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Abstract: We describe the structure of the inclusions of factorsA(E) ⊂ A(E′)′ associ-
ated with multi-intervalsE ⊂ R for a local irreducible netA of von Neumann algebras
on the real line satisfying the split property and Haag duality. In particular, if the net
is conformal and the subfactor has finite index, the inclusion associated with two sepa-
rated intervals is isomorphic to the Longo–Rehren inclusion, which provides a quantum
double construction of the tensor category of superselection sectors ofA. As a conse-
quence, the index ofA(E) ⊂ A(E′)′ coincides with the global index associated with all
irreducible sectors, the braiding symmetry associated with all sectors is non-degenerate,
namely the representations ofA form a modular tensor category, and every sector is a
direct sum of sectors with finite dimension. The superselection structure is generated
by local data. The same results hold true if conformal invariance is replaced by strong
additivity and there exists a modular PCT symmetry.

1. Introduction

This paper provides the solution to a natural problem in (rational) conformal quantum
field theory, the description of the structure of the inclusion of factors associated to two
or more separated intervals.

This problem has been considered in the past years, seemingly with different moti-
vations. The most detailed study of this inclusion so far has been done by Xu [50] for
the models given by loop group construction forSU(n)k [47]. In this case Xu has com-
puted the index and the dual principal graph of the inclusions. A suggestion to study this
inclusion has been made also in [43, Sect. 3]. Our analysis is model independent, and
will display new structures and a deeper understanding also in these and other models.
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Let A be a local irreducible conformal net of von Neumann algebras onR, i.e. an
inclusion preserving map

I �→ A(I )

from the (connected) open intervals ofR to von Neumann algebrasA(I ) on a fixed
Hilbert space. One may defineA(E) for an arbitrary setE ⊂ R as the von Neumann
algebra generated by all theA(I )’s asI varies in the intervals contained inE. By locality
A(E) andA(E′) commute, whereE′ denotes the interior ofR�E, and thus one obtains
an inclusion

A(E) ⊂ Â(E),

whereÂ(E) ≡ A(E′)′. If Haag duality holds, as we shall assume1, this inclusion is
trivial if E is an interval, but it is in general non-trivial for a disconnected regionE. We
will explain its structure ifE is the union ofn separated intervals, a situation that can
be reduced to the casen = 2, namelyE = I1 ∪ I2, whereI1 andI2 are intervals with
disjoint closure, as we set for the rest of this introduction.

One can easily realize that the inclusionA(E) ⊂ Â(E) is related to the superselection
structure ofA, i.e. to the representation theory ofA, as charge transporters between
endomorphisms localized inI1 andI2 naturally live inÂ(E), but not inA(E).

Assuming the index[Â(E) : A(E)] < ∞ and the split property2, namely that
A(I1) ∨ A(I2) is naturally isomorphic toA(I1) ⊗ A(I2), we shall show that indeed
A(E) ⊂ Â(E) contains all the information on the superselection rules.

We shall prove that in this caseA is rational, namely there exist only finitely many
different irreducible sectors{[ρi]} with finite dimension and thatA(E) ⊂ Â(E) is
isomorphic to the inclusion considered in [28] (we refer to this as the LR inclusion, cf.
Appendix A), which is canonically associated withA(I1), {[ρi]} (with the identification
A(I2) � A(I1)

opp). In particular,

[Â(E) : A(E)] =
∑
i

d(ρi)
2,

the global index of the superselection sectors. In factA will turn out to be rational in an
even stronger sense, namely there exist no sectors with infinite dimension, except the
ones that are trivially constructed as direct sums of finite-dimensional sectors.

Moreover, we shall exhibit an explicit way to generate the superselection sectors of
A from the local data inE: we consider the canonical endomorphismγE of Â(E) into
A(E) and its restrictionλE = γE |A(E); thenλE extends to a localized endomorphism
λ of A acting identically onA(I ) for all intervalsI disjoint fromE. We have

λ =
⊕
i

ρi ρ̄i , (1)

where theρi ’s are inequivalent irreducible endomorphisms ofA localized inI1 with
conjugates̄ρi localized inI2 and the classes{[ρi]}i exhaust all the irreducible sectors.

To understand this structure, consider the symmetric caseI1 = I , I2 = −I . Then
A(−I ) = j (A(I )), wherej is the anti-linear PCT automorphism, hence we may identify

1 As shown in [18], one may always extendA to the dual netAd , which is conformal and satisfies Haag
duality.

2 This general property is satisfied, in particular, if Tr(e−βL0) < ∞ for all β > 0, whereL0 is the
conformal Hamiltonian, cf. [5,8].
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A(−I ) with A(I )opp. Moreover the formulaρ̄i = j · ρi · j holds for the conjugate
sector [17], thus by the split property we may identify{A(E), ρi ρ̄i |A(E)} with {A(I )⊗
A(I )opp, ρi ⊗ ρ

opp
i }. Now there is an isometryVi that intertwines the identity andρiρ̄i

and belongs toÂ(E). We then have to show that̂A(E) is generated byA(E) and the
Vi ’s and that theVi ’s satisfy the (crossed product) relations characteristic of the LR
inclusion. This last point is verified by identifyingVi with the standard implementation
isometry as in [17], while the generating property follows by the index computation that
will follow by the “transportability” of the canonical endomorphism above.

The superselection structure ofA can then be recovered by formula (1) and the
split property. Note that the representation tensor category ofA⊗Aopp generated by
{ρi ⊗ρ

opp
i }i corresponds to the connected component of the identity in the fusion graph

for A, therefore the associated fusion rules and quantum 6j -symbols are encoded in the
isomorphism class of the inclusionA(E) ⊂ Â(E), that will be completely determined
by a crossed product construction.

A further important consequence is that the braiding symmetry associated with all
sectors is always non-degenerate, in other words the localizable representations form a
modular tensor category. As shown by Rehren [41], this implies the existence and non-
degeneracy of Verlinde’s matricesS andT , thus the existence of a unitary representation
of the modular groupSL(2,Z), which plays a role in topological quantum field theory.

It follows that the netB ⊃ A⊗Aopp obtained by the LR construction is a field
algebra forA⊗Aopp, namelyB has no superselection sector (localizable in a bounded
interval) and there is a generating family of sectors ofA⊗Aopp that are implemented
by isometries inB. IndeedB is a crossed product ofA⊗Aopp by the tensor category
of all its sectors.

As shown by Masuda [30], Ocneanu’s asymptotic inclusion [35] and the Longo–
Rehren inclusion in [28] are, from the categorical viewpoint, essentially the same con-
structions. The construction of the asymptotic inclusion gives a new subfactorM ∨
(M′ ∩M∞) ⊂M∞ from a hyperfinite II1 subfactorN ⊂M with finite index and fi-
nite depth and it is a subfactor analogue of the quantum double construction of Drinfel′d
[11], as noted by Ocneanu. That is, the tensor category of theM∞–M∞ bimodules
arising from the new subfactor is regarded a “quantum double” of the original category
of M–M (or N–N ) bimodules.

On the other hand, as shown in [33], the Longo–Rehren construction gives the quan-
tum double of the original tensor category of endomorphisms. (See also [12, Chapter 12]
for a general theory of asymptotic inclusions and their relations to topological quantum
field theory.)

Our result thus shows that the inclusion arising from two separated intervals as above
gives the quantum double of the tensor category of all localized endomorphisms. How-
ever, as the braiding symmetry is non-degenerate, the quantum double will be isomorphic
to the subcategory of the trivial doubling of the original tensor category corresponding
to the connected component of the identity in the fusion graph. Indeed, in the conformal
case, multi-interval inclusions are self-dual.

For our results conformal invariance is not necessary, although conformal nets provide
the most interesting situation where they can be applied. We may deal with an arbitrary
net onR, provided it is strongly additive (a property equivalent to Haag duality onR
if conformal invariance is assumed) and there exists a cyclic and separating vector for
the von Neumann algebras of half-lines (vacuum), such that the corresponding modular
conjugations act geometrically as PCT symmetries (automatic in the conformal case).
We will deal with this more general context.
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Our paper is organized as follows. The second section discusses general properties
of multi-interval inclusions and in particular gives motivations for the strong additivity
assumption.The third section enters the core of our analysis and contains a first inequality
between the global index of the sectors and the index of the 2-interval subfactor. In Sect. 4
we study the structure of sectors associated with the LR net, an analysis mostly based
on the braiding symmetry, the work of Izumi [22] and theα-induction, which has been
introduced in [28] and further studied in [49,2,3]. Section 5 combines and develops the
previous analysis to obtain our main results for the 2-interval inclusion. These results
are extended to the case ofn-interval inclusions in Sect. 6. We then illustrate our results
in models and examples in Sect. 7. We collect in Appendix A the results of the universal
crossed product description of the LR inclusion and of its multiple iterated occurring
in our analysis. We include a further appendix concerning the disintegration of locally
normal or localizable representations into irreducible ones, that is needed in the paper;
these results have however their own interest.

For basic facts concerning conformal nets of von Neumann algebras onR or S1, the
reader is referred to [17,28], see also Appendix B.

2. General Properties

In this section we shortly examine a few elementary properties for nets of von Neumann
algebras, partly to motivate our strong additivity assumption in the main body of the
paper, and partly to examine relations with dual nets. To get our main result, the reader
may however skip this part, except for Proposition 5, and get directly to the next section,
where we will restrict our study to completely rational nets.

In this section,A will be a local irreducible net of von Neumann algebras onS1,
namely,A is an inclusion preserving map

I � I �→ A(I )

from the setI of intervals (open, non-empty sets with contractible closure) ofS1 to
von Neumann algebras on a fixed HilbertH space such thatA(I1) andA(I2) commute
if I1 ∩ I2 = ∅ and

∨
I∈I A(I ) = B(H), where∨ denotes the von Neumann algebra

generated.
If E ⊂ S1 is any set, we put

A(E) ≡
∨
{A(I ) : I ∈ I, I ⊂ E}

and set

Â(E) ≡ A(E′)′

with E′ ≡ S1 � E.3

We shall assume Haagduality on S1, which automatically holds ifA is conformal
[4], namely,

A(I )′ = A(I ′), I ∈ I,

3 The results in this section are also valid for nets of von Neumann algebras onR, if I denotes the set of
non-empty bounded open intervals ofR andE′ = R � E for E ⊂ R.
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thusÂ(I ) = A(I ), I ∈ I, but for a disconnected setE ⊂ S1,

A(E) ⊂ Â(E)

is in general a non-trivial inclusion.
We shall say thatE ⊂ S1 is ann-interval if bothE andE′ are unions ofn intervals

with disjoint closures, namely

E = I1 ∪ I2 ∪ · · · ∪ In, Ii ∈ I,
whereĪi ∩ Īj = ∅ if i �= j . The set of alln-intervals will be denoted byIn.

Recall thatA is n-regular, if A(S1 � {p1, . . . pn}) = B(H) for anyp1, . . . pn ∈ S1.
Notice thatA is 2-regular if and only if theA(I )’s are factors, since we are assuming

Haag duality, and thatA is 1-regular if for each pointp ∈ S1,⋂
n

A(In) = C (2)

if In ∈ I and
⋂

n In = {p}.
Proposition 1. The following are equivalent for a fixed n ∈ N:

(i) The inclusion A(E) ⊂ Â(E) is irreducible for E ∈ In.
(ii) The net A is 2n-regular.

Proof. With E = I1 ∪ · · · ∪ In andp1, . . . , p2n the 2n boundary points ofE, we have
A(E)′ ∩ Â(E) = C if and only if A(E) ∨ Â(E)′ = B(H), which holds if and only if
A(E)∨A(E′) = B(H), thus if and only ifA(S1 � {p1, . . . , p2n}) = B(H), namelyA
is 2n-regular. ��

If A is strongly additive, namely,

A(I ) = A(I � {p}),
whereI ∈ I andp is an interior point ofI , thenA is n-regular for alln ∈ N, thus all
A(E) ⊂ Â(E) are irreducible inclusions of factors,E ∈ In.

A partial converse holds.
If N ⊂ M are von Neumann algebras, we shall say thatN ⊂ M hasfinite-index

if the Pimsner–Popa inequality [38] holds, namely there existsλ > 0 and a conditional
expectationE :M→ N with E(x) ≥ λx, for all x ∈M+, and denote the index by

[M : N ]E = λ−1

with λ the best constant for the inequality to hold and

[M : N ] = [M : N ]min = inf
E
[M : N ]E

denotes the minimal index, (see [20] for an overview).
Recall thatA is split if there exists an intermediate type I factor betweenA(I1) and

A(I2) wheneverI1, I2 are intervals and the closurēI1 is contained in the interior ofI2.
This implies (indeed it is equivalent to e.g. if theA(I )’s are factors) thatA(I1)∨A(I ′2)
is naturally isomorphic to the tensor product of von Neumann algebrasA(I1)⊗A(I ′2)
(cf. [10]) . For a conformal net, the split property holds if Tr(e−βL0) <∞ for all β > 0,
cf. [8].

Notice that ifA is split andA(I ) is a factor forI ∈ I, thenA(E) is a factor for
E ∈ In for anyn.
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Proposition 2. Let A be split and 1-regular. If there exists a constant C > 0 such that

[Â(E) : A(E)] < C ∀ E ∈ I2,

then

[A(I ) : A(I � {p})] < C ∀I ∈ I, p ∈ I.

Proof. With I ∈ I andp ∈ I an interior point, letI1, I2 ∈ I be the connected compo-
nents ofI � {p}, let I (n)2 ⊂ I2 be an increasing sequence of intervals with one boundary

point in common withI such thatp /∈ I (n)2 and
⋃

n I
(n)
2 = I2. ThenEn ≡ I1∪ I (n)2 ∈ I2

and we have

A(En)↗ A(I � {p}),
Â(En)↗ A(I ),

whereNn ↗ N meansN1 ⊂ N2 ⊂ · · · andN = ∨Nn, while Nn ↘ N will mean
N1 ⊃ N2 ⊃ · · · andN = ⋂Nn. The first relation is clear by definition. The second
relation follows because

Â(En)
′ = A(E′n) = A(I ′) ∨A(Ln),

whereE′n ∈ I2, En = I ′ ∪ Ln, and
⋂

Ln = {p}, thereforeA(Ln) ↘ C. By the split
propertyA(I ′) ∨A(Ln) ∼= A(I ′)⊗A(Ln), hence by Eq. (2)

A(E′n)↘ A(I ′),

thus

Â(En)↗ A(I ).

The rest of the proof is the consequence of the following general proposition.��

Proposition 3. a) Let

N1 ⊂ N2 ⊂ · · · ⊂ N
∩ ∩ ∩

M1 ⊂M2 ⊂ · · · ⊂M
be von Neumann algebras, N =∨Ni , M =∨Mi ,

b) or let

N1 ⊃ N2 ⊃ · · · ⊃ N
∩ ∩ ∩

M1 ⊃M2 ⊃ · · · ⊃M
be von Neumann algebras, N =⋂Ni , M =⋂Mi .

Then

[M : N ] ≤ lim inf
i→∞ [Mi : Ni].
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Proof. It is sufficient to prove the result in the situation b) as the case a) will follow after
taking commutants. We may assume lim infi→∞[Mi : Ni] <∞.

Let Ei :Mi → Ni be an expectation andλ > lim inf i→∞[Mi , : Ni]Ei . Then there
existsi0 such that for allx ∈M+

i , i ≥ i0,

Ei (x) ≥ λ−1x.

Let E (0)
i = Ei |M, considered as a map fromM to Ni , and letE be a weak limit point

of E (0)
i . Then

E(x) ≥ λ−1x, x ∈M+,
andE(M) ⊂ ⋂

i Ni = N , moreoverE |N = id, becauseEi |N = id. ThusE is an
expectation ofM ontoN and

[M : N ] ≤ [M : N ]E ≤ λ.

As Ei is arbitrary, we thus have[M : N ] ≤ lim inf i→∞[Mi , : Ni]. ��
Recall now that thedual net Ad of A is the net on the intervals ofR defined by

Ad(I ) ≡ A(R � I )′, where we have chosen a point∞ ∈ S1 and identifiedS1 with
R ∪ {∞}.

Note that if A is conformal, then Haag duality automatically holds [18] and the
dual netAd is also a conformal net which is moreover strongly additive; furthermore
A = Ad , if and only if A is strongly additive, if and only if Haag duality holds onR.

Corollary 4. In the hypothesis of Proposition 2, let Ad be the dual net on R, then

A(I ) ⊂ Ad(I )

has finite index for all bounded intervals I of R.

Proof. DenotingI1 = I ′, the complement ofI in S1, the commutant of the inclusion
A(I ) ⊂ Ad(I ) is A(I1 � {∞}) ⊂ A(I1), and this has finite index.��

We have no example whereA(I ) ⊂ Ad(I ) is non-trivial with finite index andA
is conformal; therefore the equalityA(I ) = Ad(I ), i.e. strong additivity, might follow
from the assumptions in Corollary 2 in the conformal case.

Proposition 5. Let A be split and strongly additive, then

(a) The index [Â(E) : A(E)] is independent of E ∈ I2.
(b) The inclusion A(E) ⊂ Â(E) is irreducible for E ∈ I2.

Proof. Statement (b) is immediate by Proposition 1.
Concerning (a), letE = I1 ∪ I2 andẼ = I1 ∪ Ĩ2, whereĨ2 ⊃ I2 are intervals and

I0 ≡ Ĩ2 � I2. Assumingλ−1 ≡ [Â(Ẽ) : A(Ẽ)] < ∞, let E
Ẽ

be the corresponding
expectation withλ-bound. Of courseE

Ẽ
is the identity onA(I0), hence

E
Ẽ
(Â(E)) ⊂ A(I0)

′ ∩A(Ẽ) = A(E),

where the last equality follows at once by the split property and strong additivity as
A(I0)

′ ∩A(Ĩ2) = A(I2).
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ThereforeE
Ẽ
|Â(E)

= EE showing

[Â(E) : A(E)] ≤ [Â(Ẽ) : A(Ẽ)],
where we omit the symbol “min” as the expectation is unique. Thus the index decreases
by decreasing the 2-interval. Taking commutants, it also increases, hence it is constant.
��
Corollary 6. Let A satisfy the assumption of Proposition 2 and let Ad be the dual net
on R of A. Then

[Âd(E) : Ad(E)] <∞ ∀E ∈ I2.

Proof. We fix the point∞ and may assumeE = I1∪ I2 with∞ ∈ I2. SetE′ = I3∪ I4
with I3 � ∞. ThenAd(I3) = A(I3), Ad(I2) = A(I2) and we have

A(E) ⊂ Ad(I1) ∨A(I2)

= Ad(E) ⊂ Âd(E)

= (A(I3) ∨Ad(I4))
′ ⊂ (A(I3) ∨A(I4))

′ = Â(E). ��
Anticipating results in the following, we have:

Corollary 7. Let A be a local irreducible conformal split net on S1. If [Â(E) : A(E)]=
Iglobal <∞, E ∈ I2, then A is n-regular for all n ∈ N.

Proof. If ρ is an irreducible endomorphism ofA localized in an intervalI , thenρ|A(I )

is irreducible [17]. Therefore, by Th. 9 (and comments thereafter) and Prop. 36, the
assumptions imply that ifE ∈ I2 thenA(E) ⊂ Â(E) is the LR inclusion associated
with the system of all irreducible sectors, which is irreducible. ThenA(E) ⊂ Â(E) is
irreducible for allE ∈ In as we shall see in Sect. 6. By Prop. 1 this implies the regularity
for all n. ��

In view of the above results, it is natural to deal with strongly additive nets, when
considering multi-interval inclusions of local algebras and thus to deal with nets of
factors onR, as we shall do in the following.

3. Completely Rational Nets

In this section we will introduce the notion of completely rational net, that will be the
main object of our study in this paper, and get a first analysis.

In the following, we shall denote byI the set of bounded open non-empty intervals
of R, setI ′ = R � I and defineA(E) =∨{A(I ), I ⊂ E, I ∈ I} for E ⊂ R. We again
denote byIn the set of unions ofn elements ofI with pairwise disjoint closures.4

Definition 8. A local irreducible net A of von Neumann algebras on the intervals of R
is called completely rational if the following holds:

(a) Haag duality on R : A(I ′) = A(I )′, I ∈ I,
(b) A is strongly additive,

4 There will be no conflict with the notations in the previous section as the point∞ does not contribute to
the local algebras and we may extendA to S1 settingA(I ) ≡ A(I � {∞}), see Appendix B.
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(c) A satisfies the split property,
(d) [Â(E) : A(E)] <∞, if E ∈ I2.

Note that ifA is the restriction toR of a local conformal net onS1 (namely a local
net which is Möbius covariant with positive energy and cyclic vacuum vector), then (a)
is equivalent to (b), cf. [18].

We shall denote byµA = [Â(E) : A(E)] the index of the irreducible inclusion of
factorsA(E) ⊂ Â(E) in caseµA is independent ofE ∈ I2, in particular ifA is split
and strongly additive, by Proposition 5.

By asector [ρ]of A we shall mean the equivalence class of a localized endomorphism
ρ of A, that will always be assumed to be transportable, i.e. localizable in each bounded
intervalI (see also Appendix B). Unless otherwise specified, a localized endomorphism
ρ has finite dimension. Ifρ is localized in the intervalI , its restrictionρ|A(I ) is an
endomorphism ofA(I ), thus it gives rise to asector of the factorA(I ) (i.e. a normal
unital endomorphism ofA(I ) modulo inner automorphisms ofA(I ) [25]) and it will be
clear from the context which sense will be attributed to the term sector.

The reader unfamiliar with the sector strucure is referred to [25,28,17] and to Ap-
pendix B.

Let E = I1 ∪ I2 ∈ I2 andρ andσ be irreducible endomorphisms ofA localized
respectively inI1 and inI2. Thenρσ restricts to an endomorphism ofA(E), since both
ρ andσ restrict.

Denote byγE the canonical endomorphism of̂A(E) into A(E) andλE ≡ γE |A(E).

Theorem 9.Let A be completely rational. With the above notations, ρσ |A(E) is con-
tained inλE if and only if σ is conjugate toρ. In this caseρσ |A(E) ≺ λE with multiplicity
one.

Proof. By [28] ρσ |A(E) ≺ λE if and only if there exists an isometryv ∈ Â(E) such
that

vx = ρσ(x)v ∀x ∈ A(E). (3)

If Eq. (3) holds, then it holds forx ∈ A(I ) for all I ∈ I by strong additivity, hence
σ = ρ̄.

Conversely, ifσ = ρ̄, then there exists an isometryv ∈ A(I ) such thatvx = ρσ(x)v

for all x ∈ A(I ), whereI is the intervalI ⊃ E given byI = I1 ∪ I2 ∪ Ī3 with I3 the
bounded connected component ofE′.

Sinceρ andσ act trivially onA(I3), we have

v ∈ A(I3)
′ ∩A(I ),

but
A(I3)

′ ∩A(I ) = (A(I3) ∨A(I ′))′ = A(E′)′ = Â(E),

therefore Eq. (3) holds true. As theρ andσ are irreducible, the isometryv in (3) unique
up to a phase and this is equivalent toρρ̄|A(E) ≺ λE with multiplicity one. ��

We remark that in the above theorem strong additivity is not necessary forρρ̄ ≺ λE ,
as can be replaced by the factoriality ofA(E), equivalently ofÂ(E); this holds e.g. in
the conformal case.

Moreover also the split property is unnecessary, it has not been used.
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We shall say that the netA onR has amodular PCT symmetry, if there exists a cyclic
separating (vacuum) vector" for eachA(I ), if I is a half-line (Reeh-Schlieder property),
and the modular conjugationJ of A(a,∞)with respect to" has the geometric property

JA(I + a)J = A(−I + a), I ∈ I, a ∈ R. (4)

This is automatic ifA is conformal, see [4,15]. It easy to see that the modular PCT
property implies translation covariance, where the translation unitaries are products of
modular conjugations, but positivity of the energy does not necessarily hold.

Note that Eq. (4) implies Haag duality for half-lines

A(−∞, a)′ = A(a,∞), a ∈ R.

Settingj ≡ AdJ , the conjugate sector exists and it is given by the formula [16]

ρ̄ = j · ρ · j.

Corollary 10. If A is completely rational with modular PCT, then A is rational, namely
there are only finitely many irreducible sectors [ρ0], [ρ1], . . . , [ρn]with finite dimension
and we have

n∑
i=0

d(ρi)
2 ≤ µA. (5)

Proof. It is sufficient to show this last inequality. By the split property, the endomor-
phismsρiρ̄i |A(E) can be identified with the endomorphismsρi ⊗ ρ̄i onA(I1)⊗A(I2),
hence they are mutually inequivalent.

By Theorem 9,

n⊕
i=1

ρiρ̄i |A(E) ≺ λE, (6)

hence
µA = [Â(E) : A(E)] = d(λE) ≥

∑
d(ρi)

2.

We now give a partial converse to Theorem 9.

Lemma 11.Let A be completely rational and let EE be the conditional expectation
Â(E)→ A(E).

(a) If E ⊂ Ẽ and E, Ẽ ∈ I2, then

E
Ẽ
|Â(E)

= EE.

(b) There exists a canonical endomorphism γ
Ẽ

of Â(Ẽ) to A(Ẽ) such that γ |Â(E)
is a

canonical endomorphism of Â(E) into A(E) and satisfies

γ |Â(E)′∩A(Ẽ)
= id.
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Proof. (a) has been shown in the proof of Proposition 5.
(b) is an immediate variation of [16, Prop. 2.3] and [28, Theorem 3.2].��

Theorem 12.Let A be completely rational. Given E ∈ I2, λE extends to a localized
(transportable) endomorphism λ of A such that λ|A(I ) = id, if I ⊂ E′, I ∈ I. Moreover,
d(λ) = d(λE) = µA.

In particular, if A is conformal, then λ is Möbius covariant with positive energy.

Proof. LetE = (a, b)∪ (c, d), wherea < b < c < d andẼ = (a′, b)∪ (c, d ′), where
a′ < a andd ′ > d. By Lemma 11 we have aγ

Ẽ
with λ

Ẽ
|A(I ) = id, if I ⊂ I, I ∈ Ẽ�E.

Analogously there is a canonical endomorphismγ : Â(Ẽ)→ A(Ẽ) acting trivially
onA(E). We may write

γ
Ẽ
= Ad u · γ

with u ∈ A(Ẽ), hence
λ
Ẽ
= Adu · λ, λ = γ |A(Ẽ)

.

Sinceγ |A(a,b)= id, γ |A(c,d)= id, we have

λ
Ẽ
= Adu onA(a, b),A(c, d).

Therefore, the formula
λ̃ = Adu

defines an endomorphism ofA(a, d) acting trivially anA(b, c), with

λ̃|A((a,b)∪(c,d)) = λE.

We may also have chosenγ “localized” in (a′, a′′) ∪ (d ′′, d ′) with a′ < a′′ < a and
d < d ′′ < d ′ so that we may assumeλ̃ to act trivially onA((a′′, b) ∪ (c, d ′′)).

Lettinga′, a′′ → −∞ andd ′′, d ′ → +∞, we construct, by an inductive limit of the
λ̃’s, an endomorphismλ of the quasi-localC∗-algebra

⋃
s>0 A(−s, s).

Clearly,λ is localized in(a, d), acts trivially onA(b, c) and is transportable. More-
over,λ has finite index as the operatorsR, R̄ ∈ (i, λ2) in the standard solution for the
conjugate equation [25,29]

R̄∗λ̄(R) = 1, R∗λ(R̄) = 1,

on Â(E) give the same relation onA(I ) for anyI ⊃ E, I ∈ I.
If A is conformal, thenρ is covariant with respect to translations and dilations by

[17].As we may vary the point∞,λ is covariant with respect to dilations and translations
with respect to a different point at∞, henceλ is Möbius covariant. ��
Lemma 13.LetAbe completely rational.Then there are at most 'µA(mutually different
irreducible sectors of A (with finite or infinite dimension).

Proof. Consider the family{[ρλ]} of all irreducible sectors and letN be the cardinality
of this family. With E = I1 ∪ I2 ∈ I2, we may assume that eachρλ is localized
in I1 and choose endomorphismsσλ equivalent toρλ and localized inI2. Let then
uλ ∈ (ρλ, σλ) ⊂ Â(E) be a unitary intertwiner andE the conditional expectation from
Â(E) to A(E). Since

uλρλ(x) = σλ(x)uλ = xuλ, ∀x ∈ A(I1),
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we have
u∗λ′uλ ρλ(x) = ρλ′(x) u

∗
λ′uλ, ∀x ∈ A(I1),

henceT = E(u∗
λ′uλ) ∈ A(E) intertwinesρλ|A(I1) andρλ′ |A(I1). The split property

allowing us to identifyA(E) andA(I1) ⊗ A(I2), every stateϕ in A(I2)∗ gives rise
to a conditional expectationEϕ : A(E) → A(I1). ThenEϕ(T ) ∈ (ρλ, ρλ′), and the
inequivalence ofρλ|A(I1), ρλ′ |A(I1), see above, entailsEϕ(T ) = 0. Since this holds
for everyϕ ∈ A(I2)∗ we conclude

T = E(u∗λ′uλ) = 0, λ′ �= λ.

LetM be the Jones extension ofA(E) ⊂ Â(E), e ∈M the Jones projection implement-
ing E and letE1 :M→ Â(E) be the dual conditional expectation. Theneu∗

λ′uλe = 0
if λ′ �= λ and therefore theeλ ≡ uλeu

∗
λ are mutually orthogonal projections inM with

E1(eλ) = µ−1
A . Since their (strong) sump = ∑

λ eλ is again an orthogonal projection

we havep ≤ 1 and thusE1(p) ≤ E(1) = 1. This implies the boundNµ−1
A ≤ 1 and thus

our claim. ��
We shall say that a sector[ρ] is of type I if ∨I∈Iρ(A(I )) is a type I von Neumann

algebra, namelyρ is a type I representation of the quasi local C∗-algebra∪s>oA(−s, s).
Corollary 14. If A is completely rational on a separable Hilbert space, then all factor
representations of A on separable Hilbert spaces are of type I.

Proof. Assuming the contrary, by Corollary 59 we get an infinite family[ρλ] of different
irreducible sectors. This is in contradiction with the preceding proposition.��

We end this section with the following variation of a known fact [10].

Proposition 15.Let A be a completely rational net with modular PCT on a Hilbert
space H. Then H is separable.

Proof. We chose a pairI ⊂ Ĩ of intervals and a type I factorN betweenA(I ) andA(Ĩ ).
The vacuum vector" is separating forA(Ĩ ), hence forN . ThusN admits a faithful
normal state, hence it is countably decomposable. Being of type I,N is countably
generated. SoA(I )" ⊂ N" is a separable subspace ofH. But ∪∞n=1A(−n, n)" is
dense inH, thusH is separable. ��

4. The Structure of Sectors for the (Time= 0) LR Net

This section contains a study of the sector strucure for the net obtained by the LR
construction, by means of the braiding symmetry. It will be continued in the next section
by a different approach.

Let N be an infinite factor and{[ρi]} a rational system of sectors ofN , namely
the [ρi]’s form a finite family of mutually different irreducible finite-dimensional sec-
tors ofN which is closed under conjugation and taking the irreducible components of
compositions. The identity sector is usually labeled asρ0. We call

M ⊃ N ⊗N opp
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the LR inclusion, the canonical inclusion constructed in [28], whereM is a factor,
N ⊗N opp⊂M is irreducible with finite index and

λ =
⊕
i

ρi ⊗ ρ
opp
i

for λ ∈ End(N ⊗ N opp) as the restriction ofγ : M → N ⊗ N opp. We shall give an
alternative characterization of this inclusion in Proposition 45.

The same construction works in slightly more generality, by replacingN opp with a
factorN1 and{ρopp

i }i by {ρji }i ⊂ End(N1), whereρ → ρj is an anti-linear invertible
tensor functor of the tensor category generated by{ρi}i to the tensor category generated
by {ρji }i . Extensions of our results to this case are obvious, but sometimes useful, and
will be considered possibly implicitly.

The following is due to Izumi [22]. Since it is easy to give a proof in our context, we
include a proof here.

Lemma 16.For every ρi , the (N ⊗N opp)–M sector [ρi ⊗ id][γ ] = [id ⊗ ρ̄
opp
i ][γ ] is

irreducible and each irreducible (N ⊗N opp)–M sector arising from N ⊗N opp⊂M
is of this form, where γ is regarded as an (N ⊗ N opp)–M sector. If [ρi] �= [ρj ] as
A–A sectors, then [ρi ⊗ id][γ ] �= [ρj ⊗ id][γ ] as (N ⊗ N opp)–M sectors. We have
[ρi ⊗ ρ

opp
j ][γ ] =

∑
k N

k

ij̄
[ρk ⊗ id][γ ] as (N ⊗ N opp)–M sectors, where Nk

ij̄
is the

structure constant for {ρi}i .
Proof. Set [σ ] = [ρi ⊗ id][γ ] and compute[σ ][σ̄ ]. Since[γ̄ ] = [ι], whereι is the
inclusion map ofN ⊗N opp into M regarded as aM–(N ⊗N opp) sector, and[γ ][ι] =
[λ] = ∑

k[ρk ⊗ ρ
opp
k ], we have[σ ][σ̄ ] = ∑

k[ρiρkρ̄i ⊗ ρ
opp
k ], and this contains the

identity only once. So[ρi ⊗ id][γ ] is an irreducible(N ⊗ N opp)–M sector. We can
similarly prove that if[ρi] �= [ρj ], then[ρi ⊗ id][γ ] �= [ρj ⊗ id][γ ].

We next set[σ ′] = [id ⊗ ρ̄
opp
i ][γ ] as an(N ⊗ N opp)–M sector, which is also

irreducible. We compute

[σ ][σ̄ ′] = [ρi ⊗ id][λ][id ⊗ ρ
opp
i ] =

∑
k

[ρiρk ⊗ ρ
opp
k ρ

opp
i ],

which contains the identity only once. So we have[ρi ⊗ id][γ ] = [id ⊗ ρ̄
opp
i ][γ ].

The rest is now easy.��
Let us now assume we have a strongly additive, Haag dual, irreducible net of factors

A(I ) on R with a rationalsystem of irreducible sectors {[ρi]}i (with ρ0 = id), namely
{[ρi]}i is a family of finitely many different irreducible sectors ofA with finite dimension
stable under conjugation and irreducible components of compositions.

One may construct [42,28] a net of subfactorsA⊗Aopp⊂ B so that the correspond-
ing canonical endomorphism restricted onA⊗Aopp is given by

⊕
i ρi ⊗ ρ

opp
i . We call

this B the LR net. For Aopp, we useεopp(ρ
opp
k , ρ

opp
l ) = j (ε(ρk, ρl))

∗, wherej is the
anti-isomorphism fromA to Aopp. In order to distinguish two braidings, we writeε+
andε−.

In other words, the LR net here is obtained as the time zero fields from the canonical
two-dimensional net constructed in [28]: it is a local net, but ifA is translation covariant
with positive energy,B is translation covariant without the spectrum condition (the
translation onB are space translations).
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Then the net of inclusionA⊗Aopp(I ) ⊂ B(I ) is a net of subfactors in the sense
of [28, Sect. 3], that is, we have a vacuum vector with Reeh-Schlieder property and
consistent conditional expectations. We denote byγ the canonical endomorphism of
B into A⊗Aopp and its restriction toA⊗Aopp by λ. We may suppose that alsoλ is
localized inI . We shorten our notation by settingN ≡ A(I ) andM = B(I ). We thus
haveλ(x) = ∑

i Vi(ρi ⊗ ρ
opp
i )(x)V ∗i , whereVi ’s are isometries inN ⊗ N opp with∑

i ViV
∗
i = 1.

We follow [21] for the terminology of(N ⊗N opp)–M sectors, and so on, and study
the sector structure of the subfactorN ⊗ N opp ⊂ M in this section. In other words
we study the sector structure of a single subfactor, not the structure of superselection
sectors of the net, though we will be interested in this structure for the net in the next
section. So the terminologysector is used for a subfactor, not for a net, in this section.
However the inclusionN ⊗ N opp ⊂ M has extra structure inherited by the inclusion
of netsA⊗Aopp⊂ B, that is there are the left and right unitary braid symmetries and
the extension and restriction maps. We first note that{[ρi ⊗ ρ

opp
j ]}ij gives a system of

irreducibleA⊗Aopp–A⊗Aopp sectors.
This gives the description of the principal graph ofN ⊗N opp⊂M as a corollary as

follows, which was first found by Ocneanu in [35] for his asymptotic inclusion. Label
even vertices with(i, j) for [ρi ⊗ ρ

opp
j̄
] and odd vertices withk for [ρk ⊗ id][γ ] and

draw an edge with multiplicityNk
ij between the even vertex(i, j) and the odd vertex

k. The connected component of this graph containing the vertex(0,0) is the principal
graph of the subfactorN ⊗N opp⊂M.

Now we consider theα-induction introduced in [28] and further studied in [49,2],
namely ifσ is a localized endomorphism ofA⊗Aopp, we set

α±σ = γ−1 ·Ad(ε±(σ, λ)) · σ · γ. (7)

(The notation in [28] isσ ext .)
Recall that ifσ is an endomorphism ofA⊗Aopp localized in the intervalI , thenα±σ

is an endomorphism ofB localized in a positive/negative half-line containingI , yet, as
shown in [2, I],α±σ restricts to an endomorphism ofM = B(I ). We will denote this
restriction by the same symbolα±σ .

Lemma 17.The M–M sectors [α+ρi⊗id] are irreducible and mutually different.

Proof. We compute〈α+ρi⊗id, α
+
ρj⊗id〉, the dimension of the intertwiner space between

α+ρi⊗id andα+ρj⊗id, by using [2, I, Theorem 3.9]. This number is then equal to

〈
⊕
k

ρkρi ⊗ ρ
opp
k , ρj ⊗ id〉 = δij .

This gives the conclusion.��
Lemma 18.As M–M sectors, we have [α+ρi⊗id] = [α+id⊗ρopp

i

].
Proof. By a similar argument to the proof of the above lemma, we know that[α+

id⊗ρopp
i

]
is also irreducible. [2, I, Theorem 3.9] gives

〈[α+ρi⊗id], [α+id⊗ρopp
i

]〉 = 〈
⊕
k

ρkρi ⊗ ρ
opp
k , id ⊗ ρ

opp
i 〉 = 1,

which gives the conclusion.��



Multi-Interval Subfactors and Modularity of Representations in CFT 645

We then have the following corollary.

Corollary 19. The set of irreducible M–M sectors appearing in the decomposition of
α+
ρi⊗ρopp

j

for all i, j is {[α+ρi⊗id]}i .
The next theorem is useful for studying the subfactors arising from disconnected

intervals for a conformal net. For the rest of this section we shall assume the braiding to
be non-degenerate.

Theorem 20.Assume the braiding to be non-degenerate and suppose an irreducible
M–M sector [β] appears in decompositions of both α+

ρi⊗ρopp
j

and α−
ρk⊗ρopp

l

for some

i, j, k, l. Then [β] is the identity of M.

Proof. α+ andα−map sectors localized in bounded intervals to soliton sectors localized
in right unbounded and left unbounded half-lines, respectively. Hence[β] is localized in
a bounded interval. By the above corollary, we may assume that[β] = [α+ρi⊗id] for some
i, henceρi⊗ id must have trivial monodromy withλ, i.e.,ε(ρi⊗ id, λ)ε(λ, ρi⊗ id) = 1,
which in turn givesε(ρi, ρk)ε(ρk, ρi) = 1 for all k. The non-degeneracy assumption
gives[ρi] = [id] as desired. ��

We now define an endomorphism ofM by βij = α+ρi⊗idα
−
id⊗ρopp

j

. More explicitly,

we haveβij = γ−1 ·Ad(U+−ij ) · (ρi ⊗ ρ
opp
j ) · γ , where

U+−ij =
∑
k

Vk(ε
+(ρi, ρk)⊗ ε−,opp(ρ

opp
j , ρ

opp
k ))(ρi ⊗ ρ

opp
j )(V ∗k ).

Note that if we define similarly

U++ij =
∑
k

Vk(ε
+(ρi, ρk)⊗ ε+,opp(ρ

opp
j , ρ

opp
k ))(ρi ⊗ ρ

opp
j )(V ∗k ),

we then haveα+
ρi⊗ρopp

j

= γ−1 ·Ad(U++ij ) · (ρi ⊗ ρ
opp
j ) · γ . By [2],1 Prop. 18, we have

[βij ] = [α+ρi⊗id][α−id⊗ρopp
j

] = [α−ρj⊗id][α+ρi⊗id] = [α−id⊗ρopp
j

][α+ρi⊗id]

asM–M sectors.
The following proposition is originally due to Izumi [22] (with a different proof) and

first due to Ocneanu [37] in the setting of the asymptotic inclusion. (Also see [13].)

Proposition 21.Each [βij ] is an irreducible M–M sector and these are mutually differ-
ent for different pairs of i, j . Each irreducible M–M sector arising from N ⊗N opp⊂
M is of this form.

Proof. We compute

〈βij , βkl〉 = 〈α+ρi⊗idα
−
id⊗ρopp

j

, α+ρk⊗idα
−
id⊗ρopp

l

〉 = 〈α+ρ̄kρi⊗id, α
−
id⊗ρopp

l ρ̄
opp
j

〉.

The only sector which can be contained in[α+ρ̄kρi⊗id] and[α−
id⊗ρopp

l ρ̄
opp
j

] is the identity

by the above proposition. So the above number isδikδjl . Since the square sums of the
statistical dimensions for{ρi ⊗ ρ

opp
j }ij and{βij }ij are the same, it completes the proof.

��



646 Y. Kawahigashi, R. Longo, M. Müger

Note that here we have used the definition in [28] for the mapρi ⊗ ρ
opp
j �→ βij ,

and a general theory of this map has been studied in [2] under the nameα-induction.
But in [2], they assumed a certain condition, called chiral locality in the terminology
of [3], and some results in [2] depend on this assumption, while the definition itself
makes sense without it. Our mixed use of braidingsε+ andε− here violates this chiral
locality condition, so we can use the results in [2] here only when they are independent
of the chiral locality assumption. For example, it is easy to see that the analogue of [2,
I, Theorem 3.9] does not hold for our map here.

With the above proposition, we have the following description of the dual principal
graph ofN ⊗ N opp ⊂ M as a corollary, which is originally due to Ocneanu [37].
(Also see [13].) Label even vertices with(i, j) for [βij̄ ] and odd vertices withk for

[ρk ⊗ id][γ ] and draw an edge with multiplicityNk
ij between the even vertex(i, j) and

the odd vertexk. The connected component of this graph containing the vertex(0,0)
is the dual principal graph of the subfactorN ⊗N opp ⊂M, which is the same as the
principal graph.

We next study the tensor category of theM–M sectors.

Lemma 22.Let V,W be intertwiners from ρiρk to ρm and from ρjρl to ρn, respectively,
in N . Then V ⊗W ∗opp ∈ N ⊗N opp in an intertwiner from βijβkl to βmn.

Proof. By a direct computation. ��
Then we easily get the following from the above lemma. (The quantum 6j -symbols

for subfactors have been introduced in [36] as a generalization for classical 6j -symbols.
See [12, Chapter 12] for details.)

Theorem 23.In the above setting, the tensor categories of (N ⊗N opp)–(N ⊗N opp)

sectors and M–M sectors with quantum 6j -symbols are isomorphic.

5. Relations with the Quantum Double

This section contains our main results.
Here below we will consider an inclusionA ⊂ B of nets of factors. We shall say

thatA ⊂ B has finite index if there is a consistent family of conditional expectations
EI : B(I ) → A(I ), I ∈ I and [B(I ) : A(I )]EI < ∞ does not depend onI ∈ I.
The independence of the index of the intervalI automatically holds if there is a vector
(vacuum) with Reeh-Schlieder property andEI preserves the vacuum state (standard
nets, see [28]). The index will be simply denoted by[B : A].
Proposition 24.Let A ⊂ B be a finite-index inclusion of nets of factors as above. If A
and B are completely rational then

µA = I2µB

with I = [B : A].
Proof. If N1,N2 are factors, we shall use the symbol

N1
α⊥ N2

to indicate thatN1 ⊂ N ′2 and[N ′2 : N1] = α.
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LetE = I1 ∪ I2 ∈ I2; we will show that

B(E)
µB⊥ B(E′)

I2 ∪ ∪ I2

A(E)
I2µA⊥ A(E′)

,

whereA(E) ⊂ B(E) has indexI2 becauseA(E) ∼= A(I1)⊗A(I2), B(E) ∼= B(I1)⊗
B(I2) and[B(Ii) : A(Ii)] = I .

In the diagram, the commutants are taken in the Hilbert spaceHB of B, hence

B(E)
µB⊥ B(E′) is obvious.

We now show that onHB,

A(E)
I2µA⊥ A(E′).

Let γ : B→ A be a canonical endomorphism withλ = γ |A localized in an intervalI0;
then the netI �→ A(I ) onHB (I ⊃ I0) is unitarily equivalent to the net

I �→ λ(A(I )) onHA

and we may assumeI0 ⊂ I1.
Then the correspondence associated with

A(E)-A(E′) onHB,

namelyHB with the natural commuting actions ofA(E) andA(E′), is unitarily equiv-
alent to the one associated with

λ(A(E))-λ(A(E′)) onHA,

namelyHA with the commuting actions ofA(E) andA(E′) obtained by composing
their defining actions with the mapX→ λ(X). But

λ(A(E)) = λ(A(I1) ∨A(I2)) = λ(A(I1)) ∨A(I2)

andλ(A(E′)) = A(E′), hence theA(E)–A(E′) correspondence onHB is unitarily
equivalent to

(λ(A(I1)) ∨A(I2))−A(E′) onHA
and its index is

[Â(E) : λ(A(I1)) ∨A(I2)] = [Â(E) : A(E)][A(E) : λ(A(I1)) ∨A(I2)] = µAI2.

It follows from the diagram that

I2µA = µBI2 · I2,

thus,I2µB = µA. ��
The following proposition may be generalized to the case of a finite-index inclusion

A ⊂ B as above.
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Proposition 25.Let A be completely rational with modular PCT and B ⊃ A ⊗ Aopp

be the LR net. Then also B is completely rational with modular PCT.

Proof. Let E = I1 ∪ I2 andI3 be the bounded connected component ofE′. SetC ≡
A ⊗ Aopp. Then the conditional expectationEI : B(I ) → C(I ) associated with the
interval I , whereI is the interior of Ī1 ∪ Ī2 ∪ Ī3, mapsB(E) onto Ĉ(E), because
EI (B(E)) ⊂ C(I3)

′ ∩ C(I ) = Ĉ(E), thus

E ≡ E0 · EI |B(E) (8)

is a finite-index expectation ofB(E) ontoC(E), whereE0 is the expectation of̂C(E) onto
C(E). ThereforeµB <∞ follows by a diagram similar to the one in (5) (withA⊗Aopp

instead ofA), as we know a priori that the vertical inclusions have a finite index, while
the bottom horizontal inclusion has finite index by the argument given there.

Then the strong additivity ofB follows easily, and so its modular PCT property, but
we omit the arguments that are not essential here (ifA is a conformal case this follows
directly because then alsoB is conformal).

We now show the split property ofB. For notational convenience we treat the case
of two separated intervals, rather than that of an interval and the complement of a larger
interval. It will be enough to show that the above expectation (8) satisfies

E(b1b2) = E(b1)E(b2), bi ∈ C(Ii),
andE(B(Ii)) ⊂ C(Ii), as we may then compose a normal product stateϕ1 ⊗ ϕ2 of
C(I1) ∨ C(I2) � C(I1)⊗ C(I2) with E to get a normal product state ofB(I1) ∨ B(I2).

LetR(h)
i ∈ B(Ih), h = 1,2, be elements satisfying the relations (15) so thatB(Ih) is

generated byC(Ih) and{R(h)
i }i . With bh ∈ B(Ih) we then have

b(h) =
∑
i

a
(h)
i R

(h)
i , a

(h)
i ∈ C(Ih),

hence

b(1)b(2) =
∑
i,j

a
(1)
i a

(2)
j R

(1)
i R

(2)
j ,

so we have to show thatE(R(1)
i R

(2)
j ) = 0 unlessi = j = 0. NowR

(1)
i = uiR

(2)
i for

some unitaryui ∈ Ĉ(E) and

EI (R(2)
i R

(2)
j ) = EI

(∑
k

Ck
ij

(2)
R
(2)
k

)
= C0

ij

(2) = δījC
0
ij

(2)
,

(see Appendix A for the definition of theCk
ij ), hence

E(R(1)
i R

(2)
j ) = E(uiR(2)

i R
(2)
j ) = E0(uiEI (R(2)

i R
(2)
j )) = E0(uiC

0
iī

(2)
) = E0(ui)C

0
iī

(2)
,

which is 0 if i �= 0 becauseE0(ui) ∈ C(E) is an intertwiner between irreducible
endomorphisms localized inI1 andI2, while E0(u0) = E0(1) = 1. ��



Multi-Interval Subfactors and Modularity of Representations in CFT 649

We get the following corollary, where the last part will follow from Proposition 36
later.

Corollary 26. Let A be completely rational and

A⊗Aopp⊂ B
be the LR inclusion. Then

µ2
A = I2

globalµB,

where Iglobal=∑ d(ρi)
2.

In particular, µB = 1 if and only if A(E) ⊂ Â(E) is isomorphic to the LR inclusion.

Proof. By Propositions 24, 25 and 36.��
Lemma 27.Let A1, A2 be irreducible, Haag dual nets on separable Hilbert spaces.
Assume that each sector of A1 is of type I. If ρ is an irreducible localized endomorphism
of A1⊗A2, then

ρ � ρ1⊗ ρ2

with ρi irreducible localized endomorphisms of Ai .

Proof. Let π be a DHR representation ofA1 ⊗ A2 (see Appendix B) on a separable
Hilbert spaceH. Thenπ(A1)andπ(A2)generate the von Neumann algebraB(H), where
Ai denotes the quasi-local C∗-algebra associated byAi . Henceπ(A1)

′′ andπ(A2)
′′ are

factors.
Let πi ≡ π |Ai

, where we identifyA1 with A1⊗ C andA2 with C⊗A2, thenπi is
easily seen to be localizable in bounded intervals (namely ifI1 ∈ I, the restriction ofπ1 to
theC∗-algebra generated by{Ai (I ) : I ∈ I ′1, I ∈ I} extends to a normal representation
of Ai (I

′
1)). Thereforeπi is unitarily equivalent to a localized endomorphism ofAi . As

π1 is a factor representation, by assumptionπ(A1)
′′ is a type I factor and so isπ(A2)

′′.
We then have a decomposition

π = π1⊗ π2.

This concludes the proof.��
Corollary 28. Let A be a completely rational net on a separable Hilbert space. The only
irreducible finite dimensional sectors of A⊗Aopp are

[ρi ⊗ ρ
opp
j ]

with [ρi], [ρj ] irreducible sectors of A.

Proof. Immediate by Lemma 14 and the above lemma.��
Lemma 29.Let A be completely rational and B ⊃ A ⊗ Aopp the LR net. If σ is an
irreducible localized endomorphism of B and σ ≺ α+ρ , σ ≺ α−

ρ′ for some localized
endomorphism ρ, ρ′ of A⊗Aopp, then σ is localized in a bounded interval.

Proof. The thesis follows becauseσ ≺ α+ρ is localized in a right half-line andσ ≺ α−ρ
in a left half-line. ��

The following lemma extends Theorem 20.



650 Y. Kawahigashi, R. Longo, M. Müger

Lemma 30.Let A be a completely rational net, {[ρi]}i the system of all irreducible
sectors with finite dimension, andB ⊃ A⊗Aoppthe LR net. The following are equivalent:

(i) The braiding of the net A is non-degenerate.
(ii) B has no non-trivial localized endomorphism (localized in a bounded interval, finite

index).

Proof. We use now an argument in [7]. Letσ be a non-trivial irreducible localized
endomorphism ofB localized in an interval, withd(σ ) <∞.

By Frobenius reciprocity

σ ≺ α+
σ rest,

σ ≺ α−
σ rest,

whereσ rest = γ · σ |A⊗Aopp andγ : B → A ⊗ Aopp is a canonical endomorphism.
Hence ifρk ⊗ id ≺ σ rest is an irreducible sector with[α+ρk⊗id] = [σ ], then by [28],

Prop. 3.9, the monodromy ofρk ⊗ id with γ |A⊗Aopp = ∑
ρi ⊗ ρ

opp
i must be trivial,

namelyρk is a non-trivial sector with degenerate braiding.
The converse is true, namely ifρk is a non-trivial degenerate sector, thenα+ρk⊗id is a

non-trivial sector ofB localized in a bounded interval.��
Lemma 31.Let A be a completely rational net with modular PCT and let {[ρi]}i be the
system of all finite dimensional sectors of A. If E = I1 ∪ I2 ∈ I2, then

λE =
⊕
i

ρi ρ̄i |A(E),

where λE = γE |A(E), the ρi’s are localized in I1 and the ρ̄i’s are localized in I2.

Proof. Let j = AdJ , whereJ is the modular conjugation ofA(0,∞). GivenI ∈ I we
may identifyA(I )opp with j (A(I )) = A(−I ). We define a netÃ onR setting

Ã(I ) ≡ A(I )⊗A(I )opp= A(I )⊗A(−I ), I ∈ I.
With I = (a, b)with 0 < a < b andE = I ∪−I , letγE : Â(E)→ A(E) be the canon-
ical endomorphism andλE ≡ γE |A(E). We identify nowλE with an endomorphism of
ηI of Ã(I ) and want to show thatηI extends to a localized endomorphism ofÃ.

The proof is similar to the one of Theorem 12. Withd > c > b, by Lemma 11 there
is an extensionη of η(a,b) to Ã(a, d) with η|Ã(b,d)

= id and a canonical endomorphism

η(a,d) acting trivially onA(a, c) with a unitaryu ∈ Ã(a, d) such that

η = Adu · η(a,d).
Therefore Adu|Ã(−∞,c)

is an extension ofη(a,b) to Ã(−∞, c) which acts trivially on

Ã(−∞, a) and onÃ(b, c). Lettingc→∞ we obtain the desired extension ofη(a,b) to
Ã, that we still denote byη.

Now, by Lemma 27 forÃ, every irreducible subsector ofη will be equivalent to
ρh⊗ (j ·ρk ·j) for someh, k, hence each irreducible subsector ofλE must be equivalent
to ρh · ρ̄k|A(E), whereρh is localized in(a, b) andρk is localized in(−b,−a). By
Theorem 9 this is possible if and only ifh = k. ��
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Corollary 32. Let A be completely rational with modular PCT. The following are equiv-
alent:

(i) The net A has no non-trivial sector with finite dimension.
(ii) The net A has no non-trivial sector (with finite or infinite dimension).
(iii) µA = 1, namely A(E)′ = A(E′) for all E ∈ I2.

Proof. (i) ⇒ (ii): It will be enough to show that every sector (possibly with infinite
dimension)ρ of A contains the identity sector. GivenE = I1 ∪ I2 with I1, I2 ∈ I,
we may suppose thatρ is localized inI1 and choose a sectorρ′ equivalent toρ and
localized inI2. If u is a unitary with Adu · ρ = ρ′, thenu ∈ Â(E), henceu ∈ A(E)

by assumptions. NowA(E) � A(I1)⊗A(I2) by the split property, hence there exists
a conditional expectationE : A(E) → A(I1) with E(u) �= 0, thusE(u) is a non-zero
intertwiner betweenρ and the identity.

(ii) ⇒ (iii) follows by Lemma 31.

(iii) ⇒ (i) follows by Th. 9 (or by Lemma 31). ��
The conditionµA = 1 is however compatible with the existence of soliton sectors.
Note also that the condition thatA(E) ⊂ Â(E) has depth≤ 2 (equivalentlyÂ(E) is

the crossed product ofA(E) by a finite-dimensional Hopf algebra) is equivalent to the
innerness of the sectorλ extendingλE (becauseλE is implemented by a Hilbert space
of isometries inÂ(E) [26]), hence it is equivalent to the property that all irreducible
sectors ofA have dimension 1 by Lemma 31.

The following is the main result of this paper.

Theorem 33.Let A be completely rational with modular PCT. Then

µA = Iglobal≡
∑

d(ρi)
2

and A(E) ⊂ Â(E) is isomorphic to the LR inclusion associated with A(I1) ⊗ A(I2)

and all the finite-dimensional irreducible sectors [ρi] of A.

Proof. Â(E) ⊃ A(E) contains the LR inclusion by the following Proposition 36. Since
µA = Iglobal by Lemma 31 it has to coincide with the LR inclusion.��
Corollary 34. Let A be completely rational and conformal. The inclusions A(E) ⊂
Â(E) are all isomorphic for E ∈ I2.

Proof. If I ∈ I and theρi ’s are localized inI , for any givenI1 ∈ I there is a Möbius
transformation giving rise to an isomorphism ofA(I ) with A(I1) carrying theρi ’s
to endomorphisms localized inI1. Therefore the isomorphism class of{A(E), λE} is
independent ofE ∈ I2. Hence the LR inclusions based on that are isomorphic.��

Indeed, by using the uniqueness of theIII1 injective factor [6,19] and the classifi-
cation of its finite depth subfactors [40] we have the following.

Corollary 35. Let A be completely rational and conformal. The isomorphism class of
the inclusion A(E) ⊂ Â(E), E ∈ I2, depends only on the tensor category of the sectors
of A, not on its model realization.
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Proof. If A is non-trivial andI is an interval, thenA(I ) is aIII1 factor and, as the split
property holds,A(I ) is injective (see e.g. [27]). ThusA(I ) is the unique injectiveIII1
factor [19].

By Popa’s theorem [40], ifN is aIII1 injective factor andT ⊂ End(N ) a rational
tensor category isomorphic to the tensor category of sectors ofA (as abstract tensor cate-
gories), then there exists an isomorphism ofN with A(I ) implementing the equivalence
between the two tensor categories.

Since the LR inclusionN ⊗N opp ⊂M clearly depends, up to isomorphism, only
on N and the tensor categoryT ⊂ End(N ), it is then isomorphic toA(E) ⊂ Â(E).
��

We now show that, even in the infinite index case, the two-interval inclusion always
contains the LR inclusion associated with any rational system of irreducible sectors.

Proposition 36.Let A be completely rational with modular PCT j andE = I∪−I ∈ I2
a symmetric 2-interval and {[ρi]} a rational system of irreducible sectors of A with finite
dimension, with the ρi’s localized in I . Let Ri ∈ (id, ρ̄iρi) be non-zero intertwiners,
where ρ̄i = j · ρi · j .

If M is the von Neumann subalgebra of Â(E) generated by A(E) and {Ri}i , then
M ⊃ A(E) is isomorphic to the LR inclusion associated with {[ρi]}i , in particular

[M : A(E)] =
∑
i

d(ρi)
2.

More generally this holds true if the assumption of complete rationality is relaxed with
possibly [Â(E) : A(E)] = ∞.

Proof. Denoting byN the factorA(0,∞), we may assumēI ⊂ (0,∞) and consider
theρi as endomorphisms ofN . Let thenVi be the isometry standard implementation of
ρi as in [17]. SinceJViJ = Vi , we have

ρiρ̄i(X)Vi = ViX

for all X ∈ N ∨N ′, hence for all local operatorsX by strong additivity.
Sinceρi is irreducible,(id, ρi ρ̄i) is one-dimensional, thusRi is a multiple ofVi and

we may assumeRi = √d(ρi)Vi , thus

R∗i Ri = d(ρi). (9)

Now ViVj is the standard implementation ofρiρj on N hence by [17, Prop. A.4], we
have

RiRj =
∑
k

Ck
ijRk, (10)

whereCk
ij is the canonical intertwiner betweenρkρ̄k andρiρj ρ̄i ρ̄j given by

Ck
ij =

∑
h

whj (wh) �
∑
h

wh ⊗ j (wh), (11)

where thewh’s form an orthonormal basis of isometries in(ρk, ρiρj ).
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Settingρ0 = id, we also have

R∗i = d(ρi)C
0∗
īi
Rī . (12)

Indeed the above equality holds up to sign by thej -invariance of both members [17,
Lemma A.3], but the – sign does not occur because both members have positive expec-
tation values on the vacuum vector.

Now by the split propertyA(E) = A(I )∨A(−I ) � A(I )⊗A(−I ) andA(−I ) =
j (A(I )) can be identified withA(I )opp, thereforeM is isomorphic to the algebra gen-
erated byA(I )⊗A(I )opp and a multiple of isometriesRi satisfying the above relations.
Moreover, there exists a conditional expectation fromM to A(I )⊗A(I )opp.

Corollary 46 then gives the desired isomorphism betweenA(E) ⊂ M and the LR
inclusion. (The Longo–Rehren inclusion in [31], as well as in [28], is dual to the one
in this paper, but it does not matter here. Notice further that, in the conformal case, the
2-interval inclusionA(E) ⊂ Â(E) is manifestly self-dual.)

The above proof works also in the caseµA = ∞ thanks to Prop. 45. ��
Corollary 37. Let A be completely rational with modular PCT. Then the braiding of the
tensor category of all sectors of A is non-degenerate.

Proof. With the notations in Corollary 26 we haveµ2
A = I2

globalµB. On the other hand

I2
global= Iglobal(A⊗Aopp), hence

Iglobal(A⊗Aopp) = µ2
A = I2

globalµB,

thereforeµB = 1. By Corollary 32 weB has no non-trivial sector localized in a bounded
interval and this is equivalent to the non-degeneracy of the braiding by Lemma 30.��

ThatµA = Iglobal implies the non-degeneracy of the braiding has been noticed in
[32, Corollary 4.3].

An immediate consequence of Corollary 37 follows from the work [41], where a
model independent construction of Verlinde’s matricesS andT has been performed,
provided the braiding symmetry is non-degenerate, thus providing a corresponding rep-
resentation of the modular groupSL(2,Z). Hence we have:

Corollary 38. The Verlinde matrices T and S constructed in [41] are non-degenerate,
hence there exists an associated representation of the modular group SL(2,Z).

Corollary 39. Let A be completely rational with modular PCT. Every sector of A is a
direct sum of finite dimensional sectors.

Proof. Assuming the contrary, by Proposition 59 we have an irreducible sector[ρ] with
infinite dimension. LetE = I1 ∪ I2 ∈ I2 with ρ localized inI1 andρ′ be equivalent
to ρ and localized inI2. Let u be a unitary in(ρ, ρ′). Thenu ∈ Â(E), hence it has a
unique expansion

u =
∑
i

xiRi, xi ∈ A(E),

whereRi are as in Proposition 36. Asxu = uρ(x), x ∈ A(I1), we have

x
∑
i

xiRi =
∑
i

xiRiρ(x) =
∑
i

xi(ρi · ρ̄i )(ρ(x))Ri =
∑
i

xiρi(ρ(x))Ri

∀x ∈ A(I1),
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thusxxi = xiρi(ρ(x)) for all i. As there is axi �= 0, by the split property there is a
non-zero intertwiner betweenρi · ρ and the identity. Asρi andρ are irreducible, this
implies thatρ is finite dimensional, contradicting our assumption.��
Corollary 40. Let A be conformal and completely rational. Then every representation
on a separable Hilbert space is Möbius covariant with positive energy.

Proof. By the preceding result every such representation is a direct sum of irreducible
sectors with finite dimension. According to [16] every finite dimensional sector is co-
variant with positive energy, thus also a direct sum of such sectors.��

6. n-Interval Inclusions

In this section we extend the results on the 2-interval subfactors to arbitrary multi-interval
subfactors. LetA be a local, irreducible net onS1.We assumeA to be completely rational
with modular PCT, so that our previous analysis applies.AlternativelyA may be assumed
to be conformal withµA = [Â(E) : A(E)] finite and independent of the 2-intervalE;
this setting will be needed to derive Cor. 7.

If E ∈ In we set
µn = [Â(E) : A(E)].

With this notationµA = µ2. We also consider the situation occurring in representations
different from the vacuum representation: ifρ is a localizable representation ofA (i.
e. a DHR representation, that, onS1, is just the locally normal representations), we set
µ
ρ
n = [ρ(A(E′))′ : ρ(A(E))].

Lemma 41.µρ
n = µ

ρ
1 µn, ∀n ∈ N.

Proof. LetE = I1∪ I2∪ · · · ∪ In ∈ In. We may suppose thatρ is an endomorphism of
A localized inI1. Sinceρ acts trivially onE′, we haveρ(A(E′))′ = A(E′)′ = Â(E),
thus the inclusionρ(A(E)) ⊂ ρ(A(E′))′ is a composition

ρ(A(E)) ⊂ A(E) ⊂ ρ(A(E′))′ = Â(E) ;
by the split propertyρ(A(E)) ⊂ A(E) is isomorphic toρ(A(I1))⊗A(I2∪ · · · ∪ In) ⊂
A(I1)⊗ Â(I2 ∪ · · · ∪ In), therefore

µρ
n = [Â(E) : A(E)] · [A(I1) : ρ(A(I1)]. ��

Lemma 42.µρ
n = d(ρ)2µn−1

2 , ∀n ∈ N.

Proof. By the index-statistics theorem [25] we haveµρ
1 = d(ρ)2, hence, by Lemma

41, we only need to show thatµn = µn−1
2 . We proceed inductively. Ifn = 1 the claim

is trivially true. Assume the claim for a givenn and letEn = I1 ∪ · · · ∪ In ∈ In and
En+1 = I1 ∪ · · · ∪ In ∪ In+1 ∈ In+1. Then

A(En+1) = A(En) ∨A(In+1) ⊂ Â(En) ∨A(In+1) ⊂ Â(En+1),

thus, by the split property,µn+1 = µn · [Â(En+1) : Â(En) ∨ A(In+1)] and, by the
inductive assumption, we have to show thatÂ(En) ∨ A(In+1) ⊂ Â(En+1) is equal to
µ2. But the commutant of this latter inclusionA(I ′n+1)∩A(E′n) ⊂ A(E′n+1) has index
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isµ2 because, by the split property, it turns out to be isomorphic toA(I9∪Ir )⊗A(L) ⊃
Â(I9 ∪ Ir ) ⊗ A(L), namely to a 2-interval inclusion tensored by a common factor,
whereI9 andIr are the two intervals ofE′n+1 contiguous toIn+1 andL is the remaining
(n− 1)-subinterval ofE′n+1. ��
Theorem 43.Let A be a local, irreducible completely rational net with modular PCT.
Let E = ∪ni=1Ii ∈ In and λ(n) = γ (n)|A(E), where γ (n) is a canonical endomorphism

from Â(E) into A(E). Then

λ(n) ∼=
⊕

i1,... ,in

N0
i1...in

ρi1ρi2 · · · ρin, (13)

where {[ρi]}i are all the irreducible sectors with finite statistics, ρik being localized in
Ik . N0

i1...in
is the multiplicity of the identical endomorphism in the product ρi1 . . . ρin .

The same results hold true if complete rationality is replaced by conformal invariance
and assuming [Â(E) : A(E)] = Iglobal <∞ independently of the 2-interval E.

Proof. Let I be an interval which contains∪iIi and letρik , k = 1, . . . , n, be irre-
ducible endomorphisms localized inIk, respectively. Then the intertwiner space be-
tweenρi1ρi2 · · · ρin , considered as an endomorphism ofA(I ), and the identity has di-
mensionN0

i1...in
. We are using here the equivalence between local and global inter-

twiners, that holds either by strong additivity or by conformal invariance [17]. These
intertwiners are multiples of isometries in̂A(E). Thus, by the argument leading to Th.
9,ρi1ρi2 · · · ρin |A(E) is contained inλ(n) with multiplicity N0

i1...in
. We have thus proved

the inclusion0 in (13). Now the dimension of the endomorphism on the right-hand
side of (13) has been computed in [50]. For the sake of selfcontainedness we repeat the
argument:

∑
i1,... ,in

N0
i1...in

d(ρ1) · · · d(ρn) =
∑

i1,... ,in−1

∑
in

N
in
i1...in−1

d(ρin)

 d(ρi1) · · · d(ρin−1)

(14)

=
∑

i1,... ,in−1

(
d(ρ1) · · · d(ρin−1)

)2 = (∑
i

d(ρ2
i )

)n−1

,

where we have used Frobenius reciprocityN0
i1...in

= N
in
i1...in−1

, the factd(ρ) = d(ρ) and
the identity

∑
i〈ρi, ρ〉d(ρi) = d(ρ). On the other hand, we have

d(λ(n)) = [Â(E) : A(E)] = µn−1
A = In−1

global=
(∑

i

d(ρi)
2
)n−1

,

where the first equality is obvious, the second is given by Lemma 42 and the last one
follows from the results of the preceding section. Thus the endomorphisms on both sides
of (13) have the same dimension, hence they are equivalent.

The last claim in the statement follows by the same arguments and the equivalence
between local and global intertwiners.��
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Corollary 44. Let A be as in Th. 43. If E ∈ In, then A(E) ⊂ Â(E) is isomorphic to
the nth iterated LR inclusion associated with N ≡ A(I ), I ∈ I, and the system of all
sectors of A (considered as sectors of N ).

In particular, for a fixed n ∈ N, the isomorphism class of A(E) ⊂ Â(E) depends
only on the superselection structure of A and not on E ∈ In.

Proof. LetE = I1 ∪ · · · ∪ In ∈ In with Ē ⊂ (0,∞) andn = 2k. It follows by Lemma
42 and the split property that

[Â(E ∪ −E) : Â(E) ∨ Â(−E)] = Iglobal.

On the other hand, if theρi ’s are localized inI1, then the algebra generated byÂ(E) ∨
Â(−E) and the standard implementation isometriesVi of ρi |Â(E)

are the associated LR

inclusion, analogously as in Th. 33, and are contained inÂ(E ∪ −E), hence coincide
with that by the equality of the indices.

The corollary then follows in the casen = 2k by induction, once we note that at each
step the extensionα+ρi⊗id from Â(E) ∨ Â(−E) to Â(E ∪ −E) is ρi |Â(E∪−E).

The same is then true for an arbitraryn by taking relative commutants.��

7. Examples and Further Comments

Our results may be first illustrated by considering the case of an inclusion of completely
rational, local conformal irreducible netsA ⊂ B, whereA = BG is the fixed-point of
B with respect to the action of a finite groupG andµB = 1. Then[B : A] = |G|, thus
by Prop. 24,Iglobal(A) = µA = |G|2. NowA has the DHR [9] irreducible sectors[ρπ ]
associated withπ ∈ Ĝ and ∑

π∈Ĝ
d(ρπ )

2 = |G|,

thereforeA has extra irreducible sectors[σi] with∑
i

d(σi)
2 = |G|2− |G|.

For example, in the case of the Ising model, we haveA = BZ2 as above (but withB
twisted local, yet this does not alter our discussion), thusµA = 4 and thus

∑
d(ρi)

2 = 4,
so the standard three sectors are the only irreducible sectors.

On the other hand, in the situation studied in [34], the superselection category ofA
is equivalent to the representation category of a twisted quantum doubleDω(G) with
ω ∈ H 3(G,T). SinceDω(G) is semisimple we again have∑

σ∈D̂ω(G)

d(σ )2 = dimDω(G) = |G|2 = µA.

One may compare this with the situation occurring on a higher dimensional space-
time. There the strong additivity property may be replaced by the requirement that
A(O′ ∩ Õ)′ ∩ A(Õ) = A(O) if O ⊂ Õ are double cones. IfE ≡ O1 ∪ O2, where
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O1 andO2 are double cones with space-like separated closure, the split property gives
a natural isomorphism ofA(O1) ∨A(O2) with A(O1)⊗A(O2) and

[A(E′)′ : A(E)] = Iglobal=
∑
π∈Ĝ

d(ρπ )
2 = |G|,

whereG is the gauge group and theρπ ’s are the DHR sectors [9] (there are no extra
sectors). The reason for this difference is that onS1 the complement of a 2-interval is
still a 2-interval, thus the inclusionA(E) ⊂ Â(E) is self-dual, while on the Minkowski
spacetime the spacelike complement ofO1 ∪ O2 is a connected region producing no
charge transfer inclusion.

The indexµA in the models given by the loop group construction forSU(n)k has been
computed in [50]. Our results apply in particular to these nets and the 2-interval inclusion
is the LR inclusion associated with the corresponding irreducible sectors{[ρi]}i .

We note that in this case the 2-interval inclusion isnot the asymptotic inclusion of
the corresponding Jones-Wenzl subfactor [24,48], even up to tensoring by a common
injective III1 factor. ConsiderSU(2)k as an example. The net hask+1 sectors and if we
choose the standard generator, we get a corresponding subfactor of Jones with principal
graphAk+1, up to tensoring a common injective factor of type III1, as in [47]. If we apply
the construction of the asymptotic inclusion to this subfactor, we get a “quantum double”
of only the sectors corresponding to the even vertices ofAk+1. We get the same result, if
we apply the LR construction to the system ofN–N sectors (orM–M sectors). But the
construction of a subfactor from 4 intervals gives a “quantum double” of the system ofall
the sectors, both even and odd. If we want to get this system from the asymptotic inclusion
or the Longo–Rehren inclusion, we have to use also bimodules/sectors corresponding to
the odd vertices of the (dual) principal graph. In order to get this LR inclusion from the
construction of the asymptotic inclusion, we need to proceed as follows. Let{[ρi]}i be
the set of all the sectors for the net arising from the loop group construction forSU(n)k
as above. Then for a fixed intervalI ⊂ S1, we consider(

⊕
i ρi)(A(I )) ⊂ A(I ) which

has finite index and finite depth. Take a hyperfinite II1 subfactorP ⊂ Q with the same
higher relative commutants as(

⊕
i ρi)(A(I )) ⊂ A(I ). Then the tensor categories of

the sectors with quantum 6j -symbols ofQ∨ (Q′ ∩Q∞) ⊂ Q∞ andA(E) ⊂ Â(E) are
isomorphic. For this reason, the index of the asymptotic inclusion of the Jones subfactor
with principal graphAk+1 is half of that of the subfactor arising from 4 intervals and the
net forSU(2)k. ForSU(n)k, this ratio of the two indices isn.

Finally we notice that there are models like theSO(2N)1 WZW models, see [1] or
[34], where all irreducible sectors have dimension one, yet the superselection categoryC
is modular in agreement with our results. In these cases the fusion graph is disconnected,
therefore the equivalent categories ofM−M and ofN ⊗N opp−N ⊗N opp sectors
are proper subcategories of the categoriesC×Copp� D(C), whereD(C) is the quantum
double ofC.

We close this section with a few questions. Does there exist a net with only trivial
sectors and non-trivial 2-interval inclusions (thusµA = ∞)? Is strong additivity auto-
matic in the definition of complete rationality? Is the LR inclusion the only extension of
N ⊗N opp with the given canonical endomorphism

⊕
i ρi ⊗ ρ

opp
i ?

A. The Crossed Product Structure of the LR Inclusion

Let N be an infinite factor and{[ρi]}i a rational system of irreducible sectors ofN .
The LR inclusion [28] is a canonical inclusionN ⊗N opp⊂M associated withN and
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{[ρi]}i such that

λ �
⊕
i

ρi ⊗ ρ
opp
i ,

whereλ is the restriction toN ⊗ N opp of the canonical endomorphism ofM into
N ⊗N opp.

In [28] such an inclusion is obtained by a canonical choice of the intertwinersT ∈
(id, λ) andS ∈ (λ, λ2) that characterize the canonical endomorphism [26] (Q-system).
We now show the universality property of this inclusion and its crossed product structure,
that will provide a different realization of it. By LR inclusion we will mean the upward
LR inclusion.

We shall consider the free∗-algebraM0 generated byN ⊗N opp and elementsRi

satisfying the relations
Rix = (ρi ⊗ ρ

opp
i )(x)Ri, x ∈ N ⊗N opp,

R∗i Ri = d(ρi),

RiRj =∑k C
k
ijRk,

R∗i = d(ρi)C
0∗
īi
Rī ,

(15)

whereCk
ij is the canonical intertwiner betweenρk ⊗ ρ

opp
k andρiρj ⊗ ρ

opp
i ρ

opp
j given

byCk
ij =

∑
h wh ⊗ j (wh), with j the antilinear isomorphism ofN with N opp, and the

wh’s form an orthonormal basis of isometries in(ρk, ρiρj ).
We equipM0 with the maximal C∗ semi-norm associated to the representations of

M0 whose restriction toN ⊗N opp are normal and denote byM the quotient ofM0
modulo the ideal formed by the elements that are null with respect to this seminorm and
refer toM as the free reduced pre-C∗-algebra generated byN ⊗N opp and theRi ’s.

Proposition 45.Let N be an infinite factor with separable predual and {[ρi]}i a rational
system of finite-dimensional irreducible sectors of N .

Let M be the free reduced pre-C∗-algebra generated by N ⊗N opp and elements Ri

satisfying the relations (15) as above.
Then M is a factor and N⊗N opp⊂M is isomorphic to the LR inclusion associated

with N and {[ρi]}i .
In particular every element X ∈M has a unique expansion

X =
∑
i

xiRi, xi ∈ N ⊗N opp.

In other words: ifN ⊗ N opp acts normally on a Hilbert spaceH andRi ∈ B(H)

are elements satisfying the relations (15), then the sub-algebraM of B(H) generated
by N ⊗ N opp and theRi ’s is a factor andN ⊗ N opp ⊂ M is isomorphic to the LR
inclusion.

Proof. Clearly all elements ofM have the form

X =
∑
i

xiRi, xi ∈ N ⊗N opp, (16)

and we may suppose thatM acts on a Hilbert space so thatN andN opp are weakly
closed.
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We now construct an conditional expectationE :M→ N ⊗N opp. Settingρ0 = id,
the expectationE may be defined by

E(X) = x0 (17)

for X given by (16), once we show that this is well-defined. To this end we will apply
the averaging argument in [23].

Let J be the set of allx0 ∈ N ⊗N opp such that there existxi ∈ N ⊗N opp, i > 0,
with

∑
i≥0 xiRi = 0. ClearlyJ is a two-sided ideal ofN ⊗ N opp, henceJ = 0 (as

we want to show) orJ = N ⊗N opp (we may supposeN to be of type III). Suppose
J �= 0 and letX = 1+∑i>0 xiRi = 0, thus

X = 1+
∑
i>0

uxiRiu
∗ = 1+

∑
i>0

uxiρi ⊗ ρ
opp
i (u∗)Ri = 0

for all unitariesu ∈ N ⊗N opp. Lettingu run in the unitary group of a simple injective
subfactorR of N ⊗N opp and taking a mean over this group, we have

X = 1+
∑
i>0

yiRi = 0,

whereyi ∈ N ⊗N opp intertwines id andρi ⊗ ρ
opp
i onR, thus on allN ⊗N opp by the

simplicity of R. Sinceρi ⊗ ρ
opp
i is irreducible,yi = 0, i > 0, and we have 1= 0, a

contradiction.
Notice now that

RiR
∗
i = d(ρi)RiC

0∗
īi
Rī = d(ρi)ρi ⊗ ρ

opp
i (C0∗

īi
)RiRī

=
∑
k

d(ρi)ρi ⊗ ρ
opp
i (C0∗

īi
)Ck

iī
Rk,

thus, by the conjugate equation in [25], we have

E(RiR
∗
i ) = d(ρi)ρi ⊗ ρ

opp
i (C0∗

īi
)C0

iī
= 1

d(ρi)
,

so everyX ∈M has the unique expansion

X =
∑
i

xiRi, xi = d(ρi)E(XR∗i ). (18)

Denoting byM1 ⊃ N ⊗N opp the LR inclusion associated withN and{[ρi]}i , M1 is
generated byN ⊗N oppand elementsR′i , with an expectationE ′, satisfying the relations
as in (15) and (18) [31, Sect. 5], hence the linear map

C : X ≡
∑
i

xiRi ∈M→ C(X) ≡
∑
i

xiR
′
i ∈M1 (19)

is clearly a homorphism ofM ontoM1, which is the identity onN ⊗N opp.C is clearly
one-to-one by the uniqueness of the expansion (18) both inM and inM1. ��
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Note that the above proposition gives an alternative construction of the LR inclusion,
which is similar to Popa’s construction of the symmetric enveloping algebra [39], as
follows. LetN act standardly onL2(N ) andVi be the standard isometry implementing
ρi . The ∗-algebraA generated byN andN ′ is naturally isomorphic to the algebraic
tensor productN �N opp and the operatorsRi ≡ √d(ρi)Vi satisfy the relations (15) by
[17, App. A]. By the above argument there exists a conditional expectationE : B→ A,
whereB is the∗-algebra generated byA and theVi ’s. Taking a normal stateϕ of N ,
the stateϕ̃ ≡ ϕ � ϕopp · E of B gives by the GNS representation the LR inclusion
πϕ̃(A)

′′ ⊂ πϕ̃(B)′′ (Prop. 45).

Corollary 46. Let N be an infinite factor with separable predual and {[ρi]}i a rational
system of finite-dimensional irreducible sectors of N .

Let M be a von Neumann algebra with M ⊃ N ⊗ N opp and Ri ∈ M elements
satisfying the relations (15). If M is generated by N ⊗N opp and the Ri’s, then N ⊗
N opp⊂M is isomorphic to the LR inclusion associated with {[ρi]}i .

In particular (N⊗N opp)′∩M = C and there exists a normal conditional expectation
from M to N ⊗N opp.

Proof. The proof is immediate, the isomorphism is obtained as in (19):

X ∈M→
∑
i

d(ρi)E(XR∗i )R′i ,

(notations analogous to the ones in (19).��
In the following we shall iterate the LR construction, in order to describe the structure

of multi-interval subfactors.
With N an infinite factor as above and{[ρi]}i a system of irreducible sectors with

unitary braiding symmetry, letα+ be the induction map from sectorsρi ⊗ ρ
opp
j of

N ⊗ N opp to sectors of the LR extensionM1 ≡ M defined by formula (7). Then
{α+ρi⊗id}i is a system of irreducible sectors ofM with braiding symmetry and we may

construct the corresponding LR inclusionM1 ⊗Mopp
1 ⊂ M2, where the opposite of

α+ρi⊗id is α+ρ̄i⊗id. We may then iterate the procedure to obtain a towerM1 ⊂ M2 ⊂
M2k ⊂ · · · and thus an inclusion

Nn ⊂Mn, n = 2k,

whereNn ≡ N ⊗N opp⊗N ⊗ · · ·N ⊗N opp (2k tensor factors). By construction this
inclusion has indexIn−1

global and we refer to it as thenth iterated LR inclusion.

Proposition 47.Let n = 2k . The nth iterated LR inclusion Nn ⊂ Mn is irreducible.
If γ (n) : Mn → Nn is the canonical endomorphism, its restriction λ(n) = γ (n)|Nn

is
given by

λ(n) �
⊕

i1,i2,...,in

N0
i1i2...in

ρi1 ⊗ ρ
opp
i2
⊗ · · · ⊗ ρ

opp
in

, (20)

where N0
i1i2...in

≡ 〈id, ρi1ρ̄i2 · · · ρ̄in〉.
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Proof. By a computation similar to the one in Sect. 6,λ(n) defined by formula (20) has
dimension

d(λ(n)) = In−1
global,

therefore the formulaλ(n) = γ (n)|Nn
will follow by showing thatρi1⊗ρopp

i2
⊗· · ·⊗ρopp

in
≺

γ (n)|Nn
with multiplicity N0

i1i2...in
and this will also imply the irreducibility ofNn ⊂Mn

because thenλ(n) 0 id with multiplicity one.
But ρi1 ⊗ ρ

opp
i2
⊗ · · · ⊗ ρ

opp
in

is unitarily equivalent toρi1ρ̄i2 · · · ρ̄in ⊗ id ⊗ · · · ⊗ id
in Mn, by applying iteratively Lemma 18, hence we have the conclusion.��

Let nowm < n = 2k be an integer and setNm as the alternate tensor product ofk

copies ofN andN opp,

Nm ≡ N ⊗N opp⊗N ⊗ · · ·N ⊗N opp, m factors.

We then define themth iterated LR inclusion

Nm ⊂Mm,

whereMm is defined as the relative commutant inMn of the remainingn−m copies
of N andN opp, i.e.Mm = (N ′m ∩Nn)

′ ∩Mn. Note thatNm ⊂Mm is an irreducible
inclusion of factors becauseN ′m ∩Mm ⊂ N ′n ∩Mn = C.

Arguing similarly as above we then have:

Proposition 48.Proposition 47 holds true for all positive integers n (in formula (20)
ρ

opp
in

is ρin if n is odd).

Proof. Let n = 2k. Let {V 9
i1...in

: 9 = 1,2, . . . Ni1...in} be a basis of isometries in the

space of elements inMn that intertwineρi1 ⊗ ρ
opp
i2
· · · ⊗ ρ

opp
in

on Nn. Arguing as in
Prop. 45 we see that any elementX ∈Mn has a unique expansion

X =
∑
i1...in

∑
9

x9i1...inV
9
i1...in

, x9i1...in ∈Mn.

Using this expansion it is easy to check that form < n the factorMm defined above
is generated byNm and theV 9

i1...in
’s with im+1 = im+2 = · · · = in = 0. The rest then

follows easily. ��

B. Nets onR and onS1 and Their Representations

In our paper we deal with nets onR, rather than nets onS1, for various reasons: because
this is the natural language for our arguments, because our results are valid for nets that
are not necessarily conformal and, finally, because even if our analysis were restricted
to conformal nets onS1, our proofs would require the analysis of more general nets on
R (thet = 0 LR net is not conformal).

In the next Sect. C we will however need to deal with nets onS1 and their represen-
tations, and then conclude consequences for nets onR. Although the relations between
nets onR and onS1 and their representations is straightforward, we will describe ex-
plicitly this point here for the convenience of the reader. However, for simplicity, we
consider only the case of strongly additive, Haag dual nets.
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Nets on S1. Let A be a net of von Neumann algebras onS1 on a separable Hilbert
space satisfying Haag duality. We also assume the local von Neumann algebrasA(I )

to be properly infinite, which is automatically true if the split property holds, or ifA is
conformal (except, of course, for the trivial netA(I ) ≡ C).

A representationπ of A is, by definition, a mapI ∈ I → πI that associates to each
interval I ∈ I of S1 a representation, on a fixed Hilbert space, of the von Neumann
algebraA(I ) such thatπ

Ĩ
|A(I ) = πI if I ⊂ Ĩ . We shall say thatπ is locally normal if

πI is normal for allI ∈ I and thatπ is localizable if πI is unitary equivalent to id|A(I )

for all I ∈ I. As theA(I )’s are properly infinite the two notions coincide ifπ acts on
a separable Hilbert space. Moreover every representation ofA on a separable Hilbert
space is automatically locally normal [45], thus localizable.

Denote byC∗(A) the universalC∗-algebra [14] associated withA (see also [16]).
For eachI ∈ I there is a canonical embeddingιI : A(I ) → C∗(A) andι

Ĩ
|A(I ) = ιI

if I ⊂ Ĩ ; we identifyA(I ) with ιI (A(I )) if no confusion arises. There is a one-to-one
correspondence between representations of theC∗-algebraC∗(A) and representations
of the netA, given byπ → {I → πI ≡ π ·ιI }. Locally normal representations of the net
A correspond, of course, to locally normal representations ofC∗(A). We shall always
assume our representations to act on a separable Hilbert space, thus local normality is
automatic.

As Haag duality holds, a localizable representationπ ofC∗(A) is unitarily equivalent
to a representation of the formσ0 · ρ, whereσ0 is the representation ofC∗(A) corre-
sponding of the identity representation ofA (we shall however not need this result).

Nets on R. Given a netA of von Neumann algebras onS1 satisfying Haag duality we
may associate a netA0 of Neumann algebras onR = S1�{∞} (identification by Cayley
transform) by setting

A0(I ) = A(I ),

for all bounded intervalsI of R. We callA0 the restriction of A to R. Clearly, if A is
strongly additive, thenA0 is also strongly additive and satisfies Haag duality onR in
the form

A(I )′ = A(R � I ), (21)

whereI ⊂ R is either an interval or an half-line(a,∞) or (−∞, a), a ∈ R.
Here, ifE ⊂ R has non-empty interior, we denote byA0(E) the C∗-algebra generated

by the von Neumann algebrasA0(I )’s asI runs in the intervals contained in the region
E and setA0(E) = A0(E)

′′.
Conversely, let nowA0 be a strongly additive net of properly infinite von Neumann

algebrasA0(I ) on the (bounded, non-trivial) intervals ofR satisfying Haag duality (21).
We may compactifyR to S1 = R ∪ {∞} and extendA0 to a netA on the intervals

of S1 by defining

A(I ) ≡ A0(S
1 � I )′ (22)

if I is an interval whose closure contains the point∞. Clearly,A is the unique Haag
dual net onS1 whose restriction toR is A0; we thus callA theextension of A0 to S1.

We explicitly state this one-to-one in the following.
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Lemma 49.Let A be a net on S1 satisfying Haag duality and strong additivity. Then its
restriction A0 to R satisfies strong additivity and Haag duality on R.

Conversely if A0 is a Haag dual (21), strongly additive net on R, then its extension
A to S1 is strongly additive and Haag dual.

Moreover A0 satisfies the split property on R if and only if A satisfies the split
property on S1.

Proof. The proof is immediate. The statement concerning the split property follows
because an inclusion of von Neumann algebrasN ⊂ M is split iff the commutant
inclusionM′ ⊂ N ′ is split. ��

We now consider the relation between representations of a netA, satisfying Haag
duality and strong additivity onS1 as in Lemma 49 and its restrictionA0 onR.

A DHR representation π0 of A0 is, by definition, a representationπ0 of A0(R)
such thatπ0|A0(R�I ) is unitarily equivalent to id|A0(R�I ) for every bounded non-trivial
intervalI of R, cf. [9].

Clearly a localizable representationπ of A determines a DHR representationπ0 of
A0; indeedπ0 is consistently defined on∪a>0A(−a, a) by

π0(X) = πI (X), X ∈ A(I ),

whereI ≡ (−a, a), hence on allA(R) by continuity. We callπ0 therestriction of π to
A0.

Conversely, as we shall see, every DHR representationπ0 of A0(R) determines
uniquely a localizable representationπ of A.

A localized endomorphism ρ of A0 is, by definition, an endomorphism ofA0(R)
such thatρ|A0(I ′) = id|A0(I ′) for some intervalI ⊂ R; one then says thatρ is localized
in I . ρ is transportable if for each intervalI1 there is an endomorphismρ1 localized in
I1 and (unitarily) equivalent toρ (as representations ofA0(R)). By Haag duality then
ρ1 = Adu · ρ, where the unitaryu belongs toA0(Ĩ ), if Ĩ is any interval containing both
I andI1. In this paper (as is often the case)transportability is assumed in the definition
of localized endomorphism.

By a classical simple argument [9], a DHR representationπ0 of A0(R) is unitarily
equivalent to a (transportable) endomorphismρ of A0(R) localized in each given interval
I ; it is enough to put

ρ(X) ≡ Uπ0(X)U
∗, X ∈ A0(R),

whereU is a unitary intertwiner betweenπ0|A0(R�I ) and id|A0(R�I ).

Proposition 50.Let A be a strongly additive, Haag dual net on S1 and A0 be its re-
striction to R, as in Lemma 49.

If π is a localizable representation of A, its restriction π0 to A0 is a DHR represen-
tation of A0.

Conversely, if π0 is a DHR representation of A0, there exists a (obviously unique)
localizable representation π of A whose restriction to A0 is π0.

Proof. By the above discussion, we only show that ifπ0 is a DHR representation ofA0,
there exists a localizable representationπ of A such thatπI = π0|A(I ) if I is a bounded
interval ofR.

Indeed, if the closure ofI contains the point∞, we can defineπI as the normal
extension ofπ0|A0(I�{∞}), once we show the necessary normality property. Now the
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normality ofπ0|A0(I�{∞}) does not depend on the unitary equivalence class ofπ0, thus
we may replaceπ0 by a DHR endomorphismρ of A0 localized in intervalI1 ⊂ R with
I1 ∩ I = ∅. But thenρ|A0(I�{∞}) is the identity, hence normal.��

By definition, the sectors ofA (resp. ofA0) are the unitary equivalence classes of
localizable representations ofA (resp. of DHR representations ofA0). By the above
discussions, the two classes are in one-to-one correspondence.

On the other hand localizable representations ofA correspond to localizable repre-
sentations ofC∗(A) and DHR representations ofA0 are equivalent to DHR localized
endomorphisms ofA0, hence we have the following.

Corollary 51. Let A0 be a strongly additive, Haag dual as in (21), net on R and A
be its extension to S1. The restriction map π → π0 gives rise to a natural one-to-one
correspondence between unitary equivalence classes of localizable representations of
C∗(A) and unitary equivalence classes of DHR localized endomorphisms of A0.

In particular π(C∗(A))′′ = π0(A0(R))′′, so π is of type I iff π0 is of type I.

Proof. It remains to check the last part of the statement. AsC∗(A) is generated (as a
C∗-algebra) by the von Neumann algebrasA(I ) asI runs in the intervals ofS1, one has
π(C∗(A))′′ = ∨I πI (A(I )), thus clearlyπ(C∗(A))′′ ⊃ π0(A0(R))

′′.
On the other hand ifI is an interval ofS1, by local normality and strong additivity we

haveπI (A(I )) = πI (A(I � {∞})) ⊂ π0(A0(R))′′, henceπ(C∗(A))′′ ⊂ π0(A0(R))′′.
��

The naturality in the above corollary means that the tensor categories of localizable
representations ofC∗(A) and of DHR localized endomorphisms ofA0 are equivalent,
but we do not need this form of the above statement.

C. Disintegration of Locally Normal Representations and of Sectors

Takesaki and Winnink [44] have shown that a locally normal state decomposes into
locally normal states, if the split property holds. We shall show here analogous results
for localizable representations (sectors). Our arguments work, however, along the same
lines to show that locally normal representations decompose into locally normal repre-
sentations, also on higher dimensional manifolds.

We begin with a simple lemma.

Lemma 52.Let M be a von Neumann algebra, L ⊂ M a σ -weakly dense C∗-sub-
algebra and J ⊂ L a right ideal of L.

Ifπ is a representation ofL on a Hilbert spaceH such thatπ |J isσ -weakly continuous
and π(J )H = H, then π is σ -weakly continuous, thus it extends uniquely to a normal
representation of M.

Proof. It is sufficient to show thatπ isσ -weakly continuous on the unit ball ofL, see e.g.
[45]. Let then{ai}i be a bounded net of elementsai ∈ L such thatai → 0 σ -weakly. If
t ∈ B(H) is aσ -weak limit point of{π(ai)}i , we have to show thatt = 0. By considering
a subnet, if necessary, we may assumeπ(ai)→ t . Givenh ∈ J , we haveaih ∈ J and
aih→ 0, thusπ(aih)→ 0 becauseπ |J is σ -weakly continuous, therefore

tπ(h) = lim
i
π(ai)π(h) = lim

i
π(aih) = 0,

and this entailst = 0 becauseh is arbitrary andπ(J )H is dense inH. ��
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We shall use the well-known fact that the C∗-algebra of compact operators on a
separable Hilbert spaceH has only one non-degenerate (i.e. not containing the zero
representation) representation, up to multiplicity, hence this representation has a unique
normal extension toB(H).

Corollary 53. Let N be a type I factor with separable predual, K ⊂ N the ideal of
compact operator relative to N and L a C∗-algebra with K ⊂ L ⊂M.

If π is a representation of L such that π |K is non-degenerate, then π is σ -weakly
continuous, thus it extends uniquely to a normal representation of N .

Proof. Immediate because any non-degenerate representation ofK is σ -weakly contin-
uous andK is σ -weakly dense inN . ��

Let A be a net of von Neumann algebras onS1 over a separable Hilbert space
satisfying the split property and Haag duality.

If I, Ĩ are intervals, we writeI ⊂⊂ Ĩ if the closure ofI is contained in the interior
of Ĩ . For each pair of intervalsI ⊂⊂ Ĩ we choose an intermediate type I factorN (I, Ĩ )

betweenA(I ) andA(Ĩ ) and letK(I, Ĩ ) be the compact operators ofN (I, Ĩ ) (there is
a canonical choice forN (I, Ĩ ) [10], but this does not play a role here). We denote by
IQ the set of intervals with rational endpoints and byA theC∗-subalgebra ofC∗(A)

generated by allK(I, Ĩ ) asI ⊂⊂ Ĩ run inIQ. ClearlyA is norm separable.
If I1 ⊂⊂ Ĩ1 ⊂ I2 ⊂⊂ Ĩ2 then clearlyN (I1, Ĩ1) ⊂ N (I2, Ĩ2), butK(I1, Ĩ1) is not

included inK(I2, Ĩ2). For this reason we define the C∗-algebras associated to pairs of
intervalsI ⊂⊂ Ĩ ,

L(I, Ĩ ) ≡ N (I, Ĩ ) ∩ A.

As N (I, Ĩ ) is the multiplier algebra ofK(I, Ĩ ), L(I, Ĩ ) consists of elements ofA that
are multipliers ofK(I, Ĩ ).

By definitionK(I, Ĩ ) ⊂ L(I, Ĩ ) ⊂ N (I, Ĩ ) andA is theC∗-subalgebra ofC∗(A)

generated by allL(I, Ĩ ) asI ⊂⊂ Ĩ run inIQ.

Lemma 54. If I1 ⊂⊂ Ĩ1 ⊂ I2 ⊂⊂ Ĩ2 are intervals then

L(I1, Ĩ1) ⊂ L(I2, Ĩ2).

Proof. L(I1, Ĩ1) ⊂ N (I1, Ĩ1) ⊂ N (I2, Ĩ2), thus

L(I1, Ĩ1) ⊂ N (I2, Ĩ2) ∩ A = L(I2, Ĩ2). ��
Proposition 55.Let π be a locally normal representation of C∗(A). Then π |A is a
representation of A andπ |

K(I,Ĩ )
is non-degenerate for every of pair of intervals I ⊂⊂ Ĩ .

Conversely, if σ is a representation of A such that σ |
K(I,Ĩ )

is non-degenerate for all

intervals I, Ĩ ∈ IQ, I ⊂⊂ Ĩ , there exists a unique locally normal representation σ̃ of
C∗(A) that extends σ .

Moreover equivalent representations C∗(A) correspond to equivalent representa-
tions of A.
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Proof. The only non-trivial part is thatσ extends to a locally normal representationσ̃

of C∗(A). If I ⊂⊂ Ĩ are intervals inIQ, we denote bỹσ
I,Ĩ

the unique normal extension

of σ |L(I,Ĩ )
to N (I, Ĩ ) given by Corollary 53.

Given an intervalI , we chooseI1, Ĩ1 ∈ IQ, I1 ⊂⊂ Ĩ1 such thatI ⊂⊂ I1 and set

σ̃I ≡ σ̃
I1,Ĩ1
|A(I ),

We have to show that̃σI is well-defined, thenI → σ̃I is clearly a representation ofA.
Indeed, letI2, Ĩ2 ∈ IQ with I2 ⊂⊂ Ĩ2 be another pair such thatI ⊂⊂ I2. We

can chooseI3, Ĩ3 ∈ IQ such thatI ⊂⊂ I3 ⊂⊂ Ĩ3 ⊂⊂ I1 ∩ I2. Then by Lemma 54
L(I3, Ĩ3) ⊂ L(Ii, Ĩi ), i = 1,2, and therefore

σ̃
I3,Ĩ3
= σ̃

I1,Ĩ1
|N (I3,Ĩ3)

= σ̃
I2,Ĩ2
|N (I3,Ĩ3)

.

This concludes the proof.��
Proposition 56.Let π be a locally normal representation of C∗(A) on a separable
Hilbert space and denote by πA the restriction of π to A. If

πA =
∫ ⊕
X

πλdµ(λ)

is a decomposition into irreducible representations πλ (which always exists), then πλ
extends to a locally normal representation π̃λ of C∗(A) for almost all λ.

Proof. By Proposition 55, it is sufficient to show that there exists a null setE ⊂ X such
thatπλ|K(I,Ĩ )

is non-degenerate forλ /∈ E and allI, Ĩ ∈ IQ with I ⊂⊂ Ĩ . This is clear

for a fixed pairI, Ĩ of the family, becauseπ
K(I,Ĩ )

is non-degenerate. Then the statement

follows since the considered family ofK(I, Ĩ )’s is countable. ��
Proposition 57.With the notations in Proposition 56, if π(C∗(A))′′ is a factor not of
type I, then for each λ ∈ X the set Xλ ≡ {λ′ ∈ X,πλ′ � πλ} has measure zero.

Proof. The setXλ is measurable by Lemma 60 below. We haveµ(X � Xλ) > 0, as
otherwiseπ would be quasi-equivalent toπλ, henceπ(A)′′ would be a type I factor. If
µ(Xλ) > 0, thenπA would be the direct sum of two inequivalent representations

πA =
∫ ⊕
Xλ

πλdµ(λ)⊕
∫ ⊕
X�Xλ

πλdµ(λ)

which is not possible sinceπ(A)′′ is a factor. ��
Corollary 58. If there exists a localizable representation π of C∗(A) with π(C∗(A))′′
a factor not of type I, then there exist uncountably many inequivalent irreducible local-
izable representations of C∗(A).

Proof. If the representationπ is factorial not of type I, then the family of theπλ’s in
the above proposition contains an uncountable set of mutually inequivalent irreducible
localizable representations as desired.��
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Corollary 59. Let A0 be a strongly additive, split net of von Neumann algebras on the
intervals of R which is Haag dual as in (21). If there exists a DHR localized endomor-
phism ρ of A0 with ρ(A0(R))

′′ a factor not of type I, then there exist uncountably many
inequivalent irreducible DHR localized endomorphisms of A0.

Proof. Immediate by Corollary 58 and Corollary 51.

Before concluding this appendix we have to prove a lemma that has been used. LetA
be any separableC∗-algebra andσ a representation ofA. Choose a sequence of elements
a9 ∈ A dense in the unit ballA1, a sequenceϕi ∈ A∗ dense in the Banach space of
normal linear functionals(σ (A)′′)∗ associated withσ . A linear functionalϕ ∈ A∗ is
then normal with respect toσ if and only if

∀k ∈ N, ∃i ∈ N : |ϕ(a9)− ϕi(a9)| ≤ 1

k
, ∀9 ∈ N. (23)

We thus have the following.

Lemma 60.Let A be a separable C∗-algebra, π a representation of A on a separable
Hilbert space andπ = ∫ ⊕

X
πλdµ(λ) a direct integral decomposition into a.e. irreducible

representations πλ of A. For any irreducible representation σ of A, the set Xσ ≡
{λ, πλ � σ } is measurable.

Proof. Let ξ = ∫ ⊕
X
ξ(λ)dµ(λ) be a vector withξ(λ) �= 0, for all λ ∈ X, and consider

the functional ofA given byϕλ = (πλ(·)ξ(λ), ξ(λ)).
As bothσ andπλ are irreducible, we haveσ � πλ if and only if ϕλ is normal with

respect toσ . With the previous notations, we then have by Eq. (23)

Xσ =
⋂
k

⋃
i

⋂
9

Xik9,

where

Xik9 =
{
λ ∈ X : |ϕλ(a9)− ϕi(a9)| ≤ 1

k

}
.

AsXik9 is measurable, alsoXσ is measurable. ��
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