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We show that the left regular representation πl of a discrete quantum group (A, ∆) has
the absorbing property and forms a monoid (πl, m̃, η̃) in the representation category
Rep(A, ∆).

Next we show that an absorbing monoid in an abstract tensor ∗-category C gives rise
to an embedding functor (or fiber functor) E : C → VectC, and we identify conditions
on the monoid, satisfied by (πl, m̃, η̃), implying that E is ∗-preserving.

As is well-known, from an embedding functor E : C → Hilb the generalized Tannaka
theorem produces a discrete quantum group (A, ∆) such that C � Repf (A, ∆). Thus,
for a C∗-tensor category C with conjugates and irreducible unit the following are equiv-
alent: (1) C is equivalent to the representation category of a discrete quantum group
(A, ∆), (2) C admits an absorbing monoid, (3) there exists a ∗-preserving embedding
functor E : C → Hilb.

Keywords: Tensor category; quantum group; regular representation; fiber functor;
monoid.
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1. Introduction and Related Work

1.1. Our approach

As is well-known, see, for example [22, Secs. 2–3], the finite-dimensional represen-
tations of a discrete quantum group form a C∗-tensor category with conjugates and
irreducible unit. It is therefore natural to ask for a characterization of representation
categories of discrete quantum groups among the C∗-tensor categories. A partial
solution is provided by the generalized Tannaka theorem, cf. [25, 13], according to
which a C∗-tensor category is such a representation category whenever it comes
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equipped with an embedding functor, i.e. a faithful ∗-preserving tensor functor into
the category H of finite-dimensional Hilbert spaces. In this case, the category is
called concrete as opposed to abstract. The most transparent approach to the Tan-
naka theorem defines the quantum group as the algebra of natural transformations
of the embedding functor to itself. The monoidal structures of the category and of
the embedding functor then give rise to the coproduct of the quantum group. For
this approach and further references, cf. [22].

The generalized Tannaka theorem reduces the characterization problem to that
of producing an embedding functor. Since the representation category of a quantum
group comes with an obvious embedding functor, the existence of such a functor
clearly is a necessary condition. However, there exist C∗-tensor categories with
conjugates and irreducible unit that do not admit an embedding functor: infinitely
many examples (which are even braided) are provided by the categories associ-
ated with quantum groups at roots of unity, cf. [24]. This shows that additional
assumptions on an abstract C∗-tensor category are needed in order to identify it as
the representation category of a quantum group. For example, in [15], it is proven
that any C∗-tensor category with conjugates, irreducible unit and with fusion ring
isomorphic to that of SU(N) is equivalent to the representation category of the
discrete quantum group dual to SUq(N) for some q ∈ R. Analogous results have
been proven for the other classical groups, assuming in addition that the category
is braided.

The case of abstract symmetric tensor categories was settled already in the late
1980s. By a remarkable result of Doplicher and Roberts [6], any symmetric C∗-
tensor category with conjugates and irreducible unit is equivalent as a C∗-tensor
category to the representation category of a unique compact group. If one wishes an
equivalence of symmetric categories, one must also allow super groups. This result
has applications [7] to algebraic quantum field theory, where symmetric C∗-tensor
categories arise without an a priori given embedding functor. The proof in [6],
however, does not follow the strategy outlined above of constructing an embedding
functor and then applying the Tannaka theorem.

Independently and at about the same time, motivated by applications to alge-
braic geometry, Deligne proved [3] that a rigid abelian symmetric tensor category
with irreducible unit is equivalent to the representation category of a proalgebraic
group, provided that the intrinsic dimension of every object is a positive integer.
His proof consists of constructing an embedding functor and applying the algebraic
Tannaka theorem of Saavedra-Rivano.

The crucial notion in Deligne’s construction of the embedding functor is that
of an absorbing commutative monoid. Recall that a monoid in a tensor category is
a triple (Q, m, η), where m : Q ⊗ Q → Q and η : 1 → Q are morphisms such that
(m⊗idQ)◦m = (idQ⊗m)◦m and m◦(η⊗idQ) = idQ = m◦(idQ⊗η). An object Q is
called absorbing if the Q-module Q⊗X is isomorphic to some multiple of Q for any
object X . Deligne obtained the absorbing commutative monoid using categorical
generalizations of results from commutative algebra — it is here that the symmetry
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plays a central role. His proof was simplified considerably in [2]. Note, however,
that the monoid of [3, 2] fails to satisfy hypothesis (1) of Proposition 3.2 below,
which complicates the construction of an embedding functor. For a construction of
a monoid satisfying all assumptions of Proposition 3.2, cf. [21].

The aim of this paper is to demonstrate the usefulness of the monoid approach
in the general non-symmetric case. This is done in two steps. On the one hand, we
prove that the passage from an absorbing monoid to an embedding functor works
in the general case. We also identify conditions on the monoid guaranteeing that
the functor is ∗-preserving. Whereas the existence of an embedding functor refers to
H and thus is an external condition on the category, the existence of an absorbing
monoid is an internal property. As such it is more amenable to proof, as Deligne’s
result in the symmetric case illustrates. A technical aspect should be pointed out
though: a category C with conjugates can contain an absorbing object only if it
has finitely many equivalence classes of objects. Otherwise it needs to be suitably
enlarged, which is done using the category Ĉ of inductive limits. We say that C
admits an absorbing object if there exists a monoid (Q, m, η) in Ĉ such that the
Q-module (Q ⊗ X, m ⊗ idX) is isomorphic to a multiple of the Q-module (Q, m),
for every X ∈ C.

On the other hand, starting with a discrete quantum group (A, ∆), we explic-
itly construct an absorbing monoid (πl, m̃, η̃) in the representation category. Here
πl is the regular representation of the algebra A on the vector space A given by
multiplication from the left. In order to define the morphisms m̃, η̃, let (Â, ∆̂)
denote the dual compact quantum group with multiplication m̂ and unit 1Â, and
let F : A → Â, a �→ ϕ(· a) denote the Fourier transform, where ϕ : A → C is the
left invariant positive functional of (A, ∆). The linear maps m̃ : A ⊗ A → A and
η̃ : C → A are then given by m̃ = F−1m̂(F ⊗F) and η̃(1) = F−1(1Â). We call this
absorbing monoid the regular monoid of (A, ∆).

Our main result then is that, for a C∗-tensor category C with conjugates and
irreducible unit, we have three equivalent statements illustrated by the following
diagram:

We summarize some further results. Our construction actually provides an
absorbing semigroup (πl, m̃) for any algebraic quantum group, and we show that
this semigroup has a unit η̃ if and only if the quantum group is discrete. Dually, there
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exists a regular comonoid if and only if the quantum group is compact. In the finite-
dimensional case, the regular monoid and comonoid combine to a Frobenius algebra.
We identify the intrinsic group of a discrete quantum group with the intrinsic group
of its regular monoid.

We also show that an abstract C∗-tensor category C with conjugates and irre-
ducible unit admits an absorbing object Q in Ĉ if and only if C admits an integer
valued dimension function, i.e. a map ObjC → N that is additive and multiplicative.
While this clearly is a necessary condition for C to admit an absorbing monoid, to
proceed further in the opposite direction, one also needs an associative morphism
m : Q ⊗ Q → Q, but the existence of such a morphism remains to be proven.

1.2. Related work

We would like to point out several earlier references that are related to the present
work. The fact that a C∗-tensor category with finitely many simple objects and
an absorbing monoid is the representation category of a finite-dimensional C∗-Hopf
algebra was obtained in [18, Theorem 6.7]. The proof basically proceeds by showing
that a finite C∗-tensor category can be faithfully realized by endomorphisms of a
von Neumann algebra and then appealing to [17, Theorem 6.2]. This approach can
in principle (this has never been done) be extended to C∗-tensor categories with
countably many simple objects by combining [29], which realizes such categories
as categories of bimodules over a von Neumann algebra N , and the extension of
Longo’s result [17] to infinite index subfactors of depth two obtained in [11]. Con-
cerning this generalization, we observe that putting the above-mentioned results
together as indicated would require a non-trivial amount of work since they use
different frameworks (type II vs. III algebras, endomorphisms vs. bimodules), and
dropping the countability assumption on the category made in [29] seems very dif-
ficult. Furthermore, the above approaches (in the finite and countable cases) use
very heavy operator algebraic machinery, whereas the approach outlined in Sec. 1.1
is essentially purely algebraic and quite elementary and has the added benefit of
working without any assumption on the cardinality of the category.

More recently, the relationship between the absorbing property and embedding
functors has been studied in [28, Appendices A–B], though with different emphasis
and results. Finally, we would like to point out the papers [8, 9], which provide a
study, in the context of C∗-tensor categories, of multiplicative unitaries, which are
a convenient tool for the study of the regular representation in the theory of locally
compact groups and quantum groups.

2. From Algebraic Quantum Groups to Absorbing Monoids

2.1. Three representation categories of AQG

For the general theory of algebraic quantum groups (AQG), we refer to [27] and
to, e.g. [10] for the basics of representation theory, as well as to the survey [22],
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where both subjects are covered in considerable detail. For the standard categorical
notions of (braided/symmetric) tensor categories, natural transformations etc. our
standing reference is [19], but most of the relevant notions can also be found in [22].
We will always denote AQG by (A, ∆), where A is a non-degenerate ∗-algebra and
∆ : A → M(A⊗A) is the comultiplication. As usual, we denote the multiplication,
counit and coinverse by m : A ⊗ A → A, ε : A → C and S : A → A, respectively.
The left invariant positive functional is denoted by ϕ.

Definition 2.1. Let (A, ∆) be an AQG. A homomorphism π : A → EndK, where
K is a complex vector space, is called a representation of A on K if π(A)K = K. A

∗-representation is a representation π on a pre-Hilbert space K, that is ∗-preserving
in the sense that (π(a)u, v) = (u, π(a∗)v) for all a ∈ A and u, v ∈ K. By Rep(A, ∆)
we denote the category whose objects are ∗-representations and whose arrows are
the intertwining linear maps, i.e. if π′ is another ∗-representation of A on K ′, then

Hom(π, π′) = {s ∈ Hom(K, K ′) | sπ(a)v = π′(a)sv ∀v ∈ K, a ∈ A}.
Remark 2.2. Recall that a homomorphism π : A → B of non-degenerate algebras
is called non-degenerate if π(A)B = B = Bπ(A). It would therefore seem natural
to define a representation of A on K to be a homomorphism π : A → EndK that
satisfies π(A)EndK = EndK = EndKπ(A). However, this notion is too restrictive
since it is never satisfied by the usual left regular representation πl, to be introduced
shortly, if (A, ∆) is discrete and non-unital. So see this it suffices to notice that the
image of πl(a)e ∈ EndA is finite-dimensional for all a ∈ A and e ∈ EndA.

We define the left regular representation πl : A → EndA of an AQG by
πl(a)(x) = ax for a, x ∈ A. This terminology is justified, since the non-degeneracy
condition in Definition 2.1 holds because A2 = A, which again follows from the
existence of local units for A. Furthermore, πl is a ∗-representation with respect
to the inner product (·, ·) on A given by (x, y) = ϕ(y∗x). Thus πl ∈ Rep(A, ∆).
Similarly, one defines the right regular representation πr ∈ Rep(Aop, ∆) by the for-
mula πr(a)(x) = xa for a, x ∈ A. It is a ∗-representation with respect to the inner
product on the opposite algebra Aop given by (x, y) = ϕ(xy∗).

Recall that the left multiplier algebra L(A) of a non-degenerate algebra A is the
vector space L(A) = {ψ ∈ EndA | ψ(ab) = ψ(a)b ∀a, b ∈ A} with product ψ1ψ2 =
ψ1 ◦ ψ2, i.e. composition of maps. Note that πl : A → L(A) is an injective algebra
homomorphism. Similarly, the right multiplier algebra R(A) of a non-degenerate
algebra A is the vector space R(A) = {φ ∈ EndA | φ(ab) = aφ(b) ∀a, b ∈ A}
together with the product given by opposite composition: φ1φ2 = φ2◦φ1. Again πr :
A → R(A) is an injective algebra homomorphism. Further, note that by definition
the identity map is a linear antimultiplicative map from Hom(πl, πl) to R(A) and a
linear multiplicative map from Hom(πr , πr) to L(A). Assume A is a non-degenerate
∗-algebra and let ψ ∈ L(A). Define ψ∗ ∈ R(A) by ψ∗(a) = ψ(a∗)∗ for a ∈ A. The
assignment ψ �→ ψ∗ is an antilinear and antimultiplicative bijection from L(A) to
R(A). The multiplier algebra M(A) of a non-degenerate algebra A is the vector
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space M(A) = {(ψ, φ) ∈ L(A) × R(A) | φ(a)b = aψ(b) ∀a, b ∈ A} with pointwise
multiplication, i.e. (ψ1, φ1)(ψ2, φ2) = (ψ1ψ2, φ1φ2) = (ψ1 ◦ ψ2, φ2 ◦ φ1). Now the
map πlr : a �→ (πl(a), πr(a)) embeds A into M(A) as an algebra. Whenever A is
a ∗-algebra, so is M(A) and the embedding is ∗-preserving. If A is unital then we
have the algebra isomorphisms M(A) ∼= L(A) ∼= R(A) ∼= A.

Any homomorphism π : A → EndK of a non-degenerate algebra A such that
π(A)K = K and such that π(A)v = 0 implies v = 0 has a unique extension to
a unital homomorphism π̃ : M(A) → EndK given by the formula π̃(x)π(a)v =
π(xa)v, for x ∈ M(A), a ∈ A and v ∈ K. Whenever A has local units, the property
π(A)v = 0 ⇒ v = 0 follows immediately from π(A)K = K, see [10] for more
details. If π, π′ ∈ Rep(A, ∆), then clearly π ⊗ π′ : A ⊗ A → EndK ⊗ EndK ′ ⊂
End(K ⊗ K ′) determined by (π ⊗ π′)(a ⊗ a′) = π(a) ⊗ π(a′) for a, a′ ∈ A satisfies
(π ⊗ π′)(A ⊗ A)(K ⊗ K ′) = K ⊗ K ′. It therefore has a unique extension to a
unital ∗-homomorphism from M(A ⊗ A) to End(K ⊗ K ′), which we again denote
by π ⊗ π′. It is obvious that π × π′ = (π ⊗ π′) ◦∆ is non-degenerate, and therefore
belongs to Rep(A, ∆). Hence Rep(A, ∆) is a tensor category with irreducible unit
ε. Suppressing the totally canonical associativity constraint, we treat the tensor
category Rep(A, ∆) as strict. Note that (πl × πl)(a)x = ∆(a)x for a ∈ A and
x ∈ A ⊗ A. By Repf (A, ∆) we mean the full tensor subcategory of Rep(A, ∆)
consisting of finite-dimensional representations, i.e. those π ∈ Rep(A, ∆) for which
dim K < ∞.

Clearly, Repf (A, ∆) is a tensor ∗-category with respect to the adjoint operation
for bounded linear maps between Hilbert spaces, but we are not aware of a method
to turn Rep(A, ∆) into a tensor ∗-category which works for any AQG(A, ∆). Yet,
we have the following.

Proposition 2.3. Let (A, ∆) be an AQG and define Rep∗(A, ∆) to be the full
subcategory of Rep(A, ∆) consisting of representations that are direct sums of finite-
dimensional irreducible ∗-representations with finite multiplicities. Then there exists
a ∗-operation on Rep∗(A, ∆) extending that of Repf (A, ∆). This ∗-operation is
compatible with the scalar products in the sense that

(su, v)K′ = (u, s∗v)K

for u ∈ K, v ∈ K ′ and s ∈ Hom(π, π′), where π, π′ are representations on
K, K ′ with inner products (·, ·)K and (·, ·)K′ , respectively. For π ∼= ⊕iniπi and
π′ ∼= ⊕in

′
iπi, where the representations πi ∈ Repf (A, ∆) are irreducible and pair-

wise non-isomorphic, we use the isomorphisms

Hom(π, π′) ∼=
∏

i

Hom(niπi, n
′
iπi) ∼=

∏
i

Mni,n′
i
(C)

to equip the spaces Hom(π, π′), where π, π′ ∈ Rep∗(A, ∆), with the product topology.
With respect to these topologies the composition ◦ is continuous.
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Proof. Let I be the set of unitary equivalence classes of finite-dimensional irre-
ducible ∗-representations and let πi be a representation in the class i ∈ I act-
ing on the Hilbert space Hi. Consider two representations π ∼= ⊕iπi ⊗ IKi and
π′ ∼= ⊕iπi ⊗ IK′

i
, where Ki, K

′
i are finite-dimensional multiplicity spaces. Here it

is understood that the scalar products on the finite-dimensional spaces Hi ⊗ Ki

are the restrictions of that of K and similarly for K ′, etc. Since the representa-
tions πi ⊗ IKi and πj ⊗ IK′

j
are disjoint if i 
= j, every morphism s : π → π′

is given by a family (si), where si ∈ Hom(πi ⊗ IKi , πi ⊗ IK′
i
). Here si is a mor-

phism in the ∗-category Repf (A, ∆) and therefore has an adjoint s∗i defined by
(siui, vi)Hi⊗K′

i
= (ui, s

∗
i vi)Hi⊗Ki . Conversely, every such family constitutes a mor-

phism in Hom(π, π′). Thus we can define an element of Hom(π′, π) by s∗ = (s∗i ). It
is evident that this definition satisfies the properties of a ∗-operation and extends
the ∗-operation of Repf (A, ∆). Now (su, v)K′ = (u, s∗v)K is automatic since
(·, ·)K =

∑
i(·, ·)Hi⊗Ki , etc. The continuity of ◦ is also obvious.

Remark 2.4. (1) Note that Rep∗(A, ∆) is not closed under tensor products, but
it is stable under tensor products with finite-dimensional ∗-representations.

(2) For a general AQG the category, Rep∗(A, ∆) may consist only of copies of ε.
This does not happen in the discrete case to be discussed below.

Proposition 2.5. Let (A, ∆) be a discrete AQG, so A = ⊕i∈IEndHi with Hi

finite-dimensional Hilbert spaces. Let Ii be the unit of EndHi and let pi ∈ Rep(A, ∆)
denote the canonical projection from A to EndHi. Then:

(1) For any π ∈ Rep (A, ∆), we have π ∼= ⊕inipi with ni = dimπ(Ii)K/dimHi.
(2) πl

∼= ⊕i∈I dimHi pi, so πl ∈ Rep∗(A, ∆).
(3) Repf (A, ∆) is equivalent to the tensor category of all finite-dimensional repre-

sentations of (A, ∆) and Rep(A, ∆) is equivalent to the tensor category of all
representations.

(4) R(A) ∼= M(A) as unital algebras, whereas Hom(πl, πl) and M(A) are anti-
isomorphic as unital ∗-algebras.

Proof. (1) The subspaces Ki = π(Ii)K are clearly linear independent and a short
argument using π(A)K = K shows that K ∼= ⊕iKi. Define ∗-representations
πi of (A, ∆) on Ki by πi(a) = π(a) � Ki for a ∈ A, and note that π ∼= ⊕iπi

with πi
∼= nipi.

(2) This follows from (1) by noting that Ki = EndHi so ni = dimHi.
(3) This follows from the facts that the decomposition in (1) holds also for represen-

tations which are not ∗-representations and that the irreducible representations
pi are ∗-representations.

(4) By definition Hom(πl, πl) and R(A) are anti-isomorphic as unital algebras. Let
φ ∈ R(A). In view of the definition of right multipliers we have φ(a) = φ(Iia) =
Iiφ(a) ∈ EndHi for every i ∈ I, a ∈ EndHi. Thus we obtain restrictions
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φi = φ � EndHi ∈ R(EndHi) such that φ = ⊕iφi. Conversely, the latter for-
mula defines an element of R(A) for every element (φi, i ∈ I) of

∏
i R(EndHi).

Since the EndHi are unital we have R(EndHi) = EndHi, and therefore
R(A) =

∏
i EndHi = M(A) as unital algebras. It follows that Hom(πl, πl)

and M(A) are anti-isomorphic as unital ∗-algebras.

For a discrete AQG we normalize the left invariant positive functional by requir-
ing ϕ(I0) = 1.

We aim now at understanding the relation between Repf (A, ∆) and Rep(A, ∆)
in more categorical terms, whenever (A, ∆) is a discrete quantum group.

In order to make sense of infinite direct sums of objects, we need some categorical
devices. Let J be a small category, the index category, and let F : J → C be a
functor. We denote the objects of J by i, j, k and write Xi = F (i). A pair (X, fi),
where X ∈ C and the morphisms fi : Xi → X for i ∈ J satisfy fj ◦ F (s) = fi

for every s : i → j, is called a cone. We say F has an inductive limit (or colimit)
if there exists a cone (X, fi) that is universal, i.e. for any other cone (Y, gi), there
exists a unique t : X → Y such that t ◦ fi = gi for all i ∈ J . The category J is
filtered if it satisfies the following conditions:

(1) For every i, j ∈ J , there exists k ∈ J and morphisms u : i → k and v : j → k.
(2) For every i, j ∈ J and u, v : i → j, there exists s : j → k such that s◦u = s◦ v.

An inductive limit F : J → C is called filtered if J is a filtered category. Every
directed partially ordered set J gives rise to a filtered category J , where ObjJ = J

and HomJ (i, j) contains one element if i ≤ j and none otherwise. Given a set S,
the power set 2S is a directed partially ordered set.

In our applications C has finite direct sums, and we define an infinite direct
sum ⊕j∈SYj as a filtered inductive limit over F : 2S → C. Here 2S is the filtered
category corresponding to the power set 2S , and the functor F is given by choosing
a finite direct sum for every s ∈ 2S . An example of a category for which all filtered
inductive limits exist is the category Rep(A, ∆), where (A, ∆) is a discrete AQG.

We will now consider a completion Ĉ with respect to all filtered inductive limits
of a given category C. Given any category C there exists a category Ind C of “filtered
inductive limits of objects in C”. The standard reference is [1]. We collect some of
its properties that we shall need, none of which is new.

Proposition 2.6. Let C be a category and denote Ĉ = Ind C. Then

(1) Ĉ contains C as a full subcategory.
(2) Ĉ is complete with respect to filtered inductive limits. In particular, there exist

infinite sums Z ∼= ⊕i∈I Zi, where Zi ∈ C.
(3) If C is abelian, in particular semisimple, then Ĉ is abelian.
(4) If C is semisimple, then every object of Ĉ is a filtered inductive limit of objects

in C. In this case, Ĉ is uniquely characterized up to equivalence by this property
and (1)–(2).
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(5) If C is monoidal, then the tensor product extends uniquely to Ĉ. Similarly if C
is braided or symmetric, then so is Ĉ.

(6) If C has exact tensor product, in particular if C has duals, then the tensor
product of Ĉ is also exact.

Proof. We limit ourselves giving references for the interested reader. Statements
(1)–(2) are proven in [1], whereas (3) follows from [1, 12]. Claim (4) is proven in [4,
Sec. 4], and for (5), (6), see [5, 3].

Remark 2.7. Concerning the construction of Ĉ, we only note that its objects are
pairs (G, F ), where G is a small filtered category and F : G → C is a functor.
Denoting objects of Ĉ by (Xi), where i ∈ ObjG and Xi = F (i), the hom-sets are
defined by

HomĈ((Xi), (Yj)) = lim←−
i

lim−→
j

HomC(Xi, Yj).

Lemma 2.8. Let C be a semisimple tensor ∗-category, and let C∗ be the full sub-
category of Ĉ consisting of direct sums of irreducible objects of C with finite multi-
plicities. Then C∗ has a ∗-operation extending that of C.

Proof. Exactly as for Proposition 2.3.

The following is an immediate, though very useful generalization of [4, Exam-
ple 4.3.2].

Proposition 2.9. Let (A, ∆) be a discrete AQG and let C = Repf (A, ∆). Then
there is a canonical equivalence F̂ : Ĉ → Rep(A, ∆) of tensor categories which
restricts to the identity on the full subcategory C of Ĉ and restricts to an equivalence
of C∗ and Rep∗(A, ∆).

Proof. Note that if C is a category of vector spaces or of representations, then
the filtered inductive limits above are inductive limits in the ordinary sense. The
category Repf (A, ∆) is semisimple and every object of Rep(A, ∆) is an inductive
limit of objects in Repf (A, ∆). Since Rep(A, ∆) is closed with respect to inductive
limits, the equivalence Ĉ � Rep(A, ∆) follows from assertion (4) in Proposition 2.6.
The last statement is obvious since both C∗ and Rep∗(A, ∆) are defined as the
respective full subcategories of objects that contain the simple objects with finite
multiplicities.

2.2. Construction of the regular monoid

Let (A, ∆) be an AQG and (Â, ∆̂) its Pontryagin dual with the conventions that
∆̂(ω)(a ⊗ b) = ω(ab) and m̂(ω ⊗ ω′) = (ω ⊗ ω′)∆, where a, b ∈ A and ω, ω′ ∈ Â.
Consider the Fourier transform F : A → Â, which is given by F(a) = â = aϕ, for
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a ∈ A. Here and in the sequel cϕ and ϕc denote the linear functionals on A given
by cϕ = ϕ(· c) and ϕc = ϕ(c ·), for c ∈ M(A). It is known that F is a bijective
linear map satisfying Plancherel’s formula ψ̂(F(a)∗F(b)) = ϕ(a∗b), for a, b ∈ A.
Here ψ̂ is the right invariant functional on (Â, ∆̂) determined by ψ̂F = ε. If (A, ∆)
is discrete, then (Â, ∆̂) is a Hopf ∗-algebra and ψ̂ is a bounded functional on Â

which is both left- and right invariant.

Lemma 2.10. Let (A, ∆) be an AQG. Then

(ϕ ⊗ ϕ)(∆(c)(a ⊗ b)) = ϕ(c(ϕ ⊗ ι)[((S−1 ⊗ ι)∆(b))(a ⊗ 1)])

= ϕ(c(ι ⊗ ϕ)[(1 ⊗ S−1(b))∆(a)]),

for all a, b ∈ A and c ∈ M(A).

Proof. The formula ϕ((ωS ⊗ ι)∆(c)b) = ϕ(c(ω ⊗ ι)∆(b)) holds for any ω ∈ Â,
b ∈ A and c ∈ M(A), and is known as the strong left invariance property [16]. Thus

(ϕ ⊗ ϕ)(∆(c)(a ⊗ b)) = ϕ(((âS−1S ⊗ ι)∆(c))b)

= ϕ(c(âS−1 ⊗ ι)∆(b)) = ϕ(c(ϕ ⊗ ι)[((S−1 ⊗ ι)∆(b))(a ⊗ 1)])

for a, b ∈ A and c ∈ M(A). The computation

ϕ(c(ϕ ⊗ ι)[((S−1 ⊗ ι)∆(b))(a ⊗ 1)])

= ϕ(c(âS−1 ⊗ ι)∆(b))

= âS−1((ι ⊗ ϕc)∆(b)) = ϕ(S−1[(ι ⊗ ϕc)∆(b)]a)

= ϕ((ϕcS ⊗ ι)∆S−1(b)a) = ϕ(S−1(b)(ϕc ⊗ ι)∆(a))

= ϕ(c(ι ⊗ ϕ)[(1 ⊗ S−1(b))∆(a)])

proves the second identity.

Let m̂ : Â ⊗ Â → Â be the linearized multiplication on Â, so m̂(ω ⊗ η) = ωη,
for ω, η ∈ Â, which means that

m̂(â ⊗ b̂)(c) = (âb̂)(c) = (â ⊗ b̂)∆(c) = (ϕ ⊗ ϕ)(∆(c)(a ⊗ b)),

for a, b, c ∈ A, and remains valid also for c ∈ M(A).

Definition 2.11. A semigroup in a (strict) tensor category C is a pair (Q, m), where
Q is an object and m : Q⊗Q → Q satisfies m ◦ (m⊗idQ) = m ◦ (idQ⊗m). A monoid
is a triple (Q, m, η) where (Q, m) is a semigroup and η : 1 → Q satisfies m ◦ (η ⊗
idQ) = m ◦ (idQ ⊗ η) = idQ. Two semigroups (monoids) (Q, m, η), (Q′, m′, η′) are
isomorphic if there exists an isomorphism s : Q → Q′ such that s ◦m = m′ ◦ (s⊗ s)
(and s ◦ η = η′).
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Proposition 2.12. Let notation be as above and consider the linear map m̃ =
F−1m̂(F ⊗ F) : A ⊗ A → A. Then:

(1) ϕ(cm̃(x)) = (ϕ ⊗ ϕ)(∆(c)x) for x ∈ A ⊗ A and c ∈ M(A).
(2) m̃(a ⊗ b) = (ϕ ⊗ ι)[((S−1 ⊗ ι)∆(b))(a ⊗ 1)] = (ι ⊗ ϕ)[(1 ⊗ S−1(b))∆(a)] for

a, b ∈ A.
(3) m̃(m̃ ⊗ ι) = m̃(ι ⊗ m̃), so m̃ is a multiplication on A.
(4) m̃(∆(a)x) = am̃(x) for a ∈ A and x ∈ A ⊗ A.

Proof. The identity Fm̃ = m̂(F ⊗ F) means that

ϕ(cm̃(a ⊗ b)) = (Fm̃(a ⊗ b))(c) = (m̂(F ⊗ F)(a ⊗ b))(c)

= m̂(â ⊗ b̂)(c) = (ϕ ⊗ ϕ)(∆(c)(a ⊗ b)),

for a, b, c ∈ A, which proves statement (1). Statement (2) is now immediate from
Lemma 2.10 and faithfulness of ϕ. To show (3), calculate

m̃(m̃ ⊗ ι) = F−1m̂(F ⊗ F)(F−1m̂(F ⊗ F) ⊗ ι) = F−1m̂(m̂ ⊗ ι)(F ⊗ F ⊗ F)

= F−1m̂(ι ⊗ m̂)(F ⊗ F ⊗ F) = m̃(ι ⊗ m̃).

Claim (4) is checked by using (1) and computing

ϕ(cm̃(∆(a)x)) = (ϕ ⊗ ϕ)(∆(c)∆(a)x) = (ϕ ⊗ ϕ)(∆(ca)x) = ϕ(cam̃(x)),

for x ∈ A ⊗ A and a, c ∈ A. Now (4) follows by faithfulness of ϕ.

Corollary 2.13. We have m̃ ∈ Hom(πl × πl, πl), and (πl, m̃) is a semigroup in
Rep(A, ∆).

Proof. By the previous proposition, the linear map m̃ : A ⊗ A → A is associative
and satisfies

m̃(πl × πl)(a)x = m̃(∆(a)x) = πl(a)m̃x,

for a ∈ A and x ∈ A ⊗ A. Thus m̃ is an intertwiner from πl × πl to πl.

Remark 2.14. If s : π → π′ is bounded with respect to the scalar products on
K, K ′, then s∗ can be defined as the adjoint of the unique extension of s to the
Hilbert space completions. Therefore, the reader might wonder why we do not work
with the usual tensor ∗-category of non-degenerate ∗-representations of a discrete
AQG on Hilbert spaces. Considering bounded morphisms is, however, not sufficient
for our purposes, since the morphism m̃, which plays a fundamental role in our
considerations, is not bounded with respect to the 2-norms on H ⊗ H and H .
To see this it suffices to consider the simple case of (Â, ∆̂) with Âr = C(T), so
m̂(f ⊗g)(s, t) = f(s)g(t), for f, g ∈ C(T) and s, t ∈ T. Here (Âr , ∆̂r) is the analytic
extension of (Â, ∆̂) in the sense of [16], so Âr is a unital C*-algebra and (Âr, ∆̂r)
is a compact quantum group in the sense of Woronowicz. By C(T) we then mean
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the unital C*-algebra of all continuous complex valued functions of the circle T

with pointwise algebraic operations and uniform norm. Since F is an isometry by
Plancherel’s formula, we must then require m̂ to be bounded with respect to the
2-norms on the Hilbert spaces L2(T) and L2(T × T) of square integrable functions
on T and T × T (obtained from the GNS-constructions of Â and Â ⊗ Â described
in [16]), and this is clearly false. Thus one cannot define m̃∗ by extension to the
Hilbert space completion. Also Proposition 2.3 is not applicable, since in general
πl × πl is not in Rep∗(A, ∆).

Proposition 2.15. Let (A, ∆) be an AQG. Then Hom(ε, πl) 
= {0} if and only if
(A, ∆) is discrete. In this case, the map η̃ : c �→ cF−1(1Â) belongs to Hom(ε, πl)
and (πl, m̃, η̃) is a monoid, which we call the regular monoid. We have η̃c = cI0.
Since η̃ : ε → πl is a morphism in Rep∗(A, ∆), the adjoint η̃∗ exists and η̃∗ = ε.

Proof. For every morphism η ∈ Hom(ε, πl), we have

ε(a)η(1) = η(ε(a)1) = πl(a)η(1) = aη(1)

for a ∈ A, saying that η(1) is a left integral in A. Thus η → η(1) is a bijection
from Hom(ε, πl) to the space of left integrals in A. By definition an AQG (A, ∆) is
discrete if and only if a non-zero left integral exists, and in this case it is unique up
to a scalar.

If (A, ∆) is discrete then (Â, ∆̂) is compact, i.e. Â has a unit 1Â. Now

F(I0)(a) = ϕ(aI0) = ε(a)ϕ(I0) = ε(a).

Thus F(I0) = ε = 1Â and η̃(1) = I0, which is a left integral in A, so η̃ ∈ Hom(ε, πl).
Finally, the equalities

(η̃(c), a)A = ϕ(a∗cI0) = cε(a∗) = cε(a) = (c, ε(a))C,

for c ∈ C and a ∈ A, show that η̃∗ = ε.

Remark 2.16. (1) The above result shows in particular that a monoid structure
on the regular representation exists only if (A, ∆) is discrete. It turns out that
the multiplication m̃ is in general not unique, not even up to isomorphisms
of πl.

(2) If (A, ∆) is a discrete and quasitriangular AQG with R-matrix R, the categories
Repf (A, ∆) and Rep(A, ∆) are braided. It is therefore natural to ask whether
the monoid (πl, m̃, η̃) is commutative in the sense that m̃ ◦ cπl,πl

= m̃, where
c denotes the braiding. One can easily show that this is the case if and only
if R = 1 ⊗ 1. In that case, (A, ∆) is cocommutative and the representation
categories are symmetric.

Definition 2.17. A comonoid in a (strict) tensor category C is a triple (Q, ∆, ε),
where Q is an object and ∆ : Q → Q ⊗ Q, ε : Q → 1 satisfy ∆ ⊗ idQ ◦ ∆ =
idQ ⊗ ∆ ◦ ∆ and ε ⊗ idQ ◦ ∆ = idQ ⊗ ε ◦ ∆ = idQ.

For a compact AQG, we have the following easy result.
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Proposition 2.18. Let (A, ∆) be an AQG. The map ε : A → C is in Hom(πl, ε).
Furthermore, (A, ∆) is compact if and only if ∆(A) ⊂ A ⊗ A if and only if ∆ ∈
Hom(πl, πl × πl). In this case (πl, ∆, ε) is a comonoid in Rep(A, ∆), which we call
the regular comonoid.

Proof. For any AQG, we have the equation m(S ⊗ ι)∆(a) = ε(a)I in M(A).
If ∆(A) ⊂ A ⊗ A, the left-hand side and therefore the unit I belongs to
A. The remaining facts are obvious consequences of ε and ∆ being algebra
homomorphisms.

Remark 2.19. Again, one might try to work with the usual tensor ∗-category
of unital ∗-representations of a compact AQG (A, ∆) on Hilbert spaces. There
is no problem with ∆, as it is an isometry, but ε : A → C has in the general
case no continuous extension with respect to the 2-norm on A given by the GNS-
construction.

Definition 2.20. A Frobenius algebra in a tensor category C is a quintuple
(Q, m, η,∆, ε) such that (Q, m, η) is a monoid in C, (Q, ∆, ε) is a comonoid in
C, and the following compatibility condition holds

idQ ⊗ m ◦ ∆ ⊗ idQ = ∆ ◦ m = m ⊗ idQ ◦ idQ ⊗ ∆. (2.1)

Proposition 2.21. Let (A, ∆) be a finite-dimensional AQG. Then m̃∗ = ∆ so the
regular monoid and comonoid are each others adjoints: (πl, m̃, η̃)∗ ≡ (πl, m̃

∗, η̃∗) =
(πl, ∆, ε). Furthermore, the quintuple (πl, m̃, η̃, ∆, ε) is a Frobenius algebra in
Repf (A, ∆), which we call the regular Frobenius algebra.

Proof. That η̃∗ = ε is shown in Proposition 2.15. If (A, ∆) is finite-dimensional,
m̃∗ = ∆ follows from statement (1) of Proposition 2.12. The Frobenius property
(2.1) will be shown at the end of the next subsection. (Cf. also [20].)

Remark 2.22. (1) Conversely, the existence of both the regular monoid and the
regular comonoid requires (A, ∆) to be discrete and compact, thus A is finite-
dimensional.

(2) Given a Frobenius algebra (Q, m, η,∆, ε), it is easy to show that the morphisms
ε◦m : Q⊗Q → 1 and ∆◦η : 1 → Q⊗Q satisfy the triangular equations [14], i.e.
the object Q is its own two-sided dual. If C is a ∗-category and m∗ = ∆, η∗ = ε,
we have (∆ ◦ η)∗ = ε ◦ m and we obtain a solution of the conjugate equations
[18]. In the case considered above, this in particular implies that πl is a finite-
dimensional object in Rep(A, ∆), thus again A is finite-dimensional.

We show now how one can recover the intrinsic group, cf. [22], from the regular
monoid of a discrete AQG.
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Definition 2.23. Let C be a tensor category and C∗ a full ∗-subcategory. Let
(Q, m, η) be a monoid in C with Q ∈ C∗. Denote by GQ the group in EndQ given by

GQ = {t ∈ EndQ | t ◦ t∗ = t∗ ◦ t = idQ, m ◦ t ⊗ t = t ◦ m}
with group multiplication being composition of arrows, so the unit of GQ is idQ

and the inverse t−1 of t ∈ GQ is t∗. The group GQ is called the intrinsic group of
the monoid (Q, m, η).

Proposition 2.24. Let (A, ∆) be a discrete AQG with intrinsic group G defined by

G = {g ∈ M(A) | ∆g = g ⊗ g, g∗g = gg∗ = I},
which is compact with respect to the product topology on M(A). Let Gπl

⊂
Hom(πl, πl) be the intrinsic group of the regular monoid (πl, m̃, η̃) with topology
defined in Proposition 2.3. Then G ∼= Gπl

as topological groups.

Proof. By Proposition 2.5, M(A) ∼= R(A) as unital algebras, and R(A) and
Hom(πl, πl) are anti-isomorphic as unital ∗-algebras. Let ρ : A → A denote the
linear map such that ϕ(ab) = ϕ(bρ(a)) for a, b ∈ A. It suffices to show that for any
g ∈ R(A), we have m̃◦(g⊗g) = g◦m̃ if and if only ∆g = g⊗g. But m̃◦(g⊗g) = g◦m̃

means that m̃◦(g⊗g)(a⊗b) = g◦m̃(a⊗b), for a, b ∈ A, or m̃(ag⊗bg) = m̃(a⊗b)g,
which by faithfulness of ϕ, can be expressed as

ϕ(cm̃(ag ⊗ bg)) = ϕ(cm̃(a ⊗ b)g) = ϕ(ρ−1(g)cm̃(a ⊗ b)),

for a, b, c ∈ A. Hence by Proposition 2.12, the formula m̃ ◦ (g ⊗ g) = g ◦ m̃ can be
rewritten as

(ϕ ⊗ ϕ)(∆c(ag ⊗ bg)) = (ϕ ⊗ ϕ)(∆(ρ−1(g)c)(a ⊗ b))

= (ϕ ⊗ ϕ)(∆ρ−1(g)∆c(a ⊗ b)) = (ϕ ⊗ ϕ)(∆(c)(a ⊗ b)(ρ ⊗ ρ)∆ρ−1(g)),

for a, b, c ∈ A. Thus again by faithfulness of ϕ, we see that m̃ ◦ (g ⊗ g) = g ◦ m̃ if
and only if (ρ ⊗ ρ)∆ρ−1(g) = g ⊗ g.

We assert now that (ρ ⊗ ρ)∆ρ−1 = ∆ for any discrete AQG, which clearly
completes the proof of the proposition. Since (S2 ⊗ ρ)∆ = ∆ρ for any AQG, we see
that (ρ ⊗ ρ)∆ρ−1 = ∆ if and only if ρ = S2, which holds for discrete AQG.

2.3. The absorbing property

The following obvious fact will be used without further reference.

Lemma 2.25. Let (A, ∆) be a AQG. If θ is a ∗-representation of (A, ∆) on K then

(θ × πl)(a)(v ⊗ x) =
∑

i θ(ai)v ⊗ bi, where
∑

i ai ⊗ bi = ∆(a)(1 ⊗ x),

(πl × θ)(a)(x ⊗ v) =
∑

i ai ⊗ θ(bi)v, where
∑

i ai ⊗ bi = ∆(a)(x ⊗ 1),

for v ∈ K and x ∈ A.
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Proposition 2.26. Let (A, ∆) be an AQG. For every θ ∈ Rep(A, ∆), we have the
absorption property

θ × πl
∼= πl × θ ∼= Iθ × πl

∼= dim K πl

for πl, where Iθ is the ∗-representation of A on K given by Iθ(a) = ε(a)idK for
a ∈ A.

Proof. We start by showing θ × πl
∼= Iθ × πl. Define a linear map Uθ : K ⊗ A →

K ⊗ A by

Uθ(θ(a)v ⊗ x) =
∑

i

θ(ai)v ⊗ xi,

where
∑

i ai⊗xi = ∆(x)(a⊗1) for a, x ∈ A. To see that Uθ is well-defined, suppose∑
j θ(aj)vj ⊗ xj = 0, where aj , xj ∈ A and vj ∈ K, and write

∑
j ∆(xj)(aj ⊗ 1) =∑

ij aj
i ⊗xj

i with aj
i , x

j
i ∈ A. We must show that

∑
ij θ(aj

i )v
j ⊗xj

i = 0, and in doing
so, we can assume that (xj) are linearly independent, so θ(aj)vj = 0 for all j. Pick
a two sided local unit e for the collection {aj

i , x
j
i } and a local unit e′ for e. Then∑

ij

θ(aj
i )v

j ⊗ xj
i =

∑
ij

(θ(e) ⊗ e)(θ(aj
i )v

j ⊗ xj
ie

′)(vj ⊗ e)

= (θ(e) ⊗ e)
∑

j

(θ ⊗ ι)(∆(xj)(aj ⊗ 1))(vj ⊗ e′e)

= (θ(e) ⊗ e)
∑

j

(θ ⊗ ι)(∆(xj)(1 ⊗ e′))(θ(aj)vj ⊗ e) = 0

as θ(aj)vj = 0 for all j. Thus Uθ is well-defined.
Furthermore, for a, b, x ∈ A and v ∈ K, we have

(θ × πl)(b)Uθ(θ(a)v ⊗ x) =
∑

i

(θ × πl)(b)(θ(ai)v ⊗ xi) =
∑
ik

θ(bi
k)θ(ai)v ⊗ yi

k

=
∑
ik

θ(bi
kai)v ⊗ yi

k,

where
∑

i ai ⊗ xi = ∆(x)(a ⊗ 1) and
∑

k bi
k ⊗ yi

k = ∆(b)(1 ⊗ xi). But∑
ik

bi
kai ⊗ yi

k =
∑

i

∆(b)(1 ⊗ xi)(ai ⊗ 1) = ∆(b)∆(x)(a ⊗ 1) = ∆(bx)(a ⊗ 1),

so (θ × πl)(b)Uθ(θ(a)v ⊗ x) = Uθ(θ(a)v ⊗ bx) for a, b, x ∈ A and v ∈ K. On the
other hand, if we write ∆(b)(1 ⊗ x) =

∑
i ci ⊗ zi, for b, x ∈ A, and calculate

(Iθ × πl)(b)(θ(a)v ⊗ x) =
∑

i

Iθ(ci)θ(a)v ⊗ zi =
∑

i

ε(ci)θ(a)v ⊗ zi

= θ(a)v ⊗
(∑

i

ε(ci)zi

)
= θ(a)v ⊗ (ε ⊗ ι)[∆(b)(1 ⊗ x)] = θ(a)v ⊗ bx,

for a ∈ A and v ∈ K, we see that

(θ × πl)(b)Uθ(θ(a)v ⊗ x) = Uθ(θ(a)v ⊗ bx) = Uθ(Iθ × πl)(b)(θ(a)v ⊗ x),
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for a, b, x ∈ A and v ∈ K, so

(θ × πl)(b)Uθ = Uθ(Iθ × πl)(b),

for b ∈ A and therefore Uθ ∈ Hom(Iθ × πl, θ × πl) in Rep(A, ∆).
By the cancellation laws for (A, ∆), we see that Uθ is invertible, and thus θ×πl

∼=
Iθ × πl. In fact, the inverse of Uθ in Rep(A, ∆) is given by the following formula
U−1

θ (θ(a)v ⊗ x) =
∑

i θ(ai)v ⊗ xi, where∑
i

ai ⊗ xi = ((S−1 ⊗ ι)∆(x))(a ⊗ 1)

for a, x ∈ A and v ∈ K.
Similarly, one shows that the linear map Vθ : A ⊗ K → A ⊗ K given by

Vθ(x ⊗ θ(a)v) =
∑

i

xi ⊗ θ(ai)v,

for a, x ∈ A and v ∈ K, and where
∑

i xi ⊗ ai = ∆(x)(1 ⊗ a), is well-defined and is
an isomorphism in Hom(πl × Iθ, πl × θ). Thus πl × Iθ

∼= πl × θ in Rep(A, ∆).
From the previously derived expression

(Iθ × πl)(b)(θ(a)v ⊗ x) = θ(a)v ⊗ bx,

valid for a, b, x ∈ A and v ∈ K, we see that (Iθ × πl)(b) = IB(K) ⊗ πl(b), so
Iθ × πl

∼= (dim K)πl and similarly πl × Iθ
∼= (dim K)πl.

Remark 2.27. In the case of a discrete AQG, where Rep(A, ∆) is semisimple,
Proposition 2.26 can also be proven using (1) in Proposition 2.5 together with
Proposition 3.15 below.

Proposition 2.28. Let (A, ∆) be a discrete AQG and θ ∈ Repf (A, ∆). Then πl ×
θ, πl × Iθ, θ×πl, Iθ ×πl ∈ Rep∗(A, ∆), and the morphisms Uθ, Vθ considered in the
preceding proposition are unitary.

Proof. In the discrete case πl ∈ Rep∗(A, ∆) by Proposition 2.5 and the same is
true for πl × θ and θ × πl. Since we know that Uθ is invertible, we need only show
that it is an isometry. (As always, the regular representation πl is understood to
come with its scalar product defined using ϕ.) Recall that Uθ is defined by

Uθ(θ(a)v ⊗ x) =
∑

i

θ(ai)v ⊗ xi,

where
∑

i ai ⊗ xi = ∆(x)(a ⊗ 1) for a, x ∈ A. We compute

(Uθ(θ(a)v ⊗ x), Uθ(θ(a)v ⊗ x)) =
∑
ij

(θ(ai)v ⊗ xi, θ(aj)v ⊗ xj)

=
∑
ij

(θ(ai)v, θ(aj)v)ϕ(x∗
j xj) =


θ


∑

ij

a∗
jaiϕ(x∗

jxj)


 v, v



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=


θ


∑

ij

(ι ⊗ ϕ)(a∗
jai ⊗ x∗

jxj)


 v, v




= (θ((ι ⊗ ϕ)([∆(x)(a ⊗ 1)]∗[∆(x)(a ⊗ 1)]))v, v)

= (θ((ι ⊗ ϕ)((a∗ ⊗ 1)∆(x∗x)(a ⊗ 1)))v, v) = (θ(a∗aϕ(x∗x))v, v)

= (θ(a)v, θ(a)v)(x, x) = (θ(a)v ⊗ x, θ(a)v ⊗ x),

for a, x ∈ A and v ∈ K. Thus Uθ is an isometry. The same is true for Vθ by a similar
computation.

Remark 2.29. (1) Let θ be a ∗-representation of (A, ∆) with Uθ as above. Clearly,
there is a ∗-representation θ̃ of (A, ∆op) which coincides with θ as a map from A

to EndK. It is then easy to see that Vθ̃ = ΣUθΣ−1, where Σ : K ⊗A → A⊗K

is the flip map. This observation obviates separate proofs for Vθ.

(2) Note that the assumptions on (A, ∆) and θ were only made in order for U∗
θ

to be definable in Rep∗(A, ∆). The computation showing that Uθ is isometric
holds in general and provides an alternative proof for the well-definedness of Uθ.

Proposition 2.30. The morphisms Vθ : πl × Iθ → πl × θ are natural with respect
to θ, i.e. the diagrams

πl × Iθ
Vθ� πl × θ

πl × Iθ′

idπl
⊗ s

� Vθ′� πl × θ′

idπl
⊗ s

�

commute for all s : θ → θ′, and similarly for Uθ.

Proof. This is obvious by definition of Vθ.

Having defined monoids in tensor categories, we will also need the notion of a
module over a monoid.

Definition 2.31. Let C be a tensor category and (Q, m) a semigroup in C. Then
a (left) Q-module is a pair (X, µ), where X ∈ C and µ : Q ⊗ X → X satisfies

µ ◦ m ⊗ idX = µ ◦ idQ ⊗ µ.

For a monoid (Q, m, η) we require in addition that µ ◦ η ⊗ idX = idX . With

HomQ-mod((X, µ), (X ′, µ′)) = {s ∈ Hom(X, X ′) | s ◦ µ = µ′ ◦ idQ ⊗ s}
as morphisms, the Q-modules form a category which we denote by Q-mod.
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Proposition 2.32. The diagram

πl × πl × Iθ
m̃ ⊗ idθ� πl × Iθ

πl × πl × θ

idπl
⊗ Vθ

� m̃ ⊗ idθ� πl × θ

Vθ

�

commutes. We have similar commutative diagrams for the morphisms V ∗
θ : πl×θ →

πl × Iθ.

Proof. We must show that (m̃ ⊗ ι)(ι ⊗ Vθ) = Vθ(m̃ ⊗ ι) as maps from A ⊗ A ⊗ K

to A ⊗ K. Let a, c, x, y ∈ A and v ∈ K and write ∆(x)(1 ⊗ a) =
∑

i xi ⊗ ai, where
ai, xi ∈ A. Then

(ϕc ⊗ ι)(m̃ ⊗ ι)(ι ⊗ Vθ)(y ⊗ x ⊗ θ(a)v)

=
∑

i

ϕ(cm̃(y ⊗ xi))θ(ai)v

= θ

(∑
i

(ϕ ⊗ ϕ)(∆(c)(y ⊗ xi))ai

)
v

= θ((ϕ ⊗ ϕ ⊗ ι)((∆(c) ⊗ 1)(1 ⊗ ∆(x))(y ⊗ 1 ⊗ a)))v,

whereas if we write

∆(ϕ ⊗ ι)[((S−1 ⊗ ι)∆(x))(y ⊗ 1)](1 ⊗ a) =
∑

j

yj ⊗ bj

for bj , yj ∈ A and use (2) in Proposition 2.12, we get

(ϕc ⊗ ι)Vθ(m̃ ⊗ ι)(y ⊗ x ⊗ θ(a)v)

= (ϕc ⊗ ι)Vθ((ϕ ⊗ ι)[((S−1 ⊗ ι)∆(x))(y ⊗ 1)] ⊗ θ(a)v) = θ


∑

j

ϕ(cyj)bj


 v.

Hence (m̃ ⊗ ι)(ι ⊗ Vθ) = Vθ(m̃ ⊗ ι) follows if

(ϕ ⊗ ϕ ⊗ ι)((∆(c) ⊗ 1)(1 ⊗ ∆(x))(y ⊗ 1 ⊗ a) =
∑

j

ϕ(cyj)bj .

Now,

∑
j

ϕ(cyj)bj = (ϕc⊗ι)
(∑

j

yj⊗bj

)
= (ϕc⊗ι)[∆(ϕ⊗ι)[((S−1⊗ι)∆(x))(y⊗1)](1⊗a)],
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so (m̃ ⊗ ι)(ι ⊗ Vθ) = Vθ(m̃ ⊗ ι) if

(ϕc⊗ι)∆(ϕ⊗ι)[((S−1⊗ι)∆(x))(y⊗1)] = (ϕ⊗ϕ⊗ι)((∆(c)⊗1)(1⊗∆(x))(y⊗1⊗1)).

But

L.H.S. = (ϕc ⊗ ι)∆(ŷ ⊗ ι)(S−1 ⊗ ι)∆(x) = (ϕc ⊗ ι)∆(ŷS−1 ⊗ ι)∆(x)

= (ŷS−1 ⊗ ϕc ⊗ ι)(ι ⊗ ∆)∆(x) = (ŷS−1 ⊗ ϕc ⊗ ι)(∆ ⊗ ι)∆(x),

whereas by strong left-invariance of ϕ, we get

R.H.S. = (ŷ ⊗ ϕ ⊗ ι)((∆(c) ⊗ 1)(1 ⊗ ∆(x)))

= (ŷS−1S ⊗ ϕ ⊗ ι)((∆(c) ⊗ 1)(1 ⊗ ∆(x)))

= (ϕ ⊗ ι)(c ⊗ 1((ŷS−1 ⊗ ι)∆ ⊗ ι)∆(x)) = (ŷS−1 ⊗ ϕc ⊗ ι)(∆ ⊗ ι)∆(x),

as desired. Now, replacing Vθ by its inverse V ∗
θ , the direction of the vertical arrows

in the diagram is reversed, and we see that also V ∗
θ is a πl-module morphism.

Corollary 2.33. The morphisms Vθ : πl × Iθ → πl × θ and V ∗
θ : πl × θ → πl × Iθ

are morphisms of πl-modules.

Proposition 2.34. Let (A, ∆) be a discrete AQG. Then

(m̃ ⊗ ι)(y ⊗ (∆(x)(1 ⊗ a))) = ∆(m̃(y ⊗ x))(1 ⊗ a) (2.2)

holds for x, y, a ∈ A.

Proof. First note that for Vθ with θ = πl, we have Vθ(x ⊗ a) = ∆(x)(1 ⊗ a) for
a, x ∈ A. To see this write ∆(x)(1 ⊗ a) =

∑
i xi ⊗ ai with ai, xi ∈ A and pick a

right-sided local unit e ∈ A for {a, ai}. Then

Vθ(x⊗a) = Vθ(x⊗πl(a)e) =
∑

i

xi⊗πl(ai)e =
∑

i

xi⊗aie =
∑

i

xi⊗ai = ∆(x)(1⊗a).

By Proposition 2.32, we have (m̃ ⊗ ι)(ι ⊗ Vθ) = Vθ(m̃ ⊗ ι). Thus

(m̃ ⊗ ι)(y ⊗ (∆(x)(1 ⊗ a))) = (m̃ ⊗ ι)(ι ⊗ Vθ)(y ⊗ x ⊗ a)

= Vθ(m̃ ⊗ ι)(y ⊗ x ⊗ a) = ∆(m̃(y ⊗ x))(1 ⊗ a)

for x, y, a ∈ A.

Remark 2.35. Clearly, it follows from the proof of this proposition that m̃ has
the property stated in the proposition if and only if Vπl

is a πl-module map. In
the discrete case, where every representation is a direct sum of representations
contained in πl, Proposition 2.32 can therefore also be deduced using the naturality
property of Proposition 2.30.
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End of Proof of Proposition 2.21. If (A, ∆) is finite-dimensional, we can put
a = 1 in (2.2) and obtain

(m̃ ⊗ ι)(ι ⊗ ∆)(y ⊗ x) = ∆(m̃(y ⊗ x))

for x, y ∈ A. In categorical terms, this is the equality m̃⊗ idπl
◦ idπl

⊗∆ = ∆◦m̃ in
End(πl⊗πl). Using the ∗-operation and ∆∗ = m̃, we also find idπl

⊗m̃ ◦ ∆⊗ idπl
=

∆ ◦ m̃. This completes the proof of the Frobenius property in Proposition 2.21.

We close this section by summarizing the results on the regular representation.

Theorem 2.36. Let (A, ∆) be an AQG with left regular representation πl. Then
there exists a morphism m̃ : πl × πl → πl such that (πl, m̃) is a semigroup in
the tensor category Rep(A, ∆). The representation πl has the absorbing property
πl × θ ∼= πl × Iθ

∼= dim K πl with respect to a natural family of equivalences
Vθ : πl × Iθ → πl × θ of (left) πl-modules. Similarly, there are natural equivalences
Uθ : Iθ × πl → θ × πl of right πl-modules. These equivalences are unitary whenever
(A, ∆) is discrete and θ ∈ Repf (A, ∆).

There exists a morphism η̃ : ε → πl such that (πl, m̃, η̃) is a monoid if and only
if (A, ∆) is discrete. In the discrete case, there exists a non-monoidal ∗-subcategory
Rep∗(A, ∆) ⊂ Rep(A, ∆) containing πl.

3. On Monoids, Embedding Functors and AQG

3.1. From monoids to embedding functors

Some of the results in this section will be formulated over any ground field F. Let
VectF denote the tensor category of finite-dimensional vector spaces over F.

Lemma 3.1. Let C be an F-linear semisimple category. Then an F-linear functor
F : C → VectF is faithful (i.e. F (s) = 0 for s : X → Y implies s = 0) if F (X) is
non-zero for every irreducible X ∈ C.

Proof. Suppose F (X) is non-zero for every irreducible X and consider s : X →
Y such that F (s) = 0. Let IC be the set of isomorphism classes of irreducible
objects with chosen representatives Xi, i ∈ IC . Let (viα) be bases in Hom(Xi, X)
with dual bases (v′iα) satisfying v′iα ◦ vjβ = δijδα,β idXi and

∑
α viα ◦ v′iα = idX .

Pick wjβ ∈ Hom(Xi, Y ) and w′
jβ similarly. Since Hom(Xi, Xj) = δij idXi F, which

implies w′
jβ ◦ s ◦ viα = δi,j ciαβ idXi , we can write

s =
∑
iα,jβ

wjβ ◦ w′
jβ ◦ s ◦ viα ◦ v′iα =

∑
iαβ

ciαβ wiβ ◦ v′iα.

Thus

0 = F (w′
kη) ◦ F (s) ◦ F (vkξ) =

∑
iαβ

ciαβ F (w′
kη ◦ wiβ ◦ v′iα ◦ vkξ) = ckξη F (idXk

),
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for k, ξ and η. By assumption F (idXk
) 
= 0 for k ∈ IC , thus all ciαβ vanish and

s = 0.

Proposition 3.2. Let C be a semisimple F-linear tensor category with End1 ∼= F,

and let (Q, m, η) be a monoid in Ĉ such that:

(1) dim HomĈ(1, Q) = 1.
(2) For every X ∈ C, there is an isomorphism Q ⊗X ∼= n(X)Q of Q-modules with

n(X) ∈ N.

Then the functor E : C → VectF defined by X �→ HomĈ(1, Q ⊗ X) and

E(s)φ = idQ ⊗ s ◦ φ, (3.1)

where s : X → Y and φ ∈ Hom(1, Q⊗X), is a faithful (strong) tensor functor with
dimE(X) = n(X).

Proof. We have E(X) = Hom(1, Q ⊗ X) ∼= Hom(1, n(X)Q) ∼= d(X)Hom(1, Q) ∼=
Fn(X), thus E(X) is a vector space of dimension n(X). Since E(X) 
= 0 for every
X ∈ C, Lemma 3.1 tells us that E is faithful.

To see that E is monoidal, first observe that E(1) = Hom(1, Q) = Fη by (2).
Thus there is a canonical isomorphism e : F = 1VectF

→ E(1) = Hom(1, Q) defined
by c �→ cη. Next we define morphisms

dE
X,Y : E(X) ⊗ E(Y ) → E(X ⊗ Y ), φ ⊗ ψ �→ m ⊗ idX⊗Y ◦ idQ ⊗ φ ⊗ idY ◦ ψ.

In terms of a diagram, this means

By definition (3.1) of the map E(s) : E(X) → E(Y ), it is obvious that the family
(dE

X,Y ) is natural with respect to both arguments. The equation

dE
X1⊗X2,X3

◦ dE
X1,X2

⊗ idE(X3) = dE
X1,X2⊗X3

◦ idE(X1) ⊗ dE
X2,X3

∀X1, X2, X3 ∈ C
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required from a tensor functor is immediate by associativity of m:

That (E, (dX,Y ), e) satisfies the unit axioms is almost obvious. The first condition
follows by

dX,1(idE(X) ⊗ e)φ = dX,1(φ ⊗ η) = m ⊗ idX ◦ idQ ⊗ φ ◦ η = φ,

and the second is shown analogously.
So far we have shown that E is a weak tensor functor for which e : 1VectF

→ E(1)
is an isomorphism. In order to conclude that E is a (strong) tensor functor it remains
to show that the morphisms dE

X,Y are isomorphisms. Let X, Y ∈ C. We consider the
bilinear map

γX,Y : HomQ-mod(Q, Q⊗X) � HomQ-mod(Q, Q⊗ Y ) → HomQ-mod(Q, Q⊗X ⊗ Y )

s � t �→ s ⊗ idY ◦ t,

and we write � rather than ⊗F for the tensor product of VectF in order to avoid
confusion with the tensor product in Q-mod. By (2), we have Q-module morphisms
si : Q → Q ⊗ X, s′i : Q ⊗ X → Q for i = 1, . . . , n(X) satisfying s′i ◦ sj = δij idQ,
and

∑
i si ◦ s′i = idQ⊗X , and similar morphisms ti, t

′
i, i = 1, . . . , n(Y ) with X

replaced by Y . Then the γij = γX,Y (si ⊗ tj) are linearly independent because
γ′

i′j′ ◦ γij = δi′iδj′j idQ, where γ′
i′j′ = t′j ◦ s′i ⊗ idY . Bijectivity of γX,Y follows

now from the fact that both the domain and codomain of γX,Y have dimension
n(X)n(Y ).

For any X ∈ C, we have a Q-module (Q⊗X, m⊗ idX). If (Q, m, η) is a monoid
in the tensor category, then it is straightforward to check that the following maps
are inverses of each other:

δX : HomQ-mod(Q, Q ⊗ X) → Hom(1, Q ⊗ X), s �→ s ◦ η,

δ−1
X : Hom(1, Q ⊗ X) → HomQ-mod(Q, Q ⊗ X), s̃ �→ m ⊗ idX ◦ idQ ⊗ s̃.
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But

dE
X,Y = δX⊗Y ◦ γX,Y ◦ δ−1

X � δ−1
Y ,

which shows that dE
X,Y is an isomorphism for every X, Y ∈ C.

Remark 3.3. From the assumptions, it follows that Q ∼= ⊕in(Xi)Xi. Such an
object Q cannot exist in C if C has infinitely many isomorphism classes of irre-
ducible objects. This is the reason why we consider monoids living in a larger
category Ĉ.

The previous considerations being valid over any field F, we now turn to ∗-
categories where F = C.

Proposition 3.4. Let C be a semisimple tensor ∗-category and let (Q, m, η) be a
monoid in Ĉ satisfying the conditions of Proposition 3.2 and in addition:

(3) Q ∈ C∗.
(4) For every s ∈ HomQ-mod(Q, Q⊗ X) we have s∗ ∈ HomQ-mod(Q ⊗ X, Q).

Then the functor E defined in Proposition 3.2 is ∗-preserving with respect to the
scalar products on E(X) given by (φ, ψ)id1 = ψ∗ ◦ φ, and the isomorphisms dX,Y

are unitary for all X, Y ∈ C.

Proof. Clearly the inner products are positive definite, thus the E(X) are Hilbert
spaces. Let s : X → Y, φ ∈ Hom(1, Q ⊗ X) and ψ ∈ Hom(1, Q ⊗ Y ). Then

(E(s)φ, ψ) = ψ∗ ◦ idQ ⊗ s ◦ φ = (φ∗ ◦ idQ ⊗ s∗ ◦ ψ)∗ = (E(s∗)ψ, φ) = (φ, E(s∗)ψ).

Thus E(s∗) = E(s)∗, so E is a ∗-preserving functor.
By assumption (2), we have the isomorphism Q ⊗ X ∼= n(X)Q in the category

Q-mod, to wit there exist si ∈ HomQ-mod(Q, Q⊗X), ti ∈ HomQ-mod(Q⊗X, Q), i =
1, . . . , n(X) satisfying ti ◦ sj = δij idQ and

∑
i si ◦ ti = idQ⊗X . Now (4) implies that

we can choose the si, ti such that ti = s∗i . We must show that dE
X,Y : E(X) ⊗

E(Y ) → E(X ⊗ Y ) is unitary for every X, Y ∈ C. Since we already know that it
is an isomorphism, it suffices to show that it is an isometry. Since δX and δY are
isomorphisms, we need only show that

(dE
X,Y (δX(si) ⊗ δY (sj)), dE

X,Y (δX(si′ ) ⊗ δY (sj′)))E(X⊗Y )

= (δX(si), δX(si′ ))E(X)(δY (sj), δY (sj′))E(Y )

for all i, i′, j, j′. But definition of the inner products, the R.H.S. equals

(η∗ ◦ s∗i′ ◦ si ◦ η)(η∗ ◦ s∗j′ ◦ sj ◦ η) = δii′δjj′ (η∗ ◦ η)2 = δii′δjj′ ,
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whereas the L.H.S. equals

(δX⊗Y ◦ γX,Y (si � sj), δX⊗Y ◦ γX,Y (si′ � sj′ ))E(X⊗Y )

= (δX⊗Y ◦ (si ⊗ idY ) ◦ sj , δX⊗Y ◦ (si′ ⊗ idY ) ◦ sj′ )E(X⊗Y )

= ((si ⊗ idY ) ◦ sj ◦ η, (si′ ⊗ idY ) ◦ sj′ ◦ η)E(X⊗Y )

= η∗ ◦ s∗j′ ◦ (s∗i′ ⊗ idY ) ◦ (si ⊗ idY ) ◦ sj ◦ η = δii′δjj′η
∗ ◦ η = δii′δjj′ ,

as desired.

Remark 3.5. In the situation where C = Repf (A, ∆) for a discrete AQG, we have
seen that Ĉ � Rep(A, ∆) and C∗ � Rep∗(A, ∆). The regular monoid (πl, m̃, η̃)
satisfies all assumptions of Proposition 3.4: as to assumption (3), recall from
Proposition 2.5 that πl ∈ Rep∗(A, ∆). Assumption 4 follows from unitarity of the
isomorphism Vθ : πl × Iθ → πl × θ and the fact that Vθ and V ∗

θ are morphisms of
πl-modules.

Lemma 3.6. Let C be as in Proposition 3.2. Let Q ∈ Ĉ be a direct sum of irre-
ducible objects in C with finite multiplicities, where 1 appears with multiplicity one.
Consider the functor C → VectF defined by E(X) = HomĈ(1, Q ⊗ X). Then the
map a : EndQ → NatE, s �→ (aX(s)) with aX(s) = s ⊗ idX ∈ EndE(X), is an
isomorphism. It restricts to an isomorphism Aut Q → Aut E.

Proof. That (aX(s)) is a natural transformation from E to itself is obvious. Injec-
tivity follows from a1(s) = s⊗ id1 = s. The fact Q ∼= ⊕iniXi, where i runs through
I and ni ∈ Z+, implies EndQ ∼= ∏i Mni(F). On the other hand, by semisimplicity
of C we have NatE ∼= ∏

i EndE(Xi), cf. e.g. [22]. Now it is easy to see that the
composition of the latter two isomorphisms with the map a : EndQ → NatE pre-
serves the factors in the respective direct products. Then surjectivity follows from
dim E(Xi) = ni.

Lemma 3.7. Let C and the monoids (Q, m, η) and (Q′, m′, η′) be as in Proposi-
tion 3.2. Assume in addition that C has duals and that Q, Q′ are direct sums of
irreducibles in C with finite multiplicities. Let E, E′ : C → VectF be the ensuing
embedding functors. Then there is a bijection between monoidal natural isomor-
phisms b : E → E′ and isomorphisms s : Q → Q′ of monoids.

Proof. One direction is easy: if s : Q → Q′ is an isomorphism such that s ◦ m =
m′◦s⊗s and η = η′◦s, then we define aX(s) : E(X) → E′(X) by aX(s)φ = s⊗idX ◦
φ ∈ E′(X) for φ ∈ E(X). The family (aX) obviously is a natural isomorphism of E

and E′, and that it is monoidal, i.e. satisfies dE′
X,Y ◦ aX ⊗ aY = aX⊗Y ◦ dE

X,Y for all
X, Y , is obvious by the definition of dE , dE′

and the fact that s is an isomorphism
of monoids.

As to the converse, the existence of a monoidal natural isomorphism b : E → E′

implies dim Hom(1, Q ⊗ X) = dim Hom(1, Q′ ⊗ X) for X ∈ C. By duality we have
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dim Hom(Xi, Q) = dim Hom(Xi, Q
′) for all irreducible Xi ∈ C, which implies that

Q and Q′ are isomorphic. Fix an arbitrary isomorphism s : Q′ → Q and consider the
monoid (Q, m′′, η′′) where m′′ = s ◦ m′ ◦ s−1 ⊗ s−1 and η′′ = s ◦ η′. Let E′′ be the
embedding functor corresponding to (Q, m′′, η′′). By construction, (Q, m′′, η′′) ∼=
(Q′, m′, η′), and by the preceding considerations we have the monoidal natural
isomorphism a(s) = (aX(s)) : E′ → E′′. If b : E → E′ is a monoidal natural
isomorphism, then the composition c = a(s) ◦ b : E → E′′ is monoidal, and there
exists t ∈ Aut Q such that c = c(t). Since E and E′′ coincide as functors, the
condition cX⊗Y ◦ dE

X,Y = dE′′
X,Y ◦ cX ⊗ cY is equivalent to

(t ◦ m) ⊗ idX⊗Y ◦ idQ ⊗ φ ⊗ idY ◦ ψ = (m′′ ◦ t ⊗ t) ⊗ idX⊗Y ◦ idQ ⊗ φ ⊗ idY ◦ ψ

for X, Y ∈ C and φ ∈ E(X), ψ ∈ E(Y ). Since C has duals, this means that

m′′ ◦ t ⊗ t ◦ u ⊗ v = t ◦ m ◦ u ⊗ v

for X, Y ∈ C and u : X → Q, v : Y → Q. But Q is a direct sum of simple objects in
C, so we can cancel u⊗ v and conclude m′′ ◦ t⊗ t = t ◦ m. The equality η′′ ◦ t = η

is proven in a similar fashion using the morphisms eE : F → E(1) and eE′′
: F →

E′′(1). Thus we have an isomorphism t : (Q, m, η) → (Q, m′′, η′′) of monoids and
composing with the isomorphism s−1 : (Q, m′′, η′′) → (Q′, m′, η′) implies the claim.
Clearly this gives us a bijection between isomorphisms of embedding functors and
of monoids, respectively.

Remark 3.8. Having assumed throughout that the tensor category C is strict, we
now comment briefly on the non-strict case. If a tensor category C has a non-trivial
associativity constraint

αX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z),

the definition of a monoid in C is changed in an obvious way: the associativity
condition becomes

m ◦ (m ⊗ idQ) = m ◦ (idQ ⊗ m) ◦ αQ,Q,Q,

and the first equation in Definition 2.31 relating elements in Hom((Q⊗Q)⊗X, X)
becomes

µ ◦ m ⊗ idX = µ ◦ idQ ⊗ µ ◦ αQ,Q,X .

It then remains true that an absorbing monoid gives rise to an embedding functor,
but we omit the proofs.

3.2. Main result

Given a discrete AQG, it is occasionally convenient to consider an abstract tensor
∗-category Repabs

f (A, ∆) together with an embedding functor E, rather than the
concrete category Repf (A, ∆) and the forgetful functor K.
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Lemma 3.9. Let (A, ∆) be a discrete AQG and write C = Repabs
f (A, ∆). Let E :

C → H be the obvious embedding functor. Let (πl, m̃, η̃) be the regular monoid in
Ĉ � Rep(A, ∆) and E′ : C → H the embedding functor that it gives rise to by
Proposition 3.4. Then there exists a unitary equivalence u : E → E′ of tensor
functors.

Proof. For X ∈ C we have (E(X), πX) ∈ Repf (A, ∆), and let us write VX instead
of VπX . For φ ∈ E(X) define uXφ ∈ A ⊗ E(X) by uXφ = VX(I0 ⊗ φ). Then

(πl × πX)(a)uXφ = (πl × πX)(a)VX(I0 ⊗ φ) = VX(πl × IπX )(a)(I0 ⊗ φ)

= VX(πl ⊗ ε)∆(a)(I0 ⊗ φ) = VX(πl(a)I0 ⊗ φ)

= VX(ε(a)I0 ⊗ φ) = ε(a)VX(I0 ⊗ φ) = ε(a)uXφ,

thus uXφ ∈ Hom(ε, πl×πX). In order to show that (uX) is a natural transformation,
we consider s : X → X ′ and compute

uX′E(s)φ = VX′(I0 ⊗ sφ) = VX′(1 ⊗ s)(I0 ⊗ φ) = (1 ⊗ s)VX(I0 ⊗ φ)

= (1 ⊗ s)uXφ = E′(s)uXφ,

where we have used Proposition 2.30. Since VX is invertible, the map φ �→ uXφ is
injective and therefore bijective by equality of the dimensions.

Thus (uX) is a natural isomorphism. It remains to show that it is monoidal, i.e.

dE′
X,X′ ◦ uX ⊗ uX′ = uX⊗X′

for X, X ′ ∈ C. Here we have as usual identified the vector spaces E(X) ⊗ E(X ′)
and E(X ⊗ X ′). Let φ ∈ E(X) and φ′ ∈ E(X ′). Then

uX⊗X′(φ ⊗ φ′) = VX⊗X′(I0 ⊗ φ ⊗ φ′),

whereas

dE′
X,X′ ◦ (uX ⊗ uX′)(φ ⊗ φ′) = (m̃ ⊗ idX ⊗ idX′) ◦ (idA ⊗ uXφ ⊗ idX′) ◦ uX′φ′

= (m̃ ⊗ ι ⊗ ι)((VX′ )14(VX)23(1 ⊗ 1 ⊗ φ ⊗ φ′)).

Thus we must show that

VX⊗X′(I0 ⊗ φ ⊗ φ′) = (m̃ ⊗ ι ⊗ ι)((VX′ )14(VX)23(1 ⊗ 1 ⊗ φ ⊗ φ′)).

By non-degeneracy of πX and πX′ , we may assume φ = πX(a)v and φ′ = πX′(b)v′,
for a, b ∈ A and v ∈ E(X) and v′ ∈ E(X ′). By the definition of VX , VX′ and
VX⊗X′ , it thus suffices to show that

(m̃ ⊗ ι ⊗ ι)(∆(I0)14∆(I0)23(1 ⊗ 1 ⊗ a ⊗ b)) = (∆ ⊗ ι)∆(I0)(1 ⊗ a ⊗ b)
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for a, b ∈ A. Write ∆(I0)(1 ⊗ b) =
∑

i ai ⊗ bi for ai, bi ∈ A. Then by Proposition
2.34 and m̃(id ⊗ η̃) = idπl

, we get

(m̃ ⊗ ι ⊗ ι)(∆(I0)14∆(I0)23(1 ⊗ 1 ⊗ a ⊗ b))

=
∑

i

(m̃ ⊗ ι ⊗ ι)(ai ⊗ ∆(I0)(1 ⊗ a) ⊗ bi)

=
∑

i

(m̃ ⊗ ι)(ai ⊗ ∆(I0)(1 ⊗ a)) ⊗ bi =
∑

i

∆m̃(ai ⊗ I0)(1 ⊗ a) ⊗ bi

=
∑

i

∆(ai)(1 ⊗ a) ⊗ bi =
∑

i

(∆ ⊗ ι)(ai ⊗ bi)(1 ⊗ a ⊗ 1)

= (∆ ⊗ ι)(∆(I0)(1 ⊗ b))(1 ⊗ a ⊗ 1) = (∆ ⊗ ι)∆(I0)(1 ⊗ a ⊗ b),

as desired.

At this stage we need to recall the generalized Tannaka theorem for discrete
AQG, as proven in [22].

Theorem 3.10. Let C be a semisimple tensor ∗-category and let E be an embedding
functor. Then there exists a discrete AQG (A, ∆) and an equivalence F : C →
Repf (A, ∆) of tensor ∗-categories, such that K◦F = E, where K : Repf (A, ∆) → H
is the forgetful functor.

We are now in a position to state our main result which describes the precise
relationship between embedding functors, absorbing monoids and discrete AQG.

Theorem 3.11. (1) Let C be a tensor ∗-category with conjugates and End1 ∼= C

and let E : C → H be an embedding functor. Let (A, ∆) be the discrete AQG
and F : C → Repf (A, ∆) the monoidal equivalence provided by the generalized
Tannaka theorem. Let (πl, m̃, η̃) be the regular monoid in Rep(A, ∆) and E′ :
C → H the embedding functor that it gives rise to. Then E and E′ are naturally
unitarily equivalent as tensor functors.

(2) Let (A, ∆) be a discrete AQG and (πl, m̃, η̃) the regular monoid in Rep(A, ∆).
Let E : Repabs

f (A, ∆) → H be the embedding functor obtained from the latter via
Proposition 3.2 and (A′, ∆′) the discrete AQG given by the generalized Tannaka
theorem. Then (A, ∆) and (A′, ∆′) are isomorphic.

(3) Let C be a tensor ∗-category with conjugates and End1 ∼= C and let (Q, m, η) be
a monoid in Ĉ satisfying the assumptions in Proposition 3.4. Let E be the result-
ing embedding functor and (A, ∆) and F as in (2). Then the image (Q′, m′, η′)
of the regular monoid (πl, m̃, η̃) under the equivalence Rep(A, ∆) → Ĉ is iso-
morphic to (Q, m, η).

Proof. (1) Consider the equivalence F : C → Repf (A, ∆) satisfying K ◦ F =
E provided by the generalized Tannaka theorem. Then the claim is just a
reformulation of Lemma 3.9.
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(2) Let C = Repabs
f (A, ∆) with the canonical embedding functor E : C → H.

Obviously, (A, ∆) is isomorphic to the AQG given by the generalized Tannaka
theorem from the pair (C, E). Now the claim follows from Lemma 3.9 and the
fact (cf. [21, Proposition 5.28]) that isomorphic embedding functors give rise to
isomorphic discrete AQG.

(3) Given C and the monoid (Q, m, η) in Ĉ, we obtain an embedding functor E :
C → H by Proposition 3.4. On the other hand, going from (C, E) to an AQG,
then to the regular monoid in Rep(A, ∆) � Ĉ and, finally, from the latter to

the embedding functor E′ : C → H, Lemma 3.9 again implies E
⊗∼= E′. Thus

the monoids (Q, m, η) and (Q′, m′, η′) in Ĉ give rise to equivalent embedding
functors and are therefore isomorphic by Lemma 3.7.

Remark 3.12. (1) The preceding result can be formalized more conceptually as
follows. Let Disc be the category of discrete AQG with isomorphisms as arrows.
Let Emb be the category of pairs (C, E) where C is a semisimple F-linear tensor
category with duals and End1 ∼= F and E : C → VectF is a faithful F-linear
tensor functor. The arrows in Emb are equivalences F : C → C′ such that
E′ ◦ F = E. Finally, let Mon be the category of pairs (C, (Q, m, η)), where C is
a semisimple F-linear tensor category with duals and End1 ∼= F and (Q, m, η) is
a monoid in Ĉ satisfying the assumptions of Proposition 3.2. Here the arrows are
equivalences F : C → C′ such that F ((Q, m, η)) is isomorphic to (Q′, m′, η′) in
C′. Then the various constructions considered so far give rise to the equivalences
Mon � Emb � Discop, where Discop is the opposite category of Disc. More
precisely, every oriented loop in the triangle with corners Mon, Emb, Discop

obtained as composition of these functors is naturally isomorphic to the identity
functor.

(2) The preceding theorem remains valid if one replaces tensor ∗-categories with
conjugates by semisimple F-linear tensor categories with duals, and discrete
AQG by regular multiplier Hopf algebras with left invariant functionals. The
arguments are essentially unchanged, provided one appeals to the version of
the generalized Tannaka theorem stated in [22, Sec. 5.4].

3.3. Dimension functions vs. absorbing objects

Definition 3.13. A dimension function on a C∗-tensor category C with conjugates
is a map n : Obj C → R+ such that n(X ⊕ Y ) = n(X) + n(Y ) and n(X ⊗ Y ) =
n(X)n(Y ) and n(X) = n(X).

Remark 3.14. Note that a dimension function automatically satisfies n(1) = 1.
Every C∗-tensor category C with conjugates comes with a distinguished dimension
function, the intrinsic dimension, cf. [18]. The representation categories associated
with q-deformations of simple Lie groups show that the intrinsic dimension need
not be integer valued, cf. [23]. On the other hand, an embedding functor E : C → H
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gives rise to an integer valued dimension function by n(X) = dimE(X). This also
shows that one and the same category can have a dimension function which is integer
valued and one which is not. We remark further that C∗-tensor categories having
only finitely many irreducible objects admit only one dimension function, namely
the intrinsic one, as can be shown using Perron–Frobenius theory. Furthermore,
every embedding functor must preserve dimensions whenever C is amenable, which
in particular holds when C admits a unitary braiding, cf. [18]. Thus if the intrinsic
dimension of C is not integer valued and C is finite or has a unitary braiding, an
embedding functor cannot exist.

Assuming the existence of an integer valued dimension function we arrive at the
following partial converse of Proposition 3.2.

Proposition 3.15. Let C be a semisimple F-linear tensor category with two-sided
duals and integer valued dimension function n. Let ni = n(Xi) for i ∈ IC and
consider the direct sum

Q =
⊕
i∈IC

nı Xi

in Ĉ. Then Q ⊗ X ∼= X ⊗ Q ∼= n(X)Q for all X ∈ C.
Conversely, assume Q ∈ Ĉ is a direct sum of irreducible objects of C and that

Q ⊗ X ∼= n(X)Q with n(X) ∈ N for X ∈ C. Then

Q ∼= N
⊕
i∈IC

nı Xi,

where N = dim Hom(1, Q). If N < ∞ then n : Obj C → N is additive and multi-
plicative. If IC is a finite set then n(X) = d(X) for all X ∈ C; thus in this case an
absorbing object exists if and only if all intrinsic dimensions are integers.

Proof. By
⊕

i∈IC nıXi we mean the filtered inductive limit over partial finite direct
sums, which defines an object of Ĉ unique up to isomorphism. Let j ∈ IC . We
compute

Q ⊗ Xj
∼=
⊕
i∈IC

nı Xi ⊗ Xj
∼=
⊕
i∈IC

nı

⊕
k∈IC

Nk
ijXk

∼=
⊕
k∈IC

(∑
i∈IC

Nk
ijnı

)
Xk.

Using standard properties of the coefficients, cf. e.g. [22], we calculate∑
i∈IC

Nk
ijnı =

∑
i∈IC

N ı
jk

nı = njnk,

and therefore Q⊗Xj
∼= nj

⊕
k∈IC nkXk

∼= njQ. For a reducible object X the claim
now follows by semisimplicity. The argument for X ⊗ Q is similar.

As to the converse, for irreducible X ∈ C we compute

dim Hom(X, Q) = dim Hom(1, Q ⊗ X) = dim Hom(1, Q ⊗ 1⊕n(X))

= n(X) dim Hom(1, Q) = n(X)N.
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Since Q is a direct sum of irreducibles in C, we thus have

Q ∼= N
⊕
i∈IC

nıXi,

and the claim follows. Assume now that N < ∞. Then we find

n(X ⊗ Y )N = dim Hom(X ⊗ Y , Q) = dim Hom(Y ⊗ X, Q)

= dim Hom(Y , Q ⊗ X) = n(X) dim Hom(Y , Q) = n(Y )n(X)N

and thus n(X)n(Y ) = n(X ⊗ Y ) for X, Y ∈ C.
If C is finite, it is well-known that the intrinsic dimension function is the only

additive and multiplicative function on ObjC.

Remark 3.16. (1) Note that an additive and multiplicative function on Obj C
determines and is determined by a function n′ : IC → N which satisfies∑

k∈IC Nk
ijn

′
k = n′

in
′
j for all i, j ∈ IC .

(2) It is important to note that the existence of an integer valued dimension func-
tion does not obviously imply the existence of a monoid structure on the absorb-
ing object Q. By our earlier constructions, an embedding functor gives rise to
a quantum group, and therefore to the regular monoid in Ĉ. (One can also
construct the latter directly from the embedding functor, but we refrain from
giving the details.) Since any dimension function n satisfies n(1) = 1, we have
dim Hom(1, Q) = 1, thus there exists a morphism η : 1 → Q that is unique up
to a scalar. But the main issue clearly is constructing an associative morphism
m : Q⊗Q → Q such that (Q, m, η) is a monoid. This is a difficult cohomological
problem.

(3) Another approach for constructing an absorbing monoid might be to generalize
Deligne’s proof to the braided case. However, as our earlier mentioned counter
examples show, assuming just the existence of a braiding does not suffice.
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