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1.1 Lemma Let A be a normed unital algebra and InvA ⊆ A the set of invertible elements. Then Inv(A) is a
topological group (w.r.t. the norm topology).

Proof. (i) It is clear that Inv(A) is a group and that multiplication is continuous, since multiplication A×A → A
is jointly continuous. It remains to show that the inverse map σ : Inv(A)→ Inv(A), a 7→ a−1 is continuous. To
this purpose, let r, r + h ∈ Inv(A) and put (r + h)−1 = r−1 + k. We must show that ‖h‖ → 0 implies ‖k‖ → 0.
From 1 = (r−1 +k)(r+h) = 1+ r−1h+kr+kh we obtain r−1h+kr+kh = 0. Multiplying this on the right by
r−1 we have r−1hr−1+k+khr−1 = 0, thus k = −r−1hr−1−khr−1. Therefore ‖k‖ ≤ ‖r−1‖2‖h‖+‖k‖‖h‖‖r−1‖,
which is equivalent to ‖k‖(1− ‖h‖‖r−1‖) ≤ ‖r−1‖2‖h‖ and, for ‖h‖ < ‖r−1‖−1, to

‖k‖ ≤ ‖r−1‖2

1− ‖h‖‖r−1‖
‖h‖.

From this it is clear that ‖h‖ → 0 implies ‖k‖ → 0. �

1.2 Definition If A is a unital algebra and a ∈ A, the spectrum of a is defined as

σ(a) = {λ ∈ C | a− λ1 6∈ InvA}.

The spectral radius of a is r(a) = sup{|λ| | λ ∈ σ(a)}.

1.3 Theorem Let A be a unital normed algebra and a ∈ A. Then σ(a) 6= ∅, and

r(a) ≥ inf
n∈N
‖an‖1/n = lim

n→∞
‖an‖1/n. (1)

Proof. We try to make the argument digestible by breaking it up in pieces.
Claim: With ν = infn∈N ‖an‖1/n (≤ ‖A‖) we have limm→∞ ‖am‖1/m = ν.

Proof. For every a ∈ A, with ‖an‖ ≤ ‖a‖n we trivially have

0 ≤ inf
n∈N
‖an‖1/n ≤ lim inf

n→∞
‖an‖1/n ≤ lim sup

n→∞
‖an‖1/n ≤ ‖a‖ <∞. (2)

Abbreviating ν = infn∈N ‖an‖1/n, for every ε > 0 there is a k such that ‖ak‖1/k < ν + ε. Now every m ∈ N
is of the form m = sk + r with unique k ∈ N0 and 0 ≤ r < k. Then

‖am‖ = ‖ask+r‖ ≤ ‖ak‖s‖a‖r < (ν + ε)sk‖a‖r,

‖am‖1/m ≤ (ν + ε)
sk
sk+r ‖a‖

r
sk+r .

Now m→∞ means sk
sk+r → 1 and r

sk+r → 0, so that lim supm→∞ ‖am‖1/m ≤ ν + ε. Since this holds for every

ε > 0, we have lim supm→∞ ‖am‖1/m ≤ infn∈N ‖an‖1/n. Together with (2) this implies that limm→∞ ‖am‖1/m
exists and equals infn∈N ‖an‖1/n. 2

Claim: (i) holds if ν = 0. Assume a ∈ Inv(A). Then there is b ∈ A such that ab = ba = 1. Then
1 = anbn, thus with 1 ≤ ‖1‖ we have 1 ≤ ‖1‖ = ‖anbn‖ ≤ ‖an‖‖bn‖ ≤ ‖an‖‖b‖n. Taking n-th roots, we

1



have 1 ≤ ‖an‖1/n‖b‖, and taking the limit gives the contradiction 1 ≤ ν‖b‖ = 0. Thus if ν = 0 then a is not
invertible, so that 0 ∈ σ(a), thus σ(a) 6= ∅. Now (1) is obviously true. 2

Claim C: For all µ > ν we have
(
a
µ

)n
→ 0 as n → ∞, but

(
a
ν

)n 6→ 0 provided ν > 0. (This is of course

trivial if µ > ‖a‖, but our hypothesis is weaker when ν < ‖a‖.)
Proof. Let µ > ν, and choose µ′ such that ν < µ′ < µ. Since ‖an‖1/n → ν by the first step, there is a n0 such
that n ≥ n0 ⇒ ‖an‖1/n < µ′. For such n we have∥∥∥∥(aµ

)n∥∥∥∥ =
‖an‖
µn

≤
(
µ′

µ

)n
n→∞−→ 0.

Thus for every µ > ν we have that (a/µ)n → 0 as n→∞. On the other hand, for all n ∈ N we have ‖an‖1/n ≥ ν.
With ν > 0 this implies ‖(a/ν)n‖ ≥ 1 ∀n, and therefore (a/ν)n 6→ 0. 2

From now on assume ν > 0. Assume that there is no λ ∈ σ(a) with |λ| ≥ ν. This implies that (a − λ1)−1

exists for all |λ| ≥ ν and depends continuously on λ by Lemma 1.1. The same holds (since |λ| ≥ ν > 0) for the
slightly more convenient function

φ : {λ ∈ C | |λ| ≥ ν} → A, λ 7→
(a
λ
− 1
)−1

.

Claim A: For all |λ| ≥ ν, n ∈ N we have ( aλ )n − 1 ∈ InvA and

((
a

λ
)n − 1)−1 =

1

n

n∑
k=1

φ(λk), where λk = e
2πi
n kλ. (3)

Before we give the proof, which is elementary algebra, we show how Claims C and A imply the theorem.
Pick any η > ν. Since the annulus Λ = {λ ∈ C | ν ≤ |λ| ≤ η} is compact, the continuous map φ : Λ→ A is

uniformly continuous. I.e., for every ε > 0 we can find δ > 0 such that λ, λ′ ∈ Λ, |λ−λ′| < δ ⇒ ‖φ(λ)−φ(λ′)‖ <
ε. If ν < µ < ν + δ, we have |νk − µk| = |ν − µ| < δ and therefore ‖φ(νk) − φ(µk)‖ < ε for all n ∈ N and
k = 1, . . . , n. Combining this with (3) we have ‖((aν )n − 1)−1 − (( aµ )n − 1)−1‖ ≤ 1

n

∑n
k=1 ‖φ(νk) − φ(µk)‖ <

ε ∀n ∈ N. Thus:
∀ε > 0 ∃µ > ν ∀n ∈ N : ‖((a

ν
)n − 1)−1 − ((

a

µ
)n − 1)−1‖ < ε. (4)

By Claim C, µ > ν implies (a/µ)n → 0 as n → ∞. With continuity of the inverse map, ((a/µ)n − 1)−1 →
−1. Thus for n large enough we have ‖((a/µ)n − 1)−1 + 1‖ < ε, and combining this with (4) we have
‖((a/ν)n − 1)−1 + 1‖ < 2ε. Since ε > 0 was arbitrary, we have ((a/ν)n − 1)−1 → −1 as n→∞ and therefore
(a/ν)n → 0. This contradicts Claim C, so that our assumption that there is no λ ∈ σ(a) with |λ| ≥ ν is false.
Existence of such a λ obviously gives σ(a) 6= ∅ and r(a) ≥ ν, completing the proof.

It remains to prove (3): For 0 6= λ ∈ C and n ∈ N, put λk = λe
2πi
n k, where k = 1, . . . , n. (One should

really write λn,k, but we suppress the n.) Then λ1, . . . , λn are the solutions of zn = λn, and we have zn− λn =∏
k(z − λk). Let |λ| ≥ ν and n ∈ N. Then our assumption (|λ| ≥ ν =⇒ λ 6∈ σ(a)) implies λk 6∈ σ(a) for

all k = 1, . . . , n. Thus all a
λk
− 1 are invertible, and so is ( aλ )n − 1 =

∏
k( a
λk
− 1). A telescoping computation

proves the well-known formula

zn − 1 = (z − 1)(1 + z + z2 + · · ·+ zn−1) (5)

for finite geometric sums. Putting z = a/λk and observing λnk = λn, we have

(
a

λ
)n − 1 = (

a

λk
)n − 1 = (

a

λk
− 1)(1 +

a

λk
+ · · ·+ (

a

λk
)n−1)

and therefore with the invertibilities proven above,

φ(λk) = (
a

λk
− 1)−1 = ((

a

λ
)n − 1)−1(1 +

a

λk
+ · · ·+ (

a

λk
)n−1) = ((

a

λ
)n − 1)−1

n−1∑
l=0

(a
λ

)l
e−

2πikl
n .
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Summing over k ∈ {1, . . . , n}, we have

n∑
k=1

φ(λk) = ((
a

λ
)n − 1)−1

n−1∑
l=0

(a
λ

)l n∑
k=1

e−
2πikl
n . (6)

If l ∈ {1, . . . , n− 1} then z = e
2πi
n l satisfies z 6= 1 and zn = 1. Thus (5) gives

n∑
k=1

e
2πi
n kl = e

2πi
n l

n−1∑
k=0

zk = e
2πi
n l z

n − 1

z − 1
= 0,

so that only l = 0 in (6) survives, and the r.h.s. equals n(( aλ )n − 1)−1, yielding (3). �

The above proof is from [3] (which is written in terms of ‘quasi-inverses’, for which one does not need a
unit). Versions of it can be found in [4, 2]. Compare also [5, 1].

1.4 Corollary If A is a normed division algebra (thus unital) over C then A = C1.

Proof. Let a ∈ A. By the above Theorem, σ(a) 6= ∅. Picking λ ∈ σ(a), we have a− λ1 6∈ Inv(A). Since A is a
division algebra, we have a− λ1 = 0, thus a ∈ C1. Since a was arbitrary, we have A = C1. �

Note that completeness was neither assumed nor used so far! The following material is standard and is
included for the sake of completeness.

1.5 Theorem Let A be a unital Banach algebra and a ∈ A. Then

(i) 1− b ∈ InvA whenever b ∈ A, ‖b‖ < 1, and InvA ⊆ A is open.

(ii) σ(a) is closed.

(iii) r(a) ≤ ‖a‖.

(iv) r(a) = limn→∞ ‖an‖1/n. (Beurling-Gelfand formula)

Proof. (i) If ‖b‖ < 1 then
∑∞
n=0 ‖bn‖ ≤

∑∞
n=0 ‖b‖n < ∞, so that the series

∑∞
n=0 b

n converges to some c ∈ A
by completeness. Now clearly c = 1 + bc = 1 + cb, which is equivalent to c(1 − b) = 1 = (1 − b)c to that
1− b ∈ InvA. If now a ∈ InvA and ‖a− a′‖ < ‖a−1‖−1 then ‖1− a−1a′‖ = ‖a−1(a− a′)‖ ≤ ‖a−1‖‖a− a′‖ < 1
so that a−1a′ = 1− (1− a−1a′) ∈ InvA, thus a′ = a(a−1a′) ∈ InvA. This proves that InvA is open.

(ii) If a ∈ A then fa : C → A, λ 7→ a − λ1 is continuous, thus f−1a (InvA) ⊆ C is open by (i). Now
σ(a) = C\f−1a (InvA) is closed.

(iii) If λ ∈ C, |λ| > ‖a‖ then ‖a/λ‖ < 1 so that 1 − a/λ ∈ InvA by (i). Thus λ1 − a ∈ InvA, so that
λ 6∈ σ(a).

(iv) Replacing z in (5) by a ∈ A, both factors on the r.h.s. commute. If λ ∈ σ(a) then a − λ is not in-
vertible, thus an − λn is not invertible, so that λn ∈ σ(an). Thus r(a) ≤ infn∈N r(a

n)1/n. Using (iii), we have
r(a) ≤ infn r(a

n)1/n ≤ infn ‖an‖1/n = ν. Combining with Theorem 1.3 gives the claim. �
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