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Abstract

We show that the author’s notion of Galois extensions of braided tensor categories [Adv. Math.
150 (2000) 151], see also [A. Bruguieres, Math. Ann. 316 (2000) 215], gives rise to braided crossed
G-categories, recently introduced for the purposes of 3-manifold topology [V.G. Turaev, Homotopy
field theory in dimension 3 and crossed group-categories, arXiv: math.GT/0005291]. The Galois
extension®& x S are studied in detail, in particular we determine for which G non-trivial objects
of gradeg existinC x S.
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1. Introduction

According to the influential paper [15], the notion of braided tensor categories (BTC for
short) originated in

() considerations in higher-dimensional category theory (BTC as 3-categories with one
object and one 1-morphism) and

(1) homotopy theory (braided categorical groups classifying connected homotopy types
with only 72, w3 non-trivial).
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On the other hand, the

(1IN representation categories of quasitriangular (quasi-, weak, etc.) Hopf algebras, cf.,
e.g., [16], and of

(IV) quantum field theories (QFT) in low-dimensional space times [10,11], in particular
conformal field theories [10,23], are BTC.

Finally,

(V) the category of tangles is a BTC, which is the origin of various constructions of
invariants of links and 3-manifolds [1,16,33].

It goes without saying that all five areas continue to be very active fields of research and
the connections continue to be explored.

In this paper we are concerned with a recestigralization of the notion of BTC which
is quite interesting in that can be approached from most of the above viewpoints. (V): In the
context of his programme of homotopy TQFT, Turaev [33] introduzedded G-crossed
categoriesand showed that, subject to some further conditions, they give rise to invariants
of 3-dimensional G-manifolds, to wit 3-manifolds together with a principal G-bundle. Let
us state the definition in its simplest form.

Definition 1.1. Let G be a (discrete) group. A strict crossed G-category is a strict tensor
categonyC together with

e amapd : Obj C — G constant on isomorphism classes,
e a homomorphisny : G — AutC (strict monoidal automorphisms 6}

such that

(1) (X®Y)=0XdY;
(2) 3y (X)) =gd(X)g™ L.

We write - = y;y (-). A braiding for a crossed G-categafyis a family of isomorphisms
cx.y:X®Y — XY ® X such that

CX.ZQT = ide ®cxrocx,z® idr, CXQY,z =Cx Yz Qidy cidy ® CY,Z,

cx/’y/os®t=Xt®socx,y, Vs: X—> X, t: Y=Y

Of the various generalizations permitted by this definition we will need only the admission
of inhomogeneous objects, cf. Section 3. As to subject (Ill): In [20] it was shown that
some crossed G-categories can be obtained from quantum groups. With a view towards
applications to algebraic topology (ll), in [4] a notion cétegorical G-crossed module

was defined. The latter are simply crossed G-categories which are categorical groups,
i.e., monoidal groupoids with invertible objects. In turn, categor@atrossed modules
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generalize Whitehead’s ubiquitous notion of crossed modules and Conduché’s 2-crossed
modules.

The main result of the present paper is towtthat braided crossed G-categories arise
from a categorical construction, the Galois extensions of braided tensor categories [3,24].
This refers to the construction in [24] which associates to a braided tensor cafegoya
full symmetric subcategor§ a tensor categor§ x S. The braiding ot lifts to a braiding
of C x S iff Sis contained in the centefy(C) of C, the latter being the full subcategory of
objectsX satisfyingcx y o cy x =id forall Y € C. (In [3], where a category equivalent to
C x S was defined, the objects @h(C) were called transparent.) Dropping the condition
S C Z7(C), we show in Theorem 3.20 thé@tx S is a braided crossed G-category, where we
also clarify for whichg € G there existX € C x S with 9 X = g, cf. Theorem 3.26. In the
final Section 3.4 we show that a subcategSry C whereS = RepG with G finite abelian
induces aG-grading onC compatible with the one o x S. Similar results are obtained
in [19], in particular part 1. However, our approach is quite different, more suitable for
the application to quantum field theory [28{etched below, and in places somewhat more
satisfactory, e.g., concerning the braiding®nr S.

We close this introduction with a glance &etapplications of this paper in quantum
field theory and topology. In a companion paper [28] we will show, in the context of
algebraic quantum field theory [14], that a chiral conformal field thedrgarrying an
action of a finite groug; gives rise to a braided crossed G-categ@rizoc A of ‘G-twisted
representations.’ The full subcategadry’(e) C G-Loc A of grade zero objects is just the
ordinary braided representation category Repvhich does not the G-action into account.
In [28] we prove the equivalences

G-LocA ~ RepA® x S, RepA® ~ (G-LocA)Y,

where A is the ‘orbifold theory’ [7], i.e., the subtheory of consisting of the fixpoints
under the G-action, and ~ RepG is a full subcategory of Rep®. The significance

of the first equivalence is that the same braided crossed G-category arises (i) as the—
intrinsically defined—categoryfds-twisted representations aof and (ii) by the crossed
product construction of [24] whose braided crossed G-structure is the subject of the present
work. The second equivalence computes the representation category of the orbifold theory
AC in terms ofG-Loc A, i.e., categorical information abodt To put this into context we
emphasize the well-known fact that the grade zero subcategory Re@-Loc A doesnot

contain enough information to determine REp.

Finally, by [17] the categories Rep and RepA® are modular, and Corollary 3.27
implies thatG-Loc A ~ RepA® x S has full G-spectrum, i.e., there exists an object of
gradeg for every g € G. Combining this with Turaev’s work [33,34] on invariants of
(G-)manifolds, we thus obtain an equivariant version of the chain

Rational chiral CFT~» modular category~» 3-manifold invariant

of constructions, namely

Rational chiral CFTM modular crossedM invariant for 3-manifolds equipped
with symmetry G G-category with principal G-bundle ’
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The above applications of the constructions of this paper place braided crossed
G-categories squarely into the context of the areas (I) (higher category theory) and (V)
(quantum field theory) mentioned above. Most results of this paper and of [28] were
announced in [25].

2. Preliminaries

We briefly recall without proof the facts coarning Tannakian and module categories
that will be needed later. Some of those ardlakeown, while others are relatively recent.

We assume as known the notions of abelian, monoidal (or tensor) braided, symmetric,
rigid, and ribbon categories, cf., e.g., [1,15,16,22]. All categories considered in this paper
will be F-linear semisimple (thus in particular abelian) over an algebraically closed
field F with finite-dimensional Horspaces and monoidal with Edd= Fid;. Unless
otherwise stated, tensor categories will be strict, as we are allowed to assume by virtue
of the coherence theorems. @ linear tensor category is &category if there exists a
x-operation, i.e., an involutive antilineapntravariant ananonoidal endofunctos that
acts trivially on the objects. In other words, e Hom(Y, X) if s e Hom(X,Y), s** =+
and, whenever these expressions are defifleds)* =1t* o s* and (s ® 1)* = s* ® t*.

A x-operation is positive i§* o s = 0 impliess = 0. A category with positive:-operation

is called x-category [8,13,21] or unitary [33], cf. also [37]. (Since we assume finite-
dimensional hom-spacesacategory in fact is a*- and W*-category in the sense of
[8,13], cf. e.g. [24, Proposition 2.1].)

The category of finite-dimensional polynomial representations of a reductive proal-
gebraic group (in characteristic zero) is a rigid abelian symmetric tensor category with
Endl = Fid;. The category of finite-dimensional continuous representations of a compact
topological group has the same properties and is in additieic@egory. There are con-
verses to these statements due to Doplicher and Roberts [8] and to Deligne [5], respectively.
For our purposes in this paper it is sufficient to consider symmetric categories with finitely
many (isomorphism classes of) simple objects, corresponding to finite groups.

Definition 2.1.

(1) A TC is a semisimplé-linear spherical tensor category [2] with finite-dimensional
Hom-spaces and Edd= Fid;, whereF is an algebraically closed field. It is called
finite if the set of isomorphism classes of simple objects is finite. The dimension of a
finite TC is given by din€ =), d(X;)?, wherei runs through the set of isomorphism
classes of simple objects amdis the dimension function defined by the spherical
structure.

(2) ABTC is a semisimpl&-linear rigid braided ribbon category with finite-dimensional
Hom-spaces and Edd= Fid;, and is automatically a TC.

(3) An STC is a symmetric BTC.

(4) An STC overF is admissible if either
(i) F=C, Cis ax-category, and all objects have trivial twit(X), or
(i) F has characteristic zero addX) € Z, forall X € C.
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Remark 2.2.

(Ad 1)

(Ad 2)

(Ad 3)

Since we work over algebraically closed fields throughout, an oljdstsimple
(every non-zero subobject is isomorphicX9iff it is absolutely simple (En& =
Fidx). We will therefore just speak of simple objects.

By dropping the assumption of sphericity, one arrives at the notion of fusion
categories which were studied in [9]. There are remarkably strong results like
the automatic positivity of dirff whenF = C. (Yamagami has shown [37] that

a x-structure gives rise to an essentially unique spherical structure, and one might
suspect that this generalizes to fusion categories.)

A rigid ribbon category gives rise to a spherical structure and conversely in a
spherical braided catego€ythere exists a canonical twiét renderingC a ribbon
category. See [2,38].

At first sight, the supplementarponditions (i) and (ii) on the twists and the
dimensions, respectively, look quite different. This is due to the different notions
of duality in both formalisms, but ultimaty both conditions amount to the same
thing. LetX e C. In [8] one choosesy :1— X ® X, 7y : 1 — X ® X such that

idy@f}orx@idy(:idy, idx®r;k(ofx®id)(=idx,

r; ory = f} oryxy =d(X)idy.
One then defines the twis (X) € EndX by
OX) = V;} ®idy o id)—( ®cx.xory ®idy.

For simple X, one finds®(X) = +idyx, whereasd(X) > 0 is automatic by
positivity of the x-operation. In fact, one prove&X) € Z,, and the condition
®(X) =idy is necessary and sufficient f6r~ RepG for someG.

On the other hand, in [5] one has morphisis: 1 — X @ X, ex : X ® X — 1,

which are part of the given data and satisfy the usual triangular equations. One then
defines

5x®idXZCX’}?odxi1—>}_(®X, WXZEXOC'X,)*(:X@}_(—)]--

With this definition the twist (X) = ex ® idx o idy ® cx, x o dx is automatically
trivial, but d(X) = nx o dx = ex o 8x is not necessarily positive. In any case, for
a x-category one has both notions of dyalad the supplementary conditions are
equivalent.

Theorem 2.3 [5,8]. Let C be a finite admissible STC ov&r Then there exists a finite
group G, unique up to isomorphism, such that there is an equivalamceRepﬁ'T”G
compatible with all structures in sight.
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Remark 2.4.

(1) The proof of [5, Theorem 2.3] roughly consists of two steps: (i) One constructs a
faithful tensor functork : C — Vect%”. Defining G = Nat®E, the set of monoidal
natural transformations fronk to itself, one finds (a)G is a group, cf. e.g.
[15, Proposition 7.1], by virtue of rigidity of, and (b)C ~ Rep: G.

(2) If C has objects with non-trivial twists or integral but non-positive dimensions,
respectively, it still is the representation category of a supergroup, i.e., &@diy
whereG is a group ant € Z(G) is involutive, cf. [8, Section 7], see also [6]. This
generalization will not be used in this paper.

Definition 2.5. Let C be a strict tensor category. A Frobenius algebré is a quintuple
(I'ym,n, A,e) such that(I" e C,m : I'> > I''n: 1 — I') is a monoid,(I', A: " —
I'?,¢: " — 1) is a comonoid and the condition

idr@moAQidr=Aom=AQidroidr @m
holds. A Frobenius algebra in &hlinear category is called strongly separable [26] if
moA=qaidr, gon=pid;, a,BcF*.

Remark 2.6. Following earlier terminology used by the author, which in turn was inspired
by F. Quinn, strongly separable Frobenius algebras were called ‘special’ in [12].

Proposition 2.7 [26]. Let G be a finite group and an algebraically closed field whose
characteristic does not dividgs|. There exists a strongly separable Frobenius algebra
(I'ym,n, A,¢) inC=Rep G such that

(1) aB =|G|. We normalize such thzt= 1.

(2) I is (isomorphic tg the left regular representation af .
B I'®RX=dX)I' VX.

(4) dimHome (1, IN) =1.

If F = C, RepG is ax-category and one can achieve= m*, ¢ = n*.
Remark 2.8.

(1) See also [3] where a similar, but less symmetric, statement appears.

(2) The proposition generalizes tinite-dimensional Hopf algebrag/, where the
categorical Frobenius algebra #i-Mod is strongly separable iff is semisimple
and cosemisimple, cf. [26].

(3) Some of the structure survives for infinite compact groups and discrete quantum
groups, cf. [29].

Remark 2.9. Given the monoid part of the above Frobenius algebra, one can obtain a fiber
functorE : C — Vecty as follows:
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E(X)=Home(1, I ® X), E()p=sQ®idxo¢, s:X—Y, ¢ EX).
The natural isomorphismé y : E(X) ® E(Y) - E(X ® Y) are given by
dyy(@Xy)=m®idy ®idycidr ® ¢ ®idy oy, ¢cEX), Y € E(Y).

(Similarly, one can use the comonoid structure.) For the details, which are an immediate
generalization of [5], see [29]. A similar construction is given in [35, Appendix C].
Defining

Aut(I',m,n) ={g€Endl' |[gom=mog®g, gon=n}
it is easy to see that

g (gx), gx(@)=g®idyoop, XeC, peEX)

defines a homomorphism AUt, m, n) — Nat® E = G. Appealing to the Yoneda lemma,
one verifies that this is a bijection, implying that At m, n) is a group. This allows to
recoverG from the monoid structure on the regular representation without reference to the
fiber functor arising from the latter. This will turn out very useful in the sequel.

Remark 2.10. In fact, in [29] a proof of Theorem 2.3 will be given, whose first step is

to construct from a categoty (not necessarily finite) a monoid, m, n) (in IndC if C is
infinite) such that" ® X = d(X)I" and dimHongl, I") = 1. One then obtain& simply

as the automorphism group of the monoid as above, the monoid of course turning out to
be the regular monoid ofr. (This goes beyond the proof in [5] that used a monoid not
satisfying the latter condition. This monoid is not the regular representation and gives rise
to a fiber functor into Vegt only after a quotient operation. Thus one cannot definas

the automorphism group of the monoid.)

Even though the only monoids and Frobenius algebras considered in this paper are those
arising from regular representations as inpusition 2.7, it is natural to give the following
considerations in larger generality.

Definition/Proposition 2.11 [31]. Let C be a strict tensor category and léf”, m, n) be a
monoid inC. A I'-module inC is a pair (X, u) whereX eCandu : I' ® X — X satisfies

poidr @ u=pomQidy, non®idy =idy.
The modules form a categofy-Mode whereHomp-pmoa((X, ), (Y, 1)) ={s: X > Y|
sou=2»Xroidr ® s}. If C is braided and has coequalizerg, preserves coequalizers,
and (I', m, n) is commutative ther-Mod is a tensor category withiX, u) ® (Y, n) =
coeqa, B), wherea, B: ' ® X ® Y — X ® Y are given by

o=uQidy, p=idy ®nocrx ®idy.
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The full subcategor)d"-Modg C I'-Mod; consisting of the object$X, 1) satisfying
nocx rocrx = uis monoidal and braided.

Remark 2.12.

(1) The above definition and facts are due to Pareigis [31] and were rediscovered in [18].
The special case whei € Z»(C), implying I"-Mod% = I'-Mod,, was considered
in [3].

(2) Note that the coequalizers are unique only up to isomorphism, thus some care is
required in the definition of the associativity constraint/ofMod;. In [31] this is
handled by showing thaf-Mod is equivalent (as a category) to a full subcategory
of the category oM -M bimodules inC. For the latter the associativity constraint had
been constructed in [30].

(3) We will exclusively consider semisimple categories with duals. In such categories,
coequalizers exist and are preservedshy

Recall that the dimension of a finite TC is the sum over the squared dimensions of its
simple objects, cf. e.g. [2,26].

Proposition 2.13. Let C be a finite BTC and let/",m, n, A, ) be a strongly separable
Frobenius algebra inC satisfyingdimHom(1, I') = 1. ThenI"-Mod; is a semisimple
F-linear spherical tensor category withnd- 1 = Fid1, and

dimI"-Mod = (dim")~tdimc.

Proof. The free module functo# : C — I'-Mode, X — (I' ® X,m ® idy) is a left
adjoint of the forgetful functoG : I'-Mode — C, (X, u) — X, cf. [3,18]. F is monoidal,
implying F(1) = 1 andd(F (X)) = d(X). The tensor unit of"-Mod; being (I", m) we
have Engt 1 = Homp(F (1), (I",m)) = Hom(1, I'), implying End- 1 = Fid;. As a rigid
ribbon category is spherical and so iE-Mod. [26], allowing us to talk of dimensions of
objects irrespective of whethé&-Mod is braided. Semisimplicity is proven as in [3,18]; it
is here that the Frobenius structure is used, cf. also [26]. Th&TACK ) = " ® X together
with d(F (X)) = d(X) and additivity of F and G implies d(G(Y)) = d(I")d(Y). Let
now {X; € C} and{Y; € I"-Mod¢} be complete sets of simple objectsdrand I"-Mod,
respectively. The computation

dimC = Zd(x,»)2 = Zd(Xi) d(F(X)) = Z Zd(Xi) d(Y;) dimHom(F (X;), Y;)
i i i J
=Y "> d(X))d(Y))dimHom(X;, G(¥))) = > d(¥;)d(G(Y)))
i j
=d(I')Y_d(Y;)*=d(I")dimI"'-Modc
j

completes the proof. O
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Remark 2.14. A similar result is proven in [3] wheré& € Z>(C), implying I"'-Mod to be
braided, is assumed. The present very simple proof shows that such an assumption is not
needed.

While the category™-Mod, considered above is conceptually very natural, there is an
alternative description which occasionallynimre convenient. The point is that the tensor
product ofI"’-Mod., while entirely analogous to that iR-Mod, is not very convenient to
work with.

Definition/Proposition 2.15. Let C be a strict BTC and(I",m,n, A, &) a_strongly
separable Frobenius algebra i Then the following defines a tensor categ6ry

e ObjCr =ObjC.

e XRY=X®Y.

° Homgr(X, Y)=Home(I' ® X, 7).

° LetseHom@—r(X, Y)=Home(I'® X,Y) andteHomgr(Y, Z)=Hom¢(I'®Y, Z).

Thentos=toidr ® s o AQ®idyx in Homgr(X, Z)y=Home(I' ® X, Z).

e Lets e Homgr(X, Y) =Home(I' ® X,Y) andt € Homgr(Z, T) = Home(I' ®
Z,T). Thens ® t =s ®toidr ® crx ®idz o A ®idx ® idz in Honp (X ® Z,
YQT)=Home(I'@XQZ,YQT).

The canonical complenodr = C” of Cr to a category W|th splitting idempotents is
sem|S|mpIe(RecaIIthatObj Cp_{(X p), X € Obj Cr, p=p eEndC X} etc. Instead
of (X,idy) € Cr we simply writeX.) If C is a x-category andA = m*, ¢ = n*, then
Cr,Cr are x-categories. The functar. C — C given byX — X, s — ¢ ® s is monoidal
and faithful. The composite ofvith the full embedding~p — Cr is also denoted by.

Proof. ThatC;- and therefor€ - is aF-linear strict tensor category is almost obvious: One
only needs to show associativity 8f® on the morphisms and the interchange law, which
is left to the reader. The discussion of th@peration orC-, C- and of semisimplicity of
Cr is the same as in [24,26], to which we refer for details:

Proposition 2.16A. LetC and (I",m,n, A, ¢) be as before. Then there exists a monoidal
equivalence : Cr — I'-Mod; such thatK o« = F as tensor functors.

Proof. We defineKq : C;r — I'-Mod¢ by Ko(X) = F(X), and fors € Homg (X.Y) =
Hom(I" ® X, Y) we putKo(s) =idf ® s o A®idy € Ko(s) € Homp(F(X), F(Y)). The
maps — Ko(s) has inverse — ¢ ® idy o ¢t. Direct computations shoWo(s) e Ko(t) =
Ko(set) for e € {0, ®}, thusK is a full and faithful tensor functor and satisfi€go: = F.
Sincel"-Mod has splitting idempotent& : Cr — I'-Mod extends t&k : C — I'-Mod,
uniquely up to natural isomorphism. Since every objedrdflod is a retract of an object
of the formKo(X) = F(X), K is essentially surjective, thus an equivalencel
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Composition Tensor Product

Fig. 1. Composition and tensor product of arrowﬁjn.

3. Braided crossed G-category from Galois extensions
3.1. Definition ofC x S and basic properties

In the rest of the paper we assuiine satisfy the assumptions of Theorem 2.3 and work
exclusively with the category-. Furthermore( will be a BTC, not necessarily finite, and
S ¢ C will be a finite admissible full sub-STC.

Lemma 3.1. Let G be such thatS ~ RepG and let (I",...) be the corresponding
commutative Frobenius algebra i. We write po = n o ¢ € EndI” and recall that
G =Aut(I',m,n). Fors e Hom(I" ® X, Y) the following are equivalent

(i) sogidy =sforall geG.
(i) sopo®idy =s.

Proof. (i) = (i). Obvious consequence ob g =¢ Vg € G.

(i) = (ii). If G denotes the set of iso-classes of irrep®f G andd; is the dimension
of 7;, we have End” = @, g My, (F) and G 3 g = @, 7i(g). WheneverG 3 i #0
there existg € G such thatr; (g) #id. If p; is the unit of My, (F), (i) therefore implies
sop; ®idy =0Vi #0, and we conclude= )", so p; ®idy =so po®idx. O

Definition 3.2. Let C be a strict BTC andS c C a finite full sub-STC. Let(I,...) be
the Frobenius algebra @ arising from Theorem 2.3 and Proposition 2.7. Then we write
CxoS:=CrandC xS :=Cr.

For the sake of legibility, we will continue to writ€, C rather tharC xo S, C x S in
many places, in particular subscripts.

Proposition 3.3. C xo S andC x S are strict spherical tensor categories afdx S is
semisimple. I is ax-category, ther® xo S andC x S have ax-structure extending that
of C. There exists a canonical tensor functoiC — C x S which is faithful and injective
on the objects, thus an inclusion. The gratip= Aut(I", m, ) acts onC x S via y,(s) =
sog l®idy for s € Homeys(X,Y) = Hom(I’ ® X, Y) and ve (X, p)) = (X, v (p)).
We havelC x08)¢ = C and (C x S)Y ~C. If C is finite, thendimC x S = dimC/|G| =
dimC/dimS.
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Proof. The first set of statements is obvious. Cleagly> y, is a homomorphism ang,
is invertible. Nowy, (s @ 1) = y4(s) ® y¢(¢) for e € {o, ®]} follows fromAog=g®go A.
Lemma 3.1 amounts t6C X0 S)° = «(C) = C, and (C x 8)C = (C)? = CP ~C. The
dimension formula follows from Propositions 2.13 and 2.16

Remark 3.4.

(1) Here and in the sequéb® c D denotes the subcategory consisting of the objects and
morphisms that are strictly fixed by the action@f In our strict context this is the
right notion, but it presumably needs to be generalized if one works with a less strict
notion of G-categories.

(2) For definition of C x S given above for finiteS is equivalent to the one in
[24]. Thus Proposition 2.16 proves the equivalence of the approaches to Galois
extensions and modularization of braided tensor categories given by the author [24]
and A. Bruguiéres [3]. While both definitions are equally involvEdMod: may be
more natural, yetf,’\p has some advantages. On the one hand, the tensor prodﬁct of
is canonical, i.e., involving no choices, and strict, making it slightly more convenient
to work with. On the other hand, the relationship between the categorical constructions
and (algebraic) quantum field theory, cf. the next section, is very easy to establish for
CxS.

(3) When S is infinite, the definition ofC x & must be changed. While there still is
a monoid structure on the regular representafid[9], the latter lives in a larger
category InadS and is no more a Frobenius algebra. Thus the proof of semisimplicity
also changes. The somewhat pedestrian definitiof &fS in [24] works also for
infinite S.

(4) Constructions similar to the one above have been givenin [3,12,35,36].

The following is due to Bruguiéres [3], who proved it for the category Bfm, n)-
modules.

Theorem 3.5. LetS c C be as before. The tensor functarC — C x S has the following
universal property

(1) «is faithful and for every simple obje&te C x S there existsX € C such thatY is a
direct summand of < ((X).

(2) ForeveryX e Swe hava(X)=d(X)1inCxS.

(3) If D is semisimple and : C — D satisfies(1)—(2), then there exists a faithful tensor
functor ./ : C x & — D, unique up to monoidal natural isomorphism, such that
V=101

Proof. (1) Obvious by construction.

(2) It is sufficient to show this forX € S simple. We have Hop(1,:(X)) =
Home (17, X), and I = @, d(X;)X; implies dimHong(1, (X)) = d(X). Thus((X) =
d(X)1® X’ and End(X) = M4x) ® N. Now,
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dimEngs«(X) = dimHony (I' ® X, X) = dimHomg (d(X)T", X)
— d(X)dimHome (I, X) = d(X)2,

thusN =0 andu(X) =d(X)1.
(3) This follows from the corresponding statent in [3] and Proposition 2.16. (We omit
the direct proof for reasons of space

The considerations in the remainder of this section concern the decomposition of
1(X) € C x S for simple X € C, complementing the results in [24, Section 4.1], and will
not be used in the rest of the paper.

Definition 3.6. For X, Y € C we write X ~ Y iff Hom¢(I' ® X, Y) # {0}.

Theorem 3.7. Restricted to simple objects, the relatienis an equivalence relation. Let
X,Y € C be simple. IfX ~ Y, then«(X), (Y) are disjoint, to wit:(X), («(Y) have no
isomorphic subobjects. For every equivalence claghere exist a finite sef,,, mutually
non-isomorphic simple objec’® € C x S,i € Z,, and natural numberd/x, X € o such
that

(X)) = Ny @ Z; VX eo.
i€ly

Proof. For all X, Y we haveX ~ X (sincel < I')andX ~Y & Y ~ X (sincel’ =TI").

Let X,Y,Z be simpleand{ ~Y ~ Z. Hom(I" ® X, Y) # {0} impliesY < ' ® X, i.e.,

Y is a direct summand of ® X. Similarly, X < I'® Y, Y <I'®Z, Z<T QY.

ThusX <I'QY <I'® T ® Z=|G|I' ® Z, where we used™? = |G|I". Therefore
Hom(X, I’ ® Z) # {0}, thusX ~ Z, and~ is transitive. In view of HomI" ® X, Y) =

Homa(.(X), «(Y)) itis clear thatX ~ Y implies disjointness.

Let X, Y € C be simple such thaX ~ Y and letZ; < «(X) be simple. Together with
t(X) < (N @u(Y) thisimpliesZy < (I ®u(Y) < |G| (Y), where we used ") = |G|1.
SinceZ; is simple, we haveZ1 < «(Y). Thus every simpl&1 € C x S contained in(X)
is also contained in(Y), providedX ~ Y. We conclude thak ~ Y implies that.(X)
and:(Y) contain the same simple summands. The rest follows from the fact [24, Proposi-
tion 4.2] that, for every simpl& € C, the simple summands ofX) € C x S appear with
the same multiplicityVy. O

Remark 3.8. If G is abelian, corresponding to all simple objectsSibbeing invertible, we
haveX ~ Y iff there existsZ € S such thatX = Z ® Y. As a consequencg, ~ Y implies
t(X) Z(Y) andNyx = Ny. Since in the general casé~ Y does not imply thakX, Y have
the same dimensions, the aleaesult, according to whiatiX), «(Y) have the same simple
summands, clearly is the best one can hope for.

In the abelian case, the structure of EndX) can be clarified quite explicitly, cf.
[24, Section 5.1]. Presently there is no analogous result in the general, non-abelian case.
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3.2. C x S as braided crossed G-category
Let ¢ be the braiding ofC. For X, Y € C it is clear thati(cx,y) is an isomorphism
(X)) ® (YY) — «(Y) ® 1«(X) satisfying the braid equations. Whether this gives rise to a
braiding ofC xS (and therefore of x S) depends on whether or nat) is natural w.r.t.
the larger hom-sets @f xo S. For one variable we in fact have the following lemma.
Lemma3.9.LetX,Y, Z € C ands € Homz(X, Y) = Home(I' ® X, Y). Then
t(cy.z) s ®idy =id; ®sd t(cx.z)

holds inC xg S.

Proof. In view of Definition 2.15, the two sides of the desired equation are represented by
the following morphisms ir:

Homp(X® Z, Z®Y) Hom(I'®X®Z, ZQY)

l(C'Y,Z)‘SS@idZ L‘Y,Zos®idz
idz ® s 5(cx.2) id; ®socrz®idyoidr ® cx.z

A trivial computation inC shows that the expressions on the right-hand side coincide.
As shown in [24], naturality of w.r.t. the second variable holds f ¢ Z2(C), which

is the case iffl" € Z2(C). Here Z2(C) c C is the full subcategory of objects satisfying

cx.yocyx =idyyx forall Y e C, called central in [27] and transparent in [3]. In order to

understand the general caSe’ Z»(C) we need some preliminary considerations.

Lemma3.10.LetX,Y €C,ZeCNS', ands e Homz(X,Y) =Home(I" ® X, Y). Then

L(CZ,Y) ) idz @S =S @ idz ) L(CZ,X).

Proof. As above we have:

Homs(Z®X,Y®Z) HomI'®Z®X,Y® Z)

L(Cz_y)aidz®s L‘Z,Yoidz®soc‘r,z®idx
s@idZGL(cz,x) s®idzoidr ® ¢z x

Now we find

czy oldz®socrz®idx =S®idzoidr®€z’xO(Cz)poCF)Z)®idx.

For arbitraryZ e C this will not coincide withs ® idz oidr ® cz x, butforZzeCns’ it
does sincd” € S, implyingcz rocrz=id. O
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LetX € C andp € Ends(X) a minimalidempotent, thug; = (X, p) € C x S is simple.
Letv: X1 — (X, p), v : (X, p) > X1 satisfyv’ ov =idy,, v o v’ = p and consider

idr ®vou(ex,rocrx) didr ® v/ € Ends(I' ® X1). (3.1)
Inview of I' € S c CN &, the preceding lemmas imply that (3.1) equals
idr ® poulex.rocrx)=tlcx.rocrx)didr ® p,

which in particular implies that (3.1) is invertible, thus is in AUl ® X1). The inverse is
given by

3"X1:=idr ®vou(¢(X, I od(I", X)) idr ® v € Auta(I" ® X1),
wherec(X,Y) = c;j(. SinceX; is simple and(I") = |G|id1, we have
3'X1=09'X1®idy,, (3.2)
whered’' X1 € Autc(I") = M|g|(F). This equation, which lives i, corresponds to
WEX, ) 0 &(I', X)) 6idr @ p=23'X18 p

inC and to

(3.3)

where we have defined

0X1:=0'X10A € End(IN).
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Before we elucidate the significance of (3.3), we derive an explicit formulad®r p). In
view of (3.2) it is clear that

' X1=d(X1)"(idr ® Try,)d" X1
=d(X) Hidr @ Trx)[1(8(X, M) 0 &(I", X)) 5idr & p].

We haved' X1 € Ends«(I"), and computation shows thaitX; € Ends«(I”) is represented
by

d(Xl)_lidF R®Ex o (E(X, I oc(rl, X)) ®idgoidr®p®idy06ﬂp®8x

in Home(I' I, I'). Furthermore,

d(X1) =Trx, (idx,) =Tr,x)(p) =Trx(pon ®idy)
=fxopQidyon®ex. (3.4)

ForaX1=0'X1 0 A we thus obtain
0X1=d(X) tidr ® &x o (¢(X, I oé(I', X)) ®idyoidr ® p®idy o A® ey,

where we have used the cocommutativityr o A = A. In diagrammatic form:

-1
X1 = ?@ . . (3.5)

n

By definition,d (X, p) € Ende(I'). In fact, we have a much stronger result.
Proposition 3.11. Let (X, p) € C x S be simple. TheA(X, p) € G = Aut(I", m, n).

Proof. Since dimHongl, I') = 1, we haved (X, p) o n = cn ande o 3(X, p) = ce, where
c=¢00d(X, p)on.Thus

C=d(X1)_1éxop®id)—(on®8x

and comparison with (3.4) shows= 1, thusd (X, p) o n = n. Next, we compute
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_—

S

Here the first, fourth, and sixth equality are due to (3.3) and the fifth and seventh due to the
cocommutativity ofA. Taking the partial trace ove¥, we obtain

Tra(p)AodX1=Tra(p)dX1 @ 9X10 A
and thusA o 0X; = 0X1 ® X1 0 A since Tpp =d(X1) #0. ThusdXy € G =
End(I", m, n) is an endomorphism of the monoid, m, n), and by Remark 2.9G is a

group. O

Definition 3.12. An object ofC x S is homogeneous if there exige G and simple objects
X; eCxS8,i€AsuchthatX =, X; anddX; = g.

Lemma 3.13. Let Z € C x S be homogeneous of grage Theng is still given by(3.5). If
(X, p), (Y, q) are homogeneous and, p) = (Y, ¢), thend (X, p) =a(Y, q).

Proof. Let Z = € X1, where theX; are simple and X; = g. Reviewing the consider-
ations preceding (3.2) one sees thas equation remains valid with(; replaced byZ.



272 M. Muger / Journal of Algebra 277 (2004) 256-281

Thus also (3.5) holds for homogenedtisand this is all that is used in the proof of Pro-
position 3.11. That isomorphic homogeneous objects have the same grade is obvious from
the definition. O

Proposition 3.14. Let X1 = (X, p) € C x S be homogeneous. Thém, (X1) = gdX1g7t
for everyg € G.

Proof. Recall thaty, (X, p)) = (X, v¢(p)) = (X, po gt ®idx). Thus

Rﬁ

d(X1) 0yg(X1) = =
A

<

=d(X1)gdX18™ "

Here we have used the equationrig g1 o A = g ® id; o A o g~1 which follows from
Aog=g®goA. O

The following definition is a variant of a notion due to Turaev [34].

Definition 3.15. Let G be a (discrete) group. A strict crossed G-category is a strict tensor
categoryD together with

¢ a full tensor subcategor®s C D of homogeneous objects,

e amapd : ObjDs — G constant on isomorphism classes,

e a (strict) homomorphisny : G — AutD (here AutD is the group of invertible strict
tensor functord — D respecting the braiding),

such that

(1) a(X®Y)=0XoY forall X,Y € Dg;

(2) 7¢(Dn) C Dyyq-1, WhereD, C Dg is the full subcategory—*(g).

If D is additive, we require that every objectDfbe a direct sum of objects iR .
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Remark 3.16.

(1) Amapa : Obj Dg — G constant on iso-classes and satisfyiig ® Y) = a(X)a(Y)
is the same as a tensor functbg — G, whereG is the discrete strict monoidal
category with Obg = G.

(2) In [34], Dg = D was assumed. Since we are working with additive categories, in
particular having all finite direct sums, we must allow inhomogeneous objects. This
added generality will be important later on.

(3) Obviously, the definition can be generaldl to non-strict tensor categories, cf. [34].
Also the G-action can be generalized by relaxinghéo be self-equivalences satis-
fying natural isomorphismg,y;, = y,, With suitable coherence, cf., e.g., [4, p. 238].
For our purposes, in particular the application to conformal field theory [28], the above
strict version is sufficient.

In view of Definition 3.15, Propositions 3.11, 3.14 essentially amount to the following
statement.

Proposition 3.17.C x S is a crossed G-category, whefe~ RepG.

Proof. We define(C x S)¢ € C x S to be the full subcategory of homogeneous objects,
and we extend to (C x S)¢ in the obvious fashion. We have already defined an agtion
of G onC x S. Now property (2) follows from Propositio3.14, but property (1) requires

proof. Thus let(X, p), (Y, q) € C x S be homogeneous. In view of Lemma 3.13 we may
compute

d(X,p)d(Y,q)d(X, p)a(Y,q)

~

9

[ » ][]
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=d((X,p)® (Y,9)) (X, p) ® (Y. q)),
which is the desired result.00

Definition 3.18. A braiding for a crossed G-categofy is a family of isomorphisms
cxy:X®Y — XY ® X, defined for allX € D¢, Y € D, such that

st
XQY ——= X'V

l(,‘xyy Cxly! l

XY®X ? X/Y/®X/
Qs

commutesforalk: X — X',r: Y — Y’, and

CX,ZQT =idxz®CX,T OCX,Z®idT, (3.6)

cxey,z =Cxrz;®Iidy oidx ® cy,z, (3.7)
forall X,Y € Dg,Z, T € D.
Remark 3.19. Motivated by applications to algebraic topology (rather than 3-manifolds
as in [34]), a special class of braided crat§&categories was introduced independently
in [4, Definition 2.1]. The ‘catgorical G-crossed modules’ considered there are braided
crossed G-categories that are also categorical groups, i.e., monoidal groupoids whose
objects are invertible up to isomorphism w.&t.

Theorem 3.20.C x S = C is a braided crossed;-category, wheres >~ RepG.

Proof. Let X1 = (X, p) € 50, Y,Z €C, ands € Homp(Y, Z) = Home(I" ® ¥, Z). We
calculate
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2x1 (8)

hox, (s)

1

= yyx,(5) ®idx, 6¢(cx.z) 6 p ®idy.

We have used cocommutativity af, Eq. (3.3), Proposition 3.11 according to which
9(X, p) € G, and the definition of; € AutC x S.

Let now(X, p) € (C x S), and(Y, g) € C x S. Then the above computation and Lem-
ma 3.9 imply

Uex,y) 5 p®q =7ve(q) ® pdilcx,y),

thus this expression defines an isomorphis ) (v.q) € HOMa((X, p) ® (Y, q),
ve(Y, ) ® (X, p)). By definition, the family(c(x, »),(v.¢)) it is natural in the sense of Defin-
ition 3.18. The straightforward verification of the braid relations (3.6)—(3.7) is omitted.

3.3. TheG-spectrum of a Galois extension

Definition 3.21. The G-spectrum SpeP of a G-crossed categor is set{g € G |
D, # #}. The G-spectrum of a crossed G-category is full if it coincides witland trivial
ifitis {e}.

Lemma 3.22. TheG-spectrum of a crossed G-categdhcontains the unit, is closed under
multiplication and under comjgation with elements af. It is closed under inverses1?
has duals, in which casgpecD is a normal subgroup of;.

Proof. The first sentence follows from requirements (1) and (2) in Definition 3.15 and the
second from the fact thatX = (9 X) 1, which follows froml< X ® X. O

Proposition 3.23. Let D be a semisimple rigid crosseg-category. DefininglimD, to be
the sum over the squared dimensions of the simple objects of gragehave

dimD, =dimD, Vg e Sped.
Proof. Let A., A, be the sets of iso-classes of simple object®inD,, respectively, and

let{X;, i € A.} and{Y;, j € A,} be representing objects. Fgre SpecD we may pick a
simple objectZ € Dg, and in view ofX; ® Z € D, we have



276 M. Muger / Journal of Algebra 277 (2004) 256-281

d(2) ) d(X)?=) dXpd(X;®Z)= ) ) d(X)d(¥))dmHomX; ® Z.Y))

i€, €A, i€, jEA,
=Y > d(Xndy)dimHomX;.Y;®Z)= Y _ d(Y))d(Y; ® Z)
i€, jEA, JEA,
=d(Z) Z d(Y))>?.
JEA,

Sinced(Z) =d(Z) # 0, the claim follows. O

Proposition 3.24. LetC, S be as in the preceding section. The embeddihgS’) x S —
C x S gives rise to an isomorphistd x S). = (CNS’) x S.C x S has trivial G-spectrum
iff S C Z2(C).

Proof. If X e CNS’, thency r o crx = id, thus every simple summand ofX) has
gradee. This implies(CNS") x S C (C x S).. As to the converse, every simple object
X1 € C x S is isomorphic to one of the fornX, p), whereX e C is simple andp is a
minimal idempotent. In [24, Proposition 4.2] it was shown that the agtiohG onC x S
acts transitively on the minimal central idempotents in Eng@X)), in particular all simple
summands of(X) appear with the same multiplicity. If «(X) = N @, (X, p;) is the
decomposition into simples, we conclude from Proposition 3.14 that the €&t p;)} is

a conjugacy class 6. If X1 < «(X) has grade, then this conjugacy class {8}, thus
9(X, p;) = e forall i. This means

-5 J (3.8)

for all minimal central idempotentp; in Ends«(X). By linearity, (3.8) holds for all
central idempotentsniparticular for id x) = ¢ ® idx. Plugging this into (3.8), we obtain
(d® Trx)(cx.r o cr.x) =d(X)idr, and by naturality we conclude

SX,Y)=(Try ®Trx)(cx,y ocy,x) =d(X)d(Y)
for all simpleY € S. By [27, Proposition 2.5] this is equivalent %6 € C N S’. Now,

triviality of the G-spectrum is equivalentt6 x S = (C x S8), = (C N S’) x S, which
in turn is equivalentt@ NS’ = C and finally toS c Z»(C). O
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Remark 3.25. We emphasize one observation made in the proof: Whereas every simple
object X1 of C x S defines an elemertX; of G, every simple objeck € C defines a
unigue conjugacy class 1.

Let Sp C S be a full subcategory, where both categories are finite admissible STCs.
Let(I,...), ({o,...) be the corresponding Frobenius algebraSgnsS, respectively, with
automorphism group&o, G. ThenI" = I'p @ Z and Hont/p, Z) = {0}, thus the projector
g € EndrI’ onto Iy is central. The group

N={geG|gog=gq}
is a normal subgroup aff = Aut(I", m, ). It coincides with
N={geG|nx(g) =idgx) VX € So},

whereE : S — Vectc is the fiber functor and x is the representation @f on E(X). This
is easily deduced front' (X) = Hom(1, I" ® X) and the fact thag € G acts onE(X) by
7x(g): ¢ g ®idy o ¢. ThisimpliesGo = G/N.

Theorem 3.26. LetS c C with S ~ RepG. ThenSped x S = N, whereN is the normal
subgroup oiG corresponding to the full inclusiof N Z2(C) € S as aboveC x S has full
G-spectrum iffS N Z2(C) is trivial, i.e., consists only of multiples a&f

Proof. Let ¢ € Ends(I") be the projection ontdp, and letv: I'p — I', v/ : I' — Ip
satisfyv o v’ =g, v ov=idp,. ThenwithX1 = (X, p) € (C x S)g we have

F
X
d(X1)q 0 3(X, p) = _— = () — d(X1q.
() A N
A N
A

where we usedp € SN Z(C). We conclude Spgtx S C N.

In a braided crossed G-categdiywe have isomorphismsyy : X ® ¥ — y,(Y) ® X
wheneverX € Dg. By definition, g € SpecD, thus in the fixpoint categorpSPe® the
action y, disappears an®SPe?D s braided in the usual sense. We therefore have an
intermediate extension

CC(CxS)SPELHS xS
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that is braided. On the other hand, in viewRybposition 3.24 it is @ar that the maximal
intermediate extension dfthat is braided is given by

CCCx(SNZaC))CcCxS.

By the Galois correspondence established in [24, Section 4.2], we&Chavé N Z>(C)) =
(C x S)N, whereN is as defined above. Now the inclusion

(€ % S)SPELXS € 54 (SN Z2(0)) = (€ x S)N

implies N c Sped x S. This completes the proof of Spéc« S = N. The last claim is
immediate. O

The following corollary will be very useful in conformal field theory [28].

Corollary 3.27. If C is modular andRepG ~ S C C, thenC x S has full G-spectrum and
(C % S), is modular.

Proof. Modularity of C is equivalent to triviality ofZ»(C), thus the last statement of
Theorem 3.26 implies Spé€cx S = G. SinceC is modular, [27, Corollary 3.6] implies
Z2(CNS)=S8. Thus(CNS’) x S is modular by [24, Theorem 4.4] and coincides with
(C % S). by Proposition 3.24. O

3.4. Abelian case

Let X € C be simple and leX; e C x S, j € J, be simple objects such thatX) =
@D,cs X;. In [24] it was shown thatG acts ergodically on the center of the algebra
End:(X). In view of dy,(X) = gd(X)g~! this clearly implies that the s¢bX; | j € J}
is a conjugacy class ir. We thus obtain a mafiy from the simple objects i@ to the
conjugacy classes id. In the case wheré is abelian, all simple summands@¥) have
the same grade, which inducesGagrading on the categor§. In the remainder of this
subsection we will give a more explicit description of this grading.

Let thus G be abelian andk = G. Then " = Dricx Xk, where allX;, k € K are
invertible, and End” = @, . EndX; = @, F. By our normalizations o n = 1,
pe = noe¢g € EndI’ is an idempotent, projecting on the summaxid Let X € C and
(X, p) € C x S be simple. By the above considerationsy) is homogeneous, thus (3.5)
defines an element of AU, m, n) = G. In view of X; ® X; = X; we may inserip, into
(3.5) at the appropriate place, obtaining
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Now,

e
7 7

\

d0(X) =3((X, p)) =d ()~ : (3.9)

and we obtain

We have thus shown the following.

Proposition 3.28. ConsiderS ¢ C whereS is symmetric, even and all its simple objects

are one-dimensional, equivalentfy~ RepG with G abelian. Let(I", m, ) be the regular
monoid inS. Then(3.9)defines an elemedp X of G for every simpleX € C. If we define

C¢ to be the full subcategory of homogeneous objects, i.e., of objects all simple summands
X ; of which have the sam®X ;, thenC is a G-graded tensor categoryTo wit,C is a
crossedG-category in the sense of Definitidnl with trivial G-action)

Remark 3.29. This result can be obtained in a more direct way. It suffices to notice that the
mapey : K — F defined bypx (k)idy, = (idx, ® Trx)(cx,x, o cx,,x) is a character ok,

thus an element of. (This goes back at least to [32].) From the above considerations it is
then clear that the two definitions yield the same elemigkite G.
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