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TENSOR CATEGORIES: A SELECTIVE GUIDED TOUR

MICHAEL MÜGER

Abstract. These are the, somewhat polished and updated, lecture notes for
a three hour course on tensor categories, given at the CIRM, Marseille, in
April 2008. The coverage in these notes is relatively non-technical, focusing
on the essential ideas. They are meant to be accessible for beginners, but it is
hoped that also some of the experts will find something interesting in them.

Once the basic definitions are given, the focus is mainly on categories that
are linear over a field k and have finite dimensional hom-spaces. Connections
with quantum groups and low dimensional topology are pointed out, but these
notes have no pretension to cover the latter subjects to any depth. Essentially,
these notes should be considered as annotations to the extensive bibliography.
We also recommend the recent review [43], which covers less ground in a deeper
way.

1. Tensor categories

These informal notes are an outgrowth of the three hours of lectures that I gave
at the Centre International de Rencontres Mathematiques, Marseille, in April 2008.
The original version of text was projected to the screen and therefore kept maxi-
mally concise. For this publication, I have corrected the language where needed,
but no serious attempt has been made to make these notes conform with the high-
est standards of exposition. I still believe that publishing them in this form has a
purpose, even if only providing some pointers to the literature.

1.1. Strict tensor categories. We begin with strict tensor categories, despite
their limited immediate applicability.

• We assume that the reader has a working knowledge of categories, functors
and natural transformations. Cf. the standard reference [180]. Instead of
s ∈ Hom(X,Y ) we will occasionally write s : X → Y .

• We are interested in “categories with multiplication”. (This was the title of
a paper [24] by Bénabou 1963, cf. also Mac Lane [178] from the same year).
This term was soon replaced by ‘monoidal categories’ or ‘tensor categories’.
(We use these synonymously.) It is mysterious to this author why the
explicit formalization of tensor categories took twenty years to arrive after
that of categories, in particular since monoidal categories appear in protean
form, e.g., in Tannaka’s work [255].

• A strict tensor category (strict monoidal category) is a triple (C,⊗,1),
where C is a category, 1 a distinguished object and ⊗ : C × C → C is a
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96 MICHAEL MÜGER

functor, satisfying

(X ⊗ Y )⊗ Z = X ⊗ (Y ⊗ Z) and X ⊗ 1 = X = 1⊗X ∀X,Y, Z.

If (C,⊗,1), (C′,⊗′,1′) are strict tensor categories, a strict tensor func-
tor C → C′ is a functor F : C → C′ such that

F (X ⊗ Y ) = F (X)⊗′ F (Y ), F (1) = 1′.

If F, F ′ : C → C′ are strict tensor functors, a natural transformation
α : F → F ′ is monoidal if and only if α1 = id1′ and

αX⊗Y = αX ⊗ αY ∀X,Y ∈ C.

(Both sides live in Hom(F (X ⊗ Y ), F ′(X ⊗ Y )) = Hom(F (X) ⊗′ F (Y ),
F ′(X)⊗′ F ′(Y )).)

• WARNING: The coherence theorems, to be discussed in a bit more detail
in Subsection 1.2, will imply that, in a sense, strict tensor categories are
sufficient for all purposes. However, even when dealing with strict tensor
categories, one needs non-strict tensor functors!

• Basic examples:
– Let C be any category and let EndC be the category of functors C → C

and their natural transformations. Then EndC is a strict ⊗-category,
with composition of functors as tensor product. It is also denoted as
the ‘center’ Z0(C). (The subscript is needed since various other centers
will be encountered.)

– To every group G, we associate the discrete tensor category C(G):

Obj C(G) = G, Hom(g, h) =

{
{idg} g = h
∅ g 6= h

, g ⊗ h = gh.

– The symmetric category S:

ObjS = Z+, Hom(n,m) =

{
Sn n = m
∅ n 6= m

, n⊗m = n+m

with tensor product of morphisms given by the obvious map Sn ×
Sm → Sn+m.
Remark: 1. S is the free symmetric tensor category on one monoidal
generator.
2. S is equivalent to the category of finite sets and bijective maps.
2. This construction works with any family (Gi) of groups with an
associative composition Gi ×Gj → Gi+j .

– Let A be a unital associative algebra with unit over some field. We
define EndA to have as objects the unital algebra homomorphisms
ρ : A → A. The morphisms are defined by

Hom(ρ, σ) = {x ∈ A | xρ(y) = σ(y)x ∀y ∈ A}
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with s ◦ t = st and s ⊗ t = sρ(t) = ρ′(t)s for s ∈ Hom(ρ, ρ′), t ∈
Hom(σ, σ′). This construction has important applications in in sub-
factor theory [169] and (algebraic) quantum field theory [68, 90]. Ya-
magami [284] proved that every countably generated C∗-tensor cate-
gory with conjugates (cf. below) embeds fully into EndA for some von
Neumann-algebra A = A(C). (See the final section for a conjecture
concerning an algebra that should work for all such categories.)

– The Temperley-Lieb categories T L(τ). (Cf. e.g. [107].) Let k be
a field and τ ∈ k∗. We define

Obj T L(τ) = Z+, n⊗m = n+m,

as for the free symmetric category S. But now

Hom(n,m) = spank{Isotopy classes of (n,m)-TL diagrams}.

Here, an (n,m)-diagram is a planar diagram where n points on a
line and m points on a parallel line are connected by lines without
crossings. The following example of a (7,5)-TL diagram will explain
this sufficiently:

The tensor product of morphisms is given by horizontal juxtaposition,
whereas composition of morphisms is defined by vertical juxtaposition,
followed by removal all newly formed closed circles and multiplication
by a factor τ for each circle. (This makes sense since the category is
k-linear.)
Remark: 1. The Temperley-Lieb algebras TL(n, τ) = EndT L(τ)(n)
first appeared in the theory of exactly soluble lattice models of statis-
tical mechanics. They, as well as T L(τ) are closely related to the Jones
polynomial [127] and the quantum group SLq(2). Cf. [262, Chapter
XII].
2. The Temperley-Lieb algebras, as well as the categories T L(τ) can
be defined purely algebraically in terms of generators and relations.
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– In dealing with (strict) tensor categories, it is often convenient to
adopt a graphical notation for morphisms:

s : X → Y ⇔

Y

�
�

�
s

X

If s : X → Y, t : Y → Z, u : Z →W then we write

t ◦ s : X → Z ⇔

Z

�
�

�
t

�
�

�
s

X

s⊗ u : X ⊗ Z → Y ⊗W ⇔

Y W

�
�

�
s

�
�

�
u

X Z

The usefulness of this notation becomes apparent when there are mor-
phisms with ‘different numbers of in- and outputs’: Let, e.g., a : X →
S ⊗ T, b : 1 → U ⊗ Z, c : S → 1, d : T ⊗ U → V, e : Z ⊗ Y → W and
consider the composite morphism

c⊗ d⊗ e ◦ a⊗ b⊗ idY : X ⊗ Y → V ⊗W. (1.1)

This formula is almost unintelligible. (In order to economize on brackets,
we follow the majority of authors and declare ⊗ to bind stronger than ◦,
i.e. a ◦ b ⊗ c ≡ a ◦ (b ⊗ c). Notice that inserting brackets in (1.1) does
nothing to render the formula noticeably more intelligible.) It is not even
clear whether it represents a morphism in the category. This is immediately
obvious from the diagram:

V W

c d e

S T�
�
�

U Z�
�
�

a b

X Y
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Often, there is more than one way to translate a diagram into a formula,
e.g.

Z Z ′�
�

�
t

�
�

�
t′

�
�

�
t

�
�

�
t′

X X ′

can be read as t⊗ t′ ◦ s⊗ s′ or as (t ◦ s)⊗ (t′⊗ s′). But by the interchange
law (which is just the functoriality of ⊗), these two morphisms coincide.
For proofs of consistency of the formalism, cf. [129, 94] or [137].

1.2. Non-strict tensor categories.

• For almost all situations where tensor categories arise, strict tensor cate-
gories are not general enough, the main reasons being:

– Requiring equality of objects as in (X ⊗ Y ) ⊗ Z = X ⊗ (Y ⊗ Z) is
highly unnatural from a categorical point of view.

– Many would-be tensor categories are not strict; in particular this is
the case for Vectk, as well as for representation categories of groups
(irrespective of the class of groups and representations under consid-
eration).

• The obvious minimal modification, namely to require only existence of
isomorphisms (X ⊗ Y ) ⊗ Z ∼= X ⊗ (Y ⊗ Z) for all X,Y, Z and 1 ⊗ X ∼=
X ∼= X ⊗ 1 for all X , turns out to be too weak to be useful.

• The correct definition of not-necessarily-strict tensor categorieswas given
in [24]: It is a sextuplet (C,⊗,1, α, λ, ρ), where C is a category,⊗ : C×C → C
a functor, 1 an object, and α : ⊗◦ (⊗× id) → ⊗◦ (id×⊗), λ : 1⊗− → id,
ρ : − ⊗ 1 → id are natural isomorphisms (i.e., for all X,Y, Z we have iso-
morphisms αX,Y,Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z) and λX : 1 ⊗X → X ,
ρX : X⊗1 → X) such that all morphisms between the same pair of objects
that can be built from α, λ, ρ coincide. (Examples of what this means are
given by the commutativity of the following two diagrams.)

• There are two versions of the coherence theorem for tensor categories:
Version I (Mac Lane [178, 180]): All morphisms built from α, λ, ρ are unique
provided α satisfies the pentagon identity, i.e. commutativity of

((X ⊗ Y )⊗ Z)⊗ T
αX,Y,Z ⊗ idT- (X ⊗ (Y ⊗ Z)) ⊗ T

αX,Y ⊗Z,T- X ⊗ ((Y ⊗ Z) ⊗ T )

(X ⊗ Y )⊗ (Z ⊗ T )

αX⊗Y,Z,T

?

αX,Y,Z⊗T

- X ⊗ (Y ⊗ (Z ⊗ T ))

idX ⊗ αY,Z,T

?

and λ, ρ satisfy the unit identity
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(X ⊗ 1)⊗ Y
αX,1,Y- X ⊗ (1⊗ Y )

X ⊗ Y

ρX ⊗ idY

?
≡≡≡≡≡≡≡≡≡≡≡ X ⊗ Y

idX ⊗ λY

?

For modern expositions of the coherence theorem see [180, 137]. (Notice
that the original definition of non-strict tensor categories given in [178] was
modified in slightly [146, 147].)

• Examples of non-strict tensor categories:
– Let C be a category with products and terminal object T . Define
X ⊗ Y = X

∏
Y (for each pair X,Y choose a product, non-uniquely)

and 1 = T . Then (C,⊗,1) is non-strict tensor category. (Existence of
associator and unit isomorphisms follows from the universal properties
of product and terminal object). An analogous construction works
with coproduct and initial object.

– Vectk with αU,V,W defined on simple tensors by (u ⊗ v) ⊗ w 7→ u ⊗
(v ⊗ w). Note: This trivially satisfies the pentagon identity, but the
other choice (u⊗ v)⊗ w 7→ −u⊗ (v ⊗ w) does not!

– Let G be a group, A an abelian group (written multiplicatively) and
ω ∈ Z3(G,A), i.e.

ω(h, k, l)ω(g, hk, l)ω(g, h, k) = ω(gh, k, l)ω(g, h, kl) ∀g, h, k, l ∈ G.

Define C(G,ω) by

Obj C = G, Hom(g, h) =

{
A g = h
∅ g 6= h

, g ⊗ h = gh.

with associator α = ω, cf. [245]. If k is a field, A = k∗, one has a

k-linear version where Hom(g, h) =

{
k g = h
{0} g 6= h

. I denote this by

Ck(G,ω), but also VectGω appears in the literature.
The importance of this example lies in its showing relations between
categories and cohomology, which are reinforced by ‘higher category
theory’, cf. e.g. [14]. But also the concrete example is relevant for
the classification of fusion categories, at least the large class of ‘group
theoretical categories’. (Cf. Ostrik et al. [223, 84].) See Section 3.

– A categorical group is a tensor category that is a groupoid (all mor-
phisms are invertible) and where every object has a tensor-inverse, i.e.
for every X there is an object X such that X⊗X ∼= 1. The categories
C(G,ω) are just the skeletal categorical groups.

• Now we can give the general definition of a tensor functor (between non-
strict tensor categories or non-strict tensor functors between strict tensor
categories): A tensor functor between tensor categories (C,⊗,1, α, λ, ρ),
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(C′,⊗′,1′, α′, λ′, ρ′) consists of a functor F : C → C′, an isomorphism eF :
F (1) → 1′ and a family of natural isomorphisms dFX,Y : F (X) ⊗ F (Y ) →
F (X ⊗ Y ) satisfying commutativity of

(F (X)⊗′
F (Y ))⊗′

F (Z)
dX,Y ⊗ id- F (X ⊗ Y )⊗′

F (Z)
dX⊗Y,Z- F ((X ⊗ Y )⊗ Z)

F (X)⊗′ (F (Y )⊗′
F (Z))

α′
F (X),F (Y ),F (Z)

?

id⊗ dY,Z

- F (X)⊗′
F (Y ⊗ Z)

dX,Y ⊗Z

- F (X ⊗ (Y ⊗ Z))

F (αX,Y,Z)

?

(notice that this is a 2-cocycle condition, in particular when α ≡ id) and

F (X)⊗ F (1)
id⊗ eF- F (X)⊗ 1′

F (X ⊗ 1)

dFX,1

?

F (ρX)
- F (X)

ρ′F (X)

?

(and similar for λX)

Remark: Occasionally, functors as defined above are called strong ten-
sor functors in order to distinguish them from the lax variant, where the
dFX,Y and eF are not required to be isomorphisms. (In this case it also

makes sense to consider dF , eF with source and target exchanged.)
• Let (C,⊗,1, α, λ, ρ), (C′,⊗′,1′, α′, λ′, ρ′) be tensor categories and (F, d, e),
(F ′, d′, e′) : C → C′ tensor functors. Then a natural transformation α :
F → F ′ is monoidal if

F (X)⊗′ F (Y )
dX,Y- F (X ⊗ Y )

F ′(X)⊗′ F ′(Y )

αX ⊗ αY

? d′X,Y- F ′(X ⊗ Y )

αX⊗Y

?

For strict tensor functors, we have d ≡ id ≡ d′, and we obtain the earlier
condition.

• A tensor functor F : (C,⊗,1, α, λ, ρ) → (C′,⊗′,1′, α′, λ′, ρ′) is called an
equivalence if there exist a tensor functor G : C′ → C and natural monoidal
isomorphisms α : G ◦ F → idC and β : F ◦G → idC′ . For the existence of
such a G it is necessary and sufficient that F be full, faithful and essentially
surjective (and of course monoidal), cf. [238]. (We follow the practice of
not worrying too much about size issues and assuming a sufficiently strong
version of the axiom of choice for classes. On this matter, cf. the different
discussions of foundational issues given in the two editions of [180].)
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• Given a group G and ω, ω′ ∈ Z3(G,A), the identity functor is part of
a monoidal equivalence C(G,ω) → C(G,ω′) if and only if [ω] = [ω′] in
H3(G,A). Cf. e.g. [54, Chapter 2]. Since categorical groups form a 2-
category CG, they are best classified by providing a 2-equivalence between
CG and a 2-category H3 defined in terms of cohomology groups H3(G,A).
The details are too involved to give here; cf. [128]. (Unfortunately, the
theory of categorical groups is marred by the fact that important works
[245, 128] were never formally published. For a comprehensive recent treat-
ment cf. [12].)

• Version II of the Coherence theorem (equivalent to Version I): Every tensor
category is monoidally equivalent to a strict one. [180, 137]. As mentioned
earlier, this allows us to pretend that all tensor categories are strict. (But
we cannot restrict ourselves to strict tensor functors!)

• One may ask what the strictification of C(G,ω) looks like. The answer
is somewhat complicated, cf. [128]: It involves the free group on the set
underlying G. (This shows that sometimes it is actually more convenient
to work with non-strict categories!)

• As shown in [241], many non-strict tensor categories can be turned into
equivalent strict ones by changing only the tensor functor ⊗, but leaving

the underlying category unchanged.
• We recall the “Eckmann-Hilton argument”: If a set has two monoid struc-
tures ⋆1, ⋆2 satisfying (a ⋆2 b) ⋆1 (c ⋆2 d) = (a ⋆1 c) ⋆2 (b ⋆1 d) with the same
unit, the two products coincide and are commutative. If C is a tensor cat-
egory and we consider End1 with ⋆1 = ◦, ⋆2 = ⊗ we find that End1 is
commutative, cf. [148]. In the Ab- (k-linear) case, defined in Subsection
1.6, End1 is a commutative unital ring (k-algebra). (Another classical ap-
plication of the Eckmann-Hilton argument is the abelianness of the higher
homotopy groups πn(X), n ≥ 2 and of π1(M) for a topological monoidM .)

1.3. Generalization: 2-categories and bicategories.

• Tensor categories have a very natural and useful generalization. We be-
gin with ‘2-categories’, which generalize strict tensor categories: A 2-
category E consists of a set (class) of objects and, for every X,Y ∈ Obj E ,
a category HOM(X,Y ). The objects (morphisms) in HOM(X,Y ) are
called 1-morphisms (2-morphisms) of E . For the detailed axioms we re-
fer to the references given below. In particular, we have functors ◦ :
HOM(A,B) × HOM(B,C) → HOM(A,C), and ◦ is associative (on the
nose).

• The prototypical example of a 2-category is the 2-category CAT . Its objects
are the small categories, its 1-morphisms are functors and the 2-morphisms
are natural transformations.

• We notice that if E is a 2-category and X ∈ Obj E , then END(X) =
HOM(X,X) is a strict tensor category. This leads to the non-strict ver-
sion of 2-categories called bicategories: We replace the associativity of the
composition ◦ of 1-morphisms by the existence of invertible 2-morphisms
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(X ◦ Y ) ◦ Z → X ◦ (Y ◦ Z) satisfying axioms generalizing those of a ten-
sor category. Now, if E is a bicategory and X ∈ Obj E , then END(X) =
HOM(X,X) is a (non-strict) tensor category. Bicategories are a very im-
portant generalization of tensor categories, and we’ll meet them again. Also
the relation between bicategories and tensor categories is prototypical for
‘higher category theory’.

References: [150] for 2-categories and [26] for bicategories, as well as the
very recent review by Lack [162].

1.4. Categorification of monoids. Tensor categories (or monoidal categories)
can be considered as the categorification of the notion of a monoid. This has
interesting consequences:

• Monoids in monoidal categories: Let (C,⊗,1) be a strict ⊗-category. A
monoid in C (Bénabou [25]) is a triple (A,m, η) with A ∈ C, m : A⊗A→
A, η : 1 → A satisfying

m ◦ m⊗ idA = m ◦ idA ⊗m, m ◦ η ⊗ idA = idA = m ◦ idA ⊗ η.

(In the non-strict case, insert an associator at the obvious place.) A monoid
in Ab (Vectk) is a ring (k-algebra). Therefore, in the recent literature
monoids are often called ‘algebras’.

Monoids in monoidal categories are a prototypical example of the ‘mi-
crocosm principle’ of Baez and Dolan [11] affirming that “certain algebraic
structures can be defined in any category equipped with a categorified ver-
sion of the same structure”.

• If C is any category, monoids in the tensor category End C are known as
‘monads’. As such they are older than tensor categories! Cf. [180].

• If (A,m, η) is a monoid in the strict tensor category C, a left A-module is
a pair (X,µ), where X ∈ C and µ : A⊗X → X satisfies

µ ◦ m⊗ idX = µ ◦ idA ⊗ µ, µ ◦ η ⊗ idX = idX .

Together with the obvious notion of A-module morphism

HomA−Mod((X,µ), (X
′, µ′)) = {s ∈ HomC(X,X

′) | s ◦ µ = µ′ ◦ idA ⊗ s},
A-modules form a category. Right A-modules and A − A bimodules are
defined analogously.

The free A-module of rank 1 is just (A,m).
• If C is abelian, then A−ModC is abelian under weak assumptions, cf. [6].
(The latter are satisfied when A has duals, as e.g. when it is a strongly
separable Frobenius algebra [98]. All this could also be deduced from [76].)

• Every monoid (A,m, η) in C gives rise to a monoid ΓA = Hom(1, A) in the
category SET of sets. We call it the elements of A. (ΓA is related to
the endomorphisms of the unit object in the tensor categories of A − A-
bimodules and A-modules (in the braided case), when the latter exist.)

• Let C be abelian and (A,m, η) an algebra in C. An ideal in A is an A-
module (X,µ) together with a monic morphism (X,µ) →֒ (A,m). Much as
in ordinary algebra, one can define a quotient algebra A/I. Furthermore,
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every ideal is contained in a maximal ideal, and an ideal I ⊂ A in a
commutative monoid is maximal if and only if the ring ΓA/I is a field. (For
the last claim, cf. [197].)

• Coalgebras and their comodules are defined analogously. In a tensor
category equipped with a symmetry or braiding c (cf. below), it makes
sense to say that an (co)algebra is (co)commutative. For an algebra
(A,m, η) this means that m ◦ cA,A = m.

• (B) Just as monoids can act on sets, tensor categories can act on categories:
Let C be a tensor category. A left C-module category is a pair (M, F )

where M is a category and F : C → EndM is a tensor functor. (Here,
EndM is as in our first example of a tensor category.) This is equiv-
alent to having a functor F ′ : C × M → M and natural isomorphisms
βX,Y,A : F ′(X ⊗ Y,A) → F (X,F (Y,A)) satisfying a pentagon-type coher-
ence law, unit constraints, etc. Now one can define indecomposable module
categories, etc. (Ostrik [222])

• There is a close connection between module categories and categories of
modules:

If (A,m, η) is an algebra in C, then there is an natural right C-module
structure on the category A−ModC of left A-modules:

F ′ : A−ModC × C, (M,µ)×X 7→ (M ⊗X,µ⊗ idX).

(In the case where (M,µ) is the free rank-one module (A,m), this gives the
free A-modules F ′((A,m), X) = (A⊗X,m⊗ idX).) For a fusion category
(cf. below), one can show that every semisimple indecomposable left C-
module category arises in this way from an algebra in C, cf. [222].

1.5. Duality in tensor categories I.

• If G is a group and π a representation on a finite dimensional vector space
V , we define the ‘dual’ or ‘conjugate’ representation π on the dual vector
space V ∗ by 〈π(g)φ, x〉 = 〈φ, π(g)x〉. Denoting by π0 the trivial representa-
tion, one finds HomRepG(π⊗π, π0) ∼= HomRepG(π, π), implying π⊗π ≻ π0.
If π is irreducible, then so is π and the multiplicity of π0 in π⊗ π is one by
Schur’s lemma.

Since the above discussion is quite specific to the group situation, it
clearly needs to be generalized.

• Let (C,⊗,1) be a strict tensor category and X,Y ∈ C. We say that Y is a
left dual of X if there are morphisms e : Y ⊗X → 1 and d : 1 → X ⊗ Y
satisfying

idX ⊗ e ◦ d⊗ idX = idX , e⊗ idY ◦ idY ⊗ d = idY ,
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or, representing e : Y ⊗ X → 1 and d : 1 → X ⊗ Y by � �and 
 	,
respectively,

X � �e
Y

d
 	
X

=

X

X

Y
e � �

X
 	d
Y

=

Y

Y

(e stands for ‘evaluation’ and d for ‘dual’.). In this situation, X is called a
right dual of Y .

Example: C = Vectfink , X ∈ C. Let Y = X∗, the dual vector space.
Then e : Y ⊗X → 1 is the usual pairing. With the canonical isomorphism

f : X∗ ⊗X
∼=−→ EndX , we have d = f−1(idX).

We state some facts:
(1) Whether an object X admits a left or right dual is not for us to choose.

It is a property of the tensor category.
(2) If Y, Y ′ are left (or right) duals of X then Y ∼= Y ′.
(3) If ∨A, ∨B are left duals of A,B, respectively, then ∨B ⊗ ∨A is a left

dual for A⊗B, and similarly for right duals.
(4) If X has a left dual Y and a right dual Z, we may or may not have

Y ∼= Z ! (Again, that is a property of X .)
While duals, if they exist, are unique up to isomorphisms, it is often

convenient to make choices. One therefore defines a left duality of a
strict tensor category (C,⊗,1) to be a map that assigns to each object X
a left dual ∨X and morphisms eX : ∨X ⊗ X → 1 and dX : 1 → X ⊗ ∨X
satisfying the above identities.

Given a left duality and a morphism, s : X → Y we define

∨s = eY ⊗ id∨X ◦ id∨Y ⊗ s⊗ id∨X ◦ id∨Y ⊗ dX =

∨X
eY

� ��
�

�
s


 	dX
∨Y

Then (X 7→ ∨X, s 7→ ∨s) is a contravariant functor. (We cannot recover
the e’s and d’s from the functor!) It can be equipped with a natural (anti-
)monoidal isomorphism ∨(A ⊗B) → ∨B ⊗ ∨A, ∨1 → 1. Often, the duality
functor comes with a given anti-monoidal structure, e.g. in the case of
pivotal categories, cf. Section 3.

• A chosen right duality X 7→ (X∨, e′X : X ⊗X∨ → 1, d′X : 1 → X∨ ⊗X)
also give rise to a contravariant anti-monoidal functor X 7→ X∨.

• Categories equipped with a left (right) duality are called left (right) rigid
(or autonomous). Categories with left and right duality are called rigid
(or autonomous).

• Examples: Vectfink ,RepG are rigid.
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• Notice that ∨∨X ∼= X holds if and only if ∨X ∼= X∨, for which there is no
general reason.

• If every object X ∈ C admits a left dual ∨X and a right dual X∨, and both

are isomorphic, we say that C has two-sided duals and write X. We will
only consider such categories, but we will need stronger axioms.

• Let C be a ∗-category (cf. below) with left duality. If (∨X, eX , dX) is a left
dual of X ∈ C then (X∨ = ∨X, d∗X , e

∗
X) is a right dual. Thus duals in ∗-

categories are automatically two-sided. For this reason, duals in ∗-category
are often axiomatized in a symmetric fashion by saying that a conjugate,
cf. [70, 172], of an object X is a triple (X, r, r), where r : 1 → X ⊗X, r :
1 → X ⊗X satisfy

idX ⊗ r∗ ◦ r ⊗ idX = idX , idX ⊗ r∗ ◦ r ⊗ idX = idX .

It is clear that then (X, r∗, r) is a left dual and (X, r∗, r) a right dual.
• Unfortunately, there is an almost Babylonian inflation of slightly different
notions concerning duals, in particular when braidings are involved: A
category can be rigid, autonomous, sovereign, pivotal, spherical, ribbon,
tortile, balanced, closed, category with conjugates, etc. To make things
worse, these terms are not always used in the same way!

• Before we continue the discussion of duality in tensor categories, we will
discuss symmetries. For symmetric tensor categories, the discussion of
duality is somewhat simpler than in the general case. Proceeding like this
seems justified since symmetric (tensor) categories already appeared in the
second paper ([178] 1963) on tensor categories.

1.6. Additive, linear and ∗-structure.
• The discussion so far is quite general, but often one encounters categories
with more structure.

• We begin with ‘Ab-categories’ (=categories ‘enriched over abelian groups’):
For such a category, each Hom(X,Y ) is an abelian group, and ◦ is bi-
additive, cf. [180, Section I.8]. Example: The category Ab of abelian
groups. In ⊗-categories, also ⊗ must be bi-additive on the morphisms.
Functors of Ab-tensor categories required to be additive on hom-sets.

• If X,Y, Z are objects in an Ab-category, Z is called a direct sum of X

and y if there are morphisms X
u→ Z

u′

→ X,Y
v→ Z

v′

→ Y satisfying
u ◦ u′ + v ◦ v′ = idZ , u

′ ◦ u = idX , v
′ ◦ v = idY . An additive category is an

Ab-category having direct sums for all pairs of objects and a zero object.
• An abelian category is an additive category where every morphism has a
kernel and a cokernel and every monic (epic) is a kernel (cokernel). We do
not have the space to go further into this and must refer to the literature,
e.g. [180].

• A category is said to have splitting idempotents (or is ‘Karoubian’) if p =
p ◦ p ∈ EndX implies the existence of an object Y and of morphisms
u : Y → X, u′ : X → Y such that u′ ◦ u = idY and u ◦ u′ = p. An
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additive category with splitting idempotents is called pseudo-abelian.
Every abelian category is pseudo-abelian.

• In an abelian category with duals, the functors − ⊗ X and X ⊗ − are
automatically exact, cf. [64, Proposition 1.16]. But without rigidity this is
far from true.

• A semisimple category is an abelian category where every short exact
sequence splits.

An alternative, and more pedestrian, way to define semisimple categories
is as pseudo-abelian categories admitting a family of simple objects Xi, i ∈
I such that every X ∈ C is a finite direct sum of Xi’s.

Standard examples: The category RepG of finite dimensional represen-
tations of a compact group G, the category H −Mod of finite dimensional
left modules for a finite dimensional semisimple Hopf algebra H .

• In k-linear categories, each Hom(X,Y ) is k-vector space (often required
finite dimensional), and ◦ (and⊗ in the monoidal case) is bilinear. Functors
must be k-linear. Example: Vectk.

• Pseudo-abelian categories that are k-linear with finite-dimensional hom-
sets are called Krull-Schmidt categories. (This is slightly weaker than
semisimplicity.)

• A fusion category is a semisimple k-linear category with finite dimen-
sional hom-sets, finitely many isomorphism classes of simple objects and
End1 = k. We also require that C has 2-sided duals.

• A finite tensor category (Etingof, Ostrik [85]) is a k-linear tensor cat-
egory with End1 = k that is equivalent (as a category) to the category
of modules over a finite dimensional k-algebra. (There is a more intrinsic
characterization.) Notice that semisimplicity is not assumed.

• Dropping the condition End1 = kidk, one arrives at a multi-fusion cat-
egory (Etingof, Nikshych, Ostrik [84]).

• Despite the recent work on generalizations, most of these lectures will be
concerned with semisimple k-linear categories satisfying End1 = k id1, in-
cluding infinite ones! (But see the remarks at the end of this section.)

• If C is a semisimple tensor category, one can choose representers {Xi, i ∈ I}
of the simple isomorphism classes and define Nk

i,j ∈ Z+ by

Xi ⊗Xj
∼=

⊕

k∈I

Nk
i,jXk.

There is a distinguished element 0 ∈ I such that X0
∼= I, thus Nk

i,0 =

Nk
0,i = δi,k. By associativity of ⊗ (up to isomorphism)

∑

n

Nn
i,jN

l
n,k =

∑

m

N l
i,mN

m
j,k ∀i, j, k, l ∈ I.

If C has two-sided duals, there is an involution i 7→ ı such that Xi
∼= Xı.

One has N0
i,j = δi,. The quadruple (I, {Nk

i,j}, 0, i 7→ ı) is called the fusion
ring or fusion hypergroup of C.
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• The above does not work when C is not semisimple. But: In any abelian
tensor category, one can consider the Grothendieck ring R(C), the free
abelian group generated by the isomorphism classes [X ] of objects in C,
with a relation [X ] + [Z] = [Y ] for every short exact sequence 0 → X →
Y → Z → 0 and [X ] · [Y ] = [X ⊗ Y ].

In the semisimple case, the Grothendieck ring has {[Xi], i ∈ I} as Z-basis
and [Xi] · [Xj ] =

∑
kN

k
i,j[Xk]. Obviously, an isomorphism of hypergroups

gives rise to a ring isomorphism of Grothendieck rings, but the converse is
not obvious. While the author is not aware of counterexamples, in order to
rule out this annoying eventuality, some authors work with isomorphisms
of the Grothendieck semiring or the ordered Grothendieck ring, cf e.g.
[112].

Back to hypergroups:
• The hypergroup contains important information about a tensor category,
but it misses that encoded in the associativity constraint. In fact, the
hypergroup of RepG for a finite group G contains exactly the same in-
formation as the character table of G, and it is well known that there
are non-isomorphic finite groups with isomorphic character tables. (The
simplest example is given by the dihedral group D8 = Z4 ⋊ Z2 and the
quaternion group Q, cf. any elementary textbook, e.g. [123].) Since D8

and Q have the same number of irreducible representations, the categories
RepD8 and RepQ are equivalent (as categories). They are not equivalent
as symmetric tensor categories, since this would imply D8

∼= Q by the du-
ality theorems of Doplicher and Roberts [70] or Deligne [58] (which we will
discuss in Section 3). In fact, D8 and Q are already inequivalent as tensor
categories (i.e. they are not isocategorical in the sense discussed below).
Cf. [254], where fusion categories with the fusion hypergroup of D8 are
classified (among other things).

• On the positive side: (1) If a finite group G has the same fusion hypergroup
(or character table) as a finite simple group G′, then G ∼= G′, cf. [51]. (The
proof uses the classification of finite simple groups.) (2) Compact groups
that are abelian or connected are determined by their fusion rings (by Pon-
trjagin duality, respectively by a result of McMullen [188] and Handelman
[112]. The latter is first proven for simple compact Lie groups and then one
deduces the general result via the structure theorem for connected compact
groups.)

• If all objects in a semisimple category C are invertible, the fusion hyper-
group becomes a group. Such fusion categories are called pointed and are
just the linear versions of the categorical groups encountered earlier. This
situation is very special, but:

• To each hypergroup {I,N, 0, i 7→ ı} one can associate a group G(I) as
follows: Let ∼ be the smallest equivalence relation on I such that

i ∼ j whenever ∃m,n ∈ I : i ≺ mn ≻ j (i.e. N i
n,m 6= 0 6= N j

n,m).
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Now let G(I) = I/∼ and define

[i] · [j] = [k] for any k ≺ ij, [i]−1 = [ı], e = [0].

Then G(I) is a group, and it has the universal property that every map
p : I → K, K a group, satisfying p(k) = p(i)p(j) when k ≺ ij factors
through the map I → G(I), i 7→ [i].

In analogy to the abelianization of a non-abelian group, G(I) should
perhaps be called the groupification of the hypergroup I. But it was
called the universal grading group by Gelaki/Nikshych [102], to which
this is due in the above generality, since every group-grading on the objects
of a fusion category having fusion hypergroup I factors through the map
I → G(I).

• In the symmetric case (where I and G(I) are abelian, but everything else
as above) this groupification is due to Baumgärtel/Lledó [21], who spoke
of the ‘chain group’. They stated the conjecture that if K is a compact
group, then the (discrete) universal grading group G(RepK) of RepK is
the Pontrjagin dual of the (compact) center Z(K). Thus: The center of

a compact group K can be recovered from the fusion ring of K, even if K
itself in general cannot! This conjecture was proven in [195], but the whole
circle of ideas is already implicit in [188].

Example: The representations of K = SU(2) are labelled by Z+ with

i⊗ j = |i− j| ⊕ · · · ⊕ i+ j − 2 ⊕ i+ j.

From this one easily sees that there are two ∼-equivalence classes, consist-
ing of the even and odd integers. This is compatible with Z(SU(2)) =
Z/2Z. Cf. [21].

• There is another application of G(C): If C is k-linear semisimple then
group of natural monoidal isomorphisms of idC is given by Aut⊗(idC) ∼=
Hom(G(C), k∗).

• Given a fusion category C (where we have two-sided dualsX), Gelaki/Nikshych
[102] define the full subcategory Cad ⊂ C to be the generated by the objects
X ⊗X where X runs through the simple objects. Notice that Cad is just
the full subcategory of objects of universal grading zero.

Example: If G is a compact group then (RepG)ad = Rep(G/Z(G)).
A fusion category C is called nilpotent [102] when its upper central

series

C ⊃ Cad ⊃ (Cad)ad ⊃ · · ·

leads to the trivial category after finitely many steps.
Example: If G is a finite group then RepG is nilpotent if and only if G

is nilpotent.
• We call a square n×n-matrix A indecomposable if there is no proper subset
S ⊂ {1, . . . , n} such that A maps the coordinate subspace span{es | s ∈
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S} into itself. Let A be an indecomposable square matrix A with non-
negative entries and eigenvalues λi. Then the theorem of Perron and Frobe-
nius states that there is a unique non-negative eigenvalue λ, the Perron-
Frobenius eigenvalue, such that λ = maxi |λi|. Furthermore, the associated
eigenspace is one-dimensional and contains a vector with all components
non-negative. Now, given a finite hypergroup (I, {Nk

i,j}, 0, i 7→ ı) and i ∈ I,

define Ni ∈ Mat(|I| × |I|) by (Ni)jk = Nk
i,j . Due to the existence of duals,

this matrix is indecomposable. Now the Perron-Frobenius dimension
dFP (i) of i ∈ I is defined as the Perron-Frobenius eigenvalue of Ni. Cf.
e.g. [96, Section 3.2]. Then:

dFP (i)dFP (j) =
∑

k

Nk
i,jdFP (k).

Also the hypergroup I has a Perron-Frobenius dimension: FP − dim(I) =∑
i dFP (i)

2. This also defines the PF-dimension of a fusion category, cf.
[84]

• Ocneanu rigidity: Up to equivalence there are only finitely many fusion
categories with given fusion hypergroup. The general statement was an-
nounced by Blanchard/A. Wassermann, and a proof is given in [84], using
the deformation cohomology theory of Davydov [53] and Yetter [290].

• Ocneanu rigidity was preceded and motivated by several related results on
Hopf algebras: Stefan [249] proved that the number of isomorphism classes
of semisimple and co-semisimple Hopf algebras of given finite dimension
is finite. For Hopf ∗-algebras, Blanchard [30] even proved a bound on the
number of iso-classes in terms of the dimension. There also is an upper
bound on the number of iso-classes of semisimple Hopf algebras with given
number of irreducible representations, cf. Etingof’s appendix to [224].

• There is an enormous literature on hypergroups. Much of this concerns
harmonic analysis on the latter and is not too relevant to tensor categories.
But the notion of amenability of hypergroups does have such applications,
cf. e.g. [119]. For a review of some aspects of hypergroups, in particular
the discrete ones relevant here, cf. [278].

• A considerable fraction of the literature on tensor categories is devoted
to categories that are k-linear over a field k with finite dimensional Hom-
spaces. Clearly this a rather restrictive condition. It is therefore very
remarkable that k-linearity can actually be deduced under suitable assump-
tions, cf. [161].

• ∗-categories: A ‘∗-operation’ on a C-linear category C is a contravariant
functor ∗ : C → C which acts trivially on the objects, is antilinear, involutive
(s∗∗ = s) and monoidal (s ⊗ t)∗ = s∗ ⊗ t∗ (when C is monoidal). A ∗-
operation is called positive if s∗ ◦ s = 0 implies s = 0. Categories with
(positive) ∗-operation are also called hermitian (unitary). We will use ‘∗-
category’ as a synonym for ‘unitary category’.) Example: The category of
Hilbert spacesHILB with bounded linear maps and ∗ given by the adjoint.
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• It is easy to prove that a finite dimensional C-algebra with positive ∗-
operation is semisimple. Therefore, a unitary category with finite dimen-
sional hom-sets has semisimple endomorphism algebras. If it has direct
sums and splitting idempotents then it is semisimple.

• Banach-, C∗- and von Neumann categories: A Banach category [135] is a
C-linear additive category, where each Hom(X,Y ) is a Banach space, and
the norms satisfy

‖s ◦ t‖ ≤ ‖s‖ ‖t‖, ‖s∗ ◦ s‖ = ‖s‖2.

(They were introduced by Karoubi with a view to applications in K-theory,
cf. [135].) A Banach ∗-category is a Banach category with a positive ∗-
operation. A C∗-category is a Banach ∗-category satisfying ‖s∗ ◦ s‖ =
‖s‖ for any morphism s (not only endomorphisms). In a C∗-category,
each End(X) is a C∗-algebra. Just as an additive category is a ‘ring with
several objects’, a C∗-category is a “C∗-algebra with several objects”. Von
Neumann categories are defined similarly, cf. [105]. They turned out to
have applications to L2-cohomology (cf. Farber [88]), representation theory
of quantum groups (Woronowicz [280]), subfactors [172], etc.

Remark: A ∗-category with finite dimensional hom-spaces and End1 =
C automatically is a C∗-category in a unique way. (Cf. [190].)

• If C is a C∗-tensor category, End1 is a commutative C∗-algebra, thus
∼= C(S) for some compact Hausdorff space S. Under certain technical
conditions, the spaces Hom(X,Y ) can be considered as vector bundles over
S, or at least as (semi)continuous fields of vector spaces. (Work by Zito
[291] and Vasselli [271].) In the case where End1 is finite dimensional,
this boils down to a direct sum decomposition of C = ⊕iCi, where each Ci
is a tensor category with EndCi

(1Ci
) = C. (In this connection, cf. Baez’

comments a Doplicher-Roberts type theorem for finite groupoids [9].)

2. Symmetric tensor categories

• Many of the obvious examples of tensor categories encountered in Section
1, like the categories SET , Vectk, representation categories of groups and
Cartesian categories (tensor product ⊗ given by the categorical product),
have an additional piece of structure, to which this section is dedicated.

• A symmetry on a tensor category (C,⊗,1, α, ρ, λ) is a natural isomor-
phism c : ⊗ → ⊗ ◦ σ, where σ : C × C → C × C is the flip automor-
phism of C × C, such that c2 = id. (I.e., for any two objects X,Y there
is an isomorphism cX,Y : X ⊗ Y → Y ⊗X , natural w.r.t. X,Y such that
cY,X ◦ cX,Y = idX⊗Y .), where “all properly built diagrams commute”, i.e.
the category is coherent. A symmetric tensor category (STC) is a
tensor category equipped with a symmetry.
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We represent the symmetry graphically by

cX,Y =

Y X
@
@
@�

�
�

X Y

• As for tensor categories, there are two versions of the Coherence Theorem.
Version I (Mac Lane [178]): Let (C,⊗,1, α, ρ, λ) be a tensor category. Then
a natural isomorphism c : ⊗ → ⊗ ◦ σ satisfying c2 = id is a symmetry if
and only if

(X ⊗ Y )⊗ Z
cX,Y ⊗ idZ- (Y ⊗X)⊗ Z

αY,X,Z- Y ⊗ (X ⊗ Z)
idY ⊗ cX,Z- Y ⊗ (Z ⊗X)

X ⊗ (Y ⊗ Z)

αX,Y,Z

?

cX,Y ⊗Z

- (Y ⊗ Z) ⊗X

αY,Z,X

6

commutes. (In the strict case, this reduces to cX,Y ⊗Z = idY ⊗ cX,Z ◦
cX,Y ⊗ idZ .)

A symmetric tensor functor is a tensor functor F such that F (cX,Y ) =
c′F (X),F (Y ). Notice that a natural transformation between symmetric ten-

sor functors is just a monoidal natural transformation, i.e. there is no new
condition.

• Now we can state version II of the Coherence theorem: Every symmetric
tensor category is equivalent (by a symmetric tensor functor) to a strict
one.

• Examples of symmetric tensor categories:
– The category S defined earlier, when cn,m : n+m → n +m is taken

to be the element of Sn+m defined by (1, . . . , n+m) 7→ (n+1, . . . , n+
m, 1, . . . n). It is the free symmetric monoidal category generated by
one object.

– Non-strict symmetric categorical groups were classified by Sinh [245].
We postpone our discussion to Section 4, where we will also consider
the braided case.

– Vectk, representation categories of groups: We have the canonical
symmetry cX,Y : X ⊗ Y → Y ⊗X, x⊗ y 7→ y ⊗ x.

– The tensor categories obtained using products or coproducts are sym-
metric.

• Let C be a strict STC, X ∈ C and n ∈ N. Then there is a unique homo-
morphism

ΠX
n : Sn → AutX⊗n such that σi 7→ idX⊗(i−1) ⊗ cX,X ⊗ idX⊗(n−i−1) .

Proof: This is immediate by the definition of STCs and the presentation

Sn = {σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi when |i−j| > 1, σ2
i = 1}
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of the symmetric groups.
These homomorphisms in fact combine to a symmetric tensor functor

F : S → C such that F (n) = X⊗n. (This is why S is called the free
symmetric tensor category on one generator.)

• In the⊗-category C = Vectfink , Hom(V,W ) is itself an object of C, giving rise
to an internal hom-functor: Cop × C → C, X × Y 7→ [X,Y ] = Hom(X,Y )
satisfying some axioms. In the older literature, a symmetric tensor category
with such an internal-hom functor is called a closed category. There are
coherence theorems for closed categories. [149, 148].

Since in Vectfink we have Hom(V,W ) ∼= V ∗ ⊗W , it is sufficient – and
more transparent – to axiomatize duals V 7→ V ∗, as is customary in the
more recent literature. We won’t mention ‘closed’ categories again. (Which
doesn’t mean that they have no uses!)

• We have seen that, even if a tensor category has left and right duals ∨X, X∨

for every object, they don’t need to be isomorphic. But if C is symmetric
and X 7→ (∨X, eX , dX) is a left duality, then defining

X∨ = ∨X, e′X = eX ◦ cX,∨X , d′X = cX,∨X ◦ dX ,
one easily checks that X 7→ (X∨, e′X , d

′
X) defines a right duality. We can

thus take ∨X = X∨ and denote this more symmetrically by X .
• Let C be symmetric with given left duals and with right duals as just
defined, and let X ∈ C. Define the (left) trace TrX : EndX → End1 by

TrX(s) = eX ◦ idX ⊗ s ◦ d′X =

��
eX

X

�
�

�
s

��
d′X




=

��
eX

X

�
�

�
s

@
@
@�

�
�

��
dX




Without much effort, one can prove the trace property TrX(ab) = TrX(ba)
and multiplicativity under ⊗ : TrX⊗Y (a⊗b) = TrX(a)TrY (b). Finally, TrX
equals the right trace defined using e′X , dX . For more on traces in tensor
categories cf. e.g. [134, 185].

• Using the above, we define the categorical dimension of an object X by
d(X) = TrX(idX) ∈ End1. If End1 = kid1, we can use this identification
to obtain d(X) ∈ k.

With this dimension and the usual symmetry and duality on Vectfink , one
verifies d(V ) = dimk V · 1k.

However, in the category SVectk of super vector spaces (which coincides
with the representation category RepkZ2, but has the symmetry modified
by the Koszul rule) it gives the super-dimension, which can be negative,
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while one might prefer the total dimension. Such situations can be taken
care of (without changing the symmetry) by introducing twists.

• If (C,⊗,1) is strict symmetric, we define a twist to be natural family
{ΘX ∈ EndX, X ∈ C} of isomorphisms satisfying

ΘX⊗Y = ΘX ⊗ ΘY , Θ1 = id1 (2.1)

i.e., Θ is a monoidal natural isomorphism of the functor idC . If C has a left
duality, we also require

∨(ΘX) = Θ∨X .

The second condition implies Θ2
X = id. Notice that ΘX = idX ∀X is a

legal choice. This will not remain true in braided tensor categories!
Example: If G is a compact group and C = RepG, then the twists

Θ satisfying only (2.1) are in bijection with Z(G). The second condition
reduces this to central elements of order two. (Cf. e.g. [197].)

• Given a strict symmetric tensor category with left duality and a twist, we
can define a right duality by X∨ = ∨X , writing X = ∨X = X∨, but now

e′X = eX ◦ cX,X ◦ ΘX ⊗ idX , d′X = idX ⊗ΘX ◦ cX,X ◦ dX , (2.2)

still defining a right duality and the maps TrX : EndX → End1 still are
traces.

• Conversely, the twist can be recovered from X 7→ (X, eX , dX , e
′
X , d

′
X) by

ΘX = (TrX ⊗ id)(cX,X) =

X
eX

� �
X

A
A
A�

�
���

d′X

 	

X

Thus: Given a symmetric tensor category with fixed left duality, every twist
gives rise to a right duality, and every right duality that is ‘compatible’ with
the left duality gives a twist. (The trivial twist Θ ≡ id corresponds to the
original definition of right duality. The latter does not work in proper
braided categories!) This compatibility makes sense even for categories
without symmetry (or braiding) and will be discussed later (; pivotal
categories).

• The symmetric categories with Θ ≡ id are now called even.
• The category SVectk of super vector spaces with Θ defined in terms of the
Z2-grading now satisfies dim(V ) ≥ 0 for all V .

• The standard examples for STCs are Vectk, SVectk,RepG and the repre-
sentation categories of supergroups. In fact, rigid STCs are not far from
being representation categories of (super)groups. However, they not always
are, cf. [103] for examples of non-Tannakian symmetric categories.)

• A category C is called concrete if its objects are sets and HomC(X,Y ) ⊂
HomSets(X,Y ). A k-linear category is called concrete if the objects are
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fin.dim. vector spaces over k and HomC(X,Y ) ⊂ HomVectk(X,Y ). How-
ever, a better way of thinking of a concrete category is as a (abstract) cate-
gory C equipped with a fiber functor, i.e. a faithful functor E : C → Sets,
respectively E : C → Vectk. The latter is required to be monoidal when C
is monoidal.

• Example: G a group. Then C := RepkG should be considered as an ab-
stract k-linear ⊗-category together with a faithful ⊗-functor E : C →
Vectk.

• The point of this that a category C may have inequivalent fiber functors!!
• But: If k is algebraically closed of characteristic zero, C is rigid symmetric

k-linear with End1 = k and F, F ′ are symmetric fiber functors then F ∼= F ′

(as ⊗-functors). (Saavedra Rivano [238, 64]).
• The first non-trivial application of (symmetric) tensor categories probably
were the reconstruction theorems of Tannaka [255] (1939!) and Saavedra
Rivano [238, 64].

Let k be algebraically closed. Let C be rigid symmetric k-linear with
End1 = k and E : C → Vectk faithful tensor functor. (Tannaka did this
for k = C, C a ∗-category and E ∗-preserving.) Let G = Aut⊗E be the
group of natural monoidal [unitary] automorphisms of E. Define a functor
F : C → RepG [unitary representations] by

F (X) = (E(X), πX), πX(g) = gX (g ∈ G).

Then G is pro-algebraic [compact] and F is an equivalence of symmetric
tensor [∗-]categories.

Proof: The idea is the following (Grothendieck, Saavedra Rivano [238],
cf. Bichon [27]): Let E1, E2 : C → Vectk be fiber functors. Define a unital
k-algebra A0(E1, E2) by

A0(E1, E2) =
⊕

X∈C

HomVect(E2(X), E1(X)),

spanned by elements [X, s], X ∈ C, s ∈ Hom(E2(X), E1(X)), with [X, s] ·
[Y, t] = [X ⊗ Y, u], where u is the composite

E2(X ⊗ Y )
(d2X,Y )

−1

- E2(X)⊗ E2(Y )
s⊗ t- E1(X)⊗ E1(Y )

d1X,Y- E1(X ⊗ Y ).

This is a unital associative algebra, and A(E1, E2) is defined as the quotient
by the ideal generated by the elements [X, a ◦E2(s)]− [Y,E1(s) ◦ a], where
s ∈ HomC(X,Y ), a ∈ HomVect(E2(Y ), E1(X)).

• Remark: Let E1, E2 : C → Vectk be fiber functors as above. Then the map

X × Y 7→ HomVectk(E2(X), E1(Y ))

extends to a functor F : Cop×C → Vectk. Now the algebraA(E1, E2) is just

the coend
∫X

F (X,X) of F , a universal object. Coends are a categorical,
non-linear version of traces, but we refrain from going into them since it
takes some time to appreciate the concept. (Cf. [180].)

• Now one proves [27, 197]:
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– If E1, E2 are symmetric tensor functors then A(E1, E2) is commuta-
tive.

– If C is ∗-category and E1, E2 are *-preserving then A(E1, E2) is a
∗-algebra and has a C∗-completion.

– If C is finitely generated (i.e. there exists a monoidal generator Z ∈
C such that every X ∈ C is direct summand of some Z⊗N ) then
A(E1, E2) is finitely generated.

– There is a bijection between natural monoidal (unitary) isomorphisms
α : E1 → E2 and (∗-)characters on A(E1, E2).

Thus: If E1, E2 are symmetric and either C is finitely generated or a ∗-
category, the algebraA(E1, E2) admits characters (by the Nullstellensatz or
by Gelfand’s theory), thus E1

∼= E2. One also finds that G = Aut⊗E ∼= (∗-
)Char(A(E,E)) and A(E) = Fun(G) (representative respectively continu-
ous functions). This is used to prove that F : C → RepG is an equivalence.

• Remarks: 1. While it has become customary to speak of Tannakian cate-
gories, the work of Krĕın, cf. [158], [118, Section 30], should also be men-
tioned since it can be considered as a precursor of the later generalizations
to non-symmetric categories, in particular in Woronowicz’s approach.

2. The uniqueness of the symmetric fiber functor E implies that G is
unique up to isomorphism.

3. For the above construction, we need to have a fiber functor. Around
1989, Doplicher and Roberts [70], and independently Deligne [58] construct
such a functor under weak assumptions on C. See below.

4. The uniqueness proof fails if either of E1, E2 is not symmetric (or C
is not symmetric). Given a group G, there is a tautological fiber functor
E. The fact that there may be (non-symmetric) fiber functors that are
not naturally isomorphic to E reflects the fact that there can be groups
G′ such that RepG ≃ RepG′ as tensor categories, but not as symmet-
ric tensor categories! This phenomenon was independently discovered by
Etingof/Gelaki [80], who called such G,G′ isocategorical and produced
examples of isocategorical but non-isomorphic finite groups, by Davydov
[55] and by Izumi and Kosaki [122]. The treatment in [80] relies on the fact
that if G,G′ are isocategorical then CG′ ∼= CJ for some Drinfeld twist J . A
more categorical approach, allowing also an extension to compact groups,
will be given in [202]. A group G is called categorically rigid if every G′

isocategorical to G is actually isomorphic to G. (Compact groups that are
abelian or connected are categorically rigid in a strong sense since they are
determined already by their fusion hypergroups.)

• Consider the free rigid symmetric tensor ∗-category C with End1 = C
generated by one object X of dimension d. If d ∈ N then C is equivalent
to RepU(d) or RepO(d) or RepSp(d), depending on whether X is non-
selfdual or orthogonal or symplectic. The proof [9] is straightforward once
one has the Doplicher-Roberts theorem.
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• The free rigid symmetric categories just mentioned can be constructed
in a topological way, in a fashion very similar to the construction of the
Temperley-Lieb categories TL(τ). The main difference is that one allows
the lines in the pictures defining the morphisms to cross. (But they still
live in a plane.) Now one quotients out the negligible morphisms and
completes w.r.t. direct sums and splitting idempotents. (In the non-self
dual case, the objects are words over the alphabet {+,−} and the lines in
the morphisms are directed.) All this is noted in passing by Deligne in a
paper [59] dedicated to the exceptional groups! Notice that when d 6∈ N,
these categories are examples of rigid symmetric categories that are not
Tannakian.

• The above results already establish strong connections between tensor cat-
egories and representation theory, but there is much more to say.

3. Back to general tensor categories

• In a general tensor category, left and right duals need not coincide. This
can already be seen for the left module categoryH−Mod of a Hopf algebra
H . This category has left and right duals, related to S and S−1. (S must
be invertible, but can be aperiodic!) They coincide when S2(x) = uxu−1

with u ∈ H .
• We only consider tensor categories that have isomorphic left and right
duals, i.e. two-sided duals, which we denote X .

• If C is k-linear with End1 = k id and EndX = k id (X is simple/irreducible),
one can canonically define the squared dimensions d2(X) ∈ k by

d2(X) = (eX ◦ d′X) · (e′X ◦ dX) ∈ End1.

(Since X is simple, the morphisms d, d′, e, e′ are unique up to scalars, and
well-definedness of d2 follows from the equations involving (d, e), (d′, e′)
bilinearly.) Cf. [191].

• If C is a fusion category, we define its dimension by dim C =
∑

i d
2(Xi).

• If H is a finite dimensional semisimple and co-semisimple Hopf algebra
then dim H−Mod = dimkH . (A finite dimensional Hopf algebra is co-

semisimple if and only if the dual Hopf algebra Ĥ is semisimple.)
• Even if C is semisimple, it is not clear whether one can choose roots d(X)
of the above numbers d2(X) in such a way that d is additive and multi-
plicative!

• In pivotal categories this can be done. A strict pivotal category [93, 94]
is a strict left rigid category with a monoidal structure on the functor
X 7→ ∨X and a monoidal equivalence of the functors idC and X 7→ ∨∨X .
As a consequence, one can define a right duality satisfying X∨ = ∨X .
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• In a strict pivotal categories we can define left and right traces for every
endomorphism:

TrLX(s) =

��
eX

X

�
�

�
s

��
d′X

TrRX(s) =

��
e′X�

�
�
s

X

��
dX

(3.1)

Notice: In general TrLX(s) 6= TrRX(s).

• We now define dimensions by d(X) = TrLX(idX) ∈ End1. One then au-

tomatically has d(X) = TrRX(idX), which can differ from d(X). But for
simple X we have d(X)d(X) = d2(X) with d2(X) as above.

• In a pivotal category, we can use the trace to define pairings Hom(X,Y )×
Hom(Y,X) → End1 by (s, t) 7→ TrLX(t ◦ s). In the semisimple k-linear
case with End1, these pairings are non-degenerate for all X,Y . Cf. e.g.
[104]. In general, a morphism s : X → Y is called negligible if Tr(t ◦
s) = 0 for all t : Y → X . We call an Ab-category non-degenerate if
only the zero morphisms are negligible. The negligible morphisms form a
monoidal ideal, i.e. composing or tensoring a negligible morphism with any
morphism yields a negligible morphism. It follows that one can quotient
out the negligible morphisms in a straightforward way, obtaining a non-
degenerate category. A non-degenerate abelian category is semisimple [61],
but a counterexample given there shows that non-degeneracy plus pseudo-
abelianness do not imply semisimplicity!

• A spherical category [20] is a pivotal category where the left and right
traces coincide. Equivalently, it is a strict autonomous category (i.e. a
tensor category equipped with a left and a right duality) for which the
resulting functors X 7→ X∨ and X 7→ ∨X coincide.

Sphericity implies d(X) = d(X), and if C is semisimple, the converse
implication holds.

• The Temperley-Lieb categories T L(τ) are spherical.
• A finite dimensional Hopf algebra that is involutive, i.e. satisfies S2 = id,
gives rise to a spherical category. (It is known that every semisimple and
co-semisimple Hopf algebra is involutive.) More generally, ‘spherical Hopf
algebras’, defined as satisfying S2(x) = wxw−1, where w ∈ H is invertible
with ∆(w) = w ⊗ w and Tr(θw) = Tr(θw−1) for any finitely generated
projective left H-module V , give rise to spherical categories [20].

• In a ∗-category with conjugates, traces of endomorphisms, in particular
dimensions of objects, can be defined uniquely without choosing a spherical
structure, cf. [70, 172]. The dimension satisfies d(X) ≥ 1 for every non-zero
X , and d(X) = 1 holds if and only if X is invertible. Furthermore, one has
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[172] a ∗-categorical version of the quantization of the Jones index [126]:

d(X) ∈
{
2 cos

π

n
, n = 3, 4, . . .

}
∪ [2,∞).

On the other hand, every tensor ∗-category can be equipped [286] with
an (essentially) unique spherical structure such the traces and dimension
defined using the latter coincide with those of [172].

• In a C-linear fusion category (no ∗-operation required!) one has d2(X) > 0
for all X , cf. [84].

The following is a very useful application: If A ⊂ B is a full inclusion
of C-linear fusion category then dimA ≤ dimB, and equality holds if and
only if A ≃ B.

• In a unitary category, dim C = FP − dim C. Categories with the latter
property are called pseudo-unitary in [84], where it is shown that ev-
ery pseudo-unitary category admits a unique spherical structure such that
FP − d(X) = d(X) for all X .

• There are Tannaka-style theorem for not necessarily symmetric categories
(Ulbrich [268], Yetter [288], Schauenburg [239]): Let C be a k-linear pivotal
category with End1 = kid1 and let E : C → Vectk a fiber functor. Then
the algebra A(E) defined as above admits a coproduct and an antipode,
thus the structure of a Hopf algebra H , and an equivalence F : C →
ComodH such that E = K ◦ F , where K : ComodH → Vectk is the
forgetful functor. (If C and E are symmetric, this H is a commutative Hopf
algebra of functions on the group obtained earlier G.) Woronowicz proved
a similar result [280] for ∗-categories, obtaining a compact quantum group
(as defined by him [279, 281]). Commutative compact quantum groups
are just algebras C(G) for a compact group, thus one recovers Tannaka’s
theorem. Cf. [131] for an excellent introduction to the area of Tannaka-
Krein reconstruction.

• Given a fiber functor, can one find an algebraic structure whose represen-

tations (rather than corepresentations) are equivalent to C? The answer is
positive, provided one uses a slight generalization of Hopf algebras, to wit
A. van Daele’s ‘Algebraic Quantum Groups’ [269, 270] (or ‘Multiplier Hopf
algebras with Haar functional’). They are not necessarily unital algebras
equipped with a coproduct ∆ that takes values in the multiplier algebra
M(A⊗A) and with a left-invariant Haar-functional µ ∈ A∗. A nice feature
of algebraic quantum groups is that they admit a nice version of Pontrya-
gin duality (which is not the case for infinite dimensional ordinary Hopf
algebras).

In [200] the following was shown: If C is a semisimple spherical (∗-
)category and E a (∗-)fiber functor then there is a discrete multiplier Hopf
(∗-)algebra (A,∆) and an equivalence F : C → Rep(A,∆) such thatK◦F =
E, whereK : Rep(A,∆) → Vect is the forgetful functor. (This (A,∆) is the
Pontrjagin dual of the A(E) above.) This theory exploits the semisimplicity
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from the very beginning, which makes it quite transparent: One defines

A =
⊕

i∈I

EndE(Xi) and M(A) =
∏

i∈I

EndE(Xi) ∼= NatE,

where the summation is over the equivalence classes of simple objects in
C. Now the tensor structures of C and E give rise to a coproduct ∆ : A→
M(A⊗A) in a very direct way.

Notice: This reconstruction is related to the preceding one as follows.
Since H−comod ≃ C is semisimple, the Hopf algebraH has a left-invariant
integral µ, thus (H,µ) is a compact algebraic quantum group, and the
discrete algebraic quantum group (A,∆) is just the Pontrjagin dual of the
latter.

• In this situation, there is a bijection between braidings on C and R-matrices
(in M(A⊗A)), cf. [200]. But: The braiding on C plays no essential rôle in
the reconstruction. (Since [200] works with the category of finite dimen-
sional representations, which in general does not contain the left regular
representation, this is more work than e.g. in [137] and requires the use of
semisimplicity.)

• Summing up: Linear [braided] tensor categories admitting a fiber functor
are (co)representation categories of [(co)quasi-triangular] discrete (com-
pact) quantum groups.

Notice that here ‘Quantum groups’ refers to Hopf algebras and suit-
able generalizations thereof, but not necessarily to q-deformations of some
structure arising from groups!

• WARNING: The non-uniqueness of fiber functors means that there can be
non-isomorphic quantum groups whose (co)representation categories are
equivalent to the given C!

The study of this phenomenon leads to Hopf-Galois theory and is con-
nected (in the ∗-case) to the study of ergodic actions of quantum groups
on C∗-algebras. (Cf. e.g. Bichon, de Rijdt, Vaes [28]).

• Despite this non-uniqueness, one may ask whether one can intrinsically

characterize the tensor categories admitting a fiber functor, thus being
related to quantum groups. (Existence of a fiber functor is an extrinsic
criterion.) The few known results to this questions are of two types. On
the one hand there are some recognition theorems for certain classes of
representation categories of quantized enveloping algebras, which will be
discussed somewhat later. On the other hand, there are results based on
the regular representation, to which we turn now. However, it is only in
the symmetric case that this leads to really satisfactory results.

• The left regular representation πl of a compact group G (living on L2(G))
has the following well known properties:

πl ∼=
⊕

π∈Ĝ

d(π) · π, (Peter-Weyl theorem)

πl ⊗ π ∼= d(π) · πl ∀π ∈ RepG. (absorbing property).
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• The second property generalizes to any algebraic quantum group’ (A,∆),
cf. [201]:

1. Let Γ = πl be the left regular representation. If (A,∆) is discrete,
then Γ carries a monoid structure (Γ,m, η) with dimHom(1,Γ) = 1, which
we call the regular monoid. (Algebras in k-linear tensor categories satis-
fying dimHom(1,Γ) = 1 have been called ‘simple’ or ‘haploid’.) If (A,∆)
is compact, Γ has a comonoid structure. (And in the finite (=compact +
discrete) case, the algebra and coalgebra structures combine to a Frobenius
algebra, cf. [191], discussed below.)

2. If (A,∆) is a discrete algebraic quantum group, one has a monoid
version of the absorbing property: For every X ∈ Rep(A,∆) one has an
isomorphism

(Γ⊗X,m⊗ idX) ∼= n(X) · (Γ,m) (3.2)

of (Γ,m, η)-modules in Rep(A,∆). (Here n(X) ∈ N is the dimension of
the vector space of the representation X , which in general differs from the
categorical dimension.)

• The following theorem from [201] is motivated by Deligne’s [58]: Let C
be a k-linear category and (Γ,m, η) a monoid in C (more generally, in the
associated category Ind C of inductive limits) satisfying dimHom(1,Γ) = 1
and (3.2) for some function n : Obj C → N. Then

E(X) = HomVectk(1,Γ⊗X)

defines a faithful ⊗-functor E : C → Vectk, i.e. a fiber functor. (One
has dimE(X) = n(X) ∀X and Γ ∼= ⊕in(Xi)Xi.) If C is symmetric and
(Γ,m, η) commutative (i.e. m ◦ cΓ,Γ = m), then E is symmetric.

Remark: Deligne considered this only in the symmetric case, but did not
make the requirement dimHom(1,Γ) = 1. This leads to a tensor functor
E : C → A−Mod, where A = Hom(1,Γ) is the commutative k-algebra of
‘elements of Γ’ encountered earlier.

• This gives rise to the following implications:

There is a discrete AQG (A,∆)

such that C ≃ Rep(A,∆)

C admits an absorbing monoidThere is a fiber functor

E : C → H

�
�
�
��� @

@
@
@@R

�
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Remarks: 1. This can be considered as an intrinsic characterization
of quantum group categories. (Or rather semi-intrinsic, since the regular
monoid lives in the Ind-category of C rather than C itself.)

2. The case of finite ∗-categories had been treated in [170], using sub-
factor theory and a functional analysis.

3. This result is quite unsatisfactory, but I doubt that a better result can
be obtained without restriction to special classes of categories or adopting
a wide generalization of the notion of quantum groups. Examples for both
will be given below.

4. For a different approach, also in terms of the regular representation,
cf. [69].

• Notice that having an absorbing monoid in C (or rather Ind(C)) means
having an N-valued dimension function n on the hypergroup I(C) and an
associative product on the object Γ = ⊕i∈IniXi. The latter is a cohomo-
logical condition.

If C is finite, one can show using Perron-Frobenius theory that there is
only one dimension function, namely the intrinsic one i 7→ d(Xi). Thus a
finite category with non-integer intrinsic dimensions cannot be Tannakian
(in the above sense).

• We now turn to a very beautiful result of Deligne [58] (simplified consider-
ably by Bichon [27]):

Let C be a semisimple k-linear rigid even symmetric category satisfy-
ing End1 = k, where k is algebraically closed of characteristic zero. Then
there is an absorbing commutative monoid as above. (Thus we have a
symmetric fiber functor, implying C ≃ RepG.)

Sketch: The homomorphisms ΠX
n : Sn → AutX⊗n allow to define the

idempotents

P±(X,n) =
1

n!

∑

σ∈Sn

sgn(σ)ΠX
n (σ) ∈ End(X⊗n)

and their images Sn(X), An(X), which are direct summands of X⊗n. Mak-
ing crucial use of the evenness assumption on C, one proves

d(An(X)) =
d(X)(d(X)− 1) · · · (d(X)− n+ 1)

n!
∀n ∈ N.

In a ∗-category, this must be non-negative ∀n, implying d(X) ∈ N, cf. [70].
Using this – or assuming it as in [58] – one has d(Ad(X)(X)) = 1, and
Ad(X)(X) is called the determinant of X . On the other hand, one can
define a commutative monoid structure on

S(X) =

∞⊕

n=0

Sn(X),

obtaining the symmetric algebra (S(X),m, η) of X . Let Z be a ⊗-
generator Z of C satisfying det Z = 1. Then the ‘interaction’ between sym-
metrization (symmetric algebra) and antisymmetrization (determinants)
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allows to construct a maximal ideal I in the commutative algebra S(Z)
such that the quotient algebra A = S(Z)/I has all desired properties: it is
commutative, absorbing and satisfies dimHom(1, A) = 1. QED.

Remarks: 1. The absorbing monoid A constructed in [58, 27] did not

satisfy dimHom(1, A) = 1. Therefore the construction considered above
does not give a fiber functor to VectC, but to ΓA − Mod, and one needs
to quotient by a maximal ideal in ΓA. Showing that one can achieve
dimHom(1, A) = 1 was perhaps the main innovation of [197]. This has the
advantage that (A,m, η) actually is (isomorphic to) the regular monoid of
the group G = Nat⊗E. As a consequence, the latter group can be obtained
simply as the automorphism group

Aut(Γ,m, η) ≡ {g ∈ Aut Γ | g ◦m = m ◦ g ⊗ g, g ◦ η = η}
of the monoid – without even mentioning fiber functors!

2. Combining Tannaka’s theorem with those on fiber functors from
monoids and with the above, one has the following beautiful

Theorem [70, 58]: Let k be algebraically closed of characteristic zero
and C a semisimple k-linear rigid even symmetric category with End1 = k.
Assume that all objects have dimension in N. Then there is a pro-algebraic
group Ga, unique up to isomorphism, such that C ≃ RepGa (finite dimen-
sional rational representations). If C is a ∗-category then semisimplicity
and the dimension condition are redundant, and there is a unique compact
group Gc such that C ≃ RepGc (continuous unitary finite-dimensional
representations). In this case, Ga is the complexification of Gc.

3. If C is symmetric but not even, its symmetry can be ‘bosonized’ into
an even one, cf. [70]. Then one applies the above result and obtains a
group G. The Z2-grading on C given by the twist gives rise to an element
k ∈ Z(G) satisfying k2 = e. Thus C ≃ Rep(G, k) as symmetric category.
Cf. also [60].

• The above result has several applications in pure mathematics: It plays
a big rôle in the theory of motives [5, 166] and in differential Galois the-
ory and the related Riemann Hilbert problem, cf. [230]. It is used for
the classification of triangular Hopf algebras in terms of Drinfeld twists of
group algebras (Etingof/Gelaki, cf. [100] and references therein) and for
the modularization of braided tensor categories [39, 190], cf. below.

The work of Doplicher and Roberts [70] was motivated by applications
to quantum field theory in ≥ 2 + 1 dimensions [68, 71], where it leads to a
Galois theory of quantum fields, cf. also [111].

• Thus, at least in characteristic zero (in the absence of a ∗-operation one
needs to impose integrality of all dimensions) rigid symmetric categories
with End1 = kid1 are reasonably well understood in terms of compact or
pro-affine groups. What about relaxing the last condition? The category
of a representations (on continuous fields of Hilbert spaces) of a compact
groupoid G is a symmetric C∗-tensor category. Since a lot of information
is lost in passing from G to RepG, there is no hope of reconstructing G up
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to isomorphism, but one may hope to find a compact group bundle giving
rise to the given category and proving that it is Morita equivalent to G.
However, there seem to be topological obstructions to this being always
the case, cf. [272].

• In this context, we mention related work by Bruguières/Maltsiniotis [184,
40, 37] on Tannaka theory for quasi quantum groupoids in a purely
algebraic setting.

• We now turn to the characterization of certain special classes of tensor
categories:

• Combining Doplicher-Roberts reconstruction with the mentioned result of
McMullen and Handelman one obtains a simple prototype: If C is an even
symmetric tensor ∗-category with conjugates and End1 = C whose fusion
hypergroup is isomorphic to that of a connected compact Lie group G, then
C ≃ RepG.

• Kazhdan/Wenzl [145]: Let C be a semisimple C-linear spherical ⊗-category
with End1 = C, whose fusion hypergroup is isomorphic to that of sl(N).
Then there is a q ∈ C∗ such that C is equivalent (as a tensor category) to
the representation category of the Drinfeld/Jimbo quantum group SLq(N)
(or one of finitely many twisted versions of it). Here q is either 1 or not
a root of unity and unique up to q → q−1. (For another approach to
a characterization of the SLq(N)-categories, excluding the root of unity
case, cf. [228].)

Furthermore: If C is a semisimple C-linear rigid⊗-category with End1 =
C, whose fusion hypergroup is isomorphic to that of the (finite!) represen-
tation category of SLq(N), where q is a primitive root of unity of order
ℓ > N , then C is equivalent to RepSLq(N) (or one of finitely many twisted
versions).

We will say (a bit) more on quantum groups later. The reason that we
mention the Kazhdan/Wenzl result already here is that it does not require
C to come with a braiding. Unfortunately, the proof is not independent of
quantum group theory, nor does it provide a construction of the categories.

Beginning of proof: The assumption on the fusion rules implies that
C has a multiplicative generator Z. Consider the full monoidal subcate-
gory C0 with objects {Z⊗n, n ∈ Z+}. Now C is equivalent to the idem-
potent completion (‘Karoubification’) of C0. (Aside: Tensor categories
with objects N+ and ⊗ = + for objects appear quite often: The sym-
metric category S, the braid category B, PROPs [179].) A semisimple
k-linear category with objects Z+ is called a monoidal algebra, and
is equivalent to having a family A = {An,m} of vector spaces together
with semisimple algebra structures on An = An,n and bilinear operations
◦ : An,m × Am,p → An,p and ⊗ : An,m × Ap,q → An+p,m+q satisfying
obvious axioms. A monoidal algebra is diagonal if An,m = 0 for n 6= m
and of type N if dimA(0, n) = dimA(n, 0) = 1 and An,m = 0 unless
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n ≡ m(modN). If A is of type N , there are exactly N monoidal alge-
bras with the same diagonal. The possible diagonals arising from type N
monoidal algebras can be classified, using Hecke algebras Hn(q) (defined
later).

• There is an analogous result (Tuba/Wenzl [259]) for categories with the
other classical (BCD) fusion rings, but that does require the categories to
come with a braiding.

• For fusion categories, there are a number of classification results in the case
of low rank (number of simple objects) (Ostrik: fusion categories of rank 2
[224], braided fusion categories of rank 3 [225]) or special dimensions, like
p or pq (Etingof/Gelaki/Ostrik [82]). Furthermore, one can classify near
group categories, i.e. fusion categories with all simple objects but one
invertible (Tambara/Yamagami [254], Siehler [244]).

• In another direction one may try to represent more tensor categories as
module categories by generalizing the notion of Hopf algebras. We have
already encountered a very modest (but useful) generalization, to wit Van
Daele’s multiplier Hopf algebras. (But the main rationale for the latter
was to repair the breakdown of Pontrjagin duality for infinite dimensional
Hopf algebras, which works so nicely for finite dimensional Hopf algebras.)

• Drinfeld’s quasi-Hopf algebras [73] go in a different direction: One con-
siders an associative unital algebraH with a unital algebra homomorphism
∆ : H → H ⊗H , where coassociativity holds only up to conjugation with
an invertible element φ ∈ H ⊗H ⊗H :

id⊗∆ ◦ ∆(x) = φ(∆ ⊗ id ◦ ∆(x))φ−1,

where (∆, φ) must satisfy some identity in order for RepH with the tensor
product defined in terms of ∆ to be (non-strict) monoidal. Unfortunately,
duals of quasi-Hopf algebras are not quasi-Hopf algebras. They are useful
nevertheless, even for the proof of results concerning ordinary Hopf alge-
bras, like the Kohno-Drinfeld theorem for Uq(g), cf. [73, 74] and [137].

Examples: Given a finite group G and ω ∈ Z3(G, k∗), there is a finite
dimensional quasi Hopf algebra Dω(G), the twisted quantum double of
Dijkgraaf/Pasquier/Roche [66]. (We will later define its representation
category in a purely categorical way.) Recently, Naidu/Nikshych [205]
have given necessary and sufficient conditions on pairs (G, [ω]), (G′, [ω]′) for

Dω(G)−Mod, Dω′

(G′)−Mod to be equivalent as braided tensor categories.
But the question for which pairs (G, [ω]) Dω(G) −Mod is Tannakian (i.e.
admits a fiber functor and therefore is equivalent to the representation
category of an ordinary Hopf algebra) seems to be still open.

• There have been various attempts at proving generalized Tannaka recon-
struction theorems in terms of quasi-Hopf algebras [182] and “weak quasi-
Hopf algebras”. (Cf. e.g. [176, 113].) As it turned out, it is sufficient to
consider ‘weak’, but ‘non-quasi’ Hopf algebras:

• Preceded by Hayashi’s ‘face algebras’ [115], which largely went unnoticed,
Böhm and Szlachányi [35] and then Nikshych, Vainerman, L. Kadison
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introduced weak Hopf algebras, which may be considered as finite-
dimensional quantum groupoids: They are associative unital algebras A
with coassociative algebra homomorphism ∆ : A→ A⊗A, but the axioms
∆(1) = 1⊗ 1 and ε(1) = 1 are weakened.

Weak Hopf algebras are closely related to Hopf algebroids and have
various desirable properties: Their duals are weak Hopf algebras, and Pon-
trjagin duality holds. The categorical dimensions of their representations
can be non-integer. And they are general enough to ‘explain’ finite-index
depth-two inclusions of von Neumann factors, cf. [215].

• Furthermore, Ostrik [222] proved that every fusion category is the module
category of a semisimple weak Hopf algebra. (Again, there was related
earlier work by Hayashi [116] in the context of his face algebras [115].)

Proof idea: An R-fiber functor on a fusion category C is a faithful
tensor functor C → BimodR, where R is a finite direct sum of matrix alge-
bras. Szlachányi [252]: An R-fiber functor on C gives rise to an equivalence
C ≃ A−Mod for a weak Hopf algebra (with base R). (Cf. also [110].) How
to construct an R-fiber functor?

Since C is semisimple, we can choose an algebraR such that C ≃ R−Mod
(as abelian categories). Since C is a module category over itself, we have a
C-module structure on R−Mod. Now use that, for C and R as above, there
is a bijection between R-fiber functors and C-module category structures
on R −Mod (i.e. tensor functors C → End(R−Mod).

Remarks: 1. R is highly non-unique: The only requirement was that the
number of simple direct summands equals the number of simple objects of
C. (Thus there is a unique commutative such R, but even for that, there
is no uniqueness of R-fiber functors.)

2. The above proof uses semisimplicity. (A non-semisimple generaliza-
tion was announced by Bruguières and Virezilier in 2008.)

• Let C be fusion category and A a weak Hopf algebra such that C ≃ A−Mod.

Since there is a dual weak Hopf algebra Â, it is natural to ask how Ĉ =

Â − Mod is related to C. (One may call such a category dual to C, but
must keep in mind that there is one for every weak Hopf algebra A such
that C ≃ A−Mod.)

• Answer: Â − Mod is (weakly monoidally) Morita equivalent to C. This
notion (Müger [191]) was inspired by subfactor theory, in particular ideas
of Ocneanu, cf. [216, 217]. For this we need the following:

• A Frobenius algebra in a strict tensor category is a quintuple (A,m, η,∆, ε),
where (A,m, η) is an algebra, (A,∆, ε) is a coalgebra and the Frobenius
identity

m⊗ idA ◦ idA ⊗∆ = ∆ ◦ m = idA ⊗m ◦ ∆⊗ idA

holds. Diagrammatically:

� �

 	=


 	
� �=

� �

 	 .
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A Frobenius algebra in a k-linear category is called strongly separable if

ε ◦ η = α id1, m ◦∆ = β idΓ, αβ ∈ k∗.

The roots of this definition go quite far back. F. Quinn [231] discussed
them under the name ‘ambialgebras’, and L. Abrams [1] proved that Frobe-

nius algebras in Vectfink are the usual Frobenius algebras, i.e. k-algebras V
equipped with a φ ∈ V ∗ such that (x, y) 7→ φ(xy) is non-degenerate. Frobe-
nius algebras play a central rôle for topological quantum field theories in
1 + 1 dimensions, cf. e.e. [156].

• Frobenius algebras arise from two-sided duals in tensor categories: Let
X ∈ C with two-sided dual X, and define Γ = X ⊗ X . Then Γ carries a
Frobenius algebra structure, cf. [191]:

m =

X X

��
eX

X X X X

∆ =

X X X X

��
d′X

X X

η =

X X

��
dX

ε =
��

e′
X

X X

Verifying the Frobenius identities and strong separability is a trivial
exercise. In view of End(V ) ∼= V ⊗V ∗ in the category of finite dimensional
vector spaces, the above Frobenius algebra is called an ‘endomorphism
(Frobenius) algebra’.

• This leads to the question whether every (strongly separable) Frobenius
algebra in a ⊗-category arise in this way. The answer is, not quite, but: If
Γ is a strongly separable Frobenius algebra in a k-linear spherical tensor
category A then there exist

– a spherical k-linear 2-category E with two objects {A,B},
– a 1-morphism X ∈ HomE(B,A) with 2-sided dual X ∈ HomE(A,B),

and therefore a Frobenius algebra X ◦X in the ⊗-category EndE(A),

– a monoidal equivalence EndE(A)
≃→ A mapping the the Frobenius

algebra X ◦X to Γ.
Thus every Frobenius algebra in A arises from a 1-morphism in a bicat-
egory E containing A as a corner. In this situation, the tensor category
B = EndE(B) is called weakly monoidally Morita equivalent to A and the
bicategory E is called a Morita context.

• The original proof in [191] was tedious. Assuming mild technical conditions
on A and strong separability of Γ, the bicategory E can simply be obtained
as follows:

HomE(A,A) = A,
HomE(A,B) = Γ−ModA,

HomE(B,A) = ModA − Γ,

HomE(B,B) = Γ−ModA − Γ,
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with the composition of 1-morphisms given by the usual tensor products
of (left and right) Γ-modules. Cf. [285]. (A discussion free of any technical
assumptions on A was recently given in [163].)

• Weak monoidal Morita equivalence of tensor categories also admits an inter-
pretation in terms of module categories: If A,B are objects in a bicategory
E as above, the category HomE(A,B) is a left module category over the
tensor category EndE(B) and a right module category over A = EndE(A).
In fact, the whole structure can be formulated in terms of module cate-
gories, thereby getting rid of the Frobenius algebras, cf. [85, 84]: Writing
M = HomE(A,B), the dual category B = EndE(B) can be obtained as the
tensor category HOMA(M,M), denoted A∗

M in [85], of right A-module
functors from M to itself.

Since the two pictures are essentially equivalent, the choice is a matter
of taste. The picture with Frobenius algebras and the bicategory E is closer
to subfactor theory. What speaks in favor of the module category picture
is the fact that non-isomorphic algebras in A can have equivalent module
categories, thus give rise to the same A-module category. (But not in the
case of commutative algebras!)

• Morita equivalence of tensor categories indeed is an equivalence relation,
denoted ≈. (In particular, B contains a strongly separable Frobenius alge-

bra Γ̂ such that Γ̂−ModB − Γ̂ ≃ A.)
• As mentioned earlier, the left regular representation of a finite dimensional
Hopf algebra H gives rise to a Frobenius algebra Γ in H − Mod. Γ is
strongly separable if and only if H is semisimple and cosemisimple. In this
case, one finds for the ensuing Morita equivalent category:

B = Γ−ModH−Mod − Γ ≃ Ĥ −Mod.

(This is a situation encountered earlier in subfactor theory.) Actually, in
this case the Morita context E had been defined independently by Tambara
[253].

The same works for weak Hopf algebras, thus for any semisimple and

co-semisimple weak Hopf algebra we have A−Mod ≈ Â −Mod, provided
the weak Hopf algebra is Frobenius, i.e. has a non-degenerate integral. (It
is unknown whether every weak Hopf algebra is Frobenius.)

• The above concept of Morita equivalence has important applications: If
C1, C2 are Morita equivalent (spherical) fusion categories then
(1) dim C1 = dim C2.
(2) C1 and C2 give rise to the same triangulation TQFT in 2+1 dimen-

sions (as defined by Barrett/Westbury [19] and S. Gelfand/Kazhdan
[104], generalizing the Turaev/Viro TQFT [265, 262] to non-braided
categories. Cf. also Ocneanu [218].)
This fits nicely with the known fact (Kuperberg [159], Barrett/Westbury

[18]) that, the spherical categories H − Mod and Ĥ − Mod (for a
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semisimple and co-semisimple Hopf algebra H) give rise to the same
triangulation TQFT.

(3) The braided centers Z1(C1), Z1(C2) (to be discussed in the next sec-
tion) are equivalent as braided tensor categories. This is quite imme-
diate by a result of Schauenburg [240].

• We emphasize that (just like Vectk) a fusion category can contain many
(strongly separable) Frobenius algebras, thus it can be Morita equivalent to
many other tensor categories. In view of this, studying (Frobenius) algebras
in fusion categories is an important and interesting subject. (Even more
so in the braided case.)

• Example: Commutative algebras in a representation category RepG (for
G finite) are the same as commutative algebras carrying a G-action by
algebra automorphisms. The condition dimHom(1,Γ) = 1 means that the
G-action is ergodic. Such algebras correspond to closed subgroups H ⊂ G
via ΓH = C(G/H). Cf. [155].

• Algebras in and module categories over the category Ck(G,ω) defined in
Section 1 were studied in [223].

• A group theoretical category is a fusion category that is weakly Morita
equivalent (or ‘dual’) to a pointed fusion category, i.e. one of the form
Ck(G,ω) (with G finite and [ω] ∈ H3(G,T)). (The original definition [222]
was in terms of quadruples (G,H, ω, ψ) with H ⊂ G finite groups, ω ∈
Z3(G,C∗) and ψ ∈ C2(H,C∗) such that dψ = ω|H , but the two notions
are equivalent by Ostrik’s analysis of module categories of Ck(G,ω) [222].)
For more on group theoretical categories cf. [203, 101].

• The above considerations are closely related to subfactor theory (at finite
Jones index): A factor is a von Neumann algebra with center C1. For an
inclusion N ⊂ M of factors, there is a notion of index [M : N ] ∈ [1,+∞]
(not necessarily integer!!), cf. [126, 169]. One has [M : N ] <∞ if and only if
the canonical N-M-bimodule X has a dual 1-morphism X in the bicategory
of von Neumann algebras, bimodules and their intertwiners. Motivated by
Ocneanu’s bimodule picture of subfactors [216, 217] one observes that the
bicategory with the objects {N,M} and bimodules generated by X,X is a
Morita context. On the other hand, a single factorM gives rise to a certain
tensor ∗-category C (consisting ofM−M -bimodules or the endomorphisms
EndM) such that, by Longo’s work [170], the Frobenius algebras (“Q-
systems” [170]) in C are (roughly) in bijection with the subfactors N ⊂M
with [M : N ] <∞. (Cf. also the introduction of [191].)

4. Braided tensor categories

• The symmetric groups have the well known presentation

Sn = {σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi when |i−j| > 1, σ2
i = 1}.

Dropping the last relation, one obtains the Braid groups:

Bn = {σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1, σiσj = σjσi when |i − j| > 1}.
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They were introduced by Artin in 1928, but had appeared implicitly in
much earlier work by Hurwitz, cf. [141]. They have a natural geometric
interpretation:

σ1 =

• • • •

• • • •

· · ·

�
�
�
�
�

B
B

B
B , σ2 =

• • • •

• • • •

· · ·

�
�
�
�
�

B
B

B
B , σn−1 =

• • • •

•

· · ·

• • •

�
�
�
�
�

B
B

B
B

Note: Bn is infinite for all n ≥ 2, B2
∼= Z. The representation theory

of Bn, n ≥ 3 is difficult. It is known that all Bn are linear, i.e. they have
faithful finite dimensional representations Bn →֒ GL(m,C) for suitable
m = m(n). Cf. Kassel/Turaev [141].

• Analogously, one can drop the condition cY,X ◦ cX,Y = id on a symmetric
tensor category. This leads to the concept of a braiding, due to Joyal and
Street [128, 132], i.e. a family of natural isomorphisms cX,Y : X ⊗ Y →
Y ⊗X satisfying two hexagon identities but not necessarily the condition
c2 = id. Notice that without the latter condition, one needs to require
two hexagon identities, the second being obtained from the first one by the
replacement cX,Y ; c−1

Y,X (which does nothing when c2 = id). (The latter

is the non-strict generalization of cX⊗Y,Z = cX,Z ⊗ idY ◦ idX ⊗ cY,Z .) A
braided tensor category (BTC) now is a tensor category equipped with
a braiding.

• In analogy to the symmetric case, given a BTC C and X ∈ N, n ∈ Z+, one
has a homomorphism ΠX

n : Bn → Aut(X⊗n).
• The most obvious example of a BTC that is not symmetric is provided by
the braid category B. In analogy to the symmetric category S, it is defined
by ObjB = Z+, End(n) = Bn, n⊗m = n+m, while on the morphisms ⊗ is
defined by juxtaposition of braid diagrams. The definition of the braiding
cn,m ∈ End(n+m) = Bn+m is illustrated by the example (n,m) = (3, 2):

cn,m =

�
�
�
�
�
�
�

�
�
�
�
�
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• If C is a strict BTC and X ∈ C, there is a unique braided tensor functor
F : B → C such that F (1) = X and F (c2,2) = cX,X . Thus B is the free
braided tensor category generated by one object.

• Centralizer and center Z2:
If C is a BTC, we say that two objects X,Y commute if cY,X ◦ cX,Y =

idX⊗Y . If D ⊂ C is subcategory (or just subset of Obj C), we define the
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centralizer C ∩ D′ ⊂ C as the full subcategory defined by

Obj (C ∩ D′) = {X ∈ C | cY,X ◦ cX,Y = idX⊗Y ∀Y ∈ D}.
Now, the center Z2(C) is

Z2(C) = C ∩ C′.

Notice that C ∩ D′ is monoidal and Z2(C) is symmetric! In fact, a BTC
C is symmetric if and only if C = Z2(C). Apart from ‘central’, the objects
of Z2(C) have been called ‘degenerate’ [232] or ‘transparent’ [39].

• We thus see that STC are maximally commutative BTCs. Does it make
sense to speak of maximally non-commutative BTCs? B is an example
since ObjZ2(B) = {0}. Braided fusion categories with ‘trivial’ center will
turn out to be just Turaev’s modular categories, cf. Section 5.

• Since the definition of BTCs is quite natural if one knows the braid groups,
one may wonder why they appeared more than 20 years after symmetric
categories. Most likely, this was a consequence of a lack of really interesting
examples. When they finally appeared in [128], this was mainly motivated
by developments internal to category theory (and homotopy theory). It
is a remarkable historical accident that this happened at the same time
as (and independently from) the development of quantum groups, which
dramatically gained in popularity in the wake of Drinfeld’s talk [72].

• In 1971 it was shown [68] that certain representation theoretic considera-
tions for quantum field theories in spacetimes of dimension ≥ 2+ 1 lead to
symmetric categories. Adapting this theory to 1+ 1 dimensions inevitably
leads to braided categories, as was finally shown in 1989, cf. [90]. That
this was not done right after the appearance of [68] must be considered as
a missed opportunity.

• As promised, we will briefly look at braided categorical groups. Consider
C(G) for G abelian. As shown in [132] – and in much more detail in
the preprints [128] – the braided categorical groups C with π0(C) ∼= G
(isomorphism classes of objects) and π1(C) ∼= A (End1) are classified by
the group H3

ab(G,A), where H
n
ab(G,A) refers to the Eilenberg-Mac Lane

cohomology theory for abelian groups, cf. [177]. (WhereasH3(G,A) can be
defined in terms of topological cohomology theory as H3(K(G, 1), A) of the
Eilenberg-Mac Lane space K(G, 1), one has H3

ab(G,A) := H4(K(G, 2), A).
This group also has a description in terms of quadratic functions q : G →
A. The subgroup of H3

ab(G,A) corresponding to symmetric braidings is
isomorphic to H5(K(G, 3), A), cf. [46].)

• Duality: Contrary to the symmetric case, in the presence of a (non-symmetric)
braiding, having a left duality is not sufficient for a nice theory: If we define
a right duality in terms of a left duality and the braiding, the left and right
traces will fail to have all the properties they do have in the symmetric
case. Therefore, some additional concepts are needed:

• A twist for a braided category with left duality is a natural family {ΘX ∈
EndX, X ∈ C} of isomorphisms (i.e. a natural isomorphism of the functor
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idC) satisfying

ΘX⊗Y = ΘX ⊗ΘY ◦ cY,X ◦ cX,Y , Θ1 = id1,
∨(ΘX) = Θ∨X .

Notice: If cY,X ◦cX,Y 6≡ id then the natural isomorphism Θ is not monoidal

and Θ = id is not a legal twist!
• A ribbon category is a strict braided tensor category equipped with a
left duality and a twist.

• Let C be a ribbon category with left duality X 7→ (∨X, eX , dX) and twist
Θ. We define a right duality X 7→ (X∨, e′X , d

′
X) by X∨ = ∨X and (2.2).

Now one can show, cf. e.g. [137], that the maps EndX → End1 defined as
in (3.1) coincide and that Tr(s) := TrL(s) = TrR(s) has the trace property
and behaves well under tensor products, as previously in the symmetric
case. Writing X = ∨X = X∨, one finds that C is a spherical category in
the sense of [20]. Conversely, if C is spherical and braided, then defining

ΘX = (TrX ⊗ idX)(cX,X),

{ΘX , X ∈ C} satisfies the axioms of a twist and thus forms a ribbon
structure together with the left duality. (Cf. Yetter [289], based on ideas
of Deligne, and Barrett/Westbury [20].)

(Personally, I prefer to consider the twist as a derived structure, thus
talking about spherical categories with a braiding, rather than about ribbon
categories. In some situations, e.g. when the center Z1(C) is involved, this
is advantageous. This also is the approach of the Rome school [71, 172].)

• So far, our only example of a non-symmetric braided category is the free
braided category B, which is not rigid. In the remainder of this section, we
will consider three main ‘routes’ to braided categories: (A) the topological
route, (B) the “non-perturbative approach” via quantum doubles and cat-
egorical centers, and (C) the “perturbative approach” via deformation (or
‘quantization’) of symmetric categories.

• We briefly mention one construction of an interesting braided category that
doesn’t seem to fit nicely into one of our routes: While the usual represen-
tation category of a group is symmetric, the category of representations of
the general linear group GLn(Fq) over a finite field with the external tensor
product of representations turns out to be braided and non-symmetric, cf.
[133].

4.1. Route A: Free braided categories (tangles) and their quotients.

• Combining the ideas behind the Temperley-Lieb categories TL(τ) (which
have duals) and the braid category B (which is braided but has no duals),
one arrives at the categories of tangles (Turaev [260], Yetter [287]. See
also [262, 137].) One must distinguish between categories of unoriented
tangles having Obj U−T AN = Z+ with tensor product (of objects) given
by addition and oriented tangles, based on Obj O−T AN = {+,−}∗ (i.e.
finite words in ±, 1 = ∅) with concatenation as tensor product. In either
case, the morphisms are given as sets of pictures as in Figure 1, or else by
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linear combinations of such pictures with coefficients in a commutative ring
or field. All this is just as in the discussion of the free symmetric categories
at the end of Section 2. The only difference is that one must distinguish
between over- and undercrossings of the lines; for technical reasons it is
more convenient to do this in terms of pictures embedded in 3-space.

Figure 1. An unoriented 3-5 tangle

There also is a category O−T AN of oriented tangles, where the objects
are finite words in ±, 1 = ∅ and the lines in the morphisms are directed,
in a way that is compatible with the signs of the objects. It is clear that
the morphisms in End(1) in U −T AN (O−T AN ) are just the unoriented
(oriented) links.

While the definition is intuitively natural, the details are tedious and
we refer to the textbooks [262, 137, 290]. In particular, we omit discussing
ribbon tangles.

• The tangle categories are pivotal, in fact spherical, thus ribbon categories.
O − T AN is the free ribbon category generated by one element, cf. [243].

• Let C be a ribbon category. Then one can define a category C − T AN of
C-labeled oriented tangles and a ribbon tensor functor FC : C −T AN → C.
(This is the rigorous rationale behind the diagrammatic calculus for braided
tensor categories!)

Let C be a ribbon category andX a self-dual object. Given an unoriented
tangle, we can label every edge by X . This gives a composite map

{links} ∼=−→ HomU−T AN (0, 0) −→ HomC−T AN (0, 0)
FC−→ EndC1.

In particular, if C is k-linear with End1 = kid, we obtain a map from {
links } to k, which is easily seen to be a knot invariant. If C = Uq(sl(2))−
Mod and X is the fundamental object, one essentially obtains the Jones
polynomial. Cf. [260, 234]. (The other objects of C give rise to the colored
Jones polynomials, which are much studied in the context of the volume
conjecture for hyperbolic knots.)

• So far, all our examples of braided categories have come from topology.
In a sense, they are quite trivial, since they are just the universal braided
(ribbon) categories freely generated by one object. Furthermore, we are
primarily interested in linear categories. Of course, we can apply the k-
linearization functor CAT → k-lin.-CAT . But the categories we obtain
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have infinite dimensional hom-sets and are not more interesting than the
original ones. (This should be contrasted to the symmetric case, where this
construction produces the representation categories of the classical groups,
cf. Section 2.)

• Thus in order to obtain interesting k-linear ribbon categories from the
tangle categories, we must reduce the infinite dimensional hom-spaces to
finite dimensional ones.

We consider the following analogous situation in the context of asso-
ciative algebras: The braid group Bn (n > 1) is infinite, thus the group
algebra CBn is infinite dimensional. But this algebra has finite dimensional
quotients, e.g. the Hecke algebra Hn(q), the unital C-algebra generated
by σ1, . . . , σn−1, modulo the relations

σiσi+1σi = σi+1σiσi+1, σiσj = σjσi when |i− j| > 1, σ2
i = (q−1)σi+q1.

This algebra is finite dimensional for any q, and for q = 1 we have Hn(q) ∼=
CSn. In fact, Hn(q) is isomorphic to CSn, thus semisimple, whenever q
is not a root of unity, but this isomorphism is highly non-trivial. Cf. e.g.
[164].

The idea now is to do a similar thing on the level of categories, or to ‘cate-
gorify’ the Hecke algebras or other quotients of CBn like the Birman/Mura-
kami/Wenzl- (BMW-)-algebras [29].

• We have seen that ribbon categories give rise to knot invariants. One
can go the other way and construct k-linear ribbon categories from link
invariants. This approach was initiated in [262, Chapter XII], where a
topological construction of the representation category of Uq(sl(2)) was
given. A more general approach was studied in [267]. A k-valued link
invariant G is said to admit functorial extension to tangles if there
exists a tensor functor F : U − T AN → k − Mod whose restriction to
EndU−T AN (0) ∼= {links} equals G.

For any X ∈ U − T AN , f ∈ End(X), let Lf be the link obtained
by closing f on the right, and define TrG(f) = G(Lf ). If C is the k-
linearization of U − T AN , it is shown in [267], under weak assumptions
on G, that the idempotent and direct sum completion of the quotient of C
by the ideal of negligible morphisms is a semisimple ribbon category with
finite dimensional hom-sets. Cf. [267].

Example: Applying the above procedure G = Vt, the Jones polynomial,
one obtains a Temperley-Lieb category T Lτ , which in turn is equivalent
to a category Uq(sl(2)) − Mod. Cf. [262, Chapter XII]. Applying it to
the Kauffman polynomial [142], one obtains the quantized BTCs of types
BCD, cf. [267]. The general theory in [267] is quite nice, but it should be
noted that the assumption of functorial extendability to tangles is rather
strong: It implies that the resulting semisimple category admits a fiber
functor and therefore is the representation category of a discrete quantum
group. Furthermore, the application of the general formalism of [267] to
the Kauffman polynomial used input from (q-deformed) quantum group
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theory for the proof of functorial extension to tangles and of modularity.
This drawback was repaired by Beliakova/Blanchet, cf. [22, 23].

Blanchet [31] gave a similar construction with HOMFLY polynomial
[92], obtaining the type A categories. (The HOMFLY polynomial is an
invariant for oriented links, thus one must work with oriented tangles.)

Remark: The ribbon categories of BCD type arising from the Kauffman
polynomial give rise to topological quantum field theories. The latter can
even be constructed directly from the Kauffman bracket, bypassing the
categories, cf. [32]. This construction actually preceded those mentioned
above.

• The preceding constructions reinforce the close connection between braided
categories and knot invariants. It is important to realize that this reasoning
is not circular, since the polynomials of Jones, HOMFLY, Kauffman can
(nowadays) be constructed in rather elementary ways, independently of
categories and quantum groups, cf. e.g. [167]. Since the knot polynomials
are defined in terms of skein relations, we speak of the skein construction
of the quantum categories, which arguably is the simplest known so far.

• In the case q = 1, the skein constructions of the ABCD categories reduce to
the construction of the categories arising from classical groups mentioned in
Section 2. (This happens since q = 1 corresponds to parameters in the knot
polynomials for which they fail to distinguish over- from under-crossings.
Then one can replace the tangle categories by symmetric categories of non-
embedded cobordisms (oriented or not) as in [59].)

• Concerning the exceptional Lie algebras and their quantum categories, in-
spired by work of Cvitanovic, cf. [52] for a book-length treatment, and by
Vogel [273], Deligne conjectured [59] that there is a one parameter family
of symmetric tensor categories Ct specializing to RepG for the exceptional
Lie groups at certain values of t. This is still unproven, but see [48, 63, 62]
for work resulting from this conjecture. (For the En-categories, including
the q-deformed ones, cf. [277].)

• In a similar vein, Deligne defined [61] a one parameter family of rigid
symmetric tensor categories Ct such that Ct ≃ RepSt for t ∈ N. These
categories were studied further in [49]. (Recall that Sn is considered as the
GLn(F1) where F1 is the ‘field with one element’, cf. [248].)

• More generally, one can define linear categories by generators and relations,
cf. e.g. [160].

4.2. Route B: Doubles and centers. We begin with a brief look at Hopf alge-
bras.

• Quasi-triangular Hopf algebras (Drinfeld, 1986 [72]): If H is a Hopf
algebra and R an invertible element of (possibly a completion of) H ⊗H ,
satisfying

R∆(·)R−1 = σ ◦∆(·), σ(x ⊗ y) = y ⊗ x,

(∆⊗ id)(R) = R13R23, (id⊗∆)(R) = R13R12.
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(ε⊗ id)(R) = (id⊗ ε)(R) = 1.

If (V, π), (V ′, π′) ∈ H−Mod, the definition c(V,π),(V ′,π′) = ΣV,V ′(π⊗π′)(R)
produces a braiding for H −Mod.

• But this has only shifted the problem: How to get quasi-triangular Hopf
algebras? To this purpose, Drinfeld [72] gave the quantum double construc-
tion H ; D(H), which associates a quasi-triangular Hopf algebra D(H)
to a Hopf algebra H . Cf. also [137].

• Soon after, an analogous categorical construction was given by Drinfeld
(unpublished), Joyal/Street [130] and Majid [181]): The (braided) center
Z1(C), defined as follows.

Let C be a strict tensor category and let X ∈ C. A half braiding eX for
X is a family {eX(Y ) ∈ HomC(X ⊗ Y, Y ⊗X), Y ∈ C} of isomorphisms,
natural w.r.t. Y , satisfying eX(1) = idX and

eX(Y ⊗ Z) = idY ⊗ eX(Z) ◦ eX(Y )⊗ idZ ∀Y, Z ∈ C.
Now, the center Z1(C) of C has as objects pairs (X, eX), where X ∈ C

and eX is a half braiding for X . The morphisms are given by

HomZ1(C)((X, eX), (Y, eY )) = {t ∈ HomC(X,Y ) | idX⊗t ◦ eX(Z) = eY (Z) ◦ t⊗idX ∀Z ∈ C}.

The tensor product of objects is given by (X, eX) ⊗ (Y, eY ) = (X ⊗
Y, eX⊗Y ), where

eX⊗Y (Z) = eX(Z)⊗ idY ◦ idX ⊗ eY (Z).

The tensor unit is (1, e1) where e1(X) = idX . The composition and tensor
product of morphisms are inherited from C. Finally, the braiding is given
by

c((X, eX), (Y, eY )) = eX(Y ).

(The author finds this definition is much more transparent than that of
D(H) even though a priori little is known about Z1(C).)

• Just as the centralizer C ∩D′ generalizes Z2(C) = C ∩ C′, there is a version
of Z1 relative to a subcategory D ⊂ C, cf. [181].

• Z1(C) is categorical version (generalization) of Hopf algebra quantum dou-
ble in the following sense: If H is a finite dimensional Hopf algebra, there
is an equivalence

Z1(H −Mod) ≃ D(H)−Mod (4.1)

of braided tensor categories, cf. e.g. [137]. (If H is infinite dimensional,
one still has an equivalence between Z1(H − Mod) and the category of
Yetter-Drinfeld modules over H .)

• If C is a category and D := Z0(C) = End(C) is its tensor category of endo-
functors, then Z1(D) is trivial. (This may be considered as the categorifi-
cation of the fact that the center (in the usual sense) of the endomorphism
monoid End(S) of a set S is trivial, i.e. equal to {idS}.) But in general, the
braided center of a tensor category is a non-trivial braided category that
is not symmetric. Unfortunately, this doesn’t seem to have been studied
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thoroughly. Presently, strong results on Z1(C) exist only in the case where
C is a fusion category.

• There are abstract categorical considerations, quite unrelated to topology
and quantum groups, that provide rationales for studying BTCs:

(A): A second, compatible, multiplication functor on a tensor category
gives rise to a braiding, and conversely, cf. [132]. (This is a higher dimen-
sional version of the Eckmann-Hilton argument mentioned earlier.)

(B): Recall that tensor categories are bicategories with one object. Now,
braided tensor categories turn out to be monoidal bicategories with one
object, which in turn are weak 3-categories with one object and one 1-
morphism. Thus braided (and symmetric) categories really are a manifes-
tation of the existence of n-categories for n > 1!

• Baez-Dolan [10] conjectured the following ‘periodic table’ of ‘k-tuply mon-
oidal n-categories’:

n = 0 n = 1 n = 2 n = 3 n = 4

k = 0 sets categories 2-categories 3-categories . . .

k = 1 monoids monoidal monoidal monoidal . . .
categories 2-categories 3-categories

k = 2 commutative braided braided braided . . .
monoids monoidal monoidal monoidal

categories 2-categories 3-categories

k = 3 symmetric ‘sylleptic’
” monoidal monoidal ? . . .

categories 2-categories

k = 4 symmetric
” ” monoidal ? . . .

2-categories

k = 5 symmetric
” ” ” monoidal . . .

3-categories

k = 6 ” ” ” ” . . .

In particular, one expects to find ‘center constructions’ from each struc-
ture in the table to the one underneath it. For the column n = 1 these
are the centers Z0, Z1, Z2 discussed above. For n = 0 they are given by
the endomorphism monoid of a set and the ordinary center of a monoid.
The column n = 2 is also relatively well understood, cf. Crans [50]. There
is an accepted notion of a non-strict 3-category (i.e. n = 3, k = 0) (Gor-
don/Power/Street [108]), but there are many competing definitions of weak
higher categories. We refrain from moving any further into this subject.
See e.g. [13].

• With this heuristic preparation, one can give a high-brow interpretation of
Z1(C), cf. [132, 250]: Let C be tensor category and ΣC the corresponding
bicategory with one object. Then the category End(ΣC) of endofunctors of
ΣC is a monoidal bicategory (with natural transformations as 1-morphisms
and ‘modifications’ as 2-morphisms). Now, D = EndEnd(ΣC)(1) is a tensor
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category with two compatible ⊗-structures (categorifying End1 in a tensor
category), thus braided, and it is equivalent to Z1(C).

• For further abstract considerations on the center Z1, consider the work of
Street [250, 251] and of Bruguières and Virelizier [41, 42].

• If C is braided there is a braided embedding ι1 : C →֒ Z1(C), given by X 7→
(X, eX), where eX(Y ) = c(X,Y ). Defining C̃ to be the tensor category
C with ‘opposite’ braiding c̃X,Y = c−1

Y,X , there is an analogous embedding

ι̃ : C →֒ Z1(C). In fact, one finds that the images of ι, ι′ are each others’
centralizers:

Z1(C) ∩ ι(C)′ = ι̃(C̃), Z1(C) ∩ ι̃(C̃)′ = ι(C).
Cf. [192]. On the one hand, this is an instance of the double commutant
principle, and on the other hand, this establishes one connection

ι(C) ∩ ι̃(C̃) = ι(Z2(C)) = ι̃(Z2(C̃)),

between Z1 and Z2 which suggests that “Z1(C) ≃ C × C̃” when Z2(C) is
“trivial”. We will return to both points in the next section.

4.3. Route C: Deformation of groups or symmetric categories.

• As for Route B, there is a more traditional approach via deformation of
Hopf algebras and a somewhat more recent one focusing directly on defor-
mation of tensor categories.

• (C1): The earlier approach to braided categories relies on deformation of
Hopf algebras related to groups. For lack of space we will limit ourselves to
providing just enough information as needed for the discussion of the more
categorical approach. For more, we refer to the textbooks, in particular
[137, 47, 124, 173]. In any case, one chooses a simple (usually compact)
Lie group G and considers either the enveloping algebra U(g) of its Lie
algebra g in terms of Serre’s generators and relations [242], or one departs
from the algebra Fun(G) of regular functions on G, which can also be
described in terms of finitely many relations, cf. e.g. [279]. In a nutshell,
one inserts factors of a ‘deformation parameter’ q into the presentation of
U(g) or Fun(G) in such a way that for q 6= 1 one still obtains a (non-trivial)
Hopf algebra. Quantum group theory began with the discovery that this
is possible at all.

• Obviously, this ‘definition’ is a farcical caricature. But there is some
truth in it: In the mathematical literature on quantum groups, cf. e.g.
[137, 47, 124, 173], it is all but impossible to find a comment on the ori-
gin of the presentation of the quantum group under study and of the un-
derlying motivation. While the initiators of quantum group theory from
the Leningrad school (Faddeev, Kulish, Semenov-Tian-Shansky, Sklyanin,
Reshetikhin, Drinfeld and others) were very well aware of these origins,
this knowledge has now almost faded into obscurity. (This certainly has
to do with the fact that the applications to theoretical physics for which

Rev. Un. Mat. Argentina, Vol 51-1



TENSOR CATEGORIES: A SELECTIVE GUIDED TOUR 139

quantum groups were invented in the first place are still exclusively pur-
sued by physicists, cf. e.g. [106].) One point of this section will be that
– quite independently of the original physical motivation – the categorical
approach to quantum deformation is mathematically better motivated.

• In what follows, we will concentrate on the enveloping algebra approach.
The usual Drinfeld-Jimbo presentation of the quantized enveloping algebra
is as follows, Consider the algebra Uq(g) generated by elements Ei, Fi, Ki,

K−1
i , 1 ≤ i ≤ r, satisfying the relations

KiK
−1
i = K

−1
i Ki = 1, KiKj = KjKi, KiEjK

−1
i = q

aij

i Ej , KiFjK
−1
i = q

−aij

i Fj ,

EiFj − FjEi = δij
Ki −K−1

i

qi − q−1
i

,

1−aij
∑

k=0

(−1)k
[

1− aij

k

]

qi

E
k
i EjE

1−aij−k

i = 0,

1−aij
∑

k=0

(−1)k
[

1− aij

k

]

qi

F
k
i FjF

1−aij−k

i = 0,

where

[

m

k

]

qi

=
[m]qi !

[k]qi ![m − k]qi !
, [m]qi ! = [m]qi [m−1]qi . . . [1]qi , [n]qi =

qni − q−n
i

qi − q−1
i

and qi = qdi . This is a Hopf algebra with coproduct ∆ and counit ε defined by

∆(Ki) = Ki ⊗Ki, ∆(Ei) = Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) = Fi ⊗K
−1
i + 1⊗ Fi,

ε(Ei) = ε(Fi) = 0, ε(Ki) = 1.

One should distinguish between Drinfeld’s [72] formal approach, where
one constructs a Hopf algebra H over the ring C[[h]] of formal power series
in such a way that H/hH is isomorphic to the enveloping algebra U(g),
and the non-formal deformation of Jimbo [125], who obtains an honest
quasi-triangular Hopf algebra Uq(g) (over C) for any value q ∈ C of a
deformation parameter. (In this approach, the properties of the resulting
Hopf algebra depend heavily on whether q is a root of unity or not. In the
formal approach, this distinction obviously does not arise.) The relation
between both approaches becomes clear by inserting q = eh in Jimbo’s
definition and considering the result as a Hopf algebra over C[[h]].

• (C2): As mentioned, one can obtain non-symmetric braided categories di-
rectly by ‘deforming’ symmetric categories. This approach was initiated
by Cartier [45] and worked out in more detail in [137, Appendix] and [140].
(These works were all motivated by applications to Vassiliev link invariants,
which we cannot discuss here.)

Let S be a strict symmetric Ab-category. Now an infinitesimal braid-
ing on S is a natural family of endomorphisms tX,Y : X ⊗ Y → X ⊗ Y
satisfying

cX,Y ◦ tX,Y = tY,X ◦ cX,Y ∀X,Y,
tX,Y⊗Z = tX,Y ⊗ idZ + c−1

X,Y ⊗ idZ ◦ idY ⊗ tX,Z ◦ cX,Y ⊗ idZ ∀X,Y, Z.
Strict symmetric Ab-categories equipped with an infinitesimal braiding
were called infinitesimal symmetric. (We would prefer to call them
symmetric categories equipped with an infinitesimal braiding.)
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• Example: If H is a Hopf algebra, there is a bijection between infinitesimal
braidings t on S = H −Mod and elements t ∈ Prim(H)⊗Prim(H) (where
Prim(H) = {x ∈ H | ∆(x) = x ⊗ 1 + 1 ⊗ x}) satisfying t21 = t and
[t,∆(H)] = 0, given by tX,Y = (πX ⊗ πY )(t).

• Now we can define the formal deformation of a symmetric category asso-
ciated to an infinitesimal braiding: Let S be a strict C-linear symmetric
category with finite dimensional hom-sets and let t be an infinitesimal
braiding for S. We write S[[h]] for the C[[h]]-linear category obtained
by extension of scalars. (I.e. ObjS[[h]] = ObjS and HomS[[h]](X,Y ) =
HomS(X,Y )⊗C C[[h]].) Also the functor ⊗ : S ×S → S lifts to S[[h]]. For
objects X,Y, Z, define

αX,Y,Z = ΘKZ(h tX,Y ⊗ idZ , h idX ⊗ tY,Z), c̃X,Y = cX,Y ◦ ehtX,Y /2.

Here ΘKZ is a Drinfeld associator [73], i.e. a formal power series

ΘKZ(A,B) =
∑

w∈{A,B}∗

cw w

in two non-commuting variables A,B, where cw ∈ C, satisfying certain
identities. (Cf. [137, Chapter XIX, (8.27)-(8.29)].) Then (S[[h]],⊗,1, α) is
a (non-strict) tensor category with associativity constraint α, trivial unit
constraints and c̃ a braiding. If S is rigid, then (S[[h]],⊗,1, α, c̃) admits a
ribbon structure.

• Application: Let g be a simple Lie algebra/C. Let S = g−Mod and define
{tX,Y } be as in the example, corresponding to t = (

∑
i xi⊗xi+xi⊗xi)/2,

where xi, x
i are dual bases of g w.r.t. the Killing form. Then [t,∆(·)] = 0

and one can prove

(S[[h]],⊗,1, α, c̃) ≃ Uh(g)−Mod (4.2)

as C[[h]]-linear ribbon categories. (The proof is a corollary of the proof of
the Kohno-Drinfeld theorem [73, 74], cf. also [137].)

Remark: 1. Obviously, we have cheated: The main difficulty resides
in the definition of ΘKZ ! Giving the latter and proving its properties
requires ca. 10-15 pages of rather technical material (but no Lie theory). Le
and Murakami explicitly wrote down an associator; cf. e.g. [137, Remark
XIX.8.3]. Drinfeld also gave a non-constructive proof of existence of an
associator defined over Q, cf. [74].

2. The above is relevant for a more conceptual approach to the theory
of finite-type knot invariants (Vassiliev invariants), cf. [45, 140].

3. A disadvantage of the above is that we obtain only a formal defor-
mation of S. If g is a simple Lie algebra and S = g − Mod, we know by
(4.2), that we obtain the C[[h]]-category Uh(g)−Mod. On the other hand,
thanks to the work of Jimbo [125] and others [173, 124] we know that
there is a non-formal version Uq(g) of the quantum group with C-linear
representation category. One would therefore hope that the C-linear cate-
gories Uq(g)−Mod can be obtained directly as deformations of the module
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categories U(g) − Mod. Indeed, for numerical q ∈ C\Q, with some more
analytical effort one can make sense of αq = ΘKZ(h tX,Y ⊗idZ , h idX⊗tY,Z)
as an element of End(X⊗Y ⊗Z) and define a non-formal, C-linear category
C(g, q) and prove an equivalence

C(g, q) = (S,⊗,1, αq, c̃q) ≃ Uq(g)−Mod

of C-linear ribbon categories. This was done by Kazhdan and Lusztig [144],
but see also the nice recent exposition by Neshveyev/Tuset [209].

• Fact: If q ∈ C∗ is generic, i.e. not a root of unity, then C(g, q) := Uq(g) −
Mod is a semisimple braided ribbon category whose fusion hypergroup is
isomorphic to that of U(g), thus of the category of g-modules, cf. [124, 173].
But it is not symmetric for q 6= 1, thus certainly not equivalent to the
latter. In fact, Uq(g) −Mod and U(g) −Mod are already inequivalent as
⊗-categories. (Recall that associativity constraints α can be considered as
generalized 3-cocycles, and the αq for different q are not cohomologous.)

• We have briefly discussed the Cartier/Kassel/Turaev formal deformation
quantization of symmetric categories equipped with an infinitesimal braid-
ing. There is a cohomology theory for Ab- tensor categories and tensor
functors that classifies deformations due to Davydov [53] and Yetter [290].

Definition: Let F : C → C′ a tensor functor. Define Tn : Cn → C by
X1 × · · · × Xn 7→ X1 ⊗ · · · ⊗ Xn. (T0(∅) = 1, T1 = id.) Let Cn

F (C) =
End(Tn ◦ F⊗n). (C0

F (C) = End1′.) For a fusion category, this is finite

dimensional. Define d : Cn
F (C) → Cn+1

F (C) by

df = id⊗f2,...,n+1−f12,··· ,n+1+f1,23,...,n+1−· · ·+(−1)nf1,...,n(n+1)+(−1)n+1
f1,...,n⊗ id,

where, e.g., f12,3,...,n+1 is defined in terms of f using the isomorphism
dFX1,X2

: F (X1)⊗F (X2) → F (X1 ⊗F2) coming with the tensor functor F .

One has d2 = 0, thus (Ci, d) is a complex. NowHi
F (C) is the cohomology

of this complex, and Hi(C) = Hi
F (C) for F = idC .

In low dimensions one finds that H1
F classifies derivations of the tensor

functor F , H2
F classifies deformations of the tensor structure {dFX,Y } of F .

H3(C) classifies deformations of the associativity constraint α of C.
Examples: 1. If C is fusion thenHi(C) = 0 ∀i > 0. This implies Ocneanu

rigidity, cf. [84].
2. If g is a reductive algebraic group with Lie algebra g and C = RepG

(algebraic representations). Then Hi(C) ∼= (Λig)G ∀i. If g is simple then
H1(C) = H2(C) = 0, but H3(C) is one-dimensional, corresponding to a
one-parameter family of deformations C. According to [84] “it is easy to
guess that this deformation comes from an actual deformation, namely
the deformation of O(G) to the quantum group Oq(G)”. It is not clear
to this author whether this suggestion should be considered as proven.
If so, together with the one-dimensionality of H3(g − Mod) it provides a
very satisfactory ‘explanation’ for the existence of the quantized categories
C(g, q) ≃ Uq(g)−Mod.
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• In analogy to the result of Kazhdan and Wenzl mentioned in Section 3,
Tuba and Wenzl [259] proved that a semisimple ribbon category with the
fusion hypergroup isomorphic to that of a simple classical Lie algebra g

of BCD type (i.e. orthogonal or symplectic) is equivalent to the category
C(g, q), with q = 1 or not a root of unity, or one of finitely many twisted ver-
sions thereof. Notice that in contrast to the Kazhdan/Wenzl result [145],
this result needs the category to be braided! (Again, this is a characteri-
zation, not a construction of the categories.)

• Finkelberg [89] proved a braided equivalence between C(g, q), q = eiπ/mκ,
where m = 1 for ADE, m = 2 for BCD and m = 3 for G2, and the ribbon
category Õκ of integrable representations of the affine Lie algebra ĝ of
central charge c = κ− ȟ, where ȟ is the dual Coxeter number of g.

The category Õκ plays an important rôle in conformal field theory, either
in terms of vertex operator algebras or via the representation theory of
loop groups (Wassermann [275], Toledano-Laredo [256]). This is the main
reason for the relevance of quantum groups to CFT.

• Finally, we briefly discuss the connection between routes (B) and (C) to
BTCs: In order to find an R-matrix for the Hopf algebra Uq(g) one tradi-
tionally uses the quantum double, appealing to an isomorphism Uq(g) ∼=
D(Bq(g))/I, where Bg(g) is the q-deformation of a Borel subalgebra of
g and I an ideal in D(Bq(g)). Now RUq(g) = (φ ⊗ φ)(RD(Bq(g))), where
φ is the quotient map. Since a surjective Hopf algebra homomorphism
H1 → H2 corresponds to a full monoidal inclusion H2−Mod →֒ H1−Mod,
and recalling the connection (4.1) between Drinfeld’s double construction
and the braided center Z1, we conclude that the BTC Uq(g) − Mod is a
full monoidal subcategory of Z1(Bq(g) −Mod) (with the inherited braid-
ing). Therefore, also in the deformation approach, the braiding can be
understood as ultimately arising from the Z1 center construction.

• Question: It is natural to ask whether a similar observation also holds for
q a root of unity, i.e., whether the modular categories C(g, q), for q a root
of unity, can be understood as full ⊗-subcategories of Z1(D), where D is
a fusion category corresponding to the deformed Borel subalgebra Bq(g).
Very recently, Etingof and Gelaki [81] gave an affirmative answer in some
cases.

Remark: In the next section, we will discuss a criterion that allows to
recognize the quantum doubles Z1(C) of fusion categories.

5. Modular categories

• Turaev [261, 262]: A modular category is a fusion category that is ribbon
(alternatively, spherical and braided) such that the matrix S = (Si,j)

Si,j = TrX⊗Y (cY,X ◦ cX,Y ), i, j ∈ I(C),
where I(C) is the set of simple objects modulo isomorphism, is invertible.

• A fusion category that is ribbon is modular if and only if dim C 6= 0 and
the center Z2(C) is trivial. (In the sense of consisting only of the objects
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1 ⊕ · · · ⊕ 1.) (This was proven by Rehren [232] for ∗-categories and by
Beliakova/Blanchet [23] in general. Cf. also [39] and [2].)
Thus: Modular categories are braided fusion categories with trivial center,

i.e. the maximally non-symmetric ones. (This definition seems more con-
ceptual than the original one in terms of invertibility of S.)

• Why are these categories called ‘modular’? Let S as above and T =
diag(ωi), where ΘXi

= ωiidXi
, i ∈ I. Then

S2 = αC, (ST )3 = β C, (αβ 6= 0)

where Ci,j = δi,, thus S, T give rise to a projective representation of the
modular group SL(2,Z) (which has a presentation {s, t | (st)3 = s2 =
c, c2 = e}). Cf. [232, 262].

• At first sight, this is somewhat mysterious. Notice: SL(2,Z) is the mapping
class group of the 2-torus S1 × S1. Now, by work of Reshetikhin/Turaev
[235, 262], providing a rigorous version of ideas of Witten, every modular
category gives rise to a topological quantum field theory in 2 + 1 di-
mensions. Every such TQFT in turn gives rise to projective representation
of the mapping class groups of all closed surfaces, and for the torus one
obtains just the above representation of SL(2,Z). Cf. [262, 15]. We don’t
have the time to say more about TQFTs.

• Turaev’s motivation came from conformal field theory (CFT). (Cf. e.g.
Moore-Seiberg [189]). In fact, there is a (rigorous) definition of rational
chiral CFTs (using von Neumann algebras) and their representations, for
which one can prove that the latter are unitary modular (Kawahigashi,
Longo, Müger [143]). Most of the examples considered in the (heuristic)
physics literature fit into this scheme. (E.g. the loop group models: [275,
282] and the minimal Virasoro models with c < 1 [168].)

In the context of vertex operator algebras, similar results were proven
by Huang [121].

• It is natural to ask whether there are less complicated ways to produce
modular categories? The answer is positive; we will reconsider our three
routes to braided categories.

• Route A: Recall that the classical categories can be obtained from the lin-
earized tangle categories (type A: oriented tangles, types BCD: unoriented
tangles), dividing by ideals defined in terms of the knot polynomials of
HOMFLY and Kauffman. At roots of unity, this leads to modular cate-
gories, cf. [267, 31, 23].

• Route C1: H. Andersen et al. [4], Turaev/Wenzl [266] (and others): Let g
be a simple Lie algebra and q a primitive root of unity. Then Uq(g)−Mod
gives rise to a modular category C(g, q). (Using tilting modules, dividing
by negligible morphisms, etc.)

• Let q be primitive root of unity of order ℓ. Then C(g, q) has a positive
∗-operation (i.e. is unitary) if ℓ is even (Kirillov Jr. [152], Wenzl [276]) and
is not unitarizable for odd ℓ (Rowell [236]).
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• Characterization theorem: A braided fusion category with the fusion hy-
pergroup of C(g, q), where g is a simple Lie algebra of BCD type and q
a root of unity, is equivalent to C(g, q) or one of finitely many twisted
versions. (Tuba/Wenzl [259])

• Before we reconsider Route B, we assume that we already have a braided
fusion category, or pre-modular category.

As we have seen, failure of modularity is due to non-trivial center Z2(C).
Idea: Given a braided (but not symmetric) category with even center
Z2(C), kill the latter, using the Deligne / Doplicher-Roberts theorem:
Z2(C) ≃ RepG. The latter contains a commutative (Frobenius) algebra
Γ corresponding to the regular representation of G. Now Γ−ModC is mod-
ular. (Bruguières [39], Müger [190]). This construction can be interpreted
as Galois closure in a Galois theory for BTCs, cf. [190].

• Route B to braided categories: Quantum doubles: If G is a finite group
then D(G)−Mod and Dω(G)−Mod are modular (Bantay [16], Altschuler/
Coste [3]). If H is a finite-dimensional semisimple and cosemisimple Hopf
algebra then D(H)−Mod is modular (Etingof/Gelaki [79]). If A is a finite-
dimensional weak Hopf algebra then D(A) − Mod modular (Nikshych/
Turaev/ Vainerman [214]).

• The center Z1 of a left/right rigid, pivotal, spherical category has the same
properties. In particular, the center of a spherical category is spherical and
braided, thus a ribbon category. (Under weaker assumptions, this is not
true, and existence of a twist for the center, if desired, must be enforced
by a categorical version of the ribbonization of a Hopf algebra, cf. [139].)

• The braided center Z1: If C is spherical fusion category and dim C 6= 0 then
Z1(C) is modular and dimZ1(C) = (dim C)2. (Müger [192].)

Comments on the proof: Semisimplicity not difficult. Next, one finds a
Frobenius algebra Γ inD = C⊠Cop such that the dual category Γ−ModD−Γ
is equivalent to Z1(C), implying dimZ2(C) = (dim C)2. Here Γ = ⊕iXi ⊠

Xop
i , which is again a coend and can exist also in non-semisimple categories.

• This contains all the earlier modularity results on D(G)−Mod and D(H)−
Mod, but also for Dω(G)−Mod since:

Dω(G) −Mod ≃ Z1(Ck(G,ω)).
(Using work by Hausser/Nill [114] or Panaite [226] on quantum double of
quasi Hopf-algebras.)

• Modularity of Z1(C) also follows by combination of Ostrik’s result that
every fusion category arises from a weak Hopf algebra A, combined with
modularity of D(A) − Mod [214], provided one proves D(A) − Mod ≃
Z1(A − Mod), generalizing the known result for Hopf algebras. But the
purely categorical proof avoiding weak Hopf algebras seems preferable, not
least since it probably extends to finite non-semisimple categories.

• In the Morita context having C ⊠ Cop and Z1(C) as its corners, the two
off-diagonal categories are equivalent to C and Cop, and their structures as
C ⊠ Cop-module categories are the obvious ones. Therefore, the center can
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also be understood as (using the notation of EO):

Z1(C) ≃ (C ⊠ Cop)∗C .

A (somewhat sketchy) proof of this equivalence can be found in [223, Prop.
2.5].

• We give another example for a purely categorical result that can be proven
using weak Hopf algebras: Radford’s formula for S4 has a generalization
to weak Hopf algebras [213], and this can be used to prove that in every
fusion category, there exists an isomorphism of tensor functors id → ∗∗∗∗,
cf. [83]. (Notice that in every pivotal category we have id ∼= ∗∗, thus here
it is important that we understand ‘fusion’ just to mean existence of two-
sided duals. But in [84] it is conjectured that every fusion category admits
a pivotal structure.)

• If C is already modular then there is a braided equivalence Z1(C) ≃ C⊠Cop,
cf. [192]. Thus, every modular category M is full subcategory of Z1(C) for
some fusion category. (This probably is not very useful for the classification
of modular categories, since there are ‘more fusion categories than modular
categories’: Recall from Section 3 that C1 ≈ C2 ⇒ Z1(C1) ≃ Z1(C2). (For
converse, see below.)

• There is a “Double commutant theorem” for modular categories (Müger
[193], inspired by Ocneanu [219]): Let M a modular category and a C ⊂ M
a replete full tensor subcategory. Then:
(1) (M∩ (M∩ C′)′) = C.
(2) dim C · dim(M∩ C′) = dimM,
(3) If, in addition C is modular, then also D = M ∩ C′ is modular and

M ≃ C ⊠ D. (Thus every full inclusion of modular categories arises
from a direct product.)

These results indicate that ‘modular categories are better behaved than
finite groups’.

• Corollary: If M is modular and S ⊂ M symmetric then S ⊂ M∩S ′. Thus

(dimS)2 ≤ dimS · dim(M∩S ′) = dimM,

implying dimS ≤
√
dimM. Notice that the bound is satisfied by RepG ⊂

D(ω)(G) − Mod. In fact, existence of a symmetric subcategory attaining
the bound characterizes the representation categories of twisted doubles,
cf. below.

• On the other hand, consider C ⊂ M with M modular. We have M∩C′ ⊃
Z2(C), implying dimM ≥ dim C · dimZ2(C). This provides a lower bound
on the dimension of a modular category containing a given pre-modular
subcategory as a full tensor subcategory. In [193] it was conjectured that
this bound can always be attained.

• It is natural to ask how primality of D(G) −Mod is related to simplicity
of G. It turns out that the two properties are independent. On the one
hand, there are non-simple finite groups for which D(G) −Mod is prime.
(This is a corollary of the classification of the full fusion subcategories of
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D(G) −Mod given in [206].) On the other hand, for G = Z/pZ one finds
that D(G) − Mod is prime if and only if p = 2. For p an odd prime,
D(G) −Mod has two prime factors, both of which are modular categories
with p invertible objects, cf. [193]. But for every finite simple non-abelian
G, one finds that D(G) − Mod is prime. In fact, it has only one replete
full tensor subcategory at all, namely RepG. Thus all these categories
are mutually inequivalent: The classification of prime modular categories
contains that of finite simple groups.

• If C is symmetric and (Γ,m, η) a commutative algebra in C, then Γ−ModC
is again symmetric and

dimΓ−ModC =
dim C
d(Γ)

. (5.1)

Now, if C is only braided, Γ −ModC is a fusion category satisfying (5.1),
but in general it fails to be braided! (Unless Γ ∈ Z2(C), as was the case in
the context of modularization.)

• Example: Given a BTC C ⊃ S ≃ RepG, let Γ be the regular monoid in S
as considered in Section 3. Then C⋊S := Γ−ModC is fusion category, but
it is braided only if S ⊂ Z2(C), as in the discussion of modularization. In
general, one obtains a braided crossed G-category as defined by Turaev
[263, 264] (cf. also Carrasco and Moreno [44]), i.e. a tensor category with
G-grading ∂ on the objects, a G-action γ such that ∂(γg(X)) = g∂Xg−1

and a ‘braiding’ cX,Y : X ⊗ Y
∼=−→ γ∂X(Y ) ⊗ X . The degree zero part

is Γ − ModC∩S′ ≃ Γ − Mod0C (cf. below). (Kirillov Jr. [153, 154], Müger
[194]). This construction has an interesting connection to conformal orb-
ifold models ([196, 199]).

• Even if Γ 6∈ Z2(C), there is a full tensor subcategory Γ−Mod0C ⊂ Γ−ModC
that is braided. Calling a module (X,µ) ∈ Γ−ModC dyslectic if

µ ◦ cX,Γ = µ ◦ c−1
Γ,X ,

one finds that the full subcategory Γ − Mod0C of dyslectic modules is not
only monoidal, but also inherits the braiding from C, cf. Pareigis [227].
This was rediscovered by Kirillov and Ostrik [155] who in addition proved

that if C is modular then Γ−Mod0C is modular and the following identity,
similar to (5.1) but different, holds:

dimΓ−Mod0C =
dim C
d(Γ)2

.

Remark: Analogous results were previously obtained by Böckenhauer,
Evans and Kawahigashi [34] in an operator algebraic context. While the
transposition of their work to tensor ∗-categories is immediate, removing
the ∗-assumption requires some work.

• The above implies (for ∗-categories, but also in general over C by [84]) that

d(Γ) ≤
√
dim C for commutative Frobenius algebras in modular categories.

(The above bound on the dimension of full symmetric categories follows
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from this, since the regular monoid in S is a commutative Frobenius algebra
Γ with d(Γ) = dimS.)

• All these facts have applications to chiral conformal field theories in the
operator algebraic framework, reviewed in more detail in [198]:

Longo/Rehren [171]: Finite local extensions of a CFT A are classified by
the ‘local Q-systems’ (≈ commutative Frobenius algebras) in RepA, which
is a ∗-BTC.

Böckenhauer/Evans [33], [198]: If B ⊃ A is the finite local extension
corresponding to the commutative Frobenius algebra Γ ∈ RepA, then
RepB ≃ Γ−Mod0RepA.

Analogous results for vertex operator algebras were formulated by Kir-
illov and Ostrik [155].

Remark: It is perhaps not completely absurd to compare these results
to local class field theory, where finite Galois extensions of a local field k
are shown to be in bijection to finite index subgroups of k∗.

• Drinfeld, Gelaki, Nikshych and Ostrik [75], and independently Kitaev and
the author, observed that every commutative Frobenius algebra Γ in a
modular category M gives rise to a braided equivalence

Z1(Γ−ModM) ≃ M ⊠
˜Γ−Mod0M. (5.2)

Taking Γ = 1, one recovers the fact Z1(M) ≃ M ⊠ M̃. The latter raises
the question whether one can find a smaller fusion category C such that
M ⊂ Z1(C). The answer given by (5.2) is that the bigger a commutative
algebra one can find in M, the smaller one can take C to be. In particular,
if Γ−Mod0M is trivial (which is equivalent to d(Γ)2 = dimM over C) then
M ≃ Z1(Γ−ModM) is not just contained in a center of a fusion category
but is such a center. In fact, this criterion identifies the modular categories
of the form Z1(C) since, conversely, cf. [57], one finds that the center Z1(C)
of a fusion category contains a commutative Frobenius algebra Γ of the
maximal dimension d(Γ) =

√
dimZ1(C) = dim C such that

Γ−Mod0Z1(C) trivial, Γ−ModZ1(C) ≃ C.

• As an application one obtains that if M is modular and S ⊂ M symmetric
and even such that dimS =

√
dimM then M ≃ Dω(G) − Mod, where

S ≃ RepG and ω ∈ Z3(G,T).
This has an application in CFT: If A is a chiral CFT with trivial rep-

resentation category RepA (i.e. A is ‘holomorphic’) acted upon by finite
group G. Then RepAG ≃ Dω(G) − Mod. (Together with the results of
[143], this proves the folk conjecture, having its roots in [67, 66], that the
representation category of a ‘holomorphic chiral orbifold CFT’ is given by
a category Dω(G) −Mod.)

• As shown in [191], a weak monoidal Morita equivalence C1 ≈ C1 of fusion
categories implies Z1(C1) ≃ Z1(C2). (This is an immediate corollary of the
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definition of ≈, combined with [240].) The converse is true for group theo-
retical categories (Naidu/Nikshych [205]), and a general proof is announced
by Nikshych.

• By definition, a group theoretical category C is weakly Morita equivalent
(dual) to Ck(G,ω) for a finite group G and [ω] ∈ H3(G,T). Thus Z1(C) ≃
Z1(Ck(G,ω)) ≃ Dω(G) −Mod. The converse is also true.

Therefore, with M modular and C fusion we have:

contains M Z1(C)
maximal comm. FA Γ M ≃ Z1(C) always true

maximal STC S M ≃ Dω(G)−Mod C is group theoretical

• What can we say about non-commutative (Frobenius) algebras in modular
categories? We first look at the symmetric case. Let thus C be a rigid
symmetric k-linear tensor category and Γ a strongly separable Frobenius
algebra in C. Define p ∈ EndΓ by

p = (TrΓ ⊗ idΓ)(∆ ◦m ◦ cΓ,Γ) =

Γ� �

 	
� �
A
A
A�
�
���


 	
Γ

=

Γ

�
�
�A
A
A

A
A
A�

�
���


 	
Γ

(5.3)

(The fourfold vertex in the right diagram represents the morphism m(2) =
m ◦ m ⊗ id.) Then p is idempotent (up to a scalar) and its kernel is an
ideal. Thus the image of p is a commutative Frobenius subalgebra of Γ.
The latter is called the center of Γ since it is the ordinary center in the
case C = Vectfink .

• Application to TQFT: Every finite dimensional semisimple k-algebra A
gives rise to a TQFT in 1+1 dimensions via triangulation (Fukuma/Hosono/
Kawai [99]). By the classification of TQFTs in 1+1 dimensions [65, 1, 156],

this TQFT corresponds to a commutative Frobenius algebra B (in Vectfink ),
with A = V (S1) and the product arising from the pants cobordism. The
latter is given by the vector space associated with the circle and the mul-
tiplication is given by the pants cobordism. One finds B = Z(A), and B
arises exactly as the image of A under the above projection p. (This works
since every semisimple algebra is a Frobenius algebra.)

• If C is braided, but not symmetric, we must choose between cΓ,Γ and

c−1
Γ,Γ in the definition (5.3) of the idempotent p. This implies that a non-
commutative Frobenius algebra will typically have two different centers,
called the left and right centers Γl,Γr. Remarkably, one then obtains an
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equivalence

E : Γl −Mod0C
≃−→ Γr −Mod0C

of modular categories, cf. Böckenhauer, Evans, Kawahigashi [34], Ostrik
[222] and Fröhlich, Fuchs, Runkel, Schweigert [98, 95]. Conversely, if C is
modular, every triple (Γl,Γr, E) as above arises from a non-commutative
algebra in C, [157]. (The latter is unique only up to Morita equivalence.)

• This is relevant for the classification of CFTs in two dimensions: The latter
are constructed from a pair (Al, Ar) of chiral CFTs and some algebraic
datum (‘modular invariant’) specifying how the two chiral CFTs are glued
together. In the left-right symmetric case, where the two chiral theories
coincide Al = Ar = A, the above result indicates that Frobenius algebras in
C = RepA are the structure to use. This is substantiated by a construction,
using TQFTs, of a ‘topological from a modular category C and a Frobenius
algebra Γ ∈ C, cf. Fuchs, Runkel, Schweigert, cf. [97] and sequels.

• The Frobenius algebras in / module categories of SUq(2) − Mod can be
classified in terms of ADE graphs. (Quantum MacKay correspondence.)
Cf. Böckenhauer, Evans [33], Kirillov Jr. and Ostrik [155], Etingof/Ostrik
[86].

• These results should be extended to other Lie groups. If SU(2) already
leads to the ADE graphs (“ubiquitous” according to [117]), the other clas-
sical groups should give rise to very interesting algebraic-combinatorial
structures, cf. e.g. [220, 221].

• More generally, when the two chiral theories Al, Ar, and therefore the as-
sociated modular categories Cl, Cr differ, it is better to work with triples
(Γl,Γr, E), where Γl/r ∈ Cl/r are commutative algebras and E : Γl −
Mod0Cl

→ Γr − Mod0Cr
is a braided equivalence. (By the above, in the

left-right symmetric case Cl = Cr = C, this is equivalent to the study of
non-commutative Frobenius algebras Γ ∈ C.) Now one finds [198] a bi-

jection between such triples and commutative algebras Γ ∈ Cl ⊠ C̃r of the
maximal dimension d(Γ) =

√
dim Cl · dim Cr. (This is a categorical ver-

sion of Rehren’s approach [233] to the classification of modular invariants.

It is based on studying local extensions A ⊃ Al ⊠ Ãr, corresponding to

commutative algebras Γ ∈ Cl ⊠ C̃r.)
• There also is a concept of a center of an algebra A in a not-necessarily
braided tensor category C, to wit the full center defined in [56] by a
universal property. While the full center is a commutative algebra in the
braided center Z1(C) of C, as apposed to in C like the above notions of
center, there are connections between these constructions.

• We close this section giving three more reasons why modular categories are
interesting:

1. They have many connections with number theory:
– Rehren [232], Turaev [262]:

∑

i

d2i = |
∑

i

d2iωi|2.
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In the pointed case (all simple objects have dimension one) this reduces

to |∑i ωi| = ±
√
|I|. For suitable C, this reproduces Gauss’ evaluation

of Gauss sums. (Gauss actually also determined the sign of his sums.)
– The elements of T matrix are roots of unity, and the elements of S

are cyclotomic integers [36, 78].
– For related integrality properties in Y=TQFSs, cf. Masbaum, Roberts,

Wenzl [186, 187] and Bruguières [38]).
– The congruence subgroup property: Let N = ordT (<∞). Then

ker(π : SL(2,Z) → GL(|I|,C)) ⊃ Γ(N) ≡ ker(SL(2,Z) → SL(2,Z/NZ)).

For the modular categories arising from rational CFTs, this had been
known in many cases and widely believed to be true in general. Con-
siderable progress was made by Bantay [17], whose arguments were
made rigorous by Xu [283] using algebraic quantum field theory. Ban-
tay’s work inspired a proof [247] by Sommerhäuser and Zhu for modu-
lar Hopf algebras, using the higher Frobenius-Schur indicators defined
by Kashina and Sommerhäuser [136]. Finally, Ng and Schauenburg
proved the congruence property for all modular categories along sim-
ilar lines, cf. [212], beginning with a categorical version of the higher
Frobenius-Schur indicators [211].

2. A modular category M gives rise to a surgery TQFT in 2 + 1 di-
mensions (Reshetikhin, Turaev [235, 262]). In particular, this works for
M = Z1(C) when C is spherical fusion categories C with dim C 6= 0. Since
such a category C also defines a TQFT via triangulation [19, 104], it is
natural to expect an isomorphism RTM = BWGKC of TQFTs. (When C
is itself modular, this is indeed true by Z1(C) ≃ C ⊠ C̃ and Turaev’s work
in [262].) Recently, a general proof of this result was announced by Tu-
raev and Virelizier, based on the work of Bruguières and Virelizier [41, 42],
partially joint with S. Lack. (Notice in any case that the surgery construc-
tion provides more TQFTs than the triangulation approach, since not all
modular categories are centers.)

3. We close with the hypothetical application of modular categories
to topological quantum computing [274]. There are actually two different
approaches to topological quantum computing: The one initiated by M.
Freedman, using TQFTs in 2 + 1 dimension and the one due to A. Kitaev
using d = 2 quantum spin systems. However, in both proposals, the mod-
ular representation categories are central. Cf. also Z. Wang, E. Rowell et
al. [120, 237].

6. Some open problems

(1) Characterize the hypergroups arising from a fusion category. (Probably
hopeless.) Or at least those corresponding to (connected) compact groups.

(2) Find an algebraic structure whose representation categories give all semisim-
ple pivotal categories, generalizing Ostrik’s result [222]. Perhaps this will
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be something like the quantum groupoids defined by Lesieur and Enock
[165]?

(3) Classify all prime modular categories. (The next challenge after the clas-
sification of finite simple groups...)

(4) Give a direct construction of the fusion categories associated with the two
Haagerup subfactors [109, 7, 8].

(5) Prove that every braided fusion category C/C embeds fully into a modular
categoryM with dimM = dim C ·dimZ2(C). (This is the optimum allowed
by the double commutant theorem, cf. [193].)

(6) Find the most general context in which an analytic (i.e. non-formal) version
of the Cartier/ Kassel/ Turaev [45, 140] formal deformation quantization
of a symmetric tensor category S with infinitesimal braiding can be given.
(I.e. give an abstract version of the Kazhdan/Lusztig construction of Drin-
feld’s category [144] that does not suppose S = RepG.)

(7) Generalize the proof of modularity of Z1(C) for semisimple fusion categories
to not necessarily semisimple finite categories (in the sense of [85]), using
Lyubashenko’s definition [175] of modularity.

(8) Likewise for the triangulation TQFT [265, 19, 104]. Generalize the relation
to surgery TQFT to the non-semisimple case. (For the non-semisimple
version of the RT-TQFT in [151].)

(9) Hard non-commutative analysis: Every countable C∗-tensor category with
conjugates and End1 = C embeds fully into the C∗-tensor category of bi-
modules over L(F∞) and, for any infinite factor M , into End(L(F∞)⊗M).
Here F∞ is the free group with countably many generators and L(F∞) the
type II1 factor associated to its left regular representation. (This would
extend and conceptualize the results of Popa/Shlyakhtenko [229] on the
universality of the factor L(F∞) in subfactor theory.)

(10) Give satisfactory categorical interpretations for various generalizations of
quasi-triangular Hopf algebras, e.g. dynamical quantum groups [77] and
Toledano-Laredo’s quasi-Coxeter algebras [257]. Soibelman’s ‘meromor-
phic tensor categories’ [246] and the ‘categories with cylinder braiding’ of
tom Dieck and Häring-Oldenburg [258] might be relevant – and in any case
they deserve further study.

Acknowledgement: I thank B. Enriquez and C. Kassel, the organizers of the Ren-
contre “Groupes quantiques dynamiques et catégories de fusion” that took place
at CIRM, Marseille, from April 14-18, 2008, for the invitation to give the lectures
that gave rise to these notes. (No proceedings were published for this meeting.)
I am also grateful to N. Andruskiewitsch, F. Fantino, G. A. Garćıa, M. Mombelli
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Disclaimer: While the following bibliography is quite extensive, it should be clear
that it has no pretense whatsoever at completeness. Therefore the absence of this or
that reference should not be construed as a judgment of its relevance. The choice
of references was guided by the principal thrust of these lectures, namely linear
categories. This means that the subjects of quantum groups and low dimensional
topology, but also general categorical algebra are touched upon only tangentially.
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[21] H. Baumgärtel, F. Lledó: Duality of compact groups and Hilbert C*-systems for C*-algebras
with a nontrivial center. Int. J. Math. 15, 759-812 (2004). 109

[22] A. Beliakova, C. Blanchet: Skein construction of idempotents in Birman-Murakami-Wenzl
algebras. Math. Ann. 321, 347-373 (2001). 135

[23] A. Beliakova, C. Blanchet: Modular categories of types B, C and D. Comment. Math. Helv.
76, 467-500 (2001). 135, 143

[24] J. Benabou: Catégories avec multiplication. C. R. Acad. Sci. Paris 256, 1887-1890 (1963).
95, 99
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[255] T. Tannaka: Über den Dualitätssatz der nichtkommutativen topologischen Gruppen.
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