Operator Algebras 2014. Additional exercise

12.03.2014

0.1 EXERCISE Let V be a vector space over \mathbb{C} . A <u>sesquilinear form</u> is a map $\phi : V \times V \to \mathbb{C}$ such that for all $a, b, c \in V, \lambda \in \mathbb{C}$:

 $\phi(\lambda a + b, c) = \lambda \phi(a, c) + \phi(b, c), \qquad \phi(a, \lambda b + c) = \overline{\lambda} \phi(a, b) + \phi(a, c).$

A sesquilinear form ϕ is called <u>hermitian</u> if $\phi(b, a) = \overline{\phi(a, b)} \quad \forall a, b \in V$.

Prove: A sesquilinear form ϕ is hermitian if and only if $\phi(a, a) \in \mathbb{R}$ for all $a \in V$.

0.2 EXERCISE Give reasonably explicit proofs of these claims made in Murphy, pp.93-94 leading up to Theorem 3.4.1:

- (i) N_{τ} is a closed left ideal.
- (ii) The inner product in the last formula on p.93 is well-defined.
- (iii) On p.94, line 4, $\varphi(a)$ is well defined.
- (iv) The map $a \mapsto \varphi_{\tau}(a)$ is a *-homomorphism.