
IMRN International Mathematics Research Notices
2004, No. 51

On the Center of a Compact Group

Michael Müger

1 Introduction

With every compact group G one can associate two canonical compact abelian groups, to

wit, the center Z(G) and the abelianization Gab = G/[G,G]. Since every compact group

can be recovered from its (abstract) category of finite-dimensional unitary represen-

tations [3], it is natural to ask whether the said abelian groups can be recovered di-

rectly from Rep G without appealing to a reconstruction theorem à la Tannaka-Krein-

Doplicher-Roberts or Saavedra-Rivano-Deligne-Milne. Since Rep G is a discrete struc-

ture, it is clear that one will rather recover the duals Ĝab and Ẑ(G). In the case of Ĝab

it is well known how to proceed. Writing C = Rep G, let C1 ⊂ C be the full subcategory of

one-dimensional representations. Then the set of isomorphism classes of objects in C1 is

a (discrete) abelian group, and it is easy to see that it is isomorphic to Ĝab. It is natural

to ask whether also Ẑ(G) can be recovered directly from Rep G.

Motivated by certain operator algebraic considerations closely related to and in-

spired by [3], Baumgärtel and Lledó [1, Section 5] defined, for every compact group G, a

discrete abelian group C(G) in terms of the representation category Rep G. They identi-

fied a surjective homomorphism C(G) → Ẑ(G) and conjectured the latter to be an isomor-

phism. They substantiated this conjecture by explicit verification for several finite and

compact Lie groups. (According to [1], the case of SU(N) was checked by C. Schweigert.)

In this paper we prove that Ẑ(G) ∼= C(G) for all compact groups, exploiting a remark

made in [4], and we derive two useful corollaries. Despite our general proof, the exam-

ples in [1] remain quite instructive.
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2 Definitions and preparations

Throughout the paper, G denotes any compact group and Ĝ the set of equivalence classes

of irreducible representations. We allow ourselves the usual harmless sloppiness of not

always distinguishing between an irreducible representation X and its equivalence class

[X] ∈ Ĝ. (Thus “Let X ∈ Ĝ” means “Let X ∈ Ĝ and let X ∈ Rep G be simple such that

[X] = X.”) While Ĝ is a group if and only if G is abelian, there is always a notion of “homo-

morphism” into an abelian group.

Definition 2.1. Let G be a compact group and A an abelian group. A map ϕ : Ĝ → A

is called a t-map (tensor product compatible) if we have ϕ(Z) = ϕ(X)ϕ(Y) whenever

X, Y, Z ∈ Ĝ and Z ≺ X ⊗ Y.

Lemma 2.2. If ϕ : Ĝ → A is a t-map, then ϕ(1) = 1, where the first 1 denotes the trivial

representation of G, and ϕ(X) = ϕ(X)−1 for every X ∈ Ĝ. �

Proof. We have ϕ(1) = ϕ(1 ⊗ 1) = ϕ(1)ϕ(1), thus ϕ(1) = 1. For any X ∈ Ĝ, we have

1 ≺ X ⊗ X, thus 1 = ϕ(1) = ϕ(X)ϕ(X), which proves the second claim. �

The following proposition is essentially due to [1].

Proposition 2.3. For every compact group G, there is a universal t-map pG : Ĝ → C(G).

(Thus for every t-map ϕ : Ĝ → A, there is a unique homomorphism β : C(G) → A of

abelian groups such that

Ĝ
pG

ϕ

C(G)

β

A

(2.1)

commutes.) Here the “chain group” C(G) is the free abelian group (written multiplica-

tively) generated by the set Ĝ of isomorphism classes of irreducible representations of

G modulo the relations [Z] = [X] · [Y] whenever Z is contained in X ⊗ Y. The obvious map

pG : Ĝ → C(G) is a t-map. �

Proof. Clearly we must take β to send the generator [X] of C(G) to ϕ([X]), proving unique-

ness. In view of the definition of a t-map, this is compatible with the relations imposed

on C(G), whence existence of β. �

Remark 2.4. (1) The above elegant definition of C(G) is due to J. Bernstein. In [1], C(G)

was defined as Ĝ/ �, where ∼ is the equivalence relation given by X ∼ Y whenever there
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exist n ∈ N and Z1, . . . , Zn ∈ Ĝ such that both X and Y are contained in Z1 ⊗ · · · ⊗ Zn.

Denoting the ∼-equivalence class of X by 〈X〉, C(G) is an abelian group with respect to

the operations 〈X〉〈Y〉 = 〈Z〉, where Z is any irrep contained in X⊗ Y, and 〈X〉−1 = 〈X〉. The

easy verification of the equivalence of the two definitions is left to the reader.

(2) A chain group C(C), in general nonabelian, satisfying an analogous universal

property, can be defined for any fusion category C, but we need only the case C = Rep G

and write C(G) rather than C(Rep G).

The following, proven in [1], is the most interesting example of a t-map.

Proposition 2.5. The restriction of irreducible representations of G to the center defines

a surjective t-map rG : Ĝ → Ẑ(G). Thus also the homomorphism of abelian groups αG :

C(G) → Ẑ(G) arising as above is surjective. �

Proof. If Z ∈ Ĝ and g ∈ Z(G), then πZ(g) commutes with πZ(G), thus by Schur’s lemma

we have πZ(g) = χZ(g)1Z, where χZ(g) ∈ U(1). Clearly, g �→ χZ(g) is a homomorphism,

thus χZ ∈ Ẑ(G). This defines a map rG : Ĝ → Ẑ(G), which is easily seen to be a t-map.

Since Z(G) is a closed subgroup of G, [6, Theorem 27.46] says that for every irreducible

representation (thus character) χ of Z(G), there is a unitary representation π of G such

that χ ≺ π � Z(G). We thus have rG([π]) = χ, thus rG is surjective. Therefore also the map

αG : C(G) → Ẑ(G) arising from Proposition 2.3 is surjective. �

For brevity, we denote as fusion categories the semisimple C-linear tensor cate-

gories with simple unit and two-sided duals, for example, the C∗-tensor categories with

conjugates, direct sums, and subobjects of [3]. (We do not assume finiteness.) All subcat-

egories considered below are full, monoidal, replete (closed under isomorphisms), and

closed under direct sums, subobjects, and duals, thus they are themselves fusion cate-

gories.

Definition 2.6. Let C be a fusion category. Then C0 denotes the full tensor subcategory

generated by the simple objects X for which there exists a simple object Y ∈ C such that

X ≺ Y ⊗ Y.

Remark 2.7. The subcategory C0 of a fusion category seems to have first been considered

by Etingof et al. in [4, Section 8.5], where the following fact is remarked in parentheses.

The proof might be well known, but we are not aware of a suitable reference.

Proposition 2.8. Let G be a compact group and C = Rep G. Then the category C0 coin-

cides with the full subcategory CZ ⊂ C consisting of those representations that are trivial

when restricted to Z(G). Thus C0 � Rep(G/Z(G)). �
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Proof. If X, Y ∈ Ĝ are simple and X ≺ Y ⊗ Y, then the restriction of X to Z(G) is trivial,

implying C0 ⊂ CZ. As to the converse, let g ∈ G be such that g ∈ ker πX for all X ∈ C0. This

holds if and only if (πY ⊗ πY)(g) = 1 for all simple Y ∈ Rep G. The latter means

πY(g) ⊗ πY

(
g−1

)t
= 1, (2.2)

which is true if and only if πY(g) ∈ C1Y . Now, if g ∈ G is represented by scalars in all

irreps Y ∈ Ĝ, then g ∈ Z(G). (This follows from the fact that the irreducible representa-

tions separate the elements of G.) In view of the Galois correspondence of full monoidal

subcategories D ⊂ Rep G and closed normal subgroups H ⊂ G given by

HD =
{
g ∈ G | πX(g) = id ∀X ∈ D

}
,

Obj DH =
{
X ∈ Rep G | πX(g) = id ∀g ∈ H

}
,

(2.3)

we have HC0
⊂ Z(G) = HCZ

, thus CZ ⊂ C0 and therefore C0 = CZ. �

Lemma 2.9. Let G be compact and let C = Rep G. For a simple object X ∈ C, pG([X]) = 1 if

and only if X ∈ C0. �

Proof. If Z and Xi, Yi, i = 1, . . . , n, are simple with Xi ≺ Yi ⊗ Yi and Z ≺ X1 ⊗ · · · ⊗ Xn,

then 1, Z ≺ Y1 ⊗ Y1 ⊗ · · · ⊗ Yn ⊗ Yn, thus Z ∼ 1. This implies that pG([X]) = 〈X〉 = 1

for every simple X ∈ C0. Conversely, let X ∈ C be simple such that pG([X]) = 1. This is

equivalent to X ∼ 1, thus there are simple Y1, . . . , Yn such that 1, X ≺ Y1 ⊗ · · · ⊗ Yn. Then

X ≺ Y1 ⊗ · · · ⊗ Yn ⊗ Y1 ⊗ · · · ⊗ Yn, and therefore X ∈ C0. �

3 Results

Theorem 3.1. The homomorphism αG : C(G) → Ẑ(G) is an isomorphism for every com-

pact group G. �

Proof. Since all maps in the diagram

Ĝ
pG

rG

C(G)

αG

Ẑ(G)

(3.1)

are surjective, αG is an isomorphism if and only if ker pG = ker rG. By Lemma 2.9, [X] ∈
ker pG if and only if X ∈ C0. On the other hand, [X] ∈ ker rG if and only if X ∈ CZ. By

Proposition 2.8 we have C0 = CZ, thus we are done. �
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C(G) is defined in terms of the set Ĝ and the multiplicities Nk
ij = dim Hom(πk, πi⊗

πj), i, j, k ∈ Ĝ (the “fusion rules” in physicist parlance). The same information is con-

tained in the representation ring R(G) provided that we take its canonical Z-basis or its

order structure [5] into account. We thus have the following corollary.

Corollary 3.2. The center of a compact group G depends only on the (ordered) represen-

tation ring R(G), not on the associativity constraint or the symmetry of the tensor cate-

gory Rep G. (In general, both the associativity constraint and the symmetry are needed

to determine G up to isomorphism.) �

Remark 3.3. A considerably stronger result holds for connected compact groups. Every

isomorphism of the (ordered) representation rings of two such groups is induced by an

isomorphism of the groups, (cf. [5]). For nonconnected groups this is wrong: the finite

groups D8l and Q8l are nonisomorphic but have isomorphic representation rings (cf. [5]).

Yet, as remarked in [1, Section 5.1], the centers are isomorphic (to Z/2Z), as they must be

by Corollary 3.2.

As an obvious consequence of Proposition 2.3 and Theorem 3.1 we have the fol-

lowing corollary.

Corollary 3.4. Let G be a compact group and A an abelian group. Then every t-map ϕ :

Ĝ → A factors through Ẑ(G), that is, there is a homomorphism β : Ẑ(G) → A of abelian

groups such that

Ĝ
rG

ϕ

Ẑ(G)

β

A

(3.2)

commutes. �

Remark 3.5. This result should be considered as dual to the well-known (and much eas-

ier) fact that every homomorphism G → A from a group into an abelian group factors

through the quotient map G → Gab.

Remark 3.6. The results of this paper were formulated for compact groups mainly be-

cause of the author’s taste and background. In view of [2], all results of this paper gener-

alize without change to proreductive algebraic groups over algebraically closed fields of

characteristic zero.
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