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Abstract. Let G be any reductive p-adic group. We conjecture that every
Bernstein component in the space of irreducible smooth G-representations can
be described as a ”twisted extended quotient” of the associated Bernstein torus
by the asssociated finite group. We also pose some conjectures about L-packets
and about the structure of the Schwartz algebra of G in these noncommutative
geometric terms. Ultimately, our conjectures aim to reduce the classification of
irreducible representations to that of supercuspidal representations, and similarly
for the local Langlands correspondence. These conjectures generalize earlier ver-
sions, which are only expected to hold for quasi-split groups.

We prove our conjectures for inner forms of general linear and special linear
groups over local non-archimedean fields. This relies on our earlier study of Hecke
algebras for types in these groups. We also make the relation with the local
Langlands correspondence explicit.
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Introduction

The aim of this paper is twofold. Firstly, we generalize our earlier conjecture
[ABP, ABPS2] to all reductive p-adic groups, split or not. This is done in the
introduction and the appendices. Secondly, we prove all these conjectures for the
inner forms of general and special linear groups. In this respect the paper is a sequel
to [ABPS3, ABPS4].
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Let F be a non-archimedean local field, and let G be a connected reductive al-
gebraic group over F . We denote the space of (equivalence classes of) irreducible
smooth complex G-representations by Irr(G), and its subset of supercuspidal repre-
sentations by Irrcusp(G). For a Levi subgroup L (of a parabolic subgroup) of G we
put W (G,L) = NG(L)/L. Let L = L(G) be a set of representatives for the conju-
gacy classes of Levi subgroups of G. The roughest form of our conjectures asserts
that there exists a bijection

(1) Irr(G)←→
⊔

L∈L
(Irrcusp(L)//W (G,L))\.

The right hand side is a twisted extended quotient, see Appendix B. It means that in
the ordinary quotient Irrcusp(L)/W (G,L) we replace every point ω ∈ Irrcusp(L) by
the set of irreducible representations of the twisted group algebra C[W (G,L)ω, \(ω)]
determined by the 2-cocycle \(ω). In general the map (1) is not canonical, but the
non-canonicity is limited. This already shows an important aspect of our work:
relating, in a new and very precise way, the classification of irreducible smooth
representations to that of supercuspidal representations.

To formulate our conjectures more accurately, we need the Bernstein decomposi-
tion of the category of smooth G-representations. Let L be a Levi subgroup of G
and ω ∈ Irrcusp(L). The inertial equivalence class s = [L, ω]G determines a subset

Irrs(G) ⊂ Irr(G). Bernstein also attached to (L, ω) a torus Ts = Irr[L,ω]L(L) and
a finite group Ws, the stabilizer of Ts in W (G,L). We note that Ts is isomorphic
to the quotient of the group of unramified characters Xnr(L) by a finite subgroup
Xnr(L, ω).

Let Irrtemp(G) be the set of irreducible tempered G-representations (still consid-
ered up to isomorphism), and write

Irrstemp(G) = Irrs(G) ∩ Irrtemp(G).

Let Ts,un be the set of unitary representations in Ts. It is a real compact subtorus
and

(2) Ts = Ts,un ×HomZ(X∗(Ts),R>0).

Then Ts,un
∼= Xunr(L)/Xnr(L, ω), where Xunr(L) is the group of unitary unramified

characters of L.

Conjecture 1. [Bijection with extended quotients]
There exist a family of 2-cocycles \ and a bijection

(3) Irrs(G)←→ (Ts//Ws)\

such that:

• It restricts to a bijection Irrstemp(G)←→ (Ts,un//Ws)\, and (3) is determined
by this restriction.
• Suppose that π ∈ Irrstemp(G) is mapped to [t, ρ] ∈ (Ts,un//Ws)\. Then Wst ∈
Ts,un/Ws is the unitary part of the cuspidal support of π (an element of
Ts/Ws), with respect to the polar decomposition (2).

It is already clear how (3) should be determined by its restriction to tempered
representations. Namely, by some kind of analytic continuation, as in [ABPS1].
Together with the second bullet this already determines the Ts-coordinates of (3).
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Let t ∈ Ts. Define Ws,t as the isotropy group of t in Ws, with respect to the
canonical action of W (G,L) on Irr(L). It is a semi-direct product

Ws,t = W (Rs,t) oRs,t,

where W (Rs,t) is the Weyl group of a root system Rs,t attached by Harish-Chandra
to t by means of zeros of the µ-function [Wal, V.2], and Rs,t is the associated R-
group in Ws,t, see [Sil1] and [ABPS1, §1]. The group Ws,t may be viewed as the

”Weyl group” of a (possibly disconnected) group Ǧs,t with connected component

Ǧ0
s,t the complex Lie group with Weyl group W (Rs,t). The Springer correspondence

for Ǧ0
s,t has been extended to the group Ǧs,t in [ABPS4, §4]. For a given irreducible

representation ρ of Ws,t, we will call the pair attached to it by this extended Springer
correspondence the Springer parameter of ρ.

Conjecture 2. [L-packets]
Assume that a local Langlands correspondence exists for Irrs(G).

• The 2-cocycle \(t) : Ws,t × Ws,t → C× factors through Ws,t/W (Rs,t) ×
Ws,t/W (Rs,t).
• The bijection (3) is canonical up to permutations within L-packets in Irrs(G).
• Two G-representations with images [t, ρ] and [t′, ρ′] belong to the same L-

packet if and only if there is a w ∈ Ws such that wt′ = t and the W (Rs,t)-
representations ρ and w·ρ′ have Springer parameters with the same unipotent
class (in the complex reductive group with maximal torus Ts, root system Rs,t

and ”Weyl group” Ws,t).

The first bullet ensures that C[Ws,t, \(t)] contains C[W (Rs,t)], which is necessary
for ρ to be a linear (i.e. not projective) representation of W (Rs,t). Although ρ|W (Rs,t)

may be reducible, all its irreducible constituents are Ws,t-conjugate. Therefore the
unipotent parts of their Springer parameters are in the same conjugacy class in the
indicated complex reductive group.

This conjecture implies that the intersection of Irrs(G) with the L-packet of [t, ρ]
is in bijection with a set of projective representations of a certain subgroup of
Ws,t/W (Rs,t). This can be compared with the conjectures about R-groups and
L-packets in [Art] and [ABPS1, §5].

We expect that the 2-cocycles \(t) are trivial whenever G is split. However,
\(t) does not always represent the neutral element of H2(Ws,t,C×). In [ABPS4,
Example 5.6] we worked out a Bernstein component for G = GL5(D)der (with D a
4-dimensional noncommutative division algebra over F ), for which \(t) is not trivial.

Recall that the Harish-Chandra–Schwartz algebra S(G) has Irrtemp(G) as its space
of irreducible representations. Let S(G)s ⊂ S(G) be the ideal corresponding to
Irrs(G).

Conjecture 3. [Schwartz algebras]
There exist a projective representation Vs of Xnr(L, ω) oWs and a homomorphism
of topological algebras

ζsG : (C∞(Xunr(L))⊗ EndC(Vs))
Xnr(L,ω) oWs −→ S(G)s

such that:
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• There are canonical bijections

(4) (Ts,un//Ws)\ ←→ (Xunr(L)//Xnr(L, ω) oWs)\

←→ Irr
(
(C∞(Xunr(L))⊗ EndC(Vs))

Xnr(L,ω) oWs

)
.

• The morphism ζsG is spectrum preserving with respect to filtrations (see Ap-
pendix A).
• The map Irrstemp(G) = Irr(S(G)s) → (Ts,un//Ws)\ induced by ζsG and (4)

equals (1).

The first bullet is true by the general principle Lemma B.3, if the family of 2-
cocycles \ satisfies a mild condition. The shape of the domain of ζsG is motivated by
the Fourier transform of S(G)s, see [Mis, Wal]. Indeed, we expect that the relation
between these two algebras is that certain parameters q ∈ R>1 associated to S(G)s

are changed to 1. The second bullet is a generalization of results known for Schwartz
completions of affine Hecke algebras [Sol2]. This part of the conjecture replaces the
affine Hecke algebras appearing in earlier versions [ABP]. The new version is more
flexible because it avoids the use of asymptotic Hecke algebras.

We have already verified Conjectures 1 and 2 for principal series representations
of split reductive p-adic groups in [ABPS5]. That situation is simpler than the
general case, because all the 2-cocycles are trivial. Conjecture 3 also holds for those
representations, that is a consequence of [ABPS5, Theorems 11.2 and 15.1] and
Lemma 6.5.

Our conjectures interact with the local Langlands correspondence (LLC), mainly
because elements of (Ts//Ws)\ are rather close to Langlands parameters. This was
used in [ABPS5, §16] to establish the LLC for for principal series representations of
split reductive p-adic groups (except for a few cases in which the residual character-
istic of F is bad for G).

If one accepts that a local Langlands correspondence exists for all supercuspidal
representations of Levi subgroups of G, then (1) can be transferred to a similar bijec-
tion for Langlands parameters (which in examples is easier to prove that (1) itself).
In this way our conjectures help to reduce the local Langlands correspondence for
G to that for supercuspidal representations of its Levi subgroups. Conjecture 3 can
be regarded as an outline to prove a part of the LLC for G.

Let D be a central simple F -algebra with dimF (D) = d2. Then G := GLm(D) is
an inner form of GLmd(F ) and G] := GLm(D)der is an inner form of SLmd(F ). As
announced, we will prove the above conjectures for G and G]. This relies heavily on
our earlier paper [ABPS4], whose main results we recall in Section 1.

Most of the work for the conjectures for G was already done in [ABPS4], the
remainder is contained in Theorems 4.3 and 5.3 and Lemmas 5.2 and 6.5.

Our strategy for G] is based on restriction of a Bernstein component Irrs(G) to
G], as in [ABPS4, §2.2]. This yields a finite number of Bernstein components for G].
The relation between the Bernstein tori for G and those for G] can be formulated
nicely in terms of extended quotients, see Section 2 and the first part of Section 4.
In Section 3 we use the Hecke algebras for Bernstein components of G] (as computed
in [ABPS4]), as well as Lusztig’s asymptotic Hecke algebras, to establish geometric
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equivalences (see Appendix A) between the appropriate algebras. These are used to
prove Conjecture 1 for G] in Theorem 4.4 and Lemma 4.5.

Then we invoke the LLC for G], known from [HiSa] and [ABPS3], to compare the
L-packets with these twisted extended quotients. Conjecture 2 for G] is established
in Lemma 5.5.

Finally, in Section 6 we turn to the Schwartz algebras for G and G]. The Hecke
algebras for Bernstein components of G and G] are closely related to affine Hecke
algebras. Likewise, the Schwartz algebras for Bernstein components of G and G]

turn out to be isomorphic to some algebras derived from Schwartz completions of
affine Hecke algebras [DeOp]. The link is established in Subsection 6.1, by comparing
the Fourier transforms of these algebras. Then we apply some techniques [Sol2] for
affine Hecke algebras and their Schwartz completions to prove Conjecture 3 for G]

(Corollary 6.7).

1. Preliminaries

We start with some generalities, to fix the notations. Then we recall the main
results of [ABPS4].

Let G be a connected reductive group over a local non-archimedean field F of
residual characteristic p. All our representations are tacitly assumed to be smooth
and over the complex numbers. We write Rep(G) for the category of such G-
representations and Irr(G) for the collection of isomorphism classes of irreducible
representations therein.

Let P be a parabolic subgroup of G with Levi factor L. The “Weyl” group of L
is W (G,L) = NG(L)/L. It acts on equivalence classes of L-representations π by

(w · π)(g) = π(w̄gw̄−1),

where w̄ ∈ NG(L) is a chosen representative for w ∈W (G,L). We write

Wπ = {w ∈W (G,L) | w · π ∼= π}.
Let ω be an irreducible supercuspidal L-representation. The inertial equivalence
class s = [L, ω]G gives rise to a category of smooth G-representations Reps(G) and
a subset Irrs(G) ⊂ Irr(G). Write Xnr(L) for the group of unramified characters
L → C×. Then Irrs(G) consists of all irreducible irreducible constituents of the
parabolically induced representations IGP (ω⊗ χ) with χ ∈ Xnr(L). We note that IGP
always means normalized, smooth parabolic induction from L via P to G.

The set IrrsL(L) with sL = [L, ω]L can be described explicitly, namely by

Xnr(L, ω) = {χ ∈ Xnr(L) : ω ⊗ χ ∼= ω},(5)

IrrsL(L) = {ω ⊗ χ : χ ∈ Xnr(L)/Xnr(L, ω)}.(6)

Several objects are attached to the Bernstein component Irrs(G) of Irr(G) [BeDe].
Firstly, there is the torus

Ts := Xnr(L)/Xnr(L, ω),

which is homeomorphic to IrrsL(L). Secondly, we have the groups

NG(sL) ={g ∈ NG(L) | g · ω ∈ IrrsL(L)}
={g ∈ NG(L) | g · [L, ω]L = [L, ω]L},

Ws :={w ∈W (G,L) | w · ω ∈ IrrsL(L)} = NG(sL)/L.
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Of course Ts and Ws are only determined up to isomorphism by s, actually they
depend on sL. To cope with this, we tacitly assume that sL is known when talking
about s.

The choice of ω ∈ IrrsL(L) fixes a bijection Ts → IrrsL(L), and via this bijection
the action of Ws on IrrsL(L) is transferred to Ts. The finite group Ws can be thought
of as the “Weyl group” of s, although in general it is not generated by reflections.

Let C∞c (G) be the vector space of compactly supported locally constant functions
G → C. The choice of a Haar measure on G determines a convolution product *
on C∞c (G). The algebra (C∞c (G), ∗) is known as the Hecke algebra H(G). There is
an equivalence between Rep(G) and the category Mod(H(G)) of H(G)-modules V
such that H(G) · V = V . We denote the collection of inertial equivalence classes for
G by B(G). The Bernstein decomposition

Rep(G) =
∏

s∈B(G)
Reps(G)

induces a factorization in two-sided ideals

H(G) =
∏

s∈B(G)
H(G)s.

From now on we discuss things that are specific for G = GLm(D), where D is a
central simple F -algebra. We write dimF (D) = d2. Every Levi subgroup L of G
is isomorphic to

∏
j GLm̃j (D) for some m̃j ∈ N with

∑
j m̃j = m. Hence every

irreducible L-representation ω can be written as ⊗jω̃j with ω̃j ∈ Irr(GLm̃j (D)).
Then ω is supercuspidal if and only if every ω̃j is so. As above, we assume that this
is the case. Replacing (L, ω) by an inertially equivalent pair allows us to make the
following simplifying assumptions:

Condition 1.1.

• if m̃i = m̃j and [GLm̃j (D), ω̃i]GLm̃j (D) = [GLm̃j (D), ω̃j ]GLm̃j (D), then ω̃i =

ω̃j;

• ω =
∏
i ω
⊗ei
i , such that ωi and ωj are not inertially equivalent if i 6= j;

• L =
∏
i L

ei
i =

∏
i GLmi(D)ei, embedded diagonally in GLm(D) such that

factors Li with the same (mi, ei) are in subsequent positions;
• as representatives for the elements of W (G,L) we take permutation matrices;
• P is the parabolic subgroup of G generated by L and the upper triangular

matrices;
• if mi = mj , ei = ej and ωi is isomorphic to ωj ⊗ γ for some character γ of

GLmi(D), then ωi = ωj ⊗ γχ for some χ ∈ Xnr(GLmi(D)).

Most of the time we will not need the conditions for stating the results, but they
are useful in many proofs. Under Conditions 1.1 we define

(7) Mi = ZG
(∏

j 6=i
L
ej
j

)
= GLmiei(D),

then
∏
iMi is a Levi subgroup of G containing L. For s = [L, ω]G we have

(8) Ws = N∏
iMi

(L)/L =
∏

i
NMi(L

ei
i )/Leii

∼=
∏

i
Sei ,
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a direct product of symmetric groups. Writing si = [Li, ωi]Li , the torus associated
to s becomes

Ts =
∏

i
(Tsi)

ei =
∏

i
Ti,(9)

Tsi = Xnr(Li)/Xnr(Li, ωi).(10)

By our choice of representatives for W (G,L), ω⊗eii is stable under NMi(L
ei
i )/Leii

∼=
Sei . If Ri ⊂ X∗(

∏
i Ti) denotes the coroot system of (Mi, L

ei
i ), we can identify Sei

with W (Ri). The action of Ws on Ts is just permuting coordinates in the standard
way and

(11) Ws = Wω.

The reduced norm map D → F gives rise to a group homomorphism Nrd : G→ F×.
We denote its kernel by G], so G] is also the derived group of G. For subgroups
H ⊂ G we write

H] = H ∩G].
In [ABPS4] we determined the shape of the Hecke algebras associated to types for
G], starting with those for G. As an intermediate step, we did this for the group
G]Z(G), where Z(G) ∼= F× denotes the centre of G. The advantage is that the
comparison between G] and G]Z(G) is easy, while G]Z(G) ⊂ G can be treated as
an extension of finite index. In fact it is a subgroup of finite if p does not divide md.
In case p does divide md, the quotient G/G]Z(G) is compact and similar techniques
can be applied.

For an inertial equivalence class s = [L, ω]G we define Irrs(G]) as the set of irre-
ducible G]-representations that are subquotients of ResGG](π) for some π ∈ Irrs(G),

and Reps(G]) as the collection of G]-representations all whose irreducible subquo-
tients lie in Irrs(G]). We want to investigate the category Reps(G]). It is a product
of finitely many Bernstein blocks for G] (see [ABPS4]):

(12) Reps(G]) =
∏

t]≺s
Rept](G]).

We note that the Bernstein components Irrt
]
(G]) which are subordinate to one s

(i.e., such that t] ≺ s) form precisely one class of L-indistinguishable components:
every L-packet for G] which intersects one of them intersects them all.

Analogously we define Reps(G]Z(G)), and we obtain

Reps(G]Z(G)) =
∏

t≺s
Rept(G]Z(G)),

where the t are inertial equivalence classes for G]Z(G).
The restriction of t to G] is a single inertial equivalence class t], and by [ABPS4,

(43)]:

(13) Tt] = Tt/Xnr(Nrd(Z(G))).

For π ∈ Irr(G) we put

XG(π) := {γ ∈ Irr(G/G]) : γ ⊗ π ∼= π}.
The same notation will be used for representations of parabolic subgroups of G which
admit a central character. For every γ ∈ XL(π) there exists a nonzero intertwining
operator

(14) I(γ, π) ∈ HomG(π ⊗ γ, π) = HomG(π, π ⊗ γ−1),
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which is unique up to a scalar. As G] ⊂ ker(γ), I(γ, π) can also be considered as
an element of EndG](π). As such, these operators determine a 2-cocycle κπ by

(15) I(γ, π) ◦ I(γ′, π) = κπ(γ, γ′)I(γγ′, π).

By [HiSa, Lemma 2.4] they span the G]-intertwining algebra of π:

(16) EndG](ResGG]π) ∼= C[XG(π), κπ],

where the right hand side denotes the twisted group algebra of XG(π). Furthermore
by [HiSa, Corollary 2.10]

(17) ResGG]π
∼=

⊕
ρ∈Irr(C[XG(π),κπ ])

HomC[XG(π),κπ ](ρ, π)⊗ ρ

as representations of G] ×XG(π).
The analogous groups for s = [L, ω]G and sL = [L, ω]L are

XL(s) := {γ ∈ Irr(L/L]Z(G)) : γ ⊗ ω ∈ [L, ω]L},

XG(s) := {γ ∈ Irr(G/G]Z(G)) : γ ⊗ IGP (ω) ∈ [L, ω]G}.

The role of the group Ws for Rep(G])s is played by

W ]
s := {w ∈W (G,L) | ∃γ ∈ Irr(L/L]Z(G)) such that w(γ ⊗ ω) ∈ [L, ω]L}

By [ABPS4, Lemma 2.3]

(18) W ]
s = Ws oR]

s , where R]
s = W ]

s ∩NG(P ∩
∏

i
Mi)/L.

while [ABPS4, Lemma 2.4.d] says that

(19) XG(s)/XL(s) ∼= R]
s.

Now we collect some notations which are needed specifically to state the final results
of [ABPS4].

From [SéSt1] we know that there exists a simple type (K,λ) for [L, ω]M , and in
[SéSt2] it was shown to admit a G-cover (KG, λG). We denote the associated central
idempotent of H(K) by eλ, and similarly for other irreducible representations. Then
Vλ = eλVω.

For the restriction process we need an idempotent that is invariant under XG(s).
To that end we replace λG by the sum of the representations γ⊗λG with γ ∈ XG(s),
which we call µG. Of course

Vµ :=
∑

γ∈XG(s)
eγ⊗λVω

is reducible as a representation of K.
In [ABPS4, (128)] we defined a finite dimensional subspace Vµ ⊂ Vω which is stable

under the operators I(γ, ω) with γ ∈ XL(s). In [ABPS4, (91)] we constructed an
idempotent eµG ∈ H(G) which is supported on a compact open subgroup KG ⊂ G.
It follows from the work of Sécherre and Stevens [SéSt2] that eµGH(G)eµG is Morita
equivalent with H(G)s. By [Séc] and [ABPS4, Proposition 3.15] there is an affine
Hecke algebra H(Ts,Ws, qs) such that

(20) eµGH(G)eµG
∼= H(Ts,Ws, qs)⊗ EndC(Vµ ⊗C CR]

s).
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The groups XG(s) and Xnr(G) act on eµGH(G)eµG by pointwise multiplication of
functions G → C with characters of G. However, for technical reasons we use the
action

(21) αγ(f)(g) = γ−1(g)f(g) f ∈ H(G), γ ∈ Irr(G/G]), g ∈ G.
The action on the right hand side of (20) preserves the tensor factors, and on

EndC(CR]
s) it is the natural action of XG(s)/XL(s) ∼= R]

s.
Although eµG looks like the idempotent of a type, it is not clear whether it is

one, because the associated KG-representation is reducible and no more suitable
compact subgroup of G is in sight. Let eµ

G]
(respectively eµ

G]Z(G)
) be the restriction

of eµG : G→ C to G] (resp. G]Z(G)). We normalize the Haar measure on G] (resp.

G]Z(G)) such that it becomes an idempotent in H(G]) (resp. H(G]Z(G))).
In [ABPS4, Lemma 3.3] we can constructed a certain finite set [L/Hλ], consisting

of representatives for a normal subgroup Hλ ⊂ L. Consider the elements

(22)

e]λG :=
∑

a∈[L/Hλ]
aeµGa

−1 ∈ H(G),

e]λ
G]Z(G)

:=
∑

a∈[L/Hλ]
aeµ

G]Z(G)
a−1 ∈ H(G]Z(G)),

e]λ
G]

:=
∑

a∈[L/Hλ]
aeµ

G]
a−1 ∈ H(G]).

It follows from [ABPS4, Lemma 3.12] that they are again idempotent. Notice that

e]λG detects the same category of G-representations as eµG , namely Reps(G). In the

proof of [ABPS4, Proposition 3.15] we established that (20) extends to an isomor-
phism

(23) e]λGH(G)e]λG
∼= H(Ts,Ws, qs)⊗ EndC(Vµ ⊗C CR]

s)⊗M[L:Hλ](C).

Theorem 1.2. [ABPS4, Theorem 4.13]

(a) H(G]Z(G))s is Morita equivalent with its subalgebra

e]λ
G]Z(G)

H(G]Z(G))e]λ
G]Z(G)

=
⊕

a∈[L/Hλ]
aeµ

G]Z(G)
a−1H(G]Z(G))aeµ

G]Z(G)
a−1

(b) Each of the algebras aeµ
G]Z(G)

a−1H(G]Z(G))aeµ
G]Z(G)

a−1 is isomorphic to

(24)
(
H(Ts,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s.

(c) Under these isomorphisms the action of Xnr(G) on H(G]Z(G))s becomes the
action of Xnr(L/L

]) ∼= Xnr(G) on (24) via translations on Ts.

To describe the Hecke algebras for G] in similar terms, let T ]s be the restriction
of Ts to L], that is,

(25) T ]s := Ts/Xnr(G) = Ts/Xnr(L/L
]) ∼= Xnr(L

])/Xnr(L, ω),

where Xnr(L/L
]) denotes the group of unramified characters of L which are trivial

on L]. With this torus we build an affine Hecke algebra H(T ]s ,Ws, qs).

Theorem 1.3. [ABPS4, Theorem 4.15]

(a) H(G])s is Morita equivalent with

e]λ
G]
H(G])e]λ

G]
=
⊕

a∈[L/Hλ]
aeµ

G]
a−1H(G])aeµ

G]
a−1
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(b) Each of the algebras aeµ
G]
a−1H(G])aeµ

G]
a−1 is isomorphic to(

H(T ]s ,Ws, qs)⊗ EndC(Vµ)
)XL(s) oR]

s.

Let us describe the above actions of the group XG(s) explicitly. The action on

(26) aeµ
G]Z(G)

a−1H(G]Z(G))aeµ
G]Z(G)

a−1 ∼= H(Ts,Ws, qs)⊗ EndC(Vµ).

does not depend on a ∈ [L/Hλ] because

γ · (afa−1) = a(γ · f)a−1 f ∈ H(G).

For another way to view XG(s), we start with

Stab(s) := {(w, γ) ∈ NG(L)/L× Irr(L/L]Z(G)) | w(γ ⊗ ω) ∈ [L, ω]L}.
The normal subgroup Ws has a complement:

Stab(s) = Stab(s, P ∩
∏

i
Mi) nWs := Stab(s)+ nWs

Stab(s)+ := {(w, γ) ∈ NG(P ∩
∏

i
Mi)/L× Irr(L/L]Z(G)) | w(γ ⊗ ω) ∈ [L, ω]L}

By [ABPS4, Lemma 2.4.a] projection of Stab(s) on the second coordinate gives an
isomorphism

(27) XG(s) ∼= Stab(s)/Ws
∼= Stab(s)+

In particular

(28) Stab(s)+/XL(s) ∼= R]
s.

This yields an action α of Stab(s)+ on (26). As in [ABPS4, (159)–(161)] we choose
χγ ∈ Xnr(L)Ws for (w, γ) ∈ Stab(s)+, such that

(29) w(ω)⊗ γ ∼= ω ⊗ χγ .
Notice that χγ is unique up to Xnr(L, ω). Furthermore we choose an invertible

(30) J(γ, ω ⊗ χ−1
γ ) ∈ HomL(ω ⊗ χ−1

γ , w−1(ω)⊗ γ−1).

This generalizes (14) in the sense that

J(γ, ω ⊗ χ−1
γ ) = I(γ, ω) if γ ∈ XL(ω) and χγ = 1.

We may assume that

(31) χγ = γ and J(γ, ω ⊗ χ−1
γ ) = idVω if γ ∈ Xnr(L/L

]Z(G)).

By definition [ABPS4, (119)] the algebra H(Ts,Ws, qs) has a C-basis {θx[w] : x ∈
X∗(Ts), w ∈Ws} such that

• the span of the θx is identified with the algebra O(Ts) of regular functions
on Ts;
• the span of the [w] is the finite dimensional Iwahori–Hecke algebraH(Ws, qs);
• the multiplication between these two subalgebras is given by

(32) f [s]− [s](s · f) = (qs(s)− 1)(f − (s · f))(1− θ−α)−1 f ∈ O(Ts),

for a simple reflection s = sα;
• the parameter function qs is given explicitly in [Séc].

Thus H(Ts,Ws, qs) is a tensor product of affine Hecke algebras of type GLe, but
written in such a way that the torus Ts appears canonically in it (i.e. independent
of the choice of a base point of Ts).
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Theorem 1.4. [ABPS4, Lemmas 3.5 and 4.11]

(a) The action of Stab(s)+ on H(Ts,Ws, qs) ⊗ EndC(Vµ) in Theorem 1.2 preserves
both tensor factors. On H(Ts,Ws, qs) it is given by

α(w,γ)(θx[v]) = χ−1
γ (x)θw(x)[wvw

−1] x ∈ X∗(Ts), v ∈Ws,

and on EndC(Vµ) by

α(w,γ)(h) = J(γ, ω ⊗ χ−1
γ ) ◦ h ◦ J(γ, ω ⊗ χ−1

γ )−1.

(b) The subgroup of elements that act trivially is

XL(ω, Vµ) = {γ ∈ XL(ω) | I(γ, ω)|Vµ ∈ C×idVµ}.
Its cardinality equals [L : Hλ].

(c) Part (a) and Theorem 1.2.c also describe the action of Stab(s)+Xnr(G) on

H(T ]s ,Ws, qs) ⊗ EndC(Vµ) in Theorem 1.3. The subgroup of elements that act
trivially on this algebra is

XL(ω, Vµ)Xnr(G) = XL(ω, Vµ)Xnr(L/L
]).

Let us compare Theorem 1.3 with the situation for L], which is simpler.

Theorem 1.5. (a) There exist idempotents esL ∈ H(L), es
L]
∈ H(L]) such that

H(L])s is Morita equivalent with

esL]H(L])esL]
∼= esLH(L)X

L(s)Xnr(L/L])esL
∼=
(
O(T ]s )⊗ EndC(Vµ ⊗ C[L/Hλ])

)XL(s)

∼=
⊕

a∈[L/Hλ]

(
O(T ]s )⊗ EndC(Vµ)

)XL(s)/XL(ω,Vµ)
.

(b) Under the equivalences from part (a) and Theorem 1.3, the normalized parabolic
induction functor

IG
]

P ] : RepsL(L])→ Reps(G])

corresponds to induction from the last algebra in part (a) to⊕
a∈[L/Hλ]

(
H(T ]s ,Ws, qs)⊗ EndC(Vµ)

)XL(s)/XL(ω,Vµ) oR]
s.

Proof. Part (a) is a consequence of [ABPS4, (169)] and [ABPS4, Lemma 4.8], which
shows that EndC(C[L/Hλ]) ∼= C[L/Hλ].

The analogue of part (b) for L and G says that

IGP : RepsL(L)→ Reps(G)

corresponds to induction from

esLH(L)esL
∼= O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ]) to

e]λGH(G)e]λG
∼= H(Ts,Ws, qs)⊗ EndC(Vµ ⊗ C[L/Hλ]⊗ CR]

s).

To see that it is true, we reduce with [ABPS4, Theorem 4.5] to the algebras

eλLH(L)eλL
∼= O(Ts)⊗ EndC(Vλ),

eλGH(G)eλG
∼= H(Ts,Ws, qs)⊗ EndC(Vλ).

Then we are in the situation where (KG, λG) is a cover of a type (KL, λL), and the
statement about the induction functors follows from [ABPS4, (126)] and [BuKu,
Corollary 8.4].
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We note that here, for a given algebra homomorphism φ : A → B, we must use
induction in the version IndBA(M) = HomA(B,M). However, in all the cases we
encounter B is free of finite rank as a module over A and it is endowed with a
canonical anti-involution

f 7→ [f∨ : g 7→ f(g−1)].

Hence we may identify HomA(B,M) ∼= B∗ ⊗AM ∼= B ⊗AM .

Now we have shown the desired claim for IGP . Since G]/P ] ∼= G/P, IGP = IG
]

P ]

on RepsL(L). The functor ResLL] corresponds to Res
eλLH(L)eλL

es
L]
H(L])es

L]
, and ResGG] to re-

striction from e]λGH(G)e]λG to e]λ
G]
H(G])e]λ

G]
, which is the algebra appearing in the

statement.
This proves part (b) on ResLL](RepsL(L)). Since every irreducible L]-representation

appears as a summand of an L-representation, this implies the statement on the
whole of RepsL(L]). �

2. Bernstein tori

We will determine the Bernstein tori for G]Z(G) and G], in terms of those for G.
From [ABPS4, (169)] we get a Morita equivalence

(33) H(L]Z(G))sL ∼M
(
O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ])

)XL(s)
.

The group XL(s) acts on Ts = IrrsL(L) by π 7→ π⊗ γ. By [ABPS4, Proposition 2.1]
ResLL](ω) and ResLL](ω⊗χ) with χ ∈ Xnr(L) have a common irreducible subquotient

if and only if there is a γ ∈ XL(s) such that ω⊗χ ∼= ω⊗χγ . Like in (30) we choose
a nonzero

J(γ, ω) ∈ HomL(ω, ω ⊗ χγγ−1) = HomL(ω ⊗ γ, ω ⊗ χγ).

Then J(γ, ω) ∈ HomL](ω, ω ⊗ χγ) and for every irreducible subquotient σ] of

ResLL](ω)

(34) γ ∗ (σ] ⊗ χ) : m 7→ J(γ, ω) ◦ (σ] ⊗ χ)(m) ◦ J(γ, ω)−1

is an irreducible subquotient representation of

ResLL](ω ⊗ χχγ) = ResLL](ω ⊗ χχγγ
−1).

This prompts us to consider

(35) XL(s, σ]) := {γ ∈ XL(s) | γ ∗ σ] ∼= σ] ⊗ χγ}.
By [ABPS4, Lemma 4.14]

(36) σ] ⊗ χ ∼= σ] for all χ ∈ Xnr(L, ω).

Hence the group (35) is well-defined, that is, independent of the choice of the χγ .

For γ ∈ XL(ω) (34) reduces to σ] ⊗ χ, so γ ∈ XL(s, σ]). By (31) the same goes for
γ ∈ Xnr(L/L

]Z(G)), so there is always an inclusion

(37) XL(ω)Xnr(L/L
]Z(G)) ⊂ XL(s, σ]).

We gathered enough tools to describe the Bernstein tori for G] and G]Z(G). Recall

that sL = [L, ω]L, Ts ∼= Xnr(L)/Xnr(L, ω) and that T ]s denotes the “restriction” of
Ts to L].
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Proposition 2.1. Let σ] be an irreducible subquotient of ResLL](ω) and write

t = [L]Z(G), σ]]G]Z(G) and t] = [L], σ]]G].

(a) XL(s, σ]) depends only on sL, not on the particular σ].
(b) Xnr(L, ω){χγ | γ ∈ XL(s, σ])} is a subgroup of Xnr(L) which contains

Xnr(L/L
]Z(G)).

(c) Tt ∼= Ts/{χγ | γ ∈ XL(s, σ])} ∼= Xnr(L
]Z(G))/Xnr(L, ω){χγ | γ ∈ XL(s, σ])}.

(d) Tt]
∼= T ]s /{χγ | γ ∈ XL(s, σ])} ∼= Xnr(L

])/Xnr(L, ω){χγ | γ ∈ XL(s, σ])}.

Proof. (a) By [ABPS4, Proposition 2.1] every two irreducible subquotients of
ResLL](ω) are direct summands and are conjugate by an element of L. Given γ ∈
XL(s), pick mγ ∈ L such that

γ ∗ σ] ∼= (ω(mγ)−1 ◦ σ] ◦ ω(mγ))⊗ χγ = (mγ · σ])⊗ χγ .

For any other irreducible summand τ = mτ · σ] of ResLL](ω) we compute

γ ∗ τ = γ ∗ (mτ · σ]) = J(γ, ω) ◦ ω(mτ )−1 ◦ σ] ◦ ω(mτ ) ◦ J(γ, ω)−1

= (χγγ
−1 ⊗ ω)(m−1

τ ) ◦ J(γ, ω) ◦ σ] ◦ J(γ, ω)−1 ◦ (χγγ
−1 ⊗ ω)(mτ )

∼= ω(m−1
τ ) ◦ (mγ · σ])⊗ χγ ◦ ω(mτ )

∼= (mτmγ · σ])⊗ χγ .

As L/L] is abelian, we find that mτmγ · σ] ∼= mγmτ · σ] and that

γ ∗ τ ∼= (mγmτ · σ])⊗ χγ = mγτ ⊗ χγ .

Writing Lτ = {m ∈ L | m · τ ∼= τ}, we deduce the following equivalences:

γ ∗ σ] ∼= σ] ⊗ χγ ⇔ mγ ∈ Lσ] ⇔ mγ ∈ mτLσ]m
−1
τ = Lτ ⇔ γ ∗ τ ∼= τ ⊗ χγ .

This means that XL(s, σ]) = XL(s, τ).
(b) By (31) and (37)

Xnr(L/L
]Z(G)) ⊂ {χγ | γ ∈ XL(s, σ])}.

In view of the uniqueness property of χγ the map

XL(s)→ Xnr(L)/Xnr(L, ω) : γ 7→ χγ

is a group homomorphism with kernel XL(ω). Hence the χγ form a subgroup of
Xnr(L)/Xnr(L, ω), isomorphic to XL(s)/XL(ω).
(c) Consider the family of L]Z(G)-representations

{σ] ⊗ χ | χ ∈ Xnr(L)}.

We have to determine the χ for which σ] ⊗ χ ∼= σ] ∈ Irr(L]Z(G)). From [ABPS4,
Lemma 4.14] we see that this includes all the elements of Xnr(L, ω)Xnr(L/L

]Z(G)).
By [ABPS4, Proposition 2.1.b] and part (a), all the remaining γ come from {χγ | γ ∈
XL(s, σ])}. This gives the first isomorphism, and the second follows with part (b).
(d) This is a consequence of part (c) and (13). �

Proposition 2.1 entails that for every inertial equivalence class

t = [L]Z(G), σ]]G]Z(G) ≺ s = [L, ω]G
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the action (34) of XL(s, σ]) leads to

Tt ∼= Ts/X
L(s, σ]).

However, some of the tori

Tt = TtL = Irr
[L]Z(G),σ]]

L]Z(G)(L]Z(G))

associated to inequivalent σ] ⊂ ResLL](ω) can coincide as subsets of Irr(L]Z(G)).

This is caused by elements of XL(s) \XL(s, σ]) via the action (34). With (36), (33)
and (17) we can write

(38) IrrsL(L]Z(G)) =
⋃

tL≺sL
TtL =

(
Ts × Irr(C[XL(ω), κω])

)
/XL(s),

where (ω ⊗ χ, ρ) ∈ Ts × Irr(C[XL(ω), κω]) corresponds to

HomC[XL(ω),κω ](ρ, ω ⊗ χ) ∈ Irr(L]Z(G)).

With (13) we can deduce a similar expression for L]:

(39)
IrrsL(L]) =

⋃
t]L≺sL

T
t]L

=
(
T ]s × Irr(C[XL(ω), κω])

)
/XL(s)

=
(
Ts × Irr(C[XL(ω), κω])

)
/XL(s)Xnr(L

]Z(G)/L]).

In the notation of (38) and (39) the action of γ ∈ XL(s) becomes

(40) γ · (ω ⊗ χ, ρ) = (ω ⊗ χχγ , φω,γρ),

where φω,γ is yet to be determined. Any γ ∈ XL(ω) can be adjusted by an element
of Xnr(L, ω) to achieve χγ = 1. Then (36) shows that φω,γρ ∼= ρ for all γ ∈ XL(ω).

Lemma 2.2. For γ ∈ XL(s), φω,γρ is ρ tensored with a character of XL(ω), which
we also call φω,γ. Then

XL(s)→ Irr(XL(ω)) : γ 7→ φω,γ

is a group homomorphism.

Proof. Let Nγ′ be a standard basis element of C[XL(ω), κω]. In view of (34) φω,γρ
is given by

(41) Nγ′ 7→ J(γ, ω)I(γ′, ω)J(γ, ω)−1 ∈ HomL(ω ⊗ γ′χγ , ω ⊗ χγ).

Since these are irreducible L-representations, there is a unique λ ∈ C× such that

J(γ, ω)I(γ′, ω)J(γ, ω)−1 = λ−1I(γ′, ω ⊗ χγ),

(φω,γρ)(Nγ′) = ρ(λI(γ′, ω)) = λρ(Nγ′).

Moreover the relation

(42) I(γ′1, ω ⊗ χγ)I(γ′2, ω ⊗ χγ) = κω⊗χγ (γ′1, γ
′
2)I(γ′1γ

′
2, ω ⊗ χγ)

also holds with J(γ, ω)I(γ′i, ω)J(γ, ω)−1 instead of I(γ′i, ω)– a basic property of con-
jugation. It follows that γ′ 7→ λ defines a character of XL(ω) which implements
the action ρ 7→ φω,γρ. As φω,γ comes from conjugation by J(γ, ω ⊗ χ) and by (42),
γ 7→ φω,γ is a group homomorphism. �
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A straightforward check, using the above proof, shows that

(43)
HomC[XL(ω),κω ](ρ, ω ⊗ χ) → HomC[XL(ω),κω ](φγρ, ω ⊗ χχγ)

f 7→ J(γ, ω ⊗ χ) ◦ f

is an isomorphism of L]Z(G)-representations.

3. Hecke algebras and spectrum preserving morphisms

We will show that the Hecke algebras obtained in Theorems 1.2 and 1.3 fit in the
framework of spectrum preserving morphisms and geometric equivalence of finite
type algebras, see Appendix A.

To apply this to the algebras from Section 1 we first exhibit an algebra that
interpolates between

(H(Ts,Ws, qs)⊗ EndC(Vµ))X
L(s) oR]

s

and (O(Ts)oWs⊗EndC(Vµ))X
L(s)oR]

s. Recall that Conditions 1.1 are in force and
write

Ts =
∏

i
Ti, Rs =

⊔
i
Ri, Ws =

∏
i
W (Ri) =

∏
i
Sei .

Let qi be the restriction of qs : X∗(Ts) oWs → R>0 to X∗(Ti) oW (Ri). Recall
Lusztig’s asymptotic Hecke algebra J(X∗(Ti) o W (Ri)) from [Lus2, Lus3]. We
remark that, although in [Lus2] it is supposed that the underlying root datum
is semisimple, this assumption is shown to be unneccesary in [Lus3]. This alge-

bra is unital and of finite type over O(Ti)
W (Ri). It has a distinguished C-basis

{txv | x ∈ X∗(Ti), v ∈ W (Ri)} and the tx with x ∈ X∗(Ti)W (Ri) are central. We
define

J(X∗(Ts) oWs) =
⊗

i
J(X∗(Ti) oW (Ri)).

This is a unital finite type algebra over O(Ts)
Ws , in fact for several different O(Ts)

Ws-
module structures.

Lemma 3.1. The group Stab(s)+ acts on J(X∗(Ts) o Ws) ⊗ EndC(Vµ) and on
O(Ts)oWs⊗EndC(Vµ) like the action on H(Ts,Ws, qs)⊗EndC(Vµ) in Theorem 1.4.

Proof. For w ∈ R]
s the group automorphism

(44) xv 7→ wxvw−1 of X∗(Ts) oWs

permutes the subgroups X∗(Ti)oW (Ri) and preserves qs. Thus (44) can be factor-
ized as ∏

j

ωj with ωj ∈ Aut
( ∏
i:Ri=Rj ,qi=qj

X∗(Ti) oW (Ri)
)

The function qs takes the same value on all simple (affine) roots associated to the
group for one j in (44), so the algebra

(45)
⊗

i|Ri=Rj ,qi=qj
J(X∗(Ti) oW (Ri))

is of the kind considered in [Lus3, §1]. Then ωj is an automorphism which fits in
a group called Ω in [Lus3, §1.1], so it gives rise to an automorphism of the algebra

(45). In this way the group R]
s acts naturally on J(X∗(Ts) oWs).
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Since TWs
s is central in Ts oWs, every χ ∈ TWs

s gives rise to an algebra automor-
phism of J(X∗(Ts) oWs):

(46) txv 7→ χ(x)txv x ∈ X∗(Ts), v ∈Ws.

Thus we can make Stab(s)+ act on J(X∗(Ts) oWs) by

(w, γ) · txv = χ−1
γ (x)twxvw−1 x ∈ X∗(Ts), v ∈Ws.

The action of Stab(s)+ on EndC(Vµ) may be copied to this setting, so we can define
the following action on J(X∗(Ts) oWs)⊗ EndC(Vµ):

α(w,γ)(txv ⊗ h) = χ−1
γ (x)twxvw−1 ⊗ J(γ, ω ⊗ χ−1

γ ) ◦ h ◦ J(γ, ω ⊗ χ−1
γ )−1.

Of course the above also works with the label function 1 instead of qs. That yields
a similar action of Stab(s)+ on O(Ts) oWs ⊗ EndC(Vµ), namely

(47) α(w,γ)(xv ⊗ h) = χ−1
γ (x) wxvw−1 ⊗ J(γ, ω ⊗ χ−1

γ ) ◦ h ◦ J(γ, ω ⊗ χ−1
γ )−1,

where xv ∈ X∗(Ts) oWs. �

Lusztig [Lus3, §1.4] defined injective algebra homomorphisms

(48) H(Ti,W (Ri), qi)
φi,qi−−−→ J(X∗(Ti) oW (Ri))

φi,1←−− O(Ti) oW (Ri)

with many nice properties. Among these, we record that

(49) φi,qi and φ1 are the identity on C[X∗(Ti)
W (Ri)] ∼= O(Xnr(Z(Mi))).

There exist O(Ti)
W (Ri)-module structures on J(X∗(Ti)oW (Ri)) for which the maps

(48) are O(Ti)
W (Ri)-linear, namely by letting O(Ti)

W (Ri) act via the map φi,qi or
via φi,1. Taking tensor products over i in (48) and with the identity on EndC(Vµ)
gives algebra homomorphisms

(50)
φqs : H(Ts,Ws, qs)⊗ EndC(Vµ) → J(X(Ts) oWs)⊗ EndC(Vµ),
φ1 : O(Ts) oWs ⊗ EndC(Vµ) → J(X(Ts) oWs)⊗ EndC(Vµ).

The maps φqs and φ1 are O(Ts)
Ws-linear with respect to the appropriate module

structure on J(X(Ts) oWs).

Lemma 3.2. The O(Ts)
Ws-algebra homomorphisms φqs and φ1 from (50) are spec-

trum preserving with respect to filtrations.

Proof. It suffices to consider the map φqs , for the same reasoning will apply to φ1.
Our argument is a generalization of [BaNi, Theorem 10], which proves the analogous
statements for J(X∗(Ti) oW (Ri)). Recall the function

(51) a : X∗(Ts) oWs → Z≥0

from [Lus3, §1.3]. For fixed n ∈ Z≥0, the subspace of J(X∗(Ti) oW (Ri)) spanned
by the txv with a(xv) = n is a two-sided ideal, let us call it J i,n. Then

J(X∗(Ti) oW (Ri)) =
⊕

n≥0
J i,n

and the sum is finite by [Lus1, §7]. Moreover

Hi,n := φ−1
qi,i

(⊕
k≥n

J i,k
)
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is a two-sided ideal of H(Ti,W (Ri), qi). According to [Lus2, Corollary 3.6] the

morphism of O(Ti)
W (Ri)-algebras

Hi,n/Hi,n+1 → J i,n induced by φqi,i

is spectrum preserving. For any irreducible J i,n-moduleM i
J theHi,n-module φ∗qi,i(M

i
J)

has a distinguished quotient M i
H, which is an irreducible Hi,n/Hi,n+1-module.

Let n be a vector with coordinates ni ∈ Z≥0 and put |n| =
∑

i ni. We write
n ≤ n′ if ni ≤ n′i for all i. We define the two-sided ideals

Jn =
⊗

i J
i,ni ⊗ EndC(Vµ) ⊂ J(X∗(Ts) oWs)⊗ EndC(Vµ),

Hn =
⊗

iHi,ni ⊗ EndC(Vµ) ⊂ H(Ts,Ws, qs)⊗ EndC(Vµ),

Hn+ =
∑

n′≥n,|n′|=|n|+1Hn′ .

It follows from the above that the morphism of O(Ts)
Ws-algebras

(52)
⊗

i
(Hi,ni/Hi,ni+1)⊗ EndC(Vµ) ∼= Hn/Hn+ → Jn

induced by φqs is spectrum preserving, and that every irreducible Jn-module MJ

has a distinguished quotient MH which is an irreducible Hn/Hn+-module.
Next we define, for n ∈ Z≥0:

Jn :=
⊕
|n|=n

Jn, Hn :=
⊕
|n|=n

Hn.

The aforementioned properties of the map (52) are also valid for

(53) Hn/Hn+1 → Jn,

which shows that φqs is spectrum preserving with respect to the filtrations (Hn)n≥0

and (⊕m≥nJm)n≥0. �

It follows from [Lus3, §1] that the maps (50) are R]
s-equivariant for the actions α

defined in Lemma 3.1. Now

(54)

(
H(Ts,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s,(

J(X∗(Ts) oWs)⊗ EndC(Vµ)
)XL(s) oR]

s,(
O(Ts) oWs ⊗ EndC(Vµ)

)XL(s) oR]
s

are unital finite type O(Ts)
Stab(s)-algebras, and φqs and φ1 provide morphisms be-

tween them.

Theorem 3.3. (a) The above morphisms between the O(Ts)
Stab(s)-algebras (54) are

spectrum preserving with respect to filtrations, in the sense of (112).

(b) The same holds for the three algebras of (54) with T ]s instead of Ts.

Proof. (a) We use the notations from the proof of Lemma 3.2. Since (44) gives rise
to an automorphism of the algebra J(X∗(Ts) oWs, qs),

a(wxvw−1) = a(xv) for all x ∈ X∗(Ts), v ∈Ws, w ∈ R]
s.

Hence Jn and Hn are stable under the respective actions α and (51) is Stab(s)+-

equivariant. Consider the restriction of MJ to (Jn)X
L(s). By Clifford theory (see

[RaRa, Appendix]) its decomposition is governed by a twisted group algebra of the
stabilizer of MJ in XL(s). Since (53) is XL(s)-equivariant and MH is a quotient of

MJ , the decomposition of MH as module over (Hn/Hn+1)X
L(s) is governed by the
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same twisted group algebra in the same way. Therefore (53) restricts to a spectrum

preserving morphism of O(Ts)
Ws×XL(s)-algebras

(Hn/Hn+1)X
L(s) → (Jn)X

L(s).

Now a similar argument with Clifford theory for crossed product algebras shows that

(Hn/Hn+1)X
L(s) oR]

s → (Jn)X
L(s) oR]

s

is a spectrum preserving morphism of O(Ts)
Stab(s)-algebras. By definition [BaNi,

§5], this means that the map

(55) φ′qs :
(
H(Ts,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s →(

J(X∗(Ts) oWs)⊗ EndC(Vµ)
)XL(s) oR]

s

induced by φqs is spectrum preserving with respect to filtrations.
The same reasoning is valid with O(Ts)oWs instead of H(Ts,Ws, qs) – it is simply

the case qs = 1 of the above.
(b) Recall that Ts ∼= Xnr(L)/Xnr(L, ω). The torus Ts/Xnr(L/L

]Z(G)) can be iden-
tified with

(56) Xnr(L
]Z(G))/Xnr(L, ω).

Since the elements of Xnr(L, ω) are trivial on Z(L) ⊃ Z(G) and L] ∩ Z(G) ∼= o×F is
compact, (56) factors as

Xnr(L
])/Xnr(L, ω)×Xnr(Z(G)) = T ]s ×Xnr(Z(G)).

By Theorem 1.2 the action of Xnr(L/L
]Z(G)) ⊂ XL(s) on the algebras (54) comes

only from its action on the torus Ts. Hence these three algebras do not change if we

replace Ts by (56). Equivalently, we may replace Ts by T ]s ×Xnr(Z(G)). It follows
that(
H(Ts,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s
∼=(

O(Xnr(Z(G)))⊗H(T ]s ,Ws, qs)⊗ EndC(Vµ)
)XL(s) oR]

s.

The action of Stab(s)+ fixes O(Xnr(Z(G))) pointwise, so this equals(
H(T ]s ,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s ⊗O(Xnr(Z(G))).

The other two algebras in (54) can be rewritten similarly. By (49) the morphisms
φqs and φ1 fix the respective subalgebras O(Xnr(Z(G))) pointwise. It follows that
(56) decomposes as

φ]qs ⊗ id :
(
H(T ]s ,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s ⊗O(Xnr(Z(G)))→(

J(X∗(T ]s ) oWs)⊗ EndC(Vµ)
)XL(s) oR]

s ⊗O(Xnr(Z(G))),

and similarly for φ′1. From part (a) we know that φ′qs = φ]qs ⊗ id and φ′1 = φ]1 ⊗ id

are spectrum preserving with respect to filtrations. So φ]qs and

φ]1 :
(
O(T ]s ) oWs ⊗ EndC(Vµ)

)XL(s) oR]
s →(

J(X∗(T ]s ) oWs)⊗ EndC(Vµ)
)XL(s) oR]

s



THE NONCOMMUTATIVE GEOMETRY OF INNERFORMS OF p-ADIC SPECIAL LINEAR GROUPS19

have that property as well. �

With Theorem 3.3 we can show that the Hecke algebras for G] and for G]Z(G)
are geometrically equivalent (confer Appendix A) to much simpler algebras. Recall
the subgroup Hλ ⊂ L from [ABPS4, Lemma 3.3].

Theorem 3.4. (a) The algebra H(G]Z(G))s is geometrically equivalent with⊕[L:Hλ]

1

(
O(Ts)⊗ EndC(Vµ)

)XL(s) oW ]
s ,

where the action of w ∈ W ]
s is α(w,γ) for any γ ∈ Irr(L/L]Z(G)) such that

(w, γ) ∈ Stab(s).
(b) The algebra H(G])s is geometrically equivalent with⊕[L:Hλ]

1

(
O(T ]s )⊗ EndC(Vµ)

)XL(s) oW ]
s ,

with respect to the same action of W ]
s .

Remark. In principle one could factorize the above algebras according to single
Bernstein components for G]Z(G) and G]. However, this would result in less clear
formulas.

Proof. (a) Recall from Theorem 1.2 that H(G]Z(G))s is Morita equivalent with

(57)
⊕[L:Hλ]

1

(
H(Ts,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s.

Consider the sequence of algebras

(58)

(
H(Ts,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s

→
(
J(X∗(Ts) oWs)⊗ EndC(Vµ)

)XL(s) oR]
s

=
(
J(X∗(Ts) oWs)⊗ EndC(Vµ)

)XL(s) oR]
s

←
(
O(Ts) oWs ⊗ EndC(Vµ)

)XL(s) oR]
s.

In Theorem 3.3.a we proved that the map between the first two lines is spectrum
preserving with respect to filtrations. The equality sign does nothing on the level
of C-algebras, but we use it to change the O(Ts)

Stab(s)-module structure, such that
the map from

(59)
(
O(Ts) oWs ⊗ EndC(Vµ)

)XL(s) oR]
s

becomes O(Ts)
Stab(s)-linear. By Theorem 3.3.a that map is also spectrum preserving

with respect to filtrations.
Every single step in the above sequence is an instance of geometric equivalence

defined in Appendix A, so H(G]Z(G))s is geometrically equivalent with a direct
sum of [L : Hλ] copies of (59). Since χγ ∈ Ts in (47) is Ws-invariant, the actions of
XL(s) and Ws on O(Ts)⊗ EndC(Vµ) commute. This observation and (18) allow us
to identify (59) with

(60)
((
O(Ts)⊗ EndC(Vµ)

)XL(s) oWs

)
oR]

s =
(
O(Ts)⊗ EndC(Vµ)

)XL(s) oW ]
s .

The description of the action of W ]
s can be derived from Theorem 1.4.

(b) This follows from Theorem 1.3 and the same proof as for part (a). �
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4. Twisted extended quotients

Twisted extended quotients appear naturally in the description of the Bernstein
tori for L]Z(G) and L].

Lemma 4.1. Let sL = [L, ω]L and define a two-cocycle κω by (15).

(a) Equation (17) for L determines bijections

(Ts//X
L(s))κω → IrrsL(L]Z(G)),

(Ts//X
L(s)Xnr(L/L

]))κω = (Ts//X
L(s))κω/Xnr(L

]Z(G)/L])→ IrrsL(L]).

(b) The induced maps

IrrsL(L]Z(G))→ Ts/X
L(s) and IrrsL(L])→ Ts/X

L(s)Xnr(L/L
])

are independent of the choice of κω.
(c) Let Ts,un be the real subtorus of unitary representations in Ts. The subspace

of tempered representations IrrsLtemp(L]Z(G)) corresponds to (Ts,un//X
L(s))κω .

Similarly IrrsLtemp(L]) is obtained by restricting the second line of part (a) to
Ts,un.

Proof. (a) Apart from the equality, this is a reformulation of the last page of Section
2. For the equality, we note that by (39) the action of

Xnr(L
]Z(G)/L]) ∼= Xnr(L/L

])/(XL(s) ∩Xnr(L/L
]))

on (Ts//X
L(s))κω is free. Hence the isotropy groups for the action ofXL(s)Xnr(L/L

])
are the same as for XL(s), and we can use the same 2-cocycle κω to construct a
twisted extended quotient.
(b) By (17) a different choice of κω in part (a) would only lead to the choice of
another irreducible summand of ResGG](π) for π ∈ Ts, and similarly for G]Z(G).
(c) Since ω is supercuspidal, the set of tempered representations in Ts = IrrsL(L) is
Ts,un. In the decomposition (17), an irreducible representation of L] or L]Z(G) is
tempered if and only if it is contained in a tempered L-representation ω ⊗ χ. This
proves the statement for L. The claim for L] follows upon dividing out the free
action of Xnr(L

]Z(G)/L]). �

The subgroup XL(ω, Vµ) acts trivially on O(Ts)⊗EndC(Vµ), and for that reason
it can be pulled out of the extended quotient from Lemma 4.1.

Lemma 4.2. There are bijections

(Ts//X
L(s))κω ←→ (Ts//X

L(s)/XL(ω, Vµ))κω × Irr(XL(ω, Vµ)),

(Ts//X
L(s)Xnr(L/L

]))κω ←→ (Ts//X)κω × Irr(XL(ω, Vµ)),

where X = XL(s)Xnr(L/L
])/XL(ω, Vµ). They fix the coordinates in Ts.

Proof. In Lemma 4.1 we saw that (Ts//X
L(s))κω is in bijection with Irr(H(L]Z(G))sL).

By [ABPS4, (169)] H(L]Z(G))sL is Morita equivalent with (H(L)sL)X
L(s) and with

the subalgebra

(61) esLH(L)X
L(s)esL

∼= (O(Ts)⊗ EndC(esLVω))X
L(s)

∼=
⊕

a∈[L/Hλ]
(O(Ts)⊗ EndC(Vµ))X

L(s)/Xnr(ω,Vµ).
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Here the XL(s)-action on the middle term comes from an isomorphism

EndC(esLVω) ∼= EndC(Vµ)⊗ C[L/Hλ]⊗ C[L/Hλ]∗.

We recall that by [ABPS4, Lemma 3.5] there is a group isomorphism

(62) L/Hλ
∼= Irr(XL(ω, Vµ)).

The stabilizer of an irreducible representation Cχ⊗Vµ of the right hand side of (61)
is XL(ω)/Xnr(ω, Vµ). Comparing the spaces of irreducible representations of (61),
we find that

{ρ ∈ Irr(C[XL(ω), κω]) : ρ|XL(ω,Vµ) = triv}

corresponds bijectively to Irr(EndC(Vµ)X
L(s)/XL(ω,Vµ)). It follows that every irre-

ducible representation of C[XL(ω)/XL(ω, Vµ), κω] appears in Vµ. This is equiv-
alent to each irreducible representation of EndC(Vµ) o XL(ω)/XL(ω, Vµ) having
nonzero vectors fixed by XL(ω)/XL(ω, Vµ). Thus Lemma B.2 can be applied to
XL(ω)/XL(ω, Vµ) acting on O(Ts) ⊗ EndC(Vµ), and it shows that the irreducible
representations on the right hand side of (61) are in bijection with
(Ts//X

L(s)/XL(ω, Vµ))κω × Irr(XL(ω, Vµ)).

The second bijection follows by dividing out the free action of Xnr(L
]Z(G)/L]),

as in the proof of Lemma 4.1.a. �

It turns out that any Bernstein component for G can be described in a canonical
way with an extended quotient. Before we prove that, we recall the parametrization
of irreducible representations of H(Ts,Ws, qs).

Let Ǧs be the complex reductive group with root datum (X∗(Ts), Rs, X∗(Ts), R
∨
s ),

it is isomorphic to
∏
i GLei(C), embedded in Ǧ = GLmd(C) as

Ǧs = ZǦ(Ľ) = ZGLmd(C)

(∏
i

GLmid(C)ei

)
.

Recall that a Kazhdan–Lusztig triple for Ǧs consists of:

• a unipotent element u =
∏
i ui ∈ Ǧs;

• a semisimple element tq ∈ Ǧs with tqut
−1
q = uqs :=

∏
i u

qi
i ;

• a representation ρq ∈ Irr(π0(ZǦs
(tq, u))) which appears in the homology of

variety of Borel subgroups of Ǧs containing {tq, u}.
Typically such a triple is considered up to Ǧs-conjugation, we denote its equivalence
class by [tq, u, ρq]Ǧs

. These equivalence classes parametrize Irr(H(Ts,Ws, qs)) in a
natural way, see [KaLu]. We denote that by

(63) [tq, u, ρq]Ǧs
7→ π(tq, u, ρq).

Recall from [ABPS5, §7] that an affine Springer parameter for Ǧs consists of:

• a unipotent element u =
∏
i ui ∈ Ǧs;

• a semisimple element t ∈ ZǦs
(u);

• a representation ρ ∈ Irr(π0(ZǦs
(t, u))) which appears in the homology of

variety of Borel subgroups of Ǧs containing {t, u}.
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Again such a triple is considered up to Ǧs-conjugacy, and then denoted [t, u, ρ]Ǧs
.

Kato [Kat] established a natural bijection between such equivalence classes and
Irr(O(Ts) oWs), say

(64) [t, u, ρ]Ǧs
7→ τ(t, u, ρ).

From [KaLu, §2.4] we get a canonical bijection between Kazhdan–Lusztig triples
and affine Springer parameters:

(65) [tq, u, ρq]Ǧs
←→ [t, u, ρ]Ǧs

.

Basically it adjusts tq in a minimal way so that it commutes with u, and then there
is only one consistent way to modify ρq to ρ.

Via Lemma 3.2 the algebra homomorphisms (50) give riso to a bijection

(66) Irr(H(Ts,Ws, qs))←→ Irr(O(Ts) oWs)).

We showed in [ABPS5, (90)] that (66) is none other than the composition of (65)
with (64) and the inverse of (63):

(67) π(tq, u, ρq)←→ τ(t, u, ρ).

Theorem 4.3. The Morita equivalence H(G)s ∼M H(Ts,Ws, qs) and (66) give rise
to a bijection

(68) Irrs(G)←→ (Ts//Ws)2

with the following properties:

(1) (68) restricts to a bijection Irrstemp(G)←→ (Ts,un//Ws)2.
(2) (68) can be obtained from its restriction to tempered representations by an-

alytic continuation, as in [ABPS1].
(3) If π ∈ Irrstemp(G) is mapped to [t, ρ] ∈ (Ts,un//Ws)2 and has cuspidal support

Wsσ ∈ Ts/Ws, then Wst is the unitary part of Wsσ, with respect to the polar
decomposition

Ts = Ts,un ×HomZ(X∗(Ts),R>0).

(4) In the notation of (3), suppose that the Springer parameter of ρ ∈ Irr(Ws,t)

is a unipotent class [u] which is distinguished in a Levi subgroup M̌ ⊂ ZǦs
(t).

Then π = IGPM (δ), where M ⊃ L is the unique standard Levi subgroup of G

corresponding to M̌ and δ ∈ Irr
[L,ω]M
temp (M) is square-integrable modulo centre.

Moreover (68) is the unique bijection with the properties (1)–(4).

Proof. The isomorphism (20) gives a bijection

(69) Irrs(G)←→ Irr(H(Ts,Ws, qs)).

Via Lemmas 3.2 and B.1 the right hand side is in bijection with

Irr(O(Ts) oWs
∼= (Ts//Ws)2.

In this way we define the map (68).
(1) follows from [ABPS5, (92) and Proposition 9.3].
(2) Consider the bijection (66) and its formulation (67). Here the representations
are tempered if and only if t ∈ Ts is unitary. Thus (67) for tempered representations
determines the bijection (66), by analytic continuation (in the parameters t and tq)
of the formula.
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The relation between Irrs(G) and Irrstemp(G) is similar, see [ABPS1, Proposition
2.1]. Hence (69) is can also be deduced from its restriction to tempered representa-
tions, with the method from [ABPS1, §4].
(3) In [Séc, Théorème 4.6] a sL-type (KL, λL) is constructed, with

eλLH(L)eλL
∼= O(Ts)⊗ EndC(Vλ).

It [SéSt2] it is shown that it admits a cover (KG, λG) with

eλGH(G)eλG
∼= H(Ts,Ws, qs)⊗ EndC(Vλ),

see also [ABPS4, §4.1]. By (20) and (23) the inclusions

eλGH(G)eλG → eµGH(G)eµG → e]λGH(G)e]λG

are Morita equivalences, of the simple form tensoring with a finite dimensional ma-
trix algebra. This means that (69) comes from a cover of a sL-type. With [BuKu,
§7] this implies that (68) translates the cuspidal support of a (π, Vπ) ∈ Irrs(G) to the

unique Wstq ∈ Ts/Ws such that eλGVπ is a subquotient of ind
H(Ts,Ws,qs)
O(Ts) (Ctq) ⊗ Vλ.

It follows from [ABPS5, (33) and Lemma 7.1] that the bijection (67) sends any

tempered irreducible subquotient of ind
H(Ts,Ws,qs)
O(Ts) (Ctq) to an irreducible O(Ts)oWs-

representation withO(Ts)-weightsWs(tq |tq|−1). The associated element of (Ts//Ws)2

is then [t = tq |tq|−1, ρ] with ρ ∈ Irr(Ws,t).
(4) By (67) the H(Ts,Ws, qs)-representation associated to [t, ρ] is π(tq, u, triv). Then
(tq, u, triv) is also a Kazhdan–Lusztig triple for H(Ts,Ws,M , qs) and by [KaLu, §7.8]

π(tq, u, triv) = indHHMπM (tq, u, triv).

By [ABPS5, Proposition 9.3] (see also [KaLu, Theorem 8.3]) πM (tq, u, triv) is essen-
tially square-integrable and tempered, that is, square-integrable modulo centre.

Since (KG, λG) is a a cover of a sL-type (KL, λL), there is a a [L, ω]M -type
(KM , λM ) which covers (KL, λL) and is covered by (KG, λG). By [ABPS5, Propo-
sition 16.1] πM (tq, u, triv) corresponds to a M -representation δ which is square-
integrable modulo centre. By [BuKu, Corollary 4.8] the bijection (69) respects
parabolic induction, so π(tq, u, triv) corresponds to IGPM (δ).
Now we check that (68) is canonical in the specified sense. By (1) and (2) it suffices
to do so for tempered representations. For π ∈ Irrstemp(G), property (3) determines
the Ws-orbit Wst. Fix a t in this orbit. By a result of Harish-Chandra [Wal, Propo-
sition III.4.1] there are a Levi subgroup M ⊂ G containing L and a square-integrable
(modulo centre) representation δ ∈ Irr(M) such that π is a subquotient of IGPM (δ).
Moreover (M, δ) is unique up to conjugation.

For t ∈ Ts,un, Ws,t is a product of symmetric groups Se and ZǦs
(t) is a product

group GLe(C). Hence the Springer correspondence for Ws,t is a bijection between
Irr(Ws,t) and unipotent classes in ZǦs

(t). A general linear group GLe(C) has a
unique distinguished unipotent class, so Irr(Ws,t) is also in canonical bijection with

the set of Ws,t-conjugacy classes of Levi subgroups M̌ ⊂ Ǧs containing ZǦs
(t).

Viewed in this light, properties (3) and (4) entail that for every pair (M̌, t) as
above there is precisely one square-integrable modulo centre δ ∈ Irr(M) such that
Ws,t is the unitary part of the cuspidal support of IGPM (δ). Thus (3) and (4) deter-
mine the (tempered) G-representation associated to [t, ρ] ∈ (Ts,un//Ws)2. �
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As a result of the work in Section 3, twisted extended quotients can also be used to
describe the spaces of irreducible representations of G]Z(G) and G]. Let us extend
κω to a two-cocycle of Stab(s), trivial on the normal subgroup Ws ×XL(ω, Vµ), by

(70) J(γ, ω)J(γ′, ω) = κω(γ, γ′)J(γγ′, ω) γ, γ′ ∈ XG(s).

Theorem 4.4. (a) Lemmas B.1 and B.2 gives rise to bijections

(Ts//Stab(s)/XL(ω, Vµ))κω → Irr
(
(O(Ts)⊗ EndC(Vµ))X

L(s) oW ]
s

)
,

(Ts//Stab(s)Xnr(L/L
])/XL(ω, Vµ))κω → Irr

(
(O(T ]s )⊗ EndC(Vµ))X

L(s) oW ]
s

)
.

(b) The geometric equivalences from 3.4 provide bijections

(Ts//Stab(s))κω → (Ts//Stab(s)/XL(ω, Vµ))κω × Irr(XL(ω, Vµ))→ Irrs(G]Z(G)),

(Ts//Stab(s)Xnr(L/L
]))κω → (Ts//S)κω × Irr(XL(ω, Vµ))→ Irrs(G]),

where S = Stab(s)Xnr(L/L
])/XL(ω, Vµ).

(c) In part (b) Irrstemp(G]Z(G)) (respectively Irrstemp(G])) corresponds to the same
extended quotient, only with Ts,un instead of Ts.

Proof. In each of the three parts the second claim follows from the first upon dividing
out the action of Xnr(L

]Z(G)/L]), like in Lemma 4.1.a
(a) In the proof of Lemma 4.2 we exhibited a bijection

(Ts//Stab(s)/XL(ω, Vµ))κω ←→ Irr
(
(O(Ts)⊗ EndC(Vµ))X

L(s)).
With Lemma B.2 we deduce a Morita equivalence

(71) (O(Ts)⊗ EndC(Vµ))X
L(s) ∼M (O(Ts)⊗ EndC(Vµ)) o (XL(s)/XL(ω, Vµ)).

In the notation of (115) this means that p := pXL(s)/XL(ω,Vµ) is a full idempotent

in the right hand side of (71), that is, the two-sided ideal it generates is the entire
algebra. Then p is also full in

(72) (O(Ts)⊗ EndC(Vµ)) o (Stab(s)/XL(ω, Vµ)),

which implies that (72) is Morita equivalent with

p
(
(O(Ts)⊗ EndC(Vµ)) o (Stab(s)/XL(ω, Vµ))

)
p ∼=

(O(Ts)⊗ EndC(Vµ))X
L(s)/XL(ω,Vµ) o (Stab(s)/XL(s)).

As a direct consequence of (18), (27) and (28),

Stab(s)/XL(s) ∼= W ]
s .

In this way we reach the algebra featuring in part (a). By the above Morita equiv-
alence, its irreducible representations are in bijection with those of (72). Apply
Lemma B.1.a to the latter algebra.
(b) All the morphisms in (58) are spectrum preserving with respect to filtrations.
In combination with the other remarks in the proof of Theorem 3.4.a this gives a
bijection

(73) Irrs(G]Z(G))→ Irr
(
(O(Ts)⊗ EndC(Vµ))X

L(s) oW ]
s

)
× [L/Hλ].

By part (a) and (62) the right hand side of (73) is in bijection with

(74) (Ts//Stab(s)/XL(ω, Vµ))κω × Irr(XL(ω, Vµ)).
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Let XL(s) act on

EndC(C[L/Hλ]) ∼= C[L/Hλ]⊗ C[L/Hλ]∗

by extension of its action on H(L). Then we have an isomorphism

(O(Ts)⊗ EndC(Vµ))X
L(s) oW ]

s ⊗ C[L/Hλ] ∼=

(O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ]))X
L(s) oW ]

s .
(75)

We note that (74) is also the space of irreducible representations of (75). In the
proof of Lemma 4.2 we encountered a bijection

(Ts//X
L(s))κω ←→ Irr

(
(O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ]))X

L(s)).
It implies a Morita equivalence

(O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ]))X
L(s) ∼M (O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ])) oXL(s).

Just as in the proof of part (a), this extends to

(O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ]))X
L(s) oW ]

s ∼M
(O(Ts)⊗ EndC(Vµ ⊗ C[L/Hλ])) o Stab(s).

(76)

Finally we apply Lemma B.1.a to the right hand side and we combine it with (76),
(75) and (73).
(c) The first bijection in part (b) obviously preserves the subspaces associated to
Ts,un. We need to show that the second bijection sends them to Irrstemp(G]Z(G)).
This is a property of the geometric equivalences in Theorem 3.4, as we will now
check.

We may and will assume that ω is unitary, or equivalently that it is tempered.
The Morita equivalence between H(G]Z(G))s and (57) is induced by an idempotent

e]λ
G]Z(G)

∈ H(G]Z(G)), see Theorem 1.2. Its construction (which starts around

(20)) shows that eventually it comes from a central idempotent in the algebra of a
profinite group, so it is a self-adjoint element. Hence, by [BHK, Theorem A] this
Morita equivalence preserves temperedness. The notion of temperedness in [BHK]
agrees with temperedness for representations of affine Hecke algebras (see page 36)
because both are based on the Hilbert algebra structure and the canonical tracial
states on these algebras.

The sequence of algebras (58) is derived from its counterpart for
H(Ts,Ws, qs)⊗ EndC(Vµ). By Theorem 4.3 that one matches tempered representa-
tions with (Ts,un//Ws)2. By Clifford theory any irreducible representation π of

(77) (H(Ts,Ws, qs)⊗ EndC(Vµ))X
L(s) oR]

s

is contained in a sum of irreducible representations π̃ of H(Ts,Ws, qs) ⊗ EndC(Vµ),
which are all in the same Stab(s)-orbit. Temperedness of π depends only on the
action of the subalgebra O(Ts) ∼= C[X∗(Ts]), and in fact can already be detected on
C[X] for any finite index sublattice X ⊂ X∗(Ts). The analogous statement for (77)
holds as well, with X = X∗(Ts/X

L(s)), and it is stable under the action of Stab(s).
Consequently π is tempered if and only if π̃ is tempered.
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These observations imply that the sequence of algebra homomorphisms (58) pre-
serves temperedness of irreducible representations, and that it maps such represen-
tations of (77) to irreducible representations of (60) with O(Ts/X

L(s))-weights in
Ts,un/X

L(s).
Now we invoke this property for every a ∈ L/Hλ

∼= Irr(XL(ω, Vµ)) and we de-
duce that the second map in part (b) has the required property with respect to
temperedness. �

We work out what Theorem 4.4 says for a single Bernstein component of G]. Let
t] = [L], σ]]G] be an inertial equivalence class for G], with t] ≺ s = [L, ω]G.

We abbreviate φω,XL(s) = {φω : γ ∈ XL(s)}. By (39) there is a unique XL(s)-
orbit

(78) φω,XL(s) ρ ⊂ Irr(C[XL(ω), κω])

such that Tt] = (T ]s × φω,XL(s)ρ)/XL(s). Then φω,XL(s)ρ determines a unique sum-

mand Ca of C[L/Hλ], namely the irreducible representation of XL(ω, Vµ) obtained
by restricting ρ. Let Vσ] ⊂ Ca ⊗C Vµ be the subspace associated to φω,XL(s)ρ, and

let Rt] be its stabilizer in R]
s. Then Rt] is also the stabilizer of t] in R]

s and

(79) Wt] = Ws oRt] ,

by [ABPS4, Lemma 2.3]. Via the formula (70) the operators J(γ, ω)|V
σ]

determine

a 2-cocycle κ′ω of the group

(80) W ′ = {(w, γ) ∈ Stab(s) : w ∈Wt]}.

Since (70) is 1 on Ws, so is κ′ω. By (19) W ′/XL(s) ∼= Wt] . As Vσ] is associated
to the single XL(s)-orbit (78), κ′ω((w, γ), (w′, γ′)) depends only on (w,w′). Thus it
determines a 2-cocycle κσ] of Wt] , which factors through Rt]

∼= Wt]/Ws.

Lemma 4.5. (a) The bijections in Theorem 4.4 restrict to

Irrt
]
(G])←→ (Tt]//Wt])κσ] ,

Irrt
]

temp(G])←→ (Tt],un//Wt])κσ] ,

where Tt],un denotes the space of unitary representations in Tt].

(b) Suppose π ∈ Irrt
]

temp(G]) corresponds to [t, ρ] and has cuspidal support

Wt](χ⊗ σ]) ∈ Tt]/Wt]. Then Wt]t is the unitary part of χ⊗ σ], with respect to
the polar decomposition

Tt] = Tt],un ×HomZ(X∗(Tt]),R>0).

Proof. (a) Recall that Irrt
]
(G]) consists of those irreducible representations that are

contained in IG
]

P ]
(χ⊗ σ]) for some χ⊗ σ] ∈ Tt] . In Theorem 1.5.b we translated IG

]

P ]

to induction between two algebras. The first one, Morita equivalent with H(L])sL ,
was

C[L/Hλ]⊗
(
O(T ]s )⊗ EndC(Vµ)

)XL(s)
.

The second algebra, Morita equivalent with H(G])s, was

C[L/Hλ]⊗
(
H(T ]s ,Ws, qs)⊗ EndC(Vµ)

)XL(s) oR]
s.
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By Theorem 1.5 Irrt
]
(G]) is in bijection with the spaces of irreducible representations

of the two Morita equivalent algebras

(81)

(
H(T ]s ,Ws, qs)⊗ EndC(CR]

s · Vσ])
)XL(s) oR]

s,(
H(T ]s ,Ws, qs)⊗ EndC(Vσ])

)XL(s) oRt] .

The constructions in Section 3 restrict to geometric equivalences between (81) and

(82)
(O(T ]s )⊗ EndC(CR]

s · Vσ]))
XL(s) oW ]

s ,

(O(T ]s )⊗ EndC(Vσ]))
XL(s) oWt] .

By Proposition 2.1.d

(83) Irr
(
(O(T ]s )⊗ EndC(Vσ]))

XL(s)) ∼= Tt] .

As explained above with (80), the 2-cocycle κω of Stab(s) reduces to the 2-cocycle
κσ] for the action of Wt] in (82). Now we apply Lemma B.1.a to (82) and we find
the first bijection. To obtain the second bijection, we use Theorem 4.4.c.
(b) For the geometric equivalence between

H(T ]s ,Ws, qs)⊗ EndC(Vσ]) and O(T ]s )⊗ EndC(Vσ]) oWs

the analogous claim about the cuspidal support is property (3) of Theorem 4.3.
Clifford theory relates the irreducible representations of these algebras to those of
(81) and (82), in a way already discussed after (77). This implies that the desired
property of the cuspidal support persists to the geometric equivalence between (81)
and (82), which underlies part (a). �

5. Relation with the local Langlands correspondence

We show how the local Langlands correspondence (LLC) for G and G] can be
reconstructed in terms of twisted extended quotients.

Let WF be the Weil group of the local non-archimedean field F . Recall that the
Langlands dual group of G = GLm(D) is Ǧ = GLmd(C). A Langlands parameter
for G is continuous group homomorphism φ : WF × SL2(C)→ Ǧ such that:

• φ|SL2(C) is a homomorphism of algebraic groups.

• φ(WF ) consists of semisimple elements.
• φ is relevant for G: if Ľ is a Levi subgroup of Ǧ which contains im(φ) and

is minimal for that property, then (the conjugacy class of) Ľ corresponds to
(the conjugacy class of) a Levi subgroup of G.

We denote the collection of Langlands parameters for G, modulo conjugation by Ǧ,
by Φ(G).

Every smooth character of G is of the form ν ◦Nrd, with ν a smooth character of
F×. Via Artin reciprocity it determines a Langlands parameter (trivial on SL2(C))

(84) ν̂ : WF → C× ∼= Z(GLmd(C)).

For any φ ∈ Φ(G), φν̂ is a well-defined element of Φ(G) because the image of ν̂ is
central in Ǧ.

Theorem 5.1. The local Langlands correspondence for G is a canonical bijection

recD,m : Irr(G)→ Φ(G)
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with the following properties:

(a) π ∈ Irr(G) is tempered if and only if recD,m(π) is bounded, that is, if

recD,m(π)(WF ) is a bounded subset of Ǧ.

(b) The L-packet Πφ(G) is the single representation rec−1
D,m(π).

(c) recD,m is equivariant for the two actions of Irr(G/G]): on Irr(G) by twisting
with smooth characters and on Φ(G) by multiplication with central Langlands
parameters as in (84).

Proof. For the bijection and part (a) see [HiSa, §11] and [ABPS3, §2]. Ultimately it
relies on the Jacquet–Langlands correspondence from [DKV, Bad].
(b) This is a direct consequence of the bijectivity.
(c) Since recD,m is determined completely by its behaviour on essentially square
integrable representations of Levi subgroups of G [ABPS3, (13)], it suffices to prove
(c) for such representations. Via the Jacquet–Langlands correspondence the issue
can be transferred to Irr(GLn(F )) with n ≤ md. For general linear groups (c) is a
well-known property of the LLC, and in fact a starting point of the construction,
confer [Hen, 1.2]. �

For s = [L, ω]G we define Φ(G)s as the image of Irrs(G) under the bijection recD,m.
Similarly we define Φ(L)sL ⊂ Φ(L).

Lemma 5.2. The LLC for G fits in a commutative diagram of canonical bijections

Irrs(G)
recD,m //

OO

��

Φ(G)s
OO

��
(Ts//Ws)2

oo // (Φ(L)sL//Ws)2

Here the bottom map comes from the LLC for IrrsL(L) and the left hand side comes
from Theorem 4.3.

(a) Suppose that [φL] ∈ Φ(L)sL and that ρ ∈ Irr(Ws,φL) has as Springer parameter
a unipotent class [u] ∈ ZǦs

(φL). Then there is a representative u such that the
right hand side sends [φL, ρ] to a Langlands parameter φ with φ|WF

= φL|WF

and φ(1, ( 1 1
0 1 )) = φL(1, ( 1 1

0 1 ))u.
(b) Conjecture 2.2 holds for Irrs(G).

Proof. Apart from the right hand side, the maps have already been established
as bijective and canonical. So there is a unique, canonical way to complete the
commutative diagram.
(a) To work out the map on the right hand side, it suffices to consider

L =
∏

i
Leii and ω =

∏
i
ωeii

such that (Li, ωi) is not isomorphic to (Lj , ωj) for i 6= j. Let φi : WF × SL2(C) →
GLmid(C) be a Langlands parameter for ωi. Then

φL =
∏

i
φeii : WF × SL2(C)→

∏
i
GLmid(C)ei

is a Langlands parameter for ω. We have Ws,φL =
∏
i Sei , where Sei is embedded in

NGLeidim(C)(GLmid(C)ei) as permutation matrices. The unipotent class

[u] = [
∏

i
ui] ∈

∏
i
GLeimid(C) ⊂ ZǦs

(φL)
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is determined by the standard Levi subgroup in which it is distinguished, say

M̌ =
∏

i,j
GLbijmid(C)cij with

∑
j
cijbij = ei.

Assume for the moment that ω is tempered. By Theorem 4.3 [ω, ρ] ∈ (Ts,un//Ws)2

corresponds to IGPM (δ), where

δ =
∏

i,j
δ
cij
ij ∈ Irr

[L,ω]M
temp (M)

is the unique square-integrable modulo centre representation such that Ws,Mω is
the unitary part of the cuspidal support of δ. By construction [ABPS3, §2] the
Langlands parameter φ of IGPM (δ) is the same as that of δ, namely φ =

∏
i,j φ

cij
ij

with φij |WF
= φ

bij
i |WF

and

φij(1, ( 1 1
0 1 )) = φi(1, ( 1 1

0 1 ))bijuij

where uij is a distinguished unipotent element in ZGLbijmid(C)(GLmid(C)bij ). Thus

φ(1, ( 1 1
0 1 )) is distinguished in M̌ and φ has the asserted shape.

The general case, where ω is not necessarily tempered, follows from the tempered
case. The reason is that all the maps in the commutative diagram (a priori except
the right hand side) can be obtained from their tempered parts by some kind of
analytic continuation, as in [ABPS1] and Theorem 4.3.
(b) The first part holds by the definition of κω (70) and the second part because our
commutative diagram is canonical.

For the third part, by Theorem 5.1.b the elements of (Ts//Ws)2 are in bijection
with the L-packets in Irrs(G). Two elements [t, ρ] and [t′, ρ′] are equal if and only
if there is a w ∈ Ws such that wt′ = t and w · ρ′ = ρ. We note also that for
every t ∈ Ts the group Ws,t = W (Rs,t) is product of symmetric groups. Hence all
irreducible representations of Ws,t are parametrized by different unipotent classes in
connected complex reductive group with maximal torus Ts and root system Rs,t. So
the condition becomes that ρ and w · ρ′ have the same unipotent class as Springer
parameter. �

Let Irrcusp(L) be the space of supercuspidal L-representations and let Φ(L)cusp

be its image in Φ(L). The Weyl group

W (G,L) = NG(L)/L ∼= NǦ(Ľ)/Ľ

acts naturally on both sets.

Theorem 5.3. Let L be a set of representatives for the conjugacy classes of Levi
subgroups of G. The maps from Lemma 5.2 combine to a commutative diagram of
canonical bijections

Irr(G)
recD,m //

OO

��

Φ(G)
OO

��⊔
L∈L

(
Irrcusp(L)//W (G,L)

)
2
oo //

⊔
L∈L

(
Φ(L)cusp//W (G,L)

)
2

Here the tempered representations correspond to the bounded Langlands parameters.
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Proof. The action of W (G,L) on L is simply by permuting some direct factors of
L, and the same for Ľ. Hence the canonical bijection Irr(L) ↔ Φ(L) is W (G,L)-
equivariant. The group Ws is defined as the stabilizer in W (G,L) of Ts = IrrsL(L),
and by the above equivariance it is also the stabilizer ΦsL(L). Consequently

(Irrcusp(L)//W (G,L))2
∼=
⊔

s=[L,ω]G
(Ts//Ws)2,

(Φ(L)cusp//W (G,L))2
∼=
⊔

s=[L,ω]G
(ΦsL(L)//Ws)2.

Now we simply take the union of the commutative diagrams of Lemma 5.2. The
characterization of temperedness and boundedness comes from Theorems 5.1.a and
4.4.c. �

To formulate the LLC for G], we need enhanced Langlands parameters. In fact
these are already present in the LLC for G, but there the enhancement can be
neglected without any problems.

Recall that a Langlands parameter for G] = GLm(D)der is a homomorphism
φ : WF×SL2(C)→ PGLmd(C) subject to the same requirements as a Langlands pa-

rameter for G. The set of such parameters modulo conjugation by Ǧ] = PGLmd(C)
is denoted Φ(G]). We note that the simply connected cover SLmd(C) of PGLmd(C)
also acts by conjugation on Langlands parameters for G].

An enhancement of φ is an irreducible representation ρ of π0(ZSLmd(C)(φ)). In

order that (φ, ρ) is relevant for G], an extra condition is needed. For this we have to
regardD as part of the data ofG], in other words, we must consider not just the inner
form G] of SLmd(F ), but even the inner twist determined by (G], D). The Hasse
invariant of D gives a character χD of Z(SLmd(C)) ∼= Z/mdZ with kernel mZ/mdZ.
Notice that, by Schur’s lemma, every enhancement ρ of φ determines a character of
Z(SLmd(C)). We define an enhanced Langlands parameter for G] = GLm(D)der as a
pair (φ, ρ) such that ρ|Z(SLmd(C)) = χD. The collection of these, modulo conjugation

by SLmd(C), is denoted Φe(G
]).

The LLC for G] [ABPS3] is a bijection

(85) Φe(G
])←→ Irr(G]) : (φ, ρ) 7→ π(φ, ρ).

such that

• if φ lifts to a Langlands parameter φ̃ for G, then π(φ, ρ) is a direct summand

of ResGG](rec−1
D,m(φ̃)),

• π(φ, ρ) is tempered if and only if φ is bounded,
• the L-packet

Πφ(G]) = {π(φ, ρ) : ρ ∈ Irr(π0(ZSLmd(C)(φ))), ρ|Z(SLmd(C)) = χD}

is canonically determined.

As Irrs(G]) is defined in terms of restriction from Irrs(G), it is a union of L-packets
for G]. With the second property of (85), it canonically determines a set Φe(G

])s

of enhanced Langlands parameters for G].
In the same way as for G, the LLC for a Levi subgroup L] = L∩G] follows from

that for L =
∏
i GLmi(D). It involves enhancements from the action of

(Ľ])sc = SLmd(C) ∩
∏

i
GLmid(C).
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Given sL = [L, ω]L, IrrsL(L]) is a union of L-packets for L]. Hence the corresponding
set Φe(G

])s of enhanced Langlands parameters is well-defined.

Lemma 5.4. The LLC for G] and the maps from Lemma 4.1, Theorem 4.4.b and
Corollary 6.7 fit in the following commutative bijective diagram:

Irrs(G]) oo //
OO

��

Φe(G
])s
OO

��

(IrrsL(L])//W ]
s )κω oo //

OO

��

(Φe(L
])sL//W ]

s )κωOO

��(
(Ts//X

L(s)Xnr(L/L
]))κω//W

]
s

)
κω
oo //

OO

��

(
(Φ(L)sL//XL(s)Xnr(L/L

]))κω//W
]
s

)
κωOO

��(
Ts//Stab(s)Xnr(L/L

])
)
κω
oo //

OO

��

(
Φ(L)sL//Stab(s)Xnr(L/L

])
)
κωOO

��(
(Ts//Ws)2//Stab(s)+Xnr(L/L

])
)
κω
oo //

(
(Φ(L)sL//Ws)2//Stab(s)+Xnr(L/L

])
)
κω

All these maps are canonical up to permutations within L-packets. In the last row
the collection of L-packets is in bijection with (Ts//Ws)2/Stab(s)+Xnr(L/L

]) and

with (Φ(L)sL//Ws)2/Stab(s)+Xnr(L/L
]).

Proof. The bijection between the first and the fourth set on the left hand side is
given by Theorem 4.4.b. Then Corollary B.4 and (76) give bijections to the third
and fifth sets on the left, as the 2-cocycle κω is by construction (70) trivial on Ws.
The bijection between the second and third sets on the left comes from Lemma 4.1.a.
By Lemma 4.1.b it is canonical up to permutations within L-packets.

The LLC for L is equivariant for permutations of the direct factors of L and for
twisting with characters of L (because the LLC for GLm(D) is so). This gives the
three lower horizontal bijections. Applying Corollary B.4 to the three lower terms
on the right hand side gives bijections between them, and shows that the two lower
squares in the diagram are canonical and commutative.

Similarly the LLC for L] is equivariant for the action of W ]
s , which leads to the

second horizontal bijection. We define the upper two maps on the right hand side
as the unique bijections that make the diagram commute. Since all the other maps
in the upper two squares are canonical up to permutations within L-packets, so are
the last two.

An L-packet for G] consists of the irreducible G]-constituents of an irreducible
G-representation. In view of Lemma 5.2, the collection of L-packets in Irrs(G]) is
canonically in bijection with (Ts//Ws)2. From (58) we can see how(

(Ts//Ws)2//Stab(s)+Xnr(L/L
])
)
κω

is constructed on the level of representations. We take an element π ∈ Irrs(G) and
transform it to an irreducible representation of O(Ts) oWs by a geometric equiv-
alence. Then we form the twisted extended quotient by Stab(s)+, using Lemmas
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B.1 and B.2, which corresponds to identifying π with π′ if they have the same re-
striction to G]Z(G), and decomposing π in irreducible G]Z(G)-subrepresentations.
Finally we divide out the action of Xnr(L

]Z(G)/L]), thus identifying the G]Z(G)-
representations with the same restriction to G]. The implies the description of the
L-packets in the lower left term of the commutative diagram, and hence also in the
lower right term. �

The bijection between the upper and the lower term on the right hand side of
Lemma 5.4 can also be obtained as follows. First apply the recipe from Lemma 5.2
(Φ(L)sL//Ws)2, then take the twisted extended quotient with respect to Stab(s)+,
and finally divide out the free action of Xnr(L

]Z(G)/L]) to reach Φe(G
])sL .

Lemma 5.5. Let t] = [L], σ]]G] be an inertial equivalence class subordinate to
s = [L, ω]G. Lemma 4.5.a and the LLC for G] and for L] provide a commutative,
bijective diagram

Irrt
]
(G]) oo //
OO

��

Φe(G
])t

]

OO

��

(Tt]//Wt])κσ]
oo // (Φe(L

])[L],σ]]
L]//Wt])κσ]

Two elements [t, ρ], [t′, ρ′] ∈ (Tt]//Wt])κσ] are mapped to G]-representations in the
same L-packet if and only if

• wt′ = w for some w ∈Wt];
• the Ws,t-representations ρ and w ·ρ′ have Springer parameters with the same

unipotent class, in the complex reductive group with maximal torus Tt], root
system Rt],t and Weyl group Wt],t.

Proof. The commutative diagram is obtained from Lemma 5.4, taking (39) into
account. To see whether [t, ρ] and [t′, ρ′] belong to the same L-packet, Lemma 5.4
says that it suffices to look at their images in (Ts//Ws)2/Stab(s)+Xnr(L/L

]).

Let t̃ ∈ Ts be a lift of t. Then Wt],t is the isotropy group of XL(s)Xnr(L/L
])(σ̃]) ∈

Tt] in W ]
s . Here σ] is a projective representation of

(XL(s)Xnr(L/L
]))t̃ = XL(ω).

With Lemma B.1 we get

σ] o ρ ∈ Irr(C[(Stab(s)Xnr(L/L
])t̃, κω]).

The intersection of (Stab(s)Xnr(L/L
])t̃ with Ws is Ws,t̃ = W (Rs,t̃). Since Ws com-

mutes with XL(s)Xnr(L/L
]), the restriction of σ]oρ to Ws,t̃ is dim(σ]) times ρ|Ws,t̃

.

We want to show that

(86) Rt],t = Rs,t̃,

although in general Wt],t is strictly larger than Ws,t̃. Both root systems are defined
in terms of zeros of Harish-Chandra µ-functions associated to roots α ∈ Rs. The
function µα (for G) is defined via intertwining operators betweeen G-representations,
see [Wal, §IV.3 and §V.2]. These remain well-defined as intertwining operators
between G]-representations, which implies that µα factors through Ts → Tt] and in
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this way gives the function µα for G]. By [Sil2, Theorem 1.6] all zeros of µα are
fixed points of the reflection sα ∈Ws. Hence µα(t) 6= 0 if sα(t̃) 6= t̃, proving (86).

It follows that [t, ρ] maps to [t̃, ρ|W (R
t],t

) in (Ts//Ws)2/Stab(s)+Xnr(L/L
]), and

similarly for [t′, ρ′]. The Stab(s)+Xnr(L/L
])-orbits of [t̃, ρ|W (R

t],t
) and [t̃′, ρ|W (R

t],t′ )

are equal if and only if

there is a w ∈Wt] such that wt′ = t and (wρ′)|W (R
t],t

) = ρ|W (R
t],t

).

By Lemma 5.2.b the last condition is equivalent to wρ′ and ρ having the same
unipotent class as Springer parameter. Because w is only determined up to Wt]t,
these unipotent classes must be considered in the complex reductive group with
maximal torus Tt] , root system Rt],t and Weyl group Wt],t. �

As before, let L be a set of representatives for the conjugacy classes of Levi
subgroups of G. Then {L] : L ∈ L} is a set of representatives for the conjugacy
classes of Levi subgroups of G].

Theorem 5.6. The maps from Lemma 5.4 combine to a commutative diagram of
bijections

Irr(G]) oo //
OO

��

Φe(G
])
OO

��⊔
L∈L

(
Irrcusp(L])//W (G], L])

)
\
oo //

OO

��

⊔
L∈L

(
Φ(L])cusp//W (G], L])

)
\OO

��⊔
L∈L

(
Irrcusp(L)//Irr(L/L])W (G,L)

)
\
oo //

⊔
L∈L

(
Φ(L)cusp//Irr(L/L

])W (G,L)
)
\

Here the family of 2-cocycles \ restricts to κω on Irr[L,ω]L(L). The tempered repre-
sentations correspond to the bounded enhanced Langlands parameters and the entire
diagram is canonical up to permutations within L-packets.

Proof. The upper square follows quickly from Lemma 5.4, in the same way as The-
orem 5.3 followed from Lemma 5.2.

Recall from Lemma 4.1 that

IrrsL(L]) is in bijection with (Ts//X
L(s)Xnr(L/L

]))κω .

Here XL(s) is the stabilizer of sL = [L, ω]L in Irr(L/L]Z(G)). A character of L/L]

which is ramified on Z(G) cannot stabilize sL, so XL(s)Xnr(L/L
]) is the stabilizer

of sL in Irr(L/L]). By Theorem 5.1 the LLC for L is bijective and Irr(L/L])-
equivariant, so XL(s)Xnr(L/L

]) is also the stabilizer of Φ(L)sL in Irr(L/L]). This
implies

(Irrcusp(L)//Irr(L/L]))\ ∼=
⊔

sL=[L,ω]L
(IrrsL(L)//XL(s)Xnr(L/L

]))κω

∼=
⊔

sL=[L,ω]L
IrrsL(L]) = Irrcusp(L]),

and similarly for Langlands parameters. These bijections are equivariant for permu-
tations of the direct factors of L, so applying (?//W (G,L))κω to all of them produces
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a commutative square as in the theorem, but with lower row⊔
L∈L

(
(Irrcusp(L)//Irr(L/L]))\//W (G,L)

)
\
←→⊔

L∈L

(
(Φ(L)cusp//Irr(L/L

]))\//W (G,L)
)
\
.

We apply Corollary B.4 to get the row in the theorem. The canonicity of the thus
obtained commutative diagram is a consequence of the analogous property in Lemma
5.4. The temperedness/boundedness correspondence follows from the properties of
the local Langlands correspondences for G,G], L and L]. �

6. Schwartz algebras

Harish–Chandra’s Schwartz algebra S(G) is a completion of the Hecke algebra
H(G). It is particularly useful for the harmonic analysis on G, see e.g. [Wal].
By definition a smooth G-representation is tempered if and only if it extends to a
S(G)-module.

On the other hand, for affine Hecke algebras like

H(X∗(Ts) oWs, qs) ∼= H(Ts,Ws, qs)

a Schwartz completion was defined and studied in [DeOp]. In this section we will
compare these two kinds of Schwartz algebras. We do so both for G and for its
derived group G]. Throughout this section we assume that s = [L, ω] with ω ∈ Irr(L)
supercuspidal and unitary (and hence tempered).

First we need to recall the precise definition of S(G). Let d be a G–invariant
metric on the (enlarged) Bruhat–Tits building B(G). Fix a special vertex x0 of
B(G). Now

dx0 : g 7→ d(gx0, x0)

is a locally constant function G→ R≥0. For any N ∈ N one defines a norm on H(G)
by

(87) νN (f) :=
∥∥(1 + dx0)Nf

∥∥
2

=
( ∫

G
(1 + dx0(g))2N |f(g)|2dµ(g)

)1/2
.

For any compact open subgroup K ⊂ G, νN becomes a norm on

H(G,K) = eKH(G)eK .

As in [Vig, §9] one defines S(G,K) as the completion of H(G,K) with respect to
the family of norms {νN : N ∈ N}. Finally one puts

S(G) =
⋃

K
S(G,K),

where the union runs over all compact open subgroups K. The definitions of S(G])
and S(G]Z(G)) are analogous.

Given an inertial equivalence class s for G, S(G)s denotes the completion ofH(G)s

in S(G). Equivalently, S(G)s is the two-sided ideal of S(G) generated by H(G)s.
The definition with ideals can clearly be applied to G] and G]Z(G). Hence the
modules of S(H)s are precisely the tempered representations in Reps(H), where
H ∈ {G,G], G]Z(G)}. Like in Bushnell–Kutzko theory, idempotents can be used to
construct smaller, Morita equivalent subalgebras of S(H)s.



THE NONCOMMUTATIVE GEOMETRY OF INNERFORMS OF p-ADIC SPECIAL LINEAR GROUPS35

Lemma 6.1. There are Morita equivalences

S(G)s ∼M e]λGS(G)e]λG
∼= EndC(C[L/Hλ])⊗ eµGS(G)eµG

S(G]Z(G))s∼M e]λGZ(G)
S(G]Z(G))e]λ

G]Z(G)

∼=
⊕

a∈[L/Hλ]

eµ
G]Z(G)

S(G]Z(G))eµ
G]Z(G)

S(G])s ∼M e]λ
G]
S(G])e]λ

G]

∼=
⊕

a∈[L/Hλ]

eµ
G]
S(G])eµ

G]
.

Proof. Recall that the analogous Morita equivalences for Hecke algebras were already
proven in [ABPS4], see (23) and Theorems 1.2 and 1.3. Let H denote any of the

groups G,G], G]Z(G). With the bimodules e]λHS(H) and S(H)e]λH we calculate

e]λHS(H)⊗S(H)s S(H)e]λH = e]λHS(H)s ⊗S(H)s S(H)se]λH
∼= e]λHS(H)se]λH = e]λHS(H)e]λH ,

S(H)e]λH ⊗e]λHS(H)e]λH
e]λHS(H) ∼= S(H)e]λHS(H)

= S(H)H(H)sS(H) = S(H)s.

This means that these bimodules implement the desired Morita equivalences.
Recall the formulas (22) for the involved idempotents. The aeµHa

−1 with a ∈
[L/Hλ] are mutually orthogonal. For H = G they are conjugate, which leads to the
isomorphism for H = G, see [ABPS4, Proposition 3.15]. For H ∈ {G], G]Z(G)} all
the aeµHa

−1 live in different Bernstein components. The desired isomorphisms are
consequence thereof, see Theorems 1.2.a and 1.3.a. �

6.1. Fourier transforms.
The comparison of the various Schwartz algebras will go via their Fourier trans-

forms. To get to grips with them, we first work them out for G. The Plancherel iso-
morphism for G [Wal] provides a description of S(G) in terms of the space Irrtemp(G)
of irreducible tempered G-representations. As a consequence of this isomorphism,
Irrtemp(G) is the support of the Plancherel measure on Irr(G). This means that the
tracial state f 7→ f(1) can be computed as an integral of tr(π(f)) over Irrtemp(G),
endowed with the Plancherel measure.

Let es ∈ H(G) be an idempotent such that H(G)esH(G) = H(G)s. It gives rise
to the following data.

• A finite set ∆G,s of pairs (P, σ), where P = MU is a standard parabolic
subgroup of G and (σ, Vσ) is an irreducible square-integrable (modulo centre)
representation of M . ∆G,s contains one element for every such pair (P, σ)

with esI
G
P (Vσ) 6= 0, considered up to G-conjugation and up to twists by

unramified unitary characters.
• For every such pair a torus

TP,σ = {σ ⊗ χ ∈ Irr(M) : χ ∈ Xunr(M)},
where Xunr(M) denotes the group of unitary unramified characters of M .
We identify TP,σ with Xunr(M)/Xnr(M,σ) via χ 7→ σ ⊗ χ.
• For every (P, σ) ∈ ∆G,s a finite group Ws,σ, namely the stabilizer of TP,σ in
Ws.
• For every w ∈WP,σ an intertwining operator

I(w, σ ⊗ χ) ∈ HomG×G
(
EndC(IGP (σ ⊗ χ)),EndC(IGP (w(σ ⊗ χ)))

)
.
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• The Fréchet algebra C∞(Xunr(M))⊗ EndC(esI
G
P (Vσ)).

• An action of WP,σ := Ws,σ nXnr(M,σ) on this algebra by

(w · f)(χ) = I(w,w−1(σ ⊗ χ))f(w−1(χ)),

where Xnr(M,σ) acts by translations on Xunr(M).

Based on [Wal], it was checked in [Sol1, Theorem 2.9] that Harish-Chandra’s Plan-
cherel isomorphism restricts to an isomorphism of Fréchet algebras

(88)
esS(G)es −→

⊕
(P,σ)∈∆G,s

(
C∞(Xunr(M))⊗ EndC(esI

G
P (Vσ))

)WP,σ

h 7→ [(P, σ, χ) 7→ IGP (σ ⊗ χ)(h)].

Let us consider an affine Hecke algebra H(W, q) based on an (extended) affine
Weyl group W and a parameter function q, as for example in [Opd]. It is assumed
among others that W = X oW0 where X is a lattice containing a root system with
a finite Weyl group W0.

We need a length function N : W → R≥0 which is “close” to the length function
of the affine Coxeter group contained in W . There are many suitable choices. In
the important case W = Zm o Sm we can take

N (xσ) = ‖x‖2 ,
and the other cases we encounter can be derived from that. The algebra H(W, q)

comes with a distinguished basis {Nw : w ∈ W}, where Nw = [w]q(w)−1/2 in the
notation of Section 1. For each N ∈ N one defines a norm on H(W, q) by

(89) pN
( ∑
w∈W

cwNw

)
= sup

w∈W
|cw|(1 +N (w))N .

Then the Schwartz algebra S(W, q) is the completion of H(W, q) with respect to the
family of norms {pN : N ∈ N}. On elementary grounds [OpSo, (130)] this family is
equivalent with the family of norms

p′N
( ∑
w∈W

cwNw

)
=
( ∑
w∈W

|cw|2(1 +N (w))2N
)1/2

.

Recall from (32) thatH(Ts,Ws, qs) is defined to be the vector spaceO(Ts)⊗H(Ws, qs)
with certain multiplication rules. The choice of a basepoint of Ts determines an
isomorphism

H(Ts,Ws, qs) ∼= H(X∗(Ts) oWs, qs),

and we use that to transfer the norms p′N to norms p′′N on H(Ts,Ws, qs). The com-
pletion with respect to the latter family of norms is a Fréchet algebra S(Ts,Ws, qs)
which is isomorphic to S(X∗(Ts) oWs, qs). The equivalence class of the norm p′′N
does not depend on the choice of a basepoint of Ts if we suppose that it belongs to
the maximal compact subtorus of Ts. Hence S(Ts,Ws, qs) is defined canonically.

AnH(Ts,Ws, qs)-module is called tempered if it extends continuously to a S(Ts,Ws, qs)-
module. It is known from [Opd] that the space

Irrtemp(H(Ts,Ws, qs)) = Irr(S(Ts,Ws, qs))

is precisely the support of the Plancherel measure on Irr(H(Ts,Ws, qs)). Here the
Plancherel measure comes from the standard trace on S(Ts,Ws, qs):

τH(θx[v]) =

{
1 if x = 0, v = 1,
0 otherwise.
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In [DeOp] the Plancherel isomorphism for S(Ts,Ws, qs) was worked out. It is built
with the following data.

• A collection ∆H,s of pairs (M, δ), where M ⊂ G is a standard Levi subgroup
containing L and (δ, Vδ) is a square-integrable (modulo centre) representation
of the parabolic subalgebra HM ⊂ H = H(Ts,Ws, qs). ∆H,s forms a set of
representatives for such pairs up to Ws-conjugation and character twists.
• For every such pair a torus

TMs,un := {t ∈ Ts,un : t(x) = 1 if x ∈ QR(M,L) ∩X∗(Ts)},
a quotient of Xunr(M)/(Xunr(M) ∩Xnr(L, ω)).
• A finite group Ws,δ, the stabilizer of δ ⊗ TMs,un in Ws, and a finite group

TMs,M = {t ∈ TMs,un : t(x) = 1 if α(x) = 1 ∀α ∈ R(M,L)}.

• For every w ∈WM,δ := Ws,δ n TMs,M an intertwining operator

I(w, δ ⊗ t) ∈ HomH×Hop
(
EndC(indHHM (δ ⊗ t)),EndC(indHHM (w(δ ⊗ t)))

)
.

• The Fréchet algebra⊕
(M,δ)∈∆H,s

C∞(TM,δ)⊗ EndC(indHHM (Vδ)).

• An action of WM,δ on this algebra by

(w · f)(t) = I(w,w−1(δ ⊗ t))f(w−1t),

where TMs,M acts on TMs,un by translations and Ws,δ by w(δ ⊗ t) = δ ⊗ w(t).

With these notations, the main result of [DeOp] states that

(90)
S(Ts,Ws, qs) −→

⊕
(M,δ)∈∆H,s

(
C∞(TM,δ ⊗ EndC(indHHM (Vδ))

)WM,δ

h 7→ [(M, δ, t) 7→ indHHM (δ ⊗ t)(h)]

is an isomorphism of Fréchet algebras.
Recall the isomorphism

eµGH(G)eµG
∼= H(Ts,Ws, qs)⊗ EndC(Vµ ⊗ CR]

s)

from (20). As tensoring with EndC(Vµ⊗CR]
s) is a Morita equivalence, it is natural to

call a module V ⊗Vµ⊗CR]
s over (20) tempered if and only if V ∈ Mod(H(Ts,Ws, qs))

is tempered.

Theorem 6.2. The isomorphism (20) extends in a unique way to an isomorphism
of Fréchet algebras

eµGS(G)eµG
∼= S(Ts,Ws, qs)⊗ EndC(Vµ ⊗ CR]

s).

Proof. The unicity is clear from the continuity and the density of the subalgebras
(20) in their Schwartz completions.

Since eµGH(G)eµG is Morita equivalent with H(G)s,

(91)
Reps(G) −→ Mod(eµGH(G)eµG)

V 7→ eµGV

is an equivalence of categories. According to [BHK, Theorem A] it restricts to a
homeomorphism between the spaces of irreducible tempered representations on both
sides, and it preserves the Plancherel measures (up to some normalization factor).
The isomorphism (20) also preserves temperedness of irreducible representations,
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because it matches the tracial states on which the Plancherel measures of both
algebras are based, namely f 7→ f(1) and τH ⊗ tr

Vµ⊗CR]s
. Consequently (91) and

(20) induce a homeomorphism

(92)
Irrstemp(G) −→ Irrtemp

(
H(Ts,Ws, qs)⊗ EndC(Vµ ⊗ CR]

s)
)

V 7→ eµGV.

From the Plancherel isomorphisms for eµGS(G)eµG (88) we see that ∆G,s contains
precisely one pair (P, σ) for every connected component of Irrtemp(G). Similarly
∆H,s is in bijection with the set of components Irrtemp(H(Ts,Ws, qs)), and this does

not change upon tensoring the algebra with EndC(Vµ⊗CR]
s). Hence we may choose

∆H,s such that

{eµGI
G
P (Vσ) : (P, σ) ∈ ∆G,s} = {indHHM (Vδ)⊗ Vµ ⊗ CR]

s : (M, δ) ∈ ∆H,s}.
Then (92) induces a bijection

Xunr(M)/Xnr(M,σ) ∼= TP,σ → TM,δ
∼= TMs,un/T

M
s,M .

It follows that Ws,σ = Ws,δ. Since TMs,un is a quotient of Xunr(M), also

TMs,M
∼= Xnr(M,σ)/(Xnr(M,σ) ∩Xnr(L, ω)).

Consider a k ∈ Xnr(M,σ) ∩ Xnr(L, ω). Then k = 1 in Xnr(L)/Xnr(L, ω) ∼= Ts, so
the H(Ts,Ws, qs)-modules

indHHM (δ ⊗ k ⊗ χ) and indHHM (δ ⊗ χ)

are the same for all χ ∈ Xnr(M). Hence

eµGI
G
P (σ ⊗ k ⊗ χ) = eµGI

G
P (σ ⊗ χ)

for all χ ∈ Xnr(M) and

I(k, σ ⊗ χ)|eµGIGP (σ⊗χ) ∈ C ideµGI
G
P (σ⊗χ).

Therefore the action of WP,σ on C∞(Xunr(M))⊗EndC(eµGI
G
P (Vσ)) is built from an

action of Xnr(M) ∩Xnr(L, ω) on Xunr(M) and an action of the quotient

WP,σ/(Xnr(M) ∩Xnr(L, ω)) ∼= WM,δ

on the Xnr(M) ∩Xnr(L, ω)-invariant elements. Now (88) becomes an isomorphism

(93) eµGS(G)eµG →
⊕

(P,σ)∈∆G,s

(
C∞(TMs,un)⊗ EndC(eµGI

G
P (Vσ))

)WP,σ .

Comparing this with (90) tensored with EndC(Vµ ⊗ CR]
s), we see that the Fourier

transforms correspond via (92). Thus we obtain an isomorphism of topological
algebras

eµGS(G)eµG → S(Ts,Ws, qs)⊗ EndC(Vµ ⊗ CR]
s)

which extends (20). �

Both sides of Theorem 6.2 are defined as the completion of a subspace with respect
to a family of (semi-)norms, namely the norms νN on eµGH(G)eµG and the norms

pN ⊗ ‖·‖EndC(Vµ⊗CR]s)
on H(Ts,Ws, qs) ⊗ EndC(Vµ ⊗ CR]

s), where ‖·‖
EndC(Vµ⊗CR]s)

denotes any norm on this algebra. Hence these families of norms are equivalent
under the isomorphisms (20) and (93).
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In fact one can also prove Theorem 6.2 comparing these norms directly, generalis-
ing [DeOp, §10]. However, that would involve many tedious computations. We feel
that the above proof is conceptually clearer.

Proposition 6.3.

(a) S(G]Z(G)) is Morita equivalent with
⊕

a∈[L/Hλ] (eµGS(G)eµG)X
G(s).

(b) There are isomorphisms of Fréchet algebras

(eµGS(G)eµG)X
G(s) ∼= (S(Ts,Ws, qs)⊗ EndC(Vµ ⊗ CR]

s))
XG(s)

∼= (S(Ts,Ws, qs)⊗ EndC(Vµ))X
L(s) oR]

s.

Proof. (a) By Lemma 6.1 it suffices to show that

(94) eµ
G]Z(G)

S(G]Z(G))eµ
G]Z(G)

∼= (eµGS(G)eµG)X
G(s).

The corresponding statement for Hecke algebras is the isomorphism

(95) (eµGH(G)eµG)X
G(s) → eµ

G]Z(G)
H(G]Z(G))eµ

G]Z(G)

from [ABPS4, Lemma 4.9 and Corollary 4.10]. The underlying map is simply the
restriction of functions f : G → C to G]Z(G). The norms defining the Schwartz
completions are νN (87) and

ν ′N (f) =

∫
G]Z(G)

(1 + dx0(g))2N |f(g)|2dµ′(g).

To see that these norms are compatible, we consider the l-th congruence subgroup
Cl ⊂ G. We write C ′l = Cl ∩ G]Z(G). For l sufficiently large, it was shown in the
proof of [ABPS4, Lemma 3.10] that

(96) H(G]Z(G), C ′l)
s ∼= (H(G,Cl)

s)X
G(s).

Hence we can normalize the Haar measures on G and G]Z(G) such that

νN (f) = ν ′N (f) for all f ∈ (eµGH(G)eµG)X
G(s) ⊂ (H(G,Cl)

s)X
G(s).

Then (95) extends continuously to an isomorphism of the Schwartz completions,
namely (94).
(b) The isomorphism from Theorem 6.2 is XG(s)-equivariant by definition of the
action of XG(s) on

H(Ts,Ws, qs)⊗ EndC(Vµ)⊗ EndC(CR]
s).

Its restriction to XG(s)-invariant elements gives the first statement of part (b). The
XG(s)-action on the above algebra preserves the tensor factors and is the natural

action on EndC(CR]
s). Knowing that, a standard argument, as in [ABPS4, Lemma

3.7], proves the second claim of part (b). �

To obtain a version of Proposition 6.3 for G], we need to involve the action α
of Xnr(G) on H(G) from (21). However, this action does not extend to S(G), for
example because a twist of a tempered representation by a non-unitary character
is no longer tempered. Fortunately, the action of the subgroup Xunr(G) of unitary
unramified characters does extend continuously to S(G), for it preserves the norms
that define the Schwartz completion.



40 A.-M. AUBERT, P. BAUM, R. PLYMEN, AND M. SOLLEVELD

In Theorem 1.2 we saw that Xnr(G) acts on H(Ts,Ws, qs)⊗ EndC(Vµ) via trans-
lations on Ts. In terms of basis elements this becomes

αγ(θx[v]⊗ h) = γ−1(x)θx[v]⊗ h, for x ∈ X∗(Ts), v ∈Ws, h ∈ EndC(Vµ).

Clearly this action stabilizes H(Ts,Ws, qs), and the action of the subgroup Xunr(G)
on that subalgebra preserves the norms νN defining the Schwartz completion. Hence
the action of Xunr(G) extends continuously to S(Ts,Ws, qs) ⊗ EndC(Vµ), and it is
still given by translations on Ts.

Theorem 6.4.

(a) S(G]) is Morita equivalent with
⊕

a∈[L/Hλ] (eµGS(G)eµG)X
G(s)Xunr(G).

(b) There are isomorphisms of Fréchet algebras

(eµGS(G)eµG)X
G(s)Xunr(G) ∼= (S(Ts,Ws, qs)⊗ EndC(Vµ ⊗ CR]

s))
XG(s)Xunr(G)

∼= (S(T ]s ,Ws, qs)⊗ EndC(Vµ))X
L(s) oR]

s.

Proof. (a) By Lemma 6.1 it suffices to show that

(97) eµ
G]
S(G])eµ

G]
∼= (eµGS(G)eµG)X

G(s)Xunr(G).

From [ABPS4, Theorem 3.17 and Lemma 4.9] we know that

(98) eµ
G]
H(G])eµ

G]
∼= (eµGH(G)eµG)X

G(s)Xnr(G).

Since Xunr(G) is Zariski-dense in Xnr(G), we may just as well replace Xnr(G) by
Xunr(G) on the right hand side of (98). Next we compare the relevant Schwartz
norms in the same way as in the proof of Proposition 6.3.a. To that end we need to
know that

H(G], C]l )
s ∼= (H(G,Cl)

s)X
G(s)Xnr(G) = (H(G,Cl)

s)X
G(s)Xnr(G),

which follows from (96) and and the proof of [ABPS4, Theorem 3.17]. These con-
siderations lead to an isomorphism between the Fréchet algebras (97).
(b) This follows from Theorem 6.2 and Proposition 6.3.b. �

6.2. Spectrum preserving morphisms.
In [Sol2] an algebra homomorphism

(99) ζ0 : C∞(Ts,un) oWs → S(Ts,Ws, qs)

with many nice properties was constructed. Notice that the left hand side is the
qs = 1 version of the right hand side. We will generalize this to the Schwartz algebras
from Theorem 6.4.

In [Sol2, Lemma 5.3.2] it was shown that there exist filtrations on C∞(Ts,un)oWs

and on S(Ts,Ws, qs) which are respected by ζ0, and with respect to which ζ0 is
spectrum preserving. The choice of such filtrations determines a bijection

Irr(ζ0) : Irr(S(Ts,Ws, qs))→ Irr(C∞(Ts,un) oWs).

However, different filtrations can produce different bijections.

Lemma 6.5. There exist filtrations on S(Ts,Ws, qs) and C∞(Ts,un)oWs with respect
to which Irr(ζ0) equals (67).
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Proof. Lusztig’s a-function (51) is also defined on Irr(H(Ts,Ws, qs)), by

a(π) = max{n : π(Hn) 6= 0},

whereHn is as in (53). According to [Lus3, Theorem 4.8.c] this can also be described
as

(100) a(π(tq, u, ρq)) = dimC(Bu),

where Bu denotes the variety of Borel subgroups of Ǧs that contain u. Define

(101) In := {h ∈ H(Ts,Ws, qs) : π(tq, u, ρq) = 0 if dimC(Bu) < n}.

Then In ⊃ Hn and

Irr(In/In+1) = {π(tq, u, ρq) : dimC(Bu) = n}.

In [ABPS5, Proposition 9.3] it was characterized when π(tq, u, ρq) is tempered,
namely when the associated element t ∈ G lies in a compact subgroup. The collec-
tion of Kazhdan–Lusztig triples (tq, u, ρq) with u and ρq fixed can be written as a
union of cosets of complex tori, see [ABPS1, §3]. With (100) it follows that the set
of tempered irreducible H(Ts,Ws, qs)-representations of a-weight n is dense in the
space {π ∈ Irr(H(Ts,Ws, qs)) : a(π) = n} (endowed with the Jacobson topology). In
particular

(102) In = {h ∈ H(Ts,Ws, qs) : π(h) = 0 if π ∈ Irr(S(Ts,Ws, qs)), a(π) < n}.

Similarly we put
(103)

Jn := {f ∈ O(Ts) oWs : τ(t, u, ρ)(f) = 0 if dimC(Bu) < n}
= {f ∈ O(Ts) oWs : τ(t, u, ρ)(f) = 0 if dimC(Bu) < n and t ∈ Ǧs is compact}.

Then Irr(Jn/Jn+1) = {τ(t, u, ρ) : dimC(Bu) = n}. Let

SIn ⊂ S(Ts,Ws, qs) and SJn ⊂ C∞(Ts,un) oWs

be the two-sided ideals generated by In and Jn. These ideals can also be described
by the conditions in (102) and the second line of (103). We claim that

(104) ζ0(SJn) ⊂ SIn.

Let (M, δ) be as in (90). By construction

ζ∗0 (indHHM (δ)) = ind
O(Ts)oWs

O(Ts)oWM
(ζ∗0,Mδ),

where ζ∗0,Mδ is obtained from δ by modifying the parameters q of the algebra HM .
More concretely:

• ζ∗0,Mδ|O(Ts) arises by replacing each O(Ts)-weight tq of δ by t = tq |tq|−1;

• ζ∗0,Mδ|C[Ws,M ] comes from the realization of Vδ as a quotient of H∗(Bu,tM̌ ).

If δ = πM (tq, u, ρq,M ), then it is a quotient of

Homπ0(ZM̌s
(tq ,u))(ρq,M , H∗(B

tq ,u

M̌s
,C)).

By [ABPS5, Lemma 8.3] its structure as a C[Ws,M ]-module is

τM (t, u, ρ)⊕ (terms τM (t, u′, ρ′) with u < u′).
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Here u′ > u means that Ou′ ) Ou, where Ou′ denotes the M̌s-conjugacy class of u′.
This condition implies

dimZM̌s
(u′) < dimZM̌s

(u) and dimBu′
M̌s

< dimBu
M̌s
.

The summands of indHHMπ(tq, u, ρq,M ) are of the form π(tq, u, ρq) where
ρq ∈ Irr(π0(ZǦs

(tq, u))) contains ρq,M . It follows that

(105) ζ∗0 (π(tq, u, ρq)) = τ(t, u, ρ)⊕ (terms τ(t, u′, ρ′) with dimBu′ < dimBu).

Let h ∈ SJn ⊂ C∞(Ts,un) oWs and suppose that dimBu < n. Then (105) shows
that

π(tq, u, ρq)(ζ0(h)) = ζ∗0 (π(tq, u, ρq))(h) = 0.

Hence ζ0(h) ∈ SIn ⊂ S(Ts,Ws, qs), which proves the claim (104). Assume now that
dimBu = n and consider the algebra homomorphism

SJn/SJn+1 → SIn/SIn+1

induced by ζ0. Then (105) shows that Irr(ζ0)(π(tq, u, ρq)) = τ(t, u, ρ). �

To extend ζ0 to the setting of this paper, we must check that it is Stab(s)+-
equivariant. As ζ0 is not even unique, we will rather check that we control the
construction so that it becomes equivariant. In [Sol2] more general algebra homo-
morphisms

(106) ζ0 ⊗ idC[Γ] : (C∞(Ts,un) oWs) o Γ→ S(Ts,Ws, qs) o Γ

are constructed. Here Γ is a finite group of particular automorphisms of S(Ts,Ws, qs),
namely those coming from automorphisms of the Dynkin diagram of Rs that preserve
qs : Rs → R>0. But in fact the setup of [Sol2] is even more general. By [Sol2,
Theorem 4.4.2.e and Lemma 4.2.3.a]

(107) ζ0 is TW0
s,un-equivariant,

for the action induced by translations on Ts,un. So in (106) we may take for Γ any
finite group consisting of diagram automorphisms and translations by subgroups of
Ts,un. In particular we can take Γ = Stab(s)+ with the actions described in Theorem
1.4 and (47). In this way (106) implies that ζ0 is Stab(s)+-equivariant. Then

ζ0 ⊗ idEndC(Vµ) : (C∞(Ts,un) oWs)⊗ EndC(Vµ)→ S(Ts,Ws, qs)⊗ EndC(Vµ)

is also equivariant and induces

ζsG]Z(G) :=
⊕

a∈[L/Hλ]

ζ0 ⊗ id :
⊕

a∈[L/Hλ]

((C∞(Ts,un) oWs)⊗ EndC(Vµ))X
L(s) oR]

s →⊕
a∈[L/Hλ]

(S(Ts,Ws, qs)⊗ EndC(Vµ))X
L(s) oR]

s.(108)

Proposition 6.6. ζs
G]Z(G)

is spectrum preserving with respect to filtrations. There

exist filtrations on the above algebras such that

Irr(ζsG]Z(G)) : Irr(S(G]Z(G))s)→ (Ts,un//Stab(s))κω

equals the inverse of the map from Theorem 4.4.
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Proof. First we check that the action of Stab(s)+ on H(Ts,Ws, qs) preserves the a-
weights of irreducible representations. Recall that π(tq, u, ρq) is a quotient of the
standard module H∗(Btq ,u,C)⊗Vµ. By construction the weights for the action of the
subalgebra O(Ts) on H∗(Btq ,u,C) are precisely the w(tq) with w ∈ Ws. Translation
by χγ ∈ TW0

s,un induces an automorphism of H(Ts,Ws, qs) which is the identity on
H(W0, qs). This implies that

(109)
χ∗γ(H∗(Btq ,u,C)) = H∗(Bχγtq ,u,C),

χ∗γ(π(tq, u, ρq)) = π(χγtq, u, ρq).

With [ABPS5, (66)] we obtain

α∗(w,γ)(π(tq, u, ρq)) = π(χ−1
γ wtqw

−1, wuw−1, ρq ◦Ad−1
w ).

Here conjugation with w takes place in Ǧs, which is possible because W (G,L) ∼=
W (Ǧs, Ľ). As dimBwuw−1

= dimBu,

a(α∗(w,γ)π) = a(π) for all π ∈ Irr(H(Ts,Ws, qs)).

Hence Stab(s)+ stabilizes the ideals In ⊂ H(Ts,Ws, qs) and SIn ⊂ S(Ts,Ws, qs).
Similarly, it stabilizes the ideals Jn ⊂ O(Ts)oWs and SJn ⊂ C∞(Ts,un)oWs. This
enables us to define ideals in the algebras from (108):

I ′n :=
⊕

a∈[L/Hλ]
(SIn ⊗ EndC(Vµ))X

L(s) oR]
s,

J ′n :=
⊕

a∈[L/Hλ]
(SJn ⊗ EndC(Vµ))X

L(s) oR]
s.

By (104) ζs
G]Z(G)

(J ′n) ⊂ I ′n. The way to obtain Irr(I ′n/I
′
n+1) from Irr(SIn/SIn+1)

is the same as from Irr(J ′n/J
′
n+1) from Irr(SJn/SJn+1), and described by Clifford

theory. From the proofs of Lemma B.2 and Theorem 4.4 we see that irreducible
representations of⊕

a∈[L/Hλ]
(S(T ]s ,Ws, qs)⊗ EndC(Vµ))X

L(s) oR]
s.

can be parametrized by triples (a, π, σ) with a ∈ [L/Hλ], π ∈ Irr(S(Ts,Ws, qs)) and
σ ∈ Irr(C[Stab(s)+

π , κπ]). Similarly

Irr
(⊕

a∈[L/Hλ]
(C∞(Ts,un) oWs ⊗ EndC(Vµ))X

L(s) oR]
s

)
can be parametrized by triples (a, π, σ) with π ∈ Irr(C∞(Ts,un) o Ws). Like in
Lemma B.1 we denote the associated representation by (a, πoσ). Then (105) shows
that

ζsG]Z(G)(a, π(tq, u, ρq) o σ) =

(a, τ(t, u, ρ) o σ)⊕ (terms (a, τ(t, u′, ρ′) o σ′) with dimBu′ < dimBu).

As in the proof of Lemma 6.5, this implies that ζs
G]Z(G)

is spectrum preserving with

respect to the filtrations (I ′n)n≥0 and (J ′n)n≥0, and that

(110) Irr(ζsG]Z(G))((a, π(tq, u, ρq) o σ) = (a, τ(t, u, ρ) o σ).

The map in Theorem 4.4.b is based on Theorem 3.4.a, in particular on (58). This
in turn relies on Lemma 3.2 and the associated bijection

Irr(H(Ts,Ws, qs)⊗ EndC(Vµ))←→ Irr(O(Ts) oWs ⊗ EndC(Vµ)).
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By (67) the latter can be identified with

π(tq, u, ρq)⊗ Vµ ←→ τ(t, u, ρ)⊗ Vµ.
Consequently (110) is the inverse of the map in Theorem 4.4.b. �

Corollary 6.7. ζs
G]Z(G)

restricts to a map

ζsG] :
⊕

a∈[L/Hλ]

ζ0 ⊗ id :
⊕

a∈[L/Hλ]

((C∞(T ]s,un) oWs)⊗ EndC(Vµ))X
L(s) oR]

s →⊕
a∈[L/Hλ]

(S(T ]s ,Ws, qs)⊗ EndC(Vµ))X
L(s) oR]

s.

With respect to the filtrations coming from those in Proposition 6.6, ζs
G]

is spectrum
preserving and

Irr(ζsG]) : Irr(S(G)s)→ (Ts,un//Stab(s)Xunr(L/L
]))κω

equals the inverse of the map in Theorem 4.4.b.

Proof. It follows from (107) that ζs
G]Z(G)

is equivariant for the action of Xunr(G) ∼=
Xunr(L/L

]) on Ts,un by translations. Hence we can restrict ζs
G]Z(G)

to the sub-

spaces of Xunr(G)-invariant elements on both sides, which gives ζs
G]

. By (109) and
(100) the a-weights of irreducible representations of H(Ts,Ws, qs) or O(Ts)oWs are
invariant under the action of Xunr(G). Therefore the ideals SIn and SJn are stabi-
lized by Xunr(G). This enables us to take Xunr(G)-invariants in the entire proof of
Proposition 6.6, which leads to the desired conclusions. �

Appendix A. Geometric equivalences

Let X be a complex affine variety and let k = O(X) be its coordinate algebra.
Equivalently, k is a unital algebra over C which is commutative, finitely generated,
and nilpotent-free. A k algebra is an algebra A over C which is a k-module (with an
evident compatibility between the algebra structure of A and the k-module structure
of A). For A a k-algebra, let Prim(A) denote its primitive ideal spectrum, that is,
the set of primitive ideals of A.

In this appendix, we will consider only k-algebras A that satisfy the following
property: the map

(111) Irr(A)→ Prim(A) : (π, Vπ) 7→ ker(π)

is a bijection. For example, this is the case if A is of finite type (that is, if A is finitely
generated as a k-module), or more generally if every irreducible A-representation has
(at most) countable dimension. For such k-algebras, we will introduce a weakening
of Morita equivalence called geometric equivalence.

The new equivalence relation preserves the primitive ideal spectrum and the peri-
odic cyclic homology. However, it permits a tearing apart of strata in the primitive
ideal space which is not allowed by Morita equivalence.

Spectrum preserving morphisms of k-algebras
Assume that B has the same property. By definition, a C-algebra homomorphism

φ : A→ B is spectrum preserving if

• for every primitive ideal I of B, the ideal φ−1(I) is contained in a unique
primitive ideal of A, say φ∗(I);
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• the resulting map φ∗ : Prim(B)→ Prim(A) is bijective.

More generally, φ : A→ B is called spectrum preserving with respect to filtrations if
there exist chains of two-sided ideals

(112) (0) = I0 ⊂ I1 · · · ⊂ In = A and (0) = J0 ⊂ J1 · · · ⊂ Jn = B

such that, for every i, φ(Ii) ⊂ Ji and the induced map φ : Ik/Ii−1 → Ji/Ji−1 is
spectrum preserving.

These data determine a bijection Prim(B)→ Prim(A) which, however, need not
be continuous.

Algebraic variation of k-structure
Denote the centre of a k-algebra A by Z(A). If A is a C-algebra, A[t, t−1] is the

C-algebra of Laurent polynomials in the indeterminate t with coefficients in A. Note
that Z(A[t, t−1]) = Z(A)[t, t−1].

Let A be a unital C-algebra, and let Ψ: k → A[t, t−1] be a unital morphism of
C-algebras. For z ∈ C×, let ev(z) denotes the ”evaluation at z” map:

ev(z) : A[t, t−1] → A∑
ajt

j 7→
∑
ajz

j .

Consider the composition ev(z) ◦ Ψ: k → Z(A), and denote the unital k-algebra so
obtained by Az. The underlying C-algebra of Az is A. Assume that for all z ∈ C×,
Az is a finite type k-algebra. Then for z, z′ ∈ C×, we will say that Az′ is obtained
from Az by an algebraic variation of k-structure.

Definition A.1. With k-fixed, geometric equivalence for k-algebras (such that (111)
is a bijection) is the equivalence relation generated by the two elementary moves:

• spectrum preserving morphisms with respect to filtrations,
• algebraic variation of k-structure.

Thus two k-algebras A, B as above are geometrically equivalent if there exists a
finite sequence

A = A0, A1, . . . , Ar = B

with each Aj a k-algebra such that (111) is bijective and for j = 0, 1, . . . , r − 1 one
of the following three possibilities is valid:

(1) Aj+1 is obtained from Aj by an algebraic variation of k-structure,
(2) there is a spectrum preserving morphism with respect to filtrations Aj →

Aj+1,
(3) there is a spectrum preserving morphism with respect to filtrations Aj+1 →

Aj .

To give a geometric equivalence relating A andB, the finite sequence of elementary
steps (including the filtrations) must be given. Once this has been done, a bijection
of the primitive ideal spectra and an isomorphism of periodic cyclic homology are
determined:

Prim(A)←→ Prim(B) and HP∗(A) ' HP∗(B).

Proposition A.2. If two unital k-algebras (such that the corresponding maps (111)
are bijective) are Morita equivalent, then they are geometrically equivalent.
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Proof. Two unital k-algebras A, B are Morita equivalent if there is an equivalence
of categories

(unital left A-modules) ∼= (unital left B-modules) .

Any such equivalence of categories is implemeted by a Morita context, i.e. by a pair
of unital bimodules (AVB,BWA) together with given isomorphisms of bimodules

α : V ⊗B W → A, β : W ⊗A V → B,

which are ”associative” in the following sense. Writing

α(v ⊗ w) = vw and β(w ⊗ v) = wv,

one requires that

(vw)v′ = v(wv′) and (wv)w′ = w(vw′) for all v, v′ ∈ V , w,w′ ∈W .

The linking algebra is defined as

M2×2(AVB,BWA) :=

(
A V
W B

)
.

Then the map (111) corresponding to M2×2(AVB,BWA) is a bijection. The inclusions

A ↪→ M2×2(AVB,BWA) and B ↪→ M2×2(AVB,BWA)
a 7→ ( a 0

0 0 ) b 7→
(

0 0
b 0

)
are spectrum preserving morphisms of k-algebras. Hence A and B are geometrically
equivalent. �

Appendix B. Extended quotients

Let Γ be a group acting on a topological space X. In [ABPS5, §2] we studied
various extended quotients of X by Γ. In this paper we need the most general
version, the twisted extended quotients.

Let \ be a given function which assigns to each x ∈ X a 2-cocycle

\(x) : Γx × Γx → C×, where Γx = {γ ∈ Γ : γx = x}.

It is assumed that \(γx) and γ∗\(x) define the same class in H2(Γx,C×), where
γ∗ : Γx → Γγx sends α to γαγ−1. Define

X̃\ := {(x, ρ) : x ∈ X, ρ ∈ IrrC[Γx, \(x)]}.

We require, for every (γ, x) ∈ Γ×X, a definite algebra isomorphism

φγ,x : C[Γx, \(x)]→ C[Γγx, \(γx)]

such that:

• φγ,x is inner if γx = x;
• φγ′,γx ◦ φγ,x = φγ′γ,x for all γ′, γ ∈ Γ, x ∈ X.

We call these maps connecting homomorphisms, because they are reminiscent of a

connection on a vector bundle. Then we can define a Γ-action on X̃\ by

γ · (x, ρ) = (γx, ρ ◦ φ−1
γ,x).

We form the twisted extended quotient

(X//Γ)\ := X̃\/Γ.
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We note that this reduces to the extended quotient of the second kind (X//Γ)2 from
[ABPS5, §2] if \(x) is trivial for all x ∈ X and φγ,x is conjugation by γ.

Such twisted extended quotients typically arise in the following situation. Let A
be a C-algebra such that all irreducible A-modules have countable dimension over
C. Let Γ be a group acting on A by automorphisms and form the crossed product
Ao Γ.

Let X = Irr(A). Now Γ acts on Irr(A) and we get \ as follows. Given x ∈ Irr(A)
choose an irreducible representation (πx, Vx) whose isomorphism class is x. For each
γ ∈ Γ consider πx twisted by γ:

γ · πx : a 7→ πx(γ−1aγ).

Then γ · x is defined as the isomorphism class of γ · πx. Since γ · πx is equivalent to
πγx, there exists a nonzero intertwining operator

(113) Tγ,x ∈ HomA(γ · πx, πγx).

By Schur’s lemma (which is applicable because dimVx is countable) Tγ,x is unique
up to scalars, but in general there is no preferred choice. For γ, γ′ ∈ Γx there exists
a unique c ∈ C× such that

Tγ,x ◦ Tγ′,x = cTγγ′,x.

We define the 2-cocycle by

\(x)(γ, γ′) = c.

Let Nγ,x with γ ∈ Γx be the standard basis of C[Γx, \(x)]. The algebra homomor-
phism φγ,x is essentially conjugation by Tγ,x, but we must be careful if some of the
Tγ coincide. The precise definition is

(114) φγ,x(Nγ′,x) = λNγγ′γ−1,γx if Tγ,xTγ′,xT
−1
γ,x = λTγγ′γ−1,γx, λ ∈ C×.

Notice that (114) does not depend on the choice of Tγ,x.
Suppose that Γx is finite and (τ, Vτ ) ∈ Irr(C[Γx, \(x)]). Then Vx ⊗ V ∗τ is an

irreducible A o Γx-module, in a way which depends on the choice of intertwining
operators Tγ,x.

Lemma B.1. [ABPS5, Lemma 2.3]
Let A and Γ be as above and assume that the action of Γ on Irr(A) has finite isotropy
groups.

(a) There is a bijection

(Irr(A)//Γ)\ ←→ Irr(Ao Γ)

(πx, τ) 7→ πx o τ := IndAoΓ
AoΓx

(Vx ⊗ V ∗τ ).

(b) If all irreducible A-modules are one-dimensional, then part (a) becomes a natural
bijection

(Irr(A)//Γ)2 ←→ Irr(Ao Γ).

Via the following result twisted extended quotients also arise from algebras of
invariants.

Lemma B.2. Let Γ be a finite group acting on a C-algebra A. There is a bijection

{V ∈ Irr(Ao Γ) : V Γ 6= 0} ←→ Irr(AΓ)
V 7→ V Γ.
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If all elements of Irr(A) have countable dimension, it becomes

{(πx, τ) ∈ (Irr(A)//Γ)\ : HomΓx(Vτ , Vx) 6= 0} ←→ Irr(AΓ)
(πx, τ) 7→ HomΓx(Vτ , Vx).

Proof. Consider the idempotent

(115) pΓ = |Γ|−1
∑

γ∈Γ
γ ∈ C[Γ].

It is well-known and easily shown that

AΓ ∼= pΓ(Ao Γ)pΓ

and that the right hand side is Morita equivalent with the two-sided ideal

I = (Ao Γ)pΓ(Ao Γ) ⊂ Ao Γ.

The Morita equivalence sends a module V over the latter algebra to

pΓ(Ao Γ)⊗(AoΓ)pΓ(AoΓ) V = V Γ.

As I is a two-sided ideal,

Irr(I) = {V ∈ Irr(Ao Γ) : I · V 6= 0} = {V ∈ Irr(Ao Γ) : pΓV = V Γ 6= 0}
This gives the first bijection. From Lemma B.1.a we know that every such V is of
the form πx o τ . With Frobenius reciprocity we calculate

(πx o τ)Γ =
(
IndAoΓ

AoΓx
(Vx ⊗ V ∗τ )

)Γ ∼= (Vx ⊗ V ∗τ )Γx = HomΓx(Vτ , Vx).

Now Lemma B.1.a and the first bijection give the second. �

Let A be a commutative C-algebra all whose irreducible representations are of
countable dimension over C. Then Irr(A) consists of characters of A and is a T1-
space. Typical examples are A = C0(X) (with X locally compact Hausdorff), A =
C∞(X) (with X a smooth manifold) and A = O(X) (with X an algebraic variety).

As a kind of converse to Lemmas B.1 and B.2, we show that every twisted ex-
tended quotient of Irr(A) appears as the space of irreducible representations of some
algebras. With small modifications, the argument also works for smooth manifolds
and algebraic varieties.

Let Γ be a group acting on A by algebra automorphisms, such that Γx is finite
for every x ∈ Irr(A). Recall that every 2-cocycle \ of Γ arises from a projective
Γ-representation (µ, Vµ) by

µ(γ)µ(γ′) = \(γ, γ′)µ(γ, γ′).

Let Γ act on A⊗ EndC(Vµ) by

γ · (a⊗ h) = γ(a)⊗ µ(γ)hµ(γ)−1.

Lemma B.3. There are bijections

Irr((A⊗ EndC(Vµ)) o Γ) ←→ (Irr(A)//Γ)\,
Irr((A⊗ EndC(Vµ))Γ) ←→ {[x, ρ] ∈ (X//Γ)\ : ρ appears in Vµ}.

Proof. We can identify Irr(A ⊗ EndC(Vµ)) with {Cx ⊗ Vµ : x ∈ Irr(A)}. It follows
directly from (113) that we can take Tγ,x = µ(γ) for all γ ∈ Γ and x ∈ Irr(A). Thus
the first bijection is an instance of Lemma B.1.a.

Let x ∈ Irr(A) and (τ, Vτ ) ∈ Irr(C[Γx, \]). Then

HomΓx(τ,Cx ⊗ Vµ) = HomΓx(τ, Vµ),
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and this is nonzero if and only if τ appears in Vµ. Now an application of Lemma
B.2 proves the second bijection. �

Corollary B.4. In the above setting, suppose that Γ = Γ1 o Γ2 is a semidirect
product. Then there is a canonical bijection

(Irr(A)//Γ)\ ←→ ((Irr(A)//Γ1)\//Γ2)\.

Proof. The bijection is obtained from Lemma B.3 and

(A⊗ EndC(Vµ)) o Γ = ((A⊗ EndC(Vµ)) o Γ1) o Γ2

It is canonical because the same 2-cocycle is used on both sides. �
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[Séc] V. Sécherre, “Représentations lisses de GLm(D) III: types simples”, Ann. Scient. Éc. Norm.
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