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Abstract. Let H be any reductive p-adic group. We introduce a notion of cusp-
idality for enhanced Langlands parameters for H, which conjecturally puts super-
cuspidal H-representations in bijection with such L-parameters. We also define
a cuspidal support map and Bernstein components for enhanced L-parameters,
in analogy with Bernstein’s theory of representations of p-adic groups. We check
that for several well-known reductive groups these analogies are actually precise.

Furthermore we reveal a new structure in the space of enhanced L-parameters
for H, that of a disjoint union of twisted extended quotients. This is an analogue
of the ABPS conjecture (about irreducible H-representations) on the Galois side
of the local Langlands correspondence. Only, on the Galois side it is no longer
conjectural. These results will be useful to reduce the problem of finding a local
Langlands correspondence for H-representations to the corresponding problem for
supercuspidal representations of Levi subgroups of H.

The main machinery behind this comes from perverse sheaves on algebraic
groups. We extend Lusztig’s generalized Springer correspondence to disconnected
complex reductive groups G. It provides a bijection between, on the one hand,
pairs consisting of a unipotent element u in G and an irreducible representation
of the component group of the centralizer of u in G, and, on the other hand,
irreducible representations of a set of twisted group algebras of certain finite
groups. Each of these twisted group algebras contains the group algebra of a
Weyl group, which comes from the neutral component of G.

In 2025 an erratum was added, to repair Theorem 3.1.a.
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Introduction

As the title suggests, this paper consists of two parts. The first part is purely in
complex algebraic geometry, and is accessible without any knowledge of the Lang-
lands program or p-adic groups. We start with discussing the second part though,
which is an application of and a motivation for the first part.

The local Langlands correspondence (LLC) predicts a relation between two rather
different kinds of objects: on the one hand irreducible representations of reductive
groups over a local field F , on the other hand some sort of representations of the
Weil–Deligne group of F . According to the original setup [Bor, Lan], it should be
possible to associate to every L-parameter a finite packet of irreducible admissible
representations. Later this was improved by enhancing L-parameters [Lus1, KaLu],
and the modern interpretation [ABPS6, Vog] says that the LLC should be a bijection
(when formulated appropriately).

We consider only non-archimedean local fields F , and we speak of the Galois side
versus the p-adic side of the LLC. The conjectural bijectivity makes it possible to
transfer many notions and ideas from on side of the LLC to the other. Indeed,
a main goal of this paper is to introduce an analogue, on the Galois side, of the
Bernstein theory [BeDe] for smooth representations of reductive p-adic groups.

Bernstein’s starting point is the notion of a supercuspidal representation. For a
long time it has been unclear how to translate this to the Galois side. In [Mou, Def.
4.12] the second author discovered the (probably) correct notion for split reductive
p-adic groups, which we generalize here.

For maximal generality, we adhere to the setup for L-parameters from [Art2].
Let WF be the Weil group of F , let H be a connected reductive group over F
and let LH = H∨ ⋊ WF be its dual L-group. Let H∨

ad be the adjoint group of
H∨, and let H∨

sc be the simply connected cover of the derived group of H∨
ad. Let

ϕ : WF × SL2(C)→ LH be an L-parameter, let ZH∨
ad
(ϕ(WF )) be the centralizer of

ϕ(WF ) in H∨
ad and let

G = Z1
H∨

sc
(ϕ(WF ))

be its inverse image in H∨
sc. To ϕ we associate the finite group Sϕ := π0(Z

1
H∨

sc
(ϕ)),

where Z1 is again defined via H∨
ad. We call any irreducible representation of Sϕ

an enhancement of ϕ . The group Sϕ coincides with the group considered by both
Arthur in [Art2] and Kaletha in [Kal, §4.6]. A remarkable fact is that the group Sϕ
is isomorphic to the group AG(uϕ) := π0(ZG(uϕ)), where uϕ := ϕ(1, ( 1 1

0 1 )).
We propose (see Definition 6.9) to call an enhanced L-parameter (ϕ, ρ) for H

cuspidal if uϕ and ρ, considered as data for the complex reductive group G, form
a cuspidal pair. By definition this means that the restriction of ρ from AG(u) =
π0(ZG(u)) to AG◦(u) is a direct sum of cuspidal representations in Lusztig’s sense
[Lus2]. Intuitively, it says that ρ or ρ|AG◦ (u) cannot be obtained (via an appropriate
notion of parabolic induction) from any pair (u′, ρ′) that can arise from a proper Levi
subgroup of G◦. We emphasize that it is essential to use L-parameters enhanced with
a representation of a suitable component group, for cuspidality cannot be detected
from the L-parameter alone.

Let Irrcusp(H) be the set of supercuspidal H-representations (up to isomorphism)
and let Φcusp(H) be the set of H∨-conjugacy classes of cuspidal L-parameters for



GENERALIZATIONS OF THE SPRINGER CORRESPONDENCE AND CUSPIDAL LANGLANDS PARAMETERS3

H. It is known that in many cases such cuspidal L-parameters do indeed param-
etrize supercuspidal representations, and that moreover there is a nice bijection
Irrcusp(H)→ Φcusp(H).

We call the enhanced L-parameters (ϕ, ρ) such that ϕ restricts trivially to the
inertia group IF unipotent. A representation π of H is said to be unipotent (or
sometimes to have unipotent reduction) if for some parahoric subgroup P of H,
and the inflation σ to P of some unipotent cuspidal representation of its reductive
quotient, the space HomP(σ, π) is nonzero. WhenH is simple of adjoint type, Lusztig
has proved in [Lus3, Lus4] that the H∨-conjugacy classes of unipotent enhanced L-
parameters are in bijection with the equivalence classes of unipotent irreducible
representations of H. Under Lusztig’s bijection the unipotent cuspidal enhanced
L-parameters correspond to the unipotent supercuspidal irreducible representations
of H.

When (ϕ, ρ) is a unipotent enhanced L-parameter, the group G coincides with
the group Z1

H∨
sc
(ϕ(Frob)). In contrast, for (ϕ, ρ) arbitrary, the group G is usually a

proper subgroup of Z1
H∨

sc
(ϕ(Frob)).

Based on the notion of cuspidality that we have defined, we construct a cus-
pidal support map for L-parameters (Definition 7.7). It assigns to every enhanced
L-parameter for H a Levi subgroup L ⊂ H and a cuspidal L-parameter for L, unique
up to conjugation. We conjecture that this map is a precise analogue of Bernstein’s
cuspidal support map for irreducible H-representations, in the sense that these cus-
pidal support maps commute with the respective local Langlands correspondences
(assuming that these exist of course).

A result for p-adic groups which has already been transferred to the Galois side
is the Langlands classification [SiZi]. On the p-adic side it reduces Irr(H) to the
tempered duals of Levi subgroups of H, while on the Galois side it reduces general
(enhanced) L-parameters to bounded L-parameters for Levi subgroups. We show
(Lemma 7.11) that our cuspidal support map factors through through the Langlands
classification on the Galois side, just like Bernstein’s cuspidal support map on the
p-adic side.

Recall that a crucial role in the Bernstein decomposition is played by inertial
equivalence classes of (super)cuspidal pairs for H. These consist of a Levi sub-
group L ⊂ H and a supercuspidal representation thereof, up to equivalence by
H-conjugation and twists by unramified characters. Since the LLC for unramified
characters is known, we can easily translate this to a notion of inertial equivalence
classes of enhanced L-parameters (Definition 8.1). Using the cuspidal support map,
we can also partition the set of enhanced L-parameters Φe(H) into countably many

Bernstein components Φe(H)s
∨
, parametrized by the inertial equivalence classes s∨,

see (115).
Let L ⊂ H be a Levi subgroup, and let

W (H,L) = NH(L)/L

be its ”Weyl” group. In [ABPS6] it was shown to be naturally isomorphic to
NH∨(L∨ ⋊WF )/L∨, so it acts on both Irrcusp(L) and Φcusp(L).

Our main result provides a complete description of the space of enhanced L-
parameters Φe(H) in terms of cuspidal L-parameters for Levi subgroups, and the
associated Weyl groups. It discovers a new structure in Φe(H), that of a union of
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extended quotients. It improves on both the Langlands classification and the theory
of the Bernstein centre (on the Galois side of the LLC).

Fix a character ζH of Z(H∨
sc) whose restriction to Z(H∨

sc)
WF corresponds via the

Kottwitz isomorphism to the class of H as an inner twist of its quasi-split inner
form. We indicate the subset of enhanced L-parameters (ϕ, ρ) such that ρ extends
ζH with a subscript ζH. This ζH only plays a role when Z(H∨

sc) is not fixed by WF ,
in particular it is redundant for inner twists of split groups.

Theorem 1. (See Theorem 9.3)
Let Lev(H) be a set of representatives for the conjugacy classes of Levi subgroups of
H. There exists a bijection

Φe,ζH(H) ←→
⊔

L∈Lev(H)

(
Φcusp,ζH(L)//W (H,L)

)
κ
.

Here (·//·)κ denotes a twisted extended quotient, as defined in (13). The bijection
is not entirely canonical, but we provide a sharp bound on the non-canonicity. We
note that the bijection is not based on the earlier cuspidal support map, but rather
on a modification thereof, which preserves boundedness of L-parameters.

We expect that Theorem 1 will turn out to be an analogue of the ABPS conjecture
[ABPS6] on the Galois side of the LLC. To phrase this precisely in general, we need
yet another ingredient.

Conjecture 2. Let H be a connected reductive group over a local non-archimedean
field, and let Irr(H) denote the set of its irreducible smooth representations. There
exists a commutative bijective diagram

Irr(H) oo //
OO

��

Φe,ζH(H)OO

��⊔
L∈Lev(H)

(
Irrcusp(L)//W (H,L)

)
κ
oo //

⊔
L∈Lev(H)

(
Φcusp,ζH(L)//W (H,L)

)
κ

with the following maps:

• The right hand side is Theorem 1.
• The upper horizontal map is a local Langlands correspondence for H.
• The lower horizontal map is obtained from local Langlands correspondences
for Irrcusp(L) by applying (·//W (H,L))κ.
• The left hand side is the bijection in the ABPS conjecture [ABPS6, §2].

With this conjecture one can reduce the problem of finding a LLC for H to that
of finding local Langlands correspondences for supercuspidal representations of its
Levi subgroups. Conjecture 2 is currently known in the following cases:

• inner forms of GLn(F ) [ABPS5, Theorem 5.3],
• inner forms of SLn(F ) [ABPS5, Theorem 5.6],
• split classical groups [Mou, §5.3],
• principal series representations of split groups [ABPS4, §16].

In [AMS], we extensively use the results of the present paper in order to construct
(twisted) graded Hecke algebrasH based on a (possibly disconnected) complex reduc-
tive group G and a cuspidal local system L on a unipotent orbit of a Levi subgroup
M of G, and to develop their representation theory. The algebras H generalize the
graded Hecke algebras defined and investigated by Lusztig for connected G.
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Now we come to the main technique behind the above: generalizations of the
Springer correspondence. Let G◦ be a connected complex reductive group with a
maximal torus T and Weyl group W (G◦, T ). Recall that the original Springer cor-
respondence [Spr] is a bijection between the irreducible representations of W (G◦, T )
and G◦-conjugacy classes of pairs (u, η), where u ∈ G◦ is unipotent and η is an
irreducible representation of AG◦(u) = π0(ZG◦(u)) which appears in the homology
of the variety of Borel subgroups of G◦ containing u.

Lusztig [Lus2] generalized this to a setup which includes all pairs (u, η) with
u ∈ G◦ unipotent and η ∈ Irr(AG◦(u)). On the other side of the correspondence he
replaced Irr(W (G◦, T )) by a disjoint union ⊔t◦Irr(Wt◦), where t◦ = [L, v, ϵ]G◦ runs
through cuspidal pairs (v, ϵ) for Levi subgroups L of G◦, and Wt◦ =W (G◦, L) is the
Weyl group associated to t◦.

More precisely, Lusztig first attaches to (u, η) a cuspidal support t◦ = ΨG◦(u, η),
and then he constructs a bijection Σt◦ between Ψ−1

G◦(t◦) and Irr(Wt◦). In Section 2
we recall these constructions in more detail, and we prove:

Theorem 3. The maps ΨG◦ and Σt◦ are equivariant with respect to algebraic auto-
morphisms of the group G◦.

Given a Langlands parameter ϕ for H, we would like to apply this machinery
to G = Z1

H∨
sc
(ϕ(WF )). However, we immediately run into the problem that this

complex reductive group is usually not connected. Thus we need a generalization
of Lusztig’s correspondence to disconnected reductive groups. Although there exist
generalizations of the Springer correspondence in various directions [AcHe, AHJR,
AcSa, Lus2, Lus5, LuSp, Sor], this particular issue has not yet been addressed in
the literature.

We would like to have a version which transforms every pair (u, η) for G into an
irreducible representation of some Weyl group. But this turns out to be impossible!
The problem is illustrated by Example 3.2: we have to use twisted group algebras
of groups Wt which are not necessarily Weyl groups.

When G is disconnected, we define the cuspidal support map by

ΨG(u, η) = ΨG◦(u, η◦)/G-conjugacy,

where η◦ is any constituent of Res
AG(u)
AG◦ (u)η. This is well-defined by the Ad(G)-

equivariance of ΨG◦ from Theorem 3.
For a cuspidal support t = [L, v, ϵ]G (where L is a Levi subgroup of G◦), we put

Wt = NG(L, v, ϵ)/L and t◦ = [L, v, ϵ]G◦ .

Then Wt contains Wt◦ =W (G◦, L) as a normal subgroup.

Theorem 4. (See Theorem 4.7 and Proposition 4.5)
Let t = [L, v, ϵ]G be a cuspidal support for G. There exist:

• a 2-cocycle ♮t : Wt/Wt◦ ×Wt/Wt◦ → C×,
• a twisted group algebra C[Wt, ♮t],
• a bijection Ψ−1

G (t)→ Irr(C[Wt, ♮t]) which extends [Lus2].

Moreover the composition of the bijection with Res
C[Wt,♮t]
C[Wt◦ ]

is canonical.

Of course the proof of Theorem 4 starts with Lusztig’s generalized Springer cor-
respondence for G◦. Ultimately it involves a substantial part of the techniques and
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objects from [Lus2], in particular we consider similar varieties and sheafs. In Sec-
tion 3 we provide an expression for the 2-cocycle ♮t, derived from the cuspidal case
L = G◦.

Yet ΨG and Theorem 4 still do not suffice for our plans with Langlands parame-
ters. Namely, suppose that (ϕ, ρ) is an enhanced L-parameter for H and apply ΨG

with G = Z1
H∨

sc
(ϕ(WF )) and (u, η) =

(
ϕ(1, ( 1 1

0 1 )), ρ
)
. We end up with t = [L, v, ϵ]G,

where L is a Levi subgroup of G◦. But the cuspidal support map for L-parameters
should produce an enhanced L-parameter for a Levi subgroup L of H, and that
would involve a possibly disconnected group Z1

L∨
sc
(ϕ(WF )) instead of L.

To resolve this problem, we consider quasi-Levi subgroups of G. These are groups
of the form M = ZG(Z(L)

◦), where L ⊂ G◦ is a Levi subgroup (and hence M◦ =
L). With these one can define a quasi-cuspidal support, a triple (M,v, qϵ) with

v ∈ M◦ unipotent and qϵ ∈ Irr(AM (v)) such that Res
AM (v)
AM◦ (v)qϵ is a sum of cuspidal

representations. The cuspidal support map ΨG can be adjusted to a canonical quasi-
cuspidal support map qΨG, see (65). It is this map that gives us the cuspidal support
of enhanced L-parameters.

To a quasi-cuspidal support qt = [M,v, qϵ]G we associate the group Wqt =
NG(M, v, qϵ)/M , which (again) contains Wt◦ = NG◦(M◦)/M◦.

Theorem 5. (See Theorem 5.5 and Lemma 5.4)
Theorem 4 also holds with quasi-Levi subgroups and with the quasi-cuspidal support
qt instead of t. It gives a bijection qΨ−1

G (qt)→ Irr(C[Wqt, κqt]) which is canonical in
the same degree as for t.

The derivation of Theorem 5 from Theorem 4 relies to a large extent on (elemen-
tary) results about twisted group algebras, which we put in Section 1. The bijection
from Theorem 5 is extensively used in Section 9, for Theorem 1.

Acknowledgements. The authors thank Anthony Henderson for pointing out a
mistake in an earlier version, and the referee, for his extremely thorough and helpful
report.

1. Twisted group algebras and normal subgroups

Throughout this section Γ is a finite group and K is an algebraically closed field
whose characteristic does not divide the order of Γ. Suppose that ♮ : Γ × Γ → K×

is a 2-cocycle, that is,

(1) ♮(γ1, γ2γ3)♮(γ2, γ3) = ♮(γ1, γ2)♮(γ1γ2, γ3) ∀γ1, γ2, γ3 ∈ Γ.

The ♮-twisted group algebra of Γ is defined to be the K-vector space K[Γ, ♮] with
basis {Tγ : γ ∈ Γ} and multiplication rules

(2) TγTγ′ = ♮(γ, γ′)Tγγ′ γ, γ′ ∈ Γ.

Its representations can be considered as projective Γ-representations. Schur showed
(see [CuRe, Theorem 53.7]) that there exists a finite central extension Γ̃ of Γ, such
that

• char(K) does not divide |Γ̃|,
• every irreducible projective Γ-representation over K lifts to an irreducible
K-linear representation of Γ̃.
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ThenK[Γ, ♮] is a direct summand ofK[Γ̃], namely the image of a minimal idempotent

in K[ker(Γ̃ → Γ)]. The condition on char(K) ensures that K[Γ̃] is semisimple, so
K[Γ, ♮] is also semisimple.

Let N be a normal subgroup of Γ and (π, Vπ) an irreducible representation of
N over K. We abbreviate this to π ∈ IrrK(N). We want to analyse the set of
irreducible Γ-representations whose restriction to N contains π.

More generally, suppose that ♮ is a 2-cocycle of Γ/N . We identify it with a 2-
cocycle Γ × Γ → K× that factors through (Γ/N)2. We also want to analyse the
irreducible representations of K[Γ, ♮] that contain π.

For γ ∈ Γ we define γ · π ∈ IrrK(N) by

(3) (γ · π)(n) = π(γ−1nγ).

This determines an action of Γ and of Γ/N on Irr(N). Let Γπ be the isotropy group
of π in Γ. For every γ ∈ Γπ we choose a Iγ = Iγπ ∈ AutK(Vπ) such that

(4) Iγ ◦ π(γ−1nγ) = π(n) ◦ Iγ ∀n ∈ N.

Thus Iγ ∈ HomN (γ ·π, π). Given another γ′ ∈ Γ, we can regard Iγ also as an element

of HomN (γ′ ·γ ·π, γ′ ·π), and then it can be composed with Iγ
′ ∈ HomN (γ′ ·π, π). By

Schur’s lemma all these maps are unique up to scalars, so there exists a κπ(γ, γ
′) ∈

K× with

(5) Iγγ
′
= κπ(γ, γ

′)Iγ ◦ Iγ′
.

On comparing this with (1), one sees that κπ : Γπ×Γπ → K× is a 2-cocycle. Notice
that the algebra K[Γπ, κ

−1
π ] acts on Vπ by Tγ 7→ Iγ . Let [Γπ/N ] ⊂ Γπ be a set of

representatives for Γπ/N . We may pick the Iγ such that

(6) I γ̃n = I γ̃ ◦ π(n) ∀γ̃ ∈ [Γπ/N ], n ∈ N.

It follows from (4) that Inγ̃ = π(n) ◦ I γ̃ and that κπ factors as

κπ : Γπ × Γπ → Γπ/N × Γπ/N → K×

Let ♮ : Γ/N × Γ/N → K× be a 2-cocycle. Thus we can construct the twisted group
algebras K[Γ, ♮] and K[Γπ/N, ♮κπ]. To avoid confusion we denote the standard basis
elements of K[Γ, ♮] by Sγ .

Proposition 1.1. Let (τ,M) be a representation of K[Γπ/N, ♮κπ].

(a) The algebra K[Γπ, ♮] acts on M ⊗K Vπ by

Sγ(m⊗ v) = τ(TγN )m⊗ Iγ(v) h ∈ K[Γπ/N, ♮κπ], v ∈ Vπ.

(b) The K-linear map

T : ind
K[Γπ ,♮]
K[N ] (Vπ) → K[Γπ/N, ♮κπ]⊗K Vπ
Sγ̃ ⊗ v 7→ Tγ̃N ⊗ I γ̃(v) γ̃ ∈ [Γ/N ]

is an isomorphism of K[Γπ, ♮]-representations.

(c) The map M 7→ ind
K[Γ,♮]
K[Γπ ,♮]

(T−1(M ⊗Vπ)) is an equivalence between the following

categories:
• subrepresentations of the left regular representation of K[Γπ/N, ♮κπ];

• K[Γ, ♮]-subrepresentations of ind
K[Γ,♮]
K[N ] (Vπ).
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(d) We write τ ⋉ π := ind
K[Γ,♮]
K[Γπ ]

(M ⊗ Vπ). For any representation V of K[Γ, ♮] there

is an isomorphism

HomK[Γ,♮](τ ⋉ π, V ) ∼= HomK[Γπ/N,♮κπ ](τ,HomN (π, V )).

Proof. (a) By (4) and (5)

Sγ(Sγ′(m⊗ v)) = Sγ(τ(Tγ′N )m⊗ Iγ′
(v))

= τ(TγNTγ′N )m⊗ IγN ◦ Iγ′
(v)

= (♮κπ)(γ, γ
′)τ(Tγγ′N )m⊗ κπ(γ, γ′)−1Iγγ

′
(v)

= ♮(γ, γ′)τ(Tγγ′N )m⊗ Iγγ′
(v)

= ♮(γ, γ′)Sγγ′(m⊗ v) = (SγSγ′)(m⊗ v).

(b) Since every I γ̃ : Vπ → Vπ is bijective, so is T . For any n ∈ N :

(7) T (Sn(Sγ̃ ⊗ v)) = T (Sγ̃ ⊗ π(γ̃−1nγ̃)v) = Tγ̃N ⊗ I γ̃ ◦ π(γ̃−1nγ̃)(v) =

Tγ̃N ⊗ π(n)I γ̃(v) = Sn(Tγ̃N ⊗ I γ̃(v)) = Sn(T (Sγ̃ ⊗ v)),

so T is N -equivariant. Let γ1 ∈ Γ and write γ1γ̃ = nγ̃2 with n ∈ N and γ̃2 ∈ [Γ/N ].
By (7)

T (Sγ1(Sγ̃ ⊗ v)) = T (♮(γ1, γ̃)SnSγ̃2 ⊗ v) = ♮(γ1, γ̃)SnT (Sγ̃2 ⊗ v)
= ♮(γ1, γ̃)Sn(Tγ̃2N ⊗ I γ̃2(v)) = ♮(γ1, γ̃)Tγ̃2N ⊗ π(n)I γ̃2(v)
= ♮(γ1, γ̃)Tnγ̃2N ⊗ Inγ̃2(v) = ♮(γ1, γ̃)Tγ1γ̃N ⊗ Iγ1γ̃(v)
= κπ(γ1, γ̃)

−1Tγ1NTγ̃N ⊗ κπ(γ1, γ̃)Iγ1I γ̃(v) = Tγ1NTγ̃N ⊗ Iγ1I γ̃(v)
= Sγ1(Tγ̃N ⊗ I γ̃(v)) = Sγ1(T (Sγ̃ ⊗ v)).

(c) See [Sol2, Theorem 11.2.b]. The proof over there applies because we already
have established parts (a) and (b).
(d) We already saw that all these algebras are semisimple. In particular V is com-

pletely reducible. Let V ′ be the π-isotypical component of Res
K[Γ,♮]
K[N ] (V ). Every

K[Γ, ♮]-homomorphism from τ ⋉ π has image in K[Γ, ♮] · V ′, so we may assume that

V = K[Γ, ♮] ·V ′. Then V can be embedded in a direct sum of copies of ind
K[Γ,♮]
K[N ] (Vπ).

Hence it suffices to prove the claim in the case that V = ind
K[Γ,♮]
K[N ] (Vπ).

By part (b) and the irreducibility of π

(8) HomN

(
Vπ, ind

K[Γ,♮]
K[N ] (Vπ)

)
= HomN

(
Vπ, ind

K[Γπ ,♮]
K[N ] (Vπ)

)
∼= K[Γπ/N, ♮κπ].

By Frobenius reciprocity

(9) HomK[Γ,♮]

(
τ ⋉ π, ind

K[Γ,♮]
K[N ] (Vπ)

)
∼= HomK[Γπ ,♮]

(
M ⊗ Vπ, indK[Γ,♮]

K[N ] (Vπ)
)

By (8) the right hand side simplifies to
(10)

HomK[Γπ ,♮]

(
M ⊗ Vπ, indK[Γπ ,♮]

K[N ] (Vπ)
)
∼= HomK[Γπ ,♮]

(
M ⊗ Vπ,K[Γπ/N, ♮κπ]⊗ Vπ

)
.

As we have seen in part (b), K[N ] acts only on the second tensor legs, so

(11) HomK[N ]

(
M ⊗ Vπ,K[Γπ/N, ♮κπ]⊗ Vπ

)
= HomK

(
M,K[Γπ/N, ♮κπ]

)
⊗KIdVπ .
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An element ϕ = ϕ′⊗IdVπ of (11) is aK[Γπ, ♮]-homomorphism if and only if commutes
with the action described in part (a). On Vπ it automatically commutes with the
Iγ , so the condition becomes that ϕ′ commutes with left multiplication by TγN . In
other words, ϕ′ needs to be in HomK[Γπ/N,♮κπ ](M,K[Γπ/N, ♮κπ]). In view of (8), (9)
is isomorphic with

HomK[Γπ/N,♮κπ ]

(
M,HomN

(
Vπ, ind

K[Γ,♮]
K[N ] (Vπ)

))
. □

This result leads to a version of Clifford theory. We will formulate it in terms of
extended quotients, see [ABPS4, §2] or [ABPS5, Appendix B]. We briefly recall the
necessary definitions.

Suppose that Γ acts on some set X. Let κ be a given function which assigns to
each x ∈ X a 2-cocycle κx : Γx × Γx → C×, where Γx = {γ ∈ Γ : γx = x}. It is
assumed that κγx and γ∗κx define the same class in H2(Γx,K

×), where γ∗ : Γx →
Γγx, α 7→ γαγ−1. Define

X̃κ := {(x, ρ) : x ∈ X, ρ ∈ IrrK[Γx, κx]}.

We require, for every (γ, x) ∈ Γ×X, a definite algebra isomorphism

(12) ϕγ,x : K[Γx, κx]→ K[Γγx, κγx]

such that:

• ϕγ,x is inner if γx = x;
• ϕγ′,γx ◦ ϕγ,x = ϕγ′γ,x for all γ′, γ ∈ Γ, x ∈ X.

We call these maps connecting homomorphisms, because they are reminiscent of a

connection on a vector bundle. Then we can define Γ-action on X̃κ by

γ · (x, ρ) = (γx, ρ ◦ ϕ−1
γ,x).

We form the twisted extended quotient

(13) (X//Γ)κ := X̃κ/Γ.

Let us return to the setting of Proposition 1.1.

Theorem 1.2. Let κ♮ be the family of 2-cocycles which assigns κπ♮ to π ∈ IrrK(N).
There is a bijection

(IrrK(N)//Γ/N)κ♮ → Irr(K[Γ, ♮])

(π, τ) 7→ τ ⋉ π := ind
K[Γ,♮]
K[Γπ ,♮]

(Vτ ⊗ Vπ)

Proof. With Proposition 1.1, [Sol2, Appendix] becomes valid in our situation. The
theorem is a reformulation of parts (d) and (e) of [Sol2, Theorem 11.2]. For com-
pleteness we note that the connecting homomorphism

K[Γπ/N, κπ♮]→ K[Γγ·π/N, κγ·π♮]

is given by conjugation with Iγπ , as in [ABPS4, (3)]. □

For convenience we record the special case ♮ = 1 of the above explicitly. It is very
similar to [RaRa, p. 24] and [CuRe, §51].

indΓπ
N (π) ∼= K[Γπ/N, κπ]⊗K Vπ as Γπ-representations,(14)

IrrK(Γ)←→ (IrrK(N)//Γ/N)κ.(15)
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It will also be useful to analyse the structure of K[Γ, ♮] as a bimodule over itself.
Let K[Γ, ♮]op be the opposite algebra, and denote its standard basis elements by
Sγ (γ ∈ Γ).

Lemma 1.3. (a) There is a K-algebra isomorphism

∗ : K[Γ, ♮−1] → K[Γ, ♮]op

Tγ 7→ T ∗
γ = S−1

γ .

(b) There is a bijection

Irr(K[Γ, ♮]) → Irr(K[Γ, ♮−1])
V 7→ V ∗ = HomK(V,K),

where (h · λ)(v) = λ(h∗ · v) for v ∈ V, λ ∈ V ∗ and h ∈ K[Γ, ♮−1].
(c) Let K[Γ, ♮]⊕K[Γ, ♮−1] act on K[Γ, ♮] by (a, h) · b = abh∗.

As K[Γ, ♮]⊕K[Γ, ♮−1]-modules

K[Γ, ♮] ∼=
⊕

V ∈Irr(K[Γ,♮])
V ⊗ V ∗.

Proof. (a) The map isK-linear by definition, and it clearly is bijective. For γ, γ′ ∈ Γ:

T ∗
γ · T ∗

γ′ = S−1
γ · S−1

γ′ = (Sγ′ · Sγ)−1 = (♮(γ, γ′)Sγγ′)−1 = ♮(γ, γ′)−1T ∗
γγ′ ,

so * is an algebra homomorphism.
(b) Trivial, it holds for any finite dimensional algebra and its opposite.

(c) Let Γ̃ be a Schur extension of Γ, as on page 6. As a representation of Γ̃× (Γ̃)op,

K[Γ̃] decomposes in the asserted manner. Hence the same holds for its direct factor
K[Γ, ♮]. □

2. The generalized Springer correspondence

Let G be a connected complex reductive group. The generalized Springer corre-
spondence for G has been constructed by Lusztig. We will recall the main result of
[Lus2], and then we prove that Lusztig’s constructions are equivariant with respect
to automorphisms of algebraic groups.

Let l be a fixed prime number, and let Qℓ be an algebraic closure of Qℓ. For
compatibility with the literature we phrase our results with Qℓ-coefficients. However,
by their algebro-geometric nature everything works just as well with coefficients in
any other algebraically closed field of characteristic zero.

For u a unipotent element in G, we denote by AG(u) the group of components
ZG(u)/ZG(u)

◦ of the centralizer in G of u. We set

N+
G := {(u, η) : u ∈ G unipotent, η ∈ IrrQℓ

(AG(u))}/G-conjugacy.

The set N+
G is canonically in bijection with the set of pairs (CGu ,F), where CGu is

the G-conjugacy class of a unipotent element u ∈ G and F is an irreducible G-
equivariant local system on CGu . The bijection associates to (CGu ,F) an element
u ∈ CGu and the representation of AG(u) on the stalk Fu.

Let P be a parabolic subgroup of G with unipotent radical U , and let L be a Levi
factor of P . Let v be a unipotent element in L. The group ZG(u)× ZL(v)U acts on
the variety

(16) Yu,v :=
{
y ∈ G : y−1uy ∈ vU

}
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by (g, p) · y = gyp−1, with g ∈ ZG(u), p ∈ ZL(v)U , and y ∈ Yu,v. We have

dimYu,v ≤ du,v :=
1

2
(dimZG(u) + dimZL(v)) + dimU.

The group AG(u) × AL(v) acts on the set of irreducible components of Yu,v of di-
mension du,v; we denote by σu,v the corresponding permutation representation.

Let ⟨ , ⟩AG(u) be the usual scalar product of the set of class functions on the finite

group AG(u) with values in Qℓ. An irreducible representation η of AG(u) is called
cuspidal (see [Lus2, Definition 2.4] and [LuSp, §0.4]) if

(17) ⟨η, σu,v⟩AG(u) ̸= 0 implies that P = G.

If AG(u) has a cuspidal representation, then [Lus2, Proposition 2.8] implies that u
is a distinguished unipotent element of G, i.e. not contained in any proper Levi sub-
group of G. However, in general not every distinguished unipotent element supports
a cuspidal representation. The set of irreducible cuspidal representations of AG(u)
(over Qℓ) is denoted by Irrcusp(AG(u)), and we write

N 0
G = {(u, η) : u ∈ G unipotent, η ∈ Irrcusp(AG(u))}/G-conjugacy.

Given a pair (u, η) ∈ N+
G , there exists a triple (P,L, v) as above and an

ϵ ∈ Irrcusp(AL(v)) such that ⟨η ⊗ ϵ∗, σu,v⟩AG(u)×AL(v) ̸= 0,

where ϵ∗ is the dual of ϵ (see [Lus2, § 6.2] and [LuSp, §0.4]). Moreover (P,L, v, ϵ)
is unique up to G-conjugation (see [Lus2, Prop. 6.3] and [LuSp]). We denote by
t := [L, CLv , ϵ]G the G-conjugacy class of (L, v, ϵ) and we call it the cuspidal support
of the pair (u, η). The centre Z(G) maps naturally to AG(u) and to AL(v). By
construction [Lus2, Theorem 6.5.a]

(18) η and ϵ have the same Z(G)-character.

Let SG denote the set consisting of all triples (L, CLv , ϵ) (up to G-conjugacy) where
L is a Levi subgroup of a parabolic subgroup of G, CLv is the L-conjugacy class of a
unipotent element v in L and ϵ ∈ Irrcusp(AL(v)). Let

(19) ΨG : N+
G → SG

be the map defined by sending the G-conjugacy class of (u, η) to its cuspidal support.
By (18) this map preserves the Z(G)-characters of the involved representations.

In [Lus2, §3.1], Lusztig defined a partition of G in a finite number of irreducible,
smooth, locally closed subvarieties, stable under conjugation. For all g ∈ G, we
denote by gs the semisimple part of g. We say that g ∈ G (or its conjugacy class) is
isolated if ZG(gs)

◦ is not contained in any proper Levi subgroup of G. In particular
every unipotent conjugacy class is isolated.

Let L be a Levi subgroup of G and S ⊂ L the inverse image of an isolated
conjugacy class of L/Z◦

L by the natural projection map L↠ L/Z◦
L. Denote by

Sreg = {g ∈ S, ZG(gs)
◦ ⊂ L}

the set of regular elements in S. Consider the irreducible, smooth, locally closed
subvariety of G defined by

Y(L,S) =
⋃

g∈G
gSregg

−1 =
⋃

x∈Sreg

CGx .

We remark that Y(L,S) depends only on the G-conjugacy class of (L, S).
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Now, let P = LUP a parabolic subgroup of G with Levi factor L, denote c =
(P,L, S), c = (L, S) and let

X̂c = {(g, x) ∈ G×G, x−1gx ∈ S · UP },
Xc = {(g, xP ) ∈ G×G/P, x−1gx ∈ S · UP },

where S is the closure of S. The subgroup P acts freely by translation on right on

the second coordinate of an element of X̂c and X̂c/P = Xc. After [Lus2, 4.3], the
projection on the first coordinate ϕc : Xc −→ G is proper and its image is Y c.

The group Z◦
L acts on S by translation and L acts on S by conjugation. This gives

rises to an action of Z◦
L × L on S. The orbits form a stratification of S, in which S

is the unique open stratum. Denote by σc : X̂c −→ S the map which associates to

(g, x) the projection of x−1gx ∈ S ·UP on the factor S and ϖP : X̂c −→ Xc the map

defined for all (g, x) ∈ X̂c by ϖP (g, x) = (g, xP ). To sum up, we have the following
diagram:

X̂c

σc

��

ϖP

((
Xc

ϕc~~
S Y c

By taking image inverse under σc, the stratification of S gives a stratification of X̂c.

The stratum X̂c,α (corresponding to the open stratum S) is open and dense. We

denote by σc,α the restriction of σc to X̂c,α. Every stratum of X̂c is P -invariant and

their images in Xc = X̂c/P form a stratification of Xc, with Xc,α = X̂c,α/P open
and dense.

Let E be an irreducible L-equivariant cuspidal local system on S. Then (σc,α)
∗E

is a G × P -equivariant local system on X̂c,α. There exists a unique G-equivariant

local system on Xc,α, denoted by E , such that (σc,α)
∗E = (ϖP )

∗E .
We denote by Ỹc = ϕ−1

c (Yc), πc = ϕc Ỹc
, Ẽ = E

Ỹc
and

AE = EndDYc((πc)∗Ẽ) ≃ EndDGYc((πc)∗Ẽ),

where DYc (resp. DGYc) is the bounded derived category of Qℓ-constructible sheaves
(resp. G-equivariant) on Yc. We denote by Irr(AE) the set of (isomorphism classes
of) simple AE -modules and Qℓ the constant sheaf.

Let Kc = IC(Xc, E) the intersection cohomology complex of Deligne–Goresky–
MacPherson on Xc, with coefficients in E . Then (ϕc)!Kc is a complex on Y c.

Theorem 2.1. [Lus2, Theorem 6.5]
Let t = [L, CLv , E ] ∈ SG, (S, E) = (Z◦

L · CLv ,Qℓ ⊠ E) the corresponding cuspidal pair
for L and P a parabolic subgroup of G with Levi factor L. As before, we denote by
c = (P,L, S), c = (L, S) and (ϕc)!Kc the corresponding complex on Y c.

(1) Let (CGu ,F) ∈ N+
G . Then ΨG(CGu ,F) = (L, CLv , E), if and only if the following

conditions are satisfied :
(a) CGu ⊆ Y c ;
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(b) F is a direct summand of R
2dCGu ,CLv (fc)!(E) CG

u
, where fc is the restriction

of ϕc to Xc,α ⊂ Xc, dCG
u ,CL

v
= (νG − 1

2 dim C
G
u ) − (νL − 1

2 dim C
L
v ), and

νG (resp. νL) is the number of positive roots of G (resp. L).
(2) The natural morphism

R
2dCGu ,CLv (fc)!(E) CG

u
−→ H2dCGu ,CLv ((ϕc)!Kc) CG

u

given by the imbedding of Xc,α into Xc as an open subset, is an isomorphism.
(3) For all ρ ∈ Irr(AE), let ((ϕc)!Kc)ρ the ρ-isotypical component of (ϕc)!Kc,

i.e.

(ϕc)!Kc =
⊕

ρ∈Irr(AE)
ρ⊠ ((ϕc)!Kc)ρ.

Let Y c,un be the variety of unipotent elements in Y c. There exists an unique
pair (CGu ,F) ∈ N+

G which satisfies the following conditions:

(a) CGu ⊂ Y c;

(b) ((ϕc)!Kc)ρ Y c,un
is isomorphic to IC(CGu ,F)[2dCG

u ,CL
v
] extended by 0 on

Y c,un − CGu .
In particular, F = H2dCGu ,CLv (((ϕc)!Kc)ρ) CG

u
and

ρ = HomG

(
F ,H2dCGu ,CLv ((ϕc)!Kc)

∣∣
CG
u

)
. The map

Σt : Ψ
−1
G (t)→ Irr(AE)

which associates ρ to (CGu ,F) is a bijection.

The relation of Theorem 2.1 with the classical Springer correspondence goes via
AE , which turns out to be isomorphic to the group algebra of a Weyl group. We
define

(20) Wt := NG(t)/L = NG(L, CLv , E)/L.

Theorem 2.2. [Lus2, Theorem 9.2]

(a) Wt = NG(L)/L.
(b) NG(L)/L is the Weyl group of the root system R(G,Z(L)◦).
(c) There exists a canonical algebra isomorphism AE ∼= Qℓ[Wt]. Together with The-

orem 2.1.(3) this gives a canonical bijection Ψ−1
G (t)→ IrrQℓ

(Wt).

In fact there exist two such canonical algebra isomorphisms, for one can always
twist with the sign representation of Wt. When we employ generalized Springer
correspondences in relation with the local Langlands correspondence, we will always
use the isomorphism AE ∼= Qℓ[Wt] such that the trivial Wt-representation is the
image of (CGv , E) under Theorems 2.1 and 2.2. (Here we extend E G-equivariantly
to CGv , compare with [Lus2, 9.5].)

Let H be a group which acts on the connected complex reductive group G by
algebraic automorphisms. Then H acts also on N+

G and SG. Indeed, let h ∈ H,

(CGu ,F) ∈ N+
G , t = [L, CLv , E ]G ∈ SG and ρ ∈ Irr(Wt). Since h(G) = G, hCGu = CGh·u

is a unipotent orbit of G. Similarly, hL is a Levi subgroup of G, hCLv is a unipotent
orbit of hL, etc.

We denote by h∗ the pullback of sheaves along the isomorphism h−1 : G → G.
Thus h∗F (resp. h∗L) is a local system on CGh·u (resp. hCLv ). Keeping the above
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notation, the action of H on N+
G , SG and Irr(W ) is given by

h · (CGu ,F) = (CGh·u, h∗F), h · [L, CLv ,L] = [hL, ChLh·v, h∗L]
and h · ρ = ρh ∈ Irr(Wh·t).

Theorem 2.3. The Springer correspondence for G is H-equivariant. More pre-
cisely, for all h ∈ H, the following diagrams are commutative:

N+
G

ΨG //

h
��

S+G
h
��

Ψ−1
G (t)

h
��

Σt

// Irr(Wt)

h

��
N+

G

ΨG // S+G Ψ−1
G (h · t)

Σh·t
// Irr(Wh·t)

In other words, for all h ∈ H, (CGu ,F) ∈ Ψ−1
G (t) ⊂ N+

G :

ΨG(h · (CGu ,F)) = h ·ΨG(CGu ,F) and Σh·t(h · (CGu ,F)) = h · Σt(CGu ,F).

Proof. We keep the notations of Theorem 2.1. Let h ∈ H, (CGu ,F) ∈ N+
G , P a

parabolic subgroup of G with Levi factor L, v ∈ L a unipotent element and E an
irreducible cuspidal L-equivariant local system on CLv such that

ΨG(CGu ,F) = [L, CLv , E ] ∈ SG.

As in Theorem 2.1, let (S, E) = (Z◦
L · CLv ,Qℓ ⊠ E) be the corresponding cuspidal

pair for L and c = (P,L, S), c = (L, S). After (1) in Theorem 2.1, CGu ⊂ Y c, so
hCGu ⊂ hY c = Y h·c, where h · c = (hL, hS). Consider the maps

X̂h·c −→ X̂c

(g, x) 7−→ (h
−1
g, h

−1
x)

, Xh·c −→ Xc

(g, x hP ) 7−→ (h
−1
g, h

−1
xP )

, G −→ G

g 7−→ h−1
g

.

and the following diagrams:

X̂h·c,α
h //

σh·c,α
��

X̂c,α

σc,α

��
hS

h // S

, X̂h·c,α
h //

ϖhP

��

X̂c,α

ϖP

��
Xh·c,α

h // Xc,α

, Xh·c,α
h //

fh·c
��

Xc,α

fc
��

Y h·c
h // Y c

.

The first two commutative diagrams show that:

(σh·c,α)
∗(h∗E) = h∗(σc,α)

∗(E)
= h∗(ϖP )

∗(E) = (ϖhP )
∗(h∗E).

By unicity, this shows that h∗E = h∗E . The third cartesian diagram shows, by the
proper base change theorem, that

h∗R2dC (fc)!(E) ∼= R2dC (fh·c)!(h
∗E) = R2dC (fh·c)(h∗E).

Because

0 ̸= HomDCG
u
(F , R2dC (fc)!(E) CG

u
)) ∼= HomDhCG

u
(h∗F , h∗R2dC (fc)!(E) hCG

u
))

∼= HomDhCG
u
(h∗F , R2dC (fh·c)!(h∗E) hCG

u
)) ̸= 0,

with dC = dCG
u ,CL

v
= dhCG

u ,hCL
v
. Thus h∗F is a direct summand of R2d(fh·c)!(h∗E) hCG

u

and after Theorem 2.1, ΨG is H-equivariant.
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According to [GoMP, Proposition 5.4]

h∗Kc = h∗IC(Xc, E) = IC(h∗Xc, h
∗E) = IC(Xh·c, h∗E) = Kh·c.

Let ρ ∈ Irr(AE). By functoriality, Ah∗E ≃ AE and by considering the third commu-
tative diagram, we get:

HomAE (ρ, (ϕc)!Kc) ∼= HomAh∗E (h
∗ρ, h∗(ϕc)!Kc)

∼= HomAh∗E (ρ
h, (ϕh·c)!Kh·c)

h∗((ϕc)!Kc)ρ ∼= ((ϕh·c)!Kh·c)h∗ρ

Since ((ϕc)!Kc)ρ Y c,un
≃ IC(CGu ,F)[2dCG

u ,CL
v
], we have

h∗((ϕc)!Kc)ρ Y c,un

∼= h∗IC(CGu ,F)[2dCG
u ,CL

v
]

((ϕh·c)!Kh·c)h∗ρ
∼= IC(hCGu , h∗F)[2dhCG

u ,hCL
v
]

According to the characterization (3) of Theorem 2.1, this shows that Σt is H-
equivariant. □

3. Disconnected groups: the cuspidal case

First we recall Lusztig’s classification of unipotent cuspidal pairs for a connected
reductive group. See Erratum in the appendix!

Theorem 3.1. (Lusztig)
Let G◦ be a connected complex reductive group and write Z = Z(G◦)/Z(G◦)◦.

(a) Fix an Aut(G◦)-orbit X of characters Z → Qℓ
×
. There is at most one unipotent

conjugacy class CG◦
u which carries a cuspidal local system on which Z acts as an

element of X. Moreover CG◦
u is Aut(G◦)-stable and distinguished in G◦.

(b) Every cuspidal local system E on CG◦
u is uniquely determined by the character by

which Z acts on it.
(c) The dimension of the cuspidal representation Eu of AG◦(u) is a power of two

(possibly 20 = 1). It is one if G◦ contains no factors which are isomorphic to
spin or half-spin groups.

Proof. In [Lus2, §2.10] it is explained how the classification can be reduced to simply
connected, almost simple groups. Namely, first one notes that dividing out Z(G◦)◦

does not make an essential difference. Next everything is lifted to the simply con-
nected cover G̃ of the semisimple group G◦/Z(G◦)◦. Since every automorphism of

G◦/Z(G◦)◦ can be lifted to one of G̃, the canonical image of X is contained in a

unique Aut(G̃)-orbit X̃ on IrrQℓ
(Z̃), where Z̃ is the Z for G̃. Furthermore G̃ is a

direct product of almost simple, simply connected groups, and X̃ decomposes as an
analogous product. Therefore it suffices to establish the theorem for simple, simply
connected groups Gsc.

(a) and (b) are shown in the case-by-case calculations in [Lus2, §10 and §14–15].
But (a) is not made explicit there, so let us comment on it. There are only few cases
in which one really needs an Aut(Gsc)-orbit Xsc in IrrQℓ

(Z(Gsc)). Namely, only the

spin groups SpinN (C) where N > 1 is simultaneously a square and a triangular
number. These groups have precisely two unipotent conjugacy classes, say C+ and
C−, that carry a cuspidal local system. Let {1,−1} be the kernel of SpinN (C) →
SON (C), a characteristic subgroup of SpinN (C). Lusztig’s classification shows that
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−1 acts as ϵ on every cuspidal local system supported on Cϵ. As −1 is fixed by
Aut(Gsc), Xsc determines a unique character of {1,−1} and thus specifies C+ or C−.

This proves the first part of (a). For the second part, we notice that every algebraic
automorphism of G◦ maps a cuspidal local system on a unipotent conjugacy class
in G◦ with Z-character in X to another such local system. By [Lus2, Proposition
2.8] every such conjugacy class is distinguished in G◦.

(c) is obvious in types An, Cn and E6, for then AGsc(u) is abelian. For the root
systems E8, F4 and G2, AGsc(u) is a symmetric group and Eu is the sign representa-
tion [Lus2, §15]. In type E7 [Miz, Table 9] shows that AGsc(u)

∼= S3×S2. According
to [Lus2, §15.6], (E)u again has dimension one (it is the tensor product of the sign
representations of S3 and S2).

In types Bn and Dn, Gsc = SpinN (C) is a spin group. All the cuspidal lo-
cal systems E for which the action of Z(Gsc) factors through Z(SON (C)) are one-
dimensional, for ASON (C)(u) is abelian. If the character by which Z(Gsc) acts on
E is not of this kind, then [Lus2, Proposition 14.4] says that dim(Eu) is a power
of two. In that case the original G◦ has an almost direct factor isomorphic to
SpinN (C) or to a half-spin group HSpinN (C) = SpinN (C)/{1, ω} (here N ∈ 4N and
ω ∈ Z(SpinN (C)) \ {1,−1}). □

Let G be a disconnected complex reductive group with neutral component G◦.
We want to classify unipotent cuspidal pairs for G in terms of those for G◦.

First we define them properly. For u ∈ G◦ we call an irreducible representation
of AG(u) cuspidal if its restriction to AG◦(u) is a direct sum of irreducible cuspidal
AG◦(u)-representations. The set of irreducible cuspidal representations of AG(u)
(over Qℓ) is denoted by Irrcusp(AG(u)). We write

N 0
G = {(u, η) : u ∈ G unipotent, η ∈ Irrcusp(AG(u))}/G-conjugacy.

Notice that the unipotency forces u ∈ G◦. Every (u, η) ∈ N 0
G gives rise to a unique

G-equivariant local system F on CGu . We call any G-equivariant local system on CGu
cuspidal if and only if it arises in this way. Thus we may identify N 0

G with the set
of pairs (CGu ,F) where CGu is a unipotent conjugacy class in G and F is a cuspidal
local system on it. For example, if G◦ is a torus, then u = 1 and every irreducible
representation of AG(u) = G/G◦ is cuspidal.

It follows from (15) that there is a bijection

Irrcusp(AG(u))←→
(
Irrcusp(AG◦(u))//AG(u)/AG◦(u)

)
κ
.

So we want to identify the 2-cocycles κϵ for ϵ ∈ Irrcusp(AG◦(u)).
We note that there are natural isomorphisms

(21) AG(u)/AG◦(u)← ZG(u)/ZG◦(u)→ G/G◦.

In fact Theorem 3.1.a implies that CGu = CG◦
u , which accounts for the surjectivity of

the map to the right.
Recall from [ABPS4, Lemma 4.2] that the short exact sequence

(22) 1→ π0(ZG◦(u)/Z(G◦))→ π0(ZG(u)/Z(G
◦))→ G/G◦ → 1

is split. However, the short exact sequence

(23) 1→ π0(ZG◦(u)/Z(G◦)◦)→ π0(ZG(u)/Z(G
◦)◦)→ G/G◦ → 1
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need not be split. We choose a map

(24) s : G/G◦ → ZG(u)

such that the induced map G/G◦ → π0(ZG(u)/Z(G
◦)) is a group homomorphism

that splits (22). The proof of [ABPS4, Lemma 4.2] shows that we can take s(gG◦)
in ZG(G

◦) whenever the conjugation action of g on G◦ is an inner automorphism of
G◦. For all γ, γ′ ∈ G/G◦

s(γ)s(γ′)s(γγ′)−1 ∈ Z(G◦)ZG◦(u)◦,

because it represents the neutral element of π0(ZG(u)/Z(G
◦)).

Let (CG◦
u , E) ∈ N 0

G◦ . The group ZG◦(u)◦ acts trivially on ϵ = Eu and by cuspidality
Z(G◦) ⊂ Z(L) acts according to a character. Therefore

(25) ♮E(γ, γ
′) := ϵ

(
s(γ)s(γ′)s(γγ′)−1

)
lies in Qℓ

×
. Comparing with (1), one checks easily that

(26) ♮E : G/G◦ ×G/G◦ → Qℓ
×

is a 2-cocycle. We note that another element u′ ∈ CGu would give the same cocycle:
just conjugate s with a g ∈ G◦ such that gug−1 = u′ and use the same formulas.

Although ♮E depends on the choice of s, its class inH2(G/G◦,Qℓ
×
) does not. Indeed,

suppose that s′ is another splitting as in (24). Since s′(γ) and s(γ) represent the
same element of π0(ZG(u)/Z(G

◦)), there exist

z(γ) ∈ Z(G◦) such that s′(γ)s(γ)−1 ∈ z(γ)ZG◦(u)◦.

As ZG◦(u)◦ is normal in ZG(u) and contained in the kernel of ϵ,

ϵ
(
s′(γ)s′(γ′)s′(γγ′)−1

)
= ϵ

(
s(γ)z(γ)s(γ′)z(γ′)s(γγ′)−1z(γγ′)−1

)
=

♮E(γ, γ
′) ϵ(z(γ))ϵ(z(γ′))ϵ

(
z(γγ′)−1

)
.

Therefore s′ gives rise to a 2-cocycle that differs from (26) by a coboundary, and the
cohomology class of ♮E depends only on E . Via the isomorphism (21) we also get a
2-cocycle

♮E : AG(u)/AG◦(u)×AG(u)/AG◦(u)→ Qℓ
×
.

It will turn out that the 2-cocycles ♮E are trivial in many cases, in particular whenever
Z(G◦) acts trivially on E . But sometimes their cohomology class is nontrivial.

Example 3.2. Consider the following subgroup of SL2(C)5:
Q =

{
(±I2)×I8,

(±i 0
0 ∓i

)
×I4×−I4,

(
0 ±i
±i 0

)
×I2×−I2×I2×−I2,

(
0 ∓1
±1 0

)
×I2×−I4×I2

}
It is isomorphic to the quaternion group of order 8. We take G = NSL10(C)(Q). Then

G◦ = ZSL10(C)(Q) =
(
Z(GL2(C))×GL2(C)4

)
∩ SL10(C),

Z(G◦) =
{
(zj)

5
j=1 ∈ Z(GL2(C))5 :

∏5

j=1
z2j = 1

}
.

By [Lus2, §10.1–10.3] there exists a unique cuspidal pair for G◦, namely

(u = I2 × ( 1 1
0 1 )

⊗4
, ϵ) with ϵ the nontrivial character of

AG◦(u) = Z(G◦)/Z(G◦)◦ ∼= {±1}.
We note that the canonical map Q→ AG(u) is an isomorphism and that

G/G◦ ∼= AG(u)/AG◦(u) ∼= Q/{±1} ∼= (Z/2Z)2.
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There is a unique irreducible representation of AG(u) whose restriction to AG◦(u)
contains ϵ, and it has dimension 2.

The group S5 acts on GL2(C)5 by permutations. Let Pσ ∈ GL10(C) be the matrix
corresponding to a permutation σ ∈ S5. Representatives for G/G◦ in ZG(u) are

(27)
{
1,
(
i 0
0 −i

)
P(23)(45),

(
0 i
i 0

)
P(24)(35),

(
0 −1
1 0

)
P(25)(34)

}
.

The elements (27) provide a splitting of (22), but (23) is not split in this case. Then
♮E is the nontrivial cocycle of G/G◦ determined by the 2-dimensional projective
representation with image

{
1,
(
i 0
0 −i

)
,
(
0 i
i 0

)
,
(
0 −1
1 0

) }
.

The twisted group algebra Qℓ[G/G
◦, ♮E ] is isomorphic with M2(Qℓ). In particular

it has precisely one irreducible representation. This agrees with the number of
representations of AG(u) that we want to obtain. Notice that, without the twisting,
Qℓ[G/G

◦] would have four inequivalent irreducible representations, too many for
this situation.

We return to our general setup. Let GE be the subgroup of G that stabilizes E
(up to isomorphism). It contains G◦ and by Theorem 3.1.b it coincides with the
stabilizer of the Z(G◦)-character of E . By (21) there are group isomorphisms

(28) AG(u)ϵ/AG◦(u)← ZG(u)ϵ/ZG◦(u)→ GE/G
◦.

Lemma 3.3. Let (u, ϵ) ∈ N 0
G◦. Then we can take κϵ = ♮−1

E as 2-cocycles of
AG(u)ϵ/AG◦(u).

Proof. With (28) we translate the lemma to a statement about cocycles of
ZG(u)ϵ/ZG◦(u). For g ∈ ZG(u)ϵ we have to find Igϵ : Vϵ → Vϵ such that

(29) Igϵ ◦ ϵ(h) ◦ (Igϵ )−1 = ϵ(ghg−1) ∀h ∈ ZG◦(u).

Since ZG(u) = s(G/G◦)ZG◦(u), it suffices to find I
s(γ)
ϵ for γ ∈ GE/G

◦. Namely, then

we can put I
s(γ)h
ϵ = I

s(γ)
ϵ ◦ ϵ(h) for h ∈ ZG◦(u), as in (6).

Let us consider (CG◦
u , E) as a cuspidal local system for the simply connected cover

Gsc of G◦/Z(G◦)◦. The action of G on G◦ by conjugation lifts to an action on

Gsc and Z(G◦)◦ acts trivially on ϵ. Hence it suffices to construct I
s(γ)
ϵ for ϵ as a

representation of AGsc(u).
Then (AGsc(u), ϵ) decomposes as a direct product over almost simple factors of

Gsc. Factors with different cuspidal local systems have no interaction, so we may
assume that Gsc = Hn, ϵ = σ⊗n with H simply connected and almost simple. The
conjugation action of G on Hn is a combination of permutations of {1, 2, . . . , n} and
automorphisms of H. If g ∈ G permutes the factors of Hn according to τ ∈ Sn,
then we can construct Ig

σ⊗n as the permutation τ of V ⊗n
σ , combined with some

automorphisms of the vector space Vσ. In this way we reduce to the case where Gsc

is almost simple.
Whenever ϵ is one-dimensional, we simply put

(30) Iγϵ = Igϵ = IdVϵ for g = s(γ) ∈ s(GE/G
◦).

To deal with the remaining cases, we recall from Theorem 3.1.c that in all those
instances Gsc = SpinN (C) is a spin group and that the action of Z(Gsc) on E does
not factor through Z(SON (C)).

Suppose first that N ≥ 3 is odd. Then Gsc is of type B(N−1)/2 and all its auto-
morphisms are inner. As explained after (24), we can take s(GE/G

◦) in ZGE (G
◦).

Thus (29) can be fulfilled by defining Igϵ = IdVϵ .
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Next we suppose that N is even, so Gsc is of type DN/2. By [Lus2, Proposition
14.6] N = j(j + 1)/2 for some j ≥ 2, and in particular Gsc is not isomorphic to the
group Spin8(C) of type D4. Let us write Z(Gsc) = {1,−1, ω,−ω}, where

{1,−1} = ker
(
SpinN (C)→ SON (C)

)
.

Our assumptions entail that ϵ(−1) ̸= 1. For both characters of Z(Gsc) with ϵ(−1) =
−1 there is exactly one cuspidal pair (CGsc

u , E) on which Z(Gsc) acts in this way
[Lus2, Proposition 14.6]. The group of outer automorphisms of Gsc has precisely
two elements. It interchanges ω and −ω, and hence it interchanges the two cusp-
idal pairs in question. Therefore the conjugation action of GE on Gsc is by inner
automorphisms of Gsc. Now the same argument as in the N odd case shows that
we may take Igϵ = IdVϵ .

Thus (30) works in all cases under consideration. The defining property of s
entails that

(31) Iγϵ ◦ Iγ
′

ϵ = ♮E(γ, γ
′)Iγγ

′
ϵ .

Together (28) this shows that the lemma holds when Gsc is almost simple. In view
of our earlier reduction steps, that implies the general case. □

Notice that Y := CGu Z(G◦)◦ is a union of G-conjugacy classes in G◦. Tensoring E
with the constant sheaf on Z(G◦)◦, we obtain a G◦-equivariant cuspidal local system
on Y . We also denote that by E .

Next we build a G-equivariant local system on Y which contains every extension
of ϵ to an irreducible representation of AG(u). The construction is the same as in
[Lus2, §3.2], only for a disconnected group. Via the map

(32) Y ×G→ Y : (y, g) 7→ g−1yg

we pull E back to a local system Ê on Y ×G. It is G×G◦-equivariant for the action

(33) (h1, h0) · (y, g) = (h1yh
−1
1 , h1gh

−1
0 ).

The G◦ action is free, so we can divide it out and obtain a G-equivariant local
system Ẽ on Y × G/G◦ such that its pull back under the natural quotient map

is isomorphic to Ê , see [BeLu, 2.6.3]. Let π : Y × G/G◦ → Y be the projection

on the first coordinate. It is a G-equivariant fibration, so the direct image π∗Ẽ is
a G-equivariant local system on Y . With (21) we see that its stalk at y ∈ Y is
isomorphic, as ZG◦(y)-representation, to⊕

g∈G/G◦

(Ẽ)y,gG◦ ∼=
⊕

g∈ZG(y)/ZG◦ (y)

(Eg−1yg) ∼=
⊕

g∈ZG(y)/ZG◦ (y)

g · (E)y.

The elements of ZG(y) permute these subspaces Ey in the expected way, so

(34) (π∗Ẽ)y ∼= ind
ZG(y)
ZG◦ (y)(E)y as ZG(y)-representations.

In other words, we can consider π∗Ẽ as the induction of (E)Y from G◦ to G.

Lemma 3.4. The G-endomorphism algebra of π∗Ẽ is isomorphic with Qℓ[GE/G
◦, ♮E ].

Once ♮E has been chosen, the isomorphism is canonical up to twisting by characters
of GE/G

◦.
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Proof. By [Lus2, Proposition 3.5], which applies also in the disconnected case,

EndG(π∗Ẽ) is canonically a direct sum of one-dimensional subspaces Aγ with γ ∈
GE/G

◦. We need to specify one element in each of these subspaces to obtain a
twisted group algebra. Recall the isomorphisms (28) and the map s from (24). For
g = s(γ) ∈ s(GE/G

◦) we define

Iγϵ = Igϵ : (E)u → (E)u
as in the proof of Lemma 3.3. We already saw in (31) that the Iγϵ span an algebra
isomorphic to Qℓ[GE/G

◦, ♮E ]. Each Iγϵ extends uniquely to an isomorphism of G-
equivariant local systems

(35) IγE : (E)Y → Ad(γ)∗(E)Y .

We can consider this as a family of Qℓ-linear maps

IγE : (Ê)(y,g) = (E)g−1yg → (Ê)(y,gγ−1) = (E)γg−1ygγ−1 .

Consequently the IγE induce automorphisms of Ê , of Ẽ and of π∗Ẽ . The latter
automorphism belongs to Aγ and we take it as element of the required basis of

EndG(π∗Ẽ).
Any other choice of an isomorphism as in the lemma would differ from the first

one by an automorphism of Qℓ[GE/G
◦, ♮E ] which stabilizes each of the subspaces

QℓTγ . Every such automorphism is induced by a character of GE/G
◦. □

We note that the isomorphism in Lemma 3.4 is in general not canonical, because
s and the constructions in the proof of Lemma 3.3 are not. In the final result of this
section, we complete the classification of unipotent cuspidal local systems on G.

Proposition 3.5. There exists a canonical bijection

Irr(EndG(π∗Ẽ)) ←→ {F : (CGu ,F) ∈ N 0
G, Res

G
G◦F contains E}

ρ 7→ HomEndG(π∗Ẽ)(ρ, π∗Ẽ)
HomG(F , π∗Ẽ) 7→ F

Upon choosing an isomorphism as in Lemma 3.4, we obtain a bijection

Irr(Qℓ[GE/G
◦, ♮E ])←→ {(u, η) ∈ N 0

G : Res
AG(u)
AG◦ (u)η contains (E)u}.

Proof. The first map is canonical because its definition does not involve any arbitrary
choices. To show that it is a bijection, we fix an isomorphism as in Lemma 3.4. By
G-equivariance, it suffices to consider the claims at the stalk over u. Then we
must look for irreducible AG(u)-representations that contain ϵ. By (28), (34) and
Proposition 1.1.b

(π∗Ẽ)u ∼= ind
AG(u)
AG◦ (u)(E)u ∼= ind

AG(u)
AG(u)ϵ

(
Qℓ[AG(u)ϵ/AG◦(u), κϵ]⊗ ϵ

)
.

By Lemma 3.3 the right hand side is

(36) ind
AG(u)
AG(u)ϵ

(
Qℓ[AG(u)ϵ/AG◦(u), ♮−1

E ]⊗ ϵ
)
.

By Frobenius reciprocity and the definition of AG(u)ϵ, the AG(u)-endomorphism
algebra of (36) is

(37) EndAG(u)ϵ

(
Qℓ[AG(u)ϵ/AG◦(u), ♮−1

E ]⊗ ϵ
)
.

The description of the AG(u)ϵ-action in Proposition 1.1.a shows that it is
Qℓ[AG(u)ϵ/AG◦(u), ♮−1

E ]op, acting by multiplication from the right. By (28) and
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Lemma 1.3.a, (37) can be identified with Qℓ[GE/G
◦, ♮E ]. Lemma 3.4 shows that this

matches precisely with EndG(π∗Ẽ). With (36) and Lemma 1.3.c it follows that(
π∗Ẽ

)
u
∼=

⊕
ρ∈Irr(EndG(π∗Ẽ))

ρ⊗ ind
AG(u)
AG(u)ϵ

(ρ∗ ⊗ ϵ),(38)

HomEndG(π∗Ẽ)(ρ, (π∗Ẽ)u)
∼= ind

AG(u)
AG(u)ϵ

(ρ∗ ⊗ ϵ),

where ρ∗ ∈ Irr(Qℓ[AG(u)ϵ/AG◦(u), κϵ]) is the contragredient of ρ. By Lemma 1.3.b
and Proposition 1.1.c every irreducible AG(u)-representation containing ϵ is of the

form ind
AG(u)
AG(u)ϵ

(ρ∗ ⊗ ϵ), for a unique ρ ∈ Irr(EndG(π∗Ẽ)). Hence the maps from left

to right in the statement are bijective.
Let (CGu ,F) ∈ N 0

G be such that ResGG◦F contains E . By what we have just shown,

Fu
∼= ind

AG(u)
AG(u)ϵ

(ρ∗ ⊗ ϵ), for a unique ρ. By (38)

HomG(F , π∗Ẽ) = HomZG(u)

(
Fu, (π∗Ẽ)u

)
= HomAG(u)

(
ind

AG(u)
AG(u)ϵ

(ρ∗⊗ϵ), (π∗Ẽ)u
) ∼= ρ,

which provides the formula for the inverse of the above bijection. □

4. Disconnected groups: the non-cuspidal case

We would like to extend the generalized Springer correspondence for G◦ to G.
First define the source and target properly.

Definition 4.1. For N+
G we use exactly the same definition as in the connected

case:

N+
G = {(u, η) : u ∈ G unipotent , η ∈ IrrQℓ

(AG(u))}/G-conjugacy.

As SG we take the same set as for G◦, but now considered up to G-conjugacy:

SG = {unipotent cuspidal supports for G◦}/G-conjugacy.
For t = [L, CLv , E ]G ∈ SG, let NG(t) be the stabilizer of (L, CLv , E) in G. We define
Wt as the component group of NG(t).

In the above notations, the group L stabilizes (L, CLv , E) and any element of G
which stabilizes (L, CLv , E) must normalize L. Hence L is the neutral component of
NG(t) and Wt = NG(t)/L is a subgroup of W (G,L) = NG(L)/L.

As in the connected case, N+
G is canonically in bijection with the set of pairs

(CGu ,F), where CGu is the G-conjugacy class of a unipotent element u and F is an
irreducible G-equivariant local system on CGu .

We define a map ΨG : N+
G → SG in the following way. Let (u, η) ∈ N+

G . With
Theorem 1.2 we can write η = η◦⋊τ with η◦ ∈ Irr(AG◦(u)). Moreover η◦ is uniquely
determined by η up to AG(u)-conjugacy. Then (u, η◦) ∈ N+

G◦ . Using (19) we put

(39) ΨG(u, η) := ΨG◦(u, η◦)/G-conjugacy

By the G-equivariance of ΨG◦ (Theorem 2.3), ΨG(u, η) does not depend on the
choice of η◦. Write

t◦ = [L, CLv , E ]G◦

and consider Σt◦(u, η
◦) ∈ Irr(Wt◦). Just as in (39), (L, CLv , E ,Σt◦(u, η

◦)) is uniquely
determined by (u, η), up to G-conjugacy.

We would like to define Σt such that Σt(u, η) is a representation of Wt whose
restriction to Wt◦ contains Σt◦(u, η

◦). However, in general this does not work. It
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turns out that we have to twist the group algebra Qℓ[Wt] with a certain 2-cocycle,
which is trivial on Wt◦ . In fact we have already seen this in Section 3. Over there
L = G◦, Wt◦ = 1, Wt = GE/G

◦ and in Example 3.2 the group algebra of Wt had to
be twisted by a nontrivial 2-cocycle.

This twisting by nontrivial cocycles is only caused by the relation between irre-
ducible representations of AG◦(u) and AG(u). The next two results show that the
group Wt, considered on its own, would not need such twisting.

Lemma 4.2. There exists a subgroup Rt ⊂Wt such that Wt = Rt ⋉Wt◦.

Proof. Thanks to Theorem 2.2, we know thatWt◦ equalsW (G◦, L) = NG◦(L)/L. On
the other hand, Wt ⊂W (G,L) acts on the root system R(G◦, Z(L)◦). Fix a positive
subsystem and let Rt be its stabilizer in Wt. Since W (G◦, L) is the Weyl group of
the root system R(G◦, Z(L)◦) (see Theorem 2.2), it acts simply transitively on the
collection of positive systems in R(G◦, Z(L)◦). As W (G◦, L) is normal in W (G,L),
we obtain the decomposition of Wt as a semidirect product. □

Proposition 4.3. Let π ∈ IrrQℓ
(Wt◦). The cohomology class of κπ in

H2(Wt,π/Wt◦ ,Qℓ
×
) is trivial.

Proof. This is the statement of [ABPS4, Proposition 4.3], which is applicable by
Lemma 4.2. □

Let N+
G (t) be the inverse image of Rt in NG(t) ⊂ NG(L). Then L = N+

G (t)◦ and

Rt
∼= N+

G (t)/N+
G (t)◦. Thus (CLv , E) can be considered as a cuspidal pair for N+

G (t)◦.

In (31) we constructed a 2-cocycle ♮E : Rt × Rt → Qℓ
×
. With Lemma 4.2 we can

also consider it as a 2-cocycle of Wt, trivial on Wt◦ :

(40) ♮E :Wt/Wt◦ ×Wt/Wt◦ → Qℓ
×
.

Lemma 4.4. Let F◦ be the G◦-equivariant local system on CG◦
u corresponding to

η◦ ∈ IrrQℓ
(AG◦(u)). There are natural isomorphisms

Wt,Σt◦ (u,η
◦)/W (G◦, L)→ G(CG◦

u ,F◦)/G
◦ ← ZG(u)η◦/ZG◦(u)→ AG(u)η◦/AG◦(u).

Proof. There is a natural injection

(41) Wt/W (G◦, L) ∼= NG(L, CLv , E)/NG◦(L)→ G/G◦.

By Theorem 2.3 an element of Wt/W (G◦, L) stabilizes Σt◦(u, η
◦) = Σt◦(CG

◦
u ,F◦) if

and only if its image in G/G◦ stabilizes (CG◦
u ,F◦). The second isomorphism is a

direct consequence of the relation between F◦ and η◦. □

With this lemma we transfer (40) to a 2-cocycle

(42) ♮E : AG(u)η◦/AG◦(u)×AG(u)η◦/AG◦(u)→ Qℓ
×
.

Our construction of Σt will generalize that of Σt◦ in [Lus2], in particular we use
similar equivariant local systems. Recall that (L, CLv , E) is a cuspidal support. As
in [Lus2, §3.1] we put S = CLv Z(L)◦ and we extend E to a local system on S. We
say that an element y ∈ S is regular if ZG(ys)

◦, the connected centralizer of the
semisimple part of y, is contained in L. Consider the variety Y = Y(L,S) which is
the union of all conjugacy classes in G that meet the set of regular elements Sreg.

We build equivariant local systems Ê on

Ŷ := {(y, g) ∈ Y ×G : g−1yg ∈ Sreg}
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and Ẽ on Ỹ := Ŷ /L as in (32) and (33), only with L instead of G◦. The projection
map

π : Ỹ → Y, (y, g) 7→ y

is a fibration with fibre NG(L)/L, so

(43) π : Ỹ → Y gives a G-equivariant local system π∗Ẽ on Y.

By Theorem 3.1.a NG(L) stabilizes CLv , so NG(L)/L ∼= ZNG(L)(v)/ZL(v). The stalk

of π∗Ẽ at y ∈ Sreg is isomorphic, as representation of ZL(y) = ZL(v), to

(44) (π∗Ẽ)y ∼=
⊕

g∈NG(L)/L

(Ẽ)y,gL ∼=
⊕

g∈ZNG(L)(v)/ZL(v)

Eg−1yg
∼=

⊕
g∈ZNG(L)(v)/ZL(v)

g · Ey.

On the part Y ◦ of Y that is G◦-conjugate to Sreg, π∗Ẽ can also be considered as a

G◦-equivariant local system. As such (π∗Ẽ)Y ◦ contains the analogous local system

π∗Ẽ◦ for G◦ as a direct summand.
The following result generalizes Lemma 3.4.

Proposition 4.5. The G-endomorphism algebra of π∗Ẽ is isomorphic with Qℓ[Wt, ♮E ].
Once ♮E has been chosen via (25), the isomorphism is canonical up to twisting by
characters of Wt/Wt◦.

Proof. First we note that the results and proofs of [Lus2, §3] are also valid for the

disconnected group G. By [Lus2, Proposition 3.5] EndQℓ
(π∗Ẽ) = EndG(π∗Ẽ), and

according to [Lus2, Remark 3.6] it is a twisted group algebra of Wt. It remains to

determine the 2-cocycle. Again by [Lus2, Proposition 3.5], EndG(π∗Ẽ) is naturally a
direct sum of one-dimensional Qℓ-vector spaces AE,w (w ∈Wt). An element of AE,w
consists of a system of Qℓ-linear maps

(45) Ẽy,g = Eg−1yg → Ẽy,gw−1 = Ewg−1ygw−1

and is determined by a single L-intertwining map E → Ad(w)∗E .
For w ∈ Wt◦ any element bw ∈ AE,w also acts on π∗Ẽ◦. In [Lus2, Theorem 9.2.d]

a canonical isomorphism

(46) EndG◦(π∗Ẽ◦) ∼= Qℓ[Wt◦ ],

was constructed. Via this isomorphism we pick the bw (w ∈Wt◦), then

(47) w 7→ bw is a group homomorphism Wt◦ → AutG(π∗Ẽ).
In view of Lemma 4.2, we still to have find suitable bγ ∈ AE,γ for γ ∈ Rt. Let

nγ ∈ N+
G (t) be a lift of γ ∈ N+

G (t)/L. By [Lus2, §3.4-3.5] the choice of bγ is
equivalent to the choice of an automorphism IγE of (E)S that lifts the map

S → S : g 7→ nγgn
−1
γ .

Precisely such an automorphism was constructed (with the group N+
G (t) in the role

of G) in (35). We pick the unique bγ ∈ AE,γ corresponding to this IγE . Then the
multiplication rules for the bγ are analogous to those for the IγE , so by Lemma 3.4
we get

(48) bγ · bγ′ = ♮E(γ, γ
′)bγγ′ γ, γ′ ∈ Rt.

Using Lemma 4.2 we define bγw = bγbw for γ ∈ Rt, w ∈ Wt◦ . Now (47) and (48)
imply that bw · bw′ = ♮E(w,w

′)bww′ for all w,w′ ∈Wt.
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The only noncanonical part in the construction of the above isomorphism is the
choice of the bγ ∈ AE,γ with γ ∈ Rt. Any other choice would differ from the above by

an automorphism ofQℓ[Rt, ♮E ] which stabilizes each of the one-dimensional subspaces
AE,w. Every such automorphism is induced by a character of Rt

∼=Wt/Wt◦ . □

Let (u, η◦) ∈ N+
G◦ . Recall the cocycle κη◦ of AG(u)η◦/AG◦(u) constructed from

η◦ ∈ Irr(AG◦(u)) in (5). Like ♮E it depends on some choices, but its cohomology
class does not.

Lemma 4.6. We can choose κη◦ equal to ♮−1
E from (42).

Proof. Let s : GCG◦
u
/G◦ → ZG(u) be as in (24). As a G◦-equivariant local system

on Y ◦,

(π∗Ẽ)Y ◦ =
⊕

γ∈s(GCG◦
u

/G◦)
Ad(γ)∗(π∗Ẽ◦).

Every summand is of the same type as π∗Ẽ◦, so we can apply all the constructions
of [Lus2] to π∗Ẽ . In particular we can build

(49) H2dC
(
IC(Y , π∗Ẽ)

)
|CG◦

u
∼=

⊕
γ∈s(GCG◦

u
/G◦)

Ad(γ)∗H2dC
(
IC(Y ◦, π∗Ẽ◦)

)
|CG◦

u ,

see [Lus2, Theorem 6.5]. Write

ρ◦ = Σt◦(u, η
◦) ∈ Irr(Wt◦).

Let dC = dCG◦
u ,CL

v
be as in Theorem 2.1. Then AG◦(u) acts on

Ad(γ)∗Vη◦ = Ad(γ)∗H2dC
(
IC(Y ◦, π∗Ẽ◦)ρ◦

)
|CG◦

u

as γ ·η◦. Let r(γ) ∈ Rt
∼=Wt/Wt◦ correspond to γG◦ ∈ G/G◦ under Lemma 4.4. By

construction br(γ) ∈ EndG(π∗Ẽ) maps the G◦-local system Ad(γ)∗(π∗Ẽ◦) to π∗Ẽ◦.
Suppose that γ stabilizes η◦. For Iγη◦ we take the map

Ad(γ)∗H2dC
(
IC(Y ◦, π∗Ẽ◦)ρ◦

)
|CG◦

u → H2dC
(
IC(Y ◦, π∗Ẽ◦)ρ◦

)
|CG◦

u

induced by br(γ). It commutes with the action of ZG(u), so it can be regarded as an
element of HomAG◦ (u)(γ · η◦, η◦). Then

κ−1
η◦ (γ, γ

′) = Iγη◦ ◦ I
γ′

η◦ ◦ (I
γγ′

η◦ )−1 = br(γ)br(γ′)b
−1
r(γγ′) = ♮E(r(γ), r(γ

′)) = ♮E(γ, γ
′),

where we used (48) for the third equality. □

Now we can state the main result of the first part of the paper.

Theorem 4.7. Let t = [L, CLv , E ]G ∈ SG. There exists a canonical bijection

Σt : Ψ−1
G (t) → Irr(EndG(π∗Ẽ))

(CGu ,F) 7→ HomG

(
F ,H2dC

(
IC(Y , π∗Ẽ)

)
|CGu

)
.

Suppose that ρ ∈ Irr
(
EndG(π∗Ẽ)

)
contains ρ◦ ∈ Irr

(
EndG◦(π∗Ẽ◦)

)
and that the

unipotent conjugacy class of Σ−1
t◦ (ρ◦) is represented by u ∈ G◦. Then

Σ−1
t (ρ) =

(
CGu ,H2dC

(
IC(Y , π∗Ẽ)ρ

)
|CGu

)
,

where dC is as in Theorem 2.1.
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Upon choosing an isomorphism as in Proposition 4.5, we obtain a bijection

Ψ−1
G (t)→ Irr(Qℓ[Wt, ♮E ]).

Proof. First we show that there exists a bijection Σt between the indicated sets. To
this end we may fix an isomorphism

(50) EndG(π∗Ẽ) ∼= Qℓ[Wt, ♮E ]

as in Proposition 4.5. In particular it restricts to

EndG◦(π∗Ẽ◦) ∼= Qℓ[Wt◦ ].

Let us compare Ψ−1
G (t) with Ψ−1

G◦(t◦). For every (u, η◦) ∈ Ψ−1
G◦(t◦) we can produce

an element of Ψ−1
G (t) by extending η◦ to an irreducible representation η of AG(u).

By Lemma 4.6 and Proposition 1.1.c the only way to do so is taking η of the form

(51) η◦ ⋊ τ ′ = ind
AG(u)
AG(u)η◦

(η◦ ⊗ τ ′) with τ ′ ∈ Irr
(
Qℓ[AG(u)η◦/AG◦(u), ♮−1

E ]
)
.

In view of Theorem 1.2 and Lemma 4.4 that yields a bijection

(52)

(
Ψ−1

G◦(t◦)//Wt/Wt◦
)
♮−1
E
←→ Ψ−1

G (t)

((u, η◦), τ ′) 7→ (u, η◦ ⋊ τ ′).

By Lemma 1.3.b there is a bijection

(53)
Irr

(
Qℓ[Wt/Wt◦ , ♮E ]

)
←→ Irr

(
Qℓ[Wt/Wt◦ , ♮

−1
E ]

)
V 7→ V ∗ = HomQℓ

(V,Qℓ).

Recall from Proposition 4.3 that for any ρ◦ ∈ IrrQℓ
(Wt◦) the cohomology class of

κρ◦ in H2(Wt,ρ◦/Wt◦ ,Qℓ
×
) is trivial. With Theorem 1.2 we get a bijection

(54)

(
IrrQℓ

(Wt◦))//Wt/Wt◦
)
♮E
←→ Irr(Qℓ[Wt, ♮E ])

(ρ◦, τ) 7→ ρ◦ ⋊ τ.

From (52), (53) and (54) we obtain a bijection

(55)
Ψ−1

G (t) ←→ Irr(Qℓ[Wt, ♮E ])
(u, η◦ ⋊ τ ′) 7→ Σt◦(u, η

◦)⋊ τ ′∗

Σ−1
t◦ (ρ◦)⋊ τ∗ 7→ ρ◦ ⋊ τ

Together with (50) we get a candidate for Σt, and we know that this candidate
is bijective. To prove that it is canonical, it suffices to see that it satisfies the
given formula for Σ−1

t (ρ). That formula involves a G-equivariant local system on

CGu . Since EndG(π∗Ẽ) is semisimple, we only have to determine its stalk at u, as a
AG(u)-representations. It follows from (49) that this stalk is

H2dC
(
IC(Y , π∗Ẽ)

)
u
∼= ind

AG(u)
AG◦ (u)H

2dC
(
IC(Y ◦, π∗Ẽ◦)

)
u
.

We abbreviate Σ(u) = {ρ◦ = Σt◦(u, η
◦) : (u, η◦) ∈ Ψ−1

G◦(t◦)}. Decomposing

H2dC
(
IC(Y ◦, π∗Ẽ◦)

)
u
as a representation of Qℓ[AG◦(u)] × EndG◦(π∗(Ẽ◦)), like in

[Lus2, §3.7], the right hand side becomes

(56) ind
AG(u)
AG◦ (u)

(⊕
ρ◦∈Σ(u)

Vη◦ ⊗ Vρ◦
)
.
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By Proposition 1.1 and Lemma 4.6 this is isomorphic to

(57)
⊕

ρ◦∈Σ(u)

ind
AG(u)
AG(u)η◦

(
Qℓ[AG(u)η◦/AG◦(u), ♮−1

E ]⊗ Vη◦ ⊗ Vρ◦
)
:=

⊕
ρ◦∈Σ(u)

Bρ◦ .

(This equality defines Bρ◦ .) Let us analyse the action of EndG(π∗Ẽ) on (57). By (50)

and Lemma 4.4 there is a subalgebra Qℓ[Wt,ρ◦ , ♮E ], which stabilizes Bρ◦ . Moreover,
by Lemma 1.3.a

Qℓ[AG(u)η◦/AG◦(u), ♮−1
E ] ∼= Qℓ[Wt,ρ◦/Wt◦ , ♮

−1
E ] ∼= Qℓ[Wt,ρ◦/Wt◦ , ♮E ]

op.

By Lemma 1.3.c it decomposes as

(58) Qℓ[AG(u)η◦/AG◦(u), ♮−1
E ] ∼=

⊕
τ ′∈Irr(Qℓ[Wt,ρ◦/Wt◦ ,♮

−1
E ])

Vτ ′ ⊗V ∗
τ ′
∼=

⊕
τ∈Irr(Qℓ[Wt,ρ◦/Wt◦ ,♮E ])

V ∗
τ ⊗Vτ .

Recall that Wt◦ is a normal subgroup of Wt and that Wt acts on IrrQℓ
(Wt◦), as in

(3). Then Wt/Wt,ρ◦ is in bijection with the Wt-orbit of ρ
◦, so

(59)
⊕

ρi∈Wt·ρ◦
Bρi = Qℓ[Wt, ♮E ]Bρ◦

∼= ind
Qℓ[Wt,♮E ]

Qℓ[Wt,ρ◦ ,♮E ]
Bρ◦ .

It follows from (57), (58) and (59) that (56) is isomorphic to

(60)
⊕

ρ◦∈Σ(u)/Wt

ind
Qℓ[Wt,♮E ]

Qℓ[Wt,ρ◦ ,♮E ]
ind

AG(u)
AG(u)η◦

( ⊕
τ∈Irr(Qℓ[Wt,ρ◦/Wt◦ ,♮E ])

V ∗
τ ⊗ Vτ ⊗ Vη◦ ⊗ Vρ◦

)
=

⊕
ρ◦∈Σ(u)/Wt

⊕
τ∈Irr(Qℓ[Wt,ρ◦/Wt◦ ,♮E ])

ind
AG(u)
AG(u)η◦

(V ∗
τ ⊗ Vη◦)⊗ ind

Qℓ[Wt,♮E ]

Qℓ[Wt,ρ◦ ,♮E ]
(Vτ ⊗ Vρ◦).

Let ρ = ρ◦ ⋊ τ = ind
Qℓ[Wt,♮E ]

Qℓ[Wt,ρ◦ ,♮E ]
(Vτ ⊗ Vρ◦). By (60)

H2dC
(
IC(Y , π∗Ẽ)ρ

))
u
= HomQl[Wt,♮E ]

(
ρ,H2dC

(
IC(Y , π∗Ẽ)

)
u

)
∼=

ind
AG(u)
AG(u)η◦

(V ∗
τ ⊗ Vη◦) = τ∗ ⋉ η◦ = Σ−1

t◦ (ρ◦)⋊ τ∗.

Hence the formula for Σ−1
t given in the theorem agrees with the bijection (55).

Let us also compare the given formula for Σt with the above constructions. By
Theorem 1.2 Fu

∼= η◦ ⋊ τ ′ with η◦ ∈ IrrQl
(AG◦(u)). We rewrite

HomG

(
F ,H2dC

(
IC(Y , π∗Ẽ)

)
|CGu

)
= HomAG(u)

(
η◦ ⋊ τ ′,H2dC

(
IC(Y , π∗Ẽ)

)
u

)
.

By (60) this equals

ind
Qℓ[Wt,♮E ]

Qℓ[Wt,ρ◦ ,♮E ]
(V ∗

τ ′ ⊗ Vρ◦) = τ ′∗ ⋉ ρ◦ = Σt◦(u, η
◦)⋊ τ ′∗.

Hence Σt as given agrees with (55). □

The maps ΨG and Σt are compatible with restriction to Levi subgroups, in the
following sense. Let H ⊂ G be an algebraic subgroup such that H ∩ G◦ is a Levi
subgroup of G◦. Suppose that u ∈ H◦ is unipotent. By [Ree1, §3.2]

(61) ZG(u)
◦ ∩H = ZG◦(u)◦ ∩H equals ZH◦(u)◦ = ZH(u)◦.

Hence the natural map AH(u) → AG(u) is injective and we can regard AH(u) as a

subgroup of AG(u). Let π
H
∗ ẼH be the H-equivariant local system on CHu constructed
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like π∗Ẽ but for the group H. By Proposition 4.5 EndH(πH∗ ẼH) is naturally a

subalgebra of EndG(π∗Ẽ).

Theorem 4.8. Let η ∈ IrrQℓ
(AG(u)) and ηH ∈ IrrQℓ

(AH(u)).

(a) If ηH appears in Res
AG(u)
AH(u)(η), then ΨG(u, η) = ΨH(u, ηH)/G-conjugacy.

(b) Suppose that ΨG(u, η) = ΨH(u, ηH)/G-conjugacy. Then ΣΨH(u,ηH)(u, ηH) is

a constituent of Res
EndG(π∗Ẽ)
EndH(πH

∗ ẼH)
Σt(u, η) if and only if ηH is a constituent of

Res
AG(u)
AH(u)(η).

Remark. In [Lus2, §8] both parts were proven in the connected case, for G◦ and
H◦. As in this source, it is likely that in part (b) the multiplicity of ηH in η equals
the multiplicity of ΣΨH(u,ηH)(u, ηH) in Σt(u, η). However, it seems difficult to prove
that with the current techniques. We will return to this issue in [AMS].

Proof. (a) Let η◦H be an irreducible constituent of Res
AH(u)
AH◦ (u)(ηH) and let η◦ be an

irreducible constituent of Res
AG(u)
AG◦ (u)(η) which contains η◦H . By the definition (39)

and by [Lus2, Theorem 8.3.a] there are equalities up to G-conjugacy:

ΨG(u, η) = ΨG◦(u, η) = ΨH◦(u, η◦H) = ΨH(u, ηH).

(b) Write η = η◦ ⋊ τ∗ as in (51). Similarly, we can write any irreducible representa-
tion of AH(u) as ηH = η◦H ⋊ τ∗H with η◦H ∈ IrrQℓ

(AH◦(u)) and

τ∗H ∈ Irr(Qℓ[WtH ,η◦H
/Wt◦H

, ♮−1
E ]). As representations of AG◦(u):

(62) η = ind
AG(u)
AG(u)η◦

(Vη◦ ⊗ V ∗
τ )
∼=

⊕
a∈AG(u)/AG(u)η◦

(a · η◦)⊗ (a · V ∗
τ ),

where AG◦(u) acts trivially on the parts a ·V ∗
τ . Using Proposition 1.1.d and (62) we

compute

HomAH(u)(ηH , η) ∼= HomQℓ[AH(u)η◦
H
/AH◦ (u),♮−1

E ]

(
τ∗H ,HomAH◦ (u)(η

◦
H , η)

)
∼=⊕

a∈AG(u)/AG(u)η◦

HomQℓ[AH(u)η◦
H
/AH◦ (u),♮−1

E ]

(
τ∗H ,HomAH◦ (u)(η

◦
H , a · η◦)⊗ a · V ∗

τ

)
.

Here Qℓ[AH(u)η◦H/AH◦(u), ♮−1
E ] does not act on HomAH◦ (u)(η

◦
H , a · η◦), so we can

rearrange the last line as

(63)
⊕

a∈AG(u)/AG(u)η◦

HomAH◦ (u)(η
◦
H , a · η◦)⊗HomQℓ[AH(u)η◦

H
/AH◦ (u),♮−1

E ](τ
∗
H , a · V ∗

τ ).

Notice that η ∼= a · η ∼= a · η◦ ⋊ a · τ∗. We conclude from (63) that HomAH(u)(ηH , η)
is nonzero if and only if η ∼= η◦ ⋊ τ∗ where HomAH◦ (u)(η

◦
H , η

◦) ̸= 0 and
HomQℓ[AH(u)η◦

H
/AH◦ (u),♮−1

E ](τ
∗
H , τ

∗) ̸= 0.

Write ρ = Σt(u, η) and let ρH = ρ◦H ⋊ τH ∈ Irr(EndH(πH∗ ẼH)). Just as in (63)
one shows that Hom

EndH(πH
∗ ẼH)

(ρH , ρ) is nonzero if and only if ρ ∼= ρ◦ ⋊ τ with

HomQℓ[Wt◦
H
](ρ

◦
H , ρ

◦) ̸= 0 and HomQℓ[WtH,ρ◦
H
/Wt◦

H
,♮E ]

(τH , τ) ̸= 0.

Write tH = ΨH(u, ηH), t◦H = ΨH◦(u, η◦H) and consider ρ◦H = Σt◦H
(u, η◦H). Then

ρH = ρ◦H ⋊ τH equals ΣtH (u, ηH) = ΣtH (u, η
◦
H ⋊ τ∗H).
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By [Lus2, Theorem 8.3.b]

dimQℓ
HomAH◦ (u)(η

◦
H , η

◦) = dimQℓ
HomQℓ[Wt◦

H
](ρ

◦
H , ρ

◦)

and from Lemmas 1.3 and 4.4 we see that

dimQℓ
HomQℓ[AH(u)η◦

H
/AH◦ (u),♮−1

E ](τ
∗
H , τ

∗) = dimQℓ
HomQℓ[WtH,ρ◦

H
/Wt◦

H
,♮E ]

(τH , τ).

The above observations entail that HomAH(u)(ηH , η) is nonzero if and only if
Hom

EndH(πH
∗ ẼH)

(ρH , ρ) is nonzero. □

5. A version with quasi-Levi subgroups

For applications to Langlands parameters we need a version of the generalized
Springer correspondence which involves a disconnected version of Levi subgroups.
Recall that every Levi subgroup L of G◦ is of the form L = ZG◦(Z(L)◦).

Definition 5.1. Let G be a possibly disconnected complex reductive algebraic
group, and let L ⊂ G◦ be a Levi subgroup. Then we call ZG(Z(L)

◦) a quasi-Levi
subgroup of G.

Notice that ZG(Z(L)
◦) also has neutral component L and connected centre Z(L)◦.

Hence there is canonical bijection between Levi subgroups and quasi-Levi subgroups
of G. We will also need some variations on other previous notions.

Definition 5.2. A unipotent cuspidal quasi-support forG is a triple (M, v, qϵ) where
M ⊂ G is a quasi-Levi subgroup, v ∈M◦ is unipotent and qϵ ∈ Irrcusp(AM (v)). We
write

qSG = {cuspidal unipotent quasi-supports for G}/G-conjugacy.

Like before, we will also think of unipotent cuspidal quasi-supports as triples
(M, CMv , qE), where qE is a cuspidal local system on CMv . We want to define a
canonical map

qΨG : N+
G → qSG,

and to analyse its fibers. Of course this map should just be ΨG if G is connected.
Let t = [M◦, CM◦

v , E ]G and suppose that (u, η) ∈ N+
G with ΨG(u, η) = t. Ob-

viously, the cuspidal quasi-support of (u, η) will involve the quasi-Levi subgroup
M = ZG(Z(M

◦)◦). From Theorem 4.7 we get

ρ = Σt(u, η) ∈ Irr(EndG(π∗Ẽ)).

Let πM∗ ẼM be the M -equivariant local system on CMv built from E in the same way

as π∗Ẽ , only with M instead of G. From Proposition 4.5 we see that EndG(π∗Ẽ) ∼=
Qℓ[Wt, ♮E ] naturally contains a subalgebra

EndM (πM∗ ẼM ) ∼= Qℓ[ME/M
◦, ♮E ].

As ME/M
◦ is normal in Wt = NG(t)/M

◦, the latter group acts on EndM (πM∗ ẼM )

by conjugation in Qℓ[Wt, ♮E ]. Let ρM ∈ Irr
(
EndM (πM∗ ẼM )

)
be a constituent of ρ as

EndM (πM∗ ẼM )-representation. By the irreducibility of ρ asQℓ[Wt, ♮E ]-representation,
ρM is unique up to conjugation by Wt. Let us write tM = [M◦, CM◦

v , E ]M ∈ N 0
M . By

Proposition 3.5

(64) qE := HomEndM (πM
∗ ˜EM )

(
ρM , π

M
∗ ẼM

)
= (πM∗ Ẽ)ρM
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is a cuspidal local system on CMv = CM◦
v , and ΣtM (CMv , qE) = ρM . Since any other

choice ρ′M is conjugate to ρM by an element of NG(t), (M, CMv , qE) is determined
by (u, η), up to G-conjugacy. Thus we can canonically define

(65) qΨG(u, η) = [M, CMv , qE ]G.

Let F be the irreducible local system on CGu with Fu = η and let Y = Y(M◦,S) ⊂ G,
where S = CMv Z(M)◦. From Theorem 4.7 we see that F = H2dC (IC(Y , π∗Ẽ)ρ)|CGu .
To (M, CMv , qE) we can apply the same constructions as to (L, CLv , E) in (43), in
particular there is a version qπ∗ of π∗ based on G andM . Distinguishing the various
operations π∗, we get usual isomorphisms of local systems on Y :

(66) qπ∗(q̃E) = qπ∗

( ˜(πM∗ ẼM )ρM

)
∼= (π∗Ẽ)ρM .

Since π∗Ẽ is semisimple, IC(Y , (π∗Ẽ)ρM ) ∼= IC(Y , π∗Ẽ)ρM . Hence F is also a direct
summand of

(67) H2dC
(
IC

(
Y , qπ∗(q̃E)

))
|CGu ∼= H2dC

(
IC(Y , π∗Ẽ)ρM

)
|CGu .

It follows that the characterization of ΨG given in [Lus2, Theorem 6.5] remains valid
for qΨG. In particular F and qE have the same Z(G)-character and

(68) qΨG preserves Z(G)-characters.

We abbreviate

qt = [M, CMv , qE ]G.
Let NG(qt) be the stabilizer of (M, CMv , qE) in G. It normalizes M and contains M ,
because (qE)v ∈ Irr(AM (v)). Every element of NG(qt) maps E to aM -associate local
system on CM◦

v , because qE is aM -equivariant local system which, asM◦-equivariant
sheaf, contains E . Hence NG(qt) = NG(t, qE)M .

Analogous to Wt = NG(t)/M
◦, we define

(69) Wqt = NG(qt)/M.

There are natural isomorphisms

(70) Wqt
∼= NG(t, qE)M/M ∼= NG(t, qE)/ME ∼= StabWt(qE)/(ME/M

◦).

The group Wt = NG◦(M◦)/M◦ is isomorphic to NG◦(t)M/M , and there is a natural
injection

(71) Wt
∼= NG◦(t)M/M →Wqt.

Lemma 5.3. There exists a 2-cocycle κqt of Wqt such that:

(a) there is a bijection

qΨ−1
G (qt)→ Irr

(
Qℓ[Wqt, κqt]

)
,

(b) κqt factors through Wqt/Wt and Qℓ[Wt] is canonically embedded in Qℓ[Wqt, κqt].

Proof. (a) Recall the bijection Ψ−1
G (t) → Irr

(
Qℓ[Wt, ♮E ]

)
from Theorem 4.7. With

[CuRe, §53] we can find a central extension W̃t of Wt and a minimal idempotent

pE ∈ Qℓ[ker(W̃t →Wt)], such that

(72) Qℓ[Wt, ♮E ] ∼= pEQℓ[W̃t].
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Let N ⊂ W̃t be the inverse image of ME/M
◦ ⊂ Wt. It is a normal subgroup of W̃t

because ME =M ∩NG(t) is normal in NG(t). We note that

(73) W̃t/N ∼=Wt/(ME/M
◦) ∼= NG(t)/ME .

As a consequence of (72)

(74) Qℓ[ME/M
◦, ♮E ] ∼= pEQℓ[N ].

By Theorem 1.2 there is a bijection

IrrQℓ
(W̃t) ←→

(
IrrQℓ

(N)//W̃t/N
)
κ

π ⋊ σ ←→ (π, σ).

With Proposition 1.1.c we can restrict it to representations on which pE acts as the
identity. With (72) that yields a bijection

(75) Irr
(
Qℓ[Wt, ♮E ]

)
←→

(
Irr

(
Qℓ[ME/M

◦, ♮E ]
)
//Wt/(ME/M

◦)
)
κ
.

Under the bijections from Theorem 4.7 and (75), the set qΨ−1
G (qt) ⊂ Ψ−1

G (t) is
mapped to the fiber ofWt·ρM (with respect to the map from the extended quotient on
the right hand side of (75) to the corresponding ordinary quotient). By the definition
of extended quotients, this fiber is in bijection with Irr

(
Qℓ[Wt,ρM /(ME/M

◦), κρM ]
)
.

By the equivariance of the Springer correspondence, the stabilizer of ΣtM (CMv , qE) =
ρM inWt/(ME/M

◦) is StabWt(qE)/(ME/M
◦), which by (70) is isomorphic withWqt.

Thus the composition of Theorem 4.7 and (75) provides the required bijection, with
κρM as cocycle.

(b) Consider w ∈ Wt with preimage w̃ ∈ W̃t. Since ME/M
◦ ∼= MEG

◦/G◦, w
commutes with ME/M

◦. As ♮E is trivial on Wt, moreover for all m ∈ME/M
◦

(76) TwTm(Tw)
−1 = Tm in Qℓ[Wt, ♮E ].

Hence Wt stabilizes ρM and

Wt
∼=Wt(ME/M

◦)/(ME/M
◦) is contained in Wt,ρM /(ME/M

◦).

It also follows from (76) that we can take IwρM = IdVρM
. In view of Proposition

1.1.a, the 2-cocycle κρM on Wt◦ agrees with ♮E |Wt = 1. Via (71) we consider Wt

as a subgroup of Wqt. Then the subalgebra of Qℓ[Wqt, κqt] spanned by the Tw with

w ∈Wt is simply Qℓ[Wt]. □

We will make the bijection of Lemma 5.3.a canonical, by replacing Qℓ[Wqt, κqt]
with the endomorphism algebra of the equivariant local system (66).

Lemma 5.4. Let κqt be as in Lemma 5.3. There is an isomorphism

EndG
(
qπ∗(q̃E)

) ∼= Qℓ[Wqt, κqt],

and it is canonical up to automorphisms of the right hand side which come from char-
acters of Wqt/Wt◦. Under this isomorphism Qℓ[Wt◦ ] to corresponds to EndG◦(π∗Ẽ),
which acts on qπ∗(q̃E) via (66).

Proof. Like Proposition 4.5, the larger part of this result follows from [Lus2, §3].
The constructions over there apply equally well to quasi-Levi subgroups of the pos-
sibly disconnected group G. These arguments show that, as a Qℓ-vector space,

EndG(qπ∗(q̃E)) is in a canonical way a direct sum of one-dimensional subspaces
qAw indexed by Wqt. Moreover, as an algebra it is a twisted group algebra of Wqt,
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with respect to some 2-cocycle. To analyse the 2-cocycle, we relate it to objects
appearing in the proof of Lemma 5.3.a.

By (66) VρM ⊗ qπ∗(q̃E), with G acting trivially on VρM , is a direct summand of

π∗(Ẽ). By [Lus2, Proposition 3.5] the G-equivariant local system π∗Ẽ is semisimple.
Therefore

(77) EndG
(
VρM ⊗ qπ∗(q̃E)

) ∼= EndG
(
qπ∗(q̃E)

)
⊗ EndQℓ

(VρM )

is a subalgebra of EndG(π∗Ẽ). The basis elements bw ∈ EndG(π∗Ẽ), w ∈ Wt, as

constructed in Proposition 4.5, permute the subsystems of π∗Ẽ corresponding to

different ρ′M ∈ Irr
(
EndM (πM∗ ẼM )

)
. More precisely, bw stabilizes VρM ⊗ qπ∗(q̃E) if

and only if w stabilizes ρM . Together with Proposition 4.5 this shows that (77) is
spanned (over Qℓ) by the bw with w ∈ StabWt(ρM ) = StabWt(qE).
In view of the description of (π∗Ẽ)y in (44), the stalk of VρM ⊗ qπ∗(q̃E) at y ∈ Sreg is

(78)
⊕

z∈ZNG(M◦)(v)/ZM (v)
z ·

(
(πM∗ ẼM )ρM

)
y
⊗ VρM .

As concerns the index set for the sum, by Theorem 3.1.a the canonical map
ZNG(M◦)(v)/ZM (v)→ NG(M

◦)/M is bijective.
The bw with w ∈ME/M

◦ act only on the second tensor factor of (78), and by the

irreducibility of the EndM (πM∗ ẼM )-module ρM they span the algebra EndQℓ
(VρM ).

Let [Wqt] ⊂ Wt be a set of representatives for StabWt(qE)/(ME/M
◦). By (71) we

may assume that it contains Wt◦ . From (45) we see that the bw with w ∈ [Wqt]
permute the direct summands of (78) according to the inclusion

Wqt = NG(qt)/M → NG(M
◦)/M ∼= ZNG(M◦)(v)/ZM (v).

In particular {bw : w ∈ [Wqt]} is linearly independent over EndQℓ
(VρM ). Since (77)

is spanned by the bw with w ∈ StabWt(ρM ), it follows that in fact {bw : w ∈ [Wqt]}
is a basis of (77) over EndQℓ

(VρM ).

We want to modify these bw to endomorphisms of qπ∗(q̃E), say to qbw ∈ qAw.
For w ∈ Wt◦ there is an easy canonical choice, as (76) shows that Wt◦ commutes
with Qℓ[M/M◦, ♮E ]. Hence bw fixes ρM ∈ Irr(Qℓ[M/M◦, ♮E ]) pointwise. Therefore
we can take qbw = bw for w ∈Wt◦ . By Theorem 2.2 these elements span the algebra
EndG◦(π∗Ẽ) ∼= Qℓ[Wt◦ ].

For general w ∈ [Wqt] the description given in (45) shows that the action of bw on
(78) consists of a permutation of the direct factors combined with a linear action on

VρM . Let W̃t and N be as in (72) and (74). Then (78) can be embedded in a sum

of copies of indW̃t
N (VρM ).

Now Proposition 1.1.b shows that there is a unique qbw ∈ qAw such that the
action of bw on (78) can be identified with qbw ⊗ Iw, where Iw is as in (4). We may
choose the same Iw as we did (implicitly) in the last part of the proof of Lemma
5.3.a, where we used them to determine the cocycle κρM = κqt. Then Proposition

1.1.b shows also that these qbw multiply as in the algebra Qℓ[Wqt, κρM ].
Finally, the claim about the uniqueness follows in the same way as in the last part

of the proof of Propostion 4.5. □
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Some remarks about the 2-cocycle κqt are in order. If Wqt is cyclic then κqt is

trivial because H2(Wqt,Qℓ
×
) = {1}. Furthermore

if ME =M◦, then EndG(qπ∗(q̃E)) = EndG(π∗(Ẽ)) ∼= Qℓ[Wt, ♮E ]

by Proposition 4.5. However, in contrast with the cocycle ♮E appearing in Sections
3 and 4, it is in general rather difficult to obtain explicit information about κqt. One
reason for this is that the classification of cuspidal local systems on disconnected
reductive groups, as achieved in Theorem 3.1 and in Proposition 3.5, leaves many
possibilities. In particular the groups GE/G

◦ can be very large.

Theorem 5.5. (a) There exists a canonical bijection

qΣqt : qΨ−1
G (qt) → Irr

(
EndG(qπ∗(q̃E))

)
(CGu ,F) 7→ HomG

(
F ,H2dC

(
IC

(
Y , qπ∗(q̃E)

))
|CGu

)
.

It can be defined by the condition

qΣ−1
qt (τ) = (CGu ,F) ⇐⇒ F = H2dC

(
IC

(
Y , qπ∗(q̃E)

)
τ

)
|CGu .

(b) The restriction of F to a G◦-equivariant local system on CG◦
u is

⊕
iΣ

−1
t◦ (τi),

where t◦ = [M◦, CM◦
v , E ]G◦ and τ =

⊕
i τi is a decomposition into irreducible

EndG◦(π∗Ẽ)-subrepresentations.
(c) Upon choosing an isomorphism as in Lemma 5.4, we obtain the bijection

qΨ−1
G (qt)→ Irr

(
Qℓ[Wqt, κqt]

)
from Lemma 5.3.

Proof. (c) Write tM = ΨM (CMv , qE) and recall that ρM = ΣtM (CMv , qE). By Lemma
3.4

EndM
(
πM∗ (ẼM )

) ∼= Qℓ[ME/M
◦] ∼= pEQℓ[N ],

and by Lemma 5.4

EndG(qπ∗(q̃E)) ∼= Qℓ[Wt,ρM /(ME/M
◦), κρM ].

From a τ as in the theorem we obtain, using (75),

ρM ⋊ τ ∈ Irr(pEQℓ[W̃t]) = Irr(Qℓ[Wt, ♮E ]).

By Theorem 4.7 the bijection from Lemma 5.3 maps (CGu ,F) to τ if and only if

(79) F equals H2dC
(
IC

(
Y , π∗(Ẽ)

)
ρM⋊τ

)
|CGu .

Recall from (66) that HomN (ρM , qπ∗Ẽ) ∼= π∗(q̃E). We apply Proposition 1.1.d to

W̃t, N and the representation π∗Ẽ , and we find that the right hand side of (79) is

isomorphic withH2dC
(
IC

(
Y , qπ∗(q̃E)τ

)
|CGu

)
. Since qπ∗(q̃E) is semisimple, taking the

τ -Hom-space commutes with forming an intersection cohomology complex. Hence
the bijection from Lemma 5.3 satisfies exactly the condition given in the theorem.
(a) This condition clearly is canonical, so with part (a) it determines a canonical
bijection qΣ−1

qt .
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It remains to check that the given formula for qΣqt agrees with the above con-

struction. Let (CGu ,F) ∈ qΨ−1
G (qt) and write Fu = η◦⋊τ ′ as in the proof of Theorem

4.7. Then, by (66)

HomG

(
F ,H2dC

(
IC

(
Y , qπ∗(q̃E)

))
|CGu

)
= HomG

(
F ,H2dC

(
IC

(
Y , π∗(Ẽ)

)
ρM

)
|CGu

)
= HomAG(u)

(
η◦ ⋊ τ ′,H2dC

(
IC

(
Y , π∗(Ẽ)

)
ρM

)
u

)
.(80)

As the actions of AG(u) and

Ql[ME/M
◦, ♮E ] ∼= EndM (πM∗ (ẼM )) ⊂ EndG(π∗(Ẽ))

commute, (60) shows that (80) is isomorphic to

HomQl[ME/M◦,♮E ]

(
ρM , ind

Qℓ[Wt,♮E ]

Qℓ[Wt,ρ◦ ,♮E ]
(V ∗

τ ′ ⊗ Vρ◦)
)
= HomQl[ME/M◦,♮E ]

(
ρM , τ

′∗ ⋉ ρ◦
)
.

From (75) and the subsequent argument we see that τ ′∗ ⋉ ρ◦ = ρM ⋊ τ for a unique
irreducible representation τ of (using Lemma 5.4)

Ql[Wt,ρM /(ME/M
◦), ♮E ]

) ∼= Ql[Wqt, κqt] ∼= EndG
(
qπ∗(q̃E)

)
.

In view of all this, (80) becomes

HomQl[ME/M◦,♮E ]

(
ρM , ρM⋊τ

)
= HomQl[ME/M◦,♮E ]

(
ρM , ind

Ql[Wt,♮E ]

Ql[Wt,ρM
,♮E ]

(VρM⊗Vτ )
)
= Vτ .

This means that qΣqt(CGu ,F) as given in the statement is isomorphic with the out-
come of the bijection via part (c).
(b) The behaviour of the restriction of qΣ−1

qt (τ) to CG
◦

u follows from comparing the

characterization with Theorem 2.1.(3). □

By Theorem 4.7 and (75), qΣqt(u, η) is also given by

(81) Σt(CGu ,F) = ΣtM (CMv , qE)⋊ qΣqt(CGu ,F).
However, it is hard to make sense of this ⋊-sign in a completely canonical way,
without using the isomorphisms from Proposition 4.5 and Lemma 5.4.

There is also an analogue of Theorem 4.8 with quasi-Levi subgroups. Assume
that H ⊂ G is an algebraic subgroup such that H ∩G◦ is a Levi subgroup of G◦ and
H contains the quasi-Levi subgroup ZG(Z(G

◦ ∩ H)◦). Let u ∈ H◦ be unipotent.
We saw in (61) that AH(u) can be regarded as a subgroup of AG(u).

Proposition 5.6. In the above setting, let η ∈ IrrQℓ
(AG(u)) and ηH ∈ IrrQℓ

(AH(u)).

(a) If ηH appears in Res
AG(u)
AH(u)(η), then qΨG(u, η) = qΨH(u, ηH)/G-conjugacy.

(b) There is a natural inclusion of algebras EndH(qπH∗ (q̃EH))→ EndG(qπ∗(q̃E)).
Suppose that qΨG(u, η) = qΨH(u, ηH)/G-conjugacy. Then qΣqΨH(u,ηH)(u, ηH)

is a constituent of Res
EndG(qπ∗(q̃E))
EndH(qπH

∗ (q̃EH))
qΣqt(u, η) if and only if ηH is a constituent

of Res
AG(u)
AH(u)(η).

Proof. (a) From Theorem 4.8.a we know that [M◦, CM◦
v , E ]G = ΨG(u, η) equals

ΨH(u, η) up to G-conjugacy. In particular M◦ ⊂ H◦ and, by the assumptions

on H, M ⊂ H. It follows that EndM (πM∗ ẼM ) is also a subalgebra of EndH(πH∗ ẼH).
By Theorem 4.8.b we may choose ρM (used in (64) to construct qE) to be a con-
stituent of ρH = ΣtH (u, ηH). Then ΨH(u, ηH) = [M, CMv , qE ]H , which agrees with
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(65).

(b) By Lemma 5.4 EndH
(
qπH∗ (q̃EH)

) ∼= Qℓ[WqtH , κqtH ]. Here

WqtH =WtH ,ρM /(ME/M
◦) = NH(M◦, CM◦

v , E)/ME

is a subgroup of

NG(M
◦, CM◦

v , E)/ME =Wt,ρM /(ME/M
◦) =Wqt.

The 2-cocycle κqtH is just the restriction of κqt, because both are based on the same

representation ρM of EndM (πM∗ ẼM ). This gives an injection

Qℓ[WqtH , κqtH ]→ Qℓ[Wqt, κqt].

With Lemma 5.4 we get an injection

EndH(qπH∗ (q̃EH))→ EndG(qπ∗(q̃E)).

It is natural because every basis element qbw (w ∈ WqtH ) of EndG(qπ∗(q̃E)) con-

structed in the proof of Lemma 5.4 stabilizes the subset qπH∗ (q̃EH) and hence natu-
rally determines an automorphism of that sheaf.

For the group H (81) says

ΣtH (u, ηH) = ρM ⋊ qΣqtH (u, ηH).

By Theorem 4.8.b ΣtH (u, ηH) appears in Σt(u, η) if and only if ηH appears in η.
With Proposition 1.1.c and (81) we see that this is also equivalent to qΣqtH (u, ηH)
appearing in qΣqt(u, η). □

This concludes the part of the paper which deals exclusively with Springer corre-
spondences. We remark once more that all the results from Sections 2–5 also hold
with C instead of Qℓ.

6. Cuspidal Langlands parameters

We will introduce a notion of cuspidality for enhanced L-parameters. Before we
come to that, we recall some generalities about Langlands parameters and Levi
subgroups. For more background we refer to [Bor, Vog, ABPS6].

Let F be a local non-archimedean field withWeil groupWF . LetH be a connected
reductive algebraic group over F and let H∨ be its complex dual group. The data
for H provide an action of WF on H∨ which preserves a pinning, and that gives the
Langlands dual group LH = H∨⋊WF . (All these objects are determined by F and
H up to isomorphism.)

Definition 6.1. Let T ⊂ H∨ be a torus such that the projection ZH∨⋊WF
(T ) →

WF is surjective. Then we call LL = ZH∨⋊WF
(T ) a Levi L-subgroup of LH.

We remark that in [Bor] such groups are called Levi subgroups of LH. We prefer
to stick to the connectedness of Levi subgroups.

Choose a WF -stable pinning for H∨. This defines the notion of standard Levi
subgroups of H∨. An alternative characterization of Levi L-subgroups of LH is as
follows.

Lemma 6.2. Let LL be a Levi L-subgroup of LH. There exists a WF -stable standard
Levi subgroup L∨ of H∨ such that LL is H∨-conjugate to L∨⋊WF and L := LL∩H∨

is conjugate to L∨.
Conversely, every H∨-conjugate of this L∨ ⋊WF is a Levi L-subgroup of LH.
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Proof. By [Bor, Lemma 3.5] there exists a parabolic subgroup P ⊂ H∨ such that

• NH∨⋊WF
(P )→WF is surjective;

• L is a Levi factor of P ;
• LL = NH∨⋊WF

(L) ∩NH∨⋊WF
(P ).

To construct such a P , choose a Z-linear function X∗(T ) → Z in generic position
(i.e. not orthogonal to any coroot). Then we can define P as the subgroup of H∨

generated by L and by all root subgroups associated to positive (with respect to this
linear function) cocharacters of T .

Let PI = LI ⋊UI be the unique standard parabolic subgroup of H∨ conjugate to
P . Here UI denotes the unipotent radical of PI , and LI its standard Levi factor.
Then NH∨⋊WF

(PI)→WF is still surjective, so PI is WF -stable. Pick h ∈ H∨ with
PI = hPh−1. Then hLh−1 is a Levi factor of PI and

h LLh−1 = NPI⋊WF
(h LLh−1)

is a complement to UI in PI ⋊WF . All Levi factors of PI are UI -conjugate, so there
exists a u ∈ UI with uh LLh−1u−1 = LI . Then

uh LLh−1u−1 = NPI⋊WF
(LI) = LI ⋊WF .

For the converse, let L∨ be a WF -stable standard Levi subgroup of H∨. Denote the
standard maximal torus of H∨ by L∅ and consider the root system R := R(H∨, L∅).
By assumption WF acts on R and stabilizes a basis ∆. Let T ⊂ L∅ be the neutral
component of Z(L∨)WF . This is a WF -fixed torus which commutes with L∨ and

α(t) = (w · α)(t) ∀t ∈ T, α ∈ R,w ∈WF .

The Lie algebra lder of L∅ ∩ H∨
der is spanned by ∆∨ and WF -stable. Let I be the

set of simple roots in R(L∨, L∅). Since L∨ is WF -stable, so are I and ∆ \ I. Let
X ∈ lder be an element which annihilites I and takes the same value in R>0 on all
simple roots not in I. Then X ∈ Lie(L∨) is fixed by WF . This gives an element
exp(X) ∈ T with α(expX) = exp(α(X)) > 1 for all positive roots in R \R(L∨, L∅).

In general, the H∨-centralizer of the torus T ⊂ Z(L∨)◦ is generated by L∨ and by
the root subgroups Uα for which α becomes trivial on T . With the above elements
exp(X) we deduce that

ZH∨(T ) = L∨ and ZH∨⋊WF
(T ) = L∨ ⋊WF .

This means that L∨⋊WF is a Levi L-subgroup of LH in the sense of Definition 6.1.
For any h ∈ H∨:

h(L∨ ⋊WF )h
−1 = ZH∨⋊WF

(hTh−1).

This group contains hWFh
−1, so it projects onto WF . Hence it is again a Levi

L-subgroup of LH. □

Remark 6.3. Most Levi L-subgroups of LH are not quasi-Levi, and conversely. For
example, let U = U(n,E/F ) be a p-adic unitary group (E is a quadratic extension
of F ) and let LU be its dual L-group. The group WF acts on U∨ = GL(n,C) via an
outer automorphism which preserves the diagonal torus T and the standard Borel
subgroup B. Then T ⋊WF is a Levi L-subgroup of LU : it is the centralizer of TWF

in LU . However, it is not quasi-Levi. Namely ZLU (T ) = T ⋊WE , which is an index
two subgroup of T ⋊WF .

The following definitions are well-known, we repeat them here to facilitate com-
parison with later generalizations.
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Definition 6.4. A L-parameter for LH is a continuous group homomorphism
ϕ : WF × SL2(C)→ LH such that:

• ϕ(w) ∈ H∨w for all w ∈WF ;
• ϕ(w) is semisimple for all w ∈WF ;
• ϕ|SL2(C) : SL2(C)→ H∨ is a homomorphism of complex algebraic groups.

Recall that all inner forms of H share the same Langlands dual group LH, so the
group H is not determined by the target LH of a L-parameter. Let us specify which
L-parameters are relevant for H, and which are bounded or discrete.

Definition 6.5. Let ϕ : WF × SL2(C) → LH be a L-parameter. We say that ϕ is
bounded if ϕ(Frob) = (h,Frob) with h in some compact subgroup of H∨.

Suppose that LL is a Levi L-subgroup of LH and that

• LL contains the image of ϕ;
• there is no smaller Levi L-subgroup of LH with this property.

Then we call ϕ relevant for H if and only if the conjugacy class of LL is relevant for
H, that is, it corresponds to a conjugacy class of Levi subgroups of H.

In this case we also say that ϕ is a discrete L-parameter for LL, and for any Levi
subgroup L ⊂ H in the associated class. In particular ϕ is discrete for H if and only
if there is no proper Levi L-subgroup of LH containing the image of ϕ.

The group H∨ acts on the set of relevant L-parameters for H. We denote
the set of relevant L-parameters modulo H∨-conjugation by Φ(H). The subset of
bounded L-parameters (up to conjugacy) is denoted by Φbdd(H). The local Lang-
lands correspondence predicts that Irr(H) is partitioned into finite L-packets Πϕ(H),
parametrized by Φ(H). Under this correspondence Φbdd(H) should give rise to L-
packets consisting entirely of tempered representations, and that should account for
the entire tempered dual of H.

It is expected (and established in many cases) that the following conditions are
equivalent for ϕ ∈ Φ(H):

• ϕ is discrete;
• Πϕ(H) contains an essentially square-integrable representation;
• all elements of Πϕ(H) are essentially square-integrable.

In other words, “discrete” (respectively “bounded”) is the correct translation of
“essentially square-integrable” (respectively “tempered”) under the local Langlands
correspondence.

However, it is more difficult to characterize when Πϕ(H) contains supercuspidal
H-representations. Of course ϕ has to be discrete, but even then. Sometimes Πϕ(H)
consists entirely of supercuspidal representations, for example when H = SL2(F )
and ϕ comes from an irreducible representation WF → GL2(C). In other cases
Πϕ(H) contains only non-supercuspidal essentially square-integrable representations,
for example when H = SL2(F ), ϕ|WF

= idWF
and ϕ|SL2(C) is an irreducible two-

dimensional representation of SL2(C).
Moreover there are mixed cases, where Πϕ(H) contains both supercuspidal and

non-supercuspidal representations. An example is formed by a Langlands parameter
for a group of type G2, with ϕ

(
1, ( 1 1

0 1 )
)
a subregular unipotent element of G2(C).

Then Πϕ(G2(F )) has a unique supercuspidal element and contains two representa-
tions from the principal series of G2(F ), see [Lus3].
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To parametrize the representations in a given L-packet, we need more information
then just the Langlands parameter itself. Let ZH∨(ϕ) be the centralizer of ϕ(WF ×
SL2(C)) in H∨. This is a complex reductive group, in general disconnected. We
write

(82) Rϕ := π0
(
ZH∨(ϕ)/Z(H∨)WF

)
.

It is expected that Πϕ(H) is in bijection with Irr(Rϕ) if H is quasi-split. However,
for general H this is not good enough, and we follow Arthur’s setup [Art2].

Let H∨
sc be the simply connected cover of the derived group H∨

der of H∨. The
conjugation action of H∨

der lifts to an action of H∨
sc on H by conjugation. The

action of WF on H∨
der lifts to an action on H∨

sc, because the latter group is simply
connected. Thus we can form the group H∨

sc ⋊WF . In this semidirect product we
can compute hwh−1 for h ∈ H∨

sc and w ∈WF . Dividing out the normal subgroup
ker(H∨

sc → H∨
der), we can interpret hwh−1 as an element of H∨

der ⋊WF .
Together with the above this provides a conjugation action of H∨

sc on H∨ ⋊WF .
Hence H∨

sc also acts on the set of Langlands parameters for H and we can form
ZH∨

sc
(ϕ).

Since ZH∨(ϕ) ∩ Z(H∨) = Z(H∨)WF ,

(83) ZH∨(ϕ)/Z(H∨)WF ∼= ZH∨(ϕ)Z(H∨)/Z(H∨).

The right hand side can be considered as a subgroup of the adjoint group H∨
ad. Let

Z1
H∨

sc
(ϕ) be its inverse image under the quotient map H∨

sc → H∨
ad. We can also

characterize it as

Z1
H∨

sc
(ϕ) =

{
h ∈ H∨

sc : hϕh
−1 = ϕah for some ah ∈ B1(WF , Z(H∨))

}
(84)

=
{
h ∈ ZH∨

sc

(
ϕ(SL2(C))

)
: hϕ|WF

h−1 = ϕ|WF
ah for some ah ∈ B1(WF , Z(H∨))

}
= Z1

H∨
sc
(ϕ|WF

) ∩ ZH∨
sc

(
ϕ(SL2(C))

)
.

Here B1(WF , Z(H∨)) is the set of 1-coboundaries for group cohomology, that is,
maps WF → Z(H∨) of the form w 7→ zwz−1w−1 with z ∈ Z(H∨). The neutral
component of Z1

H∨
sc
(ϕ) is ZH∨

sc
(ϕ)◦, so it is a complex reductive group.

The difference between ZH∨
sc
(ϕ) and Z1

H∨
sc
(ϕ) is caused by the identification (83),

which as it were includes Z(H∨) in ZH∨(ϕ). We note that Z1
H∨

sc
(ϕ) = ZH∨

sc
(ϕ)

whenever Z(H∨
sc)

WF = Z(H∨
sc), in particular if H is an inner twist of a split group.

Given ϕ, we form the finite group

(85) Sϕ := π0
(
Z1
H∨

sc
(ϕ)

)
.

Via (83), the map H∨
sc → H∨

ad induces a homomorphism Sϕ → Rϕ. In fact, Sϕ is a
central extension of Rϕ by Zϕ := Z(H∨

sc)/Z(H∨
sc) ∩ ZH∨

sc
(ϕ)◦ [ABPS6, Lemma 1.7]:

(86) 1→ Zϕ → Sϕ → Rϕ → 1.

Since H∨
sc is a central extension of H∨

ad = H∨/Z(H∨), the conjugation action of H∨
sc

on itself and on Sϕ descends to an action of H∨
ad. Via the canonical quotient map,

also H∨ acts on Sϕ by conjugation.
An enhancement of ϕ is defined to be an irreducible complex representation ρ of

Sϕ. We refer to [Art2, ABPS6] for a motivation of this particular kind of enhance-
ments. We let H∨ and H∨

sc act on the set of enhanced L-parameters by

(87) h · (ϕ, ρ) = (hϕh−1, h · ρ) where (h · ρ)(g) = ρ(h−1gh).
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We note that both groups acting in (87) yield the same orbit space.
The notion of relevance for enhanced L-parameters is more subtle. Firstly, we

must specify H not only as an inner form of a quasi-split group H∗, but even as
an inner twist. That is, we must fix an isomorphism H → H∗ of algebraic groups,
defined over a separable closure of F . The inner twists of H are parametrized by
the Galois cohomology group H1(F,Had), where Had denotes the adjoint group
of H (considered as an algebraic group defined over F ). The parametrization is
canonically determined by requiring that H∗ corresponds to the trivial element of
H1(F,Had). Kottwitz [Kot, Theorem 6.4] found a natural group isomorphism

(88) H1(F,Had) ∼= IrrC
(
Z(H∨

sc)
WF

)
.

(When F has positive characteristic, see [Tha, Theorem 2.1].) In this way every
inner twist of H is associated to a unique character of Z(H∨

sc)
WF = Z(H∨

sc ⋊WF ).
The functoriality of the Kottwitz homomorphism implies that this parametrization
behaves well with respect to Levi subgroups. To make this statement precise, let L
be a Levi F -subgroup of H. Via H → H∗, we regard L as an inner twist of a quasi-
split Levi subgroup L∗ of H∗. Let L∨c be the inverse image of L∨ under H∨

sc → H.
It contains L∨sc as the derived subgroup of L∨c . The next lemma is a variation on
[KMSW, Lemma 0.4.9], tailored for our purposes.

Lemma 6.6. (a) The centers of H∨
sc,L∨c and L∨sc are related by

Z(H∨
sc)

WFZ(L∨c )WF ,◦ = Z(L∨c )WF ⊃ Z(L∨sc)WF .

(b) The character of Z(H∨
sc)

WF determined by (88) is trivial on
Z(H∨

sc)
WF ∩ Z(L∨c )WF ,◦. Using part (a) we extend it to Z(L∨c )WF , trivially on

Z(L∨c )WF ,◦. Then the character of Z(L∨sc)WF obtained by restriction equals the
character of Z(L∨sc)WF associated to L by (88).

Proof. (a) See [Art1, Lemma 1.1].
(b) The morphisms of reductive F -groups Had ← L/Z(H)→ Lad induce the follow-
ing commutative diagram:

H1(F,Had)

��

H1(F,L/Z(H))oo //

��

H1(F,Lad)

��
Irr

(
Z(H∨

sc)
WF

)
Irr

(
π0(Z(L∨c )WF )

)
//oo Irr

(
Z(L∨sc)WF

)
.

All the vertical arrows are isomorphisms, and according to [Art1, p. 217] the left
horizontal arrows are injective. Since L is a Levi F -subgroup of H, the element
of H1(F,Had) which parametrizes H can be represented by a Galois cocycle with
values in the Levi subgroup L/Z(H) of Had. This cocycle maps naturally to an
element of H1(F,Lad), which then parametrizes the inner twist L of L∗.

On the bottom line of the diagram, the associated character of Z(L∨sc)WF must
come from a character of π0(Z(L∨c )WF ), via the map Z(L∨sc)WF → π0(Z(L∨c )WF )
from part (a). Hence this character is trivial on Z(H∨

sc)
WF ∩ Z(L∨c )WF ,◦. The

character of Z(L∨sc)WF associated to L is then obtained by applying the lower right
map in the diagram. This works out as restriction to Z(L∨sc)WF , in the indicated
way. □
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Given any Langlands parameter ϕ for LH, there is a natural group homomorphism
Z(H∨

sc)
WF → Z(Sϕ). The centre of Sϕ acts by a character on any ρ ∈ IrrC(Sϕ), so

any enhancement ρ of ϕ determines a character ζρ of Z(H∨
sc)

WF .

Definition 6.7. Let (ϕ, ρ) be an enhanced L-parameter for LH. We say that (ϕ, ρ)
or ρ is H-relevant if ζρ parametrizes the inner twist H via (88).

By the next result, Definition 7.7 fits well with the earlier notion of relevance of
ϕ, as in Definition 6.5.

Proposition 6.8. Let H be an inner twist of a quasi-split group and let ζ ∈
IrrC

(
Z(H∨

sc)
WF

)
be the associated character. Let ϕ be a Langlands parameter for

LH. The following are equivalent:

(1) ϕ is relevant for H;
(2) Z(H∨

sc)
WF ∩ ZH∨

sc
(ϕ)◦ ⊂ ker ζ;

(3) there exists a ρ ∈ IrrC(Sϕ) with ζρ = ζ, that is, such that (ϕ, ρ) is H-relevant.

Proof. For the equivalence of (1) and (2) see [HiSa, Lemma 9.1] and [Art1, Corol-
lary 2.2]. The equivalence of (2) and (3) is easy, it was already noted in [ABPS6,
Proposition 1.6]. □

Let us remark here that the usage of H∨
sc and the above relevance circumvents

some of the problems in [Vog, §2]. In particular it removes the need to consider
variations such as ”pure inner forms” or ”pure inner twists”.

We denote the set of H∨-equivalence classes of enhanced relevant L-parameters
for H by Φe(H). Following [Art2] we choose an extension ζH of ζ to a character of
Z(H∨

sc). We define

(89) Φe,ζH(H) = {(ϕ, ρ) ∈ Φe(H) : ζH idVρ = ρ ◦ (Z(H∨
sc)→ Sϕ)},

where Vρ is the vector space underlying ρ. According to [Art2, §4]

Z(H∨
sc) ∩ ZH∨

sc
(ϕ)◦ = Z(H∨

sc)
WF ∩ ZH∨

sc
(ϕ)◦.

Hence every extension of ζ to a character of Z(H∨
sc) is eligible if ϕ is H-relevant. Of

course we take ζH = triv if H is quasi-split. Since Sϕ/Zϕ
∼= Rϕ, we obtain

Φe,triv(H) = {(ϕ, ρ) : ϕ ∈ Φ(H), ρ ∈ Irr(Rϕ)} if H is quasi-split.

It is conjectured [Art2, ABPS6] that the local Langlands correspondence for H can
be enhanced to a bijection

Irr(H)←→ Φe,ζH(H).
Recall that by the Jacobson–Morosov theorem any unipotent element u of
ZH∨

sc
(ϕ(WF ))

◦ can be extended to a homomorphism of algebraic groups SL2(C)→
ZH∨

sc
(ϕ(WF ))

◦ taking the value u at ( 1 1
0 1 ). Moreover, by [Kos, Theorem 3.6] this

extension is unique up to conjugation. Hence any element (ϕ, ρ) ∈ Φe(H) is already
determined by ϕ|WF

, uϕ = ϕ
(
1, ( 1 1

0 1 )
)
and ρ. More precisely, the map

(90) ϕ 7→
(
ϕ|WF

, uϕ = ϕ
(
1, ( 1 1

0 1 )
))

provides a bijection between Φ(H) and theH∨-conjugacy classes of pairs (ϕ|WF
, uϕ).

The inclusion Z1
H∨

sc
(ϕ)→ Z1

H∨
sc
(ϕ|WF

) ∩ ZH∨
sc
(uϕ) induces a group isomorphism

(91) Sϕ → π0
(
Z1
H∨

sc
(ϕ|WF

) ∩ ZH∨
sc
(uϕ)

)
.
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We will often identify Φe(H) with the set of H∨-equivalence classes of such triples
(ϕ|WF

, uϕ, ρ). Another way to formulate (91) is

(92) Sϕ ∼= π0(ZG(uϕ)) where G = Z1
H∨

sc
(ϕ|WF

) and uϕ = ϕ
(
1, ( 1 1

0 1 )
)
.

We note also that there is a natural bijection between the set of unipotent elements
in H∨ and those in H∨

sc, so we may take uϕ in either of these groups.
Based on many examples we believe that the following kind of enhanced L-

parameters should parametrize supercuspidal representations.

Definition 6.9. An enhanced L-parameter (ϕ, ρ) for LH is cuspidal if ϕ is dis-
crete and (uϕ, ρ) is a cuspidal pair for G = Z1

H∨
sc
(ϕ|WF

). Here ρ is considered as a

representation of π0(ZG(uϕ)) via (92).
We denote the set of H∨-equivalence classes of H-relevant cuspidal L-parameters

by Φcusp(H). When ζH is as in (89), we put Φcusp,ζH(H) = Φcusp(H) ∩ Φe,ζH .

It is easy to see that every group H has cuspidal L-parameters. Let ϕ ∈ Φ(H)
be a discrete parameter which is trivial on SL2(C). Then uϕ = 1 and ZH∨(ϕ)◦ =

Z(H∨)WF ,◦. Hence G = Z1
H∨

sc
(ϕ) is finite and every enhancement ρ of ϕ is cuspidal.

By Proposition 6.8 we can choose a H-relevant ρ.
In the case of quasi-split groups we can also use enhanced L-parameters of the

form (ϕ, ρ) with ρ ∈ Irr(Rϕ), where Rϕ is as in (82). Such a parameter is cuspidal
if and only if (uϕ, ρ) is a cuspidal pair for ZH∨(ϕ).

Conjecture 6.10. Let H be any reductive p-adic group, and choose a character ζH
of Z(H∨

sc) whose restriction to Z(H∨
sc)

WF parametrizes H via the Kottwitz homomor-
phism. Under the local Langlands correspondence, Φcusp,ζH(H) is in bijection with
the set of supercuspidal irreducible smooth H-representations (up to isomorphism).

Now we check that, in many cases where a local Langlands correspondence is
known, Conjecture 6.10 holds.

Example 6.11. Let F be a p-adic field, D a division algebra over F such that
dimF D = d2 and H = GLm(D). Then H is an inner form of GLn(F ) with n = md.
Let (ϕ, ρ) ∈ Φcusp(H). We have H∨

sc = SLn(C) and LH = GLn(C)×WF . Since ϕ is
discrete, it is an irreducible representation of WF × SL2(C) and

Sϕ = π0(ZSLn(C)(ϕ)) = Z(SLn(C)) ∼= Z/nZ.

Because (ϕ, ρ) is relevant for H, ρ is a character of Sϕ of order d. Furthermore ϕ
decomposes as

ϕ = π ⊠ Sπ with π ∈ Irr(WF ), Sπ ∈ Irr(SL2(C)).
Let d′ denote the dimension of Sπ. We will use same argument as in [Lus2, p.
247]. Choose an isomorphism Mn(C) ∼= Mn/d′(C) ⊗Md′(C) and let 1n/d′ be the
multiplicative unit of the matrix algebra Mn/d′(C). Then

G = ZSLn(C)(ϕ(WF )) ≃
(
1n/d′ ⊗GLd′(C)

)
∩ SLn(C).

Since we assume that (ϕ, ρ) is cuspidal, this implies that uϕ is in the regular unipotent
class of GLd′(C), and Z(SLd′(C)) acts on ρ by a character of order d′. The kernel
of the Z(SLn(C))-character ρ consists precisely of the d-th powers in Z(SLn(C)).
This is possible if and only if no such d-th power is a nontrivial element of 1n/d′ ⊗
Z(SLd′(C)). Thus the only additional condition on d′ becomes: lcm(d, n/d′) = n.
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By the local Langlands correspondence for GLm(D) (see [HiSa, §11] and [ABPS2,
§2]) ϕ is associated to a unique essentially square integrable representation πϕ of
GLm(D). According to [DKV, Théorème B.2.b] πρ is supercuspidal if and only if
lcm(d, n/d′) = n. Consequently the LLC for GLm(D) restricts to a bijection between
Φcusp(GLm(D)) and Irrcusp(GLm(D)).

We recover the case GLn(F ) when D = F and ϕ = π is an irreducible represen-
tation of WF . An other case is when H = GL1(D) with d = 2. We find that the
cuspidal L-parameters of GL1(D) come in two forms:

• (π, idZ(SL2(C))) with π an irreducible two-dimensional representation of WF ;
• (χ⊠ S2, idZ(SL2(C))), with χ a character of WF and S2 the irreducible two-
dimensional representation of SL2(C).

The Langlands parameter in the latter case corresponds to the character χ̂ ◦Nrd of
GL1(D) and to the GL2(F )-representation χ̂ ◦ det⊗StGL2(F ). These two represen-
tations are connected by the Jacquet–Langlands correspondence.

Example 6.12. Let F be a p-adic field, and let H be a symplectic group Sp2n(F )
or a split special orthogonal group SOm(F ). We have LH = H∨×WF . Then [Mou,
Proposition 4.14] shows, using results of Arthur and Mœglin, that the supercuspidal
irreducible representations of H correspond, via the local Langlands correspondence,
to cuspidal enhanced L-parameters.

Example 6.13. Let F be a p-adic field and E a quadratic extension of F . Let
H = Un(F ) be the quasi-split unitary group defined over F and split over E. We
have LH = GLn(C) ⋊ Gal(E/F ). Let ϕ : WF × SL2(C) −→ LH be a discrete
Langlands parameter and fix σ ∈ WF such that WF /WE ≃ ⟨σ⟩. We use the
notions of conjugate-dual, conjugate-orthogonal and conjugate-symplectic defined
in [GGP, §3]. We can decompose the restriction of ϕ to WE as an n-dimensional
representation:

(93) ϕ WE
=

⊕
π∈IEO

mππ ⊕
⊕
π∈IES

mππ ⊕
⊕

π∈IEGL

mπ

(
π ⊕ σπ∨

)
,

where

• IEO is a set of irreducible conjugate-orthogonal representations of WE ;
• IES is a set of irreducible conjugate-symplectic representations of WE ;
• IEGL is a set of irreducible representations of WE which are not conjugate-
dual.

Then, by [GGP, p.15]

ZH∨(ϕ(WF )) ≃
∏
π∈IEO

Omπ(C)×
∏
π∈IES

Spmπ
(C)×

∏
π∈IEGL

GLmπ(C).

Every term mππ in (93) can be decomposed as ⊕aπ ⊠ Sa, where Sa denotes the a-
dimensional irreducible representation of SL2(C). Here a runs through some subset
of N – every a appears at most once because ϕ is discrete. For every such (π, a) we
choose an element zπ,a ∈ AGLn(C)(ϕ) which acts as −1 on π⊠Sa and as the identity
on all other factors π′ ⊠ Sa′ .

From now on we assume that ϕ can be enhanced to a cuspidal L-parameter. The
above and the classification of cuspidal pairs in [Lus2] show that uϕ = (uϕ,π) satisfies:
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• if π ∈ IEO , then the partition associated to uϕ,π is (1, 3, . . . , 2dπ − 1),

AOmπ (C)(uϕ,π) =
∏dπ

a=1⟨zπ,2a−1⟩ ≃ (Z/2Z)dπ and ε ∈ Irr(AOmπ (C)(uϕ,π)) is

given by ε(zπ,2a−1) = (−1)a or ε(zπ,2a−1) = (−1)a+1;
• if π ∈ IES , then the partition associated to uϕ,π is (2, 4, . . . , 2dπ),

ASpmπ
(C)(uϕ,π) =

∏dπ
a=1⟨zπ,2a⟩ ≃ (Z/2Z)dπ and ε ∈ Irr(ASpmπ

(C)(uϕ,π)) is

given by ε(zπ,2a) = (−1)a;
• if π ∈ IEGL, then mπ = 1 and uϕ,π = 1.

Because ϕ is discrete, IEGL is empty. Hence

(94) ϕ WE×SL2(C) =
⊕
π∈IEO

dπ⊕
a=1

π ⊠ S2a−1 ⊕
⊕
π∈IES

dπ⊕
a=1

π ⊠ S2a.

Moreover, in [Moe, Théorème 8.4.4], Mœglin classified the supercuspidal representa-
tions in an Arthur packet. In particular, for tempered Langlands parameters (which
are Arthur parameters trivial on the second copy of SL2(C)), the description is given
in term of a Jordan block and a character defined by this Jordan block. Here the
Jordan block Jord(ϕ) of the Langlands parameter ϕ of a supercuspidal representa-
tion of H is the set of pairs (π, a), where π is an irreducible representation of WE

stable under the action of the composition of inverse-transpose and σ, and a is an
integer such that π ⊠ Sa is a subrepresentation of ϕ WE

.
The condition on the Jordan block says that it has no holes (or is without jumps).

More explicitly, for all a > 2, if (π, a) ∈ Jord(ϕ) then (π, a−2) ∈ Jord(ϕ). The shape
of ϕ is then as (94). Moreover, the alternated characters are exactly the cuspidal
ones. More precisely, [Moe, p.194] gives the definition zπ,a as our zπ,azπ,a−2 (or zπ,2
in the case of a = 2). But the cuspidal characters are exactly the characters which
are alternated, i.e. such that ε(zπ,azπ,a−2) = −1.

Example 6.14. Let ϕ be a relevant discrete L-parameter which is trivial on the
wild inertia subgroup PF of the inertia group IF , and such that the centralizer of
ϕ(IF ) in H∨ is a torus. The latter condition forces ϕ to be trivial on SL2(C). Hence
uϕ = 1, and any enhancement of ϕ gives a cuspidal L-parameter. Let

Cϕ = π0
(
ZH∨(ϕ)/Z(LH)◦

)
and let ρ ∈ Irr(Cϕ). It is known from [DeRe] that these enhanced L-parameters (ϕ, ρ)
correspond to the depth-zero generic supercuspidal irreducible representations of H,
in the case where H is a pure inner form of an unramified reductive p-adic group.
We note that the component group Cϕ is a quotient of our Sϕ, namely by the kernel
of H∨

sc → H∨. A priori in these references only a subset of our enhancements of ϕ
is considered. However, it boils down to the same, because the p-adic group H is
chosen such that ρ is relevant for it [DeRe, §2].

Example 6.15. Let (ϕ, ρ) be a relevant enhanced L-parameter such that ϕ is dis-

crete and trivial on P
(r+1)
F and nontrivial on P

(r)
F for some integer r > 0, and such

that the centralizer in H∨ of ϕ(P
(r)
F ) is a maximal torus of H∨. Again any such

(ϕ, ρ) is cuspidal. The same argument as in Example 6.14 shows that the result of
Reeder in [Ree2, §6] implies that these enhanced L-parameters correspond to the
depth r generic supercuspidal irreducible representations of H, when H is a pure
inner form of an unramified reductive p-adic group.
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7. The cuspidal support of enhanced L-parameters

In the representation theory of p-adic groups Bernstein’s cuspidal support map
(see [BeDe, §2] or [Ren, VI.7.1]) plays an important role. It assigns to every ir-
reducible smooth H-representation π a Levi subgroup L of H and a supercuspidal
L-representation σ, such that π is contained in the normalized parabolic induction
of σ. This condition determines (L, σ) uniquely up to H-conjugacy. It is common to
call (L, σ) a cuspidal pair forH. The cuspidal support of π ∈ Irr(H) is aH-conjugacy
class of cuspidal pairs, often denoted by Sc(π).

It is expected that Sc relates very well to the LLC. In fact this is a special case
of a conjecture about the relation with parabolic induction, see [Hai, Conjecture
5.22] and [ABPS6, §1.5]. Suppose that P = LUP is a parabolic subgroup of H, that
ϕ ∈ Φ(L) and σ ∈ Πϕ(L). Then the L-packet Πϕ(H) should consist of constituents

of the normalized parabolic induction IHP (σ).
We will define an analogue of Sc for enhanced L-parameters. In this setting a

cuspidal pair for LH should become a triple (L∨ ⋊ WF , ϕ, ρ), where L∨ ⋊ WF is
the L-group of a Levi subgroup L ⊂ H and (ϕ, ρ) is a cuspidal L-parameter for L.
However, the collection of such objects is not stable under H∨-conjugation, because
hL∨h−1 need not be WF -stable. To allow H∨ to act on these triples, we must
generalize Definition 6.9 in a less restrictive way.

Definition 7.1. Let LL be a Levi L-subgroup of LH. A Langlands parameter for
LL is a group homomorphism ϕ : WF ×SL2(C)→ LL satisfying the requirements of
Definition 6.4. An enhancement of ϕ is an irreducible representation ρ of π0(Z

1
Lsc

(ϕ)),

where Lsc is the simply connected cover of the derived group of L = LL ∩H∨. The
group L acts on the collection of enhanced L-parameters for LL by (87).

We say that (ϕ, ρ) is cuspidal for LL if ϕ is discrete for LL and
(
uϕ = ϕ

(
1, ( 1 1

0 1 )
)
, ρ
)

is a cuspidal pair for Z1
Lsc

(ϕ|WF
). We denote the set of L-orbits by Φe(

LL) and the

subset of cuspidal L-orbits by Φcusp(
LL).

We remark that in this definition it is not specified for which p-adic group an
enhanced L-parameter for LL is relevant. Hence Φe(

LL) is in general strictly larger
than Φe(L), it also contains enhanced L-parameters for inner forms of L.

Let Lc be the pre-image of L under under H∨
sc → H∨. Since L is a Levi subgroup

of H∨, the derived group of Lc is the simply connected cover of Lder. Thus we
identify Lsc with the inverse image of Lder under H∨

sc → H∨.

Definition 7.2. A cuspidal datum for LH is a triple (LL, ϕ, ρ) as in Definition 7.1,
such that (ϕ, ρ) is cuspidal for LL. It is relevant for H if

• ρ = ζ on Lsc ∩ Z(H∨
sc)

WF , where ζ ∈ Irr(Z(H∨
sc)

WF ) parametrizes the inner
twist H via the Kottwitz isomorphism (88).
• ρ = 1 on Lsc ∩ Z(Lc)

◦.

For h ∈ H∨
sc the conjugation action

L→ hLh−1 : l 7→ hlh−1

stabilizes the derived group of L and lifts to Lsc → (hLh−1)sc. Using this, H∨
sc and

H∨ act naturally on cuspidal data for LH by

h · (LL, ϕ, ρ) = (h LLh−1, hϕh−1, h · ρ).
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By Lemma 6.2 every cuspidal datum for LH is H∨-conjugate to one of the form
(L∨ ⋊ WF , ϕ, ρ), where L∨ is a WF -stable standard Levi subgroup of H∨. For
ζH ∈ Irr(Z(H∨

sc)) we write

Φe,ζH(
LL) = {(ϕ, ρ) ∈ Φe(

LL) : ρ = ζH on Lsc ∩ Z(H∨
sc), ρ = 1 on Lsc ∩ Z(Lc)

◦},
Φcusp,ζH(

LL) = Φcusp(
LL) ∩ Φe,ζH(

LL).

This depends only on the restriction of ζH to the subgroup Z(Lsc) ⊂ Z(H∨
sc).

Often we will be interested in cuspidal data up to H∨-conjugacy. Upon fixing the
first ingredient of (LL, ϕ, ρ), we can consider (ϕ, ρ) as a cuspidal L-parameter for
LL, modulo L-conjugacy. Recall from (90) that ϕ is determined up to L-conjugacy
by ϕ|WF

and uϕ. Hence the quadruple

(95) (LL, ϕ|WF
, uϕ, ρ)

determines a unique H∨-conjugacy class of cuspidal data. Therefore we will also
regard quadruples of the form (95) as cuspidal data for LH.

Let Irrcusp(L) be the set of supercuspidal L-representations and let σ1, σ2 ∈
Irrcusp(L). We note that the cuspidal pairs (L, σ1) and (L, σ2) are H-conjugate
if and only if σ1 and σ2 are in the same orbit under

(96) W (H,L) = NH(L)/L.
Recall from [ABPS6, Proposition 3.1] that there is a canonical isomorphism

(97) W (H,L) ∼= NH∨(L∨ ⋊WF )/L∨.

Motivated by (97) we write, for any Levi L-subgroup LL of LH:

W (LH, LL) := NH∨(LL)/L.

This group acts naturally on the collection of cuspidal data for LH with first ingre-
dient LL. Two cuspidal data

(98) (LL, ϕ1, ρ1) and (LL, ϕ2, ρ2) are H-conjugate ⇐⇒
(ϕ1, ρ1), (ϕ2, ρ2) ∈ Φcusp(

LL) are in the same orbit for the action of W (LH, LL).

In the notation of (92), we use Section 5 (with complex representations and sheafs)
to write

qΨG(uϕ, ρ) = [M,v, qϵ]G, where G = Z1
H∨

sc
(ϕ|WF

).

Proposition 7.3. Let (ϕ, ρ) ∈ Φe(H).
(a) (ZH∨⋊WF

(Z(M)◦), ϕ|WF
, v, qϵ) is a H-relevant cuspidal datum for LH.

(b) Upon replacing (ϕ, ρ) by a H∨-conjugate representative L-parameter, there exists
a Levi subgroup L of H such that:
• ZH∨⋊WF

(Z(M)◦) = L∨ ⋊WF ,
• qϵ and ρ yield the same character of Z(H∨

sc)Z(L∨c )◦. It is trivial on Z(L∨c )◦
and determined by its restriction to Z(L∨sc).
• (ϕ|WF

, v, qϵ) is a cuspidal L-parameter for L.
(c) The H∨-conjugacy class of L∨ ⋊WF is uniquely determined by (ϕ, ρ).

Proof. (a) and (b) The torus Z(M)◦ commutes with M , so ZH∨(Z(M)◦) is a Levi
subgroup of H∨ which contains the image of M in H∨. As Z(M)◦ ⊂ Z1

H∨
sc
(ϕ|WF

),

ZH∨⋊WF
(Z(M)◦) is a Levi L-subgroup of H∨ ⋊WF .
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In view of Lemma 6.2 this implies that, upon conjugating (ϕ, ρ) with a suitable
element of H∨, we may assume that the above construction yields a WF -stable
standard Levi subgroup L∨ := ZH∨(Z(M)◦) with

ϕ(WF ) ⊂ ZH∨⋊WF
(Z(M)◦) = L∨ ⋊WF .

Its pre-image L∨c in H∨
sc satisfies

(99) G ∩ L∨c = Z1
H∨

sc
(ϕ|WF

) ∩ ZH∨
sc
(Z(M)◦) =M.

Moreover L∨ contains v (or rather its image in H∨, which we also denote by v).
Suppose that LL is another Levi L-subgroup of LH which contains ϕ(WF ) ∪ {v}.
Let Lc be the inverse image of L = LL∩H∨ in H∨

sc. Since (v, qϵ) is a cuspidal pair for
M , M◦ is a Levi subgroup of G◦ minimally containing v (see [Lus2, Proposition 2.8]
or Theorem 3.1.a). Hence Lc ∩ G contains a ZG(v)-conjugate of M◦, say zM◦z−1.
Then Z(Lc)

◦ ⊂ zZ(M)◦z−1, so

(100) Lc = ZH∨
sc
(Z(Lc)

◦) ⊃ ZH∨
sc
(zZ(M)◦)z−1) = zL∨c z−1.

Thus L contains a conjugate of L∨. Equivalently L∨ ⋊ WF minimally contains
ϕ(WF )∪{v}. Hence (ϕ|WF

, v) is a discrete L-parameter for L∨⋊WF and for some
F -group L with complex dual L∨.

By (91) ρ ∈ Irr
(
π0(Z

1
H∨

sc
(ϕ))

)
can be regarded as a representation of π0(ZG(uϕ)),

and by (68) it has the same Z(H∨
sc)-character, say ζ, as qϵ ∈ Irr(π0(ZM (v))).

Because Z(M)◦ becomes the trivial element in π0(ZM (v)), ζ is trivial on Z(M)◦∩
Z(H∨

sc), We note that

(101) G ∩ Z(L∨c )◦ = G ∩ Z
(
ZH∨

sc
(Z(M)◦)

)◦ ⊂ G ∩ Z(M)◦ = Z(M)◦.

But by construction Z(M)◦ ⊂ Z(L∨c )◦, so (101) is actually an equality. As Z(H∨
sc) ⊂

G, it follows that ζ is also trivial on Z(L∨c )◦ ∩ Z(H∨
sc). In particular it extends

uniquely to a character (still denoted ζ) of Z(H∨
sc)Z(L∨c )◦, which is trivial on Z(L∨c )◦.

Furthermore L∨c is a connected Lie group, so L∨c = L∨scZ(L∨c )◦. From this we see
that ζ is determined by its restriction to L∨sc ∩ Z(H∨

sc)Z(L∨c )◦. By [Art1, Lemma
1.1] (see also Lemma 6.6.a), that group can be simplified to

L∨sc ∩ Z(H∨
sc)Z(L∨c )◦ = L∨sc ∩ Z(L∨c ) = Z(L∨sc).

Although ZL∨
sc
(ϕ) = ZH∨

sc
(ϕ) ∩ L∨sc, the inclusion Z1

L∨
sc
(ϕ) ⊃ Z1

H∨
sc
(ϕ) ∩ L∨sc can be

strict, as the definitions of the two Z1’s are different. Nevertheless, always

(102) Z1
L∨
sc
(ϕ) ⊂ (Z1

H∨
sc
(ϕ) ∩ L∨sc)Z(L∨c )◦.

Hence the relevant centralizers for (L, ϕ|WF
, v) are

Z1
L∨
sc
(ϕ|WF

) ∩ ZL∨
sc
(v) ⊂ (G ∩ ZL∨

sc
(v))Z(L∨c )◦ = ZMder

(v)Z(L∨c )◦.

Since qϵ ∈ Irr(AM (v)) is trivial on Z(M)◦ = Z(L∨c )◦ ∩M , it can be considered as
a representation of π0

(
Z1
L∨
sc
(ϕ|WF

) ∩ ZL∨
sc
(v)

)
which is trivial on Z(L∨sc) ∩ Z(L∨c )◦.

We conclude that (ϕ|WF
, v, qϵ) is a cuspidal Langlands parameter for some inner

form of L. The Z(L∨sc)-character of qϵ is obtained from that of ρ via extension to
Z(H∨

sc)Z(L∨c )◦ and then restriction. Comparing with Lemma 6.6.b, and recalling
that (ϕ, ρ) is relevant for H, we see that (ϕ|WF

, v, qϵ) is relevant for a Levi subgroup
L of H.

By Definition 7.2 relevance of cuspidal data can be read off from their Z(H∨
sc)

WF -
characters. The same comparison involving ζ says that (L∨ ⋊ WF , ϕ|WF

, v, qϵ) is
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also H-relevant.
(c) Suppose that LL is as above and that it minimally contains ϕ(WF )∪{v}. From
(100) or [Bor, Proposition 8.6] we see that LL is H∨-conjugate to L∨ ⋊WF . Hence
the L-Levi subgroup L∨ ⋊WF is uniquely determined up to conjugation. □

Before we continue with the cuspidal support map, we work out some conse-
quences of the above proof.

Lemma 7.4. (a) The exists a character ζH ∈ Irr(Z(H∨
sc)) such that:

• ζH|Z(H∨
sc)

WF parametrizes the inner twist H via the Kottwitz isomorphism

(88),
• ζH = 1 on Z(H∨

sc) ∩ Z(L∨c )◦, for every Levi subgroup L of H.
(b) Let L ⊂ H be a Levi subgroup and let ϕ : WF × SL2(C) → LL be a Langlands

parameter for L. There exists a natural injection RL
ϕ → Rϕ.

(c) In the setting of parts (a) and (b), extend ζH to a character of Z(H∨
sc)Z(L∨c )◦

which is trivial on Z(L∨c )◦. Let ζLH be the restriction of the latter character to
Z(L∨sc). Let pζH ∈ C[Zϕ] and pζLH

∈ C[ZL
ϕ ] be the central idempotents associated

to these characters. Then there is a canonical injection

pζLH
C[SLϕ ]→ pζHC[Sϕ].

Proof. (a) Let L be a minimal Levi subgroup of H and let ϕ ∈ Φ(L) be a discrete
Langlands parameter which is trivial on SL2(C). Then ϕ is H-relevant, so by Propo-
sition 6.8 there exists an enhancement ρ ∈ Irr(Sϕ) such that the character ζρ of
Z(H∨

sc) determined by ρ parametrizes H via the Kottwitz isomorphism. Then

G◦ = ZH∨
sc
(ϕ)◦ =

(
Z(L∨c )WF

)◦
is a torus, so every element of N+

G is cuspidal. It follows that

qΨG(uϕ = 1, ρ) = [G, v = 1, qϵ]G.

Now Proposition 7.3.b yields the desired condition for L.
Then the same condition holds for any Levi subgroupM of H containing L, for

Z(M∨
c )

◦ ⊂ Z(L∨c )◦. Moreover ζH is invariant under conjugation, because it lives
only on the centre. So the condition even holds for all H∨

sc-conjugates ofM∨
c , which

means that it is satisfied for all Levi subgroups of H.
(b) There is an obvious map

(103) ZL∨(ϕ)→ Rϕ = ZH∨(ϕ)
/
ZH∨(ϕ)◦ Z(H∨)WF .

Its kernel equals

(104) ZL∨(ϕ) ∩ ZH∨(ϕ)◦Z(H∨)WF = ZH∨(Z(L∨)◦) ∩ ZH∨(ϕ)◦Z(H∨)WF

=
(
ZH∨(Z(L∨)◦) ∩ ZH∨(ϕ)◦

)
Z(H∨)WF = ZL∨(ϕ)◦Z(H∨)WF .

For the last equality we used that taking centralizers with tori preserves connected-
ness. We note that ZL∨(ϕ)◦ ⊂ ZH∨(ϕ)◦. By [Art1, Lemma 1.1]

Z(L∨)WF = (Z(L∨)WF )◦ Z(H∨)WF ,

which is contained in ZH∨(ϕ)◦Z(H∨)WF . Hence (103) factors through

RL
ϕ = ZL∨(ϕ)

/
ZL∨(ϕ)◦ Z(L∨)WF .
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By (104) the kernel of the just constructed map RL
ϕ → Rϕ is the image of

ZL∨(ϕ)◦Z(H∨)WF in RL
ϕ , which is only the neutral element.

(c) Lemma 6.6.a (for the trivial WF -action) shows that ζ
L
H is well-defined. By (86)

every system of representatives for Rϕ
∼= Sϕ/Zϕ in Sϕ provides a basis of pζHC[Sϕ].

Similarly

(105) pζLH
C[SLϕ ] ∼= C[RL

ϕ ] as vector spaces.

We have to find an appropriate variation on C[RL
ϕ ]→ C[Rϕ]. Recall from (102) that

(106) Z1
L∨
sc
(ϕ) = (Z1

H∨
sc
(ϕ) ∩ L∨sc)(Z(L∨c )◦ ∩ L∨sc).

This gives a group homomorphism

(107) λ : Z1
L∨
sc
(ϕ)→ Z1

H∨
sc
(ϕ)

/(
Z1
H∨

sc
(ϕ) ∩ Z(L∨c )◦ ∩ L∨sc

)
which lifts RL

ϕ → Rϕ. Consider the diagram

pζLH
C[SLϕ ]

� � //

��

C[SLϕ ]

λ

��
pζHC[Sϕ]

� � // C[Z1
H∨

sc
(ϕ)

/(
Z1
H∨

sc
(ϕ) ∩ Z(L∨c )◦ ∩ L∨sc

)
].

The lower arrow exists because ζH = 1 on Z(H∨
sc)∩Z(L∨c )◦. The image λ(pζLH

C[SLϕ ])
is contained in pζHC[Sϕ] by the relation between ζH and ζLH, which gives the left

vertical arrow. Since (107) is a lift of RL
ϕ → Rϕ and by (105), this arrow is injective.

□

It turns out that the cuspidal datum constructed in Proposition 7.3.a need not
have the same infinitesimal character as ϕ (in the sense of [Hai, Vog]). Since this
would be desirable for a cuspidal support map, we now work out some constructions
which compensate for this. See (108) for their effect.

Recall from (65) that the unipotent element v in qΨG(uϕ, ρ) also appears as
ΨG◦(uϕ, ρ

◦) = (M◦, v, ϵ), where ρ◦ is an irreducible AG◦(uϕ)-constituent of ρ. The
construction of ΨG◦ , which already started in (16), entails that there exists a para-
bolic subgroup P of G◦ such that

• M◦ is a Levi factor of P ,
• uϕ = vuP with uP in the unipotent radical UP of P .

Upon conjugating ϕ with a suitable element of ZG◦(uϕ), we may assume that M◦

contains ϕ
(
1,
(
z 0
0 z−1

) )
for all z ∈ C×. (Alternatively, one could conjugateM◦ inside

G◦.) Since the G◦-conjugacy class of (M◦, v) matters most, this conjugation is
harmless.

Lemma 7.5. Suppose that ϕ
(
1,
(
z 0
0 z−1

) )
∈M◦ for all z ∈ C×. Then

ϕ
(
1,
(
z 0
0 z−1

) )
vϕ

(
1,
(
z−1 0
0 z

) )
= vz

2
for all z ∈ C×.

Proof. The condition on M◦ entails that

Ad ◦ ϕ
(
1,
(
z 0
0 z−1

) )
(v) ∈M◦ and Ad ◦ ϕ

(
1,
(
z 0
0 z−1

) )
(uP ) ∈ UP .

Hence Ad ◦ ϕ
(
1,
(
z 0
0 z−1

) )
(v) is the image of

Ad ◦ ϕ
(
1,
(
z 0
0 z−1

) )
(vuP ) = Ad ◦ ϕ

(
1,
(
z 0
0 z−1

) )
(uϕ)
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under P/UP
∼−−→ M◦. Since ϕ|SL2(C) : SL2(C) → G◦ is an algebraic group homo-

morphism,

Ad ◦ ϕ
(
1,
(
z 0
0 z−1

) )
(uϕ) = ϕ

(
1,
(
z 0
0 z−1

)
( 1 1
0 1 )

(
z−1 0
0 z

) )
= ϕ

(
1,
(
1 z2
0 1

) )
= uz

2

ϕ = (vuP )
z2 .

By the unipotency of vuP there are unique X ∈ Lie(M◦), Y ∈ Lie(UP ) such that
vuP = expP (X+Y ). As Lie (UP ) is an ideal of Lie (P ), expP (X+Y ) ∈ expM◦(X)UP ,
and hence X = logM◦(v). Similarly we compute

(vuP )
z2 = expP (logP (vuP )

z2) = expP (z
2(X + Y )) ∈ expM◦(z2X)UP .

Consequently the image of (vuP )
z2 under P/UP

∼−−→M◦ is expM◦(z2X) = vz
2
. □

In the setting of Lemma 7.5, [KaLu, §2.4] shows that there exists an algebraic
group homomorphism γv : SL2(C)→M◦ such that

• γv ( 1 1
0 1 ) = v,

• γv(SL2(C)) commutes with ϕ
(
1,
(
z 0
0 z−1

) )
γv

(
z−1 0
0 z

)
for all z ∈ C×.

Moreover γv is unique up to conjugation by ZM◦
(
v, ϕ

(
1,
(
z 0
0 z−1

) ))
, for any z ∈ C×

of infinite order. We will say that a homomorphism γv satisfying these conditions is
adapted to ϕ.

Lemma 7.6. Let (ϕ, ρ) be an enhanced L-parameter for H and write qΨG(uϕ, ρ) =
[M, v, qϵ]G, using (92). Up to G-conjugacy there exists a unique γv : SL2(C)→M◦

adapted to ϕ. Moreover the cocharacter

χϕ,v : z 7→ ϕ
(
1,
(
z 0
0 z−1

) )
γv

(
z−1 0
0 z

)
has image in Z(M)◦.

Proof. Everything except the last claim was already checked above. Since (v, qϵ) is
cuspidal, Theorem 3.1.a says that v is distinguished. This means that it does not
lie in any proper Levi subgroup of M◦. In other words, every torus of M◦ which
centralizes v is contained in Z(M◦)◦. Finally we note that, as M is a quasi-Levi
subgroup, Z(M)◦ = Z(M◦)◦. □

Notice that the image of the cocharacter χϕ,v : C× → Z(M)◦ commutes not only
with γv(SL2(C)) but also with ϕ(WF ), because M

◦ ⊂ G◦ ⊂ ZH∨
sc
(ϕ|WF

).

Definition 7.7. In the setting of Lemma 7.6 we put

LΨ(ϕ, ρ) = (ZH∨⋊WF
(Z(M)◦), ϕ|WF

, v, qϵ),

a H-relevant cuspidal datum for LH.
Let ∥·∥ : WF → R>0 be the group homomorphism with ∥w∥ = q if w(f) = f q for

all f in the algebraic closure of the residue field of F .
We define a L-parameter φv : WF × SL2(C)→ ZH∨⋊WF

(Z(M)◦) by

φv(w, x) = ϕ(w)χϕ,v(∥w∥1/2)γv(x).

The cuspidal support of (ϕ, ρ) is

Sc(ϕ, ρ) = (ZH∨⋊WF
(Z(M)◦), φv, qϵ),

another H-relevant cuspidal datum for LH.
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By parts (a) and (c) of Proposition 7.3 the map LΨ is canonical in the sense
that its image is unique up to conjugation. By Lemma 7.6 Sc is also canonical.
Furthermore, the images of LΨ and Sc are H-relevant by Proposition 7.3.b. In view
of Proposition 7.3.c, we can always represent LΨ(ϕ, ρ) and Sc(ϕ, ρ) by a cuspidal
L-parameter for a Levi subgroup of H.

An advantage of φv over (ϕ|WF
, v) is that

φv

(
w,

(
∥w∥1/2 0

0 ∥w∥−1/2

) )
= ϕ(w)χϕ,v(∥w∥1/2)γv

(
∥w∥1/2 0

0 ∥w∥−1/2

)
= ϕ

(
w,

(
∥w∥1/2 0

0 ∥w∥−1/2

) )
.

(108)

In the terminology from [Hai, Vog], this says that the cuspidal support map for
enhanced L-parameters preserves infinitesimal characters. It is interesting to com-
pare the fibres of Sc with the variety constructed in [Vog, Corollary 4.6]. Vogan
considers the set of all L-parameters for LH with a fixed infinitesimal character (up
to conjugation). In [Vog, Proposition 4.5] he proves that this set has the structure
of a complex affine variety, on which H∨ acts naturally, with only finitely many
orbits. The same picture can be obtained from a fibre of Sc, upon neglecting all
enhancements of L-parameters.

More or less by definition Bernstein’s cuspidal support map for Irr(H) preserves
infinitesimal characters. That property is slightly less strong for our Sc on the Galois
side, for enhanced L-parameters with different cuspidal support can have the same
infinitesimal character. The map

LΨ : Φe(H)→ {cuspidal data for H}/H∨-conjugacy

is an analogue of a modified version, say S̃c, of Bernstein’s cuspidal support map

for Irr(H). Neither LΨ nor S̃c preserve infinitesimal characters, but they have other
advantages that the cuspidal support maps lack. For LΨ this will become clear in the

Section 9, while the importance of S̃c stems from its role in the ABPS conjecture.
To enable a comparison, we recall its definition from [ABPS6, §2.5]. Let P =

MUP be a parabolic subgroup of H and let ω ∈ Irr(M) be square-integrable modulo
centre. Suppose that πt ∈ Irr(H) is tempered and that it is a direct summand of
the normalized parabolic induction IHP (ω). Let (L, σ) be the cuspidal support of ω.
Then σ can be written uniquely as σ = σu ⊗ ν, with ν : L → R>0 an unramified
character and σu ∈ Irrcusp(L) unitary (and hence tempered). One defines

S̃c(πt) = (L, σu)/H-conjugacy.

Notice that S̃c preserves temperedness of representations, in contrast with Sc.
More generally, by [Sol1, Theorem 2.15] every π ∈ Irr(H) can be written (in an

essentially unique way) as a Langlands quotient of IHP (ω⊗χ), where P =MUP and
ω are as above and χ ∈ Xnr(M). Then χ restricts to an unramified character of L
and the cuspidal support of ω ⊗ χ is (L, σ ⊗ χ). In this case one defines

S̃c(π) = (L, σu ⊗ χ)/H-conjugacy.

We note that the only difference with Sc(π) is ν|L, an unramified character L → R>0

which represents the absolute value of the infinitesimal central character of σ.
It has been believed for a long time that the (enhanced) L-parameters of π ∈

Irr(H) and Sc(π) are always related, but it was not clear how. With our new
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notions we can make this precise. Let Lev(H) be a set of representatives for the
conjugacy classes of Levi subgroups of H, and recall (96) and (98).

Conjecture 7.8. Assume that a local Langlands correspondence exists for H and
for supercuspidal representations of its Levi subgroups. The following diagram should
commute:

Irr(H) oo LLC

Sc
��

Φe(H)

Sc
��⊔

L∈Lev(H) Irrcusp(L)/W (H,L) oo
LLC

⊔
L∈Lev(H)Φcusp(L)/W (H,L).

Conjecture 7.8 is known to hold for many of the groups for which a LLC has been
established.

• For GLn(F ) it is a consequence of the Bernstein–Zelevinsky classification of
Irr(GLn(F )) [Zel] and the way it is used in the local Langlands correspon-
dence for GLn(F ), see [Hen, §2].
• Irreducible representations of inner forms GLm(D) of GLn(F ) can also be
classified via a Zelevinsky-like scheme, see [Tad]. This is used in the LLC in
the same way as for GLn(F ) [ABPS2, §2], so the conjecture also holds for
these groups.
• The local Langlands correspondence for an inner form SLm(D) of SLn(F )
is derived directly from that for GLm(D): on the Galois side one lifts L-
parameters WF × SL2(C) → PGLn(C) to GLn(C), whereas on the p-adic
side one restricts irreducible representations of GLm(D) to SLm(D) to con-
struct L-packets. These two operations do not really change the infinitesi-
mal central characters of L-parameters or smooth representations, only on
Z(GLn(C)) ∼= C× or Z(GLm(D)) ∼= F×, respectively. Therefore Conjecture
7.8 for GLm(D) implies it for SLm(D).
• For the split classical groups Sp2n(F ) and SOm(F ) when F is a p-adic
field. The support cuspidal map specializes to the map defined in [Mou,
Théorème 4.27], and the commutativity of the diagram follows from [Mou,
Théorème 5.9].
• For principal series representations of split groups see [ABPS4, Theorem
15.1].
• For unipotent representations of simple p-adic groups H of adjoint type we
refer to [Lus4]. Although it is not so easy to see, the essence is that Lusztig

uses the element f = ϕ
(
Frob,

(
∥Frob∥1/2 0

0 ∥Frob∥−1/2

))
to parametrize the cen-

tral character of a representation of a suitable affine Hecke algebra [Lus4,
§9.3]. By construction this also parametrizes the infinitesimal central char-
acter of the associated representation of H.

To support Conjecture 7.8, we check that the cuspidal support map is compatible
with the Langlands classification for L-parameters. The latter is a version of the
Langlands classification for Irr(H) on the Galois side of the LLC, it stems from
[SiZi].

We will describe first a Galois side analogue for unramified characters. Let IF ⊂
WF be as above the inertia subgroup and let Frob ∈WF be a Frobenius element.
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Recall from [Hai, §3.3.1] that there is a canonical isomorphism of complex tori

(109) Xnr(L) ∼=
(
Z(L∨)IF

)◦
Frob

= Z(L∨ ⋊ IF )
◦
WF /IF

= Z(L∨ ⋊ IF )
◦
L∨⋊WF

.

The group Xnr(L) acts on Irr(L) by tensoring. This corresponds to an action of(
Z(L∨)IF

)◦
Frob

on Φ(L) and on Φe(L). Namely, let ϕ : WF × SL2(C) → LL be a

relevant L-parameter and let z ∈ Z(L∨)IF . We define zϕ ∈ Φ(L) by

(110) (zϕ)
∣∣
IF×SL2(C)

= ϕ
∣∣
IF×SL2(C)

and (zϕ)(Frob) = z ϕ(Frob).

Notice that zϕ ∈ Φ(L) because z ∈ Z(L∨ ⋊ IF ). Suppose that z′ ∈ Z(L∨)IF
represents the same element of

(
Z(L∨)IF

)
Frob

. Then z−1z′ = x−1Frob(x) for some

x ∈ Z(L∨)IF , and
z′ϕ = x−1Frob(x)zϕ = x−1zϕx.

Hence z′ϕ = zϕ in Φ(L) and we obtain an action of
(
Z(L∨)IF

)
Frob

on Φ(L). As z

commutes with L∨, Szϕ = Sϕ. This enables us to lift the action to Φe(L) by

(111) z(ϕ, ρ) = (zϕ, ρ).

To allow H∨ to act on the above objects, we also have to define them for Levi
L-subgroups LL of LH. Generalizing (109), we put

(112) Xnr

(
LL

)
= Z

(
H∨ ⋊ IF ∩ LL

)◦
Frob

.

This group plays the role of unramified characters for LL, we will sometimes refer to
it as the unramified twists of LL. By the formula (110), Xnr(

LL) acts on Langlands
parameters with image in LL. As in (111), that extends to an action on enhanced
L-parameters for LL.

The following notion replaces the data in the Langlands classification for H.

Definition 7.9. Fix a pinning of H and a WF -stable pinning of H∨. A standard
triple for H consists of:

• a standard Levi subgroup L of H;
• a bounded L-parameter ϕt ∈ Φbdd(L);
• an unramified twist z ∈ Xnr(

LL), which is strictly positive with respect to
the standard parabolic subgroup P with Levi factor L.

The last condition means that α∨(z) > 1 for every root α of (UP , Z(L)◦), where UP
denotes the unipotent radical of P.

An enhancement of a standard triple (L, ϕt, z) is an L-relevant irreducible repre-
sentation ρt of SLzϕt

. Let ζH and ζLH be as in Lemma 7.4. We say that (L, ϕt, z, ρt)
is an enhanced standard triple for (H, ζH) if ρt|Z(L∨

sc)
= ζLH.

Theorem 7.10. (a) There exists a canonical bijection from the set of standard
triples of H to Φ(H). It sends (L, ϕt, z) to zϕt (up to H∨-conjugacy).

(b) The natural map

pζLH
C[SLϕt

] = pζLH
C[SLzϕt

]→ pζHC[S
H
zϕt

]

from Lemma 7.4 is an isomorphism. Hence part (a) can be enhanced to a canon-
ical bijection

{enhanced standard triples for (H, ζH)} ←→ Φe,ζH(H)
(L, ϕt, z, ρt) 7→ (zϕt, ρt).
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Proof. (a) See [SiZi, Theorem 4.6]. The differences are only notational: we replaced
a standard parabolic subgroup P of H by its standard Levi factor L and we used
z ∈ Xnr(

LL) instead of the presentation of Xnr(L) by elements of a∗L. The regularity
of ν ∈ a∗L in [SiZi] means that it lies in the open Weyl chamber of a∗L determined by
P. This translates to z being strictly positive with respect to P.

(b) Since z ∈ Z(L∨), ϕt and zϕt have the same S-groups for L. In [SiZi, Propo-
sition 7.1] it is shown that the natural map RL

zϕt
→ Rzϕt is a bijection. In Lemma

7.4 we constructed a natural injection

pζLH
C[SLzϕt

]→ pζHC[S
H
zϕt

].

The dimensions of these spaces are, respectively, |RL
ϕ | and |Rϕ|. These are equal by

[SiZi, Proposition 7.1], so the above map is an algebra isomorphism. □

The maps LΨ and Sc from Definition 7.7 are compatible with Theorem 7.10 in
the sense that they factor through this Langlands classification.

Lemma 7.11. Let (ϕ, ρ) ∈ Φe,ζH(H) and let (L, ϕt, z, ρt) be the enhanced standard
triple associated to it by Theorem 7.10. Then

LΨH(ϕ, ρ) = LΨL(zϕt, ρt) = z · LΨL(ϕt, ρt),

ScH(ϕ, ρ) = ScL(zϕt, ρt) = z · ScL(ϕt, ρt).
Proof. Because all the maps are well-defined on conjugacy classes of enhanced L-
parameters, we may assume that ϕ = zϕt and ρ = ρt. By definition LΨH(zϕt, ρt) is
given in terms of qΨG(uϕ, ρ) = [M,v, qϵ]G, as (ZLH(Z(M)◦), ϕ|WF

, v, qϵ). Consider

G1 := ZG(Z(L∨c )◦) = Z1
H∨

sc
(ϕ|WF

) ∩ L∨c
Since L∨c = ZH∨

sc
(Z(L∨c )◦) is a Levi subgroup of H∨

sc, G1 is a quasi-Levi subgroup of

G = Z1
H∨

sc
(ϕ|WF

). Furthermore

G◦
1 =

(
ZH∨

sc
(ϕ|WF

) ∩ L∨c
)◦

= ZL∨
c
(ϕ|WF

)◦.

By Proposition 5.6
qΨG1(uϕ, ρ) = qΨG(uϕ, ρ).

Write G2 = Z1
L∨
sc
(ϕ|WF

)Z(L∨c )◦ and abbreviate G3 = Z1
L∨
sc
(ϕ|WF

). From

Z(H∨
sc) ⊂ Z(L∨c ) = Z(L∨sc)Z(L∨c )◦

and the description of G◦
1 we see that G1 is a finite index subgroup of G2. Since the

quasi-cuspidal support of (uϕ, ρ) (for G1) is derived from the cuspidal support (for
G◦

1 = G◦
2), Z(M)◦ is the same for G2 and G1. Hence

(113) qΨG2(uϕ, ρ) = [M2, v, qϵ2]G2 , M2 = ZG2(Z(M)◦),

where qϵ2 is an extension of qϵ ∈ Irr(AM (v)) to AM2(v). By (106) and Proposition
7.3.b qϵ2 is obtained from qϵ by setting it equal to 1 on a suitable central subgroup.
When we replace G2 by G3 we only omit a part of its connected centre, which does
not make a real difference for quasi-cuspidal supports. Concretely, (113) entails

qΨG3(uϕ, ρ) = [M3, v, qϵ3]G3 , M3 = ZG3(Z(M)◦),

where the inflation of qϵ3 to a function on ZM3(v) agrees with the inflation of qϵ2 to
ZM3(v). As explained in the proof of Proposition 7.3 after (102), this means that as
cuspidal data

LΨL(ϕ, ρ) = (ZLL(Z(M)◦), ϕ|WF
, v, qϵ3) = (ZLL(Z(M)◦), ϕ|WF

, v, qϵ).
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Now LL is a Levi L-subgroup of LH containing ϕ(WF ) ∪ {v}. In the proof of
Proposition 7.3.a we checked that L∨ ⋊WF ⊃ ZLH(Z(M)◦). Hence

ZLH(Z(M)◦) = ZLL(Z(M)◦) and LΨL(ϕ, ρ) = LΨH(ϕ, ρ).

As Z(L∨c ) ⊂ Z(M), the element

z ∈ Xnr(
LL) = (Z(L∨)IF )◦Frob

also lies in Xnr(ZLH(Z(M)◦). Since z commutes with L∨c , Gt = Z1
H∨

sc
(zϕt|WF

) ∩ L∨c
equals Z1

H∨
sc
(ϕt|WF

) ∩ L∨c . Now Definition 7.7 shows that

LΨL(zϕt, ρt) = (ZLH(Z(M)◦), zϕt|WF
, v, qϵ)

= z · (ZLH(Z(M)◦), ϕt|WF
, v, qϵ) = z · LΨL(ϕt, ρt).

The construction of χϕ,v in Lemma 7.6 depends only on qΨGt(uϕ, ρ), so ScH(ϕ, ρ) =

ScL(zϕt, ρt) = z · ScL(ϕt, ρt) as well. □

8. Inertial equivalence classes of L-parameters

In important ingredient in Bernstein’s theory of representations of p-adic groups
are inertial equivalence classes. Let L ⊂ H be a Levi subgroup and let Xnr(L) be the
group of unramified characters L → C×. Two cuspidal pairs (L1, σ1) and (L2, σ2)
are said to be inertially equivalent if there exist an unramified character χ1 of L1
and an element h ∈ H such that

hL2h−1 = L1 and h · σ2 = σ1 ⊗ χ1.

We denote a typical inertial equivalence of cuspidal pairs by s = [L, σ]H, we let
B(H) be the set of such classes. With every s ∈ B(H) one can associate a set of
irreducible smooth H-representations:

Irr(H)s = {π ∈ Irr(H) : the cuspidal support of π lies in s}.
A (weak) version of the Bernstein decomposition says that

(114) Irr(H) =
⊔

s∈B(H)
Irr(H)s.

We will establish a similar decomposition for enhanced Langlands parameters.
Our notion of inertial equivalence generalizes [Hai, Definition 5.33] from homo-

morphisms WF → LH to enhanced L-parameters.

Definition 8.1. Let (LL, ϕv, qϵ) and (LL′, ϕ′v, qϵ
′) be two cuspidal data for LH.

They are inertially equivalent if there exist z ∈ Xnr(
LL) and h ∈ H∨ such that

h LL′h−1 = LL and (zϕv, qϵ) = (hϕ′vh
−1, h · qϵ′).

The class of (LL, ϕv, qϵ) modulo Xnr(
LL) is denoted [LL, ϕv, qϵ]LL, and its inertial

equivalence class is denoted [LL, ϕv, qϵ]LH. We say that [LL, ϕv, qϵ]LH is H-relevant
if any of its elements is so. We write B∨(LH) for the set of inertial equivalence
classes of cuspidal pairs for LH, and B∨(H) for its subset of H-relevant classes.

Given an inertial equivalence class s∨ for LH, we write, using Definition 7.7,

Φe(
LH)s∨ = {(ϕ, ρ) ∈ Φe(

LH) : the cuspidal support of (ϕ, ρ) lies in s∨}.
When s∨ is H-relevant, we put

Φe(H)s
∨
= {(ϕ, ρ) ∈ Φe(H) : the cuspidal support of (ϕ, ρ) lies in s∨}.
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We note that s∨ as above determines a character of Z(Lsc). In view of Proposition
7.3.b, it extends in a unique way to a character of Z(H∨

sc) trivial on Z(Lc)
◦.

The above construction yields partitions analogous to (114):

(115) Φe(
LH) =

⊔
s∨∈B∨(LH)

Φe(
LH)s∨ and Φe(H) =

⊔
s∨∈B∨(H)

Φe(H)s
∨
.

In this sense we consider Φe(
LH)s∨ as Bernstein components in the space of enhanced

L-parameters for LH. We note that by Lemma 7.6 the difference between Sc(ϕ, ρ)
and LΨ(ϕ, ρ), namely the homomorphism

WF → Z(M)◦ : w 7→ χϕ,v

(
∥w∥1/2

)
,

can be considered as an unramified twist of LL. Hence Sc(ϕ, ρ) and LΨ(ϕ, ρ) belong
to the same inertial equivalence class, and we could equally well have used LΨ to
define Φe(

LH)s∨ and Φe(H)s
∨
.

We return to p-adic groups, to consider other aspects of Bernstein’s work. Bern-
stein associated to each inertial equivalence class s = [L, σ]H ∈ B(H) a finite group
Ws. Let W (H,L) = NH(L)/L, the “Weyl” group of L. It acts on Irrcusp(L),
which induces an action on the collection of inertial equivalence classes [L, ω]L with
ω ∈ Irrcusp(L). Notice that

(L, ω1), (L, ω2) are H-conjugate ⇐⇒ there is a w ∈W (H,L) with w · ω1
∼= ω2.

The group Ws is defined to be the stabilizer of [L, σ]L in W (H,L). It keeps track of
which elements of [L, σ]L are H-conjugate. This group plays an important role in
the Bernstein centre.

Let Rep(H) be the category of smooth complexH-representations, and let Rep(H)s
be its subcategory generated by Irr(H)s. The strong form of the Bernstein decom-
position says that

Rep(H) =
⊔

s∈B(H)
Rep(H)s.

By [BeDe, Proposition 3.14] the centre of the category Rep(H)s is canonically iso-
morphic to O([L, σ]L/Ws). Here [L, σ]L is regarded as a complex affine variety via
the transitive action of Xnr(L). The centre of Rep(H) is isomorphic to⊕

L∈Lev(H)

⊕
s=[L,σ]H∈B(H)

Z(Rep(H)s) ∼=
⊕

L∈Lev(H)

⊕
s=[L,σ]H∈B(H)

O([L, σ]L/Ws)

=
⊕

L∈Lev(H)
O(Irrcusp(L)/W (H,L)).

In other words, there are canonical bijections

(116)
Irr

(
Z(Rep(H)s)

)
←→ [L, σ]L/Ws,

Irr
(
Z(Rep(H))

)
←→

⊔
L∈Lev(H) Irrcusp(L)/W (H,L).

We want identify the correct analogue of Ws on the Galois side. From (112) we see
that NH∨(LL) stabilizes Xnr(

LL) and that L fixes Xnr(
LL) pointwise. Therefore

W (LH, LL) also acts on classes [LL, ϕ, ρ]LL of cuspidal data modulo unramified
twists. We note that, like (96) and (98),

[LL, ϕv, qϵ]LH = [LL, ϕ′v, qϵ
′]LH ⇐⇒

there is a w ∈W (LH, LL) such that w · [LL, ϕv, qϵ]LL = [LL, ϕ′v, qϵ
′]LL.

(117)
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Given any inertial equivalence class s∨ = [LL, ϕv, qϵ]LH with underlying class s∨L =
[LL, ϕv, qϵ]LL, we define

Ws∨ := the stabilizer of s∨L in W (LH, LL).
Now we approach this group from the Galois side. From (LL, ϕv, qϵ) we can build

(118) v = ϕv
(
1, ( 1 1

0 1 )
)

and G = Z1
H∨

sc
(ϕv|WF

).

Let Lc be the inverse image of L in H∨
sc and consider the cuspidal quasi-support

(119) qt = [G ∩ Lc, v, qϵ]G =
[
G ∩ Lc, CG∩Lc

v , qE
]
G
.

From (69) we get

(120) Wqt = NG

(
G ∩ Lc, CG∩Lc

v , qE
)/

(G ∩ Lc).

Lemma 8.2. Wqt is canonically isomorphic to the isotropy group of (LL, ϕv, qϵ) in
W (LH, LL) and in Ws∨.

Proof. Since Xnr(
LL) is stable under W (LH, LL), any element of the latter group

which fixes (LL, ϕv, ρ) automatically stabilizes s∨L. Therefore it does not matter
whether we determine the isotropy group in W (LH, LL) or in Ws∨ .

The proof of Proposition 7.3, with G ∩ Lc in the role of M , shows that
ZH∨⋊WF

(Z(G ∩ Lc)
◦) is a Levi L-subgroup of LH minimally containing the image

of ϕ. As Z(G ∩ Lc)
◦ ⊃ Z(Lc)

◦,

ZH∨(Z(G ∩ Lc)
◦) ⊂ ZH∨(Z(L◦

c)) = L.

But LL also contains the image of ϕ minimally, so

(121) LL = ZH∨∩WF
(Z(G ∩ Lc)

◦).

Suppose that n ∈ NH∨(LL) fixes [ϕv, qϵ]L. Then it lies in NH∨
(
G ∩ Lc, CG∩Lc

uϕ
, qE

)
.

The kernel of H∨
sc → H∨

der is contained in Lc, so in view of (120) n lifts to a unique
element of Wqt. This induces an injection

StabW (LH,LL)([ϕv, qϵ]L)
∼= StabNH∨ (LL)∩ZH∨ (ϕ(WF ))

(
CG∩Lc
v , qE

)
/ZL(ϕ(WF ))

∼= StabNH∨
sc
(LL)∩G

(
CG∩Lc
v , qE

)
/(G ∩ Lc) → Wqt.(122)

The only difference between the last two terms is that on the left hand side elements
of G have to normalize LL, whereas on the right hand side they only have to nor-
malize G ∩ Lsc. Consider any g ∈ NG(G ∩ Lc). It normalizes Z(G ∩ Lc), so it also
normalizes ZH∨⋊WF

(Z(G∩Lc)
◦), which by (121) equals LL. Therefore (122) is also

surjective. □

Assume for the remainder of this section that Z(L∨sc) is fixed by WF , for every
Levi subgroup L ⊂ H. (The general case is similar and can be obtained by including
characters ζLH as in Lemma 7.4.) In view of Lemma 8.2, the analogue of the Bernstein
centre (116) becomes

(123)
⊔

L∈Lev(H)

Φcusp(L)
/
W (LH, LL) =

⊔
s∨=[LL,ϕv ,qϵ]LH∈B∨(H)

s∨L/Ws∨ .

Thus we interpret the ”Bernstein centre of Φe(H)” as the quotient along the map

Sc : Φe(H)→
⊔

L∈Lev(H)
Φcusp(L)

/
W (LH, LL).
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Let us agree that two enhanced L-parameters in the same Bernstein component are
inseparable if they have the same infinitesimal character. Then (123) can be regarded
as a maximal separable quotient of Φe(H). This fits nicely with the Dauns–Hofmann
theorem, which says that for many noncommutative algebras A the operation of
taking the maximal separable quotient of Irr(A) is dual to restriction from A to its
centre Z(A).

9. Extended quotients and L-parameters

The ABPS-conjecture from [ABPS1, §15] and [ABPS6, Conjecture 2] refines (116).
In its roughest form it asserts that it can be lifted to a bijection

(124) Irr(H)s ←→ ([L, σ]L//Ws)♮,

for a suitable family of 2-cocycles ♮. Equivalently, this can be formulated as a
bijection

(125) Irr(H) ←→
⊔

L∈Lev(H)

(
Irrcusp(L)//W (H,L)

)
♮
.

The main goal of this section is to prove an analogue of (124) and (125) for enhanced
Langlands parameters, which refines (123).

Fix a H-relevant cuspidal datum (LL, ϕv, qϵ) for
LH, and write, in addition to the

notations (118) and (119),

(126) qt = [G ∩ Lc, v, qϵ]G, t◦ = [G◦ ∩ Lc, CG
◦∩Lc

v , E ]G◦ .

The next result is a version of the generalized Springer correspondence with enhanced
L-parameters.

Proposition 9.1. (a) There is a bijection

LΣqt :
LΨ−1(LL, ϕv, qϵ) ←→ Irr(C[Wqt, κqt])

(ϕ, ρ) 7→ qΣqt(uϕ, ρ)
(ϕ|WF

, qΣ−1
qt (τ)) 7→ τ

It is canonical up to the choice of an isomorphism as in Lemma 5.4.
(b) Recall that Theorems 2.1.(3) and 2.2.c give a canonical bijection Σt◦ between

IrrC(Wt◦) = Irr(EndG◦(π∗Ẽ)) and Ψ−1
G◦(t◦) ⊂ N+

G◦. It relates to part (a) by

LΣqt(ϕ, ρ)|Wt◦ =
⊕

i
Σt◦(uϕ, ρi),

where ρ =
⊕

i ρi is a decomposition into irreducible AG◦(uϕ)-subrepresentations.
(c) The H∨-conjugacy class of (ϕ|WF

, uϕ, ρi) is determined by any irreducible C[Wt◦ ]-

subrepresentation of LΣqt(ϕ, ρ).

Proof. (a) By Theorem 5.5 (with C-coefficients) every (ϕ, ρ) ∈ LΨ−1(LL, ϕv, qϵ) de-
termines a unique irreducible representation qΣqt(uϕ, ρ) of C[Wqt, κqt]. Conversely,

every τ ∈ Irr(C[Wqt, κqt]) gives rise to a unique qΣ−1
qt (τ) = (uϕ, ρ) ∈ N+

G , and that

determines an enhanced L-parameter (ϕ|WF
, uϕ, ρ) for LH. It remains to see that

(ϕ|WF
, uϕ, ρ) is H-relevant. By (68) ρ has the same Z(H∨

sc)
WF -character as qϵ. By

the assumed H-relevance of qϵ, ρ is H-relevant. By Definition 6.7, (ϕ|WF
, uϕ, ρ) is

also H-relevant.
(b) This is a direct consequence of Theorem 5.5.b.
(c) By the irreducibility of ρ, all the ρi are ZG(ϕ)-conjugate. Similarly the irreducibil-
ity of the C[Wqt, κqt]-representation τ = LΣqt(ϕ, ρ) implies (with Theorem 1.2) that
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all the irreducible C[Wt◦ ]-constituents τi of τ are Wqt-conjugate. By part (b) τi
determines a pair (uϕ, ρi) up to G◦-conjugacy. Hence it determines (ϕ|WF

, uϕ, ρi)
up to H∨-conjugacy. □

We will promote Proposition 9.1 to a statement involving extended quotients. By
Lemma 8.2 Ws∨,ϕv ,qϵ = Wqt, so we can regard κqt as a 2-cocycle κϕv ,qϵ of Ws∨,ϕv ,qϵ.
Then we can build

s̃∨L =
(
[LL, ϕv, qϵ]LL

)∼
κ

=
{(

(LL, zϕv, qϵ), ρ
)
: z ∈ Xnr(

LL), ρ ∈ Irr(C[Ws∨,ϕv ,qϵ, κϕv ,qϵ])
}
.

Comparing with (13), we see that we still need an action on Ws∨ on this set.

Lemma 9.2. Let w ∈Ws∨ and z ∈ Xnr(
LL) with w(ϕv, qϵ) ∼= (zϕ, qϵ). There exists

a family of algebra isomorphisms (for various such w, z)

ψw,ϕv ,qϵ : C[Ws∨,ϕv ,qϵ, κϕv ,qϵ]→ C[Ws∨,zϕv ,qϵ, κzϕv ,qϵ]

such that:

(a) The family is canonical up to the choice of isomorphisms C[Ws∨,ϕv ,qϵ, κϕv ,qϵ]
∼=

EndG(π∗(q̃E)) as in Lemma 5.4.
(b) ψw,ϕv ,qϵ is conjugation with Tw if w ∈Ws∨,ϕv ,qϵ.
(c) ψw′,zϕv ,qϵ ◦ ψw,ϕv ,qϵ = ψw′w,ϕv ,qϵ for all w′ ∈Ws∨.

(d) LΣ−1
qt (ρ)

∼= LΣ−1
w(qt)(ρ ◦ ψ

−1
w,ϕv ,qϵ

) for all ρ ∈ Irr(C[Ws∨,ϕv ,qϵ, κϕv ,qϵ]).

Proof. (a) Recall from Lemma 5.4 that

(127) C[Ws∨,ϕv ,qϵ, κϕv ,qϵ]
∼= C[Wqt, κqt] ∼= EndG(π∗(q̃E)).

We fix such isomorphisms. For any n ∈ NH∨(LL) representing w:

C[Ws∨,w(ϕv),w(qϵ), κw(ϕv),w(qϵ)] ∼= C[Wn(qt), κn(qt)] ∼= EndG(π∗(ñ · qE)),

C[Ws∨,zϕv ,qϵ, κzϕv ,qϵ]
∼= EndnGn−1(π∗(q̃E)) ∼= EndG(π∗( ˜Ad(n)∗qE)),

(128)

where π∗(q̃E) now denotes a sheaf on nY n−1. By assumption there exists a Lsc-
intertwining map

(129) qE → Ad(n)∗qE ,
and by the irreducibility of qE it is unique up to scalars. In the same way as in [Lus2,
§3] and in the proof of Lemma 5.4, it gives rise to an isomorphism of G-equivariant
local systems

qbw : π∗(q̃E)→ π∗( ˜Ad(n)∗qE).
In view of (128) and the essential uniqueness of (129), conjugation by qbw gives a
canonical algebra isomorphism

ψ̃w,ϕv ,qϵ : EndG(π∗(q̃E))→ EndnGn−1(π∗(q̃E)).

We define ψw,ϕv ,qϵ as the composition of (127), ψ̃w,ϕv ,qϵ and (128).
(b) For w ∈ Ws∨,ϕv ,qϵ we thus obtain conjugation by the image of qbw which by
construction (see the proof of Lemma 5.4) is Tw.
(c) The canonicity ensures that

ψ̃w′,zϕv ,qϵ ◦ ψ̃w,ϕv ,qϵ = ψ̃w′w,ϕv ,qϵ
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which automatically leads to (c).
(d) By Theorem 5.5.a

n · qΣ−1
qt (ρ̃)

∼= qΣ−1
w(qt)(ρ̃ ◦ ψ̃

−1
w,ϕv ,qϵ

) for ρ̃ ∈ Irr
(
EndG(π∗(q̃E))

)
.

Since LΣqt was defined using (127), we obtain property (d). □

We could have characterized ψ−1
w,ϕv ,qϵ

also with property (d) of Lemma 9.2 only,

that would suffice for our purposes. However, then one would not see so readily that
the map is exactly as canonical as our earlier constructions.

Theorem 9.3. (a) Let s∨L = [LL, ϕv, qϵ]LL be an H-relevant inertial equivalence
class for the Levi L-subgroup LL of LH and recall the notations (126). The
maps LΣqt from Proposition 9.1.a combine to a bijection

Φe(
LH)s∨ ←→

(
Φe(

LL)s
∨
L//Ws∨

)
κ

(ϕ, ρ) 7→
(
LΨ(ϕ, ρ), qΣqt(uϕ, ρ)

)(
ϕv|WF

, qΣ−1
qt (τ)

)
7→ (LL, ϕv, qϵ, τ)

(b) The bijection from part (a) has the following properties:
• It preserves boundedness of (enhanced) L-parameters.
• It is canonical up to the choice of isomorphisms as in (127).
• The restriction of τ to Wt◦ canonically determines the (non-enhanced) L-
parameter in LΣqt(τ).
• Let z, z′ ∈ Xnr(

LL) and let Γ ⊂ Ws∨,zϕv ,qϵ be a subgroup. Suppose that

Γ = Γ/L ∼= Γc/Lc, where

Γ ⊂ NH∨(LL) ∩ Z1
H∨(z′ϕ|WF

) with preimage Γc ⊂ ZH∨
sc
(z′ϕ(WF ))

◦.

Then the 2-cocycle κs∨,zϕv ,qϵ is trivial on Γ.

(c) Let ζH ∈ Irr(Z(H∨
sc)) and ζ

L
H be as in Lemma 7.4. We write

Φe,ζH(H,L) = {(ϕ, ρ) ∈ Φe,ζH(H) : Sc(ϕ, ρ) ∈ Φcusp(L)}.
The bijections from part (a) give a bijection

Φe,ζH(H,L) ←→
(
Φcusp,ζLH

(L)//W (H,L)
)
κ
.

(d) Let Lev(H) be a set of representatives for the conjugacy classes of Levi subgroups
of H. The maps from part (c) combine to a bijection

Φe,ζH(H) ←→
⊔

L∈Lev(H)

(
Φcusp,ζLH

(L)//W (H,L)
)
κ
.

(e) Assume that Z(L∨sc) is fixed by WF for every Levi subgroup L ⊂ H. (E.g. H is
an inner twist of a split group.) Let Hu be the inner twist of H determined by
u ∈ H1(F,Had) ∼= IrrC

(
Z(H∨

sc)
WF

)
. The union of part (d) for all such u is a

bijection

Φe(
LH) ←→

⊔
u∈H1(F,Had)

⊔
Lu∈Lev(Hu)

(
Φcusp(Lu)//W (Hu,Lu)

)
κ
.

Proof. (a) Proposition 9.1.a gives a bijection

LΨ−1(LL, ϕv, qϵ) ←→ Irr(C[Ws∨,ϕv ,qϵ, κϕv ,qϵ]) ←→(130) ⊔
Ws∨/Ws∨,ϕv,qϵ

Irr(C[Ws∨,w(ϕv),w(qϵ), κw(ϕv),w(qϵ)])
/
Ws∨ =

(
Ws∨ · (LL, ϕv, qϵ)//Ws∨

)
κ
.
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For z ∈ Xnr(
LL) the pre-images LΨ−1(LL, ϕv, qϵ) and

LΨ−1(LL, zϕv, qϵ) intersect in
Φe(

LH) if and only if their L-conjugacy classes differ by an element of Ws∨ . Hence
the maps (130) combine to the desired bijection.
(b) It preserves boundedness because it does not change ϕ|WF

. The second and
third properties follow from Proposition 9.1.c.

WriteGz′ = Z1
H∨

sc
(z′ϕ|WF

) and consider Γ as a subgroup ofWz′t◦ = NG◦
z′
(z′t◦)/Lsc.

Let π∗(Ẽz′) be the Gz′-equivariant sheaf constructed like π∗(Ẽ), but with Gz′ in-
stead of G. For γ ∈ Γ the proof of Lemma 5.4 provides a canonical element

qb′γ ∈ EndGz′ (π∗(Ẽz′)), such that

Γ→ AutGz′ (π∗(Ẽz′)) : γ 7→ qb′γ

is a group homomorphism. Let n ∈ G◦
z′ ∩Gz be a lift of γ. Then qb′γ restricts to an

isomorphism

(131) qE = z′qE → Ad(n)∗(z′qE) = Ad(n)∗(qE).

As in the proof of Lemma 9.2, (131) gives rise to an element qbγ ∈ EndGz(π∗(Ẽz)).
We can choose the basis element

Tγ of C[Wzqt, κzqt] = C[Ws∨,zϕv ,qϵ, κzϕv ,qϵ]

to be the image of qbγ under (127). Then the C-span of {Tγ : γ ∈ Γ} is isomorphic
to C[Γ], which shows that κzϕv ,qϵ

∣∣
Γ×Γ

= 1.

(c) The union of the instances of part (a) with LL = LL and qϵ|Z(L∨
sc)

= ζLH yields a
surjection

(132)
⊔

(ϕv ,qϵ)∈Φcusp,ζLH
(L)/Xnr(LL)

(
Φe(L)s

∨
L//Ws∨

)
κ
→ Φe,ζH(H,L).

Two elements (ϕv, qϵ, τ) and (ϕ′v, qϵ
′, τ ′) on the left hand side can only have the

same image in Φe,ζH(H,L) if they have the same cuspidal support modulo unram-
ified twists, for the map in Proposition 9.1.a preserves that. By (117) the inertial
equivalence classes of (ϕv, τ) and (ϕ′v, τ

′) differ only by an element of W (LH, LL) ∼=
W (H,L). We already know that the restriction of (132) to one inertial equivalence
class is injective. Hence every fiber of (132) is in bijection with W (LH, LL)/Ws∨ for
some s∨.

By Lemma 8.2 ˜Φcusp(L) (with respect to W (LH, LL)) equals the disjoint union⊔
s∨L

(̃s∨L)κ. In view of part (a), there is a unique way to extend the action of Ws∨ on

(̃s∨L)κ (for various s∨L = [LL, ϕ′v, qϵ′]LL) to an action of W (LH, LL) on ˜Φcusp(L) such
that maps from part (a) become constant on W (LH, LL)-orbits. Then(

Φcusp,ζLH
(L)//W (LH, LL)

)
κ
= ˜Φcusp,ζLH

(L)/W (LH, LL)→ Φe,ζH(H,L)

is the desired bijection.
(d) This is a direct consequence of part (c).
(e) By (88) and Definition 6.7

Φe(
LH) =

⊔
u∈H1(F,Had)

Φe(Hu).

By the assumption Φcusp(Lu) = Φcusp,ζu(Lu) for every extension ζu of the Kottwitz
parameter of Lu to a character of Z(L∨sc), for there is nothing to extend to. Now
apply part (d). □
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The canonicity in part (b) can be expressed as follows. Given (L, ϕv, qϵ, τ◦) with
τ◦ ∈ Irr(Wt◦), the set{

(ϕv|WF
, qΣ−1

qt (τ)) ∈ Φe(
LH)s∨ : τ ∈ Irr(C[Ws∨,ϕv ,qϵ, κϕv ,qϵ]) contains τ

◦}
is canonically determined.

It would be interesting to know when the above 2-cocycles κ are trivial on Ws∨ .
Theorem 9.3.b shows that this happens quite often, in particular whenever Ws∨

fixes a point (LL, z′ϕv, qϵ) ∈ s∨ and at the same time Ws∨ equals the Weyl group
W (G◦

z′ , L), where Gz′ = Z1
H∨

sc
(z′ϕ|WF

).

Example 9.4. Yet there are also cases in which κ is definitely not trivial. Take
H = SL5(D), where D is a quaternion division algebra over F . This is an inner form
of SL10(F ) and

LH = PGL10(C)×WF .
We will rephrase Example 3.2 with L-parameters. We can ignore the factor WF

of LH, because it acts trivially on H∨. Let ϕ : WF → SL2(C)5 be a group homo-
morphism whose image is the group Q from Example 3.2. It projects to a homo-
morphism ϕ|WF

: WF → PGL10(C). Let u and ϵ be as in the same example. These
data determine an enhanced L-parameter (ϕ, ϵ) for H. The group

G = ZSL10(C)(Q) = ZH∨
sc
(ϕ(WF ))

was considered in Example 3.2. We checked over there thatWs∨
∼= (Z/2Z)2 and that

its 2-cocycle κs∨,ϕ,ϵ is nontrivial. We remark that this fits with the non-triviality of
the 2-cocycle in [ABPS3, Example 5.5], which is essentially the same example, but
on the p-adic side of the LLC.

Just like LΨ in Lemma 7.11, the maps from Theorem 9.3 are compatible with the
Langlands classification for L-parameters from Theorem 7.10.

Lemma 9.5. Let (ϕ, ρ) ∈ Φe(H) and let (L, ϕt, z, ρt) be the enhanced standard triple
associated to it by Theorem 7.10.

(a) Write qΨG(uϕ, ρ) = qt = [M, CMv , qϵ]G, G2 = Z1
L∨
sc
(ϕ|WF

), M2 = ZG2(Z(M)◦)

and qtL = [M2, CM2
v , qϵ2]Gt as in the proof of Lemma 7.11. Then Wqt

∼=WqtL.
(b) The image of (ϕ, ρ) ∈ Φe(H) under Theorem 9.3.a equals the image of (zϕt, ρt) ∈

Φe(L). The latter can be expressed as z · (LΨL(ϕt, ρt), qΣqtL(uϕt , ρt)).

Proof. Because all the maps are well-defined on conjugacy classes of enhanced L-
parameters, we may assume that ϕ = zϕt and ρ = ρt.
(a) Recall from Lemma 8.2 that

Wqt
∼=W (LH, ZLH(Z(M)◦))ϕv ,qϵ,

WqtL
∼=W (LL, ZLH(Z(M)◦))ϕv ,qϵ2 .

(133)

The argument following (113) shows that we may replace qϵ2 by qϵ here. Let L∅ be
the unique minimal standard Levi subgroup of H∨. Then

W (LH, ZLH(Z(M)◦)) ∼= NW (LH,LL∅)
(Z(M)◦))/W (ZLH(Z(M)◦), LL∅),

W (LL, ZLH(Z(M)◦)) ∼= NW (LL,LL∅)
(Z(M)◦))/W (ZLH(Z(M)◦), LL∅).

Recall from Definition 7.9 that ϕv|WF
ϕ|WF

= zϕt|WF
, where z ∈ Xnr(

LL) =
(Z(L∨)IF )◦Frob is strictly positive with respect to the standard parabolic subgroup
P of H having L as Levi factor. Hence the isotropy group of z in the Weyl group
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W (LH, LL∅) is the group generated by the reflections that fix z, which is precisely
W (LL, LL∅).

Since ϕt is bounded and z determines an unramified character of L with values
in R>0, every element of Wqt must fix both ϕt|WF

and z. By the above Wqt ⊂
W (LL, LL∅), and then (133) shows that Wqt =WqtL .
(b) From Lemma 7.11 we know that LΨH(ϕ, ρ) = LΨL(ϕ, ρ). By Proposition 5.6

qΣqtL(uϕ, ρ) is a constituent of Res
EndG(π∗(q̃E))
EndG2

(π
G2
∗ (q̃EG2

))
qΣqt(u, η).

By Lemma 5.4

EndG(π∗(q̃E)) ∼= C[Wqt, κqt] and EndGt(π
Gt
∗ (q̃EGt))

∼= C[WqtL , κqtL ].

By Proposition 5.6.b κqt|WqtL
= κqtL , so in view of part (a) these two algebras are

equal. Thus qΣqtL(uϕ, ρ) = qΣqt(uϕ, ρ). Together with Lemma 7.11 this shows that
the image of (ϕ, ρ) under Theorem 9.3.a is the same for H and for L.

Since z lifts to a central element of L∨, qtL is the same for (ϕt, ρt) and (zϕt, ρt).
That goes also for qΣqtL(uϕt , ρt). In combination with Lemma 7.11 we find that

(LΨL(zϕt, ρt), qΣqtL(uϕt , ρt)) = z · (LΨL(ϕt, ρt), qΣqtL(uϕt , ρt)). □

Appendix A. Erratum (2025)

In 2025 Simon Riche pointed out to us that Theorem 3.1.a does not hold in the
stated generality.

Namely, G◦ could be a group SpinN (C)× SpinN (C) such that N is both a square
and a triangular number. On the first copy of SpinN (C) one can take the cuspidal
local system L+ supported on the unipotent class C+ (as in the proof of Theorem 3.1),
the second copy one can take cuspidal local system L− supported on the unipotent
class C−. Then L = L+ ⊠L− is a cuspidal local system supported on the unipotent
class C+ × C− in G◦.

Let τ be the automorphism of G◦ that swaps the two copies of SpinN (C). Then
τ(C+×C−) = C−×C+ is another unipotent class in G◦ that supports a cuspidal local
system, namely τ∗(L) = L−⊠L+. The central characters of L and τ∗(L) differ, but
they are in the same Aut(G◦)-orbit.

Below we repair this, by settling for a somewhat weaker statement of Theorem
3.1.a. This means that in general the unipotent class CG◦

u is not stable under all
automorphisms of G◦, and it need not be equal to CGu . Although an equality of the
form CGu = CG◦

u is used several times in the paper, that is mainly for convenience,
with the below corrections it can be avoided. Most of the time it suffices to replace
G by GCG◦

u
, the stabilizer of CG◦

u .

Corrections.

• p.15, second line of Theorem 3.1: add ”Let Auts(G◦) be the subgroup of
Aut(G◦) that stabilizes every simple factor of G◦.”
• p.15, statement of Theorem 3.1.a: replace ”Aut(G◦)” by ”Auts(G◦)”
• p.15, sixth line of proof of Theorem 3.1: replace ”Aut” by ”Auts”
• p.15, seventh line of proof of Theorem 3.1: replace ”X̄ decomposes” by ”X̄
and Auts(G̃) decompose”
• p.16, remove lines -6 and -5.
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• p.16–18, replace every occurrence of ”G/G◦” by ”GCG◦
u
/G◦” (In Example 3.2

this does not make a difference.)
• p.19, line 19, replace ”Y ” by ”Y ◦ = CG◦

u Z(G◦)◦”

• p.19, (32), replace ”Y ×G” by ”Ŷ ◦ = {(y, g) ∈ Y ×G : g−1yg ∈ Y ◦}”
• p.19, lines 24–27, replace ”Y ×G” by ”Ŷ ◦” (three times)
• p.19, line 28, after ”fibration”, add ”with fibre GCG◦

u
/G◦”

• p.19, line 31, replace ”G/G◦” by ”GCG◦
u
/G◦”

• p.23, lines 3–7, replace ”NG(L)/L” by ”NG(L)CL
v
/L” (three times)

• p.24, line 6, replace ”By Theorem 3.1.a NG(L) stabilizes CLv ” by ”Recall from
(21) that”
• p.29, line 1, remove ”= CM◦

v ”
• p.29, line 6, replace ”S = CMv Z(M)◦” by ”S = CM◦

v Z(M)◦”
• p.31, line 14, remove ”by Theorem 3.1.a”
• p.31, line 15 and 21, replace ”NG(M

◦)/M” by ”NG(M
◦)CM◦

v
M/M”
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