Hardy's Tauberian theorem, bounded variation and Fourier series

MICHAEL MÜGER

May 25, 2010

1 Cesàro summation and Hardy's theorem

1.1 DEFINITION Given a sequence $(a_n \in \mathbb{C})_{n \in \mathbb{N}_0}$, we define

$$s_n = \sum_{k=0}^n a_n, \qquad \sigma_n = \frac{\sum_{k=0}^n s_n}{n+1}.$$

If $\lim_{n\to\infty} \sigma_n = A \in \mathbb{C}$ we say that " $\sum_k a_k$ is Cesàro summable to A" and write

$$C - \sum_{k=0}^{\infty} a_n = A$$

1.2 REMARK The following facts are easy to show:

- (a) $\lim_{n\to\infty} s_N = A$ implies $\lim_{n\to\infty} \sigma_N = A$. (Ordinary convergence implies Cesàro convergence.)
- (b) There are sequences (a_k) such that $C \sum_{k=0}^{\infty} a_n$ exists but $\sum_{k=0}^{\infty} a_n$ does not.
- (c) If $C \sum_{k=0}^{\infty} a_n = A$ and $a_n = o(\frac{1}{n})$ then $\sum_{k=0}^{\infty} a_n = A$.

The following theorem of Hardy (1910) is better than (c) above since $a_n = O(\frac{1}{n})$ (meaning $|na_n| \leq C$ for some C > 0 and all n > 0) is a weaker assumption than $a_n = o(\frac{1}{n})$ (meaning $\lim_{n \to 0} na_n = 0$).

1.3 THEOREM If $C - \sum_{k=0}^{\infty} a_n = A$ and $a_n = O(\frac{1}{n})$ then $\sum_{k=0}^{\infty} a_n = A$. *Proof.* Recall that

$$S_n = \sum_{k=0}^n a_n, \qquad \sigma_n = \sum_{k=0}^n \left(1 - \frac{k}{n+1}\right) a_n.$$

Picking $\lambda > 1$ and recalling that $\lfloor x \rfloor := \max\{n \in \mathbb{Z} \mid n \leq x\}$ we claim that

$$S_n = \frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda n \rfloor - n} \left(\sigma_{\lfloor \lambda n \rfloor} - \sum_{n < k \le \lfloor \lambda n \rfloor} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n \right) - \frac{n+1}{\lfloor \lambda n \rfloor - n} \sigma_n.$$
(1.1)

To see this, we observe that

$$\sigma_{\lfloor \lambda n \rfloor} - \sum_{n < k \le \lfloor \lambda n \rfloor} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n = \sum_{k=0}^n \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n,$$

thus the first half of the expression equals

$$\frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda n \rfloor - n} \sum_{k=0}^{n} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n = \sum_{k=0}^{n} \frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n} a_n$$

and subtracting the last term, namely

$$\frac{n+1}{\lfloor \lambda n \rfloor - n} \sigma_n = \frac{n+1}{\lfloor \lambda n \rfloor - n} \sum_{k=0}^n \left(1 - \frac{k}{n+1} \right) a_n = \sum_{k=0}^n \frac{n+1-k}{\lfloor \lambda n \rfloor - n} a_n,$$

we get

$$\sum_{k=0}^{n} \frac{\left(\lfloor \lambda n \rfloor + 1 - k\right) - (n+1-k)}{\lfloor \lambda n \rfloor - n} a_n = \sum_{k=0}^{n} \frac{\lfloor \lambda n \rfloor - n}{\lfloor \lambda n \rfloor - n} a_n = S_n,$$

proving (1.1). If we now let $n \to \infty$ in (1.1) then $\sigma_n \to A$ and $\sigma_{\lfloor \lambda n \rfloor} \to A$ by the assumption of Cesàro summability. Therefore,

$$\frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda n \rfloor - n} \sigma_{\lfloor \lambda n \rfloor} - \frac{n+1}{\lfloor \lambda n \rfloor - n} \sigma_n \longrightarrow \frac{\lambda}{\lambda - 1} A - \frac{1}{\lambda - 1} A = A.$$

Thus, (1.1) implies $\lim_{n\to\infty} S_n = A$, provided we can show that the remaining term in (1.1) tends to zero as $n \to \infty$. It is given by

$$\frac{\lfloor \lambda n \rfloor + 1}{\lfloor \lambda n \rfloor - n} \cdot \left| \sum_{n < k \le \lfloor \lambda n \rfloor} \left(1 - \frac{k}{\lfloor \lambda n \rfloor + 1} \right) a_n \right| = \left| \sum_{n < k \le \lfloor \lambda n \rfloor} \frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n} a_n \right|$$
$$\leq \sum_{n < k \le \lfloor \lambda n \rfloor} \left| \frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n} a_n \right| \leq \sum_{n < k \le \lfloor \lambda n \rfloor} |a_n|, \tag{1.2}$$

where we used that

$$\left|\frac{\lfloor \lambda n \rfloor + 1 - k}{\lfloor \lambda n \rfloor - n}\right| \le 1$$

for $n < k \leq \lfloor \lambda n \rfloor$. Finally using the assumption $a_n = O(\frac{1}{n})$, or $|a_n| \leq C/n \ \forall n \geq 1$, we continue the estimate (1.2) as follows:

$$\leq \sum_{n < k \leq \lfloor \lambda n \rfloor} \frac{C}{n} \leq \int_{n}^{\lfloor \lambda n \rfloor} \frac{C}{n} \leq \int_{n}^{\lambda n} \frac{C}{n} = C(\ln(\lambda n) - \ln n) = C \ln \frac{\lambda n}{n} = C \ln \lambda.$$

(In comparing the sum with the integral, we have used that C/n is monotonously decreasing.) Thus, for any given $\varepsilon > 0$, we can choose $\lambda > 1$ sufficiently close to 1 to make $C \ln \lambda$, and thereby the term with $\sum_{n < k \le \lfloor \lambda n \rfloor}$ smaller than ε , uniformly in n. This proves $S_n \to A$.

1.4 REMARK 1. I thank Lawrence Forooghian from Cambridge University for drawing my attention to a mistake in a previous version of these notes and for providing a correction.

2. Recall the notion of Abel summability: If $(a_n)_{n \in \mathbb{N}_0}$ is such that

$$f(x) = \sum_{k=0}^{\infty} a_k x^k$$

converges for all |x| < 1 and $A = \lim_{x \nearrow 1} f(x)$ exists, then A is called the Abelsum $A - \sum_{k=0}^{\infty} a_k$. Abel proved that if $A = \sum_{k=0}^{\infty} a_n$ exists then $A - \sum_{k=0}^{\infty} a_k = A$. As for Cesàro summation, the converse is false. In 1897, Tauber proved

$$A = A - \sum_{k=0}^{\infty} a_k$$
 and $a_n = o\left(\frac{1}{n}\right) \Rightarrow \sum_{k=0}^{\infty} a_k = A.$

Since then, a "Tauberian theorem" is a theorem the the effect that summability w.r.t. some summation method together with a decay condition on the coefficients implies summability w.r.t. some weaker method (for example ordinary convergence). Fact (c) of Remark 1.2 and Hardy's Theorem 1.3 are such theorems. Another example: Littlewood proved in 1911 that $o(\frac{1}{n})$ in Tauber's original theorem can be replaced by $O(\frac{1}{n})$. (This is a good deal more difficult to prove than Theorem 1.3, which it implies!)

2 Application to Fourier series

Let $f \in \mathcal{R}[0, 2\pi]$ and define

$$c_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx, \qquad S_N(f)(x) = \sum_{n=-N}^N c_n(f) e^{inx}.$$

The convergence of $S_N(f)(x)$ to f(x) is a tricky problem, but the Cesàro means

$$\sigma_N(f)(x) = \frac{\sum_{k=0}^N S_N(f)(x)}{N+1}$$

of the partial sums $S_N(f)$ behave much better: If f is continuous at x then $\sigma_N(f)(x) \to f(x)$. Furthermore, if f is continuous on $E \subset S^1$ then $\sigma_N(f) \Rightarrow f$ on E (uniform convergence).

We are now in a position to apply Hardy's theorem to the theory of Fourier series:

2.1 THEOREM Let $f \in \mathcal{R}[0, 2\pi]$ be such that $c_n(f) = O(\frac{1}{|n|})$. Then, as $N \to \infty$ we have

- (a) $S_N(f)(x) \to f(x)$ at every point of continuity of f.
- (b) If $f \in C(S^1)$ then $S_N(f) \Rightarrow f$ (uniform convergence).

Proof. (a) Assume first that f is continuous at 0. We have

$$S_N(f)(0) = \sum_{n=-N}^{N} c_n = c_0 + \sum_{n=1}^{N} (c_n + c_{-n}) = \sum_{n=0}^{N} a_n,$$

where $a_0 = c_0$, $a_n = c_n + c_{-n}$ for $n \ge 1$. Now, by Fejér's theorem, $C - \sum_{n=0}^{\infty} a_n$ exists (and is equal to f(0)). Since $c_n = O(\frac{1}{|n|})$ clearly implies $a_n = O(\frac{1}{n})$, Theorem 1.3 gives that

$$\lim_{N \to \infty} S_N(f)(0) = \lim_{N \to \infty} \sum_{n=-N}^N c_n = \sum_{n=0}^\infty a_n = f(0).$$

Considering now $f_{x_0}(x) = f(x + x_0)$, we have $c_n(f_{x_0}) = e^{-inx_0}c_n(f)$ and thus $c_n(f_{x_0}) = O(\frac{1}{|n|})$. Thus, if f is continuous at x_0 then the above implies

$$S_N(f)(x_0) = S_N(f_{x_0})(0) \longrightarrow f_{x_0}(0) = f(x_0).$$

(b) A continuous function on S^1 is the same as a continuous periodic function on \mathbb{R} . Such a function is uniformly continuous, i.e. for every $\varepsilon > 0$ there is $\delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$. Using this, the convergence in (a) is easily seen to be uniform in x. \Box

2.2 REMARK Fejérs theorem generalizes to the situation where f is not continuous at x, but the limits f(x+) and f(x-) both exist, giving $\sigma_N(f)(x) \rightarrow \frac{f(x+)+f(x-)}{2}$. Combining this with Hardy's theorem, we see that also (a) of Theorem 2.1 generalizes accordingly.

We are now left with the problem of identifying a natural class of functions for which $c_n(f) = O(\frac{1}{|n|})$.

3 Functions of bounded variation

3.1 DEFINITION The total variation $\operatorname{Var}_{[a,b]}(f) \in [0,\infty]$ of a function $f: [a,b] \to \mathbb{C}$ is defined by

$$\operatorname{Var}_{[a,b]}(f) = \sup_{P} \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|,$$

where the suprenum is over the partitions $P = \{a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b\}$ of [a, b]. If $\operatorname{Var}_{[a,b]}(f) < \infty$ the f has bounded variation on [a, b].

3.2 PROPOSITION If $f:[0,2\pi] \to \mathbb{C}$ has bounded variation then

$$|c_n(f)| \le \frac{\pi}{2} \frac{\operatorname{Var}_{[0,2\pi]}(f)}{|n|} \quad \forall n \in \mathbb{Z} \setminus \{0\}.$$

Proof. Extending f to a 2π -periodic function on \mathbb{R} , we have for $n \in \mathbb{Z}$:

$$c_n(T_a f) = \frac{1}{2\pi} \int_0^{2\pi} f(x+a) e^{-inx} dx = \frac{e^{ina}}{2\pi} \int_0^{2\pi} f(x) e^{-inx} dx = e^{ina} c_n(f).$$

For $n \neq 0$ and $a = \pi/n$ this gives $c_n(T_{\pi/n}f) = -c_n(f)$ and thus

$$c_n(f) = \frac{1}{2}(c_n(f) - c_n(T_{\pi/n}f)) = \frac{1}{2}c_n(f - T_{\pi/n}f),$$

implying

$$|c_n(f)| \le \frac{1}{2} |c_n(f - T_{\pi/n}f)| \le \frac{1}{2} ||f - T_{\pi/n}f||_1.$$
(3.1)

(Note that this inequality holds for all f with $||f||_1 < \infty$.) Now,

$$\begin{split} \|f - T_{\pi/n}f\|_{1} &= \int_{0}^{2\pi} \left|f(x) - f(x + \frac{\pi}{n})\right| \, dx \\ &= \sum_{k=1}^{2n} \int_{(k-1)\pi/n}^{k\pi/n} \left|f(x) - f(x + \frac{\pi}{n})\right| \, dx \\ &= \sum_{k=1}^{2n} \int_{0}^{\pi/n} \left|f(x + \frac{k-1}{n}\pi) - f(x + \frac{k}{n}\pi)\right| \, dx \\ &= \int_{0}^{\pi/n} \sum_{k=1}^{2n} \left|f(x + \frac{k-1}{n}\pi) - f(x + \frac{k}{n}\pi)\right| \, dx \\ &\leq \int_{0}^{\pi/n} \operatorname{Var}_{[x,x+2\pi]}(f) \, dx \\ &= \frac{\pi}{n} \operatorname{Var}_{[0,2\pi]}(f). \end{split}$$

(In the last step we have used that f is 2π -periodic.) Together with (3.1) this implies the proposition.

Combining Proposition 3.2 and Theorem 2.1, we finally have:

3.3 THEOREM (DIRICHLET-JORDAN) Let $f : [0, 2\pi] \to \mathbb{C}$ have bounded variation. Then

(a) $\lim_{N\to\infty} S_N(f)(x) = \frac{f(x+) + f(x-)}{2} \quad \forall x \in S^1$. (Recall that a function of bounded variation automatically has left and right limits f(x+), f(x-) in all points and is Riemann integrable, so that we can define the coefficients $c_n(f)$.

(b) If $f \in C(S^1)$ has bounded variation then $S_n(f) \Rightarrow f$.

3.4 REMARK Assume that there is a partition P of $[0, 2\pi]$ such that f is continuous and monotonous on each interval (x_{i-1}, x_i) , $i = 1, \ldots, n$ and the limits $f(x_i+), f(x_i-)$ exist. Then

$$\operatorname{Var}_{[0,2\pi]}(f) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})| < \infty,$$

and the Theorem applies. This is the case proven by Dirichlet in 1828.

3.5 Remark If $f \in C^1([a, b])$ then

$$\operatorname{Var}_{[a,b]}(f) \le \int_{a}^{b} |f'(x)| dx < \infty$$

4 Summary of our main results

1. For all $f \in \mathcal{R}[0, 2\pi]$ the formula of Parseval holds:

$$\sum_{n \in \mathbb{Z}} |c_n(f)|^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 dx < \infty.$$

This implies the Riemann-Lebesgue Lemma: $\lim_{|n|\to\infty} c_n(f) = 0$ or $c_n(f) = o(1)$.

2. Defining

$$S_N(f)(x) = \sum_{k=-N}^N c_k(f) e^{ikx},$$

we have

$$||f - S_N(f)||_2^2 = \frac{1}{2\pi} \int_0^{2\pi} |f(x) - S_N(f)(x)|^2 dx \to 0.$$

Note that a priori this implies nothing about pointwise convergence, since there is a sequence $\{f_n\}$ such that $||f_n||_2 \to 0$, while $\lim_{n\to\infty} f_n(x)$ exists for **no** x. (However, Fourier series cannot be that badly behaved, at least if f is Riemann integrable. See 15-17 below.) 3. If $f \in C^k(S^1)$ then $c_n(f^{(k)}) = (in)^k c_n(f)$ and $c_n(f^{(k)}) = o(1)$ imply

$$|c_n(f)| = o\left(\frac{1}{|n|^k}\right)$$

- 4. Thus: If $f \in C^2(S)$ then $\widehat{f}(n) = o(n^{-2})$, thus $\sum_{n \in \mathbb{Z}} |c_n(f)| < \infty$, thus $S_N(f) \Rightarrow f$ even absolutely!
- 5. If $f \in C^1(S^1)$ then a combination of Parseval's formula, the Cauchy-Schwarz inequality and $\sum_{n=1}^{\infty} 1/n^2 = \pi^2/6$ implies:

$$\|\widehat{f}\|_{1} := \sum_{n \in \mathbb{Z}} |\widehat{f}(n)| \le \|f\|_{1} |\frac{\pi}{\sqrt{3}} \|f'\|_{2},$$

thus $S_N(f) \to f$ absolutely and uniformly.

6. Fejér: The Fejér sums

$$F_N(f)(x) = \frac{\sum_{k=0}^N S_N(f)(x)}{N+1} = \sum_{k=-N}^N c_k(f) \left(1 - \frac{|k|}{N+1}\right) e^{ikx}$$

converge to (f(x+) + f(x-))/2 whenever f(x+) and f(x-) exist, thus to f(x) at every point x of continuity.

- 7. If $f \in C(S^1)$ then $F_N(f) \Rightarrow f$ (uniform convergence). Thus we can uniquely reconstruct f from its Fourier coefficients $\{c_n(f)\}$ even if the Fourier series $S_N(f)$ behaves badly.
- 8. If f(x+), f(x-) exist and $S_N(f)(x) \to A \in \mathbb{C}$ then A = (f(x+) + f(x-))/2. Thus: If the Fourier series converges, it converges to the only reasonable value. (We clearly cannot expect $S_N(f)(x) \to f(x)$ at a discontinuity, since the value of f(x) can be chosen arbitrarily without influencing the coefficients $c_n(f)$.)
- 9. If $f \in \text{Lip}^{\alpha}[0, 2\pi]$ then $|c_n(f)| = O(|n|^{-\alpha})$.
- 10. If f has bounded variation then $|c_n(f)| = O(|n|^{-1})$.
- 11. Dirichlet-Jordan: If f has bounded variation then $S_N(f)(x) \to (f(x+)+f(x-))/2$ everywhere.

- 12. Special case (Dirichlet): f is piecewise continuous and monotonous.
- 13. If $f \in C(S^1)$ has bounded variation then $S_N(f) \Rightarrow f$. In particular this holds for $f \in C^1(S^1)$.
- 14. Dini: If f(x+), f(x-) exist and, for some $\delta > 0$

$$\int_0^{\delta} \left| \frac{f(x+t) - f(x+) + f(x-t) - f(x-)}{t} \right| < \infty,$$

then $S_N(f)(x) \to (f(x+)+f(x-))/2$. Note that this is a *local* criterion, whereas the previous assumptions on f were global, i.e. concerned all $x \in S^1$.

- 15. The preceding condition is satisfied if $|f(x+t) f(x)| \leq Ct^{\alpha}$ for some $\alpha > 0$ and t in some neighborhood of x. In particular: when f is differentiable at x.
- 16. Riemann localization principle: The convergence of $S_N(f)(x)$ depends only on the behavior of f on some neighborhood of x. More precisely: If f, g coincide on some open neighborhood of x then either $S_N(f)(x)$ and $S_N(g)(x)$ both diverge or they converge to the same value.

Here a few important and/or useful facts that we haven't proven:

- 15. There exist $f \in C(S^1)$ such that $S_N(f)(x)$ is divergent for some x. In fact, for every $E \subset S^1$ of measure zero one can find a function f such that $\lim_{N\to\infty} S_N(f)(x)$ diverges for all $x \in E$. (Notice that a set of measure zero can be dense in S^1 .) However, it cannot get worse, as the following result shows.
- 16. Carleson (1966): If $f \in \mathcal{R}[0, 2\pi]$ then $S_N(f)(x) \to f(x)$ almost everywhere (i.e., on the complement of a set of measure zero). In fact this conclusion holds for any function $f \in \mathcal{L}_p([0, 2\pi])$, i.e. f is "measurable" and

$$\int_0^{2\pi} |f(x)|^p dx < \infty,$$

for some p > 1. (Such a function can be unbounded and very discontinuous!)

17. On the other hand, Kolmogorov constructed a function $f \in \mathcal{L}_1([0, 2\pi])$, thus f is measuable and

$$\int_0^{2\pi} |f(x)| dx < \infty,$$

such that $\lim_{N\to\infty} S_N(f)(x)$ exists for **no** x.

A Alternative proof of Hardy's theorem

We will use the following discrete Taylor formula:

A.1 LEMMA Given a real series $(a_n)_{n \in \mathbb{N}_0}$, we define s_n as above and $t_n = \sum_{k=0}^n s_k$. Then for all $n, h \in \mathbb{N}_0$ we have

$$t_{n+h} = t_n + hs_n + \frac{1}{2}h(h+1)\xi,$$
(A.1)

where

$$\min_{n < k \le n+h} a_k \le \xi \le \max_{n < k \le n+h} a_k.$$
(A.2)

Proof. By definition of s_k and t_k we have

$$t_{n+h} = t_n + (s_{n+1} + \dots + s_{n+h})$$

= $t_n + hs_n + ha_{n+1} + (h-1)a_{n+2} + \dots + 2a_{n+h-1} + a_{n+h}.$

Now,

$$ha_{n+1} + (h-1)a_{n+2} + \dots + 2a_{n+h-1} + a_{n+h}$$

$$\leq (h + (h-1) + \dots + 2 + 1) \max_{n < k \le n+h} a_k = \frac{n(n+1)}{2} \max_{n < k \le n+h} a_k,$$

and similarly

$$\frac{n(n+1)}{2}\min_{n< k\le n+h}a_k\le ha_{n+1}+(h-1)a_{n+2}+\dots+2a_{n+h-1}+a_{n+h-1}$$

Thus

$$t_{n+h} - t_n - hs_n \in \frac{n(n+1)}{2} [\min_{n < k \le n+h} a_k, \max_{n < k \le n+h} a_k],$$

and we are done.

Proof of Theorem 1.3. We may clearly assume that A = 0. (Otherwise replace a_0 by $a_0 - A$. This entails that s_n and σ_n are replaced by $s_n - A$ and $\sigma_n - A$.) Furthermore, considering real and imaginary parts separately, it is sufficient to give a proof for real sequences (a_n) .

In view of $\sigma_n = t_n/(n+1)$, the assumption $\sigma_n \to 0$ is equivalent to $\frac{t_n}{n} \to 0$. Thus, for every $\varepsilon > 0$ there is $N \in \mathbb{N}$ such that $n \ge N$ implies $|t_n| \le n\varepsilon$. Solving (A.1) for s_n we have

$$s_n = \frac{t_{n+h} - t_n}{h} - \frac{(h+1)\xi}{2}$$

where, using (A.2) and the assumption $a_n = O(\frac{1}{n})$ in the form $|a_n| \leq C/n$,

$$-\frac{C}{n} \le \min_{n < k \le n+h} a_k \le \xi \le \max_{n < k \le n+h} a_k \le \frac{C}{n}.$$

Thus

$$|s_n| \le \frac{|t_{n+h}|}{h} + \frac{|t_n|}{h} + \frac{(h+1)C}{2n}$$

With $|t_n| \leq n\varepsilon$ for $n \geq N$ we have

$$|s_n| \leq \frac{(n+h)\varepsilon}{h} + \frac{n\varepsilon}{h} + \frac{(h+1)C}{2n} = \frac{(2n+h)\varepsilon}{h} + \frac{(h+1)C}{2n}$$
$$= \varepsilon + \frac{C}{2n} + \frac{2n\varepsilon}{h} + \frac{hC}{2n}.$$
(A.3)

We now try to minimize this expression by chosing $h \in \mathbb{N}$ cleverly. The minimum of $f(h) = \frac{2n\varepsilon}{h} + \frac{hC}{2n}$ is obtained at the solution of f'(h) = 0:

$$-\frac{2n\varepsilon}{h^2} + \frac{C}{2n} = 0 \qquad \Rightarrow \qquad h_{min} = 2n\sqrt{\frac{\varepsilon}{C}}.$$

Now

$$f(h_{min}) = \frac{2n\varepsilon}{h_{min}} + \frac{h_{min}C}{2n} = \frac{2n\varepsilon}{2n\sqrt{\frac{\varepsilon}{C}}} + \frac{2n\sqrt{\frac{\varepsilon}{C}}C}{2n} = 2\sqrt{C\varepsilon}$$

Of course, h_{min} has no reason to be in N. Defining $h = \lceil h_{min} \rceil$, to wit the smallest natural number $h \ge h_{min}$, we have

$$\frac{2n\varepsilon}{h} + \frac{hC}{2n} \le 2\sqrt{C\varepsilon} + \frac{C}{2n},$$

since the first term in f can only decrease when we replace h_{min} by h, whereas the second can increase by at most C/2n. Plugging this into (A.3), we can conclude

$$\forall \varepsilon > 0 \; \exists N : n \ge N \; \Rightarrow \; |s_n| \le \varepsilon + \frac{C}{n} + 2\sqrt{C\varepsilon},$$

implying $s_n \to 0$.