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1.1 LEMMA Let A be a normed unital algebra and Inv A C A the set of invertible elements. Then Inv(A) is a
topological group (w.r.t. the norm topology).

Proof. (i) Tt is clear that Inv(.A) is a group and that multiplication is continuous, since multiplication Ax A — A
is jointly continuous. It remains to show that the inverse map o : Inv(A) — Inv(A),a — a~? is continuous. To
this purpose, let r,r + h € Inv(A) and put (r +h)~! = r~! + k. We must show that ||h| — 0 implies ||k| — 0.
From 1 = (r~'+k)(r+h) = 1+7"th+kr+kh we obtain r~*h+ kr + kh = 0. Multiplying this on the right by
r~! we have r~*hr=t+k+khr~! =0, thus k = —r~'hr=! —khr~1. Therefore ||k|| < ||»=||2||k| + || k||| ]]||7 1],
which is equivalent to [|k[|(1 — ||A|||[»=2|) < |7~ ||?||R|| and, for ||A]| < |[r=*| !, to

I
k|| <
Il < —

—————|Al.
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From this it is clear that ||h|| — 0 implies ||k|| — 0. ]

1.2 DEFINITION If A is a unital algebra and a € A, the spectrum of a is defined as
ola)={AeC|a—A1¢InvA}
The spectral radius of a is r(a) = sup{|A| | A € o(a)}.

1.3 THEOREM Let A be a unital normed algebra and a € A. Then o(a) # 0, and
> nl/n _ 1; n l/n.
@) > inf o [[V" = tim_ o] 1)

Proof. We try to make the argument digestible by breaking it up in pieces.
Claim: With v = inf, ey ||a™[|"/™ (< ||A|]) we have lim,, o [Ja™||*/™ = v.
Proof. For every a € A, with ||a”|| < ||a||™ we trivially have

0 < inf [la||*™ < liminf [|a”||*™ < limsup ||a™||*/™ < [Ja|| < co. (2)
neN n—00 n—00

kHl/k

Abbreviating v = inf,cy [|a”||'/™, for every ¢ > 0 there is a k such that ||a <v+e. Now every m € N

is of the form m = sk + r with unique £ € Ny and 0 < r < k. Then
la™ | = la***" | < [la®*[lall” < (v +€)*[la]",

la™ V™ < (v + &) 757 ||a

Now m — 0o means Slfir — 1 and 7% — 0, so that limsup,,,_, la™||*/™ < v + . Since this holds for every
e > 0, we have limsup,, . ||a™||"/™ < inf,en [la™||*/™. Together with (2) this implies that lim,, . ||a™]||*/™
exists and equals inf, ey [la™||*/™. O

Claim: (i) holds if v = 0. Assume a € Inv(A). Then there is b € A such that ab = ba = 1. Then
1 = a™b", thus with 1 < ||]1]] we have 1 < ||1]| = [|a™b™]| < [Ja™||||[b"]] < |la™||||b]|™. Taking n-th roots, we



have 1 < ||a”||'/"||b|, and taking the limit gives the contradiction 1 < v||b|| = 0. Thus if v = 0 then a is not
invertible, so that 0 € o(a), thus o(a) # . Now (1) is obviously true. O

n

Claim C: For all 4 > v we have (%) — 0 as n — oo, but (%)n # 0 provided v > 0. (This is of course

trivial if g > ||a||, but our hypothesis is weaker when v < |al|.)
Proof. Let pu > v, and choose u' such that v < p/ < p. Since ||a”||'/™ — v by the first step, there is a ng such
that n > ng = ||a™||*/™ < p/. For such n we have

|G -5= () =
7

pr [
Thus for every ;> v we have that (a/u)™ — 0 as n — co. On the other hand, for all n € N we have |a™||*/" > v.
With v > 0 this implies ||(a/v)"|| > 1 Vn, and therefore (a/v)™ # 0. O

From now on assume v > 0. Assume that there is no A\ € o(a) with |[A\| > v. This implies that (a — A1)~!
exists for all |A\| > v and depends continuously on A by Lemma 1.1. The same holds (since |A| > v > 0) for the
slightly more convenient function

-1
o:{AeC| A >v) = A, /\l—>(%—1) .

Claim A: For all [A\| > v, n € N we have ()" — 1 € Inv.A and

a 2mi I

(=17 = 13 90, where A=A o)
k=1

Before we give the proof, which is elementary algebra, we show how Claims C and A imply the theorem.

Pick any 1 > v. Since the annulus A = {A € C | v < |A| < n} is compact, the continuous map ¢ : A — A is
uniformly continuous. Le., for every e > 0 we can find § > 0 such that A, N € A, [A=N| < = ||[p(A)—op(X)] <
e. fv<pu<v+9, we have |y — px| = |v — p| < ¢ and therefore ||dp(vr) — p(ur)| < € for all n € N and
k= 1,...,n. Combining this with (3) we have [[(($)" —1)7' = ((2)" - 1)~ < LS o) — d(u)|| <
e Vn € N. Thus: a “

Ve>0 Ju>v VneN: H((;)” —-1)"' — ((;)” -1 <e. (4)
By Claim C, g > v implies (a/p)” — 0 as n — oo. With continuity of the inverse map, ((a/p)” —1)~" —
—1. Thus for n large enough we have ||((a/u)® — 1)7! + 1| < &, and combining this with (4) we have
|((a/v)™ —1)~1 4+ 1|| < 2e. Since € > 0 was arbitrary, we have ((a/v)" —1)~! — —1 as n — co and therefore
(a/v)™ — 0. This contradicts Claim C, so that our assumption that there is no A € o(a) with |\| > v is false.
Existence of such a A obviously gives o(a) # () and r(a) > v, completing the proof.

It remains to prove (3): For 0 # A € C and n € N, put A\, = e 'k where k = 1,...,n. (One should

-1

really write Ay, i, but we suppress the n.) Then Aq,..., A, are the solutions of 2™ = A", and we have 2" — A" =
[1.(2 — Ax). Let [A\| > v and n € N. Then our assumption (|A| > v = X & o(a)) implies A\, & o(a) for
all k =1,...,n. Thus all - —1 are invertible, and so is (£)" —1 = [[, (5= —1). A telescoping computation

proves the well-known formula
e l=(—-1D)1+z2+224+2"h (5)

for finite geometric sums. Putting z = a/A; and observing A} = A", we have

a a a a a
N1 =(—)"—-1=(——-1)(1+ —+--- — )1
(1= G0 1= (G =D+ o+ ()
and therefore with the invertibilities proven above,
n—1
a a a a a a\! _omik
)\ _7_1—1_ 7”_1—11 i . 771,—1: 771_1—1 e ~
o) = (- =D = (=D Ak b ) = (-0 (5)



Summing over k € {1,...,n}, we have

—

n—

angb“k) = (=07 (5 lie—f (6)
A A
k=1 =

Ifle{l,...,n—1} then z = e*5"! satisfies z # 1 and 2" = 1. Thus (5) gives

=0

n

n—1 n
2mi 2mi X omig 270 — 1
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so that only I = 0 in (6) survives, and the r.h.s. equals n(($)" — 1), yielding (3). [ |

The above proof is from [3] (which is written in terms of ‘quasi-inverses’, for which one does not need a
unit). Versions of it can be found in [4, 2]. Compare also [5, 1].

1.4 COROLLARY If A is a normed division algebra (thus unital) over C then A = C1.

Proof. Let a € A. By the above Theorem, o(a) # 0. Picking A € o(a), we have a — A\1 ¢ Inv(A). Since A is a
division algebra, we have a — A1 = 0, thus @ € C1. Since a was arbitrary, we have A = C1. |

Note that completeness was neither assumed nor used so far! The following material is standard and is
included for the sake of completeness.

1.5 THEOREM Let A be a unital Banach algebra and a € A. Then
(i) 1 —b € Inv. A whenever b € A, ||b]| <1, and Inv.A C A is open.

(ii) o(a) is closed.

(i) (@) < lll
(iv) r(a
Proof. (i) If ||b]] < 1 then Y07 [[b™|| < -7 o Ib]|™ < 0o, so that the series Y, b™ converges to some ¢ € A
by completeness. Now clearly ¢ = 1 + be = 1 + ¢b, which is equivalent to ¢(1 —b) = 1 = (1 — b)c to that
1-belnvA Ifnowa € InvAand |ja—d/|| < [[a™t|! then |1 —a™1d/|| = [[a  (a—da)| < |la7M|[la—d| < 1
so that a=ta’ =1 — (1 —a"'a’) € Inv A, thus ¢’ = a(ata’) € Inv.A. This proves that Inv A is open.

(i) If @ € A then f, : C = A, A\ = a — Al is continuous, thus f;!(Inv.4) C C is open by (i). Now
o(a) = C\f, (Inv A) is closed.

(iii) If A € C,|\| > |la|| then |la/A|| < 1 so that 1 — a/\ € Inv.A by (i). Thus A1 — a € Inv.A, so that
A€ o(a).

(iv) Replacing z in (5) by a € A, both factors on the r.h.s. commute. If A € o(a) then a — A is not in-
vertible, thus a™ — A" is not invertible, so that A" € o(a™). Thus r(a) < inf,enr(a™)'/™. Using (iii), we have
r(a) < inf, r(a™)V/™ < inf,, [|a”||*/" = v. Combining with Theorem 1.3 gives the claim. [ ]

)
)

= lim,, o ||@”||"/™. (Beurling-Gelfand formula)
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