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Abstract: The aim of the paper is twofold. First, we show that a quantum field theory
A living on the line and having a group G of inner symmetries gives rise to a category
G−LocA of twisted representations. This category is a braided crossed G-category in
the sense of Turaev [60]. Its degree zero subcategory is braided and equivalent to the
usual representation category RepA. Combining this with [29], where RepAwas proven
to be modular for a nice class of rational conformal models, and with the construction
of invariants of G-manifolds in [60], we obtain an equivariant version of the following
chain of constructions: Rational CFT � modular category � 3-manifold invariant.

Secondly, we study the relation betweenG−LocA and the braided (in the usual sense)
representation category RepAG of the orbifold theory AG. We prove the equivalence
RepAG � (G−LocA)G, which is a rigorous implementation of the insight that one
needs to take the twisted representations ofA into account in order to determine RepAG.
In the opposite direction we have G−LocA � RepAG � S, where S ⊂ RepAG is the
full subcategory of representations of AG contained in the vacuum representation of A,
and � refers to the Galois extensions of braided tensor categories of [44, 48].

Under the assumptions that A is completely rational and G is finite we prove that
A has g-twisted representations for every g ∈ G and that the sum over the squared
dimensions of the simple g-twisted representations for fixed g equals dim RepA. In the
holomorphic case (where RepA � VectC) this allows to classify the possible categories
G−LocA and to clarify the rôle of the twisted quantum doublesDω(G) in this context, as
will be done in a sequel. We conclude with some remarks on non-holomorphic orbifolds
and surprising counterexamples concerning permutation orbifolds.
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1. Introduction

It is generally accepted that a chiral conformal field theory (CFT) should have a braided
tensor category of representations, cf. e.g. [41]. In order to turn this idea into rigorous
mathematics one needs an axiomatic formulation of chiral CFTs and their representa-
tions, the most popular framework presently being the one of vertex operator algebras
(VOAs), cf. [26]. It is, however, quite difficult to define a tensor product of representa-
tions of a VOA, let alone to construct a braiding. These difficulties do not arise in the
operator algebraic approach to CFT, reviewed e.g. in [22]. (For the general setting see
[24].) In the latter approach it has even been possible to give a model-independent proof
of modularity (in the sense of [59]) of the representation category for a natural class
of rational CFTs [29]. This class contains the SU(n) WZW-models and the Virasoro
models for c < 1 and it is closed w.r.t. direct products, finite extensions and subtheories
and coset constructions. Knowing modularity of RepA for rational chiral CFTs is very
satisfactory, since it provides a rigorous way of associating an invariant of 3-manifolds
with the latter [59].

It should be mentioned that the strengths and weaknesses of the two axiomatic ap-
proaches are somewhat complementary. The operator algebraic approach has failed so
far to reproduce all the insights concerning the conformal characters afforded by other
approaches. (A promising step towards a fusion of the two axiomatic approaches has
been taken in [61].)

Given a quantum field theory (QFT) A, conformal or not, it is interesting to consider
actions of a group G by global symmetries, i.e. by automorphisms commuting with
the space-time symmetry. In this situation it is natural to study the relation between the
categories RepA and RepAG, where AG is the G-fixed subtheory of A. In view of the
connection with string theory, in which the fixpoint theory has a geometric interpretation,
one usually speaks of ‘orbifold theories’.

In fact, for a quantum field theory A in Minkowski space of d ≥ 2 + 1 dimen-
sions and a certain category DHR(A) of representations [16] – admittedly too small
to be physically realistic – the following have been shown [19]: (1) DHR(A) is sym-
metric monoidal, semisimple and rigid, (2) there exists a compact group G such that
DHR(A) � RepG, (3) there exists a QFT F on which G acts by global symmetries
and such that (4) FG ∼= A, (5) the vacuum representation of F , restricted to A, contains
all irreducible representations in DHR(A), (6) all intermediate theories A ⊂ B ⊂ F

are of the form B = FH for some closed H �G, and (7) DHR(F) is trivial. All this
should be understood as a Galois theory for quantum fields.

These results cannot possibly hold in low-dimensional CFT for the simple reason
that a non-trivial modular category is never symmetric. Turning to models with symme-
try group G, we will see that G acts on the category RepA and that RepAG contains
the G-fixed subcategory (RepA)G as a full subcategory. (The objects of the latter are
precisely the representations of AG that are contained in the restriction to AG of a rep-
resentation of A.) Now it is known from models, cf. e.g. [11], that (RepA)G �� RepAG

wheneverG is non-trivial. This can be quantified as dim RepAG = |G| dim(RepA)G =
|G|2 dim RepA, cf. e.g. [64, 45]. Furthermore, it has been known at least since [11] that
RepAG is not determined completely by RepA. This is true even in the simplest case,
where RepA is trivial but RepAG depends on an additional piece of information per-
taining to the ‘twisted representations’ ofA. (Traditionally, cf. in particular [11, 12, 10],
it is believed that this piece of information is an element of H 3(G,T), but the situation
is considerably more complicated as we indicate in Subsect. 4.2 and will be elaborated
further in a sequel [49] to this work.
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Already this simplest case shows that a systematic approach is needed. It turns out
that the right structure to use are the braided crossed G-categories recently introduced for
the purposes of algebraic [7] and differential [60] topology. Roughly speaking, a crossed
G-category is a tensor category carrying aG-grading ∂ (on the objects) and a compatible
G-action γ . A braiding is a family of isomorphisms (cX,Y : X⊗ Y → XY ⊗X), where
XY = γ∂X(Y ), satisfying a suitably generalized form of the braid identities. In Sect.
2 we will show that a QFT on the line carrying a G-action defines a braided crossed
G-categoryG−LocAwhose degree zero part is RepA. After some further preparation it
will turn out that the additional information contained in G−LocA is precisely what is
needed in order to compute RepAG. On the one hand, it is easy to define a ‘restriction
functor’R : (G−LocA)G → RepAG, cf. Subsect. 3.1. On the other hand, the procedure
of ‘α-induction’ from [35, 62, 4] provides a functor E : RepAG → (G−LocA)G that is
inverse to R, proving the braided equivalence

RepAG � (G−LocA)G. (1.1)

Yet more can be said. We recall that given a semisimple rigid braided tensor category C
over an algebraically closed field of characteristic zero and a full symmetric subcategory
S that is even (all objects have twist +1 and thus there exists a compact groupG such that
S � RepG) there exists a tensor category C � S together with a faithful tensor functor
ι : C → C � S. C � S is braided if S is contained in the center Z2(C) of C [5, 44] and
a braided crossed G-category in general [48, 30]. Applying this to the full subcategory
S ⊂ RepAG of those representations that are contained in the vacuum representation of

A, we show that the functorE factors asE = (RepAG
ι−→ RepAG�S F−→ G−LocA),

where F : RepAG � S → G−LocA is a full and faithful functor of braided crossed
G-categories. For finite G we prove the latter to be an equivalence:

G−LocA � RepAG � S. (1.2)

Thus the pair (RepAG,S) contains the same information asG−LocA (with its structure
as braided crossed G-category). We conclude that the categorical framework of [48] and
the quantum field theoretical setting of Sect. 2 are closely related.

In [29] it was proven that RepA is a modular category [59] ifA is completely rational.
In Sect. 4 we use this result to prove that a completely rational theory carrying a finite
symmetry G always admits g-twisted representations for every g ∈ G. This is an ana-
logue of a similar result [13] for vertex operator algebras. (However, two issues must be
noted. First, it is not yet known when a finite orbifold VG of a – suitably defined – rational
VOA V is again rational, making it at present necessary to assume rationality of VG.
Secondly, no full construction of a braided G-crossed category of twisted representations
has been given in the VOA framework.) In fact we have the stronger result

∑

Xi∈(G−LocA)g

d(Xi)
2 =

∑

Xi∈LocA

d(Xi)
2 =: dim LocA ∀g ∈ G,

where the summations run over the isoclasses of simple objects in the respective cate-
gories.

Let us briefly mention some interesting related works. In the operator algebraic set-
ting, conformal orbifold models were considered in particular in [64, 37, 27]. In [64]
it is shown that AG is completely rational if A is completely rational and G is finite,
a result that we will use. The other works consider orbifolds in affine models of CFT,
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giving a fairly complete analysis of RepAG. The overlap with our model independent
categorical analysis is small. Concerning the VOA setting we limit ourselves to men-
tioning [13, 14] where suitably defined twisted representations of A are considered and
their existence is proven for all g ∈ G. Also holomorphic orbifolds are considered. The
works [32, 30, 31] are predominantly concerned with categorical considerations, but the
connection with VOAs and their orbifolds is outlined in [32, Sect. 5], a more detailed
treatment being announced. [30, II] and [31] concern similar matters as [44, 48] from a
somewhat different perspective. All in all it seems fair to say, however, that no complete
proofs of analogues of our Theorems 2.21, 3.18 and 4.2 for VOAs have been published.

The paper is organized as follows. In Sect. 2 we show that a chiral conformal field
theory A carrying a G-action gives rise to a braided crossed G-category G−LocA of
(twisted) representations. Even though the construction is a straightforward generaliza-
tion of the procedure in the ungraded case, we give complete details in order to make the
constructions accessible to readers who are unfamiliar with algebraic QFT. We first con-
sider theories on the line, requiring only the minimal set of axioms necessary to define
G−LocA. We then turn to theories on the circle, establish the connection between the
two settings and review the results of [29] on completely rational theories. In Sect. 3 we
study the relation between the categoryG−LocA and the representation category RepAG

of the orbifold theory AG, proving (1.1) and (1.2). In Sect. 4 we focus on completely
rational CFTs [29] and finite groups, obtaining stronger results. We give a preliminary
discussion of the ‘holomorphic’ case where RepA is trivial. A complete analysis of this
case is in preparation and will appear elsewhere [49]. We conclude with some comments
and counterexamples concerning orbifolds of non-holomorphic models.

Most results of this paper were announced in [45], which seems to be the first refer-
ence to point out the relevance of braided crossed G-categories in the context of orbifold
CFT.

2. Braided Crossed G-Categories in Chiral CFT

2.1. QFT on R and twisted representations. In this subsection we consider QFTs living
on the line R. We begin with some definitions. Let K be the set of intervals in R, i.e.
the bounded connected open subsets of R. For I, J ∈ K we write I < J and I > J if
I ⊂ (−∞, inf J ) or I ⊂ (sup J,+∞), respectively. We write I⊥ = R − I .

For any Hilbert space H, B(H) is the set of bounded linear operators on H, and for
M ⊂ B(H) we write M∗ = {x∗ | x ∈ M} and M ′ = {x ∈ B(H) | xy = yx ∀y ∈ M}.
A von Neumann algebra (on H) is a set M ⊂ B(H) such that M = M∗ = M ′′, thus
in particular it is a unital ∗-algebra. A factor is a von Neumann algebra M such that
Z(M) ≡ M ∩M ′ = C1. A factor M (on a separable Hilbert space) is of type III iff for
every p = p2 = p∗ ∈ M there exists v ∈ M such that v∗v = 1, vv∗ = p. If M,N
are von Neumann algebras thenM ∨N is the smallest von Neumann algebra containing
M ∪N , in fact: M ∨N = (M ′ ∩N ′)′.

Definition 2.1. A QFT on R is a triple (H0, A,�), usually simply denoted by A, where

1. H0 is a separable Hilbert space with a distinguished non-zero vector �,
2. A is an assignment K � I �→ A(I) ⊂ B(H0), where A(I) is a type III factor.

These data are required to satisfy

• Isotony: I ⊂ J ⇒ A(I) ⊂ A(J ),
• Locality: I ⊂ J⊥ ⇒ A(I) ⊂ A(J )′,
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• Irreducibility: ∨I∈KA(I) = B(H0) (equivalently, ∩I∈KA(I)′ = C1),
• Strong additivity: A(I) ∨ A(J ) = A(K) whenever I, J ∈ K are adjacent, i.e.
I ∩ J = {p}, and K = I ∪ J ∪ {p},

• Haag duality A(I⊥)′ = A(I) for all I ∈ K,

where we have used the unital ∗-algebras

A∞ =
⋃

I∈K
A(I) ⊂ B(H0),

A(I⊥) = Alg {A(J ), J ∈ K, I ∩ J = ∅} ⊂ A∞.

Remark 2.2. 1. Note that A∞ is the algebraic inductive limit, no closure is involved. We
have Z(A∞) = C1 as a consequence of the fact that the A(I) are factors.

2. The above axioms are designed to permit a rapid derivation of the desired categor-
ical structure. In Subsect. 2.4 we will consider a set of axioms that is more natural from
the mathematical as well as physical perspective.

Our aim is now to associate a strict braided crossed G-category G−LocA to any
QFT on R equipped with a G-action on A in the sense of the following :

Definition 2.3. Let (H0, A,�) be a QFT on R. A topological groupG acts onA if there
is a strongly continuous unitary representation V : G → U(H0) such that

1. βg(A(I)) = A(I) ∀g ∈ G, I ∈ K, where βg(x) = V (g)xV (g)∗.
2. V (g)� = �.
3. If βg � A(I) = id for some I ∈ K then g = e.

Remark 2.4. 1. Condition 3 will be crucial for the definition of the G-grading on G−
LocA.

2. In this section the topology ofG is not taken into account. In Sect. 3 we will mostly
be interested in finite groups, but we will also comment on infinite compact groups.

The subsequent considerations are straightforward generalizations of the well known
theory [16, 20, 21] forG = {e}. Since modifications of the latter are needed throughout
– and also in the interest of the non-expert reader – we prefer to develop the case for
non-trivial G from scratch. Readers who are unfamiliar with the following well-known
result are encouraged to do the easy verifications. (We stick to the tradition of denoting
the objects of EndB by lower case Greek letters.)

Definition/Proposition 2.5. Let B be a unital ∗-subalgebra of B(H). Let EndB be the
category whose objects ρ, σ, . . . are unital ∗-algebra homomorphisms fromB into itself.
With

Hom(ρ, σ ) = {s ∈ B | sρ(x) = σ(x)s ∀x ∈ B},
t ◦ s = ts, s ∈ Hom(ρ, σ ), t ∈ Hom(σ, η),

ρ ⊗ σ = ρ(σ(·)),
s ⊗ t = sρ(t) = ρ′(t)s, s ∈ Hom(ρ, ρ′), t ∈ Hom(σ, σ ′),

EndB is a C-linear strict tensor category with unit 1 = idB and positive ∗-operation.
We have End1 = Z(B).

We now turn to the definition of G−LocA as a full subcategory of EndA∞.
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Definition 2.6. Let I ∈ K, g ∈ G. An object ρ ∈ EndA∞ is called g-localized in I if

ρ(x) = x ∀J < I, x ∈ A(J ),
ρ(x) = βg(x) ∀J > I, x ∈ A(J ).

ρ is g-localized if it is g-localized in some I ∈ K. A g-localized ρ ∈ EndA∞ is trans-
portable if for every J ∈ K there exists ρ′ ∈ EndA∞, g-localized in J , such that ρ ∼= ρ′
(in the sense of unitary equivalence in EndA∞).

Remark 2.7. 1. If ρ is g-localized in I and J ⊃ I then ρ is g-localized in J .
2. Direct sums of transportable morphisms are transportable.
3. If ρ is g-localized and h-localized then g = h.

Proof. By 1, there exists I ∈ K such that ρ is g-localized in I and h-localized in I . If
J > I then ρ � A(J ) = βg = βh, and Condition 3 of Definition 2.3 implies g = h. ��

Definition 2.8. G−LocA is the full subcategory of EndA∞ whose objects are finite
direct sums of G-localized transportable objects of EndA∞. Thus ρ ∈ EndA∞ is in
G−LocA iff there exists a finite set� and, for all i ∈ �, there exist gi ∈ G, ρi ∈ EndA∞
gi-localized transportable, and vi ∈ Hom(ρi, ρ) such that v∗

i ◦ vj = δij and

ρ =
∑

i

vi ρi(·) v∗
i .

We say ρ ∈ G−LocA is G-localized in I ∈ K if there exists a decomposition as above
where all ρi are gi-localized in I and transportable and vi ∈ A(I) ∀i.

For g ∈ G, let (G−LocA)g be the full subcategories ofG−LocA consisting of those
ρ that are g-localized, and let (G−LocA)hom be the union of the (G−LocA)g, g ∈ G.
We write LocA = (G−LocA)e.

For g ∈ G define γg ∈ Aut(G−LocA) by

γg(ρ) = βgρβ
−1
g ,

γg(s) = βg(s), s ∈ Hom(ρ, σ ) ⊂ A∞.

Definition 2.9. LetG be a (discrete) group. A strict crossed G-category is a strict tensor
category D together with

• a full tensor subcategory Dhom ⊂ D of homogeneous objects,
• a map ∂ : Obj Dhom → G constant on isomorphism classes,
• a homomorphism γ : G → Aut D (monoidal self-isomorphisms of D)

such that

1. ∂(X ⊗ Y ) = ∂X ∂Y for all X, Y ∈ Dhom,
2. γg(Dh) ⊂ Dghg−1 , where Dg ⊂ Dhom is the full subcategory ∂−1(g).

If D is additive we require that every object of D be a direct sum of objects in Dhom.

Proposition 2.10. G− LocA is a C-linear crossed G-category with End1 = Cid1,
positive ∗-operation, direct sums and subobjects (i.e. orthogonal projections split).
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Proof. The categories (G−LocA)g, g ∈ G are mutually disjoint by Remark 2.7.3. This
allows to define the map ∂ : Obj (G−LocA)hom → G required by Definition 2.9. If ρ
is g-localized in I and σ is h-localized in J then ρ ⊗ σ = ρσ is gh-localized in any
K ∈ K, K ⊃ I ∪ J . ThusG−LocA is a tensor subcategory of EndA∞ and Condition
1 of Definition 2.9 holds. By construction, G−LocA is additive and every object is a
finite direct sum of homogeneous objects. It is obvious that γg commutes with ◦ and
with ⊗ on objects. Now,

γg(s ⊗ t) = βg(s)βg(ρ(t)) = βg(s)γg(ρ)(βg(t)) = γg(s)⊗ γg(t).

Furthermore, if s ∈ Hom(ρ, σ ) then βg(s) βgρ(x) = βgσ(x) βg(s), and replacing
x → β−1

g (x) we find βg(s) ∈ Hom(γg(ρ), γg(σ )). Thus γg it is a strict monoidal
automorphism of G−LocA. Obviously, the map g �→ γg is a homomorphism. If ρ is
h-localized in I and J > I then

γg(ρ) � A(J ) = βgρβ
−1
g = βgβhβ

−1
g ,

thus γg(ρ) is ghg−1-localized in I , thus Condition 2 of Definition 2.9 is verified.
1 = idA∞ is e-localized, thus in G− LocA and End1 = Z(A∞) = Cid1. Let

p = p2 = p∗ ∈ End(ρ). There exists I ∈ K such thatp ∈ A(I), and by the type III prop-
erty, cf. 2.24.1, we find v ∈ A(I) such that vv∗ = p, v∗v = 1. Defining ρ1 = v∗ρ(·)v
we have v ∈ Hom(ρ1, ρ), thus G−LocA has subobjects. Finally, for any finite set �
and any I ∈ K we can find vi ∈ A(I), i ∈ � such that

∑
i viv

∗
i = 1, v∗

i vj = δij1. If
ρi ∈ G−LocA we find that ρ = ∑

i viρi(·)v∗
i is a direct sum. ��

Remark 2.11. Due to the fact that we consider only unital ρ ∈ EndA∞, the category
G−LocA does not have zero objects, thus cannot be additive or abelian. This could
be remedied by dropping the unitality condition, but we refrain from doing so since it
would unnecessarily complicate the analysis without any real gains.

2.2. The braiding. Before we can construct a braiding forG−LocA some preparations
are needed.

Lemma 2.12. If ρ is g-localized in I then ρ(A(I)) ⊂ A(I) and ρ � A(I) is normal.

Proof. Let J < I or J > I . We have either ρ � A(J ) = id or ρ � A(J ) = βg . In
both cases ρ(A(J )) = A(J ), implying ρ(A(I⊥)) = A(I⊥). Applying ρ to the equa-
tion [A(I), A(I⊥)] = {0} expressing locality we obtain [ρ(A(I)), A(I⊥)] = {0}, or
ρ(A(I)) ⊂ A(I⊥)′ = A(I), where we appealed to Haag duality on R. The last claim
follows from the fact that every unital ∗-endomorphism of a type III factor with separable
predual is automatically normal. ��
Lemma 2.13. Let ρ, σ be g-localized in I . Then Hom(ρ, σ ) ⊂ A(I).

Proof. Let s ∈ Hom(ρ, σ ). Let J < I and x ∈ A(J ). Then sx = sρ(x) = σ(x)s = xs,
thus s ∈ A(J )′. If J > I and x ∈ A(J ) we find sβg(x) = sρ(x) = σ(x)s = βg(x)s.
Since βg(A(J )) = A(J ) we again have s ∈ A(J )′. Thus s ∈ A(I⊥)′ = A(I), by Haag
duality on R. ��
Lemma 2.14. Let ρi ∈ G−LocA, i = 1, 2 be gi-localized in Ii , where I1 < I2. Then

ρ1 ⊗ ρ2 = γg1(ρ2)⊗ ρ1. (2.1)
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Proof. We have I1 = (a, b), I2 = (c, d), where b ≤ c. Let u < a, v > d and define
K = (u, c), L = (b, v). For x ∈ A(K) we have ρ2(x) = x and therefore ρ1ρ2(x) =
ρ1(x). By Lemma 2.12 we have ρ1(x) ∈ A(K), and since γg1(ρ2) is g1g2g

−1
1 -localized

in I2 we find γg1(ρ2)(ρ1(x)) = ρ1(x). Thus (2.1) holds for x ∈ A(K). Consider now
x ∈ A(L). By Lemma 2.12 we have ρ2(x) ∈ A(L) and thus ρ1ρ2(x) = βg1ρ2(x). On
the other hand, ρ1(x) = βg1(x) and therefore

γg1(ρ2)ρ1(x) = βg1ρ2β
−1
g1
βg1(x) = βg1ρ2(x),

thus (2.1) also holds for x ∈ A(L). By strong additivity, A(K) ∨ A(L) = A(u, v), and
by local normality of ρ1 and ρ2, (2.1) holds on A(u, v) whenever u < a, v > d , and
therefore on all of A∞. ��
Remark 2.15. If one drops the assumption of strong additivity then instead of Lemma
2.12 one still has ρ(A(J )) ⊂ A(J ) for every J ⊃ I . Lemma 2.14 still holds provided
I1 < I2 and I1 ∩ I2 = ∅.

Recall that for homogeneous σ we write σρ = γ∂(σ)(ρ) as in [60].

Definition 2.16. A braiding for a crossed G-category D is a family of isomorphisms
cX,Y : X ⊗ Y → XY ⊗X, defined for all X ∈ Dhom, Y ∈ D, such that

(i) the diagram

X ⊗ Y
s ⊗ t� X′ ⊗ Y ′

XY ⊗X

cX,Y

�

Xt ⊗ s
� X′

Y ′ ⊗X′

cX′,Y ′
�

(2.2)

commutes for all s : X → X′ and t : Y → Y ′,
(ii) for all X, Y ∈ Dhom, Z, T ∈ D we have

cX,Z⊗T = idXZ ⊗ cX,T ◦ cX,Z ⊗ idT , (2.3)

cX⊗Y,Z = cX,YZ ⊗ idY ◦ idX ⊗ cY,Z, (2.4)

(iii) for all X ∈ Dhom, Y ∈ D and k ∈ G we have

γk(cX,Y ) = cγk(X),γk(Y ). (2.5)

Proposition 2.17. G−LocA admits a unitary braiding c. If ρ1, ρ2 are localized as in
Lemma 2.14 then cρ1,ρ2 = idρ1⊗ρ2 = idρ1ρ2⊗ρ1 .

Proof. Let ρ ∈ (G−LocA)g , σ ∈ G−LocA be G-localized in I, J ∈ K, respectively.
Let Ĩ < J . By transportability we can find ρ̃ ∈ (G−LocA)g localized in Ĩ and a unitary
u ∈ Hom(ρ, ρ̃). By Lemma 2.14 we have ρ̃ ⊗ σ = γg(σ )⊗ ρ, thus the composite

cρ,σ : ρ ⊗ σ
u⊗ idσ� ρ̃ ⊗ σ ≡ γg(σ )⊗ ρ̃

idγg(σ ) ⊗ u∗
� γg(σ )⊗ ρ

is unitary and a candidate for the braiding. As an element of A∞, cρ,σ = γg(σ )(u
∗)u =

βgσβ
−1
g (u∗)u. In order to show that cρ,σ is independent of the choices involved pick
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˜̃ρ ∈ (G−LocA)g g-localized in Ĩ (we may assume the same localization interval since

ρ localized in Ĩ is also localized in ˜̃
I ⊃ Ĩ ) and a unitary ũ ∈ Hom(ρ, ˜̃ρ). In view of

Lemma 2.13 we have uũ∗ ∈ Hom( ˜̃ρ, ρ̃) ⊂ A(Ĩ ), implying γg(σ )(uũ∗) = uũ∗. The
computation

cρ,σ = γg(σ )(u
∗)u = γg(σ )(u

∗)(uũ∗)(̃uu∗)u
= γg(σ )(u

∗(uũ∗))(̃uu∗)u = γg(σ )(̃u
∗)̃u = c̃ρ,σ

shows that cρ,σ is independent of the chosen ρ̃ and u ∈ Hom(ρ, ρ̃).
Now consider σ, σ ′ ∈ G−LocA G-localized in J , ρ ∈ (G−LocA)g and t ∈

Hom(σ, σ ′). We pick Ĩ < J , ρ̃ g-localized in Ĩ and a unitary u ∈ Hom(ρ, ρ̃). We define
cρ,σ = γg(σ )(u

∗)u and cρ,σ ′ = γg(σ
′)(u∗)u as above. The computation

cρ,σ ′ ◦ idρ ⊗ t = γg(σ
′)(u∗)u ρ(t) = βgσ

′β−1
g (u∗)u ρ(t)

= βgσ
′β−1
g (u∗)ρ̃(t)u = βgσ

′β−1
g (u∗)βg(t)u

= βg[σ ′β−1
g (u∗)t]u = βg[tσβ−1

g (u∗)]u
= βg(t)βgσβ

−1
g (u∗)u = βg(t)γg(σ )(u

∗)u
= βg(t)⊗ idρ ◦ cρ,σ

proves naturality (2.2) of cρ,σ w.r.t. σ . (In the fourth step ρ̃(t) = βg(t) is due to t ∈
Hom(σ, σ ′) ⊂ A(J ), cf. Lemma 2.13, and the fact that ρ′ is g-localized in Ĩ < J .)

Next, let ρ, ρ′ ∈ (G−LocA)g , s ∈ Hom(ρ, ρ′) and let σ ∈ G−LocA beG-localized
in J . Pick Ĩ < J , ρ̃, ρ̃′g-localized in Ĩ and unitaries u ∈ Hom(ρ, ρ̃), u′ ∈ Hom(ρ′, ρ̃′).
Then

cρ′,σ ◦ s ⊗ idσ = γg(σ )(u
′∗)u′ s = γg(σ )(u

′∗)(u′su∗)u
= γg(σ )(u

′∗(u′su∗))u = γg(σ )(su
∗)u

= γg(σ )(s)γg(σ )(u
∗)u = idγg(σ ) ⊗ s ◦ cρ,σ

proves naturality of cρ,σ w.r.t. ρ. (Here we used the fact that ρ̃, ρ̃′ are g-localized in
Ĩ , implying u′su∗ ∈ Hom(ρ̃, ρ̃′) ⊂ A(Ĩ ) by Lemma 2.13 and finally γg(σ )(u′su∗) =
u′su∗.)

Next, let ρ ∈ (G−LocA)g and let σ, η ∈ G−LocA beG-localized in J . We pick ρ̃
g-localized in Ĩ < J and a unitary u ∈ Hom(ρ, ρ̃). Then

cρ,σ⊗η = γg(ση)(u
∗)u

= γg(ση)(u
∗) γg(σ )(u) γg(σ )(u∗) u

= γg(σ )[γg(η)(u
∗)u]γg(σ )(u

∗)u
= idγg(σ ) ⊗ cρ,η ◦ cρ,σ ⊗ idη

proves the braid relation (2.3).
Finally, let ρ ∈ (G−LocA)g, σ ∈ (G−LocA)h and let η ∈ G−LocA be G-local-

ized in J . Pick ρ̃ ∈ (G−LocA)g, σ̃ ∈ (G−LocA)hG-localized in Ĩ < J and unitaries
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u ∈ Hom(ρ, ρ̃), v ∈ Hom(σ, σ̃ ). Then w = uρ(v) = ρ̃(v)u ∈ Hom(ρσ, ρ̃σ̃ ), thus

cρ⊗σ,η = γgh(η)(w
∗)w

= γgh(η)(u
∗ρ̃(v∗))uρ(v)

= γgh(η)(u
∗)γgh(η)ρ̃(v∗)uρ(v)

= γgh(η)(u
∗)ρ̃γh(η)(v∗)uρ(v)

= γgh(η)(u
∗)u ρ[γh(η)(v

∗)v]

= γg(γh(η))(u
∗)u ρ[γh(η)(v

∗)v]

= cρ,γh(η) ⊗ idσ ◦ idρ ⊗ cσ,η,

where we used ρ̃γh(η) = γgh(η)ρ̃, cf. Lemma 2.14, proves (2.4). The last claim follows
from ρ1ρ2 = ρ2ρ1ρ2, cf. Lemma 2.14 and the fact that we may take ρ̃ = ρ and u = idρ
in the definition of cρ,σ .

It remains to show the covariance (2.5) of the braiding. Recall that cρ,σ ∈ Hom(ρ ⊗
σ, γg(σ )⊗ρ)was defined as idγg(σ )⊗u∗ ◦ u⊗ idσ for suitable u. Applying the functor
γk we obtain

idγ
kgk−1 (γk(σ )) ⊗ γk(u)

∗ ◦ γk(u)⊗ idγk(σ ) ∈ Hom(γk(ρ)⊗ γk(σ ),

γkgk−1(γk(σ ))⊗ γk(ρ)),

where γk(u) ∈ Hom(γk(ρ), γk(ρ̃)). Since this is of the same form as cγk(ρ),γk(σ ) and
since the braiding is independent of the choice of the intertwiner u, (2.5) follows. ��

2.3. Semisimplicity and rigidity. In view of Lemma 2.12 we can define

Definition 2.18. G−Locf A is the full tensor subcategory ofG−LocA of those objects
ρ satisfying [A(I) : ρ(A(I))] < ∞ whenever ρ is g-localized in I .

The following is proven by an adaptation of the approach of [23].

Proposition 2.19. G−Locf A is semisimple (in the sense that every object is a finite
direct sum of (absolutely) simple objects). Every object of G−Locf A has a conjugate
in the sense of [36] and G−Locf A is spherical [3].

Proof. By standard subfactor theory, [M : ρ(M)] < ∞ implies that the von Neumann
algebra M ∩ ρ(M)′ = End ρ is finite dimensional, thus a multi matrix algebra. This
implies semisimplicity since G−Locf A has direct sums and subobjects.

Clearly, it is sufficient to show that simple objects have conjugates, thus we con-
sider ρ ∈ (G−Locf A)g g-localized in I . By the Reeh-Schlieder property 2.24.3, cf.
e.g. [22], the vacuum � is cyclic and separating for every A(I), I ∈ K, giving rise
to antilinear involutions JI = J(A(I),�) on H0, the modular conjugations. Conditions
1-2 in Definition 2.3 imply V (g)JI = JI V (g) for all I ∈ K, g ∈ G. For z ∈ R and
K = (z,∞) it is known [23, 22] that jK : x �→ JKxJK mapsA(I) ontoA(rzI ), where
rz : R → R is the reflection about z. Thus jK is an antilinear involutive automorphism
of A∞. Choosing z to be in the right hand complement of I , the geometry is as follows:

I rzIz
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Let ρ̃ be g-localized in rzI and u ∈ Hom(ρ̃, ρ) unitary. Dropping the subscript z and
defining

ρ = j ρ̃jβ−1
g ∈ EndA∞,

it is clear that ρ is g−1-localized in I . It is easy to see that d(ρ) = d(ρ) and that ρ is
transportable, thus in (G−Locf A)g−1.

Now consider the subalgebras

A1 =
⋃

I∈K
I⊂(−∞,z)

A(I ), A2 =
⋃

I∈K
I⊂(z,∞)

A(I )

of A∞. We have A′
1 = A′′

2 = JA′′
1J . In view of ρ̃ � A1 = id and ρ � A2 = βg =

Ad V (g) we have

ρ � A1 = u ρ̃(·) u∗ = u · u∗,
ρ̃ � A2 = u∗ ρ(·) u = u∗ βg(·) u = u∗V (g) · V (g)∗u.

We therefore find

ρρ � A1 = ρjρ̃jβ−1
g � A1 = Ad uJ u∗V (g)J V (g)∗ = Ad uJ u∗J ,

where we used the commutativity of J and V (g). Since the above expressions for
ρ � A1, ρ̃ � A2, ρρ � A1 are ultraweakly continuous they uniquely extend to the weak
closures A′′

1, A
′′
2, A

′′
1, respectively. Now,

uJ u∗ ρ(A1)
′′ uJ u∗ = uJ ρ̃(A1)

′′ J u∗ = uJ A′′
1 J u∗ = uA′′

2 u
∗

= (uA′
2 u

∗)′ = (uA′′
1 u

∗)′ = ρ(A′′
1)

′ = ρ(A1)
′.

Thus, J̃ = uJ u∗ is an antiunitary involution whose adjoint action maps ρ(A1)
′′ onto

ρ(A1)
′. Furthermore,u� is cyclic and separating forρ(A1)

′′ and we have (uJ u∗)(u�) =
uJ� = u� and (ρ(x)J̃ ρ(x)J̃ u�, u�) = (xJ xJ�,�) ≥ 0 ∀x ∈ A′′

1. Thus J̃ is
[28, Exercise 9.6.52] the modular conjugation corresponding to the pair (ρ(A1)

′′, u�),
and therefore

x �→ ρρ(x) = J(ρ(A1)′′,u�)J(A′′
1,�)

x J(A′′
1,�)

J(ρ(A1)′′,u�)

is a canonical endomorphism γ : A′′
1 ↪→ ρ(A1)

′′ [34]. Since [A′′
1 : ρ(A′′

1)] = [A(I) :
ρ(A(I))] = d(ρ)2 is finite by assumption, γ contains [34] the identity morphism, to
wit there is V ∈ A′′

1 such that V x = ρρ(x)V for all x ∈ A′′
1. Since ρρ is (e-)localized

in I , Lemma 2.13 implies V ∈ A(I), thus the equation V x = ρρ(x)V also holds for
x ∈ A(I ′), and strong additivity together with local normality of ρ, ρ imply that it holds
for all x ∈ A∞. Thus 1 = idA∞ ≺ ρρ, and ρ is a conjugate, in the sense of [36],
of ρ in the tensor ∗-category G−Locf A. Choosing a conjugate or dual ρ for every
ρ ∈ G−Locf A and duality morphisms e : ρ ⊗ ρ → 1, 1 → ρ ⊗ ρ satisfying the
triangular equations we may consider G−Locf A as a spherical category. ��
Remark 2.20. Every object ρ in a spherical orC∗-category with simple unit has a dimen-
sion d(ρ) living in the ground field, C in the present situation. This dimension of an
object localized in I is related to the index by the following result of Longo [34]:

d(ρ) = [A(I) : ρ(A(I))]1/2.
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Summarizing the preceding discussion we have

Theorem 2.21. G−LocA is a braided crossed G-category and G−Locf A is a rigid
semisimple braided crossed G-category.

Remark 2.22. 1. It is obvious that for any braided G-crossed category D, the degree zero
subcategory De is a braided tensor category. In the case at hand, LocA = (G−LocA)e
is the familiar category of transportable localized morphisms defined in [20]. But for
non-trivial symmetries G, the category G−LocA contains information that cannot be
obtained from LocA.

2. The closest precedent to our above considerations can be found in [54]. There,
however, several restrictive assumptions were made, in particular only abelian groupsG
were considered. Under these assumptions theG-crossed structure essentially trivializes.

2.4. Chiral conformal QFT on S1. In this subsection we briefly recall the main facts
pertinent to chiral conformal field theories on S1 and their representations, focusing in
particular on the completely rational models introduced and analyzed in [29]. While
nothing in this subsection is new, we include the material since it will be essential in
what follows.

Let I be the set of intervals in S1, i.e. connected open non-empty and non-dense
subsets of S1. (I can be identified with the set {(x, y) ∈ S1 × S1 | x �= y}.) For every
J ⊂ S1, J ′ is the interior of the complement of J . This clearly defines an involution
on I.

Definition 2.23. A chiral conformal field theory is a quadruple (H0, A,U,�), usually
simply denoted by A, where

1. H0 is a separable Hilbert space with a distinguished non-zero vector �.
2. A is an assignment I � I �→ A(I), where A(I) is a von Neumann algebra on H0.
3. U is a strongly continuous unitary representation of the Möbius group PSU(1, 1) =
SU(1, 1)/{1,−1}, i.e. the group of those fractional linear maps C → C which map
the circle into itself, on H0.

These data must satisfy

• Isotony: I ⊂ J ⇒ A(I) ⊂ A(J ),
• Locality: I ⊂ J ′ ⇒ A(I) ⊂ A(J )′,
• Irreducibility: ∨I∈IA(I) = B(H0) (equivalently, ∩I∈IA(I)′ = C1),
• Covariance: U(a)A(I)U(a)∗ = A(aI) ∀a ∈ PSU(1, 1), I ∈ I,
• Positive energy: L0 ≥ 0, where L0 is the generator of the rotation subgroup of
PSU(1, 1),

• Vacuum: every vector in H0 which is invariant under the action of PSU(1, 1) is a
multiple of �.

2.24. For consequences of these axioms see, e.g., [22]. We limit ourselves to listing
some facts:

1. Type: The von Neumann algebra A(I) is a factor of type III (in fact III1) for every
I ∈ I.

2. Haag duality: A(I)′ = A(I ′) ∀I ∈ I.
3. Reeh-Schlieder property: A(I)� = A(I)′� = H0 ∀I ∈ I.
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4. The modular groups and conjugations associated with (A(I),�) have a geometric
meaning, cf. [6, 22] for details.

5. Additivity: If I, J ∈ I are such that I ∩ J, I ∪ J ∈ I thenA(I)∨A(J ) = A(I ∪ J ).
In order to obtain stronger results we introduce two further axioms.

Definition 2.25. Two intervals I, J ∈ I are called adjacent if their closures intersect in
exactly one point. A chiral CFT satisfies strong additivity if

I, J adjacent ⇒ A(I) ∨ A(J ) = A(I ∪ J 0
).

A chiral CFT satisfies the split property if the map

m : A(I)⊗alg A(J ) → A(I) ∨ A(J ), x ⊗ y �→ xy

extends to an isomorphism of von Neumann algebras whenever I, J ∈ I satisfy
I ∩ J = ∅.

Remark 2.26. By Möbius covariance strong additivity holds in general if it holds for
one pair I, J of adjacent intervals. Furthermore, every CFT can be extended canoni-
cally to one satisfying strong additivity. The split property is implied by the property
T re−βL0 < ∞ ∀β > 0. The latter property and strong additivity have been verified in
all known rational models.

Definition 2.27. A representation π of A on a Hilbert space H is a family {πI , I ∈ I},
where πI is a unital ∗-representation of A(I) on H such that

I ⊂ J ⇒ πJ � A(I) = πI . (2.6)

π is called covariant if there is a positive energy representation Uπ of the universal
covering group ̂PSU(1, 1) of the Möbius group on H such that

Uπ(a)πI (x)Uπ(a)
∗ = πaI (U(a)xU(a)

∗) ∀a ∈ ̂PSU(1, 1), I ∈ I.
We denote by RepA theC∗-category of all representations on separable Hilbert spaces,
with bounded intertwiners as morphisms.

Definition/Proposition 2.28. If A satisfies strong additivity and π is a representation
then the Jones index of the inclusion πI (A(I)) ⊂ πI ′(A(I ′)) does not depend on I ∈ I
and we define the dimension

d(π) = [πI ′(A(I ′)) : πI (A(I))]
1/2 ∈ [1,∞].

We define Repf A to be the full subcategory of RepA of those representations satisfying
d(π) < ∞.

As just defined, RepA and Repf A are just C∗-categories. In order to obtain the well
known result [20, 22] that the category of all (separable) representations can be equipped
with braided monoidal structure, we need the following:

Proposition 2.29. Every chiral CFT (H0, A,U,�) satisfying strong additivity gives
rise to a QFT on R.
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Proof. We arbitrarily pick a point ∞ ∈ S1 and consider

I∞ = {I ∈ I | ∞ �∈ I }.
Identifying S1 − {∞} with R by stereographic projection

��

��∞
�

�
�

�

we have a bijection between I∞ and K. The family A(I), I ∈ K is just the restriction
of A(I), I ∈ I to I ∈ I∞ ≡ K. By 2.24, A satisfies Haag duality on S1, and together
with strong additivity (on S1) this implies Haag duality (on R) and strong additivity in
the sense of Definition 2.1. ��
Remark 2.30. The definition ofG-actions on a chiral CFT on S1 is analogous to Defini-
tion 2.3, Condition 1 now being required for all I ∈ I. Conditions 1-2 implyV (g)U(a) =
U(a)V (g) ∀g ∈ G, a ∈ PSU(1, 1). (To see this observe that 1-2 imply that V (g) com-
mutes with the modular groups associated with the pairs (A(I),�) for any I ∈ I.
By 2.24.4 the latter are one-parameter subgroups of U(PSU(1, 1)) which generate
U(PSU(1, 1)).) Condition 3 now is equivalent to the more convenient axiom

3’. If U(g) ∈ C1 then g = e.

(Proof. If U(g) ∈ C1 then αg = id, thus g = e by 3. Conversely, if αg acts trivially on
some A(I) then U(g) commutes with A(I) and in fact with all A(I) by V (g)U(a) =
U(a)V (g). Thus the irreducibility axiom implies U(g) ∈ C1.)

Given a CFT on S1 and ignoring a possibly present G-action we have the catego-
ries RepA (Repf A) as well as the braided tensor categories LocA (Locf A) associated
with the restriction of A to R. The following result, cf. [29, Appendix], connects these
categories.

Theorem 2.31. Let (H0, A,U,�) be a chiral CFT satisfying strong additivity. Then
there are equivalences of ∗-categories

LocA � RepA,

Locf A � Repf A,

where Rep(f )A refers to the chiral CFT and Definition 2.27, whereas Loc(f )A refers to
the QFT on R obtained by restriction and Definition 2.8.

Proof. The strategy is to construct a functor Q : LocA → RepA of ∗-categories and
to prove that it is fully faithful and essentially surjective. Let ρ ∈ LocA be localized in
I ∈ K ≡ I∞. Our aim is to define a representation π = (πI , I ∈ I) on the Hilbert
space H0. For every J ∈ I∞ we define πJ = ρ � A(J ), considered as a representation
on H0. If ∞ ∈ J we pick an interval K ∈ I∞, K ∩ J = ∅. By transportability of ρ
there exists ρ′ localized in K and a unitary u ∈ Hom(ρ, ρ′). Defining πJ = u∗ · u we
need to show that πJ is independent of the choices involved. Thus let ρ′′ be localized in
K (this may be assumed by making K large enough) and v ∈ Hom(ρ, ρ′′), giving rise
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to π ′
J = v∗ · v. Now, u ◦ v∗ ∈ Hom(ρ′′, ρ′), thus uv∗ ∈ A(K) by Lemma 2.13, and

therefore

π ′
J (x) = v∗xv = v∗(vu∗uv∗)xv = v∗vu∗xuv∗v = u∗xu = πJ (x),

since x ∈ A(J ) ⊂ A(K)′. Having defined πJ for all J ∈ I we need to show (2.6) for all
I, J ∈ I. There are three cases of inclusions I ⊂ J to be considered: (i) I, J ∈ I∞, (ii)
I ∈ I∞, J �∈ I∞, (iii) I, J �∈ I∞. Case (i) is trivial since πI = πJ = ρ, restricted to
A(I), A(J ) respectively. Case (iii) is treated by using K ⊂ J ′ for the definition of both
πI , πJ and appealing to the uniqueness of the latter. In case (ii) we have πJ = u∗ · u
with u ∈ Hom(ρ, ρ′), ρ′ localized in K ⊂ J ′. For x ∈ A(I) we have πJ (x) = u∗xu =
u∗ρ′(x)u = ρ(x) = πI (x), as desired. This completes the proof of π = {πJ } ∈ RepA.

Let ρ1, ρ2 ∈ LocA and let π1, π2 be the corresponding representations. We claim
that s ∈ Hom(ρ1, ρ2) implies s ∈ Hom(π1, π2). Let ∞ ∈ J , K ∈ I∞,K ∩ J = ∅, ρ′

i
localized in K and ui ∈ Hom(ρi, ρ′

i ) unitaries, such that then πJ,i = u∗
i · ui . We have

u2su
∗
1 ∈ Hom(ρ′

1, ρ
′
2). Since both ρ′

1, ρ
′
2 are localized in K we have u2su

∗
1 ∈ A(K) ⊂

A(J )′. Now the computation

sπJ,1(x) = su∗
1xu1 = u∗

2(u2su
∗
1)xu1 = u∗

2x(u2su
∗
1)u1 = u∗

2xu2s = πJ,2s

shows s ∈ Hom(πJ,1, πJ,2). Since this works for all J such that ∞ ∈ J we have
s ∈ Hom(π1, π2), and we have defined a faithful functor Q : LocA → RepA. Obvi-
ously, Q is faithful. In view of ρ = π � A∞ it is clear that s ∈ Hom(π, π ′) implies
s ∈ Hom(ρ, ρ′), thus Q is full.

Let now π ∈ RepA and I ∈ I. Then πI is a unital ∗-representation of A(I) on a
separable Hilbert space. Since A(I) is of type III and H0 is separable, πI is unitarily
implemented. I.e. there exists a unitary u : H0 → Hπ such that πI (x) = uxu∗ for all
x ∈ A(I). Then (π ′

J ) = (u∗πJ (·)u) is a representation on H0 that satisfies π ′ ∼= π and
π ′
I = πI,0 = id. Haag duality (on S1) implies πJ (A(J )) ⊂ A(J ) whenever J ⊃ I ′. If

we choose I such that ∞ ∈ I then πJ , J ⊃ I ′ defines an endomorphism ρ ofA∞ whose
extension to a representation Q(ρ) coincides with π ′. Thus Q is essentially surjective
and therefore an equivalence LocA � RepA.

Now, ρ ∈ LocA is in Locf A iff d(ρ) = [A(I) : ρ(A(I))]1/2 < ∞ whenever ρ
is localized in I . On the other hand, π ∈ RepA is in Repf A iff d(π) = [πI ′(A(I ′)) :
πI (A(I))]1/2 < ∞. In view of the above construction it is clear that d(π) = d(ρ) if π
is the representation corresponding to ρ. Thus Q restricts to an equivalence Locf A �
Repf A. ��

Using the equivalence Q the braided monoidal structure of Loc(f )A can be trans-
ported to Rep(f )A:

Corollary 2.32. RepA (Repf A) can be equipped with a (rigid) braided monoidal struc-
ture such that there are equivalences

LocA � RepA,

Locf A � Repf A

of braided monoidal categories.
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Remark 2.33. 1. It is quite obvious that the braided tensor structure on RepA provided
by the above constructions is independent, up to equivalence, of the choice of the point
∞ ∈ S1. For an approach to the representation theory of QFTs on S1 that does not rely
on cutting the circle see [21]. The latter, however, seems less suited for the analysis of
G−LocA for non-trivial G since the g-localized endomorphisms of A∞ do not extend
to endomorphisms of the global algebra Auniv of [21] if g �= e.

2. Given a chiral CFTA, the category RepA is a very natural object to consider. Thus
the significance of the degree zero category (G−LocA)e is plainly evident: It enables
us to endow RepA with a braided monoidal structure in a considerably easier way than
any known alternative.

3. By contrast, the rest of the category G−LocA has no immediate physical inter-
pretation. After all, the objects of (G−Locf A)g with g �= e do not represent proper
representations of A since they ‘behave discontinuously at ∞’. In fact, it is not difficult
to prove that, given two adjacent intervals I, J ∈ I and g �= e, there exists no represen-
tation π of A such that π � A(I) = id and π � A(J ) = βg . Thus ρ, considered as a
representation of A∞, cannot be extended to a representation of A. The main physical
relevance of G−Locf A is that – in contradistinction to Repf A – it contains sufficient
information to compute Repf A

G. This will be discussed in the next section.
4. On the purely mathematical side, the categoryG−LocAmay be used to define an

invariant of three dimensional G-manifolds [60], i.e. 3-manifolds equipped with a prin-
cipal G-bundle. As mentioned in the introduction, this provides an equivariant version
of the construction of a 3-manifold invariant from a rational CFT.

As is well known, there are models, like the U(1) current algebra, that satisfy the
standard axioms including strong additivity and the split property and that have infi-
nitely many inequivalent irreducible representations. Since in this work we are mainly
interested in rational CFTs we need another axiom to single out the latter.

Definition/Proposition 2.34. [29]. LetA satisfy strong additivity and the split property.
Let I, J ∈ I satisfy I ∩ J = ∅ and write E = I ∪ J . Then the index of the inclusion
A(E) ⊂ A(E′)′ does not depend on I, J and we define

µ(A) = [A(E′)′ : A(E)] ∈ [1,∞].

A chiral CFT on S1 is completely rational if it satisfies (a) strong additivity, (b) the split
property and (c) µ(A) < ∞.

Remark 2.35. 1. Thus every CFT satisfying strong additivity and the split property comes
along with a numerical invariant µ(A) ∈ [1,∞]. The models where the latter is finite –
the completely rational ones – are among the best behaved (non-trivial) quantum field
theories, in that very strong results on both their structure and representation theory have
been proven in [29]. In particular the invariant µ(A) has a nice interpretation.

2. All known classes of rational CFTs are completely rational in the above sense. For
the WZW models connected to loop groups this is proven in [61, 63]. More importantly,
the class of completely rational models is stable under tensor products and finite exten-
sions and subtheories, cf. Sect. 3 for more details. This has applications to orbifold and
coset models.

Theorem 2.36. [29]. Let A be a completely rational CFT. Then

• Every representation of A on a separable Hilbert space is completely reducible, i.e.
a direct sum of irreducible representations. (For non-separable representations this
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is also true if one assumes local normality, which is automatic in the separable case,
or equivalently covariance.)

• Every irreducible separable representation has finite dimension d(π), thus Repf A
is just the category of finite direct sums of irreducible representations.

• The number of unitary equivalence classes of separable irreducible representations
is finite and

dim Repf A = µ(A),

where dim Repf A is the sum of the squared dimensions of the simple objects.
• The braiding of Locf A � Repf A is non-degenerate, thus Repf A is a unitary mod-

ular category in the sense of Turaev [59].

3. Orbifold Theories and Galois Extensions

3.1. The restriction functor R : (G−LocA)G → LocAG. After the interlude of the
preceding subsection we now return to QFTs defined on R with symmetryG. (Typically
they will be obtained from chiral CFTs on S1 by restriction, but in the first subsections
this will not be assumed.) Our aim is to elucidate the relationship between the catego-
ries G−LocA and LocAG, where AG is the ‘orbifold’ subtheory of G-fixpoints in the
theory A.

Definition 3.1. Let (H, A,�) be a QFT on R with an action (in the sense of Definition
2.3) of a compact groupG. Let HG

0 andA(I)G be the fixpoints under the G-action on H0

and A(I), respectively. Then the orbifold theory AG is the triple (HG
0 , A

G,�), where
AG(I) = A(I)G � HG

0 .

Remark 3.2. 1. The definition relies on � ∈ HG
0 and A(I)GHG

0 ⊂ HG
0 for all I ∈ K.

Denoting byp the projector ontoHG
0 , we haveAG(I) = A(I)G � HG

0 = pA(I)p, where
the right hand side is understood as an algebra acting on pH0 = HG

0 . Furthermore, since
A(I)G acts faithfully on HG

0 we have algebra isomorphisms A(I)G ∼= AG(I).
2. It is obvious that the triple (HG

0 , A
G,�) satisfies isotony and locality. Irreducibility

follows by ∨I∈KAG(I) = p(∨I∈KA(I))p together with ∨IA(I) = B(H0). However,
strong additivity and Haag duality of the fixpoint theory are not automatic. For the time
being we will postulate these properties to hold. Later on we will restrict to settings
where this is automatically the case.

3.3. For later purposes we recall a well known fact about compact group actions on
QFTs in the present setting. Namely, for every I ∈ K, the G-action on A(I) has full
Ĝ-spectrum, [15]. This means that for every isomorphism class α ∈ Ĝ of irreducible
representations of G there exists a finite dimensional G-stable subspace Vα ⊂ A(I) on
which the G-action restricts to the irrep πα . Vα can be taken to be a space of isome-
tries of support 1. (This means that Vα admits a basis {viα, i = 1, . . . , dα} such that∑
i v
i
αv
i
α

∗ = 1 and viα
∗
v
j
α = δij1.) Furthermore, A(I) is generated by A(I)G and the

spaces Vα, α ∈ Ĝ.
These observations have an important consequence for the representation categories

of fixpoint theories [15]. Namely the category Locf AG contains a full symmetric sub-
category S equivalent to the category RepfG of finite dimensional continuous unitary
representations ofG. The objects in S are given by the localized endomorphisms ofAG∞
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of the form ρα(·) = ∑
i v
i
α · viα∗

, where {viα} is a space of isometries with support 1 in
A(I) transforming under the irrep α ∈ Ĝ. (Equivalently, a simple object of ρ ∈ Locf AG

is in S iff the corresponding representation π0 ◦ ρ of AG is contained in the restriction
to AG of the defining (or vacuum) representation of A.)

3.4. We now begin our study of the relationship between G−LocA and LocAG. Let
(G−LocA)G denote theG-invariant objects and morphisms ofG−LocA. By definition
of the G-action on G−LocA, ρ ∈ (G−LocA)G implies ρ ◦ βg = βg ◦ ρ for all g ∈ G,
thus ρ(AG∞) ⊂ AG∞. Every ρ ∈ G−LocA is G-localized in some interval I . In view
of Definition 2.8 it is obvious that the restriction ρ � AG∞ acts trivially on A(J ) not
only if J < I , but also if J > I . Thus ρ � AG∞ is a localized endomorphism of AG∞.
Furthermore, if ρ, σ ∈ (G−LocA)G and s ∈ Hom(G−LocA)G(ρ, σ ) it is easy to see
that s ∈ HomLocAG(ρ � AG∞, σ � AG∞). This suggests that ρ � AG∞ ∈ LocAG. How-
ever, this also requires showing that the restricted morphism ρ � AG∞ is transportable by
morphisms in LocAG. This requires some work.

Proposition 3.5. Let ρ ∈ (G−LocA)G. Then ρ � AG∞ ∈ LocAG.

Proof. By definition, ρ isG-localized in some interval I .As we have seen in 3.4, ρ � AG∞
is localized in I , and it remains to show that ρ � AG∞ is transportable. Let thus J be
another interval. By transportability of ρ ∈ G−LocA, there exists ρ̃ that isG-localized
in J and a unitary u ∈ HomG−LocA(ρ, ρ̃). Define ρ̃g = γg(ρ̃) = βg ◦ ρ̃ ◦ β−1

g . Since
γg is an automorphism of G−LocA and ρ is G-invariant we have γg(u) := βg(u) ∈
HomG−LocA(ρ, ρ̃g). Defining vg = βg(u)u

∗ we have

vgh = βgh(u)u
∗ = βg(vh)βg(u)u

∗ = βg(vh)vg ∀g, h.
Furthermore, vg ∈ Hom(ρ̃, ρ̃g), and since all ρ̃g are G-localized in J , Lemma 2.13
implies vg ∈ A(J ). Thus g �→ vg is a (strongly continuous) 1-cocycle in A(J ). Since
A(J ) is a type III factor and theG-action has full Ĝ-spectrum, there exists [57] a unitary
w ∈ A(J ) such that vg = βg(w)w

∗ for all g ∈ G. Defining ρ̂ = Adw∗ ◦ ρ̃, we have
w∗u ∈ Hom(ρ, ρ̂). Now, βg(u)u∗ = βg(w)w

∗ is equivalent to βg(w∗u) = w∗u, thus
w∗u isG-invariant. Together with the obvious fact that ρ̂ isG-localized in J , this implies
ρ � AG∞ ∈ LocAG. ��
Corollary 3.6. Restriction to AG∞ provides a strict tensor functor R : (G−LocA)G →
LocAG which is faithful on objects and morphisms.

Proof. With the exception of faithfulness, which follows from the isomorphismsA(I)G ∼=
AG(I), this is just a restatement of our previous results. ��
Remark 3.7. 1. In Subsect. 3.4 we will show that R, when restricted to (G−Locf A)G,
is also surjective on morphisms (thus full) and objects. Thus R will establish an isomor-
phism (G−Locf A)G ∼= Locf AG.

2.We comment on our definition of the fixpoint category CG of a category C under aG-
action. In the literature, cf. [58, 30, 31], one can find a different notion of fixpoint category,
which we denote by CG for the present purposes. Its objects are pairs (X, {ug, g ∈ G}),
where X is an object of C and the ug ∈ HomC(X, γg(X)) are isomorphisms making
the left diagram in Fig. 1 commute. The morphisms between (X, {ug, g ∈ G}) and
(Y, {vg, g ∈ G}) are those s ∈ HomC(X, Y ) for which the right diagram in Fig. 1
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X
ug� γg(X)

�
�

�
�

ugh �
γgh(X)

γg(uh)

�

X
s � Y

γg(X)

ug

�

γg(s)
� γg(Y )

vg

�

Fig. 1. Objects and Morphisms of CG

commutes. (According to J. Bernstein, CG should rather be called the category of G-
modules in C.) It is clear that CG can be identified with a full subcategory of CG via
X �→ (X, {id}), but in general this inclusion need not be an equivalence. However, it is
an equivalence in the case of C = G−LocA. To see this, let (ρ, {ug}) ∈ (G−LocA)G.
Assume ρ is G-localized in I . By definition of (G−LocA)G, g �→ ug is a 1-cocycle
in A(I), and by the above discussion there exists w ∈ A(I) such that ug = βg(w)w

∗
for all g ∈ G. Defining ρ̃ = Adw∗ ◦ ρ, an easy computation shows ρ̃ ∈ (G−LocA)G.
Since w : ρ̃ → ρ is an isomorphism, the inclusion (G−LocA)G ↪→ (G−LocA)G is
essentially surjective, thus an equivalence.

3.2. The extension functor E : LocAG → (G−LocA)G. In view of Remark 3.2 we are
in a setting where both A = (H0, A(·),�) and AG = (HG

0 , A
G(·),�) are QFTs on R.

In this situation it is well known that there exists a monoidal functor E : LocAG →
EndA∞ from the tensor category of localized transportable endomorphisms of the sub-
theory AG to the (not a priori localized) endomorphisms of the algebra A∞. There are
essentially three ways to construct such a functor. First, Roberts’ method of localized
cocycles, cf. e.g. [55], which is applicable under the weakest set of assumptions. (Neither
finiteness of the extension nor factoriality or Haag duality are required.) Unfortunately,
in this approach it is relatively difficult to make concrete computations, cf. however [8].
Secondly, the subfactor approach of Longo and Rehren [35] as further studied by Xu,
Böckenhauer and Evans, cf. e.g. [62, 4]. This approach requires factoriality of the local
algebras and finiteness of the extension, but otherwise is very powerful. Thirdly, there
is the approach of [42], which assumes neither factoriality nor finiteness, but which is
restricted to extensions of the form AG ⊂ A. For the present purposes, this is of course
no problem.

Theorem 3.8. [42]. Let A = (H0, A(·),�) be a QFT on R with G-action such that
AG = (HG

0 , A
G(·),�) is a QFT on R. There is a functor E : LocAG → EndA∞ with

the following properties:

1. For every ρ ∈ LocAG we have thatE(ρ) commutes with theG-action β, i.e.E(ρ) ∈
(EndA∞)G. The restriction E(ρ) � AG∞ coincides with ρ. On the arrows, E is the
inclusion AG∞ ↪→ A∞. Thus E is faithful and injective on the objects.

2. E is strict monoidal. (Recall that LocAG and EndA∞ are strict.)
3. If ρ is localized in the interval I ∈ K then E(ρ) is localized in the half-line
(inf I,+∞). This requirement makes E(ρ) unique.

Remarks on the proof. Fix an interval I ∈ K. By 3.3, we can find a family {Vα ⊂
A(I), α ∈ Ĝ} of finite dimensional subspaces of isometries of support 1 on which the
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G-action restricts to the irreducible representation α ∈ Ĝ. Now the algebraA(I) is gen-
erated byA(I)G and the family {Vα, α ∈ Ĝ}, andA∞ is generated byAG∞ and the family
{Vα, α ∈ Ĝ}. Furthermore, σα = ∑

i v
i
α · viα∗

is a transportable endomorphism of AG∞
localized in I , thus σα ∈ Locf AG. Now E(ρ) is determined by Rehren’s prescription
[53]:

E(ρ)(x) =
{
ρ(x) x ∈ AG∞
c(σα, ρ)x x ∈ Vα,

where c(σα, ρ) is the braiding of the category LocAG. (The proof of existence and
uniqueness of E(ρ) is given in [42], generalizing the automorphism case treated in
[17]. Note that despite the appearances this definition of E does not depend on the cho-
sen spaces Vα .) On the arrows HomLocAG(ρ, σ ) ⊂ AG∞ we define E via the inclusion
AG∞ ↪→ A∞. For the verification of all claimed properties see [42, Prop. 3.11]. ��
Remark 3.9. 1. The definition of E does not require d(ρ) < ∞. But from now on we
will restrict E to the full subcategory Locf AG ⊂ Locf AG.

2. The extension functor E is faithful but not full. Our aim will be to compute
HomEndA∞(E(ρ), E(σ)), but this will require some categorical preparations.

3.3. Recollections on Galois extensions of braided tensor categories. From the discus-
sion in 3.3 it is clear that the extension E(ρ) ∈ EndA∞ is trivial, i.e. isomorphic to a
direct sum of dim(ρ) ∈ N copies of the tensor unit 1, for every ρ in the full symmet-
ric subcategory S. It is therefore natural to ask for the universal faithful tensor functor
ι : C → D that trivializes a full symmetric subcategory S of a rigid braided tensor
category C. Such a functor has been constructed independently in [44] (without explicit
discussion of the universal property) and in [5]. (The motivation of both works was to
construct a modular category from a non-modular braided category by getting rid of the
central/degenerate/transparent objects.) A universal functor ι : C → D trivializing S
exists provided every object in S has trivial twist θ(X), both approaches relying on the
fact [18, 9] that under this condition S is equivalent to the representation category of a
groupG, which is finite if S is finite and otherwise compact [18] or proalgebraic [9]. In
the subsequent discussion we will use the approach of [44] since it was set up with the
present application in mind, but we will phrase it in the more conceptual way expounded
in [48].

Given a rigid symmetric tensor ∗-category S with simple unit and trivial twists, the
main result of [18] tells us that there is a compact group G such that S � RepfG. (In
our application to the subcategory S ⊂ Locf AG for an orbifold CFTAG we don’t need
to appeal to the reconstruction theorem since the equivalence S � RepfG is proven
already in [15].) Assuming S (and thus G) to be finite we know that there is a commu-
tative strongly separable Frobenius algebra (γ,m, η,�, ε) in S, where γ corresponds
to the left regular representation of G under the equivalence. See [46] for the precise
definition and proofs. (More generally, this holds for any finite dimensional semisimple
and cosemisimple Hopf algebraH [46]. For infinite compact groups and infinite dimen-
sional discrete quantum groups one still has an algebra structure (γ,m, η), cf. [50].) The
group G can be recovered from the monoid structure (γ,m, η) as

G ∼= {s ∈ Endγ | s ◦m = m ◦ s ⊗ s, s ◦ η = η}.
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Now we define [48] a category C �0 S with the same objects and same tensor product
of objects as C, but larger hom-sets:

HomC�0S(ρ, σ ) = HomC(γ ⊗ ρ, σ ).

The compositions ◦,⊗ of morphisms are defined using the Frobenius algebra structure
on γ . Finally, C �S is defined as the idempotent completion (or Karoubian envelope) of
C �0 S. The latter contains C �0 S as a full subcategory and is unique up to equivalence,
but there also is a well known canonical model for it. I.e., the objects of C � S are pairs
(ρ, p), where ρ ∈ C �0 S and p = p2 = p∗ ∈ EndC�0S(ρ). The morphisms are given
by

HomC�S((ρ, p), (σ, q)) = q ◦ HomC�0S(ρ, σ ) ◦ q
= {s ∈ HomC�0S(ρ, σ ) | s = q ◦ s ◦ p}.

The inclusion functor ι : C → C � S, ρ �→ (ρ, idρ) has the desired trivialization
property since dim HomC�S(1, ι(ρ)) = d(ρ) for all ρ ∈ S. The group G acts on a
morphism s ∈ HomC�S((ρ, p), (σ, q)) ⊂ HomC(γ ⊗ρ, σ ) via γg(s) = s ◦g−1 ⊗ idρ ,
where g ∈ Aut(γ,m, η) ∼= G. TheG-fixed subcategory (C �S)G is just the idempotent
completion of C and thus equivalent to C. The braiding c of C lifts to a braiding of C �S
iff all objects of S are central, i.e. c(ρ, σ )c(σ, ρ) = id for all ρ ∈ S and σ ∈ C. This,
however, will not be the case in the application to QFT. As shown in [48], in the general
case C � S is a braided crossed G-category. We need one concrete formula from [48].
Namely, if p ∈ EndC�S(ρ) ∼= HomC(γ ⊗ ρ, ρ) is such that (ρ, p) ∈ C � S is simple,
then the morphism

∂(ρ, p) =





� �

p

η
�

� �





−1

·

γ
� �

�
�

���

��

ρ

�
�

���

��

p

�� �ρ� �

γ

(3.1)

is an automorphism of the monoid (γ,m, η), thus an element ofG. We note for later use
that the numerical factor (· · · )−1 is d(ρ, p)−1 and that replacing the braidings by their

duals (
�

�
���

�� ↔ ��

�
�

�

��
) gives the inverse group element.

If the category S, equivalently the groupG are infinite, the above definition of C �S
needs to be reconsidered since, e.g., the proof of semisimplicity must be modified.
The original construction of C � S in [44] does just that. Using the decomposition
γ ∼= ⊕i∈Ĝd(γi)γi of the regular representation one defines

HomC�0S(ρ, σ ) =
⊕

i∈Ĝ
HomC(γi ⊗ ρ, σ )⊗ Hi , (3.2)
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where F : S → RepfG is an equivalence, γi ∈ S is such that F(γi) ∼= πi and Hi is
the representation space of the irreducible representation πi of G. (It is easily seen that
HomC�0S(ρ, σ ) is finite dimensional for all ρ, σ ∈ C.) Now the compositions ◦,⊗ of
morphisms are defined by the formulae

s � ψk ◦ t � ψl =
⊕

m∈Ĝ

Nmkl∑

α=1

s ◦ idγk ⊗ t ◦ wmαkl ⊗ idρ � K(wmαkl )
∗(ψk ⊗ ψl),

u� ψk ⊗ w � ψl =
⊕

m∈Ĝ

Nmkl∑

α=1

u⊗ v ◦ idγk ⊗ ε(γl, ρ1)⊗ idρ2 ◦ wmαkl

⊗idρ1ρ2 � K(wmαkl )
∗(ψk ⊗ ψl),

where k, l ∈ Ĝ, ψk ∈ Hk, ψl ∈ Hl , t ∈ Hom(γl ⊗ ρ, σ ), s ∈ Hom(γk ⊗ σ, δ) and
u ∈ Hom(γk ⊗ρ1, σ1), V ∈ Hom(γl ⊗ρ2, σ2). For for further details and the definition
of the ∗-involution, which we don’t need here, we refer to [44]. For finiteG it is readily
verified that the two definitions of C � S given above produce isomorphic categories.
If � is central in C, equivalently c(ρ, σ )c(σ, ρ) = id for all ρ ∈ S, σ ∈ C, then C � S
inherits the braiding of C, cf. [44]. If this is not the case, � − Mod is only a braided
crossed G-category [48].

Before we return to our quantum field theoretic considerations we briefly comment
on the approach of [5] and the related works [52, 32, 30, 31]. As before, one starts
from the (Frobenius) algebra in S corresponding to the left regular representation ofG.
One now considers the category � − Mod of left modules over this algebra. As already
observed in [52], this is a tensor category. Again, if � is central in C then � − Mod is
braided [5], whereas in general �− Mod is a braided crossed G-category [30, 31]. (The
braided degree zero subcategory coincides with the dyslexic modules of [52].) In [48]
an equivalence of C � S and �− Mod is proven. In the present investigations it is more
convenient to work with C � S since it is strict if C is.

3.4. The isomorphism Locf AG ∼= (G−Locf A)G. In Subsect. 3.2, the extension functor
E was defined on the entire category LocAG. It is faithful but not full, and our aim is to
obtain a better understanding of HomA∞(E(ρ), E(σ)). From now on we will restrict it
to the full subcategory Locf AG of finite dimensional (thus rigid) objects, and we abbre-
viate C = Locf AG throughout. Furthermore, S ⊂ C will denote the full subcategory
discussed in 3.3. We recall that S � RepfG as symmetric tensor category. Since the
definition of C � S in [44] was motivated by the formulae [53, 42] for the intertwiner
spaces HomA∞(E(ρ), E(σ)), the following is essentially obvious:

Proposition 3.10. Under the same assumptions on A and AG and notation as above,
the functor E : C → (EndA∞)G factors through the canonical inclusion functor
ι : C ↪→ C � S, i.e. there is a tensor functor F : C � S → EndA∞ such that

C ι� C � S
�

�
�

�
E

�
EndA∞

F

�
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commutes. (Note that F(C � S) �⊂ (EndA∞)G.) The functors

E : C → (EndA∞)G,
F : C � S → EndA∞

are faithful and full.

Proof. First, we define F on the tensor category C �0 S of [44, 48], which has the same
objects as C but larger hom-sets. We clearly have to put F(ρ) := E(ρ). Now fix an
interval I ∈ K and subspaces Hi ⊂ A(I) of isometries on which G acts according to
the irrep πi . Let γi be the endomorphism of AG∞ implemented by Hi . As stated in [53]
and proven in [42], the intertwiner spaces between extensions E(ρ),E(σ) is given by

HomA∞(E(ρ), E(σ)) = spani∈ĜHomC(γiρ, σ )Hi ⊂ A∞.

On the one hand, this shows that every G-invariant morphism s ∈ HomG−Locf A(E(ρ),

E(σ)) is in HomLocf AG(ρ, σ ), implying that E : C → (EndA∞)G is full. On the other
hand, it is clear that these spaces can be identified with those in the second definition
(3.2) of HomC�0S(ρ, σ ). Under this identification, the compositions ◦,⊗ of morphisms
in C �0 S go into those in the category EndA∞ as given in Definition 2.5, as is readily
verified. Thus we have a full and faithful strict tensor functor F0 : C �0 S → EndA∞
such that F0 ◦ ι = E. Now, C � S is defined as the completion of C �0 S with split-
ting idempotents. Since the category EndA∞ has splitting idempotents, the functor F0
extends to a tensor functor F : C � S → EndA∞, uniquely up to natural isomorphism
of functors. However, we give a more concrete prescription. Let (ρ, p) be an object of
C � S, i.e. ρ ∈ Locf A and p = p2 = p∗ ∈ EndC�0S(ρ). Let I ⊂ K be an interval
in which ρ ∈ Locf A is localized. Then Haag duality implies p ∈ A(I). Since A(I) is
a type III factor (with separable predual) we can pick v ∈ A(I) such that vv∗ = p and
v∗v = 1. Now we define F((ρ, p))(·) = v∗F(ρ)(·)v ∈ EndA∞. This is an algebra
endomorphism of A∞ since vv∗ = p ∈ HomA∞(E(ρ), E(ρ)). With this definition, the
functor F : C � S → EndA∞ is strongly (but not strictly) monoidal. ��

In [48] it was shown that C �S is a braided crossedG-category. In view of the results
of Sect. 2 it is natural to expect that the functor F actually takes its image in G−LocA
and is a functor of braided crossed G-categories. In fact:

Proposition 3.11. Let A = (H0, A(·),�) be as before and G finite. Then
(i) for every ρ ∈ Locf AG we have E(ρ) ∈ G−Locf A, thus the extension E(ρ) is

a finite direct sum of endomorphisms ηi of A∞ that act as symmetries βgi on a half line
[a,+∞).

(ii) F(C � S) ⊂ G−Locf A and F : C � S → G−Locf A is a functor ofG-graded
categories, i.e. F((C � S)g) ⊂ (G−Locf A)g for all g ∈ G.

Proof. Claim (i) clearly follows from (ii). In order to prove the latter it is sufficient
to show for every irreducible object (ρ, p) ∈ C � S that E((ρ, p)) ∈ EndA∞ is
∂(ρ, p)-localized. Let thus ρ ∈ C = Locf AG be localized in the interval I ∈ K and
let p = p2 = p∗ be a minimal projection in EndC�0S(ρ). Recall that F((ρ, p)) is
defined as v∗E(ρ)(·)v, where v ∈ A∞ satisfies vv∗ = F(p), v∗v = 1. We may assume
that v ∈ A(I). Let J ∈ K such that I < J and let Hγ ⊂ A(J ) be a subspace of
isometries transforming under the left regular representation of G. (I.e., we have isom-
etries vg ∈ A(I), g ∈ G such that βk(vg) = vkg,

∑
g vvv

∗
g = 1, v∗

gvh = δg,h1.) Let
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γ (·) = ∑
g vg ·v∗

g ∈ EndAG∞ be the localized endomorphism implemented byHγ . Thus
Hγ = HomA(1, E(γ )). Now by Theorem 3.8 we have, for x ∈ Hγ ,

F((ρ, p))(x) = v∗c(γ, ρ)xv = [E(γ )(v∗)c(ρ, γ )c(γ, ρ)E(γ )(v)] x,

where we have used (i) xv = vx (since x, v are localized in the disjoint intervals I, J ,
respectively), (ii) c(ρ, γ ) = 1 (follows by Lemma 2.17 since the localization region
of ρ is in the left complement of the localization region of γ ) and (iii) E(γ )(v) = v

(since v ∈ A(I), on which E(ρ) acts trivially). This expression defines an element
of HomA(F ((ρ, p), F (γ )F ((ρ, p)). If v1, . . . , v|G| ∈ HomA(1, E(γ )) are such that∑
i viv

∗
i = 1, v∗

i vj = δi,j1 then

v∗
i [E(γ )(v∗)c(ρ, γ )c(γ, ρ)E(γ )(v)] x ∈ EndA(F (ρ, p)).

By irreducibility of F((ρ, p)) this expression is a multiple of idF(ρ,p), thus

d((ρ, p)) F ((ρ, p))(x) = d(ρ, p) [E(γ )(v∗)c(ρ, γ )c(γ, ρ)E(γ )(v)] x
=

∑

i

vi T r(ρ,p)(v
∗
i [E(γ )(v∗)c(ρ, γ )c(γ, ρ)E(γ )(v)] x)

=

γ
� �

�

�

�

	
v∗

��

�
�

�

�� (ρ, p)

��

�
�

�

��
ρ

�

�

�

	
v

γ � �

�

�

�

	
x

=

γ
� �

��

�
�

�

�� ρ

��

�
�

�

��
ρ

�

�

�

	

p

γ � �

�

�

�

	
x
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Now we express this as a diagram in C in terms of the representers x ∈ HomC(γ, γ )
and p ∈ HomC(γ ⊗ ρ, ρ). By definition of C � S we obtain

d((ρ, p)) F ((ρ, p))(x) =

γ
� �

��

�
�

�

��
��

�
�

�

��
ρ

p

��

�
�
�

��

� �

�

�

�

	
x

�� �

γ

=

γ
�

�

�

	
x

� �

��

�
�

�

��
��

�
�

�

��
ρ

p

� � � �

γ

where we have used the commutativity � = c(γ, γ ) ◦ �. Thus by (3.1) and [48] we
have

F((ρ, p))(x) = x ◦ ∂((ρ, p))−1,

where ∂((ρ, p)) ∈ Aut(γ,m, η) is the degree of (ρ, p). Recalling that the action of
g ∈ Aut(γ,m, η) on the morphism s ∈ HomC(γ⊗ρ, σ ) ∼= HomC�S(ρ, σ )was defined
as γg(s) = s ◦ g−1 ⊗ idρ , we see that F((ρ, p))(x) = γ∂(ρ,p)(x). Thus F((ρ, p)) ∈
EndA∞ is ∂(ρ, p)-localized in the sense of Sect. 2, as claimed. Transportability of
E((ρ, p)) follows from transportability of ρ. Thus E((ρ, p)) ∈ G−Locf A, and the
same clearly follows for the non-simple objects of Locf A. The above computations have
also shown that the functor F respects the G-gradings of C � S and G−LocA in the
sense that F((C � S)g) ⊂ (G−Locf A)g for all g ∈ G. ��

The following result, which shows that Locf AG can be computed fromG−Locf A,
was the main motivation for this paper:

Theorem 3.12. If G is finite then the functors

E : Locf AG → (G−Locf A)G,
R : (G−Locf A)G → Locf AG

are mutually inverse and establish an isomorphism of strict braided tensor categories.

Proof. By Subsect. 3.2, E : Locf AG → (EndA)G is a faithful strict tensor functor,
which is full by Proposition 3.10. By Proposition 3.11 it takes its image in (G−Locf A)G.
By Theorem 3.8 we have R ◦ E = idLocf AG , and E ◦ R = id(G−Locf A)G follows since

ρ ∈ (G−Locf A)G is the unique right-localized extension to A∞ of R(ρ) = ρ � AG∞.
Therefore E is surjective on objects and thus an isomorphism. That the braidings of
Locf AG and (G−Locf A)G is clear in view of their construction. ��
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Remark 3.13. 1. The ‘size’ of Locf AG will be determined in Corollary 3.16.
2. Clearly the above is a somewhat abstract result, and in concrete models hard work

is required to determine the categoryG−Locf A of twisted representations. (For a beau-
tiful analysis of orbifolds of affine models in the present axiomatic setting see the series
of papers [64, 37, 27].) However, Theorem 3.12 can be used to clarify the structure of
Locf AG quite completely in the holomorphic case, cf. Subsect. 4.2.

3. Proposition 3.11 and Theorem 3.12 remain true when G is compact infinite. In
order to see this one needs to show that C �S is a braided crossedG-category also in the
case of infinite S. In view of the fact that the existence of C �S as a rigid tensor category
with G-action was already established in [44] this can be done by an easy modification
of the approach used in [48]. Then the proof of Proposition 3.10 easily adapts to arbitrary
compact groups.

3.5. The equivalence Locf AG � S � G−Locf A. Our next aim is to show that the
functor F gives rise to an equivalence Locf AG � S � G−Locf A of braided crossed
G-categories. (Even though both categories are strict as monoidal categories and as G-
categories, the functor F will not be strict.) For the well known definition of a non-strict
monoidal functor we refer, e.g., to [40].

Proposition 3.14. If G is finite then the functor F : C � S → G−Locf A is essentially
surjective, thus a monoidal equivalence.

Proof. The bulk of the proof coincides with that of [42, Prop. 3.14], which remains
essentially unchanged. We briefly recall the construction. Pick an interval I ∈ K. Since
the G-action on A(I) has full spectrum we can find isometries vg ∈ A(I), g ∈ G,

satisfying

∑

g

vgv
∗
g = 1, v∗

gvh = δg,h1, βg(vh) = vgh.

If now ρ ∈ G−Locf A is simple then it is easily verified that

ρ̃(·) =
∑

g

vg βgρβg−1(·) v∗
g ∈ G−Locf A

commutes with all βg , thus ρ̃ ∈ (G−Locf A)G. Therefore ρ̃ restricts toAG, and ρ̃ � AG
is localized in some interval, as was noted before. In order to show that ρ̃ � AG is
transportable, let J be some interval, let σ be G-localized in J and let s : ρ → σ be
unitary. Choosing isometries wg ∈ A(J ) as before and defining σ̃ in analogy to ρ̃ and
writing s̃ = ∑

g wgβg(s)v
∗
g , one easily verifies that s̃ is a unitary in Hom(ρ̃, σ̃ )G. Thus

ρ̃ � AG∞ is transportable and defines an object of Locf AG. As in [42] one now verifies
that ρ̃ = E(ρ̃ � AG). Combined with the obvious fact ρ ≺ ρ̃ this implies that every
simple object ρ ∈ G−Locf A is a direct summand of E(ρ̃ � AG) = F(ι(ρ̃ � AG)). In
view of Proposition 3.10 and the fact that C � S has splitting idempotents we conclude
that ρ ∼= F(σ) for some subobject σ of ι(ρ̃ � AG) ∈ C � S. This implies that F is
essentially surjective, thus an equivalence, which can be made monoidal, see e.g. [56].
��
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Remark 3.15. In Minkowski spacetimes of dimension ≥ 2 + 1, where there are no g-
twisted representations, the functor E can be shown to be an equivalence under the
weaker assumption that G is second countable, i.e. has countably many irreps, cf. [8].
Returning to the present one-dimensional situation, it is clear from the definition of E
thatE(Locf AG∩S ′) ⊂ Locf A = (G−Locf A)e, thus those ρ ∈ Locf AG which satisfy
cρ,σ cσ,ρ = id for all σ ∈ S have a localized extension E(ρ). Its seems reasonable to
expect that the restriction of F to the subcategory of C � S generated by ι(C ∩ S ′) is
an equivalence with Locf A whenever G is second countable. We have refrained from
going into this question since we are interested in the larger categories Locf AG and
G−Locf A, and – in contradistinction to E : Locf AG → (G−Locf A)G – the functor
F : Locf A � S → G−Locf A is almost never essentially surjective (thus an equiv-
alence). The point is that for ρ ∈ Locf AG we have E(ρ) ∼= ⊕iρi , where the ρi are
gi-localized and the gi exhaust a whole conjugacy class sinceE(ρ) isG-invariant. Since
the direct sum is finite, we see that the image of E : C � S → G−Locf A can contain
only objects σ whose degree ∂σ belongs to a finite conjugacy class. Since ‘most’ infinite
non-abelian compact groups have infinite conjugacy classes, F will in general not be
essentially surjective. (At least morally this is related to the fact [33] that the quantum
double of a compact group G admits infinite dimensional irreducible representations
whenever G has infinite conjugacy classes.) If, on the other hand, we consider E(ρ),
where d(ρ) = ∞, the analysis of E(ρ) becomes considerably more complicated.

Corollary 3.16. Under the assumptions of Theorem 3.18 we have

dim Locf A
G = |G| dimG−Locf A.

Proof. Follows from G−Locf A ∼= Locf AG � S and dim C � S = dim C/ dim S =
dim C/|G|, cf. [44]. ��

In order to prove the equivalence G−Locf A � Locf AG � S of braided crossed
G-categories we need to consider theG-actions and the braidings. For the general defi-
nition of functors ofG-categories we refer to [58], see also [7] and the references given
there. Since our categories are strict as tensor categories and as G-categories, i.e.

γgh(X) = γg ◦ γh(X) ∀g, h,X,
γg(X ⊗ Y ) = γg(X)⊗ γg(Y ) ∀g,X, Y, (3.3)

we can simplify the definition accordingly:

Definition 3.17. A functorF : C → C′ of categories with strict actions γg, γ ′
g of a group

G is a functor together with a family of natural isomorphisms η(g) : F ◦ γg → γ ′
g ◦ F

such that

F ◦ γgh(X) η(gh)X � γ ′
gh ◦ F(X)

F ◦ γg ◦ γh(X)

||| ||| ||| ||| |||
η(g)γh(X)

� γ ′
g ◦ F ◦ γh(X)

γ ′
g(η(h)X)

� γ ′
g ◦ γ ′

h ◦ F(X)

||| ||| ||| |||

commutes. (There is no further condition on F if C, C′, γ, γ ′ are monoidal.)
A functor of braided crossedG-categories is a monoidal functor ofG-categories that

respects the gradings and satisfies F(cX,Y ) = cF(X),F (Y ) for all X, Y ∈ C.
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Theorem 3.18. Let A = (H0, A(·),�) be as before and G finite. Then

F : C � S → G−Locf A

is an equivalence of braided crossed G-categories.

Proof. It only remains to show that F is a functor of G-categories and that it preserves
the braidings. Let (ρ, p) ∈ C � S. Then βg((ρ, p)) = (ρ, βg(p)), where βg(p) is
the obvious G-action on C �0 S. Recall that F((ρ, p)) ∈ EndA∞ was defined as
v∗
(ρ,p)E(ρ)(·)v(ρ,p), where v(ρ,p) ∈ A∞ satisfies v(ρ,p)v∗

(ρ,p) = E(p). (For p = 1
we choose v(ρ,p) = 1.) Since E(ρ) commutes with γg we have γg(F ((ρ, p))) =
γg(v(ρ,p))

∗E(ρ)(·)γg(v(ρ,p)). Because of γg(v(ρ,p))γg(v(ρ,p))∗ = γg(p), the isometries
γg(v(ρ,p)) and vβg(ρ,p) have the same range projection. Thus η(g)(ρ,p) =
γg(v(ρ,p))

∗v(ρ,βg(p)) is unitary and one easily verifiesη(g)(ρ,p) ∈ Hom(F◦βg(ρ, p), γg◦
F(ρ, p)) as well as the commutativity of the above diagram.

It remains to show that the functor F preserves the braidings. We first show that
F(cρ,σ ) = cF(ρ),F (σ ) holds if ρ, σ ∈ C = Locf AG. By Theorem 3.8, E(ρ),E(σ) are
G-invariant, thus by the G-covariance of the braiding we have cE(ρ),E(σ) ∈ AG∞. Thus
the braiding ofE(ρ),E(σ) as constructed in Sect. 2 restricts to a braiding of ρ, σ and by
uniqueness of the latter this restriction coincides with cρ,σ . Thus cE(ρ),E(σ) = E(cρ,σ )

as claimed. The general result now is an obvious consequence of the naturality of the
braidings of C � S and of G−Locf A together with the fact that every object of C � S
and of G−Locf A is a subobject of one in C and (G−Locf A)G, respectively. ��

4. Orbifolds of Completely Rational Chiral CFTs

4.1. General theory. So far, we have considered an arbitrary QFTA on R subject to the
technical condition that also AG be a QFT on R, some of the results assuming finite-
ness of G. The situation that we are really interested is the one where A derives from a
chiral QFT on S1 by restriction to R. Recall that in that case Loc(f )AG has a ‘physical’
interpretation as a category Rep(f )A of representations.

Proposition 4.1. Let A be a completely rational chiral QFT with finite symmetry group
G. Then the restrictions to R of A and AG are QFTs on R.

Proof. In view of the discussion in Subsect. 2.4 it suffices to know that the chiral orbifold
theory AG on S1 satisfies strong additivity. In [64] it was proven that finite orbifolds
of completely rational chiral QFTs are again completely rational, in particular strongly
additive. ��

Applying the results of [29] we obtain:

Theorem 4.2. Let (H0, A,�) be a completely rational chiral CFT and G a finite sym-
metry group. Then the braided crossedG-categoryG−Locf A has fullG-spectrum, i.e.
for every g ∈ G there is an object ρ ∈ G−Locf A such that ∂ρ = g. Furthermore, for
every g ∈ G we have

∑

ρ∈(G−Locf A)g

(dim ρ)2 =
∑

ρ∈Repf A

(dim ρ)2 = µ(A),

where the sums are over the equivalence classes of irreducible objects of degree g and
e, respectively.
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Proof. By [64], the fixpoint theoryAG is completely rational, thus by [29] the categories
Repf A

G ∼= Locf AG are modular. Now,G−Locf A ∼= Locf AG�S, and fullness of the
G-spectrum follows by [48, Cor. 3.27]. The statement on the dimensions follows from
[48, Prop. 3.23]. ��

Remark 4.3. 1. It would be very desirable to give a direct proof of the fullness of the
G-spectrum ofG−Locf A avoiding reference to the orbifold theory AG via the equiva-
lenceG−Locf A � Locf AG�S. This would amount to showing directly thatg-localized
transportable endomorphisms ofA∞ exist for every g ∈ G. Since our proof relies on the
fairly non-trivial modularity result for Locf AG, cf. [29] together with [64], this might
turn out difficult.

2. In the VOA setting, Dong and Yamskulna [14] have shown that there exist twisted
representations for all g ∈ G. Since [48, Prop. 3.23] is a purely categorical result, the
above conclusion also holds in the VOA setting as soon as one can establish that the
G-twisted representations form a rigid tensor category.

3. It may be useful to summarize the situation in a diagram:

Locf A ⊂ G−Locf A

Locf A
G ∩ S ′

C � CG
�

�

⊂ Locf A
G

�

C � C � S
�

The horizontal inclusions are full, Locf A being the degree zero subcategory of G−
Locf A. IfG is abelian, theG-grading passes to Locf AG (see [48]) and Locf AG∩S ′ is its
degree zero subcategory. Moving from left to right or from top to bottom, the dimension
of the categories are multiplied by |G|. In the upper line this is due to Theorem 4.2 and
in the lower due to the results of [47]. Together with dim C = |G| ·dim C�S this implies
dim Locf AG = |G|2 dim Locf A, as required by [29]. (In fact, this latter identity together
with [48, Prop. 3.23] provides an alternative proof of the completeness of the G-spec-
trum ofG−Locf A.) Furthermore, the upper left and lower right categories are modular,
whereas Locf AG∩S ′ is not (wheneverG �= {e}). The passage Locf AG∩S ′ � Locf A
is the ‘modular closure’ from [44, 5] and Locf AG ∩ S ′ � Locf AG is the ‘minimal
modularization’, conjectured to exist for every premodular category, cf. [47].

We briefly discuss the modularity of G−Locf A. In [60], a braided crossed G-cate-
gory C was called modular if its braided degree zero subcategory Ce is modular in the
usual sense [59]. This definition seems somewhat unsatisfactory since it does not take
the nontrivially graded part of C into account. In [31], the vector space

VC =
⊕

i∈I

⊕

g∈G
Hom(βg(Xi),Xi),
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where I indexes the isomorphism classes of simple objects in C, is introduced and an
endomorphism S ∈ End VC is defined by its matrix elements

S((X, u), (Y, v))) =

� � � �

�

�

�

	
u

��

�
�
�

��
�

�

�

	
v

X

��

�
�
�

��
Y

� � � �

where ∂X = g, ∂Y = h and u : βh(X) → X, v : βg(Y ) → Y . A braided G-crossed
fusion category is modular (in the sense of [31]) if the endomorphism S is invertible.

Proposition 4.4. Let (H0, A,�) be a completely rational chiral CFT and G a finite
symmetry group. Then the braided crossed G-category G−Locf A is modular in the
sense of [31].

Proof. As used above, the braided categories Locf A = (G−Locf A)e and Locf AG ∼=
(G−Locf A)G are modular. Now the claim follows by [31, Theorem 10.5]. ��

The preceding discussions have been of a very general character. In the next sub-
section they will be used to elucidate completely the case of holomorphic orbifolds,
where our results go considerably beyond (and partially diverge from) those of [11]. In
the non-holomorphic case it is clear that comparably complete results cannot be hoped
for. Nevertheless already a preliminary analysis leads to some surprising results and
counterexamples, cf. the final subsection.

4.2. Orbifolds of holomorphic models.

Definition 4.5. A holomorphic chiral CFT is a completely rational chiral CFT with
trivial representation category Locf A. (I.e., Locf A is equivalent to VectfC.)

Remark 4.6. By the results of [29], a completely rational chiral CFT is holomorphic iff
µ(A) = 1 iff A(E′) = A(E)′ whenever E = ∪ni=1Ii , where Ii ∈ I with mutually
disjoint closures.

Corollary 4.7. LetA be a holomorphic chiral CFT acted upon by a finite groupG. Then
G−Locf A has precisely one isomorphism class of simple objects for every g ∈ G, all
of these objects having dimension one.

Proof. By Theorem 4.2, we have dim(G−Locf A)g = 1 for all g ∈ G. Since the
dimensions of all objects are ≥ 1, the result is obvious. ��
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Remark 4.8. 1. In [43], where the invertible objects of G−Locf A were called soliton
automorphisms, it is shown that these objects can be studied in a purely local manner.

2. Let A be a holomorphic chiral CFT, and pick an interval I ∈ K. By Corollary 4.7
there is just one isoclass of simple objects in (G−Locf A)g for every g ∈ G. Since the
objects of G−Locf A are transportable endomorphisms of A∞, we can pick, for every
g ∈ G, representer ρg that is g-localized in I . By Lemma 2.12, ρg restricts to an auto-
morphism of A(I). Furthermore, we can choose unitaries ug,h ∈ HomA(I)(ρgρh, ρgh).
In other words, we have a homomorphism

G → AutA(I)/InnA(I) =: OutA(I), g �→ [ρg],

thus a ‘G-kernel’, cf. [57].We recall some well known facts:The associativity (ρgρh)ρk =
ρg(ρhρk) implies the existence of αg,h,k ∈ T such that

ugh,kug,h = αg,h,k ug,hk ρg(uh,k) ∀g, h, k.
A tedious but straightforward computation using four ρ’s shows thatα : G×G×G → T

is a 3-cocycle, whose cohomology class [α] ∈ H 3(G,T) does not depend on the choice
of the ρ’s and of the u’s. Thus [α] is an obstruction to the existence of representers ρg
for which g �→ ρg is a homomorphism G → AutA(I). (Actually, since in QFT the
algebras A(I) are type III factors with separable predual, the converse is also true: If
[α] = 0 then one can find a homomorphism g �→ ρg , cf. [57].)

4.9. For a further analysis it is more convenient to adopt a purely categorical viewpoint.
Starting with the category G−Locf A of a holomorphic theory A, we don’t lose any
information by throwing away the non-simple objects and the zero morphisms. In this
way we obtain a categorical group C, i.e. a monoidal groupoid where all objects have
a monoidal inverse. The set of isoclasses is the group G. In the general k-linear case it
is well known that such categories are classified up to equivalence by H 3(G, k∗). This
is shown by picking an equivalent skeletal tensor category C̃, i.e. a full subcategory
with one object per isomorphism class. Even if C is strict, C̃ in general is not, and the
associativity constraint defines an element ofH 3(G, k∗). It is thus clear that 3-cocycles
onG will play a rôle in the classification of the braided crossedG-categories associated
with holomorphic QFTs. In view of [11, 10, 12] and [13, 14] this is hardly surprising.
Yet, the situation is somewhat more involved than anticipated by most authors since a
classification of the possible categories G−Locf A – and therefore of the categories
Locf AG – must also take the G-action on G−Locf A and the braiding into account.

If one considers braided categorical groups,Gmust be abelian and one has a classifi-
cation in terms ofH 3

ab(G, k
∗), cf. [25]. (H 3

ab(G, k
∗) is Mac Lane’s cohomology [38] for

abelian groups.) The requirement thatG be abelian disappears if one admits a non-trivial
G-action and considers braided crossed G-categories. One finds [60] that (non-strict)
skeletal braided crossedG-categories with strictG-action in the sense of (3.3) are clas-
sified in terms of Ospel’s quasiabelian cohomologyH 3

qa(G, k
∗) [51]. Unfortunately, this

is still not sufficient for our purposes. Namely, assume we have a braided crossedG-cat-
egory C that is also a categorical group (and thus a categoricalG-crossed module in the
sense of [7]). Even if C is strict monoidal and satisfies (3.3) – as our categoriesG−LocA
and C � S do – an equivalent skeletal category C̃ in general will not satisfy (3.3). It is
clear that for a completely general classification of braided crossed G-categories that
are categorical groups one can proceed along similar lines as in the classifications cited
above. We will supply the details in the near future [49], also elucidating the rôle of
the twisted quantum doublesDω(G) [10] in the present context. (Note that the modular
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category Dω − Mod contains the symmetric category G − Mod as a full subcatego-
ry, and Dω − Mod � G − Mod is a braided crossed G-category with precisely one
invertible object of every degree. However, not every such category is equivalent to
Dω − Mod �G− Mod for some [ω] ∈ H 3(G,T)!)

4.3. Some observations on non-holomorphic orbifolds. In the previous subsection we
have seen that a holomorphic chiral CFT A has (up to isomorphism) exactly one simple
object of degree g ∈ G, and this object has dimension one, thus is invertible. This allows
a complete classification of the categories G−LocA and LocAG ∼= (G−LocA)G that
can arise.

It is clear that in the non-holomorphic case (Locf A �� VectC) there is no hope of
obtaining results of this completeness. The best one could hope for would be a classifi-
cation of the categoriesG−Locf A that can arise from CFTs with prescribed Locf A �
(G− Locf A)e, but for the time being this is far out of reach. We therefore content
ourselves with some comments on a more modest question. To wit, we ask whether
a non-holomorphic completely rational CFT A admits invertible g-twisted representa-
tions for every g ∈ G. (As we have seen, this is the case for holomorphic A.) It turns
out that the existence of a braiding (in the sense of crossed G-categories) provides an
obstruction:

Lemma 4.10. Let C be a braided crossedG-category. If there exists an invertible object
of degree g ∈ G then

γg(X) ∼= X ∀X ∈ Ce.

Proof. Let X ∈ Ce and Y ∈ Cg . Then the braiding gives rise to isomorphisms cX,Y :
X ⊗ Y → Y ⊗ X and cY,X : Y ⊗ X → γg(X) ⊗ Y . Composing these we obtain an
isomorphismX⊗Y → γg(X)⊗Y . If Y is invertible, we can cancel it by tensoring with

Y , obtaining the desired isomorphism X
∼=−→ γg(X). ��

Corollary 4.11. Let C be a braided crossed G-category and let g ∈ G. If there exists
X ∈ Ce such that γg(X) �∼= X then there exists no invertible Y ∈ Cg .

Remark 4.12. The condition γg(X) ∼= X ∀X ∈ Ce is necessary in order for the existence
of invertible objects of degree g, but of course not sufficient. In any case, there are many
chiral CFTs where the corollary, as applied toG−Locf A, excludes invertible g-twisted
representations for g �= e. One such class will be considered below.

We apply the above results to the n-fold direct product A = B⊗n of a completely
rational chiral CFT B, on which the symmetric group Sn acts in the obvious fashion. We
first note that every irreducible π ∈ Repf A is unitarily equivalent to a direct product
π1 ⊗ · · · ⊗ πn of irreducible πi ∈ Repf B, cf. [29]. Thus the equivalence classes of
simple objects of Locf A are the n-tuples of equivalence classes of simple objects of
Locf B, and Sn acts on them by permutation.

Corollary 4.13. Let B be a completely rational chiral CFT and let n ≥ 2. Consider
A = B⊗n with the permutation action ofG = Sn. IfB is not holomorphic thenG−Locf A
contains no invertible object ρ with ∂ρ �= e.



Conformal Orbifold Theories and Braided Crossed G-Categories 759

Proof. Since B is not holomorphic we can find a simple object σ ∈ Locf B such that
σ �∼= 1. If g ∈ Sn with g �= e there is i ∈ {1, . . . , n} such that g(i) �= i. Consider an
object ρ = (ρ1, . . . , ρn) ∈ Locf A, where ρi = 1 and ρg(i) = σ . Now it is clear that
γg(ρ) �∼= ρ, and Corollary 4.11 applies. ��

For any tensor category C we denote by Pic(C) the full monoidal subcategory of
invertible objects. (In a ∗-category these are precisely the objects of dimension one.)

Corollary 4.14. Let B be a completely rational chiral CFT. Consider A = B⊗n for
n ≥ 2 and let G ⊂ Sn be a subgroup. If B is non-holomorphic then

Pic(Locf A
G) ∼= Pic

(
(Locf A)

G
)
.

Proof. We may assume G �= {e} since otherwise there is nothing to prove. By The-
orem 3.12 we have Locf AG ∼= (G−Locf A)G. Let now ρ ∈ Pic(Locf AG). Then
E(ρ) ∈ Pic((G−Locf A)G), and by Corollary 4.13 we have ∂E(ρ) = e, thus E(ρ) ∈
Pic((Locf A)G). The rest follows as in Subsect. 3.4. ��

Thus, in permutation orbifold models, the Picard category Pic(Locf AG) is deter-
mined already by Pic(Locf A) and the G-action on it, i.e. we do not need to know the
g-twisted representations of A for g �= e. We recall that a subgroup G ⊂ Sn is called
transitive if for each i, j ∈ {1, . . . , n} there exists g ∈ G such that g(i) = j .

Corollary 4.15. Let B be a non-holomorphic completely rational chiral CFT. Consider
A = B⊗n for n ≥ 2 and let G ⊂ Sn be a transitive subgroup. Then the isomorphism
classes in Pic(Locf AG) are in 1-1 correspondence with the pairs ([σ ], λ), where [σ ] is
an isomorphism class in Pic(Locf B) and λ ∈ Ĝ1 = Ĝab is a one-dimensional character
of G.

Proof. Let ρ be an invertible object of Locf AG. By Corollary 4.14, we have E(ρ) ∼=
(σ1, . . . , σn) where the σi are invertible objects of Locf B. By Subsect. 3.2, E(ρ) is
invariant under the G-action on Locf A, and since the latter transitively permutes the
σi there is σ ∈ Pic(Locf B) such that σi ∼= σ for all i. Now, by 3.3 we know that for
every λ ∈ Ĝ1 there exist localized unitaries uλ ∈ A∞ such that βg(uλ) = λ(g)uλ. In
restriction to AG∞, the localized isomorphisms Ad uλ are inequivalent invertible objects
ρλ ∈ Pic(Locf AG). Now the claimed bijection follows by picking one representer σ
for each isoclass [σ ] in Pic(Locf B) and mapping ([σ ], λ) �→ [(σ, . . . , σ )⊗ ρλ]. ��
Remark 4.16. Corollary 4.15 is incompatible with some claims in [1] on the representa-
tion category of cyclic orbifolds, for which no rigorous proofs are available, cf. also [39].
More precisely, in [1, 2] cyclic permutation orbifolds (B⊗n)Zn are considered, where
Zn ⊂ Sn acts by cyclic permutations on A = B⊗n, thus transitively. According to [1, 2]
the set of isoclasses of simple objects of Repf A

Zn contains a subset I = {([X], i, j)},
where [X] is a simple isoclass in Repf B and i, j ∈ Z/nZ. Accepting this for a minute,
it follows from the modular S-matrix given in [2] that if X is invertible (‘X is a simple
current of B’), also the objects ([X], i, j) in Repf A

Zn are invertible. Thus according

to [1, 2], Repf A
Zn contains at least n2m isoclasses of invertible objects, where m is

the number of isoclasses of invertible objects of Repf B. On the other hand, Corollary

4.15 implies that Repf A
Zn contains precisely nm isoclasses of invertible objects. Since

n ≥ 2 and m ≥ 1 this is a contradiction.
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The claims in question play a crucial rôle in [2] which attempts to prove that the ker-
nel of the representation of SL(2,Z) arising from a rational CFT contains a congruence
subgroup �(N). We leave it to the reader to draw his/her conclusions.
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