Operator algebras Homework 6 Deadline: 14th of May

Exercise 1

Let A be a C*-algebra and Z(A) its center. Since Z(A) is abelian, we can find a locally compact Hausdorff space X and an isometric isomorphism $\lambda : Z(A) \to C_0(X)$. Let Irr(A) denote the class of irreducible representations of A.

(a) For $(H, \varphi) \in \operatorname{Irr}(A)$, show that $\varphi(Z(A)) \subset \mathbb{C}1_H$ and (in case A is unital and φ non-zero) that $\varphi(1) = 1_H$.

(b) Prove that there exists a unique map α : $\operatorname{Irr}(A) \to X$ such that for all $(H, \varphi) \in \operatorname{Irr}(A)$ and for all $a \in Z(A)$ we have $\varphi(a) = \lambda(a)(\alpha(\varphi))1_H$.

Exercise 2

Let H be a Hilbert space and let $M \subset B(H)$ be a Von Neumann algebra containing the unit operator $1 = id_H$. Take two orthogonal¹ projections $p, q \in M$ and define $r_n = (pqp)^n$ for $n \ge 0$ (note that $r_0 = 1$).

(a) Prove that for all $n \ge 0$ we have $r_n \ge 0$ and $r_n \ge r_{n+1}$. Also prove that (r_n) converges strongly to an orthogonal projection $r \in M$.

(b) Prove that r is in fact the orthogonal projection onto $pH \cap qH$. It is convenient to write this orthogonal projection as $p \wedge q$.

(c) Prove that $p \wedge q = \lim_{n \to \infty} (pq)^n$, where the limit denotes the limit in the strong operator topology (remark: there is no factor of p missing inside the bracket).

Let p^{\perp} and q^{\perp} denote the orthogonal projections onto the subspaces $(pH)^{\perp}$ and $(qH)^{\perp}$, respectively.

(d) Prove that $(p^{\perp} \wedge q^{\perp})^{\perp}$ is the orthogonal projection onto $\overline{pH + qH}$. It is convenient to write this orthogonal projection as $p \lor q$. In this notation, we have shown that $p \lor q = (p^{\perp} \land q^{\perp})^{\perp}$.

(e) Show that if p and q commute, then $p \wedge q = pq$ and $p \vee q = p + q - pq$ (this should be trivial now).

¹A bounded linear operator on a Hilbert space is an orthogonal projection if and only if it is a projection in the sense of C^* -algebras (i.e. a self-adjoint idempotent).