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1 Cesaro summation and Hardy’s theorem

1.1 DEFINITION Given a sequence (a,, € C),en,, we define

n+1

n n
S
=t o= 0

k=0
If lim, .o 0, = A € C we say that “)_, aj, is Cesaro summable to A” and
write -

C=> a,=A
k=0

1.2 REMARK The following facts are easy to show:

(a) lim, .o sy = A implies lim,, .., on = A. (Ordinary convergence im-
plies Cesaro convergence.)

(b) There are sequences (ay) such that C—)"° ; a,, exists but Y .- a, does
not.

(c) HC=Y2pan=Aand a, =o() then > ;7 a, = A.
The following theorem of Hardy (1910) is better than (c) above since
a, = O(2) (meaning |na,| < C for some C' > 0 and all n > 0) is a weaker
assumption than a, = 0(%) (meaning lim,,_.o na, = 0).



1.3 THEOREM If C—3"° ja, = A and a, = O(2) then Y ;7 a, = A.
Proof. Recall that

n n k/‘
S, = (i, On_z(l_n%—l)an‘

k=0 k=0

Picking A > 1 and recalling that |x| := max{n € Z | n < z} we claim that
|An] +1 ( k ) n+1
Sp =7 ——— | o) — l——)a, | — ———0n.
An] —n {70 n<;§m [An] +1 An] —n
(1.1)

To see this, we observe that

n<k<|An|

thus the first half of the expression equals

M|+l [,k L = L)\nJ+1—ka
L)mj—nkz:%(l L)\nJJrl) g D] —n

k=0

and subtracting the last term, namely

n+1 n+tl ¢ k “n+l1—k
T~ _O9n =7y T l1——— n — TN 1 Un,
L)\nj—na L/\nj—nz( n—i—l)a Z L)\nj—na

k=0 k=0
we get
- 1—Fk)— 1— - —
([An] + k) — (n+ k) 0 - | A nan s
prd |An| —n “~ [An] —n

proving (1.1). If we now let n — oo in (1.1) then o, — A and o, — A by
the assumption of Cesaro summability. Therefore,
|An] +1 n+1 A 1

— -0, — ——A—-——A=A
|An] — n ! | An| — n" A—1 A—1



Thus, (1.1) implies lim,, ., S, = A, provided we can show that the remaining
term in (1.1) tends to zero as n — oo. It is given by

A +1 k B ] +1—k
n] —n 2 (I_L)\nj+1)a"_ 2 Dn]—n "

n<k<|An| n<k<|An|
|An| +1—k

< = a,| < nls 1.2
S S 12

n<k<|An| n<k<|An|

where we used that \
|An] +1—Fk <1
An| —n |~

for n < k < [An]. Finally using the assumption a, = O(2), or |a,| <
C/n ¥n > 1, we continue the estimate (1.2) as follows:

[An] An
< Y Qg/ 9</ g:C(ln(An)—lnn):Cln)\—n:Cln/\.

n n n
n<k<|An]

(In comparing the sum with the integral, we have used that C'/n is mono-
tonously decreasing.) Thus, for any given ¢ > 0, we can choose A > 1
sufficiently close to 1 to make C'ln A, and thereby the term with > <k<|An)
smaller than e, uniformly in n. This proves S, — A. U

1.4 REMARK 1. I thank Lawrence Forooghian from Cambridge University
for drawing my attention to a mistake in a previous version of these notes
and for providing a correction.

2. Recall the notion of Abel summability: If (ay)nen, is such that

f(z) = Z apx”
k=0

converges for all |z| < 1 and A = lim, ~ f(x) exists, then A is called the Abel-
sum A=)y 72 ai. Abel proved that if A=) "°  a, exists then A=)~ a, = A.

As for Cesaro summation, the converse is false. In 1897, Tauber proved

o 1 o0
A:A—Zak and anzo(ﬁ) = Zak:A.
k=0 k=0

3



Since then, a “Tauberian theorem” is a theorem the the effect that summa-
bility w.r.t. some summation method together with a decay condition on the
coefficients implies summability w.r.t. some weaker method (for example or-
dinary convergence). Fact (c) of Remark 1.2 and Hardy’s Theorem 1.3 are
such theorems. Another example: Littlewood proved in 1911 that o() in
Tauber’s original theorem can be replaced by O(%) (This is a good deal
more difficult to prove than Theorem 1.3, which it implies!)

2 Application to Fourier series

Let f € R0, 27] and define

N
1 2

en(f) = 5= (w)e ™ dz,  Sn(f)@) = D eulf)e™.

2m Jo S
The convergence of Sy(f)(z) to f(z) is a tricky problem, but the Cesaro

on(f)(r) = Zee D)

of the partial sums Sy (f) behave much better: If f is continuous at x then
on(f)(z) — f(z). Furthermore, if f is continuous on E C S! then on(f) =
f on E (uniform convergence).

We are now in a position to apply Hardy’s theorem to the theory of
Fourier series:

2.1 THEOREM Let f € R|0,27] be such that c,(f) = O(%') Then, as
N — oo we have

(a) Sn(f)(x) — f(z) at every point of continuity of f.
(b) If f € C(S') then Sy(f) = f (uniform convergence).

Proof. (a) Assume first that f is continuous at 0. We have

N

SNO) = D en=cot Y (catcn) =) an,

n=—N n=1 n=0



where ag = ¢, a,, = ¢, +c_, for n > 1. Now, by Fejér’s theorem, C—=Y > a,

exists (and is equal to f(0)). Since ¢, = O(ﬁ) clearly implies a, = O(%),
Theorem 1.3 gives that

N oo
lim Sy (f)(0) = lim = ay=f(0).
n=—N n=0

Considering now f,, () = f(x + o), we have c,(fs,) = e "™¢c,(f) and
thus ¢, (fz,) = O(ﬁ) Thus, if f is continuous at xy then the above implies

Sn(f)(wo) = SN(f20)(0) — fu,(0) = f(0)-

(b) A continuous function on S! is the same as a continuous periodic
function on R. Such a function is uniformly continuous, i.e. for every ¢ > 0
there is 0 > 0 such that |z —y| < d = [f(x) — f(y)| < €. Using this, the
convergence in (a) is easily seen to be uniform in z. O

2.2 REMARK Fejérs theorem generalizes to the situation where f is not con-
tinuous at x, but the limits f(x+) and f(z—) both exist, giving on(f)(z) —
w. Combining this with Hardy’s theorem, we see that also (a) of
Theorem 2.1 generalizes accordingly.

We are now left with the problem of identifying a natural class of functions
for which ¢,(f) = O(%).

n|

3 Functions of bounded variation

3.1 DEFINITION The total variation Varpy(f) € [0,00] of a function f :
la,b] — C is defined by

Var,y (f) = Slllgpz |f(zi) = fzia)l,
i=1

where the suprenum is over the partitions P ={a =zo <21 < -+ < 21 <
x, = b} of [a,b]. If Varp,(f) < oo the f has bounded variation on |a, b|.

3.2 PrROPOSITION If f : [0,27] — C has bounded variation then
Var 2x)(f)

()l < 5 =P W e ZA{o}



Proof. Extending f to a 2m-periodic function on R, we have for n € Z:

(Tuf) = = /2”f< o)y =
enlluf) = 5 i r+a)e z= o

For n # 0 and a = m/n this gives ¢, (T5/nf) = —cn(f) and thus

elf) =

Senlh) = nToguf) = 5ealf = Tojn),

implying
1 1
lea(H)l < 5lealf = Tamh)l < SIF = Trpf -
(Note that this inequality holds for all f with ||f]|; < co.) Now,

27
I = Touf =/ f@)— fa+ D) da

- Z //)/ f@) - fle+ D) do
- Z/ ol fat t
x/n 2n

L et B

n

> A

Iz
J

w/n

Var[x,a:+27r] (f) dz

s
= ﬁvaf[o,mr] (f)

)e—lnl'daj — 67,7’L[l

dx

dx

(In the last step we have used that f is 27-periodic.) Together with (3.1)

this implies the proposition.

Combining Proposition 3.2 and Theorem 2.1, we finally have:

O

3.3 THEOREM (DIRICHLET-JORDAN) Let f : [0,2n] — C have bounded

variation. Then

flat) + f(z—)

(a) ]\}LH;O Sn(f)(x) = 5 Vo € S'. (Recall that a function of

bounded variation automatically has left and right limits f(z+), f(x—)
in all points and is Riemann integrable, so that we can define the coef-

ficients ¢, (f).



(b) If f € C(S') has bounded variation then S,(f) = f.

3.4 REMARK Assume that there is a partition P of [0,27] such that f is
continuous and monotonous on each interval (z;_1,z;), i =1,...,n and the
limits f(x;4), f(2x;—) exist. Then

Varan (f) = > [f(z:) = f(wim1)] < o0,
=1

and the Theorem applies. This is the case proven by Dirichlet in 1828.

3.5 REMARK If f € C'([a,b]) then

b
Varp,;(f) < / |f/(z)|dz < .

4 Summary of our main results

1. For all f € R0, 27] the formula of Parseval holds:

2 1 o 2
Slalf =5 [ 1@l <o,

nez
This implies the Riemann-Lebesgue Lemma: limp, o c,(f) = 0 or
cn(f) = of1).
2. Defining
N
Sn(N@) = D a(fe™,
k=—N
we have
1 g2
I = Sv(DIE =5 [ 170 = Swlr)(o)dz =

Note that a priori this implies nothing about pointwise convergence,
since there is a sequence { f,,} such that || f,,||2 — 0, while lim,, . f,.(z)
exists for no x. (However, Fourier series cannot be that badly behaved,
at least if f is Riemann integrable. See 15-17 below.)



10.
11.

If f € C*(SY) then c,(f*®) = (in)*c,(f) and c,(f*) = o(1) imply

thl=o ().

Thus: If f € C2(S) then f(n) = o(n~2), thus Y nez len(f)] < oo, thus
Sn(f) = f even absolutely!
If f € C'(S") then a combination of Parseval’s formula, the Cauchy-
Schwarz inequality and )7, 1/n* = 7*/6 implies:
~ -~ T
= n)j| < —Ifll25
/1l nezzlf( )< ||f||1|\/§||f|!2

thus Sy(f) — f absolutely and uniformly.

Fejér: The Fejér sums

Fy(f)(z) = Zk%si(if)(x) =Y ) (1 _ N|k+| 1) Jika
k=—N

converge to (f(z+)+ f(z—))/2 whenever f(z+) and f(z—) exist, thus
to f(x) at every point = of continuity.

. If f e C(SY) then Fy(f) = f (uniform convergence). Thus we can

uniquely reconstruct f from its Fourier coefficients {c,(f)} even if the
Fourier series Sy(f) behaves badly.

If f(xz+), f(x—) exist and Sy(f)(x) — A € C then A = (f(z+) +
f(z=))/2. Thus: If the Fourier series converges, it converges to the
only reasonable value. (We clearly cannot expect Sy(f)(z) — f(x)
at a discontinuity, since the value of f(x) can be chosen arbitrarily
without influencing the coefficients ¢, (f).)

If f € Lip?[0, 27 then |c,(f)] = O(|n|™%).
If f has bounded variation then |c,(f)| = O(|n|™Y).

Dirichlet-Jordan: If f has bounded variation then Sy (f)(z) — (f(x+)+
f(z—))/2 everywhere.



12.

13.

14.

15.

16.

Special case (Dirichlet): f is piecewise continuous and monotonous.

If f € C(S') has bounded variation then Sy(f) = f. In particular
this holds for f € C'(S?).

Dini: If f(z+), f(z—) exist and, for some § > 0
/5 flat+t) = flat) + fle—t) — fla—)
] /
then Sy (f)(x) — (f(x+)+ f(x—))/2. Note that this is a local criterion,

whereas the previous assumptions on f were global, i.e. concerned all
re St

< 00,

The preceding condition is satisfied if |f(x +t) — f(z)| < Ct* for some
a > 0 and t in some neighborhood of x. In particular: when f is
differentiable at x.

Riemann localization principle: The convergence of Sy(f)(z) depends
only on the behavior of f on some neighborhood of x. More precisely:
If f,g coincide on some open neighborhood of x then either Sy (f)(x)
and Sy(g)(z) both diverge or they converge to the same value.

Here a few important and/or useful facts that we haven’t proven:

15.

16.

There exist f € C'(S') such that Sy(f)(z) is divergent for some z. In
fact, for every £ C S! of measure zero one can find a function f such
that limy_. Sn(f)(x) diverges for all x € E. (Notice that a set of
measure zero can be dense in S'.) However, it cannot get worse, as the
following result shows.

Carleson (1966): If f € R[0,2x] then Sx(f)(x) — f(z) almost every-
where (i.e., on the complement of a set of measure zero). In fact this
conclusion holds for any function f € £,([0, 27]), i.e. f is “measurable”
and

2
/0 @)z < oo,

for some p > 1. (Such a function can be unbounded and very discon-
tinuous!)



17. On the other hand, Kolmogorov constructed a function f € £,([0, 27]),
thus f is measuable and

27
/O | (@)|dz < oo,

such that limy_., Sy(f)(x) exists for no x.

A Alternative proof of Hardy’s theorem
We will use the following discrete Taylor formula:

A.1 LEMMA Given a real series (an)nen,, we define s,, as above and t,, =
> ro Sk Then for all n,h € Ny we have

1
tntn =ty + hs, + 5h(h + 1)¢&, (A1)
where
min  a, << max ag. (A.2)
n<k<n-+h n<k<n+h

Proof. By definition of s, and t; we have

toyn = to+ (SnJrl +ooe 4+ 5n+h)
= ty+hsy+han1+ (h—Dapso+ - + 20n1h-1 + Gpyn-

Now,

hani1 + (h—1D)apio + -+ + 204 h—1 + Qpin
n(n+1)

St BT T LA

and similarly

n(n+1) ,
— 5, Jn e < hani1+ (h = 1)ango + -+ + 20101 + Gnyn

Thus

1
n(n+1) min a, max agl,

tpan —t, — hs, €
nt " " 2 n<k<n+h n<k<n+h

10



and we are done. O

Proof of Theorem 1.3. We may clearly assume that A = 0. (Otherwise
replace ag by ag — A. This entails that s, and o,, are replaced by s, — A and
o, — A.) Furthermore, considering real and imaginary parts separately, it is
sufficient to give a proof for real sequences (ay,).

In view of o, = t,,/(n+1), the assumption o,, — 0 is equivalent to = — 0.
Thus, for every ¢ > 0 there is N € N such that n > N implies |t,| < ne.
Solving (A.1) for s,, we have

o tn+h — iy, (h + 1)5

Sn = h 9 )
where, using (A.2) and the assumption a, = O(%) in the form |a,| < C/n,

—— < min a; << max ap < —.
n n<k<n+h n<k<n+h n

the tusnl | [t | (h+1)C
+

< linthl | IPnl APV )
sl < ==+,

With |t,| < ne for n > N we have

(n+h)e ne (h+1)C (2n+h)e N (h+1)C

N S -

h h 2n h 2n
C 2ne hC
= — 4+ — 4+ —. A.
e+ on + A + on ( 3)

We now try to minimize this expression by chosing h € N cleverly. The

minimum of f(h) = 2= 4 1€ js obtained at the solution of f(h) = 0:

2ne C [ e
T = = hmzn:2 -
% + o 0 = n c

, 2n,/=C
f(hmzn) = 2ne hman 2ne n\/g =2v/C

Now

Of course, Ay, has no reason to be in N. Defining h = [hyn |, to wit the
smallest natural number h > h,,;,, we have

2
E—I—E SQVC’&—#—E,
h 2n 2n

11



since the first term in f can only decrease when we replace h,,.;, by h, whereas
the second can increase by at most C'/2n. Plugging this into (A.3), we can
conclude

C
Ve>03dN:n>N = |s,| <e+—+2VC¢,
n

implying s,, — 0. 0
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