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1 Cesàro summation and Hardy’s theorem

1.1 Definition Given a sequence (an ∈ C)n∈N0 , we define

sn =
n∑

k=0

an, σn =

∑n
k=0 sn

n + 1
.

If limn→∞ σn = A ∈ C we say that “
∑

k ak is Cesàro summable to A” and
write

C−
∞∑

k=0

an = A.

1.2 Remark The following facts are easy to show:

(a) limn→∞ sN = A implies limn→∞ σN = A. (Ordinary convergence im-
plies Cesàro convergence.)

(b) There are sequences (ak) such that C−
∑∞

k=0 an exists but
∑∞

k=0 an does
not.

(c) If C−
∑∞

k=0 an = A and an = o( 1
n
) then

∑∞
k=0 an = A.

The following theorem of Hardy (1910) is better than (c) above since
an = O( 1

n
) (meaning |nan| ≤ C for some C > 0 and all n > 0) is a weaker

assumption than an = o( 1
n
) (meaning limn→0 nan = 0).
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1.3 Theorem If C−
∑∞

k=0 an = A and an = O( 1
n
) then

∑∞
k=0 an = A.

Proof. Recall that

Sn =
n∑

k=0

an, σn =
n∑

k=0

(
1− k

n + 1

)
an.

Picking λ > 1 and recalling that bxc := max{n ∈ Z | n ≤ x} we claim that

Sn =
bλnc+ 1

bλnc − n

σbλnc −
∑

n<k≤bλnc

(
1− k

bλnc+ 1

)
an

− n + 1

bλnc − n
σn.

(1.1)
To see this, we observe that

σbλnc −
∑

n<k≤bλnc

(
1− k

bλnc+ 1

)
an =

n∑
k=0

(
1− k

bλnc+ 1

)
an,

thus the first half of the expression equals

bλnc+ 1

bλnc − n

n∑
k=0

(
1− k

bλnc+ 1

)
an =

n∑
k=0

bλnc+ 1− k

bλnc − n
an,

and subtracting the last term, namely

n + 1

bλnc − n
σn =

n + 1

bλnc − n

n∑
k=0

(
1− k

n + 1

)
an =

n∑
k=0

n + 1− k

bλnc − n
an,

we get

n∑
k=0

(bλnc+ 1− k)− (n + 1− k)

bλnc − n
an =

n∑
k=0

bλnc − n

bλnc − n
an = Sn,

proving (1.1). If we now let n →∞ in (1.1) then σn → A and σbλnc → A by
the assumption of Cesàro summability. Therefore,

bλnc+ 1

bλnc − n
σbλnc −

n + 1

bλnc − n
σn −→

λ

λ− 1
A− 1

λ− 1
A = A.
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Thus, (1.1) implies limn→∞ Sn = A, provided we can show that the remaining
term in (1.1) tends to zero as n →∞. It is given by

bλnc+ 1

bλnc − n
·

∣∣∣∣∣∣
∑

n<k≤bλnc

(
1− k

bλnc+ 1

)
an

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

n<k≤bλnc

bλnc+ 1− k

bλnc − n
an

∣∣∣∣∣∣
≤

∑
n<k≤bλnc

∣∣∣∣bλnc+ 1− k

bλnc − n
an

∣∣∣∣ ≤ ∑
n<k≤bλnc

|an|, (1.2)

where we used that ∣∣∣∣bλnc+ 1− k

bλnc − n

∣∣∣∣ ≤ 1

for n < k ≤ bλnc. Finally using the assumption an = O( 1
n
), or |an| ≤

C/n ∀n ≥ 1, we continue the estimate (1.2) as follows:

≤
∑

n<k≤bλnc

C

n
≤

∫ bλnc

n

C

n
≤

∫ λn

n

C

n
= C(ln(λn)− ln n) = C ln

λn

n
= C ln λ.

(In comparing the sum with the integral, we have used that C/n is mono-
tonously decreasing.) Thus, for any given ε > 0, we can choose λ > 1
sufficiently close to 1 to make C ln λ, and thereby the term with

∑
n<k≤bλnc

smaller than ε, uniformly in n. This proves Sn → A. �

1.4 Remark 1. I thank Lawrence Forooghian from Cambridge University
for drawing my attention to a mistake in a previous version of these notes
and for providing a correction.

2. Recall the notion of Abel summability: If (an)n∈N0 is such that

f(x) =
∞∑

k=0

akx
k

converges for all |x| < 1 and A = limx↗1 f(x) exists, then A is called the Abel-
sum A−

∑∞
k=0 ak. Abel proved that if A=

∑∞
k=0 an exists then A−

∑∞
k=0 ak = A.

As for Cesàro summation, the converse is false. In 1897, Tauber proved

A = A−
∞∑

k=0

ak and an = o

(
1

n

)
⇒

∞∑
k=0

ak = A.
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Since then, a “Tauberian theorem” is a theorem the the effect that summa-
bility w.r.t. some summation method together with a decay condition on the
coefficients implies summability w.r.t. some weaker method (for example or-
dinary convergence). Fact (c) of Remark 1.2 and Hardy’s Theorem 1.3 are
such theorems. Another example: Littlewood proved in 1911 that o( 1

n
) in

Tauber’s original theorem can be replaced by O( 1
n
). (This is a good deal

more difficult to prove than Theorem 1.3, which it implies!)

2 Application to Fourier series

Let f ∈ R[0, 2π] and define

cn(f) =
1

2π

∫ 2π

0

f(x)e−inxdx, SN(f)(x) =
N∑

n=−N

cn(f)einx.

The convergence of SN(f)(x) to f(x) is a tricky problem, but the Cesàro
means

σN(f)(x) =

∑N
k=0 SN(f)(x)

N + 1

of the partial sums SN(f) behave much better: If f is continuous at x then
σN(f)(x) → f(x). Furthermore, if f is continuous on E ⊂ S1 then σN(f) ⇒
f on E (uniform convergence).

We are now in a position to apply Hardy’s theorem to the theory of
Fourier series:

2.1 Theorem Let f ∈ R[0, 2π] be such that cn(f) = O( 1
|n|). Then, as

N →∞ we have

(a) SN(f)(x) → f(x) at every point of continuity of f .

(b) If f ∈ C(S1) then SN(f) ⇒ f (uniform convergence).

Proof. (a) Assume first that f is continuous at 0. We have

SN(f)(0) =
N∑

n=−N

cn = c0 +
N∑

n=1

(cn + c−n) =
N∑

n=0

an,
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where a0 = c0, an = cn+c−n for n ≥ 1. Now, by Fejér’s theorem, C−
∑∞

n=0 an

exists (and is equal to f(0)). Since cn = O( 1
|n|) clearly implies an = O( 1

n
),

Theorem 1.3 gives that

lim
N→∞

SN(f)(0) = lim
N→∞

N∑
n=−N

cn =
∞∑

n=0

an = f(0).

Considering now fx0(x) = f(x + x0), we have cn(fx0) = e−inx0cn(f) and
thus cn(fx0) = O( 1

|n|). Thus, if f is continuous at x0 then the above implies

SN(f)(x0) = SN(fx0)(0) −→ fx0(0) = f(x0).

(b) A continuous function on S1 is the same as a continuous periodic
function on R. Such a function is uniformly continuous, i.e. for every ε > 0
there is δ > 0 such that |x − y| < δ ⇒ |f(x) − f(y)| < ε. Using this, the
convergence in (a) is easily seen to be uniform in x. �

2.2 Remark Fejérs theorem generalizes to the situation where f is not con-
tinuous at x, but the limits f(x+) and f(x−) both exist, giving σN(f)(x) →
f(x+)+f(x−)

2
. Combining this with Hardy’s theorem, we see that also (a) of

Theorem 2.1 generalizes accordingly.

We are now left with the problem of identifying a natural class of functions
for which cn(f) = O( 1

|n|).

3 Functions of bounded variation

3.1 Definition The total variation Var[a,b](f) ∈ [0,∞] of a function f :
[a, b] → C is defined by

Var[a,b](f) = sup
P

n∑
i=1

|f(xi)− f(xi−1)|,

where the suprenum is over the partitions P = {a = x0 < x1 < · · · < xn−1 <
xn = b} of [a, b]. If Var[a,b](f) < ∞ the f has bounded variation on [a, b].

3.2 Proposition If f : [0, 2π] → C has bounded variation then

|cn(f)| ≤ π

2

Var[0,2π](f)

|n|
∀n ∈ Z\{0}.
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Proof. Extending f to a 2π-periodic function on R, we have for n ∈ Z:

cn(Taf) =
1

2π

∫ 2π

0

f(x + a)e−inxdx =
eina

2π

∫ 2π

0

f(x)e−inxdx = einacn(f).

For n 6= 0 and a = π/n this gives cn(Tπ/nf) = −cn(f) and thus

cn(f) =
1

2
(cn(f)− cn(Tπ/nf)) =

1

2
cn(f − Tπ/nf),

implying

|cn(f)| ≤ 1

2
|cn(f − Tπ/nf)| ≤ 1

2
‖f − Tπ/nf‖1. (3.1)

(Note that this inequality holds for all f with ‖f‖1 < ∞.) Now,

‖f − Tπ/nf‖1 =

∫ 2π

0

∣∣∣f(x)− f(x +
π

n
)
∣∣∣ dx

=
2n∑

k=1

∫ kπ/n

(k−1)π/n

∣∣∣f(x)− f(x +
π

n
)
∣∣∣ dx

=
2n∑

k=1

∫ π/n

0

∣∣∣∣f(x +
k − 1

n
π)− f(x +

k

n
π)

∣∣∣∣ dx

=

∫ π/n

0

2n∑
k=1

∣∣∣∣f(x +
k − 1

n
π)− f(x +

k

n
π)

∣∣∣∣ dx

≤
∫ π/n

0

Var[x,x+2π](f) dx

=
π

n
Var[0,2π](f).

(In the last step we have used that f is 2π-periodic.) Together with (3.1)
this implies the proposition. �

Combining Proposition 3.2 and Theorem 2.1, we finally have:

3.3 Theorem (Dirichlet-Jordan) Let f : [0, 2π] → C have bounded
variation. Then

(a) lim
N→∞

SN(f)(x) =
f(x+) + f(x−)

2
∀x ∈ S1. (Recall that a function of

bounded variation automatically has left and right limits f(x+), f(x−)
in all points and is Riemann integrable, so that we can define the coef-
ficients cn(f).
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(b) If f ∈ C(S1) has bounded variation then Sn(f) ⇒ f .

3.4 Remark Assume that there is a partition P of [0, 2π] such that f is
continuous and monotonous on each interval (xi−1, xi), i = 1, . . . , n and the
limits f(xi+), f(xi−) exist. Then

Var[0,2π](f) =
n∑

i=1

|f(xi)− f(xi−1)| < ∞,

and the Theorem applies. This is the case proven by Dirichlet in 1828.

3.5 Remark If f ∈ C1([a, b]) then

Var[a,b](f) ≤
∫ b

a

|f ′(x)|dx < ∞.

4 Summary of our main results

1. For all f ∈ R[0, 2π] the formula of Parseval holds:

∑
n∈Z

|cn(f)|2 =
1

2π

∫ 2π

0

|f(x)|2dx < ∞.

This implies the Riemann-Lebesgue Lemma: lim|n|→∞ cn(f) = 0 or
cn(f) = o(1).

2. Defining

SN(f)(x) =
N∑

k=−N

ck(f)eikx,

we have

‖f − SN(f)‖2
2 =

1

2π

∫ 2π

0

|f(x)− SN(f)(x)|2dx → 0.

Note that a priori this implies nothing about pointwise convergence,
since there is a sequence {fn} such that ‖fn‖2 → 0, while limn→∞ fn(x)
exists for no x. (However, Fourier series cannot be that badly behaved,
at least if f is Riemann integrable. See 15-17 below.)

7



3. If f ∈ Ck(S1) then cn(f (k)) = (in)kcn(f) and cn(f (k)) = o(1) imply

|cn(f)| = o

(
1

|n|k

)
.

4. Thus: If f ∈ C2(S) then f̂(n) = o(n−2), thus
∑

n∈Z |cn(f)| < ∞, thus
SN(f) ⇒ f even absolutely!

5. If f ∈ C1(S1) then a combination of Parseval’s formula, the Cauchy-
Schwarz inequality and

∑∞
n=1 1/n2 = π2/6 implies:

‖f̂‖1 :=
∑
n∈Z

|f̂(n)‖ ≤ ‖f‖1|
π√
3
‖f ′‖2,

thus SN(f) → f absolutely and uniformly.

6. Fejér: The Fejér sums

FN(f)(x) =

∑N
k=0 SN(f)(x)

N + 1
=

N∑
k=−N

ck(f)

(
1− |k|

N + 1

)
eikx

converge to (f(x+)+ f(x−))/2 whenever f(x+) and f(x−) exist, thus
to f(x) at every point x of continuity.

7. If f ∈ C(S1) then FN(f) ⇒ f (uniform convergence). Thus we can
uniquely reconstruct f from its Fourier coefficients {cn(f)} even if the
Fourier series SN(f) behaves badly.

8. If f(x+), f(x−) exist and SN(f)(x) → A ∈ C then A = (f(x+) +
f(x−))/2. Thus: If the Fourier series converges, it converges to the
only reasonable value. (We clearly cannot expect SN(f)(x) → f(x)
at a discontinuity, since the value of f(x) can be chosen arbitrarily
without influencing the coefficients cn(f).)

9. If f ∈ Lipα[0, 2π] then |cn(f)| = O(|n|−α).

10. If f has bounded variation then |cn(f)| = O(|n|−1).

11. Dirichlet-Jordan: If f has bounded variation then SN(f)(x) → (f(x+)+
f(x−))/2 everywhere.
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12. Special case (Dirichlet): f is piecewise continuous and monotonous.

13. If f ∈ C(S1) has bounded variation then SN(f) ⇒ f . In particular
this holds for f ∈ C1(S1).

14. Dini: If f(x+), f(x−) exist and, for some δ > 0∫ δ

0

∣∣∣∣f(x + t)− f(x+) + f(x− t)− f(x−)

t

∣∣∣∣ < ∞,

then SN(f)(x) → (f(x+)+f(x−))/2. Note that this is a local criterion,
whereas the previous assumptions on f were global, i.e. concerned all
x ∈ S1.

15. The preceding condition is satisfied if |f(x + t)− f(x)| ≤ Ctα for some
α > 0 and t in some neighborhood of x. In particular: when f is
differentiable at x.

16. Riemann localization principle: The convergence of SN(f)(x) depends
only on the behavior of f on some neighborhood of x. More precisely:
If f, g coincide on some open neighborhood of x then either SN(f)(x)
and SN(g)(x) both diverge or they converge to the same value.

Here a few important and/or useful facts that we haven’t proven:

15. There exist f ∈ C(S1) such that SN(f)(x) is divergent for some x. In
fact, for every E ⊂ S1 of measure zero one can find a function f such
that limN→∞ SN(f)(x) diverges for all x ∈ E. (Notice that a set of
measure zero can be dense in S1.) However, it cannot get worse, as the
following result shows.

16. Carleson (1966): If f ∈ R[0, 2π] then SN(f)(x) → f(x) almost every-
where (i.e., on the complement of a set of measure zero). In fact this
conclusion holds for any function f ∈ Lp([0, 2π]), i.e. f is “measurable”
and ∫ 2π

0

|f(x)|pdx < ∞,

for some p > 1. (Such a function can be unbounded and very discon-
tinuous!)
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17. On the other hand, Kolmogorov constructed a function f ∈ L1([0, 2π]),
thus f is measuable and ∫ 2π

0

|f(x)|dx < ∞,

such that limN→∞ SN(f)(x) exists for no x.

A Alternative proof of Hardy’s theorem

We will use the following discrete Taylor formula:

A.1 Lemma Given a real series (an)n∈N0 , we define sn as above and tn =∑n
k=0 sk. Then for all n, h ∈ N0 we have

tn+h = tn + hsn +
1

2
h(h + 1)ξ, (A.1)

where
min

n<k≤n+h
ak ≤ ξ ≤ max

n<k≤n+h
ak. (A.2)

Proof. By definition of sk and tk we have

tn+h = tn + (sn+1 + · · ·+ sn+h)

= tn + hsn + han+1 + (h− 1)an+2 + · · ·+ 2an+h−1 + an+h.

Now,

han+1 + (h− 1)an+2 + · · ·+ 2an+h−1 + an+h

≤ (h + (h− 1) + · · ·+ 2 + 1) max
n<k≤n+h

ak =
n(n + 1)

2
max

n<k≤n+h
ak,

and similarly

n(n + 1)

2
min

n<k≤n+h
ak ≤ han+1 + (h− 1)an+2 + · · ·+ 2an+h−1 + an+h.

Thus

tn+h − tn − hsn ∈
n(n + 1)

2
[ min
n<k≤n+h

ak, max
n<k≤n+h

ak],

10



and we are done. �

Proof of Theorem 1.3. We may clearly assume that A = 0. (Otherwise
replace a0 by a0−A. This entails that sn and σn are replaced by sn−A and
σn −A.) Furthermore, considering real and imaginary parts separately, it is
sufficient to give a proof for real sequences (an).

In view of σn = tn/(n+1), the assumption σn → 0 is equivalent to tn
n
→ 0.

Thus, for every ε > 0 there is N ∈ N such that n ≥ N implies |tn| ≤ nε.
Solving (A.1) for sn we have

sn =
tn+h − tn

h
− (h + 1)ξ

2
,

where, using (A.2) and the assumption an = O( 1
n
) in the form |an| ≤ C/n,

−C

n
≤ min

n<k≤n+h
ak ≤ ξ ≤ max

n<k≤n+h
ak ≤

C

n
.

Thus

|sn| ≤
|tn+h|

h
+
|tn|
h

+
(h + 1)C

2n
.

With |tn| ≤ nε for n ≥ N we have

|sn| ≤ (n + h)ε

h
+

nε

h
+

(h + 1)C

2n
=

(2n + h)ε

h
+

(h + 1)C

2n

= ε +
C

2n
+

2nε

h
+

hC

2n
. (A.3)

We now try to minimize this expression by chosing h ∈ N cleverly. The
minimum of f(h) = 2nε

h
+ hC

2n
is obtained at the solution of f ′(h) = 0:

−2nε

h2
+

C

2n
= 0 ⇒ hmin = 2n

√
ε

C
.

Now

f(hmin) =
2nε

hmin

+
hminC

2n
=

2nε

2n
√

ε
C

+
2n

√
ε
C
C

2n
= 2

√
Cε.

Of course, hmin has no reason to be in N. Defining h = dhmine, to wit the
smallest natural number h ≥ hmin, we have

2nε

h
+

hC

2n
≤ 2

√
Cε +

C

2n
,
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since the first term in f can only decrease when we replace hmin by h, whereas
the second can increase by at most C/2n. Plugging this into (A.3), we can
conclude

∀ε > 0 ∃N : n ≥ N ⇒ |sn| ≤ ε +
C

n
+ 2

√
Cε,

implying sn → 0. �
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