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Abstract: We describe the structure of the inclusions of fact(&) c A(E’)’ associ-

ated with multi-interval€£ C R for a local irreducible ne# of von Neumann algebras

on the real line satisfying the split property and Haag duality. In particular, if the net
is conformal and the subfactor has finite index, the inclusion associated with two sepa-
rated intervals is isomorphic to the Longo—Rehren inclusion, which provides a quantum
double construction of the tensor category of superselection sectgtsAs a conse-
guence, the index oi(E) c A(E’)’ coincides with the global index associated with all
irreducible sectors, the braiding symmetry associated with all sectors is non-degenerate,
namely the representations dfform a modular tensor category, and every sector is a
direct sum of sectors with finite dimension. The superselection structure is generated
by local data. The same results hold true if conformal invariance is replaced by strong
additivity and there exists a modular PCT symmetry.

1. Introduction

This paper provides the solution to a natural problem in (rational) conformal quantum
field theory, the description of the structure of the inclusion of factors associated to two
or more separated intervals.

This problem has been considered in the past years, seemingly with different moti-
vations. The most detailed study of this inclusion so far has been done by Xu [50] for
the models given by loop group construction ¥ (n); [47]. In this case Xu has com-
puted the index and the dual principal graph of the inclusions. A suggestion to study this
inclusion has been made also in [43, Sect. 3]. Our analysis is model independent, and
will display new structures and a deeper understanding also in these and other models.
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Let A be a local irreducible conformal net of von Neumann algebraR ore. an
inclusion preserving map
I — A()

from the (connected) open intervals Rfto von Neumann algebrad(/) on a fixed
Hilbert space. One may defindé(E) for an arbitrary seE C R as the von Neumann
algebra generated by all thg7)’s as! varies in the intervals contained i By locality
A(E) andA(E") commute, wheré&’ denotes the interior & . E, and thus one obtains
an inclusion

A(E) c A(E),

where A(E) = A(E'Y. If Haag duality holds, as we shall assumthis inclusion is
trivial if E is an interval, but it is in general non-trivial for a disconnected regiokve
will explain its structure ifE is the union ofz separated intervals, a situation that can
be reduced to the cage= 2, namelyE = I1 U I, wherel; and/; are intervals with
disjoint closure, as we set for the rest of this introduction.

One can easily realize that the inclusidgE) C A(E) is related to the superselection
structure ofA, i.e. to the representation theory df as charge transporters between
endomorphisms localized iR and I, naturally live inA(E), but not inA(E).

Assuming the indeX.A(E) : A(E)] < oo and the split properfy namely that
A(I1) v A(I2) is naturally isomorphic te4(/1) ® A(I2), we shall show that indeed
A(E) c A(E) contains all the information on the superselection rules.

We shall prove that in this casé is rational, namely there exist only finitely many
different irreducible sectorfp;]} with finite dimension and thatl(E) C AE) is
isomorphic to the inclusion considered in [28] (we refer to this as the LR inclusion, cf.
Appendix A), which is canonically associated witt{/1), {[0;]} (with the identification
A(I2) ~ A(I1)°PP). In particular,

LA(E) : A(E) =) _d(p)?,

the global index of the superselection sectors. In faetill turn out to be rational in an

even stronger sense, namely there exist no sectors with infinite dimension, except the

ones that are trivially constructed as direct sums of finite-dimensional sectors.
Moreover, we shall exhibit an explicit way to generate the superselection sectors of

A from the local data irE: we consider the canonical endomorphiggmof A(E) into

A(E) and its restrictior.g = yg| 4(g); theni g extends to a localized endomorphism

A of A acting identically onA(7) for all intervals! disjoint from E. We have

A= @pzﬁi, 1)

where thep;’s are inequivalent irreducible endomorphisms.iocalized in7; with

conjugates; localized inl; and the classe§p;]}; exhaust all the irreducible sectors.
To understand this structure, consider the symmetric ¢ase I, I, = —I. Then

A(=1I) = j(A()),wherej isthe anti-linear PCT automorphism, hence we may identify

1 As shown in [18], one may always extentito the dual netd“, which is conformal and satisfies Haag
duality.

2 This general property is satisfied, in particular, i{dT#L0) < oo for all 8 > 0, whereLg is the
conformal Hamiltonian, cf. [5, 8].
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A(=1I) with A(I)°PP. Moreover the formula; = j - p; - j holds for the conjugate
sector [17], thus by the split property we may identi(E), p; p;| 4¢x)} with {A(]) ®
AP, p; @ pP}. Now there is an isometry; that intertwines the identity and ;

and belongs toft(E). We then have to show thai(E) is generated byl(E) and the

Vi’s and that theV;’s satisfy the (crossed product) relations characteristic of the LR
inclusion. This last point is verified by identifying with the standard implementation
isometry as in [17], while the generating property follows by the index computation that
will follow by the “transportability” of the canonical endomorphism above.

The superselection structure gf can then be recovered by formula (1) and the
split prorperty. Note that the representation tensor category ®f A°PP generated by
{0i ® pl.o P); corresponds to the connected component of the identity in the fusion graph
for A, therefore the associated fusion rules and quantiusy®nbols are encoded in the
isomorphism class of the inclusiof(E) C A(E), that will be completely determined
by a crossed product construction.

A further important consequence is that the braiding symmetry associated with all
sectors is always non-degenerate, in other words the localizable representations form a
modular tensor category. As shown by Rehren [41], this implies the existence and non-
degeneracy of Verlinde’s matric§andT, thus the existence of a unitary representation
of the modular groug L (2, Z), which plays a role in topological quantum field theory.

It follows that the netB > A ® A°PP obtained by the LR construction is a field
algebra forAd ® A°PP, namelyB has no superselection sector (localizable in a bounded
interval) and there is a generating family of sectorsda® .A°PP that are implemented
by isometries inB. IndeedB is a crossed product o4 ® A°PP by the tensor category
of all its sectors.

As shown by Masuda [30], Ocneanu’s asymptotic inclusion [35] and the Longo—
Rehren inclusion in [28] are, from the categorical viewpoint, essentially the same con-
structions. The construction of the asymptotic inclusion gives a new subfadtor
(M’ N My) C My from a hyperfinite I{ subfactot\” ¢ M with finite index and fi-
nite depth and it is a subfactor analogue of the quantum double construction of @rinfel
[11], as noted by Ocneanu. That is, the tensor category of\the—- M, bimodules
arising from the new subfactor is regarded a “quantum double” of the original category
of M—-M (or N=N/) bimodules.

On the other hand, as shown in [33], the Longo—Rehren construction gives the quan-
tum double of the original tensor category of endomorphisms. (See also [12, Chapter 12]
for a general theory of asymptotic inclusions and their relations to topological quantum
field theory.)

Our result thus shows that the inclusion arising from two separated intervals as above
gives the quantum double of the tensor category of all localized endomorphisms. How-
ever, as the braiding symmetry is non-degenerate, the quantum double will be isomorphic
to the subcategory of the trivial doubling of the original tensor category corresponding
to the connected component of the identity in the fusion graph. Indeed, in the conformal
case, multi-interval inclusions are self-dual.

For our results conformal invariance is not necessary, although conformal nets provide
the most interesting situation where they can be applied. We may deal with an arbitrary
net onRR, provided it is strongly additive (a property equivalent to Haag dualitjiRon
if conformal invariance is assumed) and there exists a cyclic and separating vector for
the von Neumann algebras of half-lines (vacuum), such that the corresponding modular
conjugations act geometrically as PCT symmetries (automatic in the conformal case).
We will deal with this more general context.
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Our paper is organized as follows. The second section discusses general properties
of multi-interval inclusions and in particular gives motivations for the strong additivity
assumption. The third section enters the core of our analysis and contains afirstinequality
between the global index of the sectors and the index of the 2-interval subfactor. In Sect. 4
we study the structure of sectors associated with the LR net, an analysis mostly based
on the braiding symmetry, the work of Izumi [22] and ténduction, which has been
introduced in [28] and further studied in [49, 2, 3]. Section 5 combines and develops the
previous analysis to obtain our main results for the 2-interval inclusion. These results
are extended to the casemofnterval inclusions in Sect. 6. We then illustrate our results
in models and examples in Sect. 7. We collect in Appendix A the results of the universal
crossed product description of the LR inclusion and of its multiple iterated occurring
in our analysis. We include a further appendix concerning the disintegration of locally
normal or localizable representations into irreducible ones, that is needed in the paper;
these results have however their own interest.

For basic facts concerning conformal nets of von Neumann algebioi?, the
reader is referred to [17,28], see also Appendix B.

2. General Properties

In this section we shortly examine a few elementary properties for nets of von Neumann
algebras, partly to motivate our strong additivity assumption in the main body of the
paper, and partly to examine relations with dual nets. To get our main result, the reader
may however skip this part, except for Proposition 5, and get directly to the next section,
where we will restrict our study to completely rational nets.

In this section,A will be a local irreducible net of von Neumann algebrassdn
namely,A is an inclusion preserving map

Is1+— A

from the setZ of intervals (open, non-empty sets with contractible closurejofo
von Neumann algebras on a fixed Hilbgftspace such thad (/1) and.A(/2) commute
if 1N =@ and\/;.;A) = B(H), wherev denotes the von Neumann algebra
generated.

If E c Stis any set, we put

A(E) = \/{A(I) 1€, ICE)

and set
AE) = A(EY
with £/ = ST E3
We shall assume Haatyality on S, which automatically holds if4 is conformal
[4], namely,
A =AU, 1elT,

3 The results in this section are also valid for nets of von Neumann algebisib@ denotes the set of
non-empty bounded open intervals®findE’ = R \ E for E C R.
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thusA(I) = A(I), I € Z, but for a disconnected s&t c S1,
A(E) C A(E)

is in general a non-trivial inclusion.
We shall say thak ¢ St is ann-interval if both E and E” are unions of: intervals
with disjoint closures, namely

E=1hUbU...-Ul,, I eI,

wherel; N I; = @ if i # j. The set of alk-intervals will be denoted bg,.

Recall thatA is n-regular, if A(SY~ {p1,...pa}) = B(H) foranyps, ... p, € S™.
Notice thatA is 2-regular if and only if thed(7)’s are factors, since we are assuming
Haag duality, and thatl is 1-regular if for each poinp € S,

(AU =C @)

if I, e Zand(, I, = {p}.
Proposition 1. The following are equivalent for afixedn € N:

(i) Theinclusion A(E) c A(E) isirreduciblefor E € Z,,.
(i) Thenet Ais2n-regular.

Proof. With E = 11 U --- U I, andps, ..., p2, the Z: boundary points oE, we have
A(E) N A(E) = C if and only if A(E) v A(E) = B(H), which holds if and only if
A(E) v A(E") = B(H), thus if and only ifA(ST ~ {p1, ..., p2.}) = B(#), namelyA

is 2n-regular. O

If A is strongly additive, namely,
A() = AT ~ {p}),

wherel € Z andp is an interior point of, then.A is n-regular for allz € N, thus all
A(E) C ft(E) are irreducible inclusions of factorg, € Z,,.

A partial converse holds.

If A c M are von Neumann algebras, we shall say fiat M hasfinite-index
if the Pimsner—Popa inequality [38] holds, namely there existsO and a conditional
expectatiort : M — N with £(x) > Ax, for all x € M, and denote the index by

M:N)g =171
with A the best constant for the inequality to hold and
M :N]=[M: Nlmin = irgf M :Ne

denotes the minimal index, (see [20] for an overview).

Recall thatA is split if there exists an intermediate type | factor betwel(ii;) and
A(I») wheneverl,, I, are intervals and the closurgis contained in the interior ab.
This implies (indeed it is equivalent to e.qg. if th&7)’s are factors) that (/1) v A(15)
is naturally isomorphic to the tensor product of von Neumann algel(&s ® A(15)
(cf. [10]) . For a conformal net, the split property holds ifaT?#10) < oo forall g > 0,
cf. [8].

Notice that if A is split and.A(1) is a factor forl € Z, then A(E) is a factor for
E € I, for anyn.
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Proposition 2. Let A be split and 1-regular. If there exists a constant C > 0 such that
[AE) : A(E)] <C V E €1y,

then
[AD) : AU~ {pP]l<C VIeZ, pel.

Proof. With I € 7 andp € I an interior point, letl;, I> € Z be the connected compo-

nents off \ {p}, let 12(”) C I be an increasing sequence of intervals with one boundary

pointin common with/ such thap ¢ 75" and|J, I,”’ = I,. ThenE, = hUL" € I,
and we have

A(E,) /7 AU~ {p)),
A(Ey) 7 AD,

whereN, / N meansV; C N2 C --- andN = \/ N, while N, \( N will mean
N1 D N2 D -+ andN = (N N,. The first relation is clear by definition. The second
relation follows because

A(E,) = A(E}) = A"y v A(Ly),

whereE), € Iy, E, = I' U L,, and( L, = {p}, thereforeA(L,) ~\, C. By the split
property A(I") v A(L,) = A(I') ® A(L,), hence by Eq. (2)

A(E)) \ AU,

thus
A(Ey) 7 A(I).

The rest of the proof is the consequence of the following general proposition.

Proposition 3. a) Let
N cCcMNC--- CN
N N N
MicMaC---CM

be von Neumann algebras, N' = \/ N;, M =\/ M;,
b) or let

NiDODMNoD--- DN

N N N

MiODOMaD--- DM

be von Neumann algebras, N' = (N;, M = O M;.
Then
[M : N1 < liminf [M; : NG

1—>00
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Proof. Itis sufficient to prove the result in the situation b) as the case a) will follow after
taking commutants. We may assume linyinfo[M; : N;] < oo.

Let& : M; — N; be an expectation arid> liminf,_, o[ M;, : Nilg,. Then there
existsig such that for alk € M, i > i,

Eilx) > A1k,

Let Sl.(o) = &M, considered as a map fromt to V;, and let€ be a weak limit point
of Ei(o). Then
Ex) > A1y, x € My,

andé(M) c (N, Ni = N, moreoveré|y = id, because;|y = id. ThusE is an
expectation of\ onto N and

MN]<[M:N]g <.
As &; is arbitrary, we thus haveM : V] < liminf; oo [M;,: N;]. O

Recall now that thelual net A? of A is the net on the intervals @& defined by
A4(I) = AR ~ 1), where we have chosen a poist € S! and identifieds® with
R U {o0}.

Note that if A is conformal, then Haag duality automatically holds [18] and the
dual netA? is also a conformal net which is moreover strongly additive; furthermore
A = A% if and only if A is strongly additive, if and only if Haag duality holds @&

Corollary 4. In the hypothesis of Proposition 2, let A4 be the dual net on R, then
Al c A4(T)
has finite index for all bounded intervals I of R.

Proof. Denotingl; = I', the complement of in S, the commutant of the inclusion
A(I) C A4(I)is A(I1 ~ {oo}) C A(I1), and this has finite index.O

We have no example wheté(7) c A?(1) is non-trivial with finite index and4
is conformal; therefore the equalitg(/) = A4(1), i.e. strong additivity, might follow
from the assumptions in Corollary 2 in the conformal case.

Proposition 5. Let A be split and strongly additive, then

(a) Theindex [A(E) : A(E)] isindependent of E € Zo.
(b) Theinclusion A(E) c A(E) isirreduciblefor E € Zo.

Proof. Statement (b) is immediate by Proposition 1.
Concernlng (@),leE =1L U andE = I1 U I, wherel» D I are intervals and

Io = b ~ Ib. Assumingr—! = [A(E) : A(E)] < oo, let £z be the corresponding
expectation withh-bound. Of course’ is the identity onA(Io) hence

E(AE)) C Allo) N A(E) = A(E),

where the Igst equality follows at once by the split property and strong additivity as
A(lo) N A(l2) = A(I).



638 Y. Kawahigashi, R. Longo, M. Muger

Thereforet ; = &g showing

|A(E)
LA(E) : A(E)] < [A(E) : A(E)),

where we omit the symbol “min” as the expectation is unique. Thus the index decreases
by decreasing the 2-interval. Taking commutants, it also increases, hence it is constant.
i

Corollary 6. Let A satisfy the assumption of Proposition 2 and let A be the dual net
on R of A. Then

[A4(E) : AY(E)] < 00 VE € To.

Proof. We fix the pointoo and may assumg = I1 U I, with oo € 1. SetE’ = I3U Iy
with I3 5 co. ThenA4(I3) = A(l3), A%(1,) = A(l) and we have

AE) c A1) v A(I2)
= AYE) ¢ AU(E)
= (A(l3) v A%(I2)) € (AU3) v AUl9)) = A(E). O
Anticipating results in the following, we have:

Corollary 7. Let A bealocal irreducible conformal split net on St. If LA(E) : A(E)]=
I global < 00, E € I, then Aisn-regular for all n € N.

Proof. If p is an irreducible endomorphism gf localized in an interval, thenp| 4,

is irreducible [17]. Therefore, by Th. 9 (and comments thereafter) and Prop. 36, the
assumptions imply that i € 7, then A(E) C fl(E) is the LR inclusion associated
with the system of all irreducible sectors, which is irreducible. THER) C /l(E) is
irreducible for allE € Z,, as we shall see in Sect. 6. By Prop. 1 this implies the regularity
foralln. O

In view of the above results, it is natural to deal with strongly additive nets, when
considering multi-interval inclusions of local algebras and thus to deal with nets of
factors onR, as we shall do in the following.

3. Completely Rational Nets

In this section we will introduce the notion of completely rational net, that will be the
main object of our study in this paper, and get a first analysis.

In the following, we shall denote Ly the set of bounded open non-empty intervals
of R, setl’ = R~ I and defined(E) = \/{A(I),I C E, I € T} for E C R. We again
denote byZ, the set of unions of elements off with pairwise disjoint closures.

Definition 8. A local irreducible net .4 of von Neumann algebras on the intervals of R
is called completely rational if the following holds:

(a) Haag dualityonR : A(I") = A(I)', I €T,

(b) A isstrongly additive,

4 There will be no conflict with the notations in the previous section as the poidbes not contribute to
the local algebras and we may exteAdo S setting. A1) = A(I . {co}), see Appendix B.
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(c) AAsati sfies the split property,
(d) [A(E) : A(E)] < o0,if E € To.

Note that if. 4 is the restriction t@R of a local conformal net o (namely a local
net which is Mdbius covariant with positive energy and cyclic vacuum vector), then (a)
is equivalent to (b), cf. [18].

We shall denote by 4 = [A(E) : A(E)] the index of the irreducible inclusion of
factorsA(E) C A(E) in caseu 4 is independent o € 75, in particular if A is split
and strongly additive, by Proposition 5.

By asector [p] of A we shall mean the equivalence class of a localized endomorphism
p of A, that will always be assumed to be transportable, i.e. localizable in each bounded
interval I (see also Appendix B). Unless otherwise specified, a localized endomorphism
p has finite dimension. Ip is localized in the interval, its restrictionp| 4. is an
endomorphism ofA(7), thus it gives rise to gector of the factorA(/) (i.e. a normal
unital endomorphism afl(/) modulo inner automorphisms gf(7) [25]) and it will be
clear from the context which sense will be attributed to the term sector.

The reader unfamiliar with the sector strucure is referred to [25,28,17] and to Ap-
pendix B.

Let E = 1 U I, € Zp andp ando be irreducible endomorphisms gf localized
respectively inf; and inl,. Thenpo restricts to an endomorphism gf E), since both
o ando restrict.

Denote byyr the canonical endomorphism df(E) into A(E) andig = vel AE)-

Theorem 9.Let A be completely rational. With the above notations, po| (k) is con-
tainedinAg ifandonlyif o isconjugateto p. Inthiscase po | 4(x) < Ag Withmultiplicity
one.

Proof. By [28] po|ae) < Ag if and only if there exists an isometny € A(E) such
that

vx = po(x)v Vx € A(E). 3)

If Eq. (3) holds, then it holds fox € A(I) for all I € Z by strong additivity, hence
o =p.

Conversely, ib = p, then there exists anisometrye A(7) such thabx = po (x)v
for all x € A(I), wherel is the intervall > E given byl = I1 U I> U I3 with I3 the
bounded connected componentrif

Sincep ando act trivially on A(I3), we have

v e A(IL) N A(I),
but A
A(l)' N A = (A(l3) v A1) = A(E") = A(E),

therefore Eq. (3) holds true. As tlweando are irreducible, the isometnyin (3) unique
up to a phase and this is equivaleniip| 4¢z) < A with multiplicity one. 0

We remark that in the above theorem strong additivity is not necessapyfer A g,
as can be replaced by the factoriality 4¢E), equivalently ofA(E); this holds e.g.in
the conformal case.

Moreover also the split property is unnecessary, it has not been used.
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We shall say that the net onRR has amodular PCT symmetry, if there exists a cyclic
separating (vacuum) vectrfor eachA(1), if I is a half-line (Reeh-Schlieder property),
and the modular conjugatiohof .4 (a, co) with respect tq2 has the geometric property

JAUI +a)] = A(—1+a), I€Z, acR. (4)

This is automatic if4 is conformal, see [4,15]. It easy to see that the modular PCT
property implies translation covariance, where the translation unitaries are products of
modular conjugations, but positivity of the energy does not necessarily hold.

Note that Eq. (4) implies Haag duality for half-lines

A(—00,a) = A(a,o0), aeR.
Settingj = AdJ, the conjugate sector exists and it is given by the formula [16]

p=j-p-J

Corollary 10. If Aiscompletely rational with modular PCT, then A isrational, namely
thereare only finitely many irreducible sectors[ po], [01], . . . , [0, ] Withfinite dimension
and we have

> d(p)? < pa ®)

i=0

Proof. It is sufficient to show this last inequality. By the split property, the endomor-
phismsp; p;| 4(£) can be identified with the endomorphisms® p; on A(I1) ® A(l2),
hence they are mutually inequivalent.

By Theorem 9,

n
@PiﬁHA(E) < AE, (6)
i=1

hence R
pa =LAE) : A(B) =d(g) = Y d(pi)>.
We now give a partial converse to Theorem 9.

Lemma 11.Let A be completely rational and let £ be the conditional expectation
A(E) - A(E).

(@) IfEC EandE, E € I, then
512“',4(15) =EE.
(b) There exists a canonical endomorphism y; of A(E) to .A(E) such that V|4 5@

canonical endomor phism of A(E) into A(E) and satisfies

Yl Agynacg) = 1d-
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Proof. (a) has been shown in the proof of Proposition 5.
(b) is an immediate variation of [16, Prop. 2.3] and [28, Theorem 3.2].

Theorem 12.Let A be completely rational. Given E € 7y, A extends to a localized
(transportable) endomorphisma of A suchthat A| 4y = id,if I C E’, I € Z. Moreover,

d(d) =d(kg) = 1 A.
In particular, if A isconformal, then A is M6bius covariant with positive energy.

Proof. LetE = (a,b) U (c,d), wherea < b < ¢ < d andE = (a’,b) U (c, d'), where
a' <aandd' > d.BylLemmallwe haveg; withiz| 4 =1id,if I CZ,I € EXE.
Analogously there is a canonical endomorphbsmfl(E) — A(E) acting trivially
on A(E). We may write
vg =Adu-y

with u € A(E), hence

Sincey | Aw.py=id, ¥ | A¢c.qy= id, we have
Ap =Adu onA(a,b), Alc,d).

Therefore, the formula ~
A = Adu

defines an endomorphism df(a, d) acting trivially anA(b, ¢), with

M Ad@.byuie.dy = M-

We may also have chosen“localized” in (a’,a”) U (d”,d") witha’ < a” < a and
d < d" < d’ so that we may assumeto act trivially onA((a”, b) U (¢, d")).

Lettinga’, a” — —oo andd”, d’ — +o0, we construct, by an inductive limit of the
}’s, an endomorphisrh of the quasi-locaC*-algebra_J,_ 5. A(—s, ).

Clearly, 2 is localized in(a, d), acts trivially onA(b, ¢) and is transportable. More-
over, A has finite index as the operataks R € (i, 2°) in the standard solution for the
conjugate equation [25,29]

R*AM(R) =1, R*A(R)=1,

on A(E) give the same relation ad(/) foranyl > E, I € 7.

If A is conformal, therp is covariant with respect to translations and dilations by
[17]. As we may vary the poirdo, A is covariant with respect to dilations and translations
with respect to a different point ab, hencex is Mobius covariant. O

Lemma 13. Let. A becompletelyrational. Thenthereareat most | 1 4 | mutually different
irreducible sectors of A (with finite or infinite dimension).

Proof. Consider the family{[p, ]} of all irreducible sectors and I& be the cardinality
of this family. With E = I U I, € I,, we may assume that eagh is localized
in I1 and choose endomorphismg equivalent top, and localized inl,. Let then
u) € (px,0n) C fl(E) be a unitary intertwiner anél the conditional expectation from
A(E) to A(E). Since

upop(x) = on(uy, = xuy, Vx € A(l),
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we have
uiuy px(x) = ppr(x) ujuy,  Vx € A(l),

henceT = &£(uj,u;) € A(E) intertwinesp; [A(I1) and p;/[A(I1). The split property
allowing us to identify A(E) and A(I1) ® A(l2), every statep in A(I2), gives rise
to a conditional expectatiofi, : A(E) — A(I1). Then&,(T) € (px, pi), and the
inequivalence o, | A(I1), pi'| A(I1), see above, entail§,(T) = 0. Since this holds
for everyp € A(I2), we conclude

T =EWwuy) =0, A #A

Let M be the Jones extensiondf E) C /l(E),e € M the Jones projectionimplement-
ing £ and let&, : M — A(E) be the dual conditional expectation. Ther{,u,e = 0

if 2" # X and therefore the;, = u,eu} are mutually orthogonal projections i with
E1(e)) = u;ll. Since their (strong) sum = ), e, is again an orthogonal projection
we havep < 1 and thu€1(p) < £(1) = 1. This implies the bounﬁlf,u;‘l < 1and thus
our claim. O

We shall say that a sectwp] is of type | if v ;cz0(A(I)) is a type | von Neumann
algebra, namely is a type | representation of the quasi locat&lgebra ;.. , A(—s, s).

Corollary 14. If A is completely rational on a separable Hilbert space, then all factor
representations of A on separable Hilbert spaces are of type .

Proof. Assuming the contrary, by Corollary 59 we get an infinite farfily] of different
irreducible sectors. This is in contradiction with the preceding propositian.

We end this section with the following variation of a known fact [10].

Proposition 15.Let A be a completely rational net with modular PCT on a Hilbert
space H. Then H is separable.

Proof. We chose a paif C I of intervals and a type | factoY” betweenA(7) and A([).

The vacuum vectof2 is separating fotd(/), hence for\. Thus\ admits a faithful
normal state, hence it is countably decomposable. Being of typé i countably
generated. Sol(1)Q C N'Q is a separable subspace#f But U, A(—n, n)$2 is

dense inH, thusH is separable. O

4. The Structure of Sectors for the (Time= 0) LR Net

This section contains a study of the sector strucure for the net obtained by the LR
construction, by means of the braiding symmetry. It will be continued in the next section
by a different approach.

Let N be an infinite factor and[p;]} a rational system of sectors &f, namely
the [p;]'s form a finite family of mutually different irreducible finite-dimensional sec-
tors of /" which is closed under conjugation and taking the irreducible components of
compositions. The identity sector is usually labelegadNe call

M DN QNP
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the LR inclusion, the canonical inclusion constructed in [28], whe¥¢ is a factor,
N @ NOPP c M is irreducible with finite index and

r=EPpi&p™
i

for A € EndNV ® NOPP) as the restriction of : M — N ® N°PP. We shall give an
alternative characterization of this inclusion in Proposition 45.

The same construction works in slightly more generality, by replasiigf with a
factor N1 and{p;"}; by {p/}; € End(N1), wherep — p/ is an anti-linear invertible
tensor functor of the tensor category generateflby to the tensor category generated
by {pij }i. Extensions of our results to this case are obvious, but sometimes useful, and
will be considered possibly implicitly.

The following is due to Izumi [22]. Since it is easy to give a proof in our context, we
include a proof here.

Lemma 16. For every p;, the (N ® N°PP)—-M sector [p; @ id][y] = [id ® o, lly]is
irreducible and each irreducible (A ® A/°PP)—M sector arising from N ® NOPP ¢ M
is of this form, where y is regarded as an (N ® N°PP)—M sector. If [p;] # [p;] as
A-A sectors, then [p; @ id][y] # [p; ® id][y] as (N ® NPP)—M sectors. We have
[pi ® p?pp][y] =Y, Nl."]f[,ok R id][y] as (V' ® NOPP)—M sectors, where Nl_"]-, is the
structure constant for {p; };.

Proof. Set[o] = [p; ® id][y] and computdo][c]. Since[y] = [¢], where: is the
inclusion map of\V' ® A°PPinto M regarded as AM—(N ® N °PP) sector, andy ][:] =
A = Yok ® p.™"1, we havelol(o] = Y, [pipxhi ® pp 7l, and this contains the
identity only once. Sdp; ® id][y] is an irreducible(\' ® A°PP)—A sector. We can
similarly prove that iff o;]1 # [p;], then[p; ® id][y] # [p; @ id][y¥].

We next selo’] = [id ® 5, "I[y] as an(N ® NPP)—M sector, which is also
irreducible. We compute

[01(5"] = [p; ®@idI[AIlid ® ™1 = “[oix ® o o™,
k

which contains the identity only once. So we hawe® id1[y] = [id ® 5, "Iy ].
The rest is now easy.O

Let us now assume we have a strongly additive, Haag dual, irreducible net of factors
A(I) onR with a rationalsystem of irreducible sectors {[p;1}; (with pg = id), namely
{[p:1}; is afamily of finitely many different irreducible sectorsdfwith finite dimension
stable under conjugation and irreducible components of compositions.

One may construct [42,28] a net of subfactdr A°PP B so that the correspond-

ing canonical endomorphism restricted.dr® .A°PP is given by, p; ® p; . We call

this B the LR net. For A°PP, we useso”p(p,?pp, plo'op) = j(e(ok, p1))*, wherej is the
anti-isomorphism fromA to A°PP. In order to distinguish two braidings, we write
ande~.

In other words, the LR net here is obtained as the time zero fields from the canonical
two-dimensional net constructed in [28]: it is a local net, bW ifs translation covariant
with positive energy/5 is translation covariant without the spectrum condition (the
translation o3 are space translations).
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Then the net of inclusio ® A°PP(1) c B(I) is a net of subfactors in the sense
of [28, Sect. 3], that is, we have a vacuum vector with Reeh-Schlieder property and
consistent conditional expectations. We denoteybhe canonical endomorphism of
Binto A ® A°PP and its restriction to4d ® A°PP by A. We may suppose that algois
localized inI. We shorten our notation by setting = A(/) and M = B(I). We thus
haver(x) = Y°; Vi(or ® p; ) (x)V/*, whereV;’s are isometries il\" ® A°PP with
S VVE =1,

‘We follow [21] for the terminology of ' ® N°PP)—M sectors, and so on, and study
the sector structure of the subfactr® A°PP c M in this section. In other words
we study the sector structure of a single subfactor, not the structure of superselection
sectors of the net, though we will be interested in this structure for the net in the next
section. So the terminologgector is used for a subfactor, not for a net, in this section.
However the inclusiooV” ® N°PP ¢ M has extra structure inherited by the inclusion
of nets A ® A°PP C B, that is there are the left and right unitary braid symmetries and
the extension and restriction maps. We first note {hat® p;’pp]},- ; gives a system of
irreducible4 ® A°PP— 4 ® A°PP sectors.

This gives the description of the principal graph\éf® A°PP ¢ M as a corollary as
follows, which was first found by Ocneanu in [35] for his asymptotic inclusion. Label
even vertices with(i, j) for [p; ® p;pp] and odd vertices with for [p; ® id][y] and

draw an edge with multiplicity\]i"j between the even vertex, j) and the odd vertex

k. The connected component of this graph containing the vé&te) is the principal
graph of the subfactok” ® N°PP ¢ M.

Now we consider the:-induction introduced in [28] and further studied in [49, 2],
namely ifo is a localized endomorphism of ® A°PP, we set

a;c = yfl -Ad(si(o, A)-o-y. @)

(The notation in [28] isr ©<.)

Recall that ifo is an endomorphism ol ® .A°PPlocalized in the interval, thenaE
is an endomorphism df localized in a positive/negative half-line containihgyet, as
shown in [2, I],aF restricts to an endomorphism 8t = B(I). We will denote this
restriction by the same symbef-.

Lemma 17.The M—M sectors [a/‘;@id] areirreducible and mutually different.

Proof. We compute(cx;@id, a;:j@d), the dimension of the intertwiner space between
+

O‘:;@id andapj®id, by using [2, |, Theorem 3.9]. This number is then equal to

(@ PkPi @ P]?pp, pj ®id) = §;;.
k
This gives the conclusion.o

Lemma 18.As M—M sectors, we have [a;; wid] = [ai&@popp].

Proof. By a similar argument to the proof of the above lemma, we know[tiq?é pgpp]
is also irreducible. [2, 1, Theorem 3.9] gives '

oopl) = (EP proi @ o™ id ® p™) = 1,

+ +
<[ap,~®id]’ [aid®pi
k

which gives the conclusion.o
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We then have the following corollary.

Corollary 19. The set of irreducible M—M sectors appearing in the decomposition of

The next theorem is useful for studying the subfactors arising from disconnected
intervals for a conformal net. For the rest of this section we shall assume the braiding to
be non-degenerate.

Theorem 20.Assume the braiding to be non-degenerate and suppose an irreducible
M-M sector [8] appears in decompositions of both a:@popp and ap‘k opp fOr sOme
i J 1

(P
i, j, k, 1. Then[B] istheidentity of M.

Proof. «* anda™ map sectors localized in bounded intervals to soliton sectors localized
in right unbounded and left unbounded half-lines, respectively. Hg#lde localized in

a bounded interval. By the above corollary, we may assuméghat [a;@d] for some

i, hencep; ® id must have trivial monodromy with, i.e.,e(p; ®id, M)e(A, p; Qid) = 1,
which in turn givese(p;, pr)e(pr, pi) = 1 for all k. The non-degeneracy assumption
gives[p;] = [id] as desired. O

We now define an endomorphism 8 by 8;; = « opp- More explicitly,

+ p—
pi®id%idg, :

we haveg;; = y 1 -Ad(U,7) - (0 ® p;’pp) -y, where
UL~ =" VileT(oi, o) ® £ P05, p2PP) (o1 @ pFPP) (V).
%

Note that if we define similarly

UH =" Vi(e™ (oi, o) @ 67°PP(02%P, 02PP)) (i @ pFP(V)),
%
we then havee:_@popp =y L AW - (i ® p;™) - v. By [2],1 Prop. 18, we have
i b s J

1Bij] = Lty gigletygy om] = [, gigllet) gial = [y ompllet ]

asM-M sectors.
The following proposition is originally due to 1zumi [22] (with a different proof) and
first due to Ocneanu [37] in the setting of the asymptotic inclusion. (Also see [13].)

Proposition 21. Each[;;]isanirreducible M—M sector and theseare mutually differ-
ent for different pairsof i, j. Each irreducible M—M sector arising from N @ N°PP C
M isof thisform.

Proof. We compute

. — (ot - + - — (ot -
(/31]7 Bri) = <api®idaid®p?pp’ a0k®idaid®pl"pp> = <aﬁkp,'®id’ aid@ ]oppﬁ;npp)~

1Y

- . . + — - . .
The only sector which can be contalned[a}k pigid] and[ai dQZ)plm,pﬁ;)pp] is the identity

by the above proposition. So the above numbéyi8;;. Since the square sums of the

statistical dimensions fdp; ® p;)pp}l‘j and{g;;};; are the same, it completes the proof.
a)
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Note that here we have used the definition in [28] for the map p;’pp > Bij,
and a general theory of this map has been studied in [2] under the aanaiction.

But in [2], they assumed a certain condition, called chiral locality in the terminology
of [3], and some results in [2] depend on this assumption, while the definition itself
makes sense without it. Our mixed use of braidiegsands~ here violates this chiral
locality condition, so we can use the results in [2] here only when they are independent
of the chiral locality assumption. For example, it is easy to see that the analogue of [2,
I, Theorem 3.9] does not hold for our map here.

With the above proposition, we have the following description of the dual principal
graph of ' ® N°PP ¢ M as a corollary, which is originally due to Ocneanu [37].
(Also see [13].) Label even vertices with ;) for [; H and odd vertices witlt for
[or ® id][y] and draw an edge with multiplicitwl."j between the even verték j) and
the odd vertex. The connected component of this graph containing the ve@te®
is the dual principal graph of the subfactbr® N °PP c M, which is the same as the
principal graph.

We next study the tensor category of thé—M sectors.

Lemma 22.Let V, W beintertwinersfrom p; oy to p,, andfromp; p; to p,,, respectively,
inN.Then V @ W*PP ¢ A ® N°PPin an intertwiner from B;; B tO Buun-

Proof. By a direct computation. O

Then we easily get the following from the above lemma. (The quantixsyénbols
for subfactors have been introduced in [36] as a generalization for clasgisgh@bols.
See [12, Chapter 12] for details.)

Theorem 23.In the above setting, the tensor categories of (N ® NOPP)—(N @ NOPP)
sectors and M—M sectors with gquantum 6 j-symbol s are isomorphic.

5. Relations with the Quantum Double

This section contains our main results.

Here below we will consider an inclusioAd C B of nets of factors. We shall say
that.A C B has finite index if there is a consistent family of conditional expectations
& BU) - A(), I € Tand[B(I) : A(I)]lg, < oo does not depend oh € 7.

The independence of the index of the interalutomatically holds if there is a vector
(vacuum) with Reeh-Schlieder property afid preserves the vacuum state (standard
nets, see [28]). The index will be simply denoted[By: A].

Proposition 24.Let A c B be a finite-index inclusion of nets of factors as above. If A
and B are completely rational then

A =1%ug
withl = [B: A].
Proof. If N1, N> are factors, we shall use the symbol
Ni LN,
to indicate thatVy ¢ NV and[V; : N1] = a.



Multi-Interval Subfactors and Modularity of Representations in CFT 647

Let E = I, U I» € Zy; we will show that
UB
B(E) L B(E)
12 U Uiz ,
B
AE) L A(E)
where A(E) c B(E) has indeX? becaused(E) = A(I1) ® A(Il2), B(E) = B(11) ®

B(Iz) and[B(I;) : A(I)] = 1.
In the diagram, the commutants are taken in the Hilbert sgégeof 5, hence

"
B(E) f B(E') is obvious.
We now show that oft{j,
1204
AE) L A(E).

Lety : B — A be a canonical endomorphism with= y | 4 localized in an intervalp;
then the nef — A(I) onHp (I D Ip) is unitarily equivalent to the net

I A(A(I) onHu

and we may assumi C 1.
Then the correspondence associated with

A(E)-A(E") onHpg,

namely# z with the natural commuting actions gf(E) and A(E’), is unitarily equiv-
alent to the one associated with

AMAE)-MAE") onH 4,

namely# 4 with the commuting actions ofl(E) and A(E’) obtained by composing
their defining actions with the map — 1(X). But

MAE)) = A(A(I1) Vv A(I2)) = A(A(11)) Vv A(12)

andA(A(E")) = A(E"), hence thed(E)—A(E’) correspondence oK is unitarily
equivalent to
(MA(ID)) vV A(I2)) — A(E") onH4

and its index is
[AE) : M(AUID) v A(I2)] = [A(E) : A(B)ILAE) : M(A(ID) V A(l2)] = pal®.
It follows from the diagram that
12pua = pupl?-12,
thus,1?ug = 4. O

The following proposition may be generalized to the case of a finite-index inclusion
A C B as above.
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Proposition 25. Let A be completely rational with modular PCT and B > A ® A°PP
be the LR net. Then also B is completely rational with modular PCT.

Proof. Let E = I3 U I and I3 be the bounded connected componenEafSetC =
A ® ACPP. Then the conditional expectatiahy : B(I) — C(I) associated with the

interval I, where ! is the interior off; U > U I3, mapsB(E) onto C(E), because
EIB(E)) c C(I3) NC(I) = C(E), thus

E=&-ErlBE (8)

is a finite-index expectation &f( E) ontoC(E), wherefy is the expectation a[f(E) onto
C(E). Thereforeup < oo follows by a diagram similar to the one in (5) (with® .4°PP
instead ofA4), as we know a priori that the vertical inclusions have a finite index, while
the bottom horizontal inclusion has finite index by the argument given there.

Then the strong additivity oB follows easily, and so its modular PCT property, but
we omit the arguments that are not essential herd (§ a conformal case this follows
directly because then algdis conformal).

We now show the split property d@. For notational convenience we treat the case
of two separated intervals, rather than that of an interval and the complement of a larger
interval. It will be enough to show that the above expectation (8) satisfies

E(b1b2) = E(b1)E(b2), b; € C(1}),

and£(B(1;)) c C(I;), as we may then compose a normal product stat® ¢, of
C(I1) v C(I2) ~ C(I1) ® C(I2) with £ to get a normal product state B I1) v B(l2).

Let Rl.(h) € B(I), h = 1, 2, be elements satisfying the relations (15) so Bdy},) is
generated by¢ (1) and{Rl.(h)}i. With b, € B(1,) we then have

b =S aPRD o e,
i

hence

pObD = 3 D@ RV R,
i

so we have to show thaI(Rfl)Ri.Z)) = Ounless = j = 0. NowR™P = u;R® for
some unitary; € C(E) and

2) p(2 @ 52 @ @
SI(R;)R;)):EI(ZCE‘J- R} ))ch’j = 5;,c%?,
k

(see Appendix A for the definition of tr@};), hence

@) (2
£(R§1>R;2>) - g(u,-Ri‘z)Rf)) — go(uig,(Ri‘z)Rf))) = £o(u; €% = Eo(u)c%”,

which is 0 if i # 0 because&y(u;) € C(E) is an intertwiner between irreducible
endomorphisms localized iR and 1>, while Ey(ug) = E9(1) = 1. O
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We get the following corollary, where the last part will follow from Proposition 36
later.

Corollary 26. Let A be completely rational and
A® AP C B

bethe LRinclusion. Then
2 2
K= lglobal:““&

Wherelglobal = Zd(/)i)z- A
Inparticular, ug = lifandonlyif A(E) C A(E) isisomorphictotheLRinclusion.

Proof. By Propositions 24, 25 and 360

Lemma 27.Let A;, A2 be irreducible, Haag dual nets on separable Hilbert spaces.
Assumethat each sector of Aj isof typel. If p isanirreduciblelocalized endomorphism
of A1 ® Az, then

P =p1® P2

with p; irreducible localized endomorphisms of A;.

Proof. Let = be a DHR representation of; ® A2 (see Appendix B) on a separable
Hilbert spacé{. Thenr (2(1) andr (2(2) generate the von Neumann algeBy&(), where
2; denotes the quasi-local*@lgebra associated b¥;. Hencer (21)” andr ()" are
factors.

Letw; = 7| 4,, where we identify4; with 4; ® C and.A, with C ® Ay, thenr; is
easily seento belocalizable inbounded intervals (namélydf Z, the restriction ofr1 to
theC*-algebra generated §y; (1) : I € I], I € Z} extends to a normal representation
of A;(1y)). Thereforer; is unitarily equivalent to a localized endomorphism4f As
w1 is a factor representation, by assumptiafd(;)” is a type | factor and so is(212)”.
We then have a decomposition

T =71 Q 7.

This concludes the proof.0

Corollary 28. Let A beacompletely rational net on a separable Hilbert space. The only
irreducible finite dimensional sectors of A ® A°PP are

[oi ® pfpp]
with [p;1, [p,] irreducible sectors of A.
Proof. Immediate by Lemma 14 and the above lemma.

Lemma 29.Let A be completely rational and B > A ® A°PPthe LR net. If o isan
irreducible localized endomorphism of 5 and o < a;)", o<, for some localized
endomorphism p, p’ of A ® A°PP, then o islocalized in a bounded interval.

Proof. The thesis follows because < a;' is localized in a right half-line and < o
in a left half-line. O

The following lemma extends Theorem 20.
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Lemma 30.Let A be a completely rational net, {[p;]}; the system of all irreducible
sectorswithfinitedimension,and B > A®.4°PPtheL Rnet. Thefollowing areequivalent:

(i) Thebraiding of the net A is non-degenerate.
(i) B hasnonon-trivial localized endomor phism (localized in a bounded interval, finite
index).

Proof. We use now an argument in [7]. Let be a non-trivial irreducible localized
endomorphism of localized in an interval, witll (o) < oc.
By Frobenius reciprocity

+
0 < U rest

o < aO’ rests

wherec™st = y . o| gg 400 andy : B — A ® A°PPis a canonical endomorphism.

Hence ifpr ® id < o™Stis an irreducible sector wit[u:;k@id] = [o], then by [28],

Prop. 3.9, the monodromy @ ® id with | 4400 = Y_ pi ® pi " must be trivial,
namelypy is a non-trivial sector with degenerate braiding.

The converse is true, namelygf is a non-trivial degenerate sector, thejkl(gid isa
non-trivial sector of3 localized in a bounded interval.o

Lemma 31.Let A beacompletely rational net with modular PCT and let {[p;]}; bethe
system of all finite dimensional sectorsof A. If E = I3 U I> € I, then

re =P pidilace).

1

where A = vl 4(k), the p;’sarelocalized in I; and the p;'s are localized in I>.

Proof. Let j = AdJ, whereJ is the modular conjugation o&(g 00). Givenl € 7 we
may identify A(1)°PPwith j(A(I)) = A(—1I). We define a netl onR setting

A = ADQAMDPP= A @ A(~1), [€T.

With 7 = (a, b)with0 < a < bandE = IU—1, letyg : A(E) — A(E) be the canon-
ical endomorphism antly = yg| 4cx). We identify nowi g with an endomorphism of

ny of A(I) and want to show that; extends to a localized endomorphisrrvﬁf
The proof is similar to the one of Theorem 12. With> ¢ > b, by Lemma 11 there

is an extension of 7, ) to Al(a, d) with ’7|A(b a = id and a canonical endomorphism
N(a,q) acting trivially onA(a, c) with a unitaryu A(a, d) such that

n= Adu *N(a,d)-

Therefore Ad"A(—oo o is an extension ofj, ;) to A(—00, ¢) which acts trivially on

A(—00, a) and onA(b, ). Lettingc — oo we obtain the desired extensionigf, ») to
A, that we still denote by.

Now, by Lemma 27 ford, every irreducible subsector gfwill be equivalent to
on® (j - pr - j) for someh, k, hence each irreducible subsectokg@fmust be equivalent
to pn - il Ae), Wherepy, is localized in(a, b) and p; is localized in(—b, —a). By
Theorem 9 this is possible if and only/if=k. O
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Corollary 32. Let A be completely rational with modular PCT. The following are equiv-
alent:

(i) Thenet A hasno non-trivial sector with finite dimension.
(ii) Thenet A hasno non-trivial sector (with finite or infinite dimension).
(iii) ua =1, namely A(E) = A(E’) for all E € T».

Proof. (i) = (ii): It will be enough to show that every sector (possibly with infinite
dimension)p of A contains the identity sector. Giveh = I3 U I, with I, I € Z,
we may suppose that is localized inf; and choose a secter equivalent top and
localized inly. If u is a unitary with Ad: - p = o/, thenu € A(E), henceu € A(E)

by assumptions. NowA(E) >~ A(I1) ® A(l2) by the split property, hence there exists
a conditional expectatioé : A(E) — A(I1) with £(u) # 0, thus€(u) is a non-zero
intertwiner betweem and the identity.

(i) = (iii) follows by Lemma 31.

(iii) = (i) follows by Th. 9 (or by Lemma 31). O

The conditionu 4 = 1 is however compatible with the existence of soliton sectors.

Note also that the condition that(E) c A(E) has depthe 2 (equivalentlyA(E) is
the crossed product od(E) by a finite-dimensional Hopf algebra) is equivalent to the
innerness of the sectarextendingh g (because.r is implemented by a Hilbert space

of isometries inA(E) [26]), hence it is equivalent to the property that all irreducible
sectors of4 have dimension 1 by Lemma 31.
The following is the main result of this paper.

Theorem 33.Let A be completely rational with modular PCT. Then
pa = lgiobal= Y _d(pi)

and A(E) C fl(E) is isomorphic to the LR inclusion associated with A(I1) ® A(I2)
and all the finite-dimensional irreducible sectors[p;] of A.

Proof. A(E) D A(E) contains the LR inclusion by the following Proposition 36. Since
A = lgiobal Dy Lemma 31 it has to coincide with the LR inclusiona

Corollary 34. Let A be completely rational and conformal. The inclusions A(E) C
A(E) areall isomorphic for E € Z5.

Proof. If I € Z and thep;’s are localized i/, for any givenl; € 7 there is a M6bius
transformation giving rise to an isomorphism 4 7) with A(I1) carrying thep;'s
to endomorphisms localized iR. Therefore the isomorphism class {oA(E), Ag} is
independent of € Z,. Hence the LR inclusions based on that are isomorptic.

Indeed, by using the uniqueness of thid; injective factor [6,19] and the classifi-
cation of its finite depth subfactors [40] we have the following.

Corollary 35. Let A bg completely rational and conformal. The isomorphism class of
theinclusion A(E) C A(E), E € I, dependsonly onthetensor category of the sectors
of A, not on its model realization.
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Proof. If Ais non-trivial and! is an interval, thepA(7) is al I I1 factor and, as the split
property holds,A([) is injective (see e.g. [27]). Thud(]) is the unique injectivé I I1
factor [19].

By Popa’s theorem [40], il is a1 injective factor andl” ¢ End(\) a rational
tensor category isomorphic to the tensor category of sectotgas abstract tensor cate-
gories), then there exists an isomorphisn\ofvith A(7) implementing the equivalence
between the two tensor categories.

Since the LR inclusiov’ ® AN°PP ¢ M clearly depends, up to isomorphism, only
on N and the tensor categofy C End(\), it is then isomorphic tod(E) C A(E).

o

We now show that, even in the infinite index case, the two-interval inclusion always
contains the LR inclusion associated with any rational system of irreducible sectors.

Proposition 36. Let .4 becompletely rational withmodular PCT jandE = TU—1 € 1,
asymmetric 2-interval and {[ p; ]} arational systemof irreducible sectorsof A with finite
dimension, with the p;’s localized in I. Let R; € (id, p; p;) be non-zero intertwiners,
where p; = j - pi - Jj.

If M is the von Neumann subalgebra of A(E) generated by A(E) and {R;};, then
M D A(E) isisomorphic to the LR inclusion associated with {[0;1};, in particular

M : A(E)] =) d(p)>.
More generally this holds true if the assumption of complete rationality is relaxed with
possibly [A(E) : A(E)] = oo.

Proof. Denoting by the factor.A(0, co), we may assumé c (0, co) and consider
the p; as endomorphisms df’. Let thenV; be the isometry standard implementation of
p; asin [17]. Since/ V;J = V;, we have

pipi(X)Vi = ViX
forall X € N'v N, hence for all local operatots$ by strong additivity.
Sincep; is irreducible(id, p; p;) is one-dimensional, thug; is a multiple ofV; and
we may assume®; = /d(p;)V;, thus
RIR; = d(pi). 9

Now V;V; is the standard implementation pfp; on N hence by [17, Prop. A.4], we
have

RiRj = th‘ijk’ (10)
k

whereij is the canonical intertwiner betweepo; andp; o; p; 6; given by
Ch =Y wajwn) =Y wy ® j(wp). (12)
h h

where thew,'s form an orthonormal basis of isometries(jsx, p; ;).
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Settingpg = id, we also have
R} =d(p))CYR;. (12)

Indeed the above equality holds up to sign by jhievariance of both members [17,
Lemma A.3], but the — sign does not occur because both members have positive expec-
tation values on the vacuum vector.

Now by the split propertyA(E) = A(I) v A(—1) ~ A1) ® A(—TI) and A(—1I) =
j (A(I)) can be identified withd(1)°PP, thereforeM is isomorphic to the algebra gen-
erated byA(1) ® A(1)°PPand a multiple of isometrieR; satisfying the above relations.
Moreover, there exists a conditional expectation frdito A7) ® A(1)°PP.

Corollary 46 then gives the desired isomorphism betwdéf) ¢ M and the LR
inclusion. (The Longo—Rehren inclusion in [31], as well as in [28], is dual to the one
in this paper, but it does not matter here. Notice further that, in the conformal case, the
2-interval inclusionA(E) c A(E) is manifestly self-dual.)

The above proof works also in the casgq = oo thanks to Prop. 45. 0

Corollary 37. Let A be completely rational with modular PCT. Then the braiding of the
tensor category of all sectors of A is non-degenerate.

2

Proof. With the notations in Corollary 26 we haye:*4 = Gioba

'§|oba| = lglobal(A ® A°PP), hence

5. On the other hand

| global(A ® A°PP) = Mi = IélobaWB’

thereforeup = 1. By Corollary 32 we5 has no non-trivial sector localized in a bounded
interval and this is equivalent to the non-degeneracy of the braiding by Lemmaz30.

Thatp 4 = lgiobal implies the non-degeneracy of the braiding has been noticed in
[32, Corollary 4.3].

An immediate consequence of Corollary 37 follows from the work [41], where a
model independent construction of Verlinde’'s matriSeand T has been performed,
provided the braiding symmetry is non-degenerate, thus providing a corresponding rep-
resentation of the modular gro{d. (2, Z). Hence we have:

Corollary 38. The Verlinde matrices T and S constructed in [41] are non-degenerate,
hence there exists an associated representation of the modular group SL(2, Z).

Corollary 39. Let A be completely rational with modular PCT. Every sector of A isa
direct sum of finite dimensional sectors.

Proof. Assuming the contrary, by Proposition 59 we have an irreducible sgdtarith
infinite dimension. LetE = I, U I, € T, with p localized in/; andp’ be equivalent

to p and localized inf,. Let u be a unitary in(p, p’). Thenu € ft(E), hence it has a
unigue expansion

MZZX,'R,', x; € A(E),
i

whereR; are as in Proposition 36. Ast = up(x), x € A(l1), we have
XY xR =Y xRip(x) =Y xi(pi- (PR =Y xipi(p(0))R;

Vx € A(I1),
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thusxx; = x;p;(p(x)) for all i. As there is ar; # 0, by the split property there is a
non-zero intertwiner betweep - p and the identity. As; andp are irreducible, this
implies thatp is finite dimensional, contradicting our assumptiom

Corollary 40. Let A be conformal and completely rational. Then every representation
on a separable Hilbert space is Mobius covariant with positive energy.

Proof. By the preceding result every such representation is a direct sum of irreducible
sectors with finite dimension. According to [16] every finite dimensional sector is co-
variant with positive energy, thus also a direct sum of such sectars.

6. n-Interval Inclusions

In this section we extend the results on the 2-interval subfactors to arbitrary multi-interval
subfactors. Let be alocal, irreducible net oft. We assumed to be completely rational
with modular PCT, so that our previous analysis applies. Alternatidehay be assumed
to be conformal withu 4 = [,fl(E) . A(E)] finite and independent of the 2-intena]
this setting will be needed to derive Cor. 7.
If E €1, we set

s = LA(E) : A(E)].
With this notationu 4 = 2. We also consider the situation occurring in representations
different from the vacuum representationyifis a localizable representation f (i.
e. a DHR representation, that, 8h, is just the locally normal representations), we set
tn = [p(AE")) : p(A(E))].

Lemma4l.uy = pf wp, VYn eN.
Proof. LetE = LU U---UI, € Z,. We may suppose thatis an endomorphism of
A localized inl1. Sincep acts trivially onE’, we havep (A(E")) = A(E'Y = A(E),
thus the inclusion (A(E)) C p(A(E’))" is a composition
P(A(E)) C A(E) C p(A(E")) = A(E) ;

by the spljt property (A(E)) C A(E) isisomorphic tqo(A(11)) @ A(IU---UI,) C
A() ® A(ILb U ---U I,), therefore

uh = [AE) : A(B)] - [A(ID) : p(AUID]. O

Lemma 42.uf = d(p)? us™t, VneN.
Proof. By the index-statistics theorem [25] we han& = d(p)?, hence, by Lemma

41, we only need to show that, = u’z’*l. We proceed inductively. lf = 1 the claim
is trivially true. Assume the claim for a givenand letk, = 1 U---U I, € Z, and
Ejj1=1U---UL,UIL,11€Z,41. Then

A(Ent1) = A(E) Vv A(lp41) C A(Ep) V A(l11) C A(Ent1),

thus, by the split propertyz,+1 = fn - [A(Ens1) : A(En) v A(l,41)] and, by the
inductive assumption, we have to show th|iE,) v A(l,+1) C A(E,+1) is equal to
2. But the commutant of this latter inclusiof(/, ;) N A(E;) C A(E,_ ) has index
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is w2 because, by the split property, it turns out to be isomorphi¢th U I,) ® A(L) D
A(Ig U l,) ® A(L), namely to a 2-interval inclusion tensored by a common factor,
wherel, and/, are the two intervals OE/Jrl contiguous td, 1 andL is the remaining

(n — 1)-subinterval ofE, ;. O

Theorem 43.Let A be alocal, irreducible completely rational net with modular PCT.
Let E=U'_;I; € 7, and A" = y ™| A(E), where y ™ is a canonical endomorphism

from A(E) into A(E). Then

)\‘(n) = @ Ni(:)l,“i”pilpiz o Piys (13)

where {[p;]1}; are all the irreducible sectors with finite statistics, p;, being localized in
I. Ng iy is the multiplicity of the identical endomorphismin the product p;, . .. p;, -
Thesameresultshold trueif completerationality isreplaced by conformal invariance

and assuming [fl(E) 1 A(E)] = lgiobal < oo independently of the 2-interval E.

Proof. Let I be an interval which contains;f; and letp;,, k = 1,... ,n, be irre-
ducible endomorphisms localized i, respectively. Then the intertwiner space be-
tween,o,l,o,2 - pi,» considered as an endomorphismAxr), and the identity has di-
mensmnN i, We are using here the equivalence between local and global inter-
twiners, that holds either by strong add|t|V|ty or by conformal invariance [17]. These
intertwiners are multiples of isometries #(E). Thus, by the argument leading to Th.

9, piy piz - - - Pi, | AE) IS contained i with multiplicity N . We have thus proved

the |ncIuS|on> in (13). Now the dimension of the endomorph|sm on the right-hand
side of (13) has been computed in [50]. For the sake of selfcontainedness we repeat the
argument:

Z O adn-don =Y [N ) | deon) - dioi, )

i1,..50p—1 in
(14)
n—1
= > (dov)---d(p;,_ ) (Zd(p ) :
i1, 50ip—1
where we have used Frobenius reciproa)i‘l,‘i/ i = NE i , the factd(p) = d(p) and

the identity) ", (pi, p)d(p;) = d(p). On the other hand, we have
(n) 1 n—1 n—1 2 n-1
d6.) = LAE) s AN = 1t = Tggha= (Do d?)

where the first equality is obvious, the second is given by Lemma 42 and the last one
follows from the results of the preceding section. Thus the endomorphisms on both sides
of (13) have the same dimension, hence they are equivalent.

The last claim in the statement follows by the same arguments and the equivalence
between local and global intertwinersto
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Corollary 44. Let AbeasinTh. 43. If E € Z,, then A(E) C fl(E) isisomorphic to
the n'" iterated LR inclusion associated with N’ = A(I), I € Z, and the system of all
sectors of A (considered as sectors of V).

In particular, for a fixed n € N, the isomorphism class of A(E) c A(E) depends
only on the superselection structure of A and noton E € Z,,.

Proof. LetE =1 U---U I, € T, with E C (0, co) andn = 2*. It follows by Lemma
42 and the split property that

[A(E U —E) : A(E) vV A(—E)] = | giobal

On the other hand, if the;’s are localized in'1, then the algebra generated HyE) v
A(—E) and the standard implementation isomet#iesf p; |A(E) are the associated LR
inclusion, analogously as in Th. 33, and are containeédﬁ U —E), hence coincide
with that by the equality of the indices.

The corollary then follows in the cagse= 2* by induction, once we note that at each

step the extensioa&a;;@,id from /Al(E) \Y ft(—E) to fl(E U—E)Iisp; |A<EU7E).
The same is then true for an arbitrarypy taking relative commutants.o

7. Examples and Further Comments

Our results may be first illustrated by considering the case of an inclusion of completely
rational, local conformal irreducible net$ c B, whereA = BY is the fixed-point of

B with respect to the action of a finite grodpandug = 1. Then[B : A] = |G|, thus

by Prop. 24)giobal(A) = a4 = |G|2. Now A has the DHR [9] irreducible sectofs; |

associated wittr ¢ G and

Y d(p)? =G,
neG

thereforeA has extra irreducible sectdrs; | with

> d(e)* =G - |GI.

For example, in the case of the Ising model, we hdve- B2 as above (but witt8
twisted local, yet this does not alter our discussion), thys= 4 andthus_ d(p;)? = 4,
so the standard three sectors are the only irreducible sectors.

On the other hand, in the situation studied in [34], the superselection categdry of
is equivalent to the representation category of a twisted quantum ddil€) with
w € H3(G, T). SinceD®(G) is semisimple we again have

> d(e)*=dimD”(G) = |G|* = .
O'EDﬂ(E)

One may compare this with the situation occurring on a higher dimensional space-
time. Thgre the strong additivity property may be replaced by the requirement that
AO' N O)Y NAO) = AO) if O c O are double cones. IE = 01 U Oy, where
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01 and O, are double cones with space-like separated closure, the split property gives
a natural isomorphism ofl(01) v A(O2) with A(O1) ® A(O2) and

LA(E'Y : A(E)] = lgiobal = Y _ d(px)? = |G],
neG

whereG is the gauge group and theg's are the DHR sectors [9] (there are no extra
sectors). The reason for this difference is thatSérthe complement of a 2-interval is

still a 2-interval, thus the inclusiad(E) C fl(E) is self-dual, while on the Minkowski
spacetime the spacelike complementfu O, is a connected region producing no
charge transfer inclusion.

The indexu 4 inthe models given by the loop group constructionSor(n), has been
computed in [50]. Our results apply in particular to these nets and the 2-interval inclusion
is the LR inclusion associated with the corresponding irreducible se€¢igit$; .

We note that in this case the 2-interval inclusiomds the asymptotic inclusion of
the corresponding Jones-Wenzl subfactor [24,48], even up to tensoring by a common
injective lll1 factor. ConsideSU (2), as an example. The net hWag- 1 sectors and if we
choose the standard generator, we get a corresponding subfactor of Jones with principal
graphA,.1, up to tensoring a common injective factor of type JAs in [47]. If we apply
the construction of the asymptotic inclusion to this subfactor, we get a “quantum double”
of only the sectors corresponding to the even verticeg.efi. We get the same result, if
we apply the LR construction to the system\6£\ sectors (oiM—M sectors). But the
construction of a subfactor from 4 intervals gives a “quantum double” of the systain of
the sectors, both even and odd. If we want to get this system from the asymptotic inclusion
or the Longo—Rehren inclusion, we have to use also bimodules/sectors corresponding to
the odd vertices of the (dual) principal graph. In order to get this LR inclusion from the
construction of the asymptotic inclusion, we need to proceed as follows[ &:¢}; be
the set of all the sectors for the net arising from the loop group constructigiifor),
as above. Then for a fixed intervalc S, we conside(@p; pi)(A(I)) C A(I) which
has finite index and finite depth. Take a hyperfinitesiibfactorP c Q with the same
higher relative commutants &6p; p;)(A(I)) C A(I). Then the tensor categories of

the sectors with quantumjésymbols ofQ v (Q' N Q) C Qoo andA(E) C A(E) are
isomorphic. For this reason, the index of the asymptotic inclusion of the Jones subfactor
with principal graphA_1 is half of that of the subfactor arising from 4 intervals and the
net forSU (2),. For SU (n)y, this ratio of the two indices is.

Finally we notice that there are models like th€ (2N); WZW models, see [1] or
[34], where all irreducible sectors have dimension one, yet the superselection caétegory
is modular in agreement with our results. In these cases the fusion graph is disconnected,
therefore the equivalent categories/ef — M and of /' ® NOPP — N @ N/°PP sectors
are proper subcategories of the categafiesCPP ~ D(C), whereD(C) is the quantum
double ofC.

We close this section with a few questions. Does there exist a net with only trivial
sectors and non-trivial 2-interval inclusions (thug = oo)? Is strong additivity auto-
matic in the definition of complete rationality? Is the LR inclusion the only extension of
N ® NOPPwith the given canonical endomorphis®; o ® p;""?

A. The Crossed Product Structure of the LR Inclusion

Let A be an infinite factor and[p;]}; a rational system of irreducible sectors. i
The LR inclusion [28] is a canonical inclusiov ® A°PP ¢ M associated with” and



658 Y. Kawahigashi, R. Longo, M. Muger

{[p:i1}; such that

lz@ﬁi@ﬁ?pp,
i

where A is the restriction taV ® NOPP of the canonical endomorphism d# into
N @ NOPP,

In [28] such an inclusion is obtained by a canonical choice of the intertwifess
(id, ) andS e (1, A?) that characterize the canonical endomorphism [26] (Q-system).
We now show the universality property of this inclusion and its crossed product structure,
that will provide a different realization of it. By LR inclusion we will mean the upward
LR inclusion.

We shall consider the freealgebraM generated by\V" @ A°PP and elements;
satisfying the relations

Rix = (p; ®/0,9pp)(x)Ri, x € N QNOPP,
RYR; = d(pi),

RR; =Y, c{ijk,

RY = d(p)C{* Ry,

(15)

whereC}; is the canonical intertwiner between ® pePandp;p; ® ,o?ppp;.’pp given

by ij =Y, wp ® j(wy), with j the antilinear isomorphism 0" with A"°PP, and the
wy's form an orthonormal basis of isometries(ix, p; ;).

We equipMg with the maximal € semi-norm associated to the representations of
Mo whose restriction taV" ® A°PP are normal and denote byt the quotient ofM
modulo the ideal formed by the elements that are null with respect to this seminorm and
refer toM as the free reduced pi&t-algebra generated by ® A°PPand therR;’s.

Proposition 45. Let N beaninfinitefactor with separable predual and {[ p;]}; arational
system of finite-dimensional irreducible sectors of \V.

Let M bethe free reduced pre-C*-algebra generated by N’ ® A°PP and elements R;
satisfying the relations (15) as above.

Then M isafactor and V@ A/°PP ¢ M isisomorphictothe LRinclusion associated
with A and {lpil}i-

In particular every element X € M has a unique expansion

X = Zx,-R,-, X GN@NOPD.
i

In other words: itV ® N°PP acts normally on a Hilbert spade¢ andR; € B(H)
are elements satisfying the relations (15), then the sub-algebd B(#) generated
by N ® N°PP and ther;’s is a factor andV' ® N°PP ¢ M is isomorphic to the LR
inclusion.

Proof. Clearly all elements oM have the form

X=Y xR, xeN@N, (16)
i

and we may suppose thatl acts on a Hilbert space so that and NV°PP are weakly
closed.
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We now construct an conditional expectatidbn M — N ® NOPP, Settingog = id,
the expectatiod@ may be defined by

E(X) = xo (17)

for X given by (16), once we show that this is well-defined. To this end we will apply
the averaging argument in [23].
Let 7 be the set of alkg € N/ ® N°PP such that there exist ¢ N ® VPP, i > O,
with 3", gxiR; = 0. ClearlyJ is a two-sided ideal aV'® N°PP, henceJ = 0 (as
we want to show) o7 = N ® N°PP (we may supposgé/ to be of type IIl). Suppose
J #0andletX =1+, xR =0, thus

X =1+ Zux,-R,-u* =1+ Zuxipi ® p?pp(u*)Ri =0
i>0 i>0

for all unitariesu € N'® NOPP, Lettingu run in the unitary group of a simple injective
subfactorR of A/ ® A°PP and taking a mean over this group, we have

X:1+Zy,'R,' =0,
i>0

wherey; € N’ ® N°PPintertwines id angh; ® p; " onR, thus on all\" ® A°PP by the
simplicity of R. Sincep; ® p; " is irreducible,y; = 0,i > 0, and we have & 0, a
contradiction.

Notice now that

RiRf = d(pi)RiC* Ry = d(pi)pi ® p; (CI)Ri R;
= _dp)pi ® p; " (CIC R
k

thus, by the conjugate equation in [25], we have

1
‘ — T 0pp, 0%y ~0 _
ERRD) = d(pi)pi @ 0TI = T
S0 everyX € M has the unigue expansion
X = E x,-R,-, Xi =d(,0,')5(XR;k). (18)

1

Denoting byM; D N ® N°PPthe LR inclusion associated with" and{[p;1};, M1 is
generated b}V’ ® V°PPand element®!, with an expectatiod’, satisfying the relations
as in (15) and (18) [31, Sect. 5], hence the linear map

P:X=) xR eM— dX)=) xR eM (19)

1

is clearly a homorphism of1 onto M1, which is the identity ooV @ NOPP. @ is clearly
one-to-one by the uniqueness of the expansion (18) batt iand inM;. O
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Note that the above proposition gives an alternative construction of the LR inclusion,
which is similar to Popa’s construction of the symmetric enveloping algebra [39], as
follows. Let\ act standardly ol.2(N) andV; be the standard isometry implementing
0i. The *-algebra?l generated byV and A is naturally isomorphic to the algebraic
tensor productV' © A°PPand the operatorB; = /d(p;)V; satisfy the relations (15) by
[17, App. A]. By the above argument there exists a conditional expectétich — £,
whereB is the*-algebra generated 8 and theV;’s. Taking a normal state of N,
the statep = ¢ © ¢°PP. £ of B gives by the GNS representation the LR inclusion
w5 (2A)" C 7wy (B)” (Prop. 45).

Corollary 46. Let A/ be an infinite factor with separable predual and {[p;]}; a rational
system of finite-dimensional irreducible sectors of \V.

Let M be a von Neumann algebra with M > N ® N°PPand R; € M elements
satisfying the relations (15). If M is generated by N’ ® A°PP and the R;’s, then N ®
NOPP - M isisomorphic to the LR inclusion associated with {[0;1};.

Inparticular (N@AN°PPYN M = C andthereexistsanormal conditional expectation
from M to N @ NOFP,

Proof. The proof is immediate, the isomorphism is obtained as in (19):

XeM— Y dp)E(XRR],

i
(notations analogous to the ones in (19

In the following we shall iterate the LR construction, in order to describe the structure
of multi-interval subfactors.

With A an infinite factor as above arlo;1}; a system of irreducible sectors with
unitary braiding symmetry, lek™ be the induction map from sectors ® p P of

N ® NOPP 1o sectors of the LR extensiam; = M defined by formula (7) Then
{ozp wid}i 1S @ system of irreducible sectors.f with braiding symmetry and we may
construct the corresponding LR inclusigr; ® M3P° ¢ Mo, where the opposite of
a:;@,d is ocp oid- We may then iterate the procedure to obtain a towér C Mz C
Mo C -+ and thus an inclusion

MlCMns n:zk’

whereN,, = N @ NPPQN ® - -- N ® NOPP (2F tensor factors). By construction this

inclusion has indeJkglogaI and we refer to it as the! iterated LR inclusion.

Proposition 47.Let n = 2*. The n'" iterated LR inclusion AV;, ¢ M,, is irreducible.
If y™ : M, — N, isthe canonical endomorphism, its restriction 2 = y ™| 5. is
given by

M= D Ny, P ® PP @ (20)

i1,i2,...,0p

where N°. = (id, pi, pi, - - - i, )

i1i2...0p
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Proof. By a computation similar to the one in Sect8? defined by formula (20) has
dimension

d()‘(n)) - lglobal’

therefore the formula®™ = y(") |, will follow by showing thatpi, ® ;) ®- - -®p;"
¥ ™1, with multiplicity N lllz i andth|SW|IIaI30|mpIythe|rredUC|b|I|tyoN c/\/l,,

because them(") o id with multiplicity one.
Butpi, ® p " ® -+ ® p;"" is unitarily equivalent tgy, oy, - - i, ® id ® - -+ ® id
in M, by applylng |terat|vely Lemma 18, hence we have the conclusian.

Let nowm < n = 2* be an integer and sét,, as the alternate tensor productkof
copies ofV and /PP,

Ny =NQNPPN - - N NP mfactors
We then define the:!" iterated LR inclusion
Nm C Mma

whereM,, is defined as the relative commutantin,, of the remaining: — m copies
of N and NP, i.e. M,, = (N, N N,) N M, Note that\,, € M,, is an irreducible
inclusion of factors becaus€), N M,, c N, N M,, = C.

Arguing similarly as above we then have:

Pro osition 48. Proposition 47 holds true for all positive integers n (in formula (20)
,0 is p;, if n isodd).

Proof. Letn = 2. Let{V{ , :¢=1.2,. 11 ,n} be a basis of isometries in the

dn
space of elements iM,, that mtertwme,o,1 ® p "+ ® pir* on . Arguing as in
Prop. 45 we see that any elemeéhe M,, has a unique expansion

¢
X = Z lel -In ll dn? xilmin € M"'

i1...in

Using this expansion it is easy to check that#or< n the factor/\/lm defined above
is generated by, and theVl‘; i 'S With ijy+1 = ims2 = -+ = i, = 0. The rest then
follows easily. O

B. Nets onR and on S* and Their Representations

In our paper we deal with nets @& rather than nets oft, for various reasons: because
this is the natural language for our arguments, because our results are valid for nets that
are not necessarily conformal and, finally, because even if our analysis were restricted
to conformal nets o, our proofs would require the analysis of more general nets on
R (thet = 0 LR net is not conformal).

In the next Sect. C we will however need to deal with netsband their represen-
tations, and then conclude consequences for nel® éfthough the relations between
nets onR and ons? and their representations is straightforward, we will describe ex-
plicitly this point here for the convenience of the reader. However, for simplicity, we
consider only the case of strongly additive, Haag dual nets.
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Netson S1. Let A be a net of von Neumann algebras $hon a separable Hilbert
space satisfying Haag duality. We also assume the local von Neumann alg&lyas
to be properly infinite, which is automatically true if the split property holds, ot i§
conformal (except, of course, for the trivial ndt/) = C).

A representatiom of A is, by definition, a mag € Z — n; that associates to each
interval I € T of S* a representation, on a fixed Hilbert space, of the von Neumann
algebraA(I) such thatr;| 4y = ny if I C I. We shall say that is locally normal if
77 is normal for alll € Z and thatr is localizableif ; is unitary equivalent to iidyy)
forall I € Z. As the A(I)’s are properly infinite the two notions coinciderifacts on
a separable Hilbert space. Moreover every representatioh@f a separable Hilbert
space is automatically locally normal [45], thus localizable.

Denote byC*(A) the universalC*-algebra [14] associated with (see also [16]).
For each/ € T there is a canonical embedding: A(I) — C*(A) andj| 4y =
if I c I; we identify A(I) with ¢; (A(I)) if no confusion arises. There is a one-to-one
correspondence between representations of'thalgebraC*(.A) and representations
ofthe netA4, given byr — {I — 7; = 7 -1;}. Locally normal representations of the net
A correspond, of course, to locally normal representation§*g¢f4). We shall always
assume our representations to act on a separable Hilbert space, thus local normality is
automatic.

As Haag duality holds, a localizable representatiasf C* (A) is unitarily equivalent
to a representation of the forap - p, whereoy is the representation @f*(.4) corre-
sponding of the identity representation.éf(we shall however not need this result).

NetsonR. Given a netd4 of von Neumann algebras ¢t satisfying Haag duality we
may associate a ngly of Neumann algebras d = S\ {00} (identification by Cayley
transform) by setting

Ao(l) = A(D),

for all bounded interval$ of R. We call Ag therestriction of A to R. Clearly, if A is
strongly additive, themdg is also strongly additive and satisfies Haag dualityRoim
the form

A = AR N D), (21)

wherel C R is either an interval or an half-ling:, co) or (—o0, a), a € R.

Here, ifE C R has non-empty interior, we denote#y(E) the C'-algebra generated
by the von Neumann algebrak)(/)’s as/ runs in the intervals contained in the region
E and setdg(E) = Ag(E)”.

Conversely, let nowdg be a strongly additive net of properly infinite von Neumann
algebrasdo(7) on the (bounded, non-trivial) intervals Bfsatisfying Haag duality (21).

We may compactifyR to ST = R U {oco} and extend4g to a netA on the intervals
of St by defining

A = Ao(St 1) (22)
if I is an interval whose closure contains the paint Clearly, A is the unique Haag

dual net ons? whose restriction t@ is .4g; we thus call4 the extension of A4 to S1.
We explicitly state this one-to-one in the following.
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Lemma 49. Let A bea net on ST satisfying Haag duality and strong additivity. Then its
restriction Ag to R satisfies strong additivity and Haag duality on R.

Conversely if Ag isa Haag dual (21), strongly additive net on R, then its extension
Ato St isstrongly additive and Haag dual.

Moreover Aq satisfies the split property on R if and only if A satisfies the split
property on S,

Proof. The proof is immediate. The statement concerning the split property follows
because an inclusion of von Neumann algeb¥asc M is split iff the commutant
inclusionM’ c N is split. O

We now consider the relation between representations of alnsétisfying Haag
duality and strong additivity o8 as in Lemma 49 and its restrictiofy on R.

A DHR representation wg of Ag is, by definition, a representatiory of 2p(R)
such thatro|g,r~ 1y IS unitarily equivalent to ith, - 1) for every bounded non-trivial
interval I of R, cf. [9].

Clearly a localizable representatianof A determines a DHR representatiog of
Aop; indeedry is consistently defined od,-0.A(—a, a) by

mo(X) = 71 (X), X € AD),

wherel = (—a, a), hence on al2l(R) by continuity. We callrg therestriction of = to
Ao.

Conversely, as we shall see, every DHR representatipof 2(p(R) determines
uniquely a localizable representatiorof A.

A localized endomorphism p of Ag is, by definition, an endomorphism 8fy(RR)
such thaio|g,/) = id|g, ) for some interval C R; one then says thatis localized
in 1. p is transportable if for each interva there is an endomorphism localized in
I, and (unitarily) equivalent t@ (as representations 8f(R)). By Haag duality then
p1 = Adu - p, where the unitary belongs tado (1), if I is any interval containing both
I and;. In this paper (as is often the casegnsportability is assumed in the definition
of localized endomorphism.

By a classical simple argument [9], a DHR representatigiof 2o(RR) is unitarily
equivalentto a (transportable) endomorphjsai 2(p(R) localized in each given interval
I; it is enough to put

p(X) = Uno(X)U*, X € Ao(R),
whereU is a unitary intertwiner betweety|g,r- 1) and idgiow-1)-

Proposition 50. Let A be a strongly additive, Haag dual net on ST and Ag be its re-
gtriction to R, asin Lemma 49.

If = isalocalizable representation of A4, itsrestriction g to Ag isa DHR represen-
tation of Ag.

Conversely, if mg is a DHR representation of Ag, there exists a (obviously unique)
localizable representation = of A whose restriction to Ag is mo.

Proof. By the above discussion, we only show thatifis a DHR representation ofp,
there exists a localizable representatioaf .4 such thatr; = mol 4y if 1 is a bounded
interval ofR.

Indeed, if the closure of contains the pointo, we can definer; as the normal
extension ofro|ay 7+ (o0}, ONCE We show the necessary normality property. Now the
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normality ofo|say(7- {0} dO€S not depend on the unitary equivalence clasg ahus
we may replacerg by a DHR endomorphism of Ag localized in intervall; ¢ R with
Iy N1 = @. Butthenp|g, 1 o0} IS the identity, hence normal.o

By definition, the sectors afl (resp. ofAg) are the unitary equivalence classes of
localizable representations gf (resp. of DHR representations gfp). By the above
discussions, the two classes are in one-to-one correspondence.

On the other hand localizable representationglaorrespond to localizable repre-
sentations ofC*(A) and DHR representations ofy are equivalent to DHR localized
endomorphisms aflg, hence we have the following.

Corollary 51. Let Ag be a strongly additive, Haag dual as in (21), net on R and A
be its extension to S1. The restriction map = — g gives rise to a natural one-to-one
correspondence between unitary equivalence classes of localizable representations of
C*(A) and unitary equivalence classes of DHR localized endomor phisms of Ag.

In particular 7 (C*(A))" = mo(Ao(R))”, so w isof type | iff mg isof typel.

Proof. It remains to check the last part of the statementCA¢A) is generated (as a
C*-algebra) by the von Neumann algeby4@ ) as! runs in the intervals a$?, one has
7 (C*(A))" = vim (A(I)), thus clearlyr (C*(A))" D mo(Ao(R))”.

On the other hand if is an interval ofs?, by local normality and strong additivity we
haver; (A(1)) = 71 (AU ~ {o0})) C mo(Ao(R))”, hencer (C*(A))" C mo(Ao(R))".
|

The naturality in the above corollary means that the tensor categories of localizable
representations af*(.4) and of DHR localized endomorphisms df, are equivalent,
but we do not need this form of the above statement.

C. Disintegration of Locally Normal Representations and of Sectors

Takesaki and Winnink [44] have shown that a locally normal state decomposes into
locally normal states, if the split property holds. We shall show here analogous results
for localizable representations (sectors). Our arguments work, however, along the same
lines to show that locally normal representations decompose into locally normal repre-
sentations, also on higher dimensional manifolds.

We begin with a simple lemma.

Lemma 52.Let M be a von Neumann algebra, £ ¢ M a o-weakly dense C*-sub-
algebraand J c £ aright ideal of £.

If r isarepresentation of £ onaHilbert space suchthat i | ; iso -weakly continuous
and 7 (J)H = H, then 7 is o-weakly continuous, thus it extends uniquely to a normal
representation of M.

Proof. Itis sufficientto show that is o -weakly continuous on the unit ball &f see e.qg.
[45]. Let then{q;}; be a bounded net of elememtse £ such that;; — 0 o-weakly. If
t € B(H)is ac-weak limit point of{x (a;)};, we have to show that= 0. By considering
a subnet, if necessary, we may assunie) — t. Givenh € J, we haveuy;h € J and
a;ih — 0, thusr (a;h) — 0 becauser|; is o-weakly continuous, therefore

tw(h) = lim w(a;)(h) = lim w(a;h) =0,

and this entails = 0 because is arbitrary andr (J)H is dense irfH. O
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We shall use the well-known fact that the'-@lgebra of compact operators on a
separable Hilbert spack has only one non-degenerate (i.e. not containing the zero
representation) representation, up to multiplicity, hence this representation has a unique
normal extension t&(H).

Corollary 53. Let A/ be a type | factor with separable predual, K c A the ideal of
compact operator relativeto A and £ a C*-algebrawith K c £ c M.

If 7 isa representation of £ such that 7|k is non-degenerate, then r is o-weakly
continuous, thus it extends uniquely to a normal representation of A

Proof. Immediate because any non-degenerate representatioisaf-weakly contin-
uous andX is o-weakly dense inV. O

Let A be a net of von Neumann algebras §h over a separable Hilbert space
satisfying the split property and Haag duality.

If 1,1 are intervals, we writd CC 1 if the closure off is contained in the interior
of I. For each pair of intervals cc I we choose an intermediate type | facté(, 1)
betweenA(l) and.A(I) and letK (1, I) be the compact operators &f(/, I) (there is
a canonical choice fal/(1, I) [10], but this does not play a role here). We denote by
Zg the set of intervals with rational endpoints and¥yhe C*-subalgebra of*(A)

generated by alk (1, ) asI cc I run inZg. Clearly2( is norm separable.

If Iy cc I C I» ccC I then clearlyN (11, I1) € N'(I2, I>), but K (I1, I1) is not
included inK (I, I2). For this reason we define theé'-@lgebras associated to pairs of
intervals! cc I,

e, =N, DN,

As N(I, ) is the multiplier algebra ok (1, I), £(I, I) consists of elements @f that
are multipliers ofK (I, I).

By definition K (1, 1) ¢ £(I, 1) c N(I, I) and2 is the C*-subalgebra of’*(A)
generated by alti(Z, I) as/ cc I run inZg.

Lemma54.1f Iy cc I1 C I» CC I areintervalsthen
£(I1, ) C £z, Ip).
Proof. £(I1, I1) € N'(I1, ) C N (I, I2), thus
L1, 1) CN(, L)NA =L, I). O

Proposition 55.Let 7 be a locally normal representation of C*(A). Then |y is a
representation of 2 and | KD isnon-degeneratefor every of pair of intervals cc I.

Conversely, if o isarepresentation of 2( such that o | KD is non-degenerate for all
intervals I, I € Zg, I cC I, there exists a unique locally normal representation & of
C*(A) that extends o .

Moreover equivalent representations C*(.A) correspond to equivalent representa-
tions of 2.
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Proof. The only non-trivial part is thad extends to a locally normal representation
of C*(A).If I ccC I areintervals irfg, we denote by, ; the unique normal extension

of ol ¢, 1, 0N, ) given by Corollary 53.
Given an interval, we choosdy, I1 € Ig, 11 CC I1 such tha? cc I; and set

o1 =0y jlam,

We have to show that; is well-defined, thed — 4 is clearly a representation of.

Indeed, letls, Ir € Ig with I» cC I» be another pair such thdt cc I». We
can chooseds, I3 € Zgp such thatl cc I3 cC I3 cC I N I. Then by Lemma 54
£(I3, I3) € £(1;, I,),i = 1, 2, and therefore

Oy = 011,i1|N(13,1~3) = 012,i2|/\/'(13’1~3)'
This concludes the proof.o

Proposition 56.Let 7 be a locally normal representation of C*(.4) on a separable
Hilbert space and denote by g the restriction of 7 to 2. If

®
T =/ mrd (i)
X

is a decomposition into irreducible representations ; (which always exists), then r;,
extends to a locally normal representation 77;, of C*(.A) for almost all A.

Proof. By Proposition 55, it is sufficient to show th~at there exists a nyIESeI X such
thatrm, | 7, is non-degenerate far¢ £ and alll, I € Zo with I CC 1. This is clear
for a fixed pairl, I of the family, because,((,j) is non-degenerate. Then the statement
follows since the considered family &f (1, I)’s is countable. O

Proposition 57.With the notations in Proposition 56, if 7 (C*(A))” is a factor not of
typel, thenfor each A € X theset X; = {\' € X, my =~ 7, } has measure zero.

Proof. The setX; is measurable by Lemma 60 below. We haM&X \ X;) > 0, as
otherwiser would be quasi-equivalent t@,, hencer ()" would be a type | factor. If
w(X,) > 0, thenwg would be the direct sum of two inequivalent representations

® 5]
T =/mdu(/\)®/ md p(A)
X, XX,

which is not possible since(21)” is a factor. O

Corollary 58. If there exists a localizable representation = of C*(A) with 7 (C*(A))”
a factor not of type |, then there exist uncountably many inequivalent irreducible local -
izable representations of C*(A).

Proof. If the representation is factorial not of type I, then the family of the,’s in
the above proposition contains an uncountable set of mutually inequivalent irreducible
localizable representations as desired.
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Corollary 59. Let Ag be a strongly additive, split net of von Neumann algebras on the
intervals of R which is Haag dual asin (21). If there exists a DHR localized endomor-
phism p of Ag with p (2(p(R))” afactor not of typel, then there exist uncountably many
inequivalent irreducible DHR localized endomor phisms of Ag.

Proof. Immediate by Corollary 58 and Corollary 51.

Before concluding this appendix we have to prove alemma that has been us#d. Let
be any separablé*-algebra and arepresentation &. Choose a sequence of elements
ag; € 2 dense in the unit ball(1, a sequence; € 2* dense in the Banach space of
normal linear functionalso (2()"), associated withr. A linear functionalp € A* is
then normal with respect o if and only if

1
Vk e N, i e N: |p(ar) — ¢i(ag)| < o V¢ € N. (23)

We thus have the following.

Lemma 60. Let 2 be a separable C*-algebra, 7 a representation of 2 on a separable
Hilbert spaceandr = f;f m,d i (X) adirectintegral decompositionintoa.e. irreducible
representations ; of 2. For any irreducible representation o of 2, the set X, =
{A, 7, >~ o} ismeasurable.

Proof. Leté = f;e E(\)du(x) be a vector withe (1) £ 0, for all A € X, and consider
the functional ofl given byg, = (. (-1)§(X), E(1)).

As botho andr, are irreducible, we have ~ m; if and only if ¢, is normal with
respect tar. With the previous notations, we then have by Eq. (23)

onmUﬂXik(Z»
kK i ¢
where

1
Xie = {1 € Xt lgatan) — @itao) = 7.

As X, is measurable, alsk, is measurable. O
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