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The aim of these notes is to give an elementary proof (i.e. without Lebesgue theory) of the following theorem:

1 Theorem A function f : [a, b] → R is Riemann integrable iff it is bounded and the set

S(f) = {x ∈ [a, b] | f is not continuous at x}

has measure zero.

The proof will follow the strategy outlined in [3, Exercise 6.1.3 (b)-(d)]. For an alternative elementary (but
more involved) proof cf. [1]. A short proof using the basics of Lebesgue theory is given in [2].

In order to fix the terminology, we briefly recall the relevant definitions:

2 Definition A partition P of [a, b] is a finite sequence a = x0 < x1 < x2 < · · · < xn−1 < xn = b. We write
∆i = [xi−1, xi] and ∆xi = xi−1 − xi. The mesh of a partition P is defined by

λ(P ) = max
i=1,...,n

∆xi.

3 Definition A function f : [a, b] → R is Riemann integrable (on [a, b]) if there exists A ∈ R (easily seen to
be unique) such that for every ε > 0 there is λ > 0 such that the Riemann sum

σ(f ; P, ξ) =
∑

f(ξi)∆xi

satisfies |σ(f ; P, ξ) − A| < ε whenever P is a partition with λ(P ) < δ and ξi ∈ ∆i for all i = 1, . . . , n. In this

case we write
∫ b

a
f(x)dx = A.

4 Definition A subset X ⊂ R has measure zero if for every ε > 0 there is a sequence (a1, b1), (a2, b2), . . . of
(open, bounded) intervals such that

X ⊂
∞⋃

i=1

(ai, bi) and
∞∑

i=1

bi − ai < ε.

5 Definition Let E ⊂ R and f : E → R. Then the oscillation of f on E is defined as

ω(f, E) = sup
x,x′∈E

|f(x) − f(x′)|.

6 Definition For f : [a, b] → R and x ∈ [a, b] we define

ω(f, x) = inf
ε>0

ω(f, [a, b] ∩ (x − ε, x + ε)),

Sε(f) = {x ∈ [a, b] | ω(f, x) > ε}.

7 Remark Note that S0(f) = S(f), as defined in Theorem 1. 2

We will use the following criterion:
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8 Proposition [3, p. 339] A function f : [a, b] → R is Riemann integrable iff

lim
λ(P )→0

n∑

i=1

ω(f, ∆i)∆xi = 0. (1)

Since a Riemann integrable function is bounded, cf. [3, p. 333], in the sequel we will always suppose f to be
bounded. We define a function θ : R → R by θ(x) = 0 for x ≤ 0 and θ(x) = 1 for x > 0

9 Proposition [3, Exercise 6.1.3 (b)] A bounded function f : [a, b] → R satisfies (1) iff for any ε, δ > 0 there
is a partition P of [a, b] such that

n∑

i=1

θ(ω(f, ∆i) − ε)∆xi < δ. (2)

In words: The sum of the lengths of the intervals of the partition on which the oscillation of the function is
larger than ε is smaller than δ.

Proof. Assume that f satisfies (2) for some ε, δ > 0. Splitting
∑n

i=1 ω(f, ∆i)∆xi into two parts, we have

n∑

i=1

ω(f, ∆i)∆xi =

n∑

i=1

θ(ε − ω(f, ∆i))ω(f, ∆i)∆xi +

n∑

i=1

θ(ω(f, ∆i) − ε)ω(f, ∆i)∆xi. (3)

The first term is bounded from above by
∑n

i=1 ε ∆xi = ε · (b − a). On the other hand, the obvious inequalities
ω(f, ∆i) ≤ ω(f, [a, b]) < ∞ (of which the second is the boundedness of f) implies that the second term in (3) is
majorized by

n∑

i=1

θ(ω(f, ∆i) − ε)ω(f, [a, b])∆xi,

which in view of (2) is smaller than δ · ω(f, [a, b]). We have thus proven

n∑

i=1

ω(f, ∆i)∆xi < ε · (b − a) + δ · ω(f, [a, b]). (4)

Assume now that for every ε, δ > 0 there is a partition P such that (2) holds. Then (4) implies that we can
make

∑
i ω(f, ∆i)∆xi arbitrarily small, thus (1) holds.

As to the opposite implication, let P be a partition of [a, b] and let ε > 0. Considering only the contribution
to

∑n

i=1 ω(f, ∆i)∆xi of the intervals ∆i on which the oscillation of f is larger than ε, we obtain

ε

n∑

i=1

θ(ω(f, ∆i) − ε)∆x1 ≤

n∑

i=1

ω(f, ∆i)∆xi.

Thus, if (1) holds, we can make ε
∑n

i=1 θ(ω(f, ∆i) − ε)∆xi smaller than any given positive number, thus also
smaller than δε (where ε, δ > 0). Thus, for any ε, δ > 0 there is a partition P such that (2) holds. �

10 Proposition [3, Exercise 6.1.3 (c)] Let f : [a, b] → R be bounded. Then the following are equivalent:

(i) For every ε, δ > 0 there is a partition P such that (2) holds.

(ii) For every ε, δ > 0 there is a finite sequence of intervals (a1, b1), . . . , (am, am) such that

Sε(f) ⊂

m⋃

i=1

(ai, bi) and

m∑

i=1

bi − ai < δ. (5)

Proof. (i)⇒(ii). Let ε, δ > 0, and pick a partition P satisfying (2). Let I = {i ∈ {1, . . . , n} | ω(f, ∆i) > ε}.
Then {(xi−1, xi) | i ∈ I} is a finite family of open intervals, and by (2) its total length is smaller than δ. If i 6∈ I

then ω(f, ∆i) ≤ ε, thus ω(f, x) ≤ ε for every x ∈ [xi−1, xi]. Thus Sε(f) ⊂
⋃

i∈I(xi−1, xi) and (ii) holds.
(ii)⇒(i) Let ε, δ > 0 and let (a1, b1), . . . , (am, bm) be such that (5) holds. We may and will assume that

these intervals are mutually disjoint. Since replacing the adjacent intervals (a, b) and (b, c) by (a, c) leaves the
total length unchanged, we may also assume that no two intervals have a common boundary point. We write
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J = [a, b] −
⋃

i(ai, bi). If x ∈ J then ω(f, x) ≤ ε. By definition of ω(f, x), this means that there is an open
interval Ux = (x − α, x + α) such that ω(f, Ux ∩ [a, b]) ≤ 2ε. (Of course, α depends on x.) Since J is compact,
it can be covered by finitely many such sets: J ⊂ Ux1

∪ · · · ∪ Uxn
. We conclude that there exists a partition

P = {a = x0 < x1 < · · · < xn = b} such that each of the above (ai, bi) appears as (xj−1, xj) for some j, and
such that ω(f, [xj−1, xj ]) ≤ ε for the remaining intervals of the partition. By construction, ω(f, ∆i) ≤ 2ε for
those intervals ∆i that are not of the form [ai, bi]. Thus these ∆i do not contribute to

∑n

i=1 θ(ω(f, ∆i)−2ε)∆xi,
whereas (since we assume (ii)) the total length of the intervals [ai, bi] is bounded by δ. Since ε, δ > 0 were
arbitrary, we have proven (i). �

11 Proposition [3, Exercise 6.1.3 (d)] Let f : [a, b] → R be bounded. Then the following are equivalent:

(i) For every ε, δ > 0 there is a finite sequence of intervals (a1, b1), . . . , (am, bm) such that

Sε(f) ⊂

m⋃

i=1

(ai, bi) and

m∑

i=1

bi − ai < δ.

(This is the criterion of du Bois-Reymond.)

(ii) For every δ > 0 there is a sequence of intervals (a1, b1), (a2, a2), . . . such that

S(f) ⊂

∞⋃

i=1

(ai, bi) and

∞∑

i=1

bi − ai < δ. (6)

Equivalently, S(f) has measure zero, which is Lebesgue’s criterion.

Proof. (i)⇒(ii). Let δ > 0. For every n ∈ N there are intervals (an,1, bn,1), . . . , (an,m(n), bn,m(n)) such that we
have, for every n ∈ N,

S2−n(f) ⊂

m(n)⋃

i=1

(an,i, bn,i) and

m(n)∑

i=1

bn,i − an,i < 2−nδ.

Now the family {(an,i, bn,i), n ∈ N, i = 1, . . . , m(n)}, contains
⋃

n∈N
S2−n(f) = S(f) and has total length

bounded by
∑

∞

n=1 2−nδ = δ. Thus S(f) has measure zero.
(ii)⇒(i). Let δ > 0 and choose a sequence of intervals (a1, b1), (a2, b2), . . . satisfying (6). For any ε > 0, we

have Sε(f) ⊂ S0(f) = S(f), so we are done one once we can show that Sε(f) is closed. For then it is compact
and thus covered by a finite subfamily of {(ai, bi), i ∈ N}, implying (i).

Let x ∈ [a, b] be a limit point of Sε(f). Thus any neighborhood of x contains a point x′ with ω(f, x′) > ε.
By definition, the latter means that every neighborhood of x′ contains an x′′ such that |f(x′)−f(x′′)| > ε. This
implies that every neighborhood of x contains points x′, x′′ such that |f(x′)−f(x′′)| > ε. Therefore ω(f, x) > ε,
thus x ∈ Sε(f) and Sε(f) is closed. �

Theorem 1 now follows immediately by combining Propositions 8,9,10,11.
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