(t)W (L,s)u to the algebra

Can(logu(Uu))
W (L,s)u , and call the result HG

Uu
.

(v) Check that the above localizations do not change the categories of finite dimensional
modules with O(XnrL))-weights (respectively O(t)-weights) in the set on which one
localizes.

(vi) Show that the isomorphism

Can(logu(Uu))
W (L,s)u � Can(W(L, s)uUu)

W (L,s)u � Can(W(L, s)Uu)
W (L,s)

induced by expu induces an isomorphism

1UuEndG(Πs)opW (L,s)Uu
1Uu � H

G
Uu
. (2.8)
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To make full use of Theorem 2.1, we also need a variation on step (iii) above. We
will construct an algebra HG

W (L,s)u
which is Morita equivalent with HG

u and closer to
EndG(Πs)op than HG

u . We start with
⊕

wu∈W (L,s)u H
G
wu . In this algebra the unit element

of HG
wu is denoted ewu . For every element wu ∈ W(L, s)u we fix a w which has minimal

length in wW(L, s)u (see [34, end of §3] for the definition of the length function). From
[34, Lemma 8.3] we get an isomorphism

Ad(Tw) : H(t,W(L, s)u, ku, \u) → H(t,W(L, s)wu, kwu, \wu),

and hence also an isomorphism between their opposite algebras:

Ad(Tw) : HG
u → HG

wu .

The advantage of this particular isomorphism comes from [34, Lemma 8.3.b]:

Ad(Tw)∗ : Rep(HG
wu) → Rep(HG

u )

intertwines Theorem 2.1 for wu with Theorem 2.1 for u. Ad(Tw) really is conjugation by
an element Tw in a larger algebra, and satisfies:

Ad(Tw) f = f ◦ w−1 for f ∈ O(t) = O
(
Tu(Xnr(L))

)
,

Ad(Tw)
��
C[W (L,s)u,\

−1
u ]
= conjugation by Tw in C[W(L, s), \s].

Here we use the 2-cocycle \s = \−1 ofW(L,s) from [34, Lemma 5.7], which by [34, Lemma
7.1] extends \−1

u . As vector spaces we define

HG
W (L,s)u =

⊕
wu∈W (L,s)u

(
HG
wu ⊗

⊕
w̃u∈W (L,s)u

CewuTwT −1
w̃ ew̃u

)
,

The multiplication of HG
W (L,s)u

is given by

(h1 ⊗ ew1uTw1T
−1
w2 ew2u)(h2 ⊗ ew2uTw2T

−1
w3 ew3u) =

h1Ad(Tw1 )Ad(Tw2 )
−1(h2) ⊗ ew1uTw1T

−1
w3 ew3u,

where hi ∈ HG
wiu

and all the wi are as chosen above. The elements ewuTwT −1
w̃ ew̃u of

HG
W (L,s)u

multiply like matrices with just one nonzero entry. It follows readily that

HG
W (L,s)u � M |W (L,s)u |

(
HG
u

)
. (2.9)

We note that this algebra is of the form H(V,G, k, \), as in [35, §2.3]. The centre of this
algebra is

Z
(
HG
W (L,s)u

)
�

(⊕
wu∈W (L,s)u

O
(
Twu(Xnr(L))

) )W (L,s)
� O

(
Tu(Xnr(L))

)W (L,s)u = Z
(
HG
u

)
. (2.10)
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Let HG
W (L,s)Uu

be the algebra obtained from HG
W (L,s)u

by extending its centre to(⊕
wu∈W (L,s)u

Can(logwu(wUu))
)W (L,s)

.

This algebra contains HG
Uu

as a Morita equivalent subalgebra, analogous to (2.9).

Proposition 2.3. (a) The diffeomorphism

twu∈W (L,s)u expwu : twu∈W (L,s)u logwu(wUu) → W(L, s)Uu

induces an algebra isomorphism EndG(Πs)opW (L,s)Uu
� HG

W (L,s)Uu
. That fits in a com-

mutative diagram

EndG(Πs)opW (L,s)Uu
� HG

W (L,s)Uu
←− HG

W (L,s)u

↑ ↑ ↑

1UuEndG(Πs)opW (L,s)Uu
1Uu � HG

Uu
←− HG

u

.

(b) In this diagram the vertical arrows are inclusions of Morita equivalent subalgebras
and each of the two horizontal arrows induces an equivalence between the categories
of finite length modules all whose weights for (2.10) belong totwu∈W (L,s)u logwu(wUu).

Proof. (a) The elements Tw involved in HG
W (L,s)u

stem from [34, §5]. It was shown in the
proof of [34, Lemma 8.3] that

Tw1Uu ∈ EndG(Πs)opW (L,s)Uu

and that

Ad(Tw) : 1UuEndG(Πs)opW (L,s)Uu
1Uu → 1wUuEndG(Πs)opW (L,s)Uu

1wUu

is an algebra isomorphism. It follows that the isomorphism (2.8) extends canonically to
the required isomorphism.
(b) The vertical arrows were already discussed before. The claim about the lower hori-
zontal arrow was shown in [34, Lemma 7.2.a], based on [22, Proposition 4.3]. The same
argument applies to the upper horizontal arrow.

We define the parabolic subalgebras of HG
u to be the analogous algebras

HM
u = H(t,W(M, L, s)u, ku, \−1

u ),

constructed from Levi subgroups M of G containing L, as in [34, Lemma 7.2.b]. The trans-
lation from right to left modules via (2.6) commutes with parabolic induction. Namely, for
a right H(t,W(M, L, s)u, ku, \u)-module V there is a natural isomorphism of HG

u -modules

V ⊗
H(t,W (M,L,s)u,ku,\u )

H(t,W(L, s)u, ku, \u) → HG
u ⊗
HM
u

V

v ⊗ Tw 7→ Tw−1 ⊗ v
v ∈ V, w ∈ W(L, s)u . (2.11)
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The subalgebras HM
u , with

t
M = C ⊗Z X∗(M) and tM = C ⊗Z X∗(L ∩ Mder),

fulfill the conditions from [35, pages 13–14]. Indeed, that follows from (2.11), Theorem
2.1 and the properties of elliptic G-representations discussed at the start of Section 1.

LetF(M, η) be an algebraic family in Rep(G)s , with η irreducible and elliptic. We may
and will assume that M is standard and we let P be the unique standard parabolic subgroup
of G with Levi factor M . All the representations IGP (η ⊗ χ) with χ ∈ Xnr(M) admit a
central character, so Z(H(G, K)s) acts by a character on IGP (η ⊗ χ)

K . With [35, Lemma
2.3] we see that

FM,δ : H(G,K)s → O(Xnr(M)) ⊗ EndC(IGP (Vδ)
K )

is a homomorphism of Z(H(G,K)s)-algebras and that HHn(FM,δ) is a homomorphism of
Z(H(G,K)s)-modules.

Assume that some members of F(M, η) have cuspidal support in (L, σ ⊗W(L, s)Uu).
Then the image of F(M, η) under Theorem 2.1 is an algebraic family F(M, η̃) of HG

u -
modules, where η̃ ∈ Irr(HM

u ) is elliptic and tempered. More precisely Theorem 2.1 only
applies to an open part of F(M, η), and the image of that is the part of F(M, η̃) with
O(t)W (L,s)u -weights in logu(Uu). By the Langlands classification (for graded Hecke algeb-
ras in [14], generalized to our setting with the method from [30, §2.2]) every such family
of HG

u -modules arises from an elliptic representation of

Hu,M = H(tM,W(M, L, s)u, ku, \−1
u ). (2.12)

Hence there exists a λ ∈ iR ⊗Z X∗(M) such that O(tM ) ⊂ HM
u acts on Cλ ⊗ η̃ by evaluation

at 0. We may replace η̃ by Cλ ⊗ η̃ without changing F(M, η̃). Then η̃ has O(tM )-weights
in

R∆M,u ⊂ R ⊗Z X∗(L ∩ Mder). (2.13)

In general the full structure of the algebra EndG(Πs) (or its opposite) seems to be rather
complicated. Fortunately, it can be approximated with simpler algebras. The normalized
parabolic induction functor IGP0L

gives an embedding

O(Xnr(L)) → EndG(Πs).

From (2.7) and (2.4) we know that

Z(EndG(Πs)) � O(Xnr(L))W (L,s).

Let C(Xnr(L)) be the quotient field of O(Xnr(L)), i.e. the field of rational functions on the
complex affine variety Xnr(L). It is easy to see that the multiplication map

C(Xnr(L))W (L,s) ⊗
O(Xnr(L))W (L,s)

O(Xnr(L)) −→ C(Xnr(L)) (2.14)
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is a field isomorphism. According to [34, Corollary 5.8], (2.14) extends to an algebra
isomorphism

C(Xnr(L))W (L,s) ⊗
O(Xnr(L))W (L,s)

EndG(Πs)
∼
−−→ C(Xnr(L)) o C[W(L, s), \]. (2.15)

With (2.6) we also obtain the opposite version

C(Xnr(L))W (L,s) ⊗
O(Xnr(L))W (L,s)

EndG(Πs)op
∼
−−→ C(Xnr(L)) o C[W(L, s), \s]. (2.16)

Unfortunately the isomorphisms (2.15) and (2.16) are not canonical, they depend on the
choice of a suitable σ ∈ Irr(L)s and on the normalization of certain intertwining operators.
In the remainder of this paragraph we fix those choices.

We emphasize that (except in very special cases)

EndG(Πs)op is not isomorphic with O(Xnr(L)) o C[W(L, s), \s]. (2.17)

Remarkably, it turns out that nevertheless there is a canonical bijection

ζ∨ : R(G)s � R(H(G,K)s) −→ R
(
O(Xnr(L)) o C[W(L, s), \s]

)
. (2.18)

We describe step-by-step how it is obtained.

Construction 2.4. (i) With the equivalences of categories (2.7) we go from R(G)s to
R(EndG(Πs)op).

(ii) By decomposing finite length EndG(Πs)op-modules along their O(Xnr(L))W (L,s)-
weights, it suffices to consider G-representations π as in Theorem 2.1.

(iii) Via Theorem 2.1 and (2.6) we obtain the HG
u -module 1UuHomG(Πs, π).

(iv) There is a canonical Z-linear bijection

ζ∨u : R
(
HG
u

)
→ R

(
O(t) o C[W(L, s)u, \−1

u ]
)
.

The construction is given in [31, Theorem 2.4], while the bijectivity follows from
[32, Theorem 1.9].

(v) The map expu provides a diffeomorphism R ⊗Z X∗(L) → uX+nr(L). Translate the
action of O(t) on ζ∨u

(
1UuHomG(Πs, π)

)
to an action of O(Xnr(L)), by first replacing

O(t) and O(Xnr(L)) by analytic functions and then pullback along expu . This is similar
to steps (ii)–(vi) from Construction 2.2, and results in a O(Xnr(L)) o C[W(L, s)u, \−1

u ]-
module with all O(Xnr(L))-weights in uX+nr(L).

(vi) From [34, Lemma 7.1] we get a canonical algebra isomorphism

C[W(L, s)u, \−1
u ] −→ C[W(L, s)u, \s].

With that we define

ζ∨(π) = indO(Xnr(L))oC[W (L,s),\s]

O(Xnr(L))oC[W (L,s)u,\−1
u ]
ζ∨u

(
1UuHomG(Πs, π)

)
.
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Theorem 2.5. The map ζ∨ from (2.18) has the following properties.
(a) ζ∨ is Z-linear and bijective.
• π ∈ R(G)s is tempered if and only if ζ∨(π) is tempered (i.e. all its O(Xnr(L))-weights

lie in Xunr(L)).
(b) If all the irreducible subquotients of π ∈ R(G)s have cuspidal support in

σ ⊗W(L, s)uX+nr(L), then all O(Xnr(L))-weights of ζ∨(π) lie in W(L, s)uX+nr(L).
(c) In the setting of (c), suppose that π is tempered. Then

ζ∨(π) = indO(Xnr(L))oC[W (L,s),\s]
O(Xnr(L))oC[W (L,s)u,\s]

(Cu ⊗ πu),

where πu denotes the restriction of 1UuHomG(Πs, π) to C[W(L, s)u, \s].
(d) ζ∨ commutes with parabolic induction and unramified twists, in the sense that

ζ∨(IGP (χ ⊗ τ)) = indO(Xnr(L))oC[W (L,s),\s]
O(Xnr(L))oC[W (M,L,s),\s]

(χ ⊗ ζ∨M (τ))

for tempered τ ∈ R(M)s and χ ∈ Xnr(M).

Proof. (a) Since each step in Construction 2.4 is Z-linear and bijective, so is ζ∨. The
bijectivity of (vi) comes from the Morita equivalence between

Can(Uu) o C[W(L, s)u, \s] and Can(W(L, s)Uu) o C[W(L, s), \s].

(b) By Theorem 2.1, steps (i)–(iii) respect temperedness. It is known from [31, The-
orem 2.4] that ζ∨u in (iv) respects temperedness, and for (v) that is obvious because the
O(Xnr(L))-weights are not changed in that step. Modules of O(Xnr(L)) o C[Γ, \s], for
any subgroup Γ of W(L, s), are tempered if and only if all their O(Xnr(L))-weights lie in
Xunr(L). The functor indO(Xnr(L))oC[W (L,s),\s]

O(Xnr(L))oC[W (L,s)u,\s]
respects this, so step (vi) does that as well.

(c) Step (i) translates “cuspidal support (L, σ ⊗ W(L, s)χ)" into “all O(Xnr(L))-weights
in W(L, s)χ". After that the only step that changes the O(Xnr(L))-weights is (iv), and by
[31, Theorem 2.4.(3)] it only adjusts O(Xnr(L))-weights by elements of X+nr(L).
(d) The only tricky point is to see that step (iv) of Construction 2.4 sends

1UuHomG(Πs, π) to C0 ⊗
(
1UuHomG(Πs, π)

) ��
C[W (L,s)u,\

−1
u ]
,

where C0 means that O(t) acts via evaluation at 0 ∈ t. That is the content of [31, Theorem
2.4.(4)].
(e) First we check that ζ∨ respects parabolic induction, at least when the input is a tempered
(virtual) representation tensored with an unramified character. Steps (i) and (ii) commute
with parabolic induction by [33, Condition 4.1 and Lemma 6.1]. For step (iii) that follows
from [34, Lemma 6.6 and Proposition 7.3]. In step (iv), property (e) is an important part of
the construction of ζ∨u in [31, Theorem 2.4], that is where we need the shape of the input.
That step (v) respects parabolic induction follows from the properties of the isomorphism
between the analytically localized versions of the involved algebras, as in [34, Proposition
7.3]. For step (vi) we obtain the desired behaviour from [34, Lemma 6.6].
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The compatibility with unramified twists requires an explicit computation. By the
above it suffices to check that

ζ∨(χ ⊗ π) = χ ⊗ ζ∨(π) π ∈ Rt (G)s, χ ∈ Xnr(G), (2.19)
where (χ ⊗ ζ∨(π))( f Tw) = f (χ)ζ∨(π)( f Tw) f ∈ O(Xnr(G)), w ∈ W(L, s).

In steps (i) and (ii), (2.19) holds by construction, see [34, §6]. In step (iii) the appro-
priate version of (2.19) is known from [31, Theorem 2.4.(2)]. Consider the tempered
EndG(Πs)op-module τ := HomG(Πs, π). By step (ii) we may assume that all O(Xnr(L))-
weights of τ lie in W(L, s)uX+nr(L). Step (iii), with χ |χ |−1u in the role of u, sends χ ⊗ τ
to

1U
χ |χ |−1u

(χ ⊗ τ) = 1U
χ |χ |−1u

(|χ | ⊗ χ |χ |−1 ⊗ τ) = log |χ | ⊗ 1U
χ |χ |−1u

(χ |χ |−1 ⊗ τ) (2.20)

with log |χ | ∈ tW (L,s)R as character of O(t). Step (iv) transforms (2.20) to

log |χ | ⊗
(
1U

χ |χ |−1u
(χ |χ |−1 ⊗ τ)

) ��
C[W (L,s)

χ |χ |−1u,\s]
= log |χ | ⊗ (1Uu τ)

��
C[W (L,s)u,\

−1
u ]
,

where the equality holds because χ is W(L, s)-invariant. Now step (v), again with respect
to χ |χ |−1u, yields

|χ | ⊗ χ |χ |−1u ⊗ (1Uu τ)
��
C[W (L,s)u,\

−1
u ]
= Cχu ⊗ (1Uu τ)

��
C[W (L,s)u,\

−1
u ]
.

Finally, using the W(L, s)-invariance of χ again, step (vi) returns

indO(Xnr(L))oC[W (L,s),\s]

O(Xnr(L))oC[W (L,s)u,\−1
u ]

(
Cχu ⊗ (1Uu τ)

��
C[W (L,s)u,\

−1
u ]

)
=

χ ⊗ indO(Xnr(L))oC[W (L,s),\s]

O(Xnr(L))oC[W (L,s)u,\−1
u ]

(
Cu ⊗ (1Uu τ)

��
C[W (L,s)u,\

−1
u ]

)
.

Similar computations show that the last expression equals χ ⊗ ζ∨(π).

The properties listed in Theorem 2.5 imply for instance that ζ∨ maps algebraic fam-
ilies in R(G)s (or equivalently in R(H(G, K)s) to algebraic families in R

(
O(Xnr(L)) o

C[W(L, s), \s]
)
.

2.2. Local descriptions of Hochschild homology

In this section we will determine The Hochschild homology ofH(G)with a method based
on the families of G-representations from Section 1. With the procedure from page 15 we
pick a finite number (say ns) of algebraic families of G-representationsF(Mi, ηi), such that
the ηi are irreducible and the members of these families span Q ⊗Z R(G)s in a minimal
way. We may assume that each Mi is the standard Levi factor of a standard parabolic
subgroup Pi of G. Writing

Fs =
⊕ns

i=1
FMi,ηi (2.21)
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we obtain a homomorphism of Z(H(G,K)s)-modules

HHn(Fs) : HHn(H(G,K)s) →
⊕ns

i=1
Ω

n(Xnr(Mi)),

where Z(H(G, K)s) acts on the right hand side via the central characters of the involved
representations π(Mi, ηi, χi).

We aim to establish an analogue of [35, Theorems 1.13 and 2.8] for HHn(Fs). The
families that have no cuspidal supports in σ ⊗W(L, s)Uu can be ignored for the current
purposes (we may call themUu-irrelevant). For the remaining families, as explained above
we may assume without loss of generality that (2.13) holds. Select χηi ∈ uXunr(Mi) such
that

Sc(ηi) ∈ σ ⊗W(M, L, s)χηi X+nr(L). (2.22)

By Theorem 2.1 the algebraic families of HG
u -representations F(Mi, η̃i) span the part of

Q ⊗Z R(HG
u )with O(t)W (L,s)u -weights in logu(Uu). As logu(Uu) contains tR = R ⊗Z X∗(L)

and is open in t, the geometric structure of Irr(HG
u ) [29, §11] entails that theF(Mi, η̃i) span

the whole of Q ⊗Z R(HG
u ). Thus we are in the setting of [35, Lemma 4.2–Theorem 4.8].

For g ∈ W(L, s)u and v ∈ tg, in [35, (1.19)] an element

νg,v ∈ C ⊗Z R
(
O(Xnr(L)) o C[W(L, s), \s]

)
was defined, as evaluation at (g, v) in one picture of HH0

(
O(Xnr(L)) o C[W(L, s), \s]

)
. As

in [35, (2.8)], applying (ζ∨u )−1 produces a virtual HG
u -representation

ν1
g,v = (ζ

∨
u )
−1νg,v =

∑ns

i=1,Uu -rel
λg,itr π(Mi, η̃i, φg,i(v)) g ∈ W(L, s)u, v ∈ tg, (2.23)

which also occurs in [35, (2.10)]. Here the Uu-irrelevant indices i are left out of the sum,
but we may still include by setting λg,i = 0 for those i. From [35, Lemma 1.10] we know
that each φg,i : tg → tMi is given by an element of W(L, s)u . Hence φg,i induces regular
maps

φg,i : uXnr(L)g,◦ = expu(tg) → expu(tMi ) = uXnr(Mi),

χ−1
ηi
φg,i : uXnr(L)g,◦ → Xnr(Mi).

(2.24)

The φg,i are not defined when i is Uu-relevant. Using (2.24) we put

ν1
g,u′ =

∑ns

i=1,Uu -rel
λg,itr π(Mi, ηi, χ

−1
ηi
φg,i(u′)) g ∈ W(L, s)u, u′ ∈ Uu .

Since the right hand side is well-defined for any u′ ∈ uXnr(L)g,◦, we may extend the defin-
ition of ν1

g,u′ to such u′. The map (2.24) induces a homomorphism of O(Xnr(L))W (L,s)-
algebras

χ−1
ηi
φ∗g,i : O(Xnr(Mi)) ⊗ EndC(IGPi

(Vηi )
K ) → O(uXnr(L)g,◦) ⊗ EndC(IGPi

(Vηi )
K ). (2.25)

Here O(Xnr(L))W (L,s) acts on the domain via the central characters of the members of
F(Mi, ηi), whereas the O(Xnr(L))W (L,s)-module structure on the range is given at χ ∈
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uXnr(L)g,◦) by W(L, s)χt+ηi , where the central character of ηi is represented by χηi t
+
ηi

with t+ηi ∈ X+nr(L). In other words, the natural module structure on the right hand side of
(2.25) is adjusted by the positive part of the central character of ηi . When we consider the
map on Hochschild homology induced by (2.25), the range does not depend on i, but the
O(Xnr(L))W (L,s)-module structure still does. Like in [35, (1.33) and (2.14)], we can com-
bine the maps on Hochschild homology induced by the homomorphisms (2.25) a C-linear
map

HHn(φ
∗
u) =

⊕
g∈〈W (L,s)u 〉

∑ns

i=1,Uu -rel
λg,iHHn(χ

−1
ηi
φ∗g,i) :∑ns

i=1,Uu -rel
Ω

n(Xnr(Mi)) →
⊕

g∈〈W (L,s)u 〉
Ω

n(uXnr(L)g,◦). (2.26)

The maps HHn(φ
∗
u), for various u ∈ Xunr(L), are our main tools to describe HHn(H(G,K)s).

Recall that the formal completion of a commutative algebra A with respect to a finite
set of characters X is denoted ÂX . With that notation, for u′ ∈ Uu there are algebra iso-
morphisms�O(Xnr(L))

W (L,s)

W (L,s)u′ �
�O(Xnr(L))

W (L,s)u′

u′ � Ô(t)
W (L,s)u′

logu (u′) � Ô(t)
W (L,s)u
W (L,s)u logu (u′). (2.27)

Proposition 2.6. For u′ ∈Uu the following modules over the formal completion (2.27) are
isomorphic:

(a) �O(Xnr(L))
W (L,s)u′

u′ ⊗
Z(H(G,K)s)

HHn(H(G,K)s),

(b) Ô(t)
W (L,s)u′

logu (u′) ⊗
Z(HG

W (L,s)u)

HHn(H
G
W (L,s)u

),

(c) Ô(t)
W (L,s)u′

logu (u′) ⊗
Z(HG

u )

HHn(H
G
u ),

(d) Ô(t)
W (L,s)u′

logu (u′) ⊗
O(t)W (L,s)u

HHn(φ
∗)−1

( ⊕
g∈〈W (L,s)u 〉

(
Ωn(tg) ⊗ \

g
s

)ZW (L,s)u (g)
)
,

(e) �O(Xnr(L))
W (L,s)u′

u′ ⊗
O(Xnr(L))W (L,s)

HHn(φ
∗
u)
−1

( ⊕
g∈〈W (L,s)u 〉

(
Ωn(uXnr(L)g,◦) ⊗ \

g
s

)ZW (L,s)u (g)
)
.

The isomorphism between (a) and (d) is induced by HHn(Fs).

The character \gs : ZW (L,s)u (g) → C× figuring in parts (d) and (e) is defined as

\
g
s (h) = TgThT−1

g T−1
h h ∈ ZW (L,s)u (g).

It extends naturally to a map W(L, s) → C[W(L, s)), \s] with good properties, see [35,
Lemma 1.3].

Proof. Recall the explanation of Theorem 2.1 between (2.6) and (2.25). By the Morita
invariance of Hochschild homology [18, §1.2]:

HHn(H(G,K)s) � HHn(EndG(Πs)op) as Z(H(G,K)s)-modules. (2.28)
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Let Iu′ ⊂ O(Xnr(L)) be the maximal ideal of functions vanishing at u′. As

O(Xnr(L))/Imu′ � Can(W(L, s)Uu)/Imu′C
an(W(L, s)Uu)

for any m ∈ N, the algebras O(Xnr(L))W (L,s) and Can(W(L, s)Uu)
W (L,s) have the same

formal completion at u′. It follows that in the process described between (2.6) and (2.8) the
analytic localization steps do not change the formal completions of the involved algebras
(at u′ and logu(u′) respectively). Then Proposition 2.3 yields the isomorphism between
(a),(b) and (c).

The isomorphism between (c) and (d) is a consequence of [35, Theorem 2.8]. As
F(Mi, η̃i) is constructed from F(Mi, ηi) via Theorem 2.1, (2.27) induces isomorphisms of
Ô(t)

W (L,s)u′

logu (u′) -modules

Ô(t)
W (L,s)u′

logu (u′) ⊗
O(t)W (L,s)u

ns⊕
i=1,Uu -rel

Ω
n(tMi ) �

�O(Xnr(L))
W (L,s)u′

u′ ⊗
O(Xnr(L))W (L,s)

ns⊕
i=1,Uu -rel

Ω
n(uXnr(Mi)).

By Theorem 2.1 this restricts to an isomorphism between (d) and (e).
The isomorphism between (c) and (d) is obtained by evaluating elements of HG

u at
the familiesF(Mi, η̃i). Hence the isomorphism between HHn(EndG(Πs)op) and (d) comes
from evaluating elements of EndG(Πs)op at the same algebraic families. When we pass
from (d) to (e), the families F(Mi, η̃i) are translated to the families F(Mi, ηi). The iso-
morphism between (a) and (e) can be constructed from that between HHn(EndG(Πs)op)
and (e) by composing with (2.28), which is induced by a Morita equivalence. Thus the iso-
morphism between (a) and (e) is given by evaluating H(G, K)s at the families F(Mi, ηi).
In other words, it is given by HHn(Fs), while ignoring the Uu-irrelevant families.

We will lift Proposition 2.6 to a statement about HHn(H(G, K)s) on the whole of
Xnr(L).

Lemma 2.7. The map HHn(Fs) is an injection from HHn(H(G, K)s) to the set of ω ∈⊕ns
i=1 Ω

n(Xnr(Mi)) such that

HHn(φ
∗
u)ω ∈

⊕
g∈〈W (L,s)u 〉

(
Ω

n(uXnr(L)g,◦) ⊗ \
g
s

)ZW (L,s)u (g) ∀u ∈ Xunr(L).

The injection is O(Xnr(L))W (L,s)-linear if we endow each Ωn(uXnr(Mi)) with the
O(Xnr(L))W (L,s)-module structure coming from the central characters ofH(G,K)s-
representations in F(Mi, ηi).

Proof. First we consider an arbitrary complex affine variety V and a finitely generated
O(V)-module M . It is known from [35, Lemma 2.9] that

if the formal completion M̂v is 0 for all v ∈ V, then M = 0. (2.29)
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Since H(G, K)s has finite rank as a module over the Noetherian algebra Z(H(G, K)s),
so does HHn(H(G,K)s). Consider a nonzero x ∈ HHn(H(G,K)s). In view of (2.29), the
Z(H(G, K)s)-submodule generated by x has at least one nonzero formal completion, say
at W(L, s)u′. Then x is nonzero in that completion, and by Proposition 2.6 the image of
HHn(Fs)x (in a formal completion) is nonzero. Hence HHn(Fs) is injective.

Proposition 2.6 shows that the specialization of HHn(Fs)x at any central character
W(L, s)u′ ⊂ W(L, s)Uu has the property involving HHn(φ

∗
u). Hence HHn(Fs)x satisfies

the stated condition, at least on Uu . For each g, the required property extends from Uu ∩

Ωn(uXnr(L)g,◦) to Ωn(uXnr(L)g,◦) because Uu is Zariski-dense and the g-component of
HHn(Fs)x is an algebraic differential form. Thus the image of HHn(Fs) is contained in
the set specified in the statement.

To attain surjectivity in Lemma 2.7, we have to take the relations between specializa-
tion at u and at wu into account. This is where the algebras from Proposition 2.3 show their
usefulness. Let HHn(φ̃

∗
u) be the map HHn(φ̃

∗) from [35, (2.17)], for HG
W (L,s)u

. According
to [35, Proposition 2.16] there is a C-linear bijection

HHn(φ̃
∗
u) ◦ HHn(F1) : HHn(H

G
W (L,s)u) −→( ⊕

g∈[W (L,s)/W (L,s)u ]

⊕
w∈W (L,s)u

Ω
n(g(uXnr(L)w,◦)) ⊗ \

gwg−1

s

)W (L,s)
. (2.30)

Here HHn(F1) is a version of HHn(Fs) for HG
W (L,s)u

, see [35, around (2.23)].

Theorem 2.8. (a) The O(Xnr(L))W (L,s)-linear map HHn(Fs) is a bijection from
HHn(H(G,K)s) to the set of ω ∈

⊕ns
i=1 Ω

n(Xnr(Mi)) such that

HHn(φ̃
∗
u)ω ∈

( ⊕
g∈[W (L,s)/W (L,s)u ]

⊕
w∈W (L,s)u

Ω
n(g(uXnr(L)w,◦)) ⊗ \

gwg−1

s

)W (L,s)
for all u ∈ Xunr(L).

(b) The restriction of HHn(Fs)HHn(H(G,K)s) to W(L, s)Uu is isomorphic to(⊕
g∈[W (L,s)/W (L,s)u ]

⊕
w∈W (L,s)u

Ω
n(g(uXnr(L)w,◦)) ⊗ \

gwg−1

s

)W (L,s)
via HHn(φ̃

∗
u).

Proof. (a) From Proposition 2.6.b, (2.30) and (2.27) we obtain an alternative description
of the formal completion of HHn(H(G, K)s) at W(L, s)u′, namely the formal completion
at W(L, s)u′ of

HHn(φ̃
∗
u)
−1

( ⊕
g∈[W (L,s)/W (L,s)u ]

⊕
w∈W (L,s)u

Ω
n(g(uXnr(L)w,◦)) ⊗ \

gwg−1

s

)W (L,s)
. (2.31)
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Like in Lemma 2.7, it follows that the image of HHn(Fs) is contained in (2.31) for all
u ∈ Xunr(L). The advantage is that now the behaviour at the entire W(L, s)-orbit of u′ is
captured by (2.31). Consider the intersection of the spaces (2.31), over all u ∈ Xunr(L).
Divide that by the image of HHn(Fs). Proposition 2.6 and (2.30) tell us that the quotient is
a O(Xnr(L))W (L,s)-module all whose formal completions are zero. As each O(Xnr(Mi)) is a
finitely generated O(Xnr(L))W (L,s)-module, so are

⊕ns
i=1Ω

n(Xnr(Mi)) and its submodules.
Hence we may apply (2.29), which says that the quotient under consideration is the zero
module. In other words, the image of HHn(Fs) is precisely the intersection of the spaces
(2.31).
(b) Here restriction means that we only consider the

Ω
n(Xnr(Mi)) with Xnr(Mi) ∩W(L, s)Uu , ∅.

Suppose that x ∈ HHn(Fs)HHn(H(G, K)s) is nonzero on W(L, s)Uu . Pick a u′ ∈ Uu at
which x is nonzero. Then Proposition 2.6 shows that HHn(φ̃

∗
u)x cannot be zero. This

proves the injectivity.
The map HHn(φ̃

∗
u) is O(Xnr(L))W (L,s)-linear if we let that algebra act on⊕ns

i=1 Ω
n(Xnr(Mi)) via the maps

Xnr(Mi) → Xnr(L) : χ 7→ χηi χ. (2.32)

Fix a character λ ∈W(L, s)Uu of O(Xnr(L))W (L,s). There are only finitely manyH(G,K)s-
representations π(Qi, ηi, λi) with χηiλi ∈ W(L, s)λ, so together these support only finitely
many central characters. By (2.22) all those central characters lie in W(L, s)Uu . Then Pro-
position 2.6 and (2.30) imply that HHn(Fs)HHn(H(G, K)s) and (2.31) have isomorphic
formal completions at W(L, s)λ, with the respect to the O(Xnr(L))W (L,s)-module structure
coming from (2.32).

Hence the cokernel of HHn(φ̃
∗
u) is a finitely generated O(Xnr(L))W (L,s)-module all

whose formal completions at points of W(L, s)Uu are zero. Thus

Imλ cokerHHn(φ̃
∗
u) = cokerHHn(φ̃

∗
u) ∀λ ∈ W(L, s)Uu,m ∈ Z>0. (2.33)

Furthermore cokerHHn(φ̃
∗
u) is of form O(Xnr(L)/W(L, s))r/N for some submodule N of

O(Xnr(L)/W(L, s))r . Then (2.33) entails

O(Xnr(L)/W(L, s))r = Imλ O(Xnr(L)/W(L, s))r + N

for all λ ∈ W(L, s)Uu and all m ∈ Z>0. With the Zariski-density of W(L, s)Uu , it follows
that N = O(Xnr(L)/W(L, s))r . Hence cokerHHn(φ̃

∗
u) = 0 and HHn(φ̃

∗
u) is surjective.

Recall that HH0(H(G)) and HH0(H(G, K)s) were already computed in [6]. We will
now recover those results via families of representations. For a variation using only tempered
representations we refer to [20].
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Proposition 2.9. (a) HH0(Fs) provides an isomorphism between HH0(H(G, K)s) and
the set of elements of

⊕ns
i=1 O(Xnr(Mi)) that descend to linear functions on C ⊗Z

R(H(G,K)s).
(b) Part (a) yields an isomorphism of Z(H(G,K)s)-modules

HH0(H(G,K)s) � (C ⊗Z R(G)s)∗reg.

Proof. (a) With Theorem 2.1 and Proposition 2.3 we reduce this to an issue for HG
W (L,s)u

.
In that setting [35, Proposition 2.16.a] is equivalent to Theorem 2.8.a, and the desired
description is (2.30).
(b) The definition of HH0(Fs) involves the generalized trace map and the Hochschild–
Kostant–Rosenberg theorem, like in [35, Paragraph 1.2]. Unwinding this, we find that the
map

HH0(H(G,K)s) →
(
C ⊗Z R(H(G,K)s)

)∗
from part (a) is just (1.4). In particular every element of HH0(H(G, K)s) determines a
regular linear function on C ⊗Z R(H(G, K)s). The map is injective because HHn(Fs) is
injective and because for f ∈

⊕ns
i=1 O(Xnr(Mi)) the values f (Pi, δi, vi) can be recovered

from the image of f in
(
C ⊗Z R(H(G, K)s)

)∗. By Morita equivalence, we may replace
R(H(G,K)s) with R(G)s .

Conversely, for every λ ∈
(
C ⊗Z R(H(G, K)s)

)∗
reg the canonical pairing with FMi,ηi

produces a regular function on Xnr(Mi), so λ comes from an element of
⊕ns

i=1 O(Xnr(Mi)).

Let∆s
G
be a set of representatives for the inertial equivalence classes of square-integrable

modulo centre representations δ of standard Levi subgroups M of G, such that IGP (δ) ∈
Rep(G)s . From Theorem 1.2 we see that the category of tempered representations in
Rep(G)s decomposes as

Rept (G)s =
⊕

d=[M,δ]∈∆s
G

Rept (G)d, (2.34)

where Rept (G)d is the full subcategory generated by the subquotients of IGP (δ ⊗ χ) with
χ ∈ Xunr(M). With Theorem 2.1 and the same arguments as in the proof of [35, Theorem
2.2], (2.34) induces a decomposition

Rt (HG
u ) =

⊕
d∈∆s

G

Rt (HG
u

)d
. (2.35)

By Proposition 2.3 Rt (H
G
W (L,s)u

) decomposes in the same way.
It is known from [34, Proposition 9.5] that the equivalence of categories in Theorem

2.1 sends square-integrable modulo centre representations to tempered essentially discrete
series representations. With that and the same process that made η̃ out of η, described
around (2.12), we can associate to d = [M, δ] ∈ ∆s

G
a discrete series representation δ̃ ofHM .

Thus (2.35) is a decomposition of the kind considered in [35, Theorem 2.2 and (2.25)].
We define

Fd =
⊕ns

i=1,i≺d
FMi,ηi .
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Lemma 2.10. (a) There is a canonical decomposition

HHn(H(G,K)s) =
⊕

d∈∆s
G

HHn(H(G,K)s)d,

where the part indexed by d = [M, δ] is obtained by applying HHn(Fs)
−1 to

HHn(Fd)HHn(H(G,K)s) =
⊕

i≺d
Ω

n(tMi ) ∩ HHn(Fs)HHn(H(G,K)s).

(b) Select χδ ∈ Xunr(L), t+δ ∈ X+nr(L) such that χδt+δ represents the Z(H(G,K)s-character
of δ. The map

HHn(φ̃
∗
u) ◦ HHn(Fd) : HHn(H(G,K)s)d −→(⊕

g∈[W (L,s)/W (L,s)u ]

⊕
w∈W (L,s)u

Ω
n(g(uXnr(L)w,◦)) ⊗ \

gwg−1

s

)W (L,s)
is O(Xnr(L))W (L,s)-linear if we let O(Xnr(L))W (L,s) act on the target such that:
– if g(uXnr(L)w,◦) ⊂ χδXnr(M), then it acts at guχ with χ ∈ Xnr(L)w,◦ via the char-

acter W(L, s)uχt+δ ,
– in the same situation O(Xnr(L))W (L,s) acts at huχ, where h ∈ W(L, s) and χ ∈

Xnr(L)w,◦, also via the character W(L, s)uχt+δ ,
– if h(uXnr(L)w,◦) 1 χδXnr(M) for any h ∈W(L,s), then O(Xnr(L))W (L,s) annihilates

Ωn(g(uXnr(L)w,◦)).

Proof. (a) This follows from [35, Lemma 2.12, (2.25), Corollary 2.13] and Theorem 2.8.
(b) The condition in the third bullet means that for i ≺ d no map φw,i : uXnr(L)w,◦ →
χδXnr(M) can exist. In that case λw,i = 0 and the image of HHn(H(G,K)s)d in
Ωn(g(uXnr(L)w,◦) is 0. From that and (2.25) we see that, for each i separately, there exists
such a O(Xnr(L))W (L,s)-module structure as indicated, only with t+ηi ∈ X+nr(L) instead of t+δ .

By [35, Corollary 2.13], HHn(φ̃
∗
u) ◦ HHn(Fd) is O(Xnr(L))W (L,s)-linear if we let it act

according to the central characters of the virtual representations νdg,w,v from [35, (2.26)].
That means that the natural module structure is adjusted by a representative cc(δ) ∈ tR
of the central character of δ (as representation of HG

u ). So in that setting log(t+ηi ) and
log(cc(δ)) represent the same central character, for all i ≺ d. We have translate these to
H(G,K)s-representations with Theorem 2.1 and Proposition 2.3. Then cc(δ) becomes t+δ .
Hence W(L, s)t+ηi = W(L, s)t+δ for all i ≺ d.

Thus the O(Xnr(L))W (L,s)-module structures for the i ≺ d agree, and combine to make
HHn(φ̃

∗
u) ◦ HHn(Fd) a module homomorphism with the indicated character shift.

2.3. Hochschild homology for one entire Bernstein component

We would like to combine the local conditions involving HHn(φ
∗
u) to a smaller set of

conditions that describe HHn(H(G, K)s) globally on Xnr(L). This is difficult because the
algebras HG

u and HG
W (L,s)u

do not vary continuously with u ∈ Xunr(L). To compensate
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for that, we relate the local conditions coming from u, u′ ∈ Xunr(L) that are close. When
W(L, s)u′ ⊂ W(L, s)u , we define

HHn(φ
∗
u)u′ =

⊕
w∈W (L,s)u′

ns∑
i=1,Uu -rel

λw,iHHn(χ
−1
ηi
φ∗w,i).

Lemma 2.11. (a) Let u′ ∈ Uu ∩ Xunr(L). Then

HHn(φ
∗
u′)
−1
u′

(⊕
w∈W (L,s)u′

(
Ω

n(u′Xnr(L)w,◦) ⊗ \ws
)ZW (L,s)u′

(w)
)
=

HHn(φ
∗
u)
−1
u′

(⊕
w∈W (L,s)u′

(
Ω

n(uXnr(L)w,◦) ⊗ \ws
)ZW (L,s)u (w)

)
.

(b) Part (a) also holds for u ∈ u′Xunr(L)W (L,s)u′,◦.

Proof. (a) Notice that W(L, s)u′ ⊂ W(L, s)u by the conditions on Uu . We may choose Uu′

so small that it is contained in Uu . From the proof of [35, Proposition 2.16.a] we know
that⊕

w∈W (L,s)u′

(
Ω

n(u′Xnr(L)w,◦) ⊗ \ws
)ZW (L,s)u′

(w)
�(⊕

g∈[W (L,s)/W (L,s)u′ ]

⊕
w∈W (L,s)u′

Ω
n(g(u′Xnr(L)w,◦)) ⊗ \

gwg−1

s

)W (L,s)
.

By construction HHn(φ
∗
u′)
−1
u′ of the left hand side equals HHn(φ̃

∗
u′)
−1 of the right hand

side. By Theorem 2.8.b, this describes precisely the restriction of
HHn(Fs)HHn(H(G,K)s) to W(L, s)Uu′ . Similarly

HHn(φ
∗
u)
−1
u

(⊕
w∈W (L,s)u

(
Ω

n(uXnr(L)w,◦) ⊗ \ws
)ZW (L,s)u (w)

)
describes precisely the restriction of HHn(Fs)HHn(H(G, K)s) to W(L, s)Uu . Restricting
that further W(L, s)Uu′ means that we remove the summands for w ∈ W(L, s)u that do not
fix u′, because for those Uu′ ∩ Xnr(L)w = ∅ and w(Uu′) ∩Uu′ = ∅, by the properties of Uu′ .
That leaves us with

HHn(φ
∗
u)
−1
u′

(⊕
w∈W (L,s)u′

(
Ω

n(uXnr(L)w,◦) ⊗ \ws
)ZW (L,s)u (w)

)
.

(b) Pick a path p from u′ to u in u′Xunr(L)W (L,s)u′,◦. We even assume that W(L, s)y =
W(L, s)u′ for all y on p, because that condition holds on an open dense subset of Xunr(L).
By the compactness of Xunr(L), we can choose a finite subset Y of p, such that the Uy with
y ∈ Y cover p. Choose a finite sequence y1, y2, . . . , ym in Y , such that u′ ∈ Uy1, u ∈ Uym

and
Uyi ∩Uyi+1 ∩ p , ∅ for all 1 ≤ i < m.

For 1 ≤ i < m we pick zi ∈ Uyi ∩Uyi+1 ∩ p. We follow the new sequence

u′, y1, z1, y2, z2, . . . , zm−1, ym, u.
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At each step part (a) guarantees that the relevant preimages under HHn(φ
∗
?)u′ do not

change.

For c ∈ π0(Xnr(L)w), we denote the corresponding connected component of w-fixed
points by Xnr(L)wc . Then W(L, s) acts naturally on the set of such components, and on
the set of pairs (w, c). We denote the stabilizer of (w, c) by W(L, s)w,c , this is a subgroup
of ZW (L,s)(w). We register these connected components with the list of pairs (w, c), where
w ∈W(L,s) and c ∈ π0(Xnr(L)w). We write (w ′, c′) ≥ (w, c) if Xnr(L)w

′

c′ ⊃ Xnr(L)wc , (w ′, c′) ∼
(w, c) if Xnr(L)w

′

c′ ⊃ Xnr(L)wc and (w ′, c′) > (w, c) if Xnr(L)w
′

c′ ) Xnr(L)wc .
We ready to reorganize the conditions that describe Hn(Fs)HHn(H(G, K)s) in The-

orem 2.8. This is done with decreasing induction on the dimension of the connected
components Xnr(L)wc , or equivalently on the pairs (w, c).

Construction 2.12. (i) We start with w = 1 and Xnr(L)wc = Xnr(L). Pick u1 ∈ Xunr(L)
with W(L, s)u1 = {1}. Then HHn(φ

∗
1,c) := HHn(φ

∗
u1 ) is just a map⊕ns

i=1
Ω

n(Xnr(Mi)) → Ω
n(u1Xnr(L)) = Ωn(Xnr(L)),

and it sends HHn(Fs)HHn(H(G,K)s) toΩn(Xnr(L))W (L,s). By Lemma 2.11, this com-
pletely describes the restriction of HHn(Fs)HHn(H(G, K)s) to the subset of Xnr(L)
not fixed by any nontrivial element of W(L, s). Remove (1, c) from the list of pairs.

(ii) Assume that for some connected components Xnr(L)wc we have already chosen a map

HHn(φ
∗
w,c) :

⊕ns

i=1
Ω

n(Xnr(Mi)) → Ω
n(uw,cXnr(L)w,◦) = Ωn(Xnr(L)wc ), (2.36)

of the form
∑ns

i=1,Uu -rel λw,iHHn(χ
−1
ηi
φ∗w,i) coming from HHn(φ

∗
u) for some u = uw,c

with uw,c ∈ Xnr(L)wc but not in any connected component of smaller dimension. Assume
that the set of pairs (w, c) for which this has been done is closed under passing to larger
pairs. Assume that all those pairs have been removed from the list. Finally and most
importantly, we assume that for all those pairs (w, c) the restriction of
HHn(Fs)HHn(H(G, K)s) to Xnr(L)wc without the connected components of smaller
dimension equals⋂

(w′,c′)≥(w,c)
HHn(φ

∗
w′,c′)

−1 (
Ω

n(Xnr(L)w
′

c′ ) ⊗ \
w′

s

)W (L,s)w′,c′ . (2.37)

(iii) From the list of remaining pairs, pick a (g, c) with Xnr(L)
g
c of maximal dimension.

Select u = ug,c in Xunr(L)
g
c but not in any connected component of smaller dimension.

Define
HHn(φ

∗
g,c) =

∑ns

i=1,Uu -rel
λg,iHHn(χ

−1
ηi
φ∗g,i), (2.38)
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a part of HHn(φ
∗
u). If there are other h ∈W(L,s) with Xnr(L)hc = Xnr(L)

g
c , then we take

uh,c = ug,c and we define HHn(φ
∗
h,c
) in the same way. We need to check that⋂

(w′,c′)>(g,c)
HHn(φ

∗
w′,c′)

−1 (
Ω

n(Xnr(L)w
′

c′ ) ⊗ \
w′

s

)W (L,s)w′,c′∩⋂
(h,c)∼(g,c)

HHn(φ
∗
h,c)
−1 (
Ω

n(Xnr(L)hc) ⊗ \
h
s

)W (L,s)h,c (2.39)

equals

HHn(φ
∗
u)
−1

⊕
w∈〈W (L,s)u 〉

(
Ω

n(uXnr(L)w,◦) ⊗ \ws
)ZW (L,s)u (w). (2.40)

This follows from Lemma 2.11, which says that all the parts HHn(φ
∗
u)u′ with u′ ∈ Uu

and u′ < Xnr(L)
g
c are accounted for by the (w ′, c′) > (g, c). Lemma 2.11 also tells us

that (2.39) and (2.40) describe exactly the restriction of
HHn(Fs)HHn(H(G,K)s) to Xnr(L)

g
c without the components of smaller dimension.

(iv) For components (g′, c′) in theW(L,s)-orbit of (g, c) or any of the (h, c), we define the
maps HHn(φ

∗
g′,c′) by imposing W(L, s)-equivariance (where the group acting involves

the characters \gs ). This construction ensures that

HHn(φ
∗
g,c)
−1 (
Ω

n(Xnr(L)
g
c ) ⊗ \

g
s

)W (L,s)g,c =( ∑
(g′,c′)∈W (L,s)(g,c)

HHn(φ
∗
g′,c′)

)−1 ( ⊕
(g′,c′)∈W (L,s)(g,c)

Ω
n(Xnr(L)hc) ⊗ \

h
s

)W (L,s)
. (2.41)

(v) Remove (g, c) and the pairs (h, c) ∼ (g, c) from the list of pairs. Stop if there are no
pairs left, otherwise return to step (iii).

With (2.38) we associate to (w, χ) the virtualH(G,K)s-representation

ν1
w,χ =

∑ns

i=1,Uu -rel
λw,itr π(Mi, ηi, χ

−1
ηi
φw,i(χ)). (2.42)

In other words, the specialization of HHn(φ
∗
w,c) at χ ∈ Xnr(L)wc corresponds to the map

on Hochschild homology induced by ν1
w,χ. This means that

HHn(φ
∗
w,c) ◦ HHn(Fs) : HHn(H(G,K)s) → Ω

n(Xnr(L)wc ) (2.43)

is induced by the algebraic family of virtual representations {ν1
w,χ : χ ∈ Xnr(L)wc }. From

[35, Lemma 2.5.a] (translated to the current setting with Theorem 2.1) and step (iv) above
we see that

ν1
gwg−1,gχ

= \ws (g)ν
1
w,χ . (2.44)

Considering ν1
w,χ as virtual G-representation via the equivalence of categories (2.7), we

deduce from (2.38) and (2.23) that

ζ∨(ν1
w,χ) = νw,χ . (2.45)

The above procedure gives rise to a description of HHn(H(G, K)s) that is more concrete
than Theorem 2.8.
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Theorem 2.13. For each w ∈ W(L, s) and each c ∈ π0(Xnr(L)w), let HHn(φ
∗
w,c) be as

above. We define

HHn(φ̃
∗
s ) =

⊕
w∈W (L,s),c∈π0(Xnr(L)w )

HHn(φ
∗
w,c)

(a) The map

HHn(φ̃
∗
s ) :

ns⊕
i=1

Ω
n(Xnr(Mi)) →

⊕
w∈W (L,s),c∈π0(Xnr(L)w )

Ω
n(Xnr(L)wc )

is injective.
(b) HHn(φ̃

∗
s ) gives a C-linear bijection

HHn(Fs)HHn(H(G,K)s) →
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w) ⊗ \ws
)W (L,s)

.

(c) For d ∈ ∆s
G
, the restriction of HHn(φ̃

∗
s ) ◦ HHn(Fs) to the direct summand

HHn(H(G,K)s)d of HHn(H(G,K)s) becomes O(Xnr(L))W (L,s)-linear if we endow the
target with the same module structure as in Lemma 2.10.

Proof. (a) Recall that the specialization of HHn(φ
∗
w,c) at χ ∈ Xnr(L)wc came from a virtual

representation of HG
χ |χ |−1 , translated to a virtual representation ν1,w,χ of H(G, K)s via

Theorem 2.1 and Proposition 2.3.
Consider one u ∈ Xunr(L). From (2.37) and Theorem 2.8 we see that the ν1,w,χ with

central characters in W(L, s)Uu span the same set of virtual representations with cent-
ral characters in W(L, s)Uu as all the virtual representations νg,u′ defined via HG

u . The
latter collection spans the entire part of C ⊗Z R(H(G, K)s) with central characters in
W(L, s)Uu , so the νw,χ span that as well. It follows that the specialization of HHn(φ

∗
s )x at

χ ∈ W(L, s)Uu is zero if and only if the specialization of HHn(φ̃
∗
u)x at χ is zero.

From [35, Lemmas 1.12 and 2.7] we know that HHn(φ
∗
u) and HHn(φ̃

∗
u) are injective,

for twisted graded Hecke algebras and forH(V,G, k, \) as in [35, Paragraph 2.3], and hence
also for the algebras HG

u and HG
W (L,s)

. By the above considerations with virtual represent-
ations, HHn(φ̃

∗
s ) contains at least as much information as HHn(φ̃

∗
u). Hence HHn(φ̃

∗
s )x is

nonzero as soon as x ∈
⊕ns

i=1Ω
n(Xnr(Mi)) does not vanish on Uu . That holds for for every

u ∈ Xunr(L), so HHn(φ̃
∗
s )x is injective.

(b) We already know from Lemma 2.7 and part (a) that HHn(φ̃
∗
s ) ◦ HHn(Fs) is injective.

From Theorem 2.8, (2.37) and (2.41) we know that the assertion holds locally. Hence

HHn(φ̃
∗
s ) ◦ HHn(Fs)HHn(H(G,K)s) ⊂(⊕

w∈W (L,s),c∈π0(Xnr(L)w )
Ω

n(Xnr(L)wc ) ⊗ \
w
s

)W (L,s)
. (2.46)

Both sides are finitely generated O(Xnr(L))W (L,s)-modules (for natural module structure,
not the module structure determined by the characters of the underlying virtual represent-
ations). We consider the quotient module M . Since the two sides of (2.46) are isomorphic
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locally, all formal completions of M with respect to characters of O(Xnr(L))W (L,s) are zero.
By (2.29) M = 0, so the inclusion (2.46) is an equality. Finally, we note that⊕

c∈π0(Xnr(L)w )
Ω

n(Xnr(L)wc ) = Ω
n(Xnr(L)w).

(c) This follows from Lemma 2.10, since every component of HHn(φ̃
∗
s ) occurs as com-

ponent of a HHn(φ̃
∗
u).

Recall thatH(G,K)s is Morita equivalent with EndG(Πs)op and that in (2.16) we fixed
an isomorphism of O(Xnr(L))W (L,s)-algebras

C(Xnr(L))W (L,s) ⊗
O(Xnr(L))W (L,s)

EndG(Πs)op
∼
−−→ C(Xnr(L)) o C[W(L, s), \s].

Recall the bijection ζ∨ from (2.18) and Theorem 2.5.

Theorem 2.14. There exists a unique C-linear bijection

HHn(ζ
∨) : HHn

(
O(Xnr(L)) o C[W(L, s), \s]

)
→ HHn(H(G,K)s)

such that
HHn(FM,η) ◦ HHn(ζ

∨) = HHn(FM,ζ∨(η))

for all algebraic families F(M, η) in Rep(G)s .

Proof. By [35, Theorem 1.2] there is a O(Xnr(L))W (L,s)-linear bijection

HHn

(
O(Xnr(L)) o C[W(L, s), \s]

)
→

( ⊕
w∈W (L,s)

Ω
n(Xnr(L)w) ⊗ \ws

)W (L,s)
. (2.47)

It is not canonical, but from [35, (1.15) and (1.17)] we know that the non-canonicity is
limited to one scalar factor for each direct summand indexed by a conjugacy class in
W(L, s). We can fix these scalar factors by requiring that (2.47) on the summand indexed
by w is induced by the algebraic family of virtual representations

{νw,χ : χ ∈ Xnr(L)w}. (2.48)

Indeed, the bijection (2.47) is recovered in that way in [35, Theorem 1.13.a]. The only issue
is that [35, §1.2] applies not to tori like Xnr(L), but to complex vector spaces. Fortunately
[35, Theorem 1.13] can easily be extended to our setting by localization of O(Xnr(L))W (L,s)

to sets of the form W(L, s)Uu/W(L, s). Thus we make (2.47) canonical.
By Lemma 2.7 and Theorem 2.13.b,

HHn(φ̃
∗
s ) ◦ HHn(Fs) : HHn(H(G,K)s) →

( ⊕
w∈W (L,s)

Ω
n(Xnr(L)w) ⊗ \ws

)W (L,s)
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is a C-linear bijection. We define HHn(ζ
∨) as the composition of (2.47) with

(
HHn(φ̃

∗
s ) ◦

HHn(Fs)
)−1. From (2.43), (2.45) and (2.48) we see that

HHn(F ) ◦ HHn(ζ
∨) = HHn(ζ

∨ ◦ F ) (2.49)

whenever F is one of the families {ν1
w,χ : χ ∈ Xnr(L)wc } with c ∈ π0(Xnr(L)w). Since every

such F is a linear combination of algebraic families ofH(G,K)s)-representations, (2.49)
is implied the condition in the theorem. Hence HHn(ζ

∨) is unique.
It remains to check that

HHn(FM,η) ◦ HHn(ζ
∨) = HHn(FM,ζ∨(η)) (2.50)

for an arbitrary algebraic family in Rep(G)s . By [35, Lemma 1.9] the virtual repres-
entations νw,χ with w ∈ [W(L, s)] and v ∈ Xnr(L)w/ZW (L,s)(w) such that \ws (W(L, s)v ∩
ZW (L,s)(w)) = 1 form a basis of

C ⊗Z R
(
O(Xnr(L)) o C[W(L, s), \s]

)
. (2.51)

Hence there exist coefficients c(w, v, χ) ∈ C such that

F(M, ζ∨(η), χ) =
∑

w,v
c(w, v, χ)νw,v .

Then (2.45) and the bijectivity of Theorem 2.5 imply

F(M, η, χ) =
∑

w,v
c(w, v, χ)ν1

w,v .

Recall from (2.42) that ν1
w,v is a linear combination of the F(Mi, ηi, vi). With Theorem 2.5

that can be transferred to (2.51). Hence there exist c′(i, χ, vi) ∈ C such that

F(M, η, χ) =
∑

i,vi c′(i, χ, vi)F(Mi, ηi, vi),

F(M, ζ∨(η), χ) =
∑

i,vi c′(i, χ, vi)F(Mi, ζ
∨(ηi), vi).

From (2.49) we deduce that

HHn(F(M, η, χ)) ◦ HHn(ζ
∨) = HHn(F(M, ζ∨(η), χ)).

The same argument for all χ ∈ Xnr(M) simultaneously yields (2.50).

Theorem 2.14 is a homological counterpart to [34, Theorem 9.9], which matches the
irreducible representations ofH(G,K)s with those of O(Xnr(L)) o C[W(L, s), \s].

3. The Schwartz algebra of G

The Harish-Chandra–Schwartz algebra of a reductive p-adic group is an inductive limit
of Fréchet spaces, but itself not a Fréchet algebra. To do homological algebra with such
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topological algebras, we have to agree on a suitable topological tensor product. The best
choice is to work in the category of complete bornological vector spaces, with the com-
plete bornological tensor product [19, Chapter I]. We denote it by ⊗̂, which is reasonable
since for Fréchet algebras it agrees with the projective tensor product [19, Theorem I.87].

The Hochschild homology of a complete bornological algebra A is defined as

HHn(A) = TorA⊗̂A
op

n (A, A), (3.1)

working in the category of complete bornological A-modules. When A is unital, HH∗(A)
can be computed with the completed bar-complexCn(A)= A⊗̂n+1 and the usual differential

bn(a0 ⊗ · · · ⊗ an) =
n−1∑
i=0

a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an + (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

Under additional conditions, these functors HHn are continuous:

Lemma 3.1. Suppose that A = lim
−−→i

Ai is a strict inductive limit of nuclear Fréchet algeb-
ras (where strict means that the transition maps Ai → Aj are injective and have closed
range). Then there is a natural isomorphism

HHn(A) � lim
−−→i

HHn(Ai).

Proof. In [8, Theorem 2] this was shown with respect to the inductive tensor product.
Under the assumptions of the lemma, inductive tensor products agree with completed
bornological tensor products, for the Ai and for A [19, Theorem I.93].

Recall that S(G) is the inductive limit of the algebras S(G, K), where K runs over
the compact open subgroups of G. As S(G, K) is a closed subspace of S(G, K ′) when
K ′ ⊂ K , S(G) is even a strict inductive limit. The Plancherel isomorphism from Theorem
1.2 shows that each S(G,K) is nuclear Fréchet algebra. Thus Lemma 3.1 applies and says
that

HHn(S(G)) � lim
−−→K

HHn(S(G,K)). (3.2)

The decomposition (2.1) induces a decomposition of the Schwartz algebra of G as a direct
sum of two-sided ideals:

S(G) =
⊕

s∈B(G)
S(G)s,

indexed by the inertial equivalence classes s = [L, σ]G of cuspidal pairs for G. This persists
to the subalgebras of K-biinvariant functions:

S(G,K) =
⊕

s∈B(G)
S(G,K)s,

but for each K only finitely many of the S(G, K)s are nonzero. The analogue of (3.2) for
S(G)s reads

HHn(S(G)s) = HHn

(
lim
−−→K

S(G,K)s
)
� lim
−−→K

HHn(S(G,K)s). (3.3)
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WheneverH(G)s andH(G,K)s are Morita equivalent (which by [5] happens for arbitrar-
ily small K), also S(G)s and S(G, K)s are Morita equivalent. Let us denote that situation
by s ∈ B(G,K). Then (3.2) and (3.3) imply

HHn(S(G)) � lim
−−→
K

⊕
s∈B(G,K)

HHn(S(G,K)s) �
⊕
s∈B(G)

HHn(S(G)s) (3.4)

and each HHn(S(G)s) is isomorphic with HHn(S(G,K)s) when s ∈ B(G,K).

3.1. Topological algebraic aspects

We want to determine the Hochschild homology of the nuclear Fréchet algebra S(G,K)s ,
which is also the closure of H(G,K)s in S(G). We have to take the topology of S(G,K)s
into account, which creates challenges that were absent in the purely algebraic setting of
Section 2. Before we start the actual computation, we first settle most issues of topological-
algebraic nature.

Recall from Theorem 1.2 that there is an isomorphism of Fréchet algebras

S(G,K)s �
⊕

d=(M,δ)∈∆s
G

(
C∞(Xunr(M)) ⊗ EndC

(
IGP (Vδ)

K ) )W (M,d)
. (3.5)

By [15, Théorème 0.1], (3.5) restricts to an algebra isomorphism

H(G,K)s �
(
O(Xnr(L)) ⊗ EndC(IGP0L

(Vσ)K )
)
∩⊕

d=(M,δ)∈∆s
G

(
C∞(Xunr(M)) ⊗ EndC

(
IGP (Vδ)

K ) )W (M,d)
. (3.6)

Let ed ∈ S(G,K) be the central idempotent corresponding to the direct summand of (3.5)
indexed by d. We define S(G,K)d = edS(G,K), so that by (3.5)

S(G,K)d �
(
C∞(Xunr(M)) ⊗ EndC

(
IGP (Vδ)

K ) )W (M,d)
. (3.7)

Then S(G,K)s =
⊕

d∈∆s
G
S(G,K)d and

Z(S(G,K)s) =
⊕

d∈∆s
G

Z(S(G,K)d) �
⊕

d∈∆s
G

C∞(Xunr(M))W (M,d). (3.8)

For d ∈ ∆s
G

we have Wd ⊂ Ws . The relation between W(M, d) and W(L, s) is less clear,
because the groups Xnr(M, δ) and Xnr(L, σ) from (1.9) may differ.

To analyse (Fréchet) modules over (3.8), we will make ample use of the following
result. It is the specialization of [17, Lemma 3.4] to the affine variety Xnr(M) with the
submanifold Xunr(M) and the action of W(M, d).

Proposition 3.2. Let Ỹ be an affine variety with an embedding ı in Xnr(M). Suppose that:
• ı(Ỹ ) is closed in Xnr(M) and isomorphic to Ỹ ,
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• Y := ı−1(Xunr(M)) is a real analytic Zariski-dense submanifold of Ỹ and diffeomorphic
to ı(Y ).

Let p be an idempotent in the ring of continuous C∞(M)W (M,d)-linear endomorphisms of
Ωn

sm(Y ), such that p stabilizes Ωn(Ỹ ). Then the natural map

C∞(Xunr(M))W (M,d) ⊗
O(Xnr(M))W (M,d)

pΩn(Ỹ ) −→ pΩn
sm(Y )

is an isomorphism of Fréchet C∞(Xunr(M))W (M,d)-modules.

The dense subspace edH(G,K)s of S(G,K)d is a subalgebra because ed is central, but
it is not contained in H(G, K). Its irreducible representations are the constituents of the
IGP (δ ⊗ χ) with χ ∈ Xnr(M). Its centre is the restriction of Z(H(G,K)s) to F (M, δ), so

Z(edH(G,K)s) = edZ(H(G,K)s) � O(Xnr(M))W (M,d). (3.9)

Lemma 3.3. (a) The multiplication map

µd : Z(S(G,K)d) ⊗
edZ(H(G,K)s)

edH(G,K)s −→ S(G,K)d

is an isomorphism of Fréchet Z(S(G,K)d)-modules.
(b) The Z(S(G,K)d)-module S(G,K)d is generated by a finite subset of edH(G,K)s .

Proof. (a) From (3.7) and (3.8) we see that that Z(S(G, K)d)-module S(G, K) is a direct
summand of

C∞(Xunr(M)) ⊗ EndC
(
IGP (Vδ)

K )
� C∞(Xunr(M))dim(IGP (Vδ )

K )2,

namely, it is the image of the idempotent the averages over W(M, d). It follows from (3.6)
that

edH(G,K)s �
(
O(Xnr(M)) ⊗ EndC

(
IGP (Vδ)

K ) )
∩(

C∞(Xunr(M)) ⊗ EndC
(
IGP (Vδ)

K ) )W (M,d)
. (3.10)

From this and (3.7),(3.8) and (3.9) we see that we are in the right position to apply Pro-
position 3.2, which yields exactly the statement.
(b) This follows from part (a) and (2.5).

We note that there are natural homomorphisms of Z(H(G,K)s)-modules

HHn(H(G,K)s)d → HHn(H(G,K)s) → HHn(edH(G,K)s),

and the outer sides should be closely related. However, the composed map is in general
not bijective, HHn(edH(G,K)s) can be more intricate.

As discussed around (3.1), we compute the Hochschild homology of Fréchet algebras
with respect to the complete projective tensor product. We establish some topological
properties of the Hochschild homology groups of S(G,K)s , making use of [17].
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Proposition 3.4. HHn(S(G,K)s) is a quotient of two closed submodules of a finitely gen-
erated Fréchet Z(S(G,K)s)-module. In particular HHn(S(G,K)s) is a Fréchet Z(S(G,K)s)-
module.

Proof. To compute HHn(S(G, K)s) according to the definition (3.1), we can use any
(bornological or Fréchet) projective bimodule resolution of S(G,K)s . One such resolution
was constructed in [23, Theorem 4.2], for S(G,K) but that is enough because S(G,K)s is
a direct summand of S(G,K). The set of n-chains of that resolution is a finitely generated
projective S(G,K)s ⊗̂S(G,K)s,op-module. By construction this projective resolution con-
tains a projective bimodule resolution ofH(G,K)s , namely the set of elements that live in
powers ofH(G,K)s ⊗̂H(G,K)s,op .

By tensoring with S(G,K)s over S(G,K)s ⊗̂S(G,K)s,op , we obtain a differential com-
plex (C∗, d∗) that computes HHn(S(G,K)s). Each term Cn is a direct summand of

(S(G,K)s ⊗̂S(G,K)s,op)r ⊗
S(G,K)s ⊗̂S(G,K)s,op

S(G,K)s � (S(G,K)s)r,

for some r ∈ N. By Theorem 1.2 and [17, Theorem 3.1.b], (S(G, K)s)r and its direct
summand Cn are finitely generated Fréchet Z(S(G,K)s)-modules. The set of n-cycles Zn

is closed in Cn (by the continuity of the boundary map) and hence closed in (S(G,K)s)r .
The intersection C ′n of Cn with (H(G,K)s)r is a finitely generated

Z(H(G,K)s)-module, by (2.5). That yields a differential complex (C ′n, dn)which computes
HHn(H(G,K)s).

Choose a finite set Yn ⊂ (H(G, K)s)r that generates C ′n as Z(H(G, K)s-module. With
Lemma 3.3 we see that Yn also generates Cn as Z(S(G, K)s)-module. As the boundary
map dn is Z(S(G, K)s)-linear, the set of n-boundaries Bn = dn(Cn−1) is generated as
Z(S(G,K)s)-module by dn(Yn−1). There are inclusions

Bn ⊂ Zn ⊂ Cn ⊂

((
C∞(Xunr(M)) ⊗ EndC

(
IGP (Vδ)

K ) )W (M,d))r
. (3.11)

We want to show that Bn = Z(S(G,K)s)d(Yn−1) is a closed subspace of the right hand side,
just like Zn and Cn. The right hand side of (3.11) embeds as C∞(Xunr(M))W (M,d)-module
in

C∞(Xunr(M))r
′

, where r ′ = r dim
(
IGP (Vδ)

K )2
.

Via this embedding the elements of d(Yn−1) become analytic (in fact algebraic) functions
on Xunr(M) × {1, . . . , r ′}. By [36, Corollaire V.1.6], generalized to an W(M, d)-invariant
setting in [17, Theorem 1.2], the finite set d(Yn−1) generates a closed C∞(Xunr(M))W (M,d)-
submodule C∞(Xunr(M))r

′ . Hence Bn is closed in any of the modules from (3.11). Now
(3.11) and HHn(S(G,K)s) = Zn/Bn provide the required properties.

We use the same algebraic families F(Mi, ηi) in Rep(G)s as in Paragraph 2.2. Recall
from Definition 1.1 that F(Mi, ηi) naturally contains a tempered algebraic family

F
t (Mi, ηi) = {IGPi

(ηi ⊗ χi) : χi ∈ Xunr(Mi)}.
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By Theorem 1.2 it gives rise to a homomorphism of Fréchet Z(S(G,K)s)-algebras

F t
Mi,ηi

: S(G,K)s → C∞(Xunr(Mi)) ⊗ EndC
(
IGPi
(Vηi )

K )
. (3.12)

Here Z(S(G, K)s) acts on the right hand side via evaluations at the central characters of
the underlying G-representations π(Mi, ηi, χi). In terms of (3.8), the direct summands

Z(S(G,K)d) = C∞(Xunr(M))W (M,d)

of Z(S(G, K)s) annihilate the range of (3.12) when i ⊀ d. When i ≺ d, pick χηi,δ so that
ηi is a subquotient of IGP (δ ⊗ χηi,δ). Then C∞(Xunr(M))W (M,d) acts on the range of (3.12)
via the map

Xunr(Mi) → Xunr(M) : χ 7→ χηi,δ χ. (3.13)

We note that
F t
d

:=
⊕ns

i=1,i≺d
F t
Mi,ηi

annihilates all the S(G,K)d′ with d′ ∈ ∆s
G
\ {d}. We write

F t
s =

⊕
d∈∆s

G

F t
d
=

⊕ns

i=1
F t
Mi,ηi

.

These Fréchet algebra homomorphisms induce homomorphisms of Fréchet
Z(S(G,K)s)-modules

HHn(F
t
d
) : HHn(S(G,K)d) →

⊕ns

i=1,i≺d
Ω

n
sm(Xunr(Mi)),

HHn(F
t
s ) =

⊕
d∈∆s

G

HHn(F
t
d
) : HHn(S(G,K)s) →

⊕ns

i=1
Ω

n
sm(Xunr(Mi)).

The algebra inclusion Z(H(G,K)s) → Z(S(G,K)s) induces a surjection

pr :
⊔

d=[M,δ]∈∆s
G

Xunr(M)/W(M, d) → Xnr(L)/W(L, s).

Proposition 3.5. For ξ ∈ Xunr(M)/W(M,d) the following spaces are naturally isomorphic:
(i) the formal completion of HHn(S(G,K)d) at ξ,
(ii) the formal completion of HHn(edH(G,K)s) at pr(ξ),
(iii) the formal completion of HHn(H(G,K)s)d (as in Lemma 2.10) at pr(ξ).

We remark that (ii) and (iii) need not be isomorphic for more general central characters
(e.g. the central character of π(M, δ, χ) with χ ∈ Xnr(M) not unitary).

Proof. Let FPW (M,d)
ξ � FPW (M,d)λ

λ be the algebra of W(M, d)-invariant formal power
series on (M, δ, Xunr(M)) centred at ξ. It is naturally isomorphic to the formal comple-
tion of

O(Xnr(M))W (M,d) � Z(edH(G,K)s) (3.14)
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at W(M, d)λ. By [24, Theorem 2.5] the functor

FPW (M,d)
ξ ⊗

Z(S(G,K)d)
= FPW (M,d)λ

λ ⊗
C∞(M)W (M,d)

(3.15)

is exact on a large class of Z(S(G, K)d)-modules. This class contains all modules which
as topological vector spaces are quotients of S(Z), and all modules that we need here are
of that form. This exactness implies that

FPW (M,d)
ξ ⊗

Z(S(G,K)d)
HHn(S(G,K)d) � Hn

(
FPW (M,d)

ξ ⊗
Z(S(G,K)d)

C∗(S(G,K)d), b∗
)
.

(3.16)
Let I∞

W (M,d)λ
⊂ C∞(Xunr(M))W (M,d) be the ideal of W(M, d)-invariant smooth functions

that are flat at W(M, d)λ. By a theorem of Borel, see [36, Théorème IV.3.1 and Remarque
IV.3.5], the Taylor series map C∞(M) → FPv is surjective. Taking W(M, d)-invariants
leads to an isomorphism

FPW (M,d)
ξ � C∞(Xunr(M))W (M,d)/I∞W (M,d)λ.

In particular the ideal I∞
W (M,d)λ

annihilates (3.16). With Lemma 3.3.a we find that (3.16)
is isomorphic with

Hn

(
C∗

(
FPW (M,d)

ξ ⊗
Z(S(G,K)d)

S(G,K)d
)
, b∗

)
�

Hn

(
C∗

(
FPW (M,d)

ξ ⊗
Z(S(G,K)d)

Z(S(G,K)d) ⊗
edZ(H(G,K)s

edH(G,K)s
)
, b∗

)
�

Hn

(
C∗

(
FPW (M,d)

ξ ⊗
edZ(H(G,K)s)

edH(G,K)s
)
, b∗

)
�

HHn

(
FPW (M,d)

ξ ⊗
edZ(H(G,K)s)

edH(G,K)s
)
. (3.17)

By (3.14) at the exactness of FPW (M,d)
ξ ⊗

O(Xnr(M))W (M,d)
, the last expression can be identified

with the formal completion of HHn(edH(G,K)s) at pr(ξ). Hence (i) and (ii) are naturally
isomorphic.

Next we apply HHn(F
t
d
) to the last line of (3.17), with image in

FPW (M,d)λ
λ ⊗

C∞(M)W (M,d)

ns⊕
i=1,i≺d

Ω
n
sm(Xunr(Mi)).

As F t
d
(ed) = 1, we may just as well set Fd(ed) = 1 and apply HHn(Fd). Then the image

becomes

HHn(Fd)HHn

( �O(Xnr(M))
W (M,d)

W (M,d)λ ⊗
edZ(H(G,K)s)

edH(G,K)s
)
�

�O(Xnr(M))
W (M,d)

W (M,d)λ ⊗
edZ(H(G,K)s)

HHn(Fd)HHn(H(G,K)s) =

�O(Xnr(L))
W (L,s)

pr(ξ) ⊗
Z(H(G,K)s)

HHn(Fd)HHn(H(G,K)s). (3.18)
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To the last expression we apply id ⊗ HHn(Fs)
−1 (which exists by Lemma 2.7), and we

obtain the desired description of (3.17) and of (3.16).

The injectivity of HHn(F
t
s ) is more subtle for these topological algebras than it was in

the earlier purely algebraic settings (e.g. Lemma 2.7).

Lemma 3.6. (a) The continuous Z(S(G,K)s)-linear map

HHn(F
t
s ) : HHn(S(G,K)s) →

⊕ns

i=1
Ω

n
sm(Xunr(Mi))

is injective.
(b) The natural map HHn(H(G,K)s) → HHn(S(G,K)s) is injective.

Proof. (a) The kernel of HHn(F
t
s ) is a closed Z(S(G,K)s)-submodule of

HHn(S(G, K)s), so by Proposition 3.4 it is a quotient of two closed submodules of a
finitely generated Fréchet Z(S(G,K)s)-module. Using the central idempotents ed, we can
decompose

ker HHn(F
t
s ) =

⊕
d∈∆s

G

ker HHn(F
t
d
).

Here each HHn(F
t
d
) is a quotient of two closed submodules of a finitely generated Fréchet

C∞(Xunr(M))W (M,d)-module. Suppose that ker HHn(F
t
d
) is nonzero for one specific δ. By

[17, Lemma 1.1] at least one of its formal completions is nonzero, say at ξ =
W(M, d)(M, δ, χ). By Proposition 3.5 that formal completion of ker HHn(F

t
d
) can be con-

sidered as a submodule of the formal completion of HHn(H(G,K)s)d at pr(ξ).
From Theorem 2.8 and Lemma 2.10 we know that HHn(Fd) is injective on�HHn(H(G,K)s)dpr(ξ). That holds for HHn(F

t
d
) as well, because F t

d
= Fd on these formal

completions. Hence
HHn(Fd)(ker HHn(F

t
s ))

has a nonzero formal completion at ξ, which is clearly a contradiction.
(b) The algebra homomorphism F t

s extends

Fs : H(G,K)s →
⊕ns

i=1
Ω

n(Xnr(Mi)) ⊗C EndC(IGPi
(ηi)

K ).

By Lemma 2.7 the map HHn(Fs), is injective, just as HHn(F
t
s ). Hence the natural map

HHn(H(G,K)s) → HHn(S(G,K)s)

equals the injection HHn(F
t
s )
−1 ◦ HHn(Fs).

3.2. Computation of Hochschild homology

For u ∈ Xunr(L) and g ∈W(L, s)u , the maps φg,i from [35, (2.12)] and χ−1
ηi
φ∗g,i from (2.25)

are well-defined in this setting, only now as

χ−1
ηi
φ∗g,i : C∞(Xunr(Mi)) ⊗ EndC(IGPi

(Vηi )
K ) → C∞(Xunr(L)g,◦) ⊗ EndC(IGPi

(Vηi )
K ).
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This enables to define the smooth version of (2.36):

HHn(φ
∗
w,c) =

ns∑
i=1

HHn(χ
−1
ηi
φ∗w,i) :

ns⊕
i=1,Uu -rel

Ω
n
sm(Xunr(Mi)) → Ω

n
sm(Xunr(L)wc ).

Like in Theorem 2.13, we define

HHn(φ̃
∗
s ) =

⊕
w∈W (L,s),cπ0(Xnr(L)

w
c )

HHn(φ
∗
w,c).

Lemma 3.7. The continuous map

HHn(φ̃
∗
s ) :

ns⊕
i=1

Ω
n
sm(Xunr(Mi)) →

⊕
w∈W (L,s),c∈π0(Xnr(L)w )

Ω
n(Xunr(L)wc )

is injective.

Proof. This can be shown in the same way as Theorem 2.13.a. Ultimately the argument
relies on [35, Lemma 1.12] which holds just as well in a smooth settting, as explained on
[35, p. 21].

We fix d = [M, δ] and we represent the central character of δ by χδt+δ with χδ ∈ Xunr(L)
and t+δ ∈ X+nr(L). We let

Z(S(G,K)d) � C∞(Xunr(M))W (M,d) act on
⊕

w∈W (L,s)
Ω

n
sm(Xunr(L)w)

in the following way:
• if g(Xnr(L)wc ) ⊂ χδXnr(M) for some g, w ∈ W(L, s), then it acts at (w, χ) with χ ∈

Xunr(L)wc via the character W(M, d)χ−1
δ gχ,

• ifW(L,s)Xnr(L)wc 1W(L,s)χδXnr(M), then Z(S(G,K)d) acts as zero onΩn
sm(Xunr(L)wc ).

Lemma 3.8. The following map is Z(S(G,K)d)-linear:

HHn(φ̃
∗
s ) ◦ HHn(F

t
d
) : HHn(S(G,K)d) →

⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w).

Proof. From Lemma 2.10.b and Theorem 2.13.c we know how Z(H(G,K)s) acts on

HHn(φ̃
∗
s )HHn(Fδ)HHn(H(G,K)s) ⊂

⊕
w∈W (L,s)

Ω
n(Xnr(L)w).

That action is pointwise, in the sense that upon specialization at any point of Xnr(L)w the
Z(H(G,K)s)-action goes via evaluation at a character (or is just zero). Via the natural map

Z(H(G,K)s) → Z(S(G,K)d) : f 7→ ed f , (3.19)

such an action naturally gives rise to an action of C∞(Xunr(M))W (M,d) on⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w),



46 M. Solleveld

which is pointwise in the same sense. The map

Xunr(M)/W(M, d) → Xnr(L)/W(L, s)

induced by (3.19) sends W(M, d)χ to W(L, s)χχδt+δ . When we compare this with Lemma
2.10.b, we see that Z(S(G,K)s) acts in the way described just before the lemma.

Next we prove the most technical step towards our description of HHn(S(G,K)s).

Lemma 3.9. The Z(S(G,K)d)-module HHn(F
t
d
)HHn(S(G,K)d) contains

ns⊕
i=1,i≺d

Ω
n
sm(Xunr(Mi))

⋂
HHn(φ̃

∗
s )
−1

( ⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w) ⊗ \ws

)W (L,s)
.

Proof. From Lemma 3.8 we know that HHn(φ
∗
s ) becomes Z(S(G,K)d)-linear if we restrict

its domain to the summands Ωn(Xunr(Mi)) with i ≺ d. We consider

HHn(φ̃
∗
s )

( ns⊕
i=1,i≺d

Ω
n(Xnr(Mi))

) ⋂ ( ⊕
w∈W (L,s)

Ω
n(Xnr(L)w) ⊗ \ws

)W (L,s)
(3.20)

If we take the direct sum over d ∈ ∆s
G
, then by Theorem 2.13 we obtain precisely the term

on the right hand side. By continuous extension we find that the direct sum over d ∈ ∆s
G

of the spaces

HHn(φ̃
∗
s )

( ns⊕
i=1,i≺d

Ω
n
sm(Xunr(Mi))

) ⋂ ( ⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w) ⊗ \ws

)W (L,s)
(3.21)

equals (3.26). Lemma 3.8 tells us that (3.26) is a Z(S(G,K)d)-submodule of⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w), (3.22)

In fact it is direct summand, namely the image of the idempotent

|W(L, s)|−1
∑

w∈W (L,s)
w.

Hence there exists a continuous idempotent C∞(Xunr(M))W (M,d)-linear endomorphism p
of(3.22) with image (3.21). Although the Z(S(G, K)d)-action on (3.22) annihilates some
of the direct summands, that is not a problem because the action of Z(S(G, K)d) on the
subspace (3.21) is induced by embeddings Xunr(L)w → Xunr(M) as usual. We note that

p
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w)
)
= (3.20).

Now we can apply Proposition 3.2, which yields an isomorphism of Fréchet
C∞(Xunr(M))W (M,d)-modules

C∞(Xunr(M))W (M,d) ⊗
O(Xnr(M)W (M,d)

(3.20) � (3.21). (3.23)
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With the injectivity and the C∞(Xunr(M))W (M,d)-linearity of HHn(φ̃
∗
s ) we find that the

C∞(Xunr(M))W (M,d)-module in the statement is generated by

ns⊕
i=1,i≺d

Ω
n(Xnr(Mi))

⋂
HHn(φ̃

∗
s )
−1

( ⊕
w∈W (L,s)

Ω
n(Xnr(L)w) ⊗ \ws

)W (L,s)
. (3.24)

By Theorem 2.13.b HHn(Fd)HHn(H(G,K)s) contains (3.24), so
HHn(F

t
d
)HHn(S(G, K)s) contains (3.24) as well. Hence the C∞(Xunr(M))W (M,d)-module

HHn(F
t
d
)HHn(S(G,K)s) contains the module in the statement.

Everything is in place to establish a smooth version of Theorem 2.13.

Theorem 3.10. HHn(φ̃
∗
s ) ◦ HHn(Fs) gives an isomorphism of Fréchet spaces

HHn(S(G,K)s) →
(⊕

w∈W (L,s)
Ω

n
sm(Xunr(L)w) ⊗ \ws

)W (L,s)
.

Proof. Evaluation of
HH0(φ̃

∗
s )HH0(Fs)HH0(H(G,K)s) (3.25)

at (w, χ) corresponds to the map on HH0 induced by the virtual representation ν1
w,χ of

H(G,K)s from (2.42). If we evaluate at a family of χ’s simultaneously, that interpretation
becomes valid and nontrivial in degrees n > 0 as well. The W(L, s)-invariance of (3.25)
(and its versions in degrees n > 0) in Theorem 2.13.b is a consequence of:
• the relations (2.44) between these virtual representations,
• the fact the Hochschild homology does not distinguish equivalent virtual representa-

tions [35, Lemma 1.7].
Our maps in the smooth setting are basically the same as the earlier maps in an algebraic
setting, only restricted to tempered representations and allowing for smooth functions.
Therefore

HHn(φ̃
∗
s )HHn(F

t
s )HHn(S(G,K)s)

also consists of W(L, s)-invariant elements. More explicitly, it is contained in(⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w) ⊗ \ws

)W (L,s)
. (3.26)

Comparing this with Lemma 3.9, we deduce that the inclusion in Lemma 3.9 is in fact an
equality. Now (3.21) entails that

HHn(φ̃
∗
s )HHn(F

t
s )HHn(S(G,K)s) =

⊕
d∈∆s

G

HHn(φ̃
∗
s )HHn(F

t
s )HHn(S(G,K)s)

equals the right hand side of (3.26). Thus HHn(φ̃
∗
s )HHn(F

t
s ) is a continuous bijection

between the Fréchet spaces HHn(S(G, K)s) and (3.26). By the open mapping theorem, it
is an isomorphism of Fréchet spaces.
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Like in Proposition 2.9, there is an alternative description of HH0(S(G)). We note
that HH0(H(G)) can also be described with tempered representations only [20], like in
the following proposition.

Proposition 3.11. (a) For d = [M, δ] ∈ ∆s
G
, the map HH0(F

t
d
) is an isomorphism of

C∞(Xunr(M))W (M,d)-modules from HH0(S(G,K)d) to the set of elements of⊕ns
i=1,i≺d C∞(Xunr(Mi)) that descend to linear functions on C ⊗Z R(S(G,K)d).

(b) Part (a) yields an isomorphism of Z(S(G,K)s)-modules

HH0(S(G,K)d) � (C ⊗Z Rt (G)d)∗∞.

Proof. (a) From Proposition 2.9.a and Theorem 2.13.b we see that the stated condition on
f ∈

⊕ns
i=1,i≺d C∞(Xunr(Mi)), only with R(H(G,K)s), is equivalent to the condition

HHn(φ
∗
s ) f ∈

(⊕
w∈W (L,s)

O(Xnr(L)w) ⊗ \ws
)W (L,s)

. (3.27)

The condition in the statement is local, so can be checked locally in terms of (3.27). If one
restrict to R(S(G,K)d), only the parts of the condition of the subvarieties Xunr(L)w remain.
Then we get exactly the description of HH0(S(G,K)s) already established in part (a).
(b) This is analogous to Proposition 2.9.b.

To establish an analogue of Theorem 2.14 for S(G,K)s , we first study a smooth version
of [35, Theorem 1.2].

Proposition 3.12. Let W be a finite group acting by diffeomorphisms on a smooth real
manifold X . Let \ : W2 → C× be a 2-cocycle and let {Tw : w ∈ W} be the standard basis
of C[W, \]. Define \w(w ′) = TwTw′T−1

w T−1
w′ ∈ C

×Tww′w−1w
′−1 .

There is an isomorphism of Fréchet C∞(X)W -modules

HHn

(
C∞(X) o C[W, \]

)
�

(⊕
w∈W

Ω
n
sm(X

w) ⊗ \w
)W

.

Proof. Our argument is a modification of [35, proof of Theorem 1.2]. Let

1→ Z → W̃ → W → 1

be a finite central extension of W , such that the inflation of \ to W̃ becomes trivial in
H2(W̃,C×). Then there exist a central idempotent p\ ∈ C[Z] and an algebra isomorphism
p\C[W̃] → C[W, \]. It sends p\ w̃ to cw̃w, where w ∈ W denotes the image of w̃ ∈ W̃ and
cw̃ ∈ C× is a suitable scalar. Then

HHn

(
C∞(X) o C[W, \]

)
� HHn

(
p\(C∞(X) o C[W̃])

)
� p\HHn

(
C∞(X) o W̃

)
.

By [10,11] there is an isomorphism

HHn

(
C∞(X) o W̃

)
�

(⊕
w̃∈W̃

Ω
n
sm(X

w̃)

)W̃
.
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With this at hand, the same analysis as in the analogous algebraic setting [35, (1.5)–(1.14)]
proves the required isomorphism of C∞(X)W -modules.

An easier version of Proposition 3.4 shows that HHn

(
C∞(X) o C[W, \]

)
is a Fréchet

space. Clearly
⊕

w∈W Ωn
sm(X

w) ⊗ \w is a Fréchet space, so its closed subspace(⊕
w∈W Ωn

sm(X
w) ⊗ \w

)W
is Fréchet as well. As described in [35, (1.15)], the isomorph-

ism with HHn

(
C∞(X) o C[W, \]

)
has two ingredients:

• the Connes–Hochschild–Kostant–Rosenberg theorem, which is a topological isomorph-
ism HHn(C∞(Xw)) � Ωn

sm(X
w),

• some simple constructions in C[W̃].
This entails that our isomorphism of C∞(X)W -modules is a continuous bijection between
Fréchet spaces. Then the open mapping theorem guarantees that it is a homeomorphism.

For an algebraic family of O(Xnr(L)) o C[W(L, s), \s]-representations F(M, η), para-
metrized by Xnr(M) and on a vector space VM,η , we define

F t
M,η : C∞(Xunr(L)) o C[W(L, s), \s] → C∞(Xunr(M)) ⊗ EndC(VM,η)

f 7→ [χ 7→ F(M, η, χ)( f )]
.

Recall from Theorem 2.5 that ζ∨ restricts to a bijection

ζ∨t : Rt (G)s � R(S(G,K)s) −→ R
(
C∞(Xunr(L)) o C[W(L, s), \s]

)
.

Theorem 3.13. There exists a unique isomorphism of Fréchet spaces

HHn(ζ
∨
t ) : HHn

(
C∞(Xunr(L)) o C[W(L, s), \s]

)
→ HHn(S(G,K)s)

such that
HHn(F

t
M,η) ◦ HHn(ζ

∨
t ) = HHn(F

t
M,ζ∨(η))

for all algebraic families F(M, η) in Mod(H(G,K)s).

Proof. This is analogous to the proof of Theorem 2.14. For the construction of HHn(ζ
∨
t )

we use Proposition 3.12 (with Xnr(L),W(L, s), \s) and Theorem 3.10 instead of [35, The-
orem 1.2], Theorem 2.13.b and Lemma 2.7. In all the involved algebraic families of
representations F(M, η), temperedness of F(M, η, χ) is equivalent to χ ∈ Xunr(L). The
uniqueness and further properties of the thus defined map HHn(ζ

∨
t ) can be shown in

exactly the same way as for HHn(ζ
∨).

Theorems 2.14 and 3.13 relate the Hochschild homology of H(G)s and S(G)s to that
of the twisted crossed products

O(Xnr(L)) o C[W(L, s), \s] and C∞(Xunr(L)) o C[W(L, s), \s].
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These theorems can be considered as confirmations of the ABPS conjectures [2] on the
level of Hochschild homology.

Finally, we take a closer look at HHn(S(G, K)d). From the Plancherel isomorphism
(3.5) we get

HHn(S(G,K)s) =
⊕

d∈∆s
G

HHn(S(G,K)d). (3.28)

By Lemma 3.6.b we can regard HHn(H(G,K)s) as a subspace of HHn(S(G,K)s).

Theorem 3.14. (a) The maps HHn(F
t
d
) and HHn(φ

∗
s ) provide isomorphisms between

the Fréchet Z(S(G,K)d)-modules HHn(S(G,K)d),

ns⊕
i=1,i≺d

Ω
n
sm(Xunr(Mi))

⋂
HHn(φ̃

∗
s )
−1

( ⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w) ⊗ \ws

)W (L,s)
and

HHn(φ̃
∗
s )

( ns⊕
i=1,i≺d

Ω
n
sm(Xunr(Mi))

) ⋂ ( ⊕
w∈W (L,s)

Ω
n
sm(Xunr(L)w) ⊗ \ws

)W (L,s)
(b) HHn(S(G,K)d) is the closure of HHn(H(G,K)s)d in HHn(S(G,K)s).
(c) There is a natural isomorphism of Fréchet Z(S(G,K)d)-modules

Z(S(G,K)d) ⊗
Z(H(G,K)s)

HHn(H(G,K)s)d −→ HHn(S(G,K)d).

Proof. (a) The Z(S(G, K)d)-linearity comes from Lemma 3.8 and the isomorphisms fol-
low immediately from Theorem 3.10. The range of
HHn(F

t
d
) is a Fréchet space because by the continuity of HHn(φ̃

∗
s ) it is closed in⊕ns

i=1,i≺d Ω
n
sm(Xunr(Mi)). The range of HHn(φ̃

∗
s )HHn(F

t
d
) is Fréchet because as checked

directly after (3.22) it is a direct summand of
⊕

w∈W (L,s)Ω
n
sm(Xunr(L)w).

(b) Recall from Lemma 2.10 that

HHn(H(G,K)s)d = HHn(Fs)
−1HHn(Fd)HHn(H(G,K)s). (3.29)

From part (a) and Theorem 2.13.b we see that the closure of

HHn(Fd)HHn(H(G,K)s) in
⊕ns

i=1,i≺d
Ω

n
sm(Xunr(Mi))

equals HHn(F
t
d
)HHn(S(G, K)d). To this we apply HHn(F

t
s )
−1, which exists and is con-

tinuous by part (a). We find that the closure of (3.29) equals

HHn(F
t
s )
−1HHn(F

t
d
)HHn(S(G,K)d) =

HHn(F
t
s )
−1HHn(F

t
s )HHn(S(G,K)d) = HHn(S(G,K)d).

(c) The map is induced by the algebra homomorphism

H(G,K)s → S(G,K)d : h 7→ edh
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and the Z(S(G,K)d)-module structure of HHn(S(G,K)d), so it is natural. Part (b) implies
that the Z(H(G,K)s)-action on HHn(H(G,K)s)d factors through

Z(H(G,K)s) → Z(S(G,K)d) : z 7→ edz.

Hence we may just as well consider it as an action of

edZ(H(G,K)s) � O(Xnr(M))W (M,d).

After (3.22) we constructed a continuous C∞(Xunr(M))W (M,d)-linear idempotent endo-
morphism p of

⊕
w∈W (L,s)Ω

n
sm(Xunr(L)w), with image (2.39). By part (a) HHn(S(G,K)d)

is isomorphic as C∞(Xunr(M))W (M,d)-module to the image of p, via the map
HHn(φ

∗
s )HHn(F

t
d
). Similarly Theorem 2.13 tells us that HHn(H(G, K)s)d is isomorphic

as O(Xnr(M))W (M,d)-module to

p
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w)
)
,

via HHn(φ
∗
s )HHn(Fd). Thus we have translated the statement to: the natural map

C∞(Xunr(M))W (M,d) ⊗
O(Xnr(M))W (M,d)

p
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w)
)

−→ p
(⊕

w∈W (L,s)
Ω

n
sm(Xunr(L)w)

)
is an isomorphism of Fréchet C∞(Xunr(M))W (M,d)-modules. As the action comes from an
embedding Xunr(L)w → Xunr(M) for each relevant w, that claim is an instance of Proposi-
tion 3.2.

Let us record a consequence of Theorem 3.14:⊕
d∈∆s

G

Z(S(G,K)d) ⊗
Z(H(G,K)s)

HHn(H(G,K)s)d � HHn(S(G,K)s) (3.30)

as Fréchet Z(S(G,K)s)-modules. However, usually

Z(S(G,K)s) ⊗
Z(H(G,K)s)

HHn(H(G,K)s)

is not isomorphic to HHn(S(G,K)s) as Z(S(G,K)s)-module. The reason is that the terms

Z(S(G,K)d
′

) ⊗
Z(H(G,K)s)

HHn(H(G,K)s)d

with d′ , d can be nonzero, but do not occur in (3.30).
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4. Cyclic homology

Recall from [18, §2.1.7] that the cyclic homology of a unital algebra A can be computed
as the total homology of a bicomplex (B(A), b, B). Here

B(A)p,q = A⊗p+1−q if p ≥ q ≥ 0,

andB(A)p,q is zero otherwise. The vertical differential b is the same as in the bar-resolution,
so each column of B(A) computes the Hochschild homology of A. The horizontal differ-
ential B induces a map B : HHn(A) → HHn+1(A). When A = O(V) for a nonsingular
complex affine variety or A = C∞(V) for a smooth manifold V , B is the usual exterior
differential d : Ωn(V) → Ωn+1(V) [18, §2.3.6].

For A = H(G,K)s , we know from Theorem 2.13 that there is an isomorphism

HHn(H(G,K)s) →
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w) ⊗ \ws
)W (L,s)

, (4.1)

induced by the algebraic families of virtual representations{
ν1
w,χ : χ ∈ Xnr(L)wc

}
w ∈ W(L, s), c ∈ π0(Xnr(L)w).

By (2.42) each of these families is a linear combination of algebraic families F′(Mi, ηi)

obtained from F(Mi, ηi) by composition with an algebraic map from Xnr(L)wc to Xnr(Mi).
In particular (4.1) is a linear combination of maps

HHn(F
′
Mi,ηi
) : HHn(H(G,K)s) → HHn

(
O(Xnr(L)wc ) ⊗ EndC

(
IGPi
(ηi)

K ) )
. (4.2)

ByMorita invariance and the Hochschild–Kostant–Rosenberg theorem, the right hand side
of (4.2) can be identified with

HHn

(
O(Xnr(L)wc )

)
� Ωn(Xnr(L)wc ). (4.3)

Via these maps, the natural differential B on HH∗(H(G,K)s) is transformed into the exter-
ior differential d on Ω∗(Xnr(L)wc ). All the maps in (4.2) and (4.3) (and between them) can
be realized on the level of chain complexes. For HHn(F

′
Mi,ηi
) that is clear, the Morita

equivalence between

O(Xnr(L)wc ) ⊗ EndC
(
IGPi
(ηi)

K )
and O(Xnr(L)wc )

is implemented by the generalized trace map [18, §1.2] and (4.3) comes from the map πn
in [18, Lemma 1.3.14]. Altogether these furnish a morphism of bicomplexes(

B(H(G,K)s), b, B
)
−→

⊕
w∈W (L,s),c∈π0(Xnr(L)w )

(
BΩ∗(Xnr(L)wc ), 0, d

)
,

where BΩ∗(V) is the bicomplex with Ωp−q(V) in degree (p, q), provided that p ≥ q ≥ 0.
From Theorem 2.13 we know that its image is actually smaller, we can restrict it to a
morphism of bicomplexes(

B(H(G,K)s), b, B
)
−→

( (⊕
w∈W (L,s)

BΩ∗(Xnr(L)w) ⊗ \ws
)W (L,s)

, 0, d
)
, (4.4)
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Analogous considerations for S(G, K)s , now using Theorem 3.10, lead to a morphism of
bicomplexes(

B(S(G,K)s), b, B
)
−→

( (⊕
w∈W (L,s)

BΩ∗sm(Xunr(L)w) ⊗ \ws
)W (L,s)

, 0, d
)
. (4.5)

By Theorems 2.13 and 3.10, the maps (4.4) and (4.5) induce isomorphisms on the Hoch-
schild homology of the involved bicomplexes. It follows from Connes’ periodicity exact
sequence that (4.4) and (4.5) also induce isomorphisms on cyclic homology, see [18, §2.5].

Theorem 4.1. There are isomorphisms of vector spaces

HCn(H(G,K)s) �
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w)/dΩn−1(Xnr(L)w) ⊗ \ws
)W (L,s)

⊕

bn/2c⊕
m=1

( ⊕
w∈W (L,s)

Hn−2m
dR (Xnr(L)w) ⊗ \ws

)W (L,s)
,

HCn(S(G,K)s) �
(⊕

w∈W (L,s)
Ω

n
sm(Xunr(L)w)/dΩn−1(Xunr(L)w) ⊗ \ws

)W (L,s)
⊕

bn/2c⊕
m=1

( ⊕
w∈W (L,s)

Hn−2m
dR (Xunr(L)w) ⊗ \ws

)W (L,s)
.

Proof. As explained above, it remains to identify the cyclic homology of the right hand
sides of (4.4) and (4.5). By design

HCn

(
BΩ∗(V), 0, d

)
= Ωn(V)/dΩn−1(V) ⊕

⊕ bn/2c

m=1
Hn−2m
dR (V), (4.6)

see [18, §2.3]. In our case V =
⊔
w∈W (L,s) Xnr(L)w and the group W(L, s) acts on Ω∗(V),

namely by the natural action on the underlying space tensored with the characters \ws .
Taking invariants for an action of a finite group commutes with homology, so we may
just take the W(L, s)-invariants in (4.6). That yields HCn(H(G,K)s), and the argument for
HCn(S(G,K)s) is completely analogous.

From Theorem 4.1 we see that HCn(H(G,K)s) and HCn(S(G,K)s) stabilize: for n >
dimC(Xnr(L)) they depend only on the parity of n. By [18, Proposition 5.1.9], the periodic
cyclic homology is the limit term:

HPn(H(G,K)s) �
⊕

m∈Z

(⊕
w∈W (L,s)

Hn+2m
dR (Xnr(L)w) ⊗ \ws

)W (L,s)
, (4.7)

HPn(S(G,K)s) �
⊕

m∈Z

(⊕
w∈W (L,s)

Hn+2m
dR (Xunr(L)w) ⊗ \ws

)W (L,s)
. (4.8)

We point out that the right hand sides of, respectively, (4.7) and (4.8) are naturally iso-
morphic with the periodic cyclic homology groups of, respectively,

O(Xnr(L)) o C[W(L, s), \s] and C∞(Xunr(L)) o C[W(L, s), \s]. (4.9)
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That can be derived with similar arguments. Hence (4.7) and (4.8) are the versions of
Theorems 2.14 and 3.13 for periodic cyclic homology.

We note also that (4.8) relates to the conjectural description of the topological K-theory
of S(G, K)s in [2, Conjecture 5]. In [2, §4] things are formulated for the C∗-completion
of S(G)s , which has the same topological K-theory as S(G, K)s by [28, (3.2)]. Since the
Chern character

K∗(S(G,K)s) ⊗Z C→ HP∗(S(G,K)s)

is an isomorphism [28, Theorem 3.2], (4.8) provides a description of K∗(S(G,K)s)modulo
torsion. With the comments around (4.9) we can formulate that as an isomorphism

K∗(S(G,K)s) ⊗Z C � HP∗
(
C∞(Xunr(L)) o C[W(L, s), \s]

)
. (4.10)

Via the equivariant Chern character [3] for an action of a central extension of W(L, s) on
Xunr(L), the right hand side of (4.10) is isomorphic with

K∗
(
C∞(Xunr(L)) o C[W(L, s), \s]

)
⊗Z C = K∗W (L,s),\s (Xunr(L)) ⊗Z C,

where the latter is the notation from [2, §4.1]. We have proved [2, Conjecture 5] modulo
torsion:

Theorem 4.2. There is an isomorphism of vector spaces

K∗(S(G,K)s) ⊗Z C � K∗W (L,s),\s (Xunr(L)) ⊗Z C.

Since Xunr(L) is a W(L, s)-equivariant deformation retract of Xnr(L),

Hn
dR(Xnr(L)w) = Hn

dR(Xunr(L)w).

Combining that with (4.7) and (4.8), we recover [28, Theorem 3.3]:

Corollary 4.3. The inclusionH(G,K)s →S(G,K)s induces an isomorphism on periodic
cyclic homology.

With elementary Lie theory one sees that Xnr(L)w is a finite union of cosets Xnr(L)wc of
the complex torus Xnr(L)w,◦. Since Xnr(L)w is a commutative Lie group. its tangent spaces
at any two points are canonically isomorphic.

Lemma 4.4. HPn(H(G,K)s) can be represented by the elements of⊕
m∈Z

HHn+2m(H(G,K)s)

that are locally constant (as differential forms). The same holds for S(G,K)s .

Proof. First we consider a simpler setting, namely the graded algebra of differential forms
Ω∗(T) on a complex algebraic torus T . Write T as a direct product of onedimensional
algebraic subtori Ti , then

Ω
∗(T) =

⊗
i
Ω
∗(Ti). (4.11)
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For Ti everything is explicit:

H0
dR(Ti) = C, H1

dR(Ti) = Cdz,

and this equals the subspace of constant elements in

Ω
∗(Ti) = C[z, z−1] ⊕ C[z, z−1]dz.

By the Künneth formula
H∗dR(T) =

⊗
i

H∗dR(Ti), (4.12)

and in combination with (4.11) we find that this is precisely the space of constant differ-
ential forms in Ω∗(T).

The above argument uses the structure of T as algebraic variety, not as group, so it
applies to all the varieties Xnr(L)wc . Further, the action of ZW (L,s)(w, c) on Ω∗(Xnr(L)wc )
preserve the subspace of constant differential forms. Hence(⊕

w∈W (L,s)
Hn
dR(Xnr(L)w) ⊗ \ws

)W (L,s)
can be represented by the elements of(⊕

w∈W (L,s)
Ω

n(Xnr(L)w) ⊗ \ws
)W (L,s)

that are locally constant (keeping the canonical identifications of different tangent spaces
in mind). Combining that with Theorem 2.13 and (4.7), we get the lemma for H(G, K)s .
The above arguments involving T also work for smooth differential forms on compact real
tori. With that, Theorem 3.10 and (4.8), we establish the lemma for S(G,K)s .

Assume now that the 2-cocycle \s is trivial, like in most examples. Then (4.7)–(4.8)
and Corollary 4.3 simplify to

HPn(H(G,K)s) � HPn(S(G,K)s) �
⊕
m∈Z

( ⊕
w∈W (L,s)

Hn+2m
dR (Xnr(L)w)

)W (L,s)
. (4.13)

For any nonsingular complex affine variety V , there is a natural isomorphism

Hn
dR(V) � Hn

sing(V).

Here H∗sing denotes singular cohomology with complex coefficients, and it is applied to
V with the analytic topology. If a finite group Γ acts algebraically on V and V ′ is a Γ-
equivariant deformation retract of V , then naturally

Hn
sing(V)

Γ � Hn
sing(V/Γ) � Hn

sing(V
′/Γ).

Hence (4.13) can be expressed as

HPn(H(G,K)s) � HPn(S(G,K)s)

�
⊕

m∈Z
Hn+2m

sing

( ⊔
w∈W (L,s)

Xunr(L)w/W(L, s)
)
.

(4.14)
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5. Examples

The smallest nontrivial example is G = SL2(F), where F is any non-archimedean local
field. The Hochschild homology for this group is known entirely from [31], here we work
it out in our notations.

For every supercuspidal G-representation V with VK , 0, the corresponding direct
summand ofH(G,K) is Morita equivalent with C. This contributes a factor C to
HH∗(H(G,K)), in degree 0. The same applies to HH∗(S(G,K)).

Let T � F× be the diagonal subgroup of G and writeW =W(G,T) = {w, e}. Consider a
K ∩ T-invariant character χ0 of the maximal compact subgroup o×F of T . Let χ1 : T → C×

be an extension of χ0 and let Rep(G)s be the Bernstein block associated to (T, χ1). There
are three different cases:
• ord(χ0) > 2. Here W(T,s) is trivial andH(G,K)s is Morita equivalent with O(Xnr(T)).

Hence

HHn(H(G,K)s) � Ωn(Xnr(T)) � O(Xnr(T)) � C[z, z−1] n = 0, 1,

and HHn(H(G, K)s) = 0 for other n. Similarly S(G, K)s is Morita equivalent with
C∞(Xunr(T)). Hence

HHn(S(G,K)s) � Ωn
sm(Xunr(T)) � C∞(Xunr(T)) � C∞(S1) n = 0, 1,

and 0 in other degrees n.
• ord(χ0)= 2. NowW(T,s) equalsW . If we pick a χ1 of order 2 and regard it as basepoint

of
Irr(T)s = χ1Xnr(T) � C×,

then W acts on C× by inversion. The algebra H(G, K)s is Morita equivalent with
O(Xnr(T)) o W . The representation IGB (χ1 χ) is irreducible unless χ1 χ has order 2,
then it is a direct sum of two inequivalent irreducible representations. In this case we
need 3 algebraic families of G-representations in Rep(G)s , namely

F(T, χ1) = {IGB (χ1 χ) : χ ∈ Xnr(T)},

one irreducible summand π1 of IGB (χ1) and one irreducible summand π2 of IGB (χ2),
where χ2 is the other order 2 extension of χ0. The families of virtual representations
differ slightly, namely

ν1
e,χ = IGB (χ1 χ) χ ∈ Xnr(T),
ν1
w,χ1 = π1 − IGB (χ1)/2,
ν1
w,χ2 = π2 − IGB (χ2)/2.

(This works, but for the best normalization we should make sure that π1 and π2 are
chosen so that W acts trivially on their K-invariant vectors.) We find

HH0(H(G,K)s) � O(Xnr(T))W ⊕ C ⊕ C,
HH1(H(G,K)s) � Ω1(Xnr(T))W � O(Xnr(T))W ,
HHn(H(G,K)s) = 0 for n > 1.
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The centre O(Xnr(T))W acts on one factor C via χ1 and on the other via χ2. Further
S(G,K)s is Morita equivalent with C∞(Xunr(T)) oW , and one obtains

HH0(S(G,K)s) � C∞(Xunr(T))W ⊕ C ⊕ C,
HH1(S(G,K)s) � Ω1

sm(Xunr(T))W � C∞(Xunr(T))W ,
HHn(S(G,K)s) = 0 for n > 1.

• ord(χ0) = 1. Now χ1 = 1 andH(G,K)s is Morita equivalent to an affine Hecke algebra
of type A1 with equal parameters qF . The representation IGB (χ) with χ ∈ Xnr(T) is
reducible if and only if the value of χ at a uniformizer $F of G lies in {−1, qF, q−1

F }.
Like in the previous case we need three algebraic families of representations:

F(T, χ1) = {IGB (χ) : χ ∈ Xnr(T)},

the Steinberg representation St and one irreducible summand π− of IGB (χ−), where
χ− is the unique unramified character of order 2. The algebraic families of virtual
representations are:

ν1
e,χ = IGB (χ) χ ∈ Xnr(T),
ν1
w,1 = IGB (trivT )/2 − St,
ν1
w,χ−

= π− − IGB (χ−)/2.

(For the correct normalization, we should pick π− such that via Theorem 2.5 W acts
trivially on ζ∨(π−).) The maps (1.13) provide isomorphisms of Z(H(G,K)s)-modules

HH0(H(G,K)s) � O(Xnr(T))W ⊕ C ⊕ C,
HH1(H(G,K)s) � Ω1(Xnr(T))W � O(Xnr(T))W ,
HHn(H(G,K)s) = 0 for n > 1.

Here O(Xnr(T))W acts on one factor C via χ−, and on the other via unramified charac-
ters with values {qF, q−1

F } at $F .
As before, these findings extend naturally to S(G,K)s:

HH0(S(G,K)s) � C∞(Xunr(T))W ⊕ C ⊕ C,
HH1(S(G,K)s) � Ω1

sm(Xunr(T))W � C∞(Xunr(T))W ,
HHn(S(G,K)s) = 0 for n > 1.

Another well-studied example is the general linear group G =GLn(F). For this G most
aspects are simpler than for other reductive p-adic groups. Consider an arbitrary inertial
equivalence class s = [L, σ] for G. By picking suitable representatives, we can achieve that

L =
∏`

i=1
GLni (F)

ei , σ = �`i=1σ
�ei
i ,

where σi and σi′ with i , i′ are not equivalent up to unramified twists. There are natural
isomorphisms

Xnr(L) �
∏`

i=1
(C×)ei , W(L, s) �

∏`

i=1
Sei .
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Let M be a Levi subgroup of G containing L and let δ ∈ Irr(M) be square-integrable
modulo centre, such that δ ∈ Rep(M)s . Then d = [M, δ] can be represented by data

M =
∏`

i=1

∏`i

j=1
GLnid j (F)

ei, j , δ = �`i=1 �
`i
j=1 St(dj, σi)

�ei, j ,

where
∑`i

j=1 djei, j = ei and St(dj, σi) is the generalized Steinberg representation associ-

ated to σ�d j

i . Moreover we may assume that St(dj, σi) and St(dj′, σi) do not differ by an
unramified twist if j , j ′. In this case there are natural isomorphisms

Xnr(M) �
∏`

i=1

∏`i

j=1
(C×)ei, j , W(M, d) �

∏`

i=1

∏`i

j=1
Sei, j .

It is known from [13, Théorème B.2.d] that IGP preserves irreducibility for tempered rep-
resentations. Hence the intertwining operators by which W(M, d) acts on
C∞(Xunr(M)) ⊗ EndC(IGP (δ))must be scalar at every point of Xunr(M). In particularW(L,s)
acts on C∞(Xunr(L)) ⊗ EndC

(
IGP0L
(σ)K

)
as a group, not via a projective representation, so

the 2-cocycle \s is trivial.
Choose K so thatS(G)s is Morita equivalent toS(G,K)s . The Plancherel isomorphism

(Theorem 1.2) provides an isomorphism of Fréchet algebras

S(G,K)d � C∞(Xunr(M))W (M,d) ⊗ EndC
(
IGP (δ)

K )
. (5.1)

In particular S(G,K)d is Morita equivalent to C∞(Xunr(M))W (M,d), an algebra whose irre-
ducible representations are naturally parametrized by Xunr(M)/W(M,d). (An isomorphism
like (5.1) is rather specific for GLn(F), most other reductive p-adic groups have Bernstein
components in which that fails.) From the above Morita equivalences and the decomposi-
tion (4) of S(G)s we deduce that

Irrt (G)s � Irr(S(G,K)s) �
⊔

d∈∆s
G

Xunr(M)/W(M, d). (5.2)

This space is naturally homeomorphic with( ⊔
w∈W (L,s)

Xunr(L)w
)
/W(L, s), (5.3)

via [9, Theorem 1] or Theorem 2.5. That makes it clear how to choose our smooth families
of representations F(Mi, ηi), we just take the F(M, δ) with [M, δ] ∈ ∆s

G
. Theorem 3.10

provides a natural isomorphism of Fréchet spaces

HHn(S(G,K)s) −→
(⊕

w∈W (L,s)
Ω

n
sm(Xunr(L)w)

)W (L,s)
. (5.4)

By the homeomorphism between (5.2) and (5.3), this implies that the map⊕
d∈∆s

G

HHn(F
t
M,δ) : HHn(S(G,K)s) →

⊕
d∈∆s

G

Ω
n
sm(Xunr(M))W (M,d) (5.5)
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is bijective. In fact (5.5) is an isomorphism of Fréchet Z(S(G,K)s)-modules, with respect
to the module structure from Lemma 3.8. Then Theorem 3.14 shows that (5.5) restricts to
an isomorphism of Z(S(G,K)d)-modules

HHn(F
t
M,δ) : HHn(S(G,K)d) → Ω

n
sm(Xunr(M))W (M,d), (5.6)

which was established before in [8, p. 676].
The space Irr(G)s cannot decompose like in (5.2) because it is connected, but still it

comes close. Namely, by [9, Theorem 1] the homeomorphism (5.2) extends naturally to a
continuous bijection ⊔

d∈∆s
G

Xnr(M)/W(M, d) → Irr(G)s . (5.7)

Comparing Theorem 2.5 and [9, Theorem 1], we see that (5.7) can be obtained as (ζ∨)−1

followed by taking Langlands quotients of standard G-representations. From Theorem
2.13 and (5.4) we deduce that the algebraic families F(M, δ) induce C-linear bijections

HHn(H(G,K)s) −→
⊕

d∈∆s
G

Ω
n(Xnr(M))W (M,d)

�
(⊕

w∈W (L,s)
Ω

n(Xnr(L)w)
)W (L,s)

. (5.8)

By (5.6), (5.8) restricts to an isomorphism of Z(H(G,K)s)-modules

HHn(FM,δ) : HHn(H(G,K)s)d → Ω
n(Xnr(M))W (M,d).

Like in (4.13) and (4.14), the corresponding direct summand of HPn(H(G,K)s) is canon-
ically isomorphic with

HPn

(
S(G,K)d

)
�

⊕
m∈Z

Hn+2m
dR (Xunr(M))W (M,d)

�
⊕

m∈Z
Hn+2m

sing (Xunr(M)/W(M, d)).
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