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Abstract

We show that the author’s notion of Galois extensions of braided tensor categories [Adv.
150 (2000) 151], see also [A. Bruguières, Math. Ann. 316 (2000) 215], gives rise to braided c
G-categories, recently introduced for the purposes of 3-manifold topology [V.G. Turaev, Hom
field theory in dimension 3 and crossed group-categories, arXiv: math.GT/0005291]. The
extensionsC �S are studied in detail, in particular we determine for whichg ∈ G non-trivial objects
of gradeg exist inC �S .
 2004 Elsevier Inc. All rights reserved.

1. Introduction

According to the influential paper [15], the notion of braided tensor categories (BT
short) originated in

(I) considerations in higher-dimensional category theory (BTC as 3-categories wit
object and one 1-morphism) and

(II) homotopy theory (braided categorical groups classifying connected homotopy
with only π2,π3 non-trivial).
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On the other hand, the

(III) representation categories of quasitriangular (quasi-, weak, etc.) Hopf algebra
e.g., [16], and of

(IV) quantum field theories (QFT) in low-dimensional space times [10,11], in partic
conformal field theories [10,23], are BTC.

Finally,

(V) the category of tangles is a BTC, which is the origin of various construction
invariants of links and 3-manifolds [1,16,33].

It goes without saying that all five areas continue to be very active fields of researc
the connections continue to be explored.

In this paper we are concerned with a recent generalization of the notion of BTC whic
is quite interesting in that can be approached from most of the above viewpoints. (V):
context of his programme of homotopy TQFT, Turaev [33] introducedbraidedG-crossed
categoriesand showed that, subject to some further conditions, they give rise to inva
of 3-dimensional G-manifolds, to wit 3-manifolds together with a principal G-bundle
us state the definition in its simplest form.

Definition 1.1. Let G be a (discrete) group. A strict crossed G-category is a strict te
categoryC together with

• a map∂ : Obj C → G constant on isomorphism classes,
• a homomorphismγ : G → AutC (strict monoidal automorphisms ofC)

such that

(1) ∂(X ⊗ Y ) = ∂X∂Y ;
(2) ∂(γg(X)) = g∂(X)g−1.

We write Y· = γ∂Y (·). A braiding for a crossed G-categoryC is a family of isomorphisms
cX,Y : X ⊗ Y → XY ⊗ X such that

cX,Z⊗T = idXZ ⊗ cX,T ◦ cX,Z ⊗ idT , cX⊗Y,Z = cX,YZ ⊗ idY ◦ idX ⊗ cY,Z,

cX′,Y ′ ◦ s ⊗ t = Xt ⊗ s ◦ cX,Y , ∀s : X → X′, t : Y → Y ′.

Of the various generalizations permitted by this definition we will need only the admi
of inhomogeneous objects, cf. Section 3. As to subject (III): In [20] it was shown
some crossed G-categories can be obtained from quantum groups. With a view t
applications to algebraic topology (II), in [4] a notion ofcategoricalG-crossed module
was defined. The latter are simply crossed G-categories which are categorical g
i.e., monoidal groupoids with invertible objects. In turn, categoricalG-crossed module
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generalize Whitehead’s ubiquitous notion of crossed modules and Conduché’s 2-c
modules.

The main result of the present paper is to show that braided crossed G-categories a
from a categorical construction, the Galois extensions of braided tensor categories
This refers to the construction in [24] which associates to a braided tensor categoryC and a
full symmetric subcategoryS a tensor categoryC �S. The braiding ofC lifts to a braiding
of C �S iff S is contained in the centerZ2(C) of C, the latter being the full subcategory
objectsX satisfyingcX,Y ◦ cY,X = id for all Y ∈ C. (In [3], where a category equivalent
C � S was defined, the objects ofZ2(C) were called transparent.) Dropping the condit
S ⊂ Z2(C), we show in Theorem 3.20 thatC�S is a braided crossed G-category, where
also clarify for whichg ∈ G there existX ∈ C � S with ∂X = g, cf. Theorem 3.26. In the
final Section 3.4 we show that a subcategoryS ⊂ C whereS ∼= RepG with G finite abelian
induces aG-grading onC compatible with the one onC � S. Similar results are obtaine
in [19], in particular part II. However, our approach is quite different, more suitable
the application to quantum field theory [28]sketched below, and in places somewhat m
satisfactory, e.g., concerning the braiding onC � S.

We close this introduction with a glance at the applications of this paper in quantu
field theory and topology. In a companion paper [28] we will show, in the conte
algebraic quantum field theory [14], that a chiral conformal field theoryA carrying an
action of a finite groupG gives rise to a braided crossed G-categoryG-LocA of ‘G-twisted
representations.’ The full subcategory∂−1(e) ⊂ G-LocA of grade zero objects is just th
ordinary braided representation category RepA, which does not the G-action into accou
In [28] we prove the equivalences

G-LocA 	 RepAG
� S, RepAG 	 (G-LocA)G,

whereAG is the ‘orbifold theory’ [7], i.e., the subtheory ofA consisting of the fixpoints
under the G-action, andS 	 RepG is a full subcategory of RepAG. The significance
of the first equivalence is that the same braided crossed G-category arises (i) a
intrinsically defined—category of G-twisted representations ofA and (ii) by the crossed
product construction of [24] whose braided crossed G-structure is the subject of the p
work. The second equivalence computes the representation category of the orbifold
AG in terms ofG-LocA, i.e., categorical information aboutA. To put this into context we
emphasize the well-known fact that the grade zero subcategory RepA ⊂ G-LocA doesnot
contain enough information to determine RepAG.

Finally, by [17] the categories RepA and RepAG are modular, and Corollary 3.2
implies thatG-LocA 	 RepAG

� S has full G-spectrum, i.e., there exists an objec
gradeg for every g ∈ G. Combining this with Turaev’s work [33,34] on invariants
(G-)manifolds, we thus obtain an equivariant version of the chain

Rational chiral CFT� modular category� 3-manifold invariant,

of constructions, namely

Rational chiral CFT� modular crossed� invariant for 3-manifolds equipped
.

with symmetry G G-category with principal G-bundle
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The above applications of the constructions of this paper place braided cr
G-categories squarely into the context of the areas (I) (higher category theory) an
(quantum field theory) mentioned above. Most results of this paper and of [28]
announced in [25].

2. Preliminaries

We briefly recall without proof the facts concerning Tannakian and module categor
that will be needed later. Some of those are well-known, while others are relatively recen

We assume as known the notions of abelian, monoidal (or tensor) braided, symm
rigid, and ribbon categories, cf., e.g., [1,15,16,22]. All categories considered in this
will be F-linear semisimple (thus in particular abelian) over an algebraically cl
field F with finite-dimensional Hom-spaces and monoidal with End1 = Fid1. Unless
otherwise stated, tensor categories will be strict, as we are allowed to assume by
of the coherence theorems. AC-linear tensor category is a∗-category if there exists
∗-operation, i.e., an involutive antilinearcontravariant andmonoidal endofunctor∗ that
acts trivially on the objects. In other words,s∗ ∈ Hom(Y,X) if s ∈ Hom(X,Y ), s∗∗ = s

and, whenever these expressions are defined,(s ◦ t)∗ = t∗ ◦ s∗ and (s ⊗ t)∗ = s∗ ⊗ t∗.
A ∗-operation is positive ifs∗ ◦ s = 0 impliess = 0. A category with positive∗-operation
is called ∗-category [8,13,21] or unitary [33], cf. also [37]. (Since we assume fin
dimensional hom-spaces, a∗-category in fact is aC∗- andW∗-category in the sense o
[8,13], cf. e.g. [24, Proposition 2.1].)

The category of finite-dimensional polynomial representations of a reductive p
gebraic group (in characteristic zero) is a rigid abelian symmetric tensor category
End1 = Fid1. The category of finite-dimensional continuous representations of a com
topological group has the same properties and is in addition a∗-category. There are con
verses to these statements due to Doplicher and Roberts [8] and to Deligne [5], respe
For our purposes in this paper it is sufficient to consider symmetric categories with fi
many (isomorphism classes of) simple objects, corresponding to finite groups.

Definition 2.1.

(1) A TC is a semisimpleF-linear spherical tensor category [2] with finite-dimensio
Hom-spaces and End1 = Fid1, whereF is an algebraically closed field. It is calle
finite if the set of isomorphism classes of simple objects is finite. The dimension
finite TC is given by dimC = ∑

i d(Xi)
2, wherei runs through the set of isomorphis

classes of simple objects andd is the dimension function defined by the spheri
structure.

(2) A BTC is a semisimpleF-linear rigid braided ribbon category with finite-dimension
Hom-spaces and End1 = Fid1, and is automatically a TC.

(3) An STC is a symmetric BTC.
(4) An STC overF is admissible if either

(i) F = C, C is a∗-category, and all objects have trivial twistΘ(X), or
(ii) F has characteristic zero andd(X) ∈ Z+ for all X ∈ C.
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Remark 2.2.

(Ad 1) Since we work over algebraically closed fields throughout, an objectX is simple
(every non-zero subobject is isomorphic toX) iff it is absolutely simple (EndX =
FidX). We will therefore just speak of simple objects.
By dropping the assumption of sphericity, one arrives at the notion of fu
categories which were studied in [9]. There are remarkably strong result
the automatic positivity of dimC whenF = C. (Yamagami has shown [37] th
a ∗-structure gives rise to an essentially unique spherical structure, and one
suspect that this generalizes to fusion categories.)

(Ad 2) A rigid ribbon category gives rise to a spherical structure and conversely
spherical braided categoryC there exists a canonical twistΘ renderingC a ribbon
category. See [2,38].

(Ad 3) At first sight, the supplementary conditions (i) and (ii) on the twists and th
dimensions, respectively, look quite different. This is due to the different no
of duality in both formalisms, but ultimately both conditions amount to the sam
thing. LetX ∈ C. In [8] one choosesrX : 1 → X ⊗ X, rX : 1 → X ⊗ X such that

idX ⊗ r∗
X ◦ rX ⊗ idX = idX, idX ⊗ r∗

X ◦ rX ⊗ idX = idX,

r∗
X ◦ rX = r∗

X ◦ rX = d(X)id1.

One then defines the twistΘ(X) ∈ EndX by

Θ(X) = r∗
X ⊗ idX ◦ idX ⊗ cX,X ◦ rX ⊗ idX.

For simple X, one findsΘ(X) = ±idX , whereasd(X) � 0 is automatic by
positivity of the ∗-operation. In fact, one provesd(X) ∈ Z+, and the condition
Θ(X) = idX is necessary and sufficient forC 	 RepG for someG.
On the other hand, in [5] one has morphismsdX : 1 → X ⊗ X, eX : X ⊗ X → 1,
which are part of the given data and satisfy the usual triangular equations. On
defines

δX ⊗ idX = cX,X ◦ dX : 1 → X ⊗ X, ηX = eX ◦ cX,X : X ⊗ X → 1.

With this definition the twistΘ(X) = eX ⊗ idX ◦ idX ⊗ cX,X ◦ δX is automatically
trivial, but d(X) = ηX ◦ dX = eX ◦ δX is not necessarily positive. In any case,
a ∗-category one has both notions of duals, and the supplementary conditions a
equivalent.

Theorem 2.3 [5,8]. Let C be a finite admissible STC overF. Then there exists a finit
group G, unique up to isomorphism, such that there is an equivalenceC 	 Repfin

F
G

compatible with all structures in sight.
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Remark 2.4.

(1) The proof of [5, Theorem 2.3] roughly consists of two steps: (i) One constru
faithful tensor functorE : C → Vectfin

F
. Defining G = Nat⊗E, the set of monoida

natural transformations fromE to itself, one finds (a)G is a group, cf. e.g
[15, Proposition 7.1], by virtue of rigidity ofC, and (b)C 	 RepF G.

(2) If C has objects with non-trivial twists or integral but non-positive dimensi
respectively, it still is the representation category of a supergroup, i.e., a pair(G, k)

whereG is a group andk ∈ Z(G) is involutive, cf. [8, Section 7], see also [6]. Th
generalization will not be used in this paper.

Definition 2.5. Let C be a strict tensor category. A Frobenius algebra inC is a quintuple
(Γ,m,η,∆, ε) such that(Γ ∈ C,m : Γ 2 → Γ,η : 1 → Γ ) is a monoid,(Γ,∆ :Γ →
Γ 2, ε : Γ → 1) is a comonoid and the condition

idΓ ⊗ m ◦ ∆ ⊗ idΓ = ∆ ◦ m = ∆ ⊗ idΓ ◦ idΓ ⊗ m

holds. A Frobenius algebra in anF-linear category is called strongly separable [26] if

m ◦ ∆ = α idΓ , ε ◦ η = β id1, α,β ∈ F
∗.

Remark 2.6. Following earlier terminology used by the author, which in turn was insp
by F. Quinn, strongly separable Frobenius algebras were called ‘special’ in [12].

Proposition 2.7 [26]. Let G be a finite group andF an algebraically closed field whos
characteristic does not divide|G|. There exists a strongly separable Frobenius alge
(Γ,m,η,∆, ε) in C = RepF G such that

(1) αβ = |G|. We normalize such thatβ = 1.
(2) Γ is (isomorphic to) the left regular representation ofG.
(3) Γ ⊗ X ∼= d(X)Γ ∀X.
(4) dimHomC(1,Γ ) = 1.

If F = C, RepG is a∗-category and one can achieve∆ = m∗, ε = η∗.

Remark 2.8.

(1) See also [3] where a similar, but less symmetric, statement appears.
(2) The proposition generalizes tofinite-dimensional Hopf algebrasH , where the

categorical Frobenius algebra inH -Mod is strongly separable iffH is semisimple
and cosemisimple, cf. [26].

(3) Some of the structure survives for infinite compact groups and discrete qu
groups, cf. [29].

Remark 2.9. Given the monoid part of the above Frobenius algebra, one can obtain a
functorE : C → VectF as follows:
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E(X) = HomC(1,Γ ⊗ X), E(s)φ = s ⊗ idX ◦ φ, s : X → Y, φ ∈ E(X).

The natural isomorphismsdX,Y : E(X) ⊗ E(Y ) → E(X ⊗ Y ) are given by

dX,Y (φ � ψ) = m ⊗ idX ⊗ idY ◦ idΓ ⊗ φ ⊗ idY ◦ ψ, φ ∈ E(X), ψ ∈ E(Y ).

(Similarly, one can use the comonoid structure.) For the details, which are an imm
generalization of [5], see [29]. A similar construction is given in [35, Appendix
Defining

Aut(Γ,m,η) ≡ {g ∈ EndΓ | g ◦ m = m ◦ g ⊗ g, g ◦ η = η}

it is easy to see that

g �→ (gX), gX(φ) = g ⊗ idX ◦ φ, X ∈ C, φ ∈ E(X)

defines a homomorphism Aut(Γ,m,η) → Nat⊗E = G. Appealing to the Yoneda lemm
one verifies that this is a bijection, implying that Aut(Γ,m,η) is a group. This allows to
recoverG from the monoid structure on the regular representation without reference
fiber functor arising from the latter. This will turn out very useful in the sequel.

Remark 2.10. In fact, in [29] a proof of Theorem 2.3 will be given, whose first step
to construct from a categoryC (not necessarily finite) a monoid(Γ,m,η) (in IndC if C is
infinite) such thatΓ ⊗ X ∼= d(X)Γ and dimHom(1,Γ ) = 1. One then obtainsG simply
as the automorphism group of the monoid as above, the monoid of course turning
be the regular monoid ofG. (This goes beyond the proof in [5] that used a monoid
satisfying the latter condition. This monoid is not the regular representation and give
to a fiber functor into VectF only after a quotient operation. Thus one cannot defineG as
the automorphism group of the monoid.)

Even though the only monoids and Frobenius algebras considered in this paper ar
arising from regular representations as in Proposition 2.7, it is natural to give the followin
considerations in larger generality.

Definition/Proposition 2.11 [31]. Let C be a strict tensor category and let(Γ,m,η) be a
monoid inC. A Γ -module inC is a pair (X,µ) whereX ∈ C andµ : Γ ⊗ X → X satisfies

µ ◦ idΓ ⊗ µ = µ ◦ m ⊗ idX, µ ◦ η ⊗ idX = idX.

The modules form a categoryΓ -ModC whereHomΓ -Mod((X,µ), (Y,λ)) = {s : X → Y |
s ◦ µ = λ ◦ idΓ ⊗ s}. If C is braided and has coequalizers,⊗ preserves coequalizer
and (Γ,m,η) is commutative thenΓ -Mod is a tensor category with(X,µ) ⊗ (Y, η) =
coeq(α,β), whereα,β : Γ ⊗ X ⊗ Y → X ⊗ Y are given by

α = µ ⊗ idY , β = idX ⊗ η ◦ cΓ,X ⊗ idY .



M. Müger / Journal of Algebra 277 (2004) 256–281 263

n [18].

are is

ory
ad

ories,

of its

e

f
; it
The full subcategoryΓ -Mod0
C ⊂ Γ -ModC consisting of the objects(X,µ) satisfying

µ ◦ cX,Γ ◦ cΓ,X = µ is monoidal and braided.

Remark 2.12.

(1) The above definition and facts are due to Pareigis [31] and were rediscovered i
The special case whereΓ ∈ Z2(C), implying Γ -Mod0

C = Γ -ModC , was considered
in [3].

(2) Note that the coequalizers are unique only up to isomorphism, thus some c
required in the definition of the associativity constraint ofΓ -ModC . In [31] this is
handled by showing thatΓ -ModC is equivalent (as a category) to a full subcateg
of the category ofM-M bimodules inC. For the latter the associativity constraint h
been constructed in [30].

(3) We will exclusively consider semisimple categories with duals. In such categ
coequalizers exist and are preserved by⊗.

Recall that the dimension of a finite TC is the sum over the squared dimensions
simple objects, cf. e.g. [2,26].

Proposition 2.13. Let C be a finite BTC and let(Γ,m,η,∆, ε) be a strongly separabl
Frobenius algebra inC satisfyingdimHom(1,Γ ) = 1. ThenΓ -ModC is a semisimple
F-linear spherical tensor category withEndΓ 1 = Fid1, and

dimΓ -ModC = (dimΓ )−1 dimC.

Proof. The free module functorF : C → Γ -ModC , X �→ (Γ ⊗ X,m ⊗ idX) is a left
adjoint of the forgetful functorG : Γ -ModC → C, (X,µ) �→ X, cf. [3,18].F is monoidal,
implying F(1) ∼= 1 andd(F (X)) = d(X). The tensor unit ofΓ -ModC being(Γ,m) we
have EndΓ 1 = HomΓ (F (1), (Γ,m)) ∼= Hom(1,Γ ), implying EndΓ 1 = Fid1. As a rigid
ribbon category,C is spherical and so isΓ -ModC [26], allowing us to talk of dimensions o
objects irrespective of whetherΓ -ModC is braided. Semisimplicity is proven as in [3,18]
is here that the Frobenius structure is used, cf. also [26]. The factGF(X) = Γ ⊗X together
with d(F (X)) = d(X) and additivity ofF and G implies d(G(Y )) = d(Γ )d(Y ). Let
now {Xi ∈ C} and{Yj ∈ Γ -ModC} be complete sets of simple objects inC andΓ -ModC ,
respectively. The computation

dimC =
∑

i

d(Xi)
2 =

∑
i

d(Xi) d
(
F(Xi)

) =
∑

i

∑
j

d(Xi) d(Yj )dimHom
(
F(Xi), Yj

)

=
∑

i

∑
j

d(Xi) d(Yj )dimHom
(
Xi,G(Yj )

) =
∑
j

d(Yj ) d
(
G(Yj )

)

= d(Γ )
∑
j

d(Yj )
2 = d(Γ )dimΓ -ModC

completes the proof. �
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Remark 2.14. A similar result is proven in [3] whereΓ ∈ Z2(C), implying Γ -Mod to be
braided, is assumed. The present very simple proof shows that such an assumptio
needed.

While the categoryΓ -ModC considered above is conceptually very natural, there i
alternative description which occasionally ismore convenient. The point is that the ten
product ofΓ -ModC , while entirely analogous to that inR-Mod, is not very convenient t
work with.

Definition/Proposition 2.15. Let C be a strict BTC and(Γ,m,η,∆, ε) a strongly
separable Frobenius algebra inC. Then the following defines a tensor categoryC̃Γ :

• Obj C̃Γ = Obj C.
• X ⊗̃ Y = X ⊗ Y .
• HomC̃Γ

(X,Y ) = HomC(Γ ⊗ X,Y ).
• Lets ∈ HomC̃Γ

(X,Y ) = HomC(Γ ⊗X,Y ) andt ∈ HomC̃Γ
(Y,Z) = HomC(Γ ⊗Y,Z).

Thent ◦̃ s = t ◦ idΓ ⊗ s ◦ ∆ ⊗ idX in HomC̃Γ
(X,Z) = HomC(Γ ⊗ X,Z).

• Let s ∈ HomC̃Γ
(X,Y ) = HomC(Γ ⊗ X,Y ) and t ∈ HomC̃Γ

(Z,T ) = HomC(Γ ⊗
Z,T ). Thens ⊗̃ t = s ⊗ t ◦ idΓ ⊗ cΓ,X ⊗ idZ ◦ ∆ ⊗ idX ⊗ idZ in HomC̃Γ

(X ⊗ Z,

Y ⊗ T ) = HomC(Γ ⊗ X ⊗ Z,Y ⊗ T ).

The canonical completion̂CΓ = C̃p
Γ of C̃Γ to a category with splitting idempotents

semisimple.(Recall thatObj ĈΓ = {(X,p), X ∈ Obj C̃Γ , p = p2 ∈ End̃CΓ
X} etc. Instead

of (X, idX) ∈ ĈΓ we simply writeX.) If C is a ∗-category and∆ = m∗, ε = η∗, then
C̃Γ , ĈΓ are ∗-categories. The functorι : C → C̃Γ given byX �→ X,s �→ ε ⊗ s is monoidal
and faithful. The composite ofι with the full embedding̃CΓ → ĈΓ is also denoted byι.

Proof. ThatC̃Γ and thereforêCΓ is aF-linear strict tensor category is almost obvious: O
only needs to show associativity of◦̃, ⊗̃ on the morphisms and the interchange law, wh
is left to the reader. The discussion of the∗-operation oñCΓ , ĈΓ and of semisimplicity of
ĈΓ is the same as in [24,26], to which we refer for details.�
Proposition 2.16. Let C and (Γ,m,η,∆, ε) be as before. Then there exists a monoi
equivalenceK : ĈΓ → Γ -ModC such thatK ◦ ι ∼= F as tensor functors.

Proof. We defineK0 : C̃Γ → Γ -ModC by K0(X) = F(X), and fors ∈ HomC̃Γ
(X,Y ) =

Hom(Γ ⊗ X,Y ) we putK0(s) = idΓ ⊗ s ◦ ∆ ⊗ idX ∈ K0(s) ∈ HomΓ (F (X),F (Y )). The
maps �→ K0(s) has inverset �→ ε ⊗ idY ◦ t . Direct computations showK0(s) • K0(t) =
K0(s • t) for • ∈ {◦,⊗}, thusK is a full and faithful tensor functor and satisfiesK0 ◦ ι = F .
SinceΓ -Mod has splitting idempotents,K0 : C̃Γ → Γ -Mod extends toK : ĈΓ → Γ -Mod,
uniquely up to natural isomorphism. Since every object ofΓ -Mod is a retract of an objec
of the formK0(X) = F(X), K is essentially surjective, thus an equivalence.�
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Fig. 1. Composition and tensor product of arrows inC̃Γ .

3. Braided crossed G-category from Galois extensions

3.1. Definition ofC � S and basic properties

In the rest of the paper we assumeF to satisfy the assumptions of Theorem 2.3 and w
exclusively with the categorŷCΓ . Furthermore,C will be a BTC, not necessarily finite, an
S ⊂ C will be a finite admissible full sub-STC.

Lemma 3.1. Let G be such thatS 	 RepG and let (Γ, . . .) be the correspondin
commutative Frobenius algebra inC. We write p0 = η ◦ ε ∈ EndΓ and recall that
G = Aut(Γ,m,η). For s ∈ Hom(Γ ⊗ X,Y ) the following are equivalent:

(i) s ◦ g ⊗ idX = s for all g ∈ G.
(ii) s ◦ p0 ⊗ idX = s.

Proof. (ii) ⇒ (i). Obvious consequence ofε ◦ g = ε ∀g ∈ G.
(i) ⇒ (ii). If Ĝ denotes the set of iso-classes of irrepsπi of G anddi is the dimension

of πi , we have EndΓ ∼= ⊕
i∈Ĝ Mdi (F) andG � g = ⊕

i∈Ĝ πi(g). Whenever̂G � i �= 0
there existsg ∈ G such thatπi(g) �= id. If pi is the unit ofMdi (F), (i) therefore implies
s ◦ pi ⊗ idX = 0 ∀i �= 0, and we concludes = ∑

i s ◦ pi ⊗ idX = s ◦ p0 ⊗ idX . �
Definition 3.2. Let C be a strict BTC andS ⊂ C a finite full sub-STC. Let(Γ, . . .) be
the Frobenius algebra inC arising from Theorem 2.3 and Proposition 2.7. Then we w
C �0 S := C̃Γ andC � S := ĈΓ .

For the sake of legibility, we will continue to writẽC, Ĉ rather thanC �0 S, C � S in
many places, in particular subscripts.

Proposition 3.3. C �0 S and C � S are strict spherical tensor categories andC � S is
semisimple. IfC is a∗-category, thenC �0 S andC � S have a∗-structure extending tha
of C. There exists a canonical tensor functorι : C → C � S which is faithful and injective
on the objects, thus an inclusion. The groupG = Aut(Γ,m,η) acts onC � S via γg(s) =
s ◦ g−1 ⊗ idX for s ∈ HomC�S (X,Y ) = Hom(Γ ⊗ X,Y ) and γg((X,p)) = (X,γg(p)).
We have(C �0 S)G ∼= C and (C � S)G 	 C. If C is finite, thendimC � S = dimC/|G| =
dimC/dimS.
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Proof. The first set of statements is obvious. Clearly,g �→ γg is a homomorphism andγg

is invertible. Nowγg(s • t) = γg(s) • γg(t) for • ∈ {◦,⊗} follows from∆ ◦ g = g ⊗ g ◦ ∆.
Lemma 3.1 amounts to(C �0 S)G = ι(C) ∼= C, and (C � S)G = ι(C)p ∼= Cp 	 C. The
dimension formula follows from Propositions 2.13 and 2.16.�
Remark 3.4.

(1) Here and in the sequel,DG ⊂D denotes the subcategory consisting of the objects
morphisms that are strictly fixed by the action ofG. In our strict context this is th
right notion, but it presumably needs to be generalized if one works with a less
notion of G-categories.

(2) For definition of C � S given above for finiteS is equivalent to the one i
[24]. Thus Proposition 2.16 proves the equivalence of the approaches to G
extensions and modularization of braided tensor categories given by the autho
and A. Bruguières [3]. While both definitions are equally involved,Γ -ModC may be
more natural, yet̂CΓ has some advantages. On the one hand, the tensor productĈΓ

is canonical, i.e., involving no choices, and strict, making it slightly more conve
to work with. On the other hand, the relationship between the categorical constru
and (algebraic) quantum field theory, cf. the next section, is very easy to establ
C � S.

(3) WhenS is infinite, the definition ofC � S must be changed. While there still
a monoid structure on the regular representationΓ [29], the latter lives in a large
category IndS and is no more a Frobenius algebra. Thus the proof of semisimp
also changes. The somewhat pedestrian definition ofC � S in [24] works also for
infinite S.

(4) Constructions similar to the one above have been given in [3,12,35,36].

The following is due to Bruguières [3], who proved it for the category of(Γ,m,η)-
modules.

Theorem 3.5. LetS ⊂ C be as before. The tensor functorι : C → C � S has the following
universal property:

(1) ι is faithful and for every simple objectY ∈ C � S there existsX ∈ C such thatY is a
direct summand ofY ≺ ι(X).

(2) For everyX ∈ S we haveι(X) ∼= d(X)1 in C � S.
(3) If D is semisimple andι′ : C → D satisfies(1)–(2), then there exists a faithful tens

functor ι′′ : C � S → D, unique up to monoidal natural isomorphism, such t
ι′ = ι′′ ◦ ι.

Proof. (1) Obvious by construction.
(2) It is sufficient to show this forX ∈ S simple. We have Hom̂C(1, ι(X)) =

HomC(Γ,X), andΓ ∼= ⊕
i d(Xi)Xi implies dimHom̂C(1, ι(X)) = d(X). Thus ι(X) ∼=

d(X)1 ⊕ X′ and Endι(X) ∼= Md(X) ⊕ N . Now,
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dimEnd̂C ι(X) = dimHomC(Γ ⊗ X,X) = dimHomC
(
d(X)Γ,X

)
= d(X)dimHomC(Γ,X) = d(X)2,

thusN = 0 andι(X) ∼= d(X)1.
(3) This follows from the corresponding statement in [3] and Proposition 2.16. (We om

the direct proof for reasons of space.)�
The considerations in the remainder of this section concern the decomposit

ι(X) ∈ C � S for simpleX ∈ C, complementing the results in [24, Section 4.1], and w
not be used in the rest of the paper.

Definition 3.6. ForX,Y ∈ C we writeX ∼ Y iff HomC(Γ ⊗ X,Y ) �= {0}.

Theorem 3.7. Restricted to simple objects, the relation∼ is an equivalence relation. Le
X,Y ∈ C be simple. IfX � Y , then ι(X), ι(Y ) are disjoint, to wit ι(X), ι(Y ) have no
isomorphic subobjects. For every equivalence classσ there exist a finite setIσ , mutually
non-isomorphic simple objectsZi ∈ C � S, i ∈ Iσ , and natural numbersNX , X ∈ σ such
that

ι(X) ∼= NX

⊕
i∈Iσ

Zi ∀X ∈ σ.

Proof. For all X,Y we haveX ∼ X (since1 ≺ Γ ) andX ∼ Y ⇔ Y ∼ X (sinceΓ ∼= Γ ).
Let X,Y,Z be simple andX ∼ Y ∼ Z. Hom(Γ ⊗ X,Y ) �= {0} impliesY ≺ Γ ⊗ X, i.e.,
Y is a direct summand ofΓ ⊗ X. Similarly, X ≺ Γ ⊗ Y , Y ≺ Γ ⊗ Z, Z ≺ Γ ⊗ Y .
Thus X ≺ Γ ⊗ Y ≺ Γ ⊗ Γ ⊗ Z ∼= |G|Γ ⊗ Z, where we usedΓ 2 ∼= |G|Γ . Therefore
Hom(X,Γ ⊗ Z) �= {0}, thusX ∼ Z, and∼ is transitive. In view of Hom(Γ ⊗ X,Y ) =
HomĈ(ι(X), ι(Y )) it is clear thatX � Y implies disjointness.

Let X,Y ∈ C be simple such thatX ∼ Y and letZ1 ≺ ι(X) be simple. Together with
ι(X) ≺ ι(Γ )⊗ ι(Y ) this impliesZ1 ≺ ι(Γ )⊗ ι(Y ) ≺ |G|ι(Y ), where we usedι(Γ ) ∼= |G|1.
SinceZ1 is simple, we haveZ1 ≺ ι(Y ). Thus every simpleZ1 ∈ C � S contained inι(X)

is also contained inι(Y ), providedX ∼ Y . We conclude thatX ∼ Y implies thatι(X)

andι(Y ) contain the same simple summands. The rest follows from the fact [24, Pro
tion 4.2] that, for every simpleX ∈ C, the simple summands ofι(X) ∈ C � S appear with
the same multiplicityNX . �
Remark 3.8. If G is abelian, corresponding to all simple objects inS being invertible, we
haveX ∼ Y iff there existsZ ∈ S such thatX ∼= Z ⊗Y . As a consequence,X ∼ Y implies
ι(X) ∼= ι(Y ) andNX = NY . Since in the general caseX ∼ Y does not imply thatX,Y have
the same dimensions, the above result, according to whichι(X), ι(Y ) have the same simpl
summands, clearly is the best one can hope for.

In the abelian case, the structure of EndĈ ι(X) can be clarified quite explicitly, cf
[24, Section 5.1]. Presently there is no analogous result in the general, non-abelian
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3.2. C � S as braided crossed G-category

Let c be the braiding ofC. For X,Y ∈ C it is clear thatι(cX,Y ) is an isomorphism
ι(X) ⊗ ι(Y ) → ι(Y ) ⊗ ι(X) satisfying the braid equations. Whether this gives rise
braiding ofC �0S (and therefore ofC �S) depends on whether or notι(c) is natural w.r.t.
the larger hom-sets ofC �0 S. For one variable we in fact have the following lemma.

Lemma 3.9. LetX,Y,Z ∈ C ands ∈ HomĈ(X,Y ) = HomC(Γ ⊗ X,Y ). Then

ι(cY,Z) ◦̂ s ⊗̂ idZ = idZ ⊗̂ s ◦̂ ι(cX,Z)

holds inC �0 S.

Proof. In view of Definition 2.15, the two sides of the desired equation are represent
the following morphisms inC:

HomĈ(X ⊗ Z, Z ⊗ Y ) Hom(Γ ⊗ X ⊗ Z, Z ⊗ Y )

ι(cY,Z) ◦̂ s ⊗̂ idZ cY,Z ◦ s ⊗ idZ

idZ ⊗̂ s ◦̂ ι(cX,Z) idZ ⊗ s ◦ cΓ,Z ⊗ idX ◦ idΓ ⊗ cX,Z

A trivial computation inC shows that the expressions on the right-hand side coincide�
As shown in [24], naturality ofc w.r.t. the second variable holds iffS ⊂ Z2(C), which

is the case iffΓ ∈ Z2(C). HereZ2(C) ⊂ C is the full subcategory of objectsX satisfying
cX,Y ◦ cY,X = idYX for all Y ∈ C, called central in [27] and transparent in [3]. In order
understand the general caseS �⊂ Z2(C) we need some preliminary considerations.

Lemma 3.10. LetX,Y ∈ C, Z ∈ C ∩ S ′, ands ∈ HomĈ(X,Y ) = HomC(Γ ⊗ X,Y ). Then

ι(cZ,Y ) ◦̂ idZ ⊗̂ s = s ⊗̂ idZ ◦̂ ι(cZ,X).

Proof. As above we have:

HomĈ(Z ⊗ X,Y ⊗ Z) Hom(Γ ⊗ Z ⊗ X,Y ⊗ Z)

ι(cZ,Y ) ◦̂ idZ ⊗̂ s cZ,Y ◦ idZ ⊗ s ◦ cΓ,Z ⊗ idX

s ⊗̂ idZ ◦̂ ι(cZ,X) s ⊗ idZ ◦ idΓ ⊗ cZ,X

Now we find

cZ,Y ◦ idZ ⊗ s ◦ cΓ,Z ⊗ idX = s ⊗ idZ ◦ idΓ ⊗ cZ,X ◦ (cZ,Γ ◦ cΓ,Z) ⊗ idX.

For arbitraryZ ∈ C this will not coincide withs ⊗ idZ ◦ idΓ ⊗ cZ,X, but forZ ∈ C ∩ S ′ it
does sinceΓ ∈ S, implying cZ,Γ ◦ cΓ,Z = id. �
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LetX ∈ C andp ∈ End̂C(X) a minimal idempotent, thusX1 = (X,p) ∈ C�S is simple.
Let v : X1 → (X,p), v′ : (X,p) → X1 satisfyv′ ◦ v = idX1, v ◦ v′ = p and consider

idΓ ⊗̂ v ◦̂ ι(cX,Γ ◦ cΓ,X) ◦̂ idΓ ⊗̂ v′ ∈ End̂C(Γ ⊗ X1). (3.1)

In view of Γ ∈ S ⊂ C ∩ S ′, the preceding lemmas imply that (3.1) equals

idΓ ⊗̂ p ◦̂ ι(cX,Γ ◦ cΓ,X) = ι(cX,Γ ◦ cΓ,X) ◦̂ idΓ ⊗̂ p,

which in particular implies that (3.1) is invertible, thus is in AutĈ(Γ ⊗ X1). The inverse is
given by

∂ ′′X1 := idΓ ⊗̂ v ◦̂ ι
(
c̃(X,Γ ) ◦ c̃(Γ,X)

) ◦̂ idΓ ⊗̂ v′ ∈ AutĈ(Γ ⊗ X1),

wherec̃(X,Y ) = c−1
Y,X. SinceX1 is simple andι(Γ ) ∼= |G|id1, we have

∂ ′′X1 = ∂ ′X1 ⊗̂ idX1, (3.2)

where∂ ′X1 ∈ Aut ι(Γ ) ∼= M|G|(F). This equation, which lives in̂C, corresponds to

ι
(
c̃(X,Γ ) ◦ c̃(Γ,X)

) ◦̂ idΓ ⊗̂ p = ∂ ′X1 ⊗̂ p

in C̃ and to

in C. Composing with∆ ⊗ idX and using cocommutativitycΓ,Γ ◦ ∆ = ∆, we obtain

= = , (3.3)

where we have defined

∂X1 := ∂ ′X1 ◦ ∆ ∈ EndC(Γ ).
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Before we elucidate the significance of (3.3), we derive an explicit formula for∂(X,p). In
view of (3.2) it is clear that

∂ ′X1 = d(X1)
−1(idΓ ⊗ TrX1)∂

′′X1

= d(X1)
−1(idΓ ⊗ TrX)

[
ι
(
c̃(X,Γ ) ◦ c̃(Γ,X)

) ◦̂ idΓ ⊗̂ p
]
.

We have∂ ′X1 ∈ End̂C ι(Γ ), and computation shows that∂ ′X1 ∈ End̂C ι(Γ ) is represented
by

d(X1)
−1idΓ ⊗ εX ◦ (

c̃(X,Γ ) ◦ c̃(Γ,X)
) ⊗ idX ◦ idΓ ⊗ p ⊗ idX ◦ cΓ,Γ ⊗ εX

in HomC(Γ Γ,Γ ). Furthermore,

d(X1) = TrX1(idX1) = Trι(X)(p) = TrX(p ◦ η ⊗ idX)

= εX ◦ p ⊗ idX ◦ η ⊗ εX. (3.4)

For ∂X1 = ∂ ′X1 ◦ ∆ we thus obtain

∂X1 = d(X1)
−1idΓ ⊗ εX ◦ (

c̃(X,Γ ) ◦ c̃(Γ,X)
) ⊗ idX ◦ idΓ ⊗ p ⊗ idX ◦ ∆ ⊗ εX,

where we have used the cocommutativitycΓ,Γ ◦ ∆ = ∆. In diagrammatic form:

∂X1 =






−1

· . (3.5)

By definition,∂(X,p) ∈ EndC(Γ ). In fact, we have a much stronger result.

Proposition 3.11. Let (X,p) ∈ C � S be simple. Then∂(X,p) ∈ G = Aut(Γ,m,η).

Proof. Since dimHom(1,Γ ) = 1, we have∂(X,p) ◦ η = cη andε ◦ ∂(X,p) = cε, where
c = ε ◦ ∂(X,p) ◦ η. Thus

c = d(X1)
−1εX ◦ p ⊗ idX ◦ η ⊗ εX

and comparison with (3.4) showsc = 1, thus∂(X,p) ◦ η = η. Next, we compute
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to the

-

= = = = =

= = .

Here the first, fourth, and sixth equality are due to (3.3) and the fifth and seventh due
cocommutativity of∆. Taking the partial trace overX, we obtain

TrĈ(p)∆ ◦ ∂X1 = TrĈ(p)∂X1 ⊗ ∂X1 ◦ ∆

and thus∆ ◦ ∂X1 = ∂X1 ⊗ ∂X1 ◦ ∆ since Tr̂C p = d(X1) �= 0. Thus ∂X1 ∈ G =
End(Γ,m,η) is an endomorphism of the monoid(Γ,m,η), and by Remark 2.9,G is a
group. �
Definition 3.12. An object ofC�S is homogeneous if there existg ∈ G and simple objects
Xi ∈ C � S, i ∈ ∆ such thatX ∼= ⊕

i Xi and∂Xi = g.

Lemma 3.13. LetZ ∈ C � S be homogeneous of gradeg. Theng is still given by(3.5). If
(X,p), (Y, q) are homogeneous and(X,p) ∼= (Y, q), then∂(X,p) = ∂(Y, q).

Proof. Let Z ∼= ⊕
X1, where theXi are simple and∂Xi = g. Reviewing the consider

ations preceding (3.2) one sees thatthis equation remains valid withX1 replaced byZ.
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Thus also (3.5) holds for homogeneousZ, and this is all that is used in the proof of Pr
position 3.11. That isomorphic homogeneous objects have the same grade is obvio
the definition. �
Proposition 3.14. Let X1 = (X,p) ∈ C � S be homogeneous. Then∂γg(X1) = g∂X1g

−1

for everyg ∈ G.

Proof. Recall thatγg((X,p)) = (X,γg(p)) = (X,p ◦ g−1 ⊗ idX). Thus

d(X1) ∂γg(X1) = = = = d(X1) g∂X1g
−1.

Here we have used the equation idΓ ⊗ g−1 ◦ ∆ = g ⊗ idΓ ◦ ∆ ◦ g−1 which follows from
∆ ◦ g = g ⊗ g ◦ ∆. �

The following definition is a variant of a notion due to Turaev [34].

Definition 3.15. Let G be a (discrete) group. A strict crossed G-category is a strict te
categoryD together with

• a full tensor subcategoryDG ⊂D of homogeneous objects,
• a map∂ : Obj DG → G constant on isomorphism classes,
• a (strict) homomorphismγ : G → AutD (here AutD is the group of invertible stric

tensor functorsD → D respecting the braiding),

such that

(1) ∂(X ⊗ Y ) = ∂X∂Y for all X,Y ∈ DG;
(2) γg(Dh) ⊂Dghg−1, whereDg ⊂DG is the full subcategory∂−1(g).

If D is additive, we require that every object ofD be a direct sum of objects inDG.
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Remark 3.16.

(1) A map∂ : Obj DG → G constant on iso-classes and satisfying∂(X ⊗ Y ) = ∂(X)∂(Y )

is the same as a tensor functorDG → G, whereG is the discrete strict monoida
category with ObjG = G.

(2) In [34], DG = D was assumed. Since we are working with additive categorie
particular having all finite direct sums, we must allow inhomogeneous objects.
added generality will be important later on.

(3) Obviously, the definition can be generalized to non-strict tensor categories, cf. [3
Also the G-action can be generalized by relaxing theγg to be self-equivalences sati
fying natural isomorphismsγgγh

∼= γgh with suitable coherence, cf., e.g., [4, p. 23
For our purposes, in particular the application to conformal field theory [28], the a
strict version is sufficient.

In view of Definition 3.15, Propositions 3.11, 3.14 essentially amount to the follow
statement.

Proposition 3.17. C � S is a crossed G-category, whereS 	 RepG.

Proof. We define(C � S)G ⊂ C � S to be the full subcategory of homogeneous obje
and we extend∂ to (C � S)G in the obvious fashion. We have already defined an actioγ

of G onC � S. Now property (2) follows from Proposition 3.14, but property (1) require
proof. Thus let(X,p), (Y, q) ∈ C � S be homogeneous. In view of Lemma 3.13 we m
compute

d(X,p) d(Y, q) ∂(X,p)∂(Y, q)

= = =
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(
(X,p) ⊗̂ (Y, q)

)
∂
(
(X,p) ⊗̂ (Y, q)

)
,

which is the desired result.�
Definition 3.18. A braiding for a crossed G-categoryD is a family of isomorphisms
cX,Y : X ⊗ Y → XY ⊗ X, defined for allX ∈DG,Y ∈ D, such that

X ⊗ Y

cX,Y

s⊗t
X′ ⊗ Y ′

cX′,Y ′

XY ⊗ X
Xt⊗s

X′
Y ′ ⊗ X′

commutes for alls : X → X′, t : Y → Y ′, and

cX,Z⊗T = idXZ ⊗ cX,T ◦ cX,Z ⊗ idT , (3.6)

cX⊗Y,Z = cX,Y Z ⊗ idY ◦ idX ⊗ cY,Z, (3.7)

for all X,Y ∈DG,Z,T ∈ D.

Remark 3.19. Motivated by applications to algebraic topology (rather than 3-manif
as in [34]), a special class of braided crossed G-categories was introduced independe
in [4, Definition 2.1]. The ‘categorical G-crossed modules’ considered there are bra
crossed G-categories that are also categorical groups, i.e., monoidal groupoids
objects are invertible up to isomorphism w.r.t.⊗.

Theorem 3.20. C � S = Ĉ is a braided crossedG-category, whereS 	 RepG.

Proof. Let X1 = (X,p) ∈ ĈG, Y,Z ∈ C, ands ∈ HomĈ(Y,Z) = HomC(Γ ⊗ Y,Z). We
calculate

ι(cX,Z) ◦̂ p ⊗̂ s = =̂ = =
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= γ∂X1(s) ⊗̂ idX1 ◦̂ ι(cX,Z) ◦̂ p ⊗̂ idY .

We have used cocommutativity of∆, Eq. (3.3), Proposition 3.11 according to whi
∂(X,p) ∈ G, and the definition ofγg ∈ AutC � S.

Let now(X,p) ∈ (C � S)g and(Y, q) ∈ C � S. Then the above computation and Le
ma 3.9 imply

ι(cX,Y ) ◦̂ p ⊗̂ q = γg(q) ⊗̂ p ◦̂ ι(cX,Y ),

thus this expression defines an isomorphismc(X,p),(Y,q) ∈ HomĈ((X,p) ⊗ (Y, q),
γg(Y, q)⊗(X,p)). By definition, the family(c(X,p),(Y,q)) it is natural in the sense of Defin
ition 3.18. The straightforward verification of the braid relations (3.6)–(3.7) is omitted�
3.3. TheG-spectrum of a Galois extension

Definition 3.21. The G-spectrum SpecD of a G-crossed categoryD is set {g ∈ G |
Dg �= ∅}. TheG-spectrum of a crossed G-category is full if it coincides withG and trivial
if it is {e}.

Lemma 3.22. TheG-spectrum of a crossed G-categoryD contains the unit, is closed und
multiplication and under conjugation with elements ofG. It is closed under inverses ifD
has duals, in which caseSpecD is a normal subgroup ofG.

Proof. The first sentence follows from requirements (1) and (2) in Definition 3.15 an
second from the fact that∂X = (∂X)−1, which follows from1 ≺ X ⊗ X. �
Proposition 3.23. LetD be a semisimple rigid crossedG-category. DefiningdimDg to be
the sum over the squared dimensions of the simple objects of gradeg, we have

dimDg = dimDe ∀g ∈ SpecD.

Proof. Let ∆e,∆g be the sets of iso-classes of simple objects inDe,Dg , respectively, and
let {Xi, i ∈ ∆e} and{Yj , j ∈ ∆g} be representing objects. Forg ∈ SpecD we may pick a
simple objectZ ∈Dg , and in view ofXi ⊗ Z ∈ Dg we have
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d(Z)
∑
i∈∆e

d(Xi)
2 =

∑
i∈∆e

d(Xi) d(Xi ⊗ Z) =
∑
i∈∆e

∑
j∈∆g

d(Xi) d(Yj )dimHom(Xi ⊗ Z,Yj )

=
∑
i∈∆e

∑
j∈∆g

d(Xi) d(Yj )dimHom(Xi, Yj ⊗ Z) =
∑
j∈∆g

d(Yj ) d(Yj ⊗ Z)

= d(Z)
∑
j∈∆g

d(Yj )
2.

Sinced(Z) = d(Z) �= 0, the claim follows. �
Proposition 3.24. LetC,S be as in the preceding section. The embedding(C ∩S ′)�S ↪→
C�S gives rise to an isomorphism(C�S)e ∼= (C ∩S ′)�S. C�S has trivialG-spectrum
iff S ⊂ Z2(C).

Proof. If X ∈ C ∩ S ′, thencX,Γ ◦ cΓ,X = id, thus every simple summand ofι(X) has
gradee. This implies(C ∩ S ′) � S ⊂ (C � S)e . As to the converse, every simple obje
X1 ∈ C � S is isomorphic to one of the form(X,p), whereX ∈ C is simple andp is a
minimal idempotent. In [24, Proposition 4.2] it was shown that the actionγ of G onC �S
acts transitively on the minimal central idempotents in EndĈ(ι(X)), in particular all simple
summands ofι(X) appear with the same multiplicityN . If ι(X) ∼= N

⊕
i (X,pi) is the

decomposition into simples, we conclude from Proposition 3.14 that the set{∂(X,pi)} is
a conjugacy class inG. If X1 ≺ ι(X) has gradee, then this conjugacy class is{e}, thus
∂(X,pi) = e for all i. This means

(3.8)

for all minimal central idempotentspi in End̂C ι(X). By linearity, (3.8) holds for al
central idempotents, in particular for idι(X) = ε ⊗ idX . Plugging this into (3.8), we obtai
(id ⊗ TrX)(cX,Γ ◦ cΓ,X) = d(X)idΓ , and by naturality we conclude

S(X,Y ) = (TrY ⊗TrX)(cX,Y ◦ cY,X) = d(X)d(Y )

for all simple Y ∈ S. By [27, Proposition 2.5] this is equivalent toX ∈ C ∩ S ′. Now,
triviality of the G-spectrum is equivalent toC � S = (C � S)e = (C ∩ S ′) � S, which
in turn is equivalent toC ∩ S ′ = C and finally toS ⊂ Z2(C). �
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Remark 3.25. We emphasize one observation made in the proof: Whereas every s
objectX1 of C � S defines an element∂X1 of G, every simple objectX ∈ C defines a
unique conjugacy class inG.

Let S0 ⊂ S be a full subcategory, where both categories are finite admissible S
Let (Γ, . . .), (Γ0, . . .) be the corresponding Frobenius algebras inS0,S, respectively, with
automorphism groupsG0,G. ThenΓ ∼= Γ0 ⊕Z and Hom(Γ0,Z) = {0}, thus the projecto
q ∈ EndΓ ontoΓ0 is central. The group

N = {g ∈ G | g ◦ q = q}
is a normal subgroup ofG = Aut(Γ,m,η). It coincides with

N = {
g ∈ G | πX(g) = idE(X) ∀X ∈ S0

}
,

whereE : S → VectC is the fiber functor andπX is the representation ofG onE(X). This
is easily deduced fromE(X) = Hom(1, Γ ⊗ X) and the fact thatg ∈ G acts onE(X) by
πX(g) : φ �→ g ⊗ idX ◦ φ. This impliesG0 ∼= G/N .

Theorem 3.26. LetS ⊂ C with S 	 RepG. ThenSpecC � S = N , whereN is the normal
subgroup ofG corresponding to the full inclusionS ∩ Z2(C) ⊂ S as above.C � S has full
G-spectrum iffS ∩ Z2(C) is trivial, i.e., consists only of multiples of1.

Proof. Let q ∈ End̂C(Γ ) be the projection ontoΓ0, and letv : Γ0 → Γ , v′ : Γ → Γ0
satisfyv ◦ v′ = q , v′ ◦ v = idΓ0. Then withX1 = (X,p) ∈ (C � S)G we have

d(X1)q ◦ ∂(X,p) = = = = d(X1)q,

where we usedΓ0 ∈ S ∩ Z(C). We conclude SpecC � S ⊂ N .
In a braided crossed G-categoryD we have isomorphismscX,Y : X ⊗ Y → γg(Y ) ⊗ X

wheneverX ∈ DG. By definition,g ∈ SpecD, thus in the fixpoint categoryDSpecD the
action γg disappears andDSpecD is braided in the usual sense. We therefore have
intermediate extension

C ⊂ (C � S)SpecC�S ⊂ C � S
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that is braided. On the other hand, in view ofProposition 3.24 it is clear that the maxima
intermediate extension ofC that is braided is given by

C ⊂ C �
(
S ∩ Z2(C)

) ⊂ C � S.

By the Galois correspondence established in [24, Section 4.2], we haveC � (S ∩Z2(C)) =
(C � S)N , whereN is as defined above. Now the inclusion

(C � S)SpecC�S ⊂ C �
(
S ∩ Z2(C)

) = (C � S)N

impliesN ⊂ SpecC � S. This completes the proof of SpecC � S = N . The last claim is
immediate. �

The following corollary will be very useful in conformal field theory [28].

Corollary 3.27. If C is modular andRepG 	 S ⊂ C, thenC � S has fullG-spectrum and
(C � S)e is modular.

Proof. Modularity of C is equivalent to triviality ofZ2(C), thus the last statement
Theorem 3.26 implies SpecC � S = G. SinceC is modular, [27, Corollary 3.6] implie
Z2(C ∩ S ′) = S. Thus(C ∩ S ′) � S is modular by [24, Theorem 4.4] and coincides w
(C � S)e by Proposition 3.24. �
3.4. Abelian case

Let X ∈ C be simple and letXj ∈ C � S, j ∈ J, be simple objects such thatι(X) ∼=⊕
j∈J Xj . In [24] it was shown thatG acts ergodically on the center of the algeb

Endι(X). In view of ∂γg(X) = g∂(X)g−1 this clearly implies that the set{∂Xj | j ∈ J }
is a conjugacy class inG. We thus obtain a map∂0 from the simple objects inC to the
conjugacy classes inG. In the case whereG is abelian, all simple summands ofι(X) have
the same grade, which induces aG-grading on the categoryC. In the remainder of this
subsection we will give a more explicit description of this grading.

Let thusG be abelian andK = Ĝ. Then Γ ∼= ⊕
k∈K Xk , where allXk, k ∈ K are

invertible, and EndΓ ∼= ⊕
k∈K EndXk

∼= ⊕
k∈K F. By our normalizationε ◦ η = 1,

pe = η ◦ ε ∈ EndΓ is an idempotent, projecting on the summandXe. Let X ∈ C and
(X,p) ∈ C � S be simple. By the above considerations,ι(X) is homogeneous, thus (3.
defines an element of Aut(Γ,m,η) ∼= G. In view of Xk ⊗ Xl

∼= Xkl we may insertpe into
(3.5) at the appropriate place, obtaining
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∂(X,p) =






−1

· .

Now,

= d(X)−1

and we obtain

∂0(X) = ∂
(
(X,p)

) = d(X)−1 . (3.9)

We have thus shown the following.

Proposition 3.28. ConsiderS ⊂ C whereS is symmetric, even and all its simple obje
are one-dimensional, equivalentlyS 	 RepG with G abelian. Let(Γ,m,η) be the regular
monoid inS. Then(3.9)defines an element∂0X of G for every simpleX ∈ C. If we define
CG to be the full subcategory of homogeneous objects, i.e., of objects all simple sum
Xj of which have the same∂0Xj , thenC is a G-graded tensor category.(To wit, C is a
crossedG-category in the sense of Definition1.1with trivial G-action.)

Remark 3.29. This result can be obtained in a more direct way. It suffices to notice tha
mapϕX : K → F defined byϕX(k)idXk = (idXk ⊗TrX)(cX,Xk ◦ cXk,X) is a character ofK,
thus an element ofG. (This goes back at least to [32].) From the above consideration
then clear that the two definitions yield the same element∂0X ∈ G.
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